
HOW IS POLLY? REVISITING

THE DIFFERENTIAL ATTACK

ON POLLY CRACKER AFTER

20 YEARS

CHRISTOPH STROBL

Master’s thesis
2022:E39

Faculty of Science
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M



Abstract

When building cryptographic systems, one is constantly on the hunt for hard to
solve problems, but are all problems suitable?

In this thesis we will take a look at Gröbner bases over finite fields and how
they fail to provide a secure cryptosystem. We discuss several ways of attacking a
Gröbner basis based cryptosystem named Polly Cracker, analyse the Differential
Attack by Hofheinz and Steinwandt and show experimental results which suggest
its extended range of application.

Keywords: polly cracker, differential attack, asymmetric cryptography, multi-
variate cryptography, public key cryptography





Danksagung

I would like to thank my supervisor Anna Torstensson for her guidance during
my thesis.

Auch bei meiner dritten Arbeit soll der Dank welchen ich meinem UrgroSS-
vater und meinem GroSSvater gegenüber verspüre nicht unerwähnt bleiben.
Beide haben mir mein Erststudium in Deutschland und mein jetziges Zweit-
studium in Schweden ermöglicht. Desweiteren möchte ich dem Schwedischem
Staat für die finanzielle Unterstützung während meines Studiums danken.





Contents

1 Introduction 1
1.1 Orderings of Monomials . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Cryptography 9
2.1 Polly Cracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Linear Algebra Attacks . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Hidden monomials . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Differential Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Conclusion 19

Bibliography 20





Notation

K A field.

xx, yy Ideal generated by x and y.
degpxαq degree of monomial xα.

LCMpp, qq Least common multiple of p and q.
LMppq Leading monomial of the polynomial p.
LTppq Leading term of the polynomial p.

grevlex Graded Reversed Lexicographic Order.
grlex Graded Lexicographic Order.
lex Lexicographic Order.

Spf, gq S-polynomial of f and g.





In this work we will explore the world of multivariate polynomials and their
possible applications in public key cryptography. We start with an introduction
to some important aspects of multivariate polynomials: monomial orderings,
Gröbner bases and Buchberger’s algorithm. From there on we will continue by
introducing cryptographic schemes mostly referred to as Polly Cracker and their
cryptanalysis. In the cryptanalysis part we will discuss currently known methods
of breaking the introduced schemes and explore their strengths and weaknesses.

1 Introduction

A general reference for this section is [1].

Definition 1.1. A monomial in x1, . . . , xn is a product of the form

xα1
1 ¨ xα2

2 . . . xαn
n

where all the exponents α1, . . . , αn are non-negative integers. The total degree
of the monomial, denoted by degpxαq, is the sum α1 ` ¨ ¨ ¨ ` αn.

Definition 1.2. A polynomial p in x1, . . . , xn with coefficients in the field F is
a linear combination of monomials of the form:

p “
ÿ

α

aαxα with aα P F

where the sum is over a finite number of n-tuples α “ pα1, . . . , αnq. The set
of all polynomials in the variables x1, . . . , xn with coefficients in F is written
Frx1, . . . , xns.

Example 1. An example of a polynomial in three variables in Qrx, y, zs is:

ppx, y, zq “
7
3

x2y2z `
2
3

x3z2 ` x ´ 2y2

Definition 1.3. Let f “
ř

α aαxα be a multivariate polynomial in Frx1, . . . , xns.

1. aα is called the coefficient of the monomial xα

2. aαxα is called a term of f , whenever aα ‰ 0

3. The total degree of f is denoted by degpfq and is the maximum degpxαq

such that the coefficient aα is nonzero.

Example 2. The polynomial ppx, y, zq “ x2y2z ` x3z2 ` x ´ y2 has four terms
and a total degree of five.

Remark. A polynomial consisting only of monomials of degree greater than 0,
will be called n-monomial, where n denotes the number of terms. So x2y5 `y3z2

is a 2-monomial.

1



Definition 1.4. A Laurent-Polynomial is an expression of the form:

p “
ÿ

α

aαxα with aα P F (1)

where the coefficients aα are elements in the field F and the n-tuples α “

pα1, . . . , αnq are integers. Using the multiplication and addition rules of regular
polynomials, with the exception that also negative powers of x are permitted,
Laurent polynomials fulfill the ring axioms. Such a ring is called Laurent-Ring
over F.

The proof that Laurent-Polynomials over F form a ring, which we denote
by Frx, x´1s, is similar to the proof that the set of polynomials forms a ring
except that in this case also negative exponents are permitted. Laurent-rings
are mentioned for example in [2].

Definition 1.5. A subset I of Frx1, . . . , xns is called an ideal if the following
conditions are satisfied:

1. 0 P I

2. If f, g P I, then f ` g P I

3. If f P I and h P Frx1, . . . , xns then hf P I.

Definition 1.6. Let f1, . . . , fs be polynomials in Frx1, . . . , xns, then we write:

xf1, . . . , fsy “

#

s
ÿ

i“1
hifi | h1, . . . , hs P Frx1, . . . , xns

+

We will know see that xf1, . . . , fsy describes an ideal.

Lemma 1.7. Let f1, . . . , fs be polynomials in Frx1, . . . , xns, then xf1, . . . , fsy is
an ideal of Frx1, . . . , xns. One says that xf1, . . . , fsy is the ideal generated by
f1, . . . , fs.

