

Department of Automatic Control

Distance and orientation-based formation control

 of UAVs and coordination with UGVs

Stevedan Ogochukwu Omodolor

MSc Thesis
TFRT-6181
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Stevedan Ogochukwu Omodolor. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2022

Abstract

Nowadays, research in autonomous drones has increased thanks to the advancement
of drone technology. Nevertheless, there are still limitations when performing
specific missions due to flight duration, computational load and mission complexity.
This thesis investigates ways to solve this problem by taking advantage of multiple
UAVs and UGVs. This thesis aims to implement and evaluate strategies for
formation and coordination of multiple UAVs and UGVs. Firstly, we present a brief
review of state of the art on formation and flocking control, further specifying the
advantages and limitations of each approach.

Secondly, we use a behaviour-based approach to obtain multi-UAV formation
control. We adapt the algorithm to apply it to a single integrator system model
to control the UGVs’ formation. We then propose an extension to the original
algorithm to consider orientation during formation and a leader-follower strategy
to coordinate the interaction between the units using a cluster-based approach.

Finally, we tested our proposed control laws in simulation and in experiments.
The simulations were done in Matlab, while the real-implementation experiments
were performed using the Crazyflie quadcopters and three-wheeled omniwheel
robots.

3

Acknowledgements

I want to appreciate those who have contributed to this thesis and supported me
in one way or the other, without them this project would not have been possible.
I would like to thank my supervisors, Anders Robertsson, Björn Olofsson, and
Ph.D. student Zheng Jia for their advice and contributions during this thesis. I
also want to thank other members of the Department of Automatic Control in
Lund for their help, specifically Alexander Pisarevskiy, for his help setting up the
hardware used to perform experiments. I would also like to thank the contributors
to the open-source libraries used in this project, specifically ROS, Crazyswarm, and
Dynamixel (Automatic Control department in Lund). I would also like to thank
my family, my three best friends, and my loving partner for their motivation and
support. Finally, I thank God, my father, for taking me through this journey and
letting me find the opportunity to work with amazing people.

5

List of Abbreviations

UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
PID Proportional Integral Derivative
INDI Incremental Nonlinear Dynamic Inversion
FCM Flight duration, Computation load and Mission complexity

List of Figures

2.1 Leader mode strategy . 22
2.2 Virtual structure formation approach [Rashid and Issa, 2019] 22
2.3 Behaviour-Based formation approach [Rashid and Issa, 2019] 23

3.1 (a) represents an undirected graph where information between every
node is bidirectional and (b) represents a directed graph where
information sharing is limited [Fionda and Palopoli, 2011] 26

3.2 Interaction range r between agent i and its neighbours 27
3.3 β − agents, (a) wall obstacles (b) spherical obstacles [Olfati-Saber,

2006] . 31
3.4 Concept of potential minimization using spring tension 32

7

List of Figures

3.5 The black square is the original formation and orientation, the red
square is the desired orientation. The orientation agent is coloured
Dandelion. 35

3.6 In the figure, ci is the cluster, Emk,ci is the energy it takes UGVk to
maintain cluster ci, Eck,ci is the energy it takes UGVk to change to cluster
ci. 36

4.1 Left figure shows the relations between the frames of reference. Right
figure shows the axes of the body frames and the rotors. [Greiff, 2017] 39

4.2 Global coordinate, body coordinate, wheel rotation, and wheel linear
velocity. Figure on the right is the body rotated ψ in the global frame . 42

4.3 UAV simulation model . 43
4.4 X-axis: comparison of input, experimental data, and output from

identified model in Equation 4.28 . 44
4.5 Y-axis: comparison of input, experimental data, and output from

identified model in Equation 4.29 . 45
4.6 UGV simulation model . 45

5.1 Crazyflie . 47
5.2 Lighthouse positioning system [Taffanel et al., 2021]. 47
5.3 Different loops of cascaded PID controllers [Bitcraze, 1999]. 48
5.4 Three-wheeled omni-wheeled robot 49
5.5 Velocity controller for the three-wheeled omni-wheels robot 50
5.6 Communication architecture . 50
5.7 Distributed architecture . 51