Proof. Clearly 0 P xf1, . . . , fsy since 0 “
řs

i“1 0 ¨ fi. Now let f “
řs

i“1 pifi,
g “

řs
i“1 qifi and h P Frx1, . . . , xns. Then the equations:

f ` g “

s
ÿ

i“1
ppi ` qiqfi

hf “

s
ÿ

i“1
phpiqfi

hold and this proofs that xf1, . . . , fsy is an ideal.

1.1 Orderings of Monomials

Definition 1.8. A monomial ordering on Frx1, . . . , xns is any relation ą on Zn
ě0

such that the following conditions are satisfied:

2



1. ą is a total (or linear) ordering on Zn
ě0. Meaning that for every pair of

monomials xα and xβ, exactly one of the following statements holds:

xα ă xβ, xα “ xβ, xα ą xβ

2. If α ą β and γ P Zn
ě0, then α ` γ ą β ` γ

3. ą is a well-ordering on Zn
ě0. This means that every nonempty subset of

Zn
ě0 has a smallest element under the relation ą

Lemma 1.9. An order relation ą on Zn
ě0 is a well-ordering if and only if every

strictly decreasing sequence in Zn
ě0

αp1q ą αp2q ą αp3q ą . . .

eventually terminates.

Proof. This will be proven in its contra positive form: An order relation ą is
not a well-ordering if and only if there is an infinite strictly decreasing sequence
in Zn

ě0. If ą is not a well-ordering, then some nonempty subset S Ă Zn
ě0 has

no least element. Now pick αp1q P S. Since αp1q is not the least element, we
can find αp1q ą αp2q in S. Then also αp2q is also not the least element, so there
exists αp2q ą αp3q in S. This can be continued which leads to an infinite strictly
decreasing sequence

αp1q ą αp2q ą αp3q ą . . . .

Conversely, given such an infinite sequence, tαp1q, αp2q, αp3q, . . . u is a nonempty
subset of Zn

ě0 with no least element and thus the relation ą is not a well-ordering.

Definition 1.10 (Lexicographic Order). Let us define α “ pα1, . . . , αnq and
β “ pβ1, . . . , βnq be elements of Zn

ě0. We say that α ąlex β if, in the vector
difference α ´ β P Zn

ě0, the left-most nonzero entry is positive. If α ą β, one
writes xα ąlex xβ.

For example:
p3, 2, 0q ąlex p1, 3, 4q since α ´ β “ p2, ´1, ´4q or equivalently:

x3
1x2

2 ąlex x1x3
2x4

3

Proposition 1.11. The lex ordering on Zn
ě0 is a monomial ordering.

Proof. 1. That the ordering ąlex is a total ordering follows directly from the
definition and the fact that the usual numerical order on Zě0 is a total
ordering.

3



2. If α ąlex β, then the left-most nonzero entry of α´β, say αk´βk is positive.
But xα ¨ xγ “ xα`γ and xβxγ “ xβ`γ . Then in pα ` γq ´ pβ ` γq “ α ´ β

the left-most nonzero entry is again αk ´ βn ą 0.

3. Suppose that ąlex is not a well-ordering. Then by Lemma 1.9, there would
be an infinite strictly descending sequence

αp1q ąlex αp2q ąlex αp3q ąlex . . .

of elements of Zn
ě0. This leads to a contradiction.

Consider the first entries of the vectors αpiq P Zn
ě0. By the definition of

the lex order, these first entries form a non increasing sequence of non-
negative integers. Since Zn

ě0 is well-ordered, the first entries of the αpiq

must stabilize eventually. That is that there exist a k such that all the first
components of αpiq with i ě k are equal.

Beginning at αpkq, the second and subsequence entries come into play in
determining the lex order. The second entries of αpkq, αpk ` 1q, . . . form a
non increasing sequence. Like before, the second entries stabilize eventually
too. Continuing this procedure for some l, we see that αplqαpl ` 1q, . . . are
all equal. This contradicts the fact αplq ą αpl ` 1q

In a similar fashion, it can also be proven that the next two orderings are
monomial orderings.

Definition 1.12 (Graded Lexicographic Order). Let α, β P Zn
ě0. We say α ągrlex

β if

|α| “

n
ÿ

i“1
αi ą |β| “

n
ÿ

i“1
βi, or |α| “ |β| and α ąlex β

Example 3. 1. p1, 3, 4q ągrlex p4, 2, 0q since |p1, 3, 4q| “ 8 ą |p4, 2, 0q| “ 6.
Which is equivalent with writing: x1x3

2x4
3 ągrlex x4

1x2
2

2. p1, 2, 5q ągrlex p1, 1, 6q since |p1, 2, 5q| “ |p1, 1, 6q| “ 8 and p1, 2, 5q ąlex

p1, 1, 6q. Which is equivalent with writing: x1x2
2x5

3 ągrlex x1x2x6
3

Definition 1.13 (Graded Reversed Lexicographic Order). Let α, β P Zn
ě0. We

say α ągrevlex β if

|α| “

n
ÿ

i“1
αi ą |β| “

n
ÿ

i“1
βi, or |α| “ |β|

and, in α ´ β P Zn, the right-most nonzero entry is negative.

Example 4. 1. p4, 7, 2q ągrevlex p4, 2, 4q since |p4, 7, 2q| “ 13 ą |p4, 2, 4q| “

10

4



Example 5. Let the polynomial ppx, y, zq “ x3y2z ` x2y4 ` x5 be ordered in
different orderings, this is then:

ppx, y, zq “ x5 ` x3y2z ` x2y4

for lexicographic ordering, with x ą y ą z.

ppx, y, zq “ x3y2z ` x2y4 ` x5

for graded lexicographic ordering. And

ppx, y, zq “ x2y4 ` x3y2z ` x5

in graded reversed lexicographic ordering.

Additionally we will use the following terms throughout this work:

Definition 1.14. Let f “
ř

α aαxα be a nonzero polynomial in Frx1, . . . , xns

and let ą denote a monomial ordering.

1. The multi degree of f is defined:

multidegpfq “ maxpα P Zn
ě0 | aα ‰ 0q

where the maximum is taken with respect to the monomial ordering ą.

2. The leading coefficient of f is defined:

LCpfq “ amultidegpfq P F

3. The leading monomial of f is defined:

LMpfq “ xmultidegpfq

where the coefficient is 1.

4. The leading term of f is therefore:

LTpfq “ LCpfq ¨ LMpfq

1.2 Gröbner Bases

When dividing univariate polynomials we use the division algorithm to divide
polynomials in Frxs by one another. We possibly a product and a remainder
upon successful execution. This makes it possible to then rewrite a polynomial
ppxq in the following way:

ppxq “ qpxqbpxq ` rpxq where degprq ă degpbq.

5



But this is not as easy with multivariate polynomials. Let’s say we want to
divide some polynomial p P Frx1, . . . , xns by f1, . . . , fs P Frx1, . . . , xns, which
means we would like to get an expression in the form:

p “ a1f1 ` ¨ ¨ ¨ ` asfs ` r.

There are several terms describing this process, for example reduction or multi-
variate division. Let us now take a look at the division algorithm:

Theorem 1.15 (Division Algorithm). Let ą be some fixed monomial ordering
and let F “ pf1, . . . , fsq be an ordered s-tuple of polynomials in Frx1, . . . , xns.
Then every f P Frx1, . . . , xns can be written in the following way:

f “ a1f1 ` ¨ ¨ ¨ ` asfs ` r

where ai, r P Frx1, . . . , xns, and either r “ 0 or r is a k-linear combination of
monomials of which none is divisible by any of LTpf1q, . . . , LTpfsq.

Proof. The complete proof for this can be seen for example in [1]. Pseudocode
for the division is presented here.

Algorithm 1 Division algorithm in Frx1, . . . , xns

Require: f1, . . . , fs, f
procedure Division(f, rf1, . . . , fss)

a1 Ð 0, a2 Ð 0, . . . , as Ð 0, r Ð 0
p Ð f
while p ‰ 0 do

i Ð 1
divisionoccurred :“ false
while i ď s AND divisionoccurred = false do

if LTpfiq divides LTppq then
ai :“ ai ` LTppq{LTpfiq

p :“ p ´ pLTppq{LTpfiqqfi

divisionoccurred := true
else

i :“ i ` 1
end if

end while
if divisionoccurred = false then

r :“ r ` LTppq

p :“ p ´ LTppq

end if
end while

end procedure

Although this seems similar to the process for univariate polynomials, we can
observe three main differences:

6



1. The result of the division process depends on the ordering of the divisors
f1, . . . , fn.

2. The ordering is not automatically induced as it is in the univariate case.

3. A leading monomial m in fi is unable to divide the leading term of the
polynomial p but does divide another term of p, which is not possible in
the univariate case.

For the first difference, let us look at an example from [1]:

Example 6. Let us divide p “ xy2 ` 1 by f1 “ xy ´ 1 and f2 “ y2 ´ 1 in the
first case, using lex ordering and then in reverse lex ordering:

a1 : x ` y

a2 : 1 r

xy ´ 1 a

x2y ` xy2 ` y2
y2 ´ 1

x2y ´ x

xy2 ` x ` y2

xy2 ´ y

x ` y2 ` y Ñ x

y2 ` y

y2 ´ 1

y ` 1

1 Ñ x ` y

0 Ñ x ` y ` 1

a1 : x ` 1
a2 : x r

y2 ´ 1 a

x2y ` xy2 ` y2
xy ´ 1

x2y ´ x

xy2 ` x ` y2

xy2 ´ x

2x ` y2 Ñ 2x

y2

y2 ´ 1

1

0 Ñ 2x ` 1

7



To address the second difference, we introduced total orderings in the previ-
ous section, which has to be decided prior to performing any calculations. For
the last one we are going to take a look at the concept of Gröbner Bases.

The concept of Gröbner bases was discovered Bruno Buchberger and Heisuke
Hironaka in the 1960s independently of each other. Buchberger named the con-
cept after his PhD supervisor Wolfgang Gröbner, while Hironaka used the term
standard bases. Gröbner bases solve several problems in Mathematics.

Two of them are:

1. The Ideal Membership Problem: Given a polynomial p P Frx1, . . . , xns and
an ideal I “ xf1, . . . , fsy, is p P I?

2. The Problem of Solving Polynomial Equations: Find all common solutions
in kn of a system of polynomial equations:

f1px1, . . . , xnq “ ¨ ¨ ¨ “ fspx1, . . . , xnq “ 0

Definition 1.16. Let I Ă Frx1, . . . , xns be an ideal other than t0u. We then:

1. denote by LTpIq, the set of leading terms of elements of I:

LTpIq “ tcxα | there exists f P I with LTpfq “ cxαu.

2. denote by xLTpIqy the ideal generated by the elements of LTpIq.