6.1 Path of the four UAVs for the free-space square formation in (6.1.1.1) 54
6.2 Inter-agent distance of the four UAVs for the free-space square

formation in (6.1.1.1) . 55
6.3 Absolute error (m) between the navigation goal (position, velocity) and

the current centroid in (6.1.1.1) . 55
6.4 Path of the four UAVs for the free-space square formation with noise

standard deviation σ = 0.04 in (6.1.1.2) 56
6.5 Inter-agent distance of the four UAVs for the free-space square

formation with noise standard deviation σ = 0.04 in (6.1.1.2) 57
6.6 Path of the four UAVs for the free-space square formation with

0°orientation with respect to the global frame of reference in (6.1.2) . 58
6.7 Inter-agent distance of the four UAVs for the free-space square

formation with orientation in (6.1.2) 59
6.8 Absolute error (m) between the navigation goal (position, velocity) and

the current centroid in (6.1.2) . 59
6.9 Evolution of the orientation in (6.1.2) 60

8

List of Figures

6.10 Path of the four UAVs for the free-space square formation and flocking
in (6.1.3) . 61

6.11 Inter-agent distance of the four UAVs for the free-space square
formation and flocking in (6.1.3) . 62

6.12 Absolute error (m) between the navigation goal (position, velocity) and
the current centroid in (6.1.3) . 62

6.13 Path of the four UAVs for the free-space square formation and flocking
with obstacle avoidance in (6.1.4.1) 64

6.14 Inter-agent distance of the four UAVs for the free-space square
formation and flocking with obstacle avoidance in (6.1.4.1) 65

6.15 Absolute error (m) between the navigation goal (position, velocity) and
the current centroid in (6.1.4.1) . 65

6.16 Path of the four UAVs for the free-space square formation and flocking
with obstacle avoidance in (6.1.4.2) 66

6.17 Inter-agent distance of the four UAVs for the free-space square
formation and flocking with obstacle avoidance in (6.1.4.2) 67

6.18 Absolute error (m) between the navigation goal (position, velocity) and
the current centroid in (6.1.4.2) . 67

6.19 Path of the three UAVs, two UGVs and clusters for the free-space UAV
and UGV formation and flocking in (6.1.5) 69

6.20 Inter-agent distance of the four UAVs and two UGVs for the Free-Space
square formation, flocking and coordination of the multi-agent system,
CXDY refers to distance from clusterx to UGVy in (6.1.5) 70

6.21 Cluster solutions : sub-index 1A represents cluster 1 solution A in (6.1.5) 70
6.22 Real experiment: path of the three UAVs for free-space formation in

(6.2.1.1) . 72
6.23 Real experiment: inter-agent distance of the three UAVs for free-space

formation in (6.2.1.1) . 73
6.24 Real experiment: absolute error (m) between the navigation goal

(position, velocity) and the current centroid of the three UAVs for
free-space formation in (6.2.1.1) . 73

6.25 Real experiment: path of the three UAVs for free-space formation with
external disturbance in (6.2.1.2) . 74

6.26 Real experiment result: inter-agent distance of the three UAVs for
free-space formation with external disturbance in (6.2.1.2) 75

6.27 Real experiment: Absolute error(m) between the navigation goal(position,
velocity) and the current centroid for free-Space square formation with
external disturbance in (6.2.1.2) . 75

6.28 Real experiment: path of the three UAVs for free-space formation with
0°orientation in (6.2.2) . 76

6.29 Real experiment result: inter-agent distance of the three UAVs for
free-space formation with orientation control in (6.2.2) 77

9

List of Figures

6.30 Real experiment: absolute error (m) between the navigation goal
(position, velocity) and the current centroid for free-space formation
with orientation control in (6.2.2) . 77

6.31 Evolution of the orientation in (6.2.2) 78
6.32 Real experiment: path of the three UAVs for free-space formation and

flocking in (6.2.3) . 79
6.34 Real experiment: absolute error (m) between the navigation goal

(position, velocity) and the current centroid for free-space formation
and flocking in (6.2.3) . 80

6.33 Real experiment result: inter-agent distance of the three UAVs for
free-space formation and flocking in (6.2.3) 80

6.35 Real experiment: path of the three UAVs for free-space formation and
flocking with obstacle avoidance in (6.2.4.1) 81

6.36 Inter-agent distance of the three UAVs for formation and flocking with
static avoidance in (6.2.4.1) . 82

6.37 Absolute error (m) between the navigation goal (position, velocity)
and the current centroid for formation and flocking with static obstacle
avoidance in (6.2.4.1) . 82

6.38 Distance of the three UAVs to the current obstacle for formation and
flocking with static obstacle avoidance in (6.2.4.1) 83