Definition 1.17. Fix a monomial ordering. A finite subset G “ tg1, . . . , gtu of
an ideal I is said to be a Gröbner basis if:

xLTpg1q, . . . , LTpgtqy “ xLTpIqy.

A Gröbner basis can be calculated by using the Buchberger Algorithm: But

Algorithm 2 Buchberger algorithm
Require: F = finite subset of Frx1, . . . , xns

procedure Buchberger(F)
G Ð F
B Ð ttg1, g2u | g1, g2 P G with g1 ‰ g2u

while B ‰ H do
select tg1, g2u P B
B Ð Bzttg1, g2uu

h Ð spolypg1, g2q

h0 Ð some normal form of h modulo G
if h0 ‰ 0 then

B Ð B Y ttg, h0u | g P Gu

G Ð G Y th0u

end if
end while

end procedure

8



a Gröbner base is not necessarily unique. To achieve uniqueness, one needs to
reduce the Gröbner basis to a reduced Gröbner basis.

Definition 1.18. A reduced Gröbner basis for a polynomial ideal I is a Gröbner
basis G for I such that:

1. LCppq “ 1 for all p P G

2. For all p P G, no monomial of p lies in xLTpG z tpuqy

This is done with doing a polynomial reduction on the Gröbner basis.

Algorithm 3 Polynomial reduction
Require: F = finite subset of Frx1, . . . , xns

procedure reduction(P)
G Ð F
while there is p P G which is reducible modulo Gztpu do

select p P G which is reducible modulo Gztpu

G Ð Gztpu

h Ð some normal form of h modulo G
if h ‰ 0 then

G Ð G Y thu

end if
end while
G Ð tLCpqq´1 ¨ q | q P Gu

end procedure

This step is repeated until all elements of G satisfy the constraints.

Algorithm 4 Reduced Gröbner Basis
Require: G = a Gröbner basis in Frx1, . . . , xns

procedure Gröbner-Reduced(G)
H Ð H; F Ð G
while F ‰ H do

select f0 P F
F Ð F ztf0u

if LTpfq ffl LTpf0q for all f P F AND LTphq ffl LTpf0q for all h P H
then

H Ð H Y tf0u

end if
end while
H Ð REDUCTION(H)

end procedure

The algorithms presented are from [3] on the pages 203 and 214.

2 Cryptography

Now that we are done with the hard part, we can continue with the other, equally
hard, part, namely Cryptography. But before we get there, let us start with a

9



bit of background on the use of Gröbner bases in Cryptography. One of the
first papers which warns about the use of Gröbner bases in Cryptography is [4].
The authors explain that there seems to be a misconception about the connec-
tion between the ideal membership problem and the computation of Gröbner
bases. While Gröbner bases provide a solution to ideal membership problem,
they don’t give an exclusive solution to the ideal membership problem. There
can be easier methods which give a solution that can be used to break a proposed
cryptographic system, of which two are mentioned in the paper. The first one
makes use of a modified Buchberger algorithm which only allows computations
of Gröbner basis elements below a predefined degree. The second involves the
use of linear algebra avoiding the user of Gröbner bases totally. Their analysis
is focused on schemes with dense polynomials and ends with the conjecture that
sparse schemes are even easier to defeat.

One of the proposed sparse schemes is Polly Cracker, will be described next.

2.1 Polly Cracker

To describe the cryptographic schemes, we will use the standard notation in
which Alice and Bob want to communicate and Eve wants to intercept their
communication.

There are several different encryption schemes published under the umbrella
of the term Polly Cracker. The generalization as presented by Koblitz in [5] can
be described in the following way:

Let G “ tg1, . . . , gnu be a Gröbner basis of an ideal I in the polynomial ring
Frx1, . . . , xns. Let S Ă Frx1, . . . , xns be a subset which cannot be reduced further
modulo G. This subset S is publicly known, whereas G is kept a secret, as well
as the term ordering. An arbitrary message m consists of a linear combination
of elements of S.

1. Alice chooses a set B “ tqiu of polynomials which are contained in the
ideal I. Let J denote the ideal generated by the elements in B.

2. To encrypt his plaintext message, Bob forms α a linear combinations of
elements in S with coefficients in F. He then adds α to an element of
the ideal J , such that c “ α `

ř

hjqj , qj P B, hj P F is the ciphertext he
transmitting to Alice.

3. Alice can now decipher the transmission from Bob by reducing c mod G

to receive the plaintext message.

In this work we will lay focus on the more specified scheme described in [5]
and [6], which works as follows:

Let Fpsrxs :“ Fpsrx1, . . . , xns denote be a polynomial ring in n variables over
a finite field Fps .

10



1. Alice chooses polynomials q1, . . . , qr P Fpsrxs, which all have some zero
σ P Fps in common, such that q1pσq “ . . . qrpσq “ 0. Alice then publishes
the polynomials, but keeps the common zero σ, a secret.

2. In order for Bob to send a message α P Fps to Alice, Bob selects some
elements from the ideal generated by q1, . . . , qn in Fpsrxs. These selected
polynomials h1, . . . , hr are contained in Fpsrxs. He then computes c̃ “
řr

n“1 hi ¨ qi and adds α such that his ciphertext c “ α ` c̃.

3. Decryption the ciphertext c is a simple evaluation of the transmitted poly-
nomial at the secret zero σ. By construction:

cpσq “ pα ` c̃pσqq “ α `

r
ÿ

n“1
hipσqqipσq
loooomoooon

“0

“ α (2)

This scheme corresponds to setting G “ tx1 ´ σ1, x2 ´ σ2, . . . , xn ´ σnu and
S “ 1 in the more general scheme, where σ P Fn is the common zeros. But how
could Eve intercept Alice and Bob’s communication?

2.2 Linear Algebra Attacks

There are several possible ways to attack the Polly Cracker system using Linear
Algebra.

A first version of the Linear Algebra Attack takes advantage of the fact that
it is also possible for us the recover the message if we find the hi’s, which Bob
chooses.

Let us assume that there exists a characteristic monomial mi :“ xν1
1 ¨ ¨ ¨ ¨ ¨ xνn

n

such that mi only appears in one public polynomial qi. This can enable the
attacker, if hi which contains such an mi is not chosen in a suitable way, that
this hi, can be extracted from the ciphertext c easily. A easy example:

Example 7. Assume Alice publishes the following elements in F53rx, y, zs as her
public polynomials and let her secret zero be σ “ p4, 10, 32q.

q1 :“ x13y11z13 ` 48

q2 :“ ´x22y25z22 ` 4

And Bob sends her the following ciphertext:

c :“ ´x22y27z23 ´ 2x22y25z22 ` x15y11z15 ` 4x13y11z13 ` 48x2z2 ` 4y2z ` 45

When looking for example at the term 4x15y11z15, we see that this term is
not divisible by a monomial from q2, hence it must be a multiple of x13y11z13.
This leads us to the conclusion that x13y11z13 got multiplied by x2z2. A similar
analysis can be done for the rest of the terms, which in the end reveals that the

11



polynomials h1, h2 Bob choose are x2z2 ` 4 and y2z ` 2. From this we then can
deduce that Alice received 5 as a message from Bob.

In [7] it is noted that this can be avoided by using the same monomials with
different coefficients across the public polynomials.

A more advanced version of the Linear Algebra attack is the Intellegent Lin-
ear Algebra Attack. Assume that mc is a monomial contained in the cipher text
c. Then it is reasonable to assume that there exists a monomial mh, which Bob
chooses, such that mc “ mh ¨ mq, where mq is a monomial in the public key
of Alice. We can determine a superset M which contains more than just the
monomials hi. The knowledge of this set reduces the deciphering process to the
problem of solving a system of linear equations over the respective polynomial
ring.

For 1 ď i ď r and m P M let Aim be the unknown variables. The coefficients
in the equation:

c “ A0 `

r
ÿ

n“1

˜

ÿ

mPM
Aim ¨ m

¸

¨ qi (3)

form a linear system of equations with the unknowns Aim and A0, with A0

denoting the unknown plaintext. The system is solvable by construction and all
solutions give the correct plaintext A0 “ α.

2.3 Hidden monomials

In order to strengthen our cryptosystem against the Intelligent Linear Algebra
Attack, Lenstra suggested to Koblitz in [5, Chapter 5, §6]the following modifi-
cation:

..., Bob must artfully create at least one monomial d1 in his hi’s
such that d1 times any term in qi is cancelled in the ciphertext c.
This protection is obviously defeated if there exist too few of those
monomials or they are easy to guess, ...

This prevents the attacker from forming a valid superset M, hence making it
unable to form the correct system of equations.

Example 8. An example immune against the intelligent linear algebra attack

12



over F79rx, ys with σ “ p63, 0q and the hidden message is 26:

q1 : “ 12x4y4 ` 22x7

q2 : “ x9y2 ` x7y4 ` x3y7 ` x9 ` xy6 ` x3y ` 10

h1 : “ 65x48y39 ` 21x23y29 ` 42

h2 : “ 10x43y41 ` 71x48y35 ` 52x30y17 ` 53

c : “ 10x50y45 ` 71x57y37 ` 10x46y48 ` 10x52y41 ` 71x51y42

` 71x57y35 ` 10x44y47 ` 71x49y41 ` 10x46y42 ` 71x51y36

` 21x43y41 ´ x48y35 ` 15x27y33 ` 67x30y29 ` 52x39y19

` 52x37y21 ` 52x33y24 ` 52x39y17 ` 52x31y23 ` 52x33y18

` 46x30y17 ` 53x9y2 ` 53x7y4 ` 53x3y7 ` 53x9 ` 30x4y4

` 55x7 ` 53xy6 ` 53x3y ` 3

The monomial x48y39, leading monomial in h1, is not contained in the set
!

mc
mq

| mc P Mpcq, mq P Mpq1q Y Mpq2q

)

.

2.4 Differential Attack

In [7] Hofheinz and Steinwandt present an attack which defeats the approach
with hidden monomials. Their attempt to exploit the structure of the ciphertext
starts by defining a function ∆, which maps from the polynomial ring Fpsrxs

into the power set 2Fps rx,x´1s of Laurent Polynomials.

∆ : Fpsrxs ÝÑ 2Fps rx,x´1s

ÿ

νPNn
0

γν ¨ xν ÞÝÑ

!γµ

γη
¨ xµ´η|µ ą η, γµ ¨ γη ‰ 0

)

Remark. In the following, a, b are polynomials in Fpsrxs and have no monomial
in common.

We can deduce the following properties from ∆:

1. ∆paq “ H iff a consists of one term or a “ 0

2. |∆paq| ď
|Mpaq|2´|Mpaq|

2

3. ∆paq “ ∆pγνxν ¨ aq

4. ∆pa ` bq Ě ∆paq Y ∆pbq

Proof. 1. ñ Assume that a contains two or more non-zero terms γµ ¨xµ, γη ¨xη.
Then for µ ą η, the term γµ

γη
¨xµ´η is an element in ∆paq. ð holds trivially.