6.39 Real experiment: Path of the three UAVs for free-Space formation and
flocking with dynamic obstacle avoidance second scenario in (6.2.4.2).
The discontinuous green line is the position of the obstacle while the
continuous one is the position of UAV3 84

6.40 Inter-agent distance of the three UAVs for formation and flocking with
dynamic obstacle avoidance in (6.2.4.2) 85

6.41 Distance of the three UAVs to the current obstacle for formation and
flocking with dynamic obstacle avoidance in (6.2.4.2) 85

6.42 Real experiment: path of the three UAVs, cluster and one UGV for
formation and flocking in (6.2.5.1) 87

6.43 Inter-agent distance of the three UAVs, cluster and one UGV for
formation and flocking in (6.2.5.1) 88

6.44 Real experiment: path of the three UAVs, cluster and two UGVs for
formation and flocking in (6.2.5.2) 89

6.45 Inter-agent distance between UAV cluster and two UGVs for formation
and flocking in (6.2.5.2) . 90

B.1 Path of the three UAVs for the free-space formation 100
B.3 Absolute error (m) between the navigation goal (position, velocity) and

the current centroid for the three UAVs 101
B.2 Inter-agent distance of the three UAVs for the free-space formation

formation . 101
B.4 Path of the three UAVs for the free-space formation with 90°orientation 102

10

B.5 Inter-agent distance of the three UAVs for the free-space formation . . 102
B.6 Absolute error (m) between the navigation goal (position, velocity) and

the current centroid for the three UAVs 103
B.7 Evolution of the orientation for the UAVs 103
B.8 Path of the five UAVs for the free-space formation 104
B.10 Absolute error (m) between the navigation goal (position, velocity) and

the current centroid for the five UAVs 105
B.9 Inter-agent distance of the five UAVs for the free-space formation . . 105
B.11 Path of the five UAVs for the free-space formation with 90°orientation

in (B.2.2) . 106
B.12 Inter-agent distance of the five UAVs for the free-space formation . . 107
B.13 Absolute error (m) between the navigation goal (position, velocity) and

the current centroid for the five UAVs 107
B.14 Evolution of the orientation for the five UAVs 108

List of Tables

5.1 Bill of materials . 52

6.1 Parameters used to perform the experiments in Section 6.1.1.1 54
6.2 Parameters used to perform the experiments in Section 6.1.4.1 63
6.3 Parameters used to perform the experiments in Section 6.2.1.1 71
6.4 Parameters (UGV) used to perform the experiments in Section 6.2.5 . 86

11

List of Algorithms

1 Coordination algorithm between UAVs and UGVs 37

13

List of Symbols

q position
p velocity
a acceleration
G(q) graph
A adjacency matrix
r cutoff range
G global frame
B body frame
α agent in formation
β obstacle agent
γ navigation agent
Cq cluster configuration
µ model noise mean
σ model noise variance

15

Contents

List of Abbreviations 7
List of Figures 7
List of Tables 11
List of Symbols 15
1. Introduction 19

1.1 Thesis Outline . 20

2. State of the Art 21
2.1 Formation Control . 21

3. Theory 26
3.1 Preliminaries . 26
3.2 Flocking Algorithm . 28
3.3 Coordination between UAV and UGV 34

4. Modelling 38
4.1 UAV . 38
4.2 UGV . 42

5. Implementation 46
5.1 Simulation . 46
5.2 Real-time Experiment . 46
5.3 Bill of Materials . 52

6. Results 53
6.1 Simulation . 53
6.2 Real-time Experiments . 71

7. Conclusion 91
7.1 Future Work . 92

Bibliography 94
A. Calculation of Position and Velocity of β -agent 98

17

Contents

B. Simulation Results 99
B.1 Three UAVs . 100
B.2 Five UAVs . 104

18

1
Introduction

Research in unmanned aerial vehicles has gained popularity in recent years thanks
to the advancement both from a technology and software standpoint [Nex et al.,
2022]. This interest has resulted in cheaper alternatives equipped with advanced
capabilities like localization and autonomous navigation. Nevertheless, there are
still limitations when performing specific missions. These limitations are generally
because of the following problems: flight duration, computation load and mission
complexity. For abbreviation, we will refer to this problems as the FCM problem.
One way to counter this is the use of multiple drones. As a result, we can perform
complex missions while satisfying energy and time constraints.