2. A total ordering is induced by ą, and therefore the terms in a

|∆paq| ď

|Mpaq|´1
ÿ

i“1
i

13



The sum can be evaluated to p|Mpaq|2 ´ |Mpaq|q{2, hence the result holds.

3. Follows from the definition of ∆, as ą is a monomial ordering.

4. Follows from the assumption that Mpaq X Mpbq “ H.

Let the polynomial c “ α `
řr

i“1 hi ¨ qi be a ciphertext which Bob sends to Alice.

We can assume that with some luck there exists an i P t1, . . . , ru such that:

∆pqiq X ∆pcq ‰ ∅.

This will be the case if we assume there is some i P t1, . . . , ru for which there
exist terms γµix

µi and γνix
νi in qi such that the following two conditions hold:

1. δi :“ γµix
µi{γηix

ηi P ∆pqiqz

˜

Ť

i‰j
∆pqjq

¸

2. There exists a term γηix
ηi in hi such that the monomials xηixµi and xηixνi

do not occur in the set of monomials Mpc ´ γηix
ηiqjq.

Then

δi :“ γηix
ηi ¨ γµix

µi

γηix
ηi ¨ γνix

νi
P ∆pcq (4)

This process does not depend on the occurrence of the monomials xηi in the
ciphertext. If we find some terms t1, t2 P c for which xµi ‌ t1 and the quotient
t1{t2 is equal to an element in ∆pqiq, it is sufficient to assume that the two
previously mentioned conditions hold.

th :“ t1
γµix

µi
“

t2
γνix

νi
(5)

Now the attacker, can replace c with c1 “ c ´ th ¨ qi and in this way obtain
another valid encryption of the message. Although there is no guarantee that th

is a term of hi, a decrease in number of terms of the ciphertext c can be taken
as evidence for the correctness of the guess.

In order to decide which potential hidden monomial to use to obtain the best
simplified ciphertext, [7] suggests the monomial which results in the smallest
simplified ciphertext c1 “ c´th ¨qi. From this point on, one can try an intelligent
linear algebra attack or repeat the above process to further reduce the number
of terms in c until a potential message is obtained.

14



Algorithm 5 Differential Attack
Require: Q the public polynomials, c the cipertext

procedure DifferentialAttack(Q,c)
∆pcq Ð t

γµ

γν
¨ xµ´ν | µ ą ν, γµ ¨ γν ‰ 0u for each monomial in c

for qi P Q do
∆pqiq Ð t

γµ

γν
¨ xµ´ν | µ ą ν, γµ ¨ γν ‰ 0u for each monomial in qi

end for
for ∆pqiq do

Mi Ð ∆pcq X ∆pqiq

end for
for t1 P Mi do

Calculate thi
Ð t1

γµi xµ
i

end for
for thi

do
c1 Ð c ´ thi

¨ qi s.t. c1 is smallest
end for

end procedure

Time complexity

Let us now examine the time complexity for one step of the Differential Attack.
As a reference for time complexity we used [8].

Let c be a ciphertext in the polynomial ring Fprx1, . . . , xvs with n terms and
an upper limit for the degree of each variable of γ. We assume c and the set of q1

is

to be ordered. If this was not the case, then ordering the public polynomials only
needs to be done once during the whole process, while the simplified message c1

might need to be ordered after each step. For further information on the time
complexity comparing monomials we refer to [9].

The process of calculating the ∆ function, for c and the q1
is is dominated by

the calculation of ∆pcq as we can assume c being much longer than the q1
is. So

we perform npn´1q

2 times division of coefficients mod p and v subtractions, each
costing O

´

plog pq
2
¯

and O pv log γq bit operations respectively. This leads to a

total of O
´

n2
´

plog pq
2

` v log γ
¯¯

.
The comparison step ∆pcqX∆pqiq, depends mostly on the size of ∆pcq, which

consists of npn´1q

2 elements. We approximate the comparison step by first sort-
ing the lists and then iterating through them. While sorting is in the range
of O

´

n2 log
´

npn´1q

2

¯¯

, iterating should not be more than O
`

n2˘

, which costs

O
´

n2 log
´

npn´1q

2

¯¯

bit operations in total.
The calculation of ti has the same cost as calculating the ∆ terms, but can

be neglected due to it being a much smaller set of terms than ∆pcq.
Comparing the length of the simplified ciphertexts, which are in the range

slightly smaller than n can be bounded by Opnq.
Summing up all gives O

´

n2
´

plog pq
2

` v log γ ` log
´

npn´1q

2

¯¯¯

.
Taking into account the suggestions in [5] for number of variables and poly-

15



nomial degree, we can derive n " v " γ, which leaves us with:

O
ˆ

n2
ˆ

plog pq
2

` log
ˆ

npn ´ 1q

2

˙˙˙

.

In [10] it is claimed that the Differential Attack does not work when one of the
public polynomials consists of just a monomial or two monomials (2-monomial).
In their earlier paper [11], their motivation for this is explained:

[...] F contains monomials or binomials. In this case, a reduction
may replace one monomial with another, or even with nothing; en-
cyphering [sic], one can perform long chains of reductions without
exponential growth. An eavesdropper can only assume that that ev-
ery operation has one element in common with the others, but this
does not help: every reconstruction has multiple possibilities, and
the possibility of long simplification chains entail an exponential re-
construction. [...]

The case in which one public polynomial consists of only a monomial is not
strictly applicable in our case, as the decryption process on Alice’s side depends
on a common zero among all public polynomials. In order to make this work
in the setting which [7] and we use, we choose one part of the zero to be zero.
The downside for this is that we leak information about the secret key, but this
attack is about recovering the message and not about recovering the secret key
Alice uses.

2.5 Experiments

In order to run check the conjecture of [10], we needed an implementation of
Polly Cracker and the Differential Attack. This was a main part of this work.
The procedure for this is the following:

We generate polynomials in several variables which all have a zero in com-
mon and sum up powers of them or powers of sums of them in order to create
public polynomials qi. A subset of them is chosen to contain one or more hidden
monomials. In the next step, we assign randomly constructed monomials m˚

i ’s
as hidden monomials. These monomials m˚

i ’s get multiplied with their corre-
sponding q˚

i ’s giving the terms which we want to erase with the rest of the qi.
Now the m˚

i q˚
i ’s are divided by qi’s. The negative of the resulting monomials

mx
i “

m˚
i qi˚

qi
are part of the hi’s. More random monomials are constructed and

added to enlarge the hi’s. Finally we also add a constant to each hi, in order to
help to disguise the message.

To be sure that the generated instance would withstand an Intelligent Linear

16



Algebra Attack, we checked if the h˚
i ’s are contained in the set

#

mc

mq
| mc P Mpcq, mq P

ď

i

Mpqiq

+

.

. If so, we save the field size, number of variables, public polynomials and
the ciphertext. Next step is the import of the just saved data into the separate
instance of the program in which the Differential Attack works on the ciphertext.

For the implementation we used SageMath [12] on a Linux laptop. The code
of the implementation can be seen at:

https://github.com/StroblLund/PollyCracker
In comparison to [7] who used F2rxs for the experiments, we choose Fprxs

for different values of p and a varying number of variables. We also decided to
calculate ∆pcq explicitly contrary to [7], who just guessed them. It is unclear if
[7] had a strict condition on c1 such that the number of terms c1 ă number of
terms c or if c1 was just chosen in a way such that it is smallest among all possible
c1. We decided to experiment with the later. For our experiments, we think it
is not too much to assume that the constant part of our ciphertext differs from
our message.

An example in which the Differential attack works on a 2-monomial is the
following:

Example 9. Let Alice’s zero be σ “ p40, 1000, 321q and F9973rx, y, zs.

q1 : “ x8z10 ` y10z

q2 : “ x2y15z15 ` x13y3z8 ` xy17z4 ` x10y6 ` 2617

h1 : “ 2073x22y30z16 ` 4557x15y9z5

h2 : “ 7900x9y37z9 ` 7900x28y15z11 ` 1322xy3z11 ` 5618

c : “ 7900x11y52z24 ` 7900x41y18z19 ` 7900x10y54z13 ` 7900x29y32z15

` 7900x19y43z9 ` 7900x38y21z11 ` 271x9y37z9 ` 271x28y15z11

` 4557x23y9z15 ` 1322x3y18z26 ` 4557x15y19z6 ` 1322x14y6z19

` 1322x2y20z15 ` 5618x2y15z15 ` 1322x11y9z11 ` 5618x13y3z8

` 5618xy17z4 ` 5618x10y6 ` 9016xy3z11 ` 2130

You are welcome to check that sent message m “ 26.

During the experiments it became visible that it may not be the case that
we end up with only a constant term after the differential attack halts or loops
between two alternating sets of potential hidden monomials. Never the less, in
many cases, the constant term in the final simplified ciphertext c1 turned out to
be the sent message.

17



Example 10. Let Alice zero for next following example be σ “ p9, 0q over the
polynomial ring F79rx, y, zs

q1 : “ x8y7 ` x6y4 ` x8 ´ 16

q2 : “ 6x6y9

h1 : “ 4x14y12 ´ 14x12y13 ´ 27

h2 : “ ´24x14y11 ´ 24x12y8 ´ 24x14y4 ` 10x5y8 ´ 11x6y4 ´ 12

m : “ 26

c : “ 4x22y19 ` 4x20y16 ` 4x22y12 ´ 19x11y17 ` 15x14y12

´ 27x8y7 ` 7x6y9 ´ 27x6y4 ´ 27x8 ´ 16

The algorithm finds during the first step the potential monomials: 4x14y12, 52
due to the terms in ∆pcq X ∆pq1q. The set ∆pcq X ∆pq2q is empty, so there will
be no potential terms for reduction with h2. Reducing the message with the
first leads to: c1 :“ 60x11y17 ` 52x8y7 ` 7x6y9 ` 52x6y4 ` 52x8 ` 63. In the
next step the intersection only includes 52, which then reduces the ciphertext
to: 60x11y17 ` 7x6y9 ` 26

This did not only work for monomials but also for 2-monomials.

Example 11. Like in the previous example σ “ p9, 0q and F9973rx, y, zs.

q1 : “ x7y9 ` x7y4 ` x5y5 ` x4y6 ` x5 ` xy ´ 36

q2 : “ 29x5y4 ` 10y2

h1 : “ ´20x12y14 ` 32x15y10 ´ 32

h2 : “ 2x19y16 ` 2x16y18 ` 47x14y19

` 47x12y15 ` 2x13y13 ` 47x12y10

` 35x10y7 ` 46x7y10 ` 31

c : “ ´21x24y20 ´ 21x21y22 ` 32x22y19 ` 32x22y14 ` 32x20y15

` 32x19y16 ´ 21x18y17 ´ 4x14y21 ` 32x20y10 ´ 4x12y17 ` 32x16y11

´ 12x15y11 ` 33x15y10 ´ 4x12y12 ` 34x10y9 ´ 14x7y12

´ 32x7y9 ´ 32x7y4 ´ 32x5y5 ´ 32x4y6 ` 30x5y4 ´ 32x5 ´ 32xy ´ 6y2 ´ 17

In the majority of the tested cases, the algorithm was not successful with
reducing the ciphertext down to the message, but the constant part of the re-
maining polynomial was equal to the sent message.

For our experiments, we only relied on the Differential Attack which we ran
repetitively. The results for the monomial case were positive.

1. For p “ 11166643 we generated 100 ciphertexts ranging in length from 315
to 1571 terms in 5 variables. All of the attacks gave the correct constant
part in the remaining ciphertext.

18



2. For p “ 12116604131 we generated 27 ciphertexts with varying length
between 136 and 1206 terms with 10 different variables. Also in this case
all simplified c1 ended up with the constant which we tried to hide.

The 2-monomial case gave the same results.

1. For p “ 11166643 we generated 10 ciphertexts ranging in length from 496
to 1141 terms in 10 variables. The majority of the attacks were successful,
revealing the correct message α, one ciphertext remained a polynomial with
the correct constant value.

2. For p “ 12116604131 we generated 10 ciphertexts with varying length
between 280 and 644 terms in 10 different variables. In nine out of ten cases
we could reduce the ciphertext down to the message α, in the remaining
case we ended up with a simplified ciphertext whose constant part is the
message α.

In order to explain our observation, we have to go back to the point at
which Bob encrypts the message. Bob chooses arbitrary polynomials, which,
like the public polynomials, need to contain constant parts in order to disguise
his message. A public polynomial which is either a monomial or a 2-monomial
does not take part in this process.

This lead over to the point at which we started thinking about which possible
hidden monomials do actually matter to the attacking process, as during some
of the tests, we couldn’t reduce the simplified message to it’s constant part, but
the constant part turned out to be the message turned out to be the message. It
seems that mainly the constant monomials matter, as after we stopped finding
these, the constant part of the simplified ciphertext was our sent message. So it
is sufficient to calculate c1 until there are no possible hidden monomials of degree
zero?

The observation should also carry over to the more general case in which the
message space consists not only of constants but of normal words depending on
the ideal. This raises the question if parts of the algorithm presented before can
be altered even more to either make it generally possible to decrypt the message
or decrease the computational effort.

3 Conclusion

The experimental results point in the direction that the Differential attack by
Hofheinz and Steinwandt may also work for the case in which the set of public
polynomials contains a monomial or 2-monomial. This would contradict the
statement in [10]. Further work has to be done and more examples tested to
give more solid evidence that this is the case. It remains open to check if the
algorithm can be altered to achieve the result faster.

19



Bibliography

[1] David Cox, John Little, and Donald O’Shea. Ideals, Varieties and Algo-
rithms: An Introduction to Computational Algebraic Geometry and Com-
mutative Algebra. Springer, 1991.

[2] M. Brear. Undergraduate Algebra: A Unified Approach. Springer Under-
graduate Mathematics Series. Springer International Publishing, 2019. isbn:
9783030140533.

[3] Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner Bases:
A Computational Approach to Commutative Algebra. Berlin, Heidelberg:
Springer-Verlag, 1993. isbn: 0387979719.

[4] Boo Barkee et al. “Why You Cannot Even Hope to use Gröbner Bases in
Public Key Cryptography: An Open Letter to a Scientist Who Failed and
a Challenge to Those Who Have Not Yet Failed”. In: Journal of Symbolic
Computation 18.6 (1994), pp. 497–501. issn: 0747-7171. doi: https://
doi.org/10.1006/jsco.1994.1061.

[5] Neal Koblitz and A. J. Menezes. Algebraic aspects of cryptography. Berlin:
Springer, 1998.

[6] Michael Fellows and Neal Koblitz. “COMBINATORIAL CRYPTOSYS-
TEMS GALORE! 1”. In: (Jan. 1994). doi: 10.1090/conm/168/01688.

[7] Dennis Hofheinz and Rainer Steinwandt. A Differential Attack on Polly
Cracker. 2002.

[8] S.D. Galbraith. Mathematics of Public Key Cryptography. Cambridge Uni-
versity Press, 2012. isbn: 9781107013926.

[9] Samuel Lundqvist. “Complexity of comparing monomials and two improve-
ments of the BM-algorithm”. In: (2008). doi: 10.48550/ARXIV.0807.2370.
url: https://arxiv.org/abs/0807.2370.

[10] Massimo Caboara, Fabrizio Caruso, and Carlo Traverso. “Lattice Polly
Cracker cryptosystems”. In: Journal of Symbolic Computation 46.5 (2011),
pp. 534–549. doi: https://doi.org/10.1016/j.jsc.2010.10.004.

[11] Massimo Caboara, Fabrizio Caruso, and Carlo Traverso. “Gröbner bases
for public key cryptography”. In: ISSAC ’08. 2008.

[12] The Sage Developers. SageMath, the Sage Mathematics Software System
(Version 9.6). https://www.sagemath.org. 2022.

20



Master’s Theses in Mathematical Sciences 2022:E39
ISSN 1404-6342

LUNFMA-3130-2022

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/