This has motivated researchers to investigate techniques to coordinate and
control multiple UAVs, hence the name formation control. In literature, multiple
approaches exist to solve the formation problem, but for this project, we impose
the FCM problem as a constraint in the design process. This constraint will
considerably influence the design choices we will use. For example, we opt for a
more distributed computation strategy to ensure minimal computational load on a
centralized unit and distribute computation on each robot agent.

There are specific long-range missions requiring quick recharging or ground
and air surveillance. UGVs can prove beneficial in these scenarios because they
can carry bigger weights and have longer battery life than UAVs. For example, the
use of UGVs as a mobile charging station is one such. This solution can reduce
the number of static rechargeable stations needed in-between missions. There has
been considerable research on the formation and coordination of multiple robots,
most centered on homogeneous robots. Robots within a formation can either be
homogeneous or heterogeneous. Homogeneous robots are those that share the
same controller and physical shape while heterogeneous robots are those that that
have different shapes and different control architectures and capabilities [Gigliotta,
2018].

Considering the current state of multiple-agent coordination applied to the
use case for long-range missions requiring quick recharging or ground and air
surveillance, the objective of this thesis is to implement in a robotic system a

19

Chapter 1. Introduction

distributed control strategy for the formation and coordination of multiple UAVs
and UGVs. This raised the following research questions:

• Can a fleet of robots flock while maintaining a predefined formation from its
initial position towards a predefined way-point that is part of a path defined by
a higher level task-planner, whose design is out of the scope of this project?

• Based on the outcome of the previous research question, given the same
conditions, in between which there is a set of static obstacles, whose shapes
and locations we know in advance, is it possible to design a control strategy
to avoid the obstacles?

1.1 Thesis Outline

We organized the thesis as follows:
In Chapter 2, a brief introduction to the current state of the art on formation

control is detailed. First, we introduce the different approaches used in formation
control and then explain the different formation architectures from literature.

In Chapter 3, we introduce the theoretical formulation used in the thesis. A
brief introduction to graph theory is given, followed by the formation algorithm. We
explain the initial control strategy that we use from the literature. In the following
sections, we propose an extension of that strategy to include orientation control and
a strategy to coordinate UGVs and UAVs.

In Chapter 4, we explain the mathematical equations describing the models of
UAVs and a three-wheeled omni-directional UGV. After that, we state the simplified
model used during the simulation. In Chapter 5, we explain how we implemented
the system in simulation using Matlab and in experiments using ROS as the
communication layer. In Chapter 6, we discuss the results obtained after applying
the algorithm to different scenarios. Finally, in chapter 7, we state the conclusions
and discuss future works.

20

2
State of the Art

This chapter will review different approaches to formation control. We will explain
the different approaches used to achieve formation control from a communication
and control point of view.

2.1 Formation Control

Formation control is a division of robotics that studies the coordination and control
of multiple robots to achieve a predefined formation while satisfying constraints like
obstacle avoidance and mission objectives[Chen and Wang, 2005]. We generally
consider two aspects when tackling a formation problem: the control approach and
the network architecture.

2.1.1 Formation Control Approaches
Currently, there are three approaches when it comes to formation control:
Leader-follower, Behaviour-based and virtual structure[Saif, 2016].

2.1.1.1 Leader-Follower Approach. In a leader-follower approach, we assign
one agent the leader role. The leader tracks a predefined path generated from a
mission planner, while the other robots try to follow the leader with the desired
formation (Figure 2.1) [Rashid and Issa, 2019]. They are two type of leader-follower
strategy: the leader mode strategy and the front mode strategy. In the leader mode
approach, the follower agent try to maintain a formation directly with the leader.
Representation of the communication between the robot agents in a leader mode
strategy where each follower agent try to maintain a certain distance from the leader
agent and only communicates with the leader can be in Figure 2.1. On the other
hand, for the front mode strategy each agent follows the next agent until reaching
the leader agent.

Some of the advantages of the leader-follower approach are that it is easy to
understand and implement and the stability analysis is straightforward. However,
the control strategies have some drawbacks, one of which is the dependency on one

21

Chapter 2. State of the Art

Figure 2.1 Leader mode strategy

robot to maintain the formation. Another drawback is its centralized nature, which
makes it challenging to scale.

In current literature, there have been solutions to counter the drawbacks of
the leader-follower approach. For example, [Shi et al., 2005] proposed the use
of a virtual agent, eliminating the reliance on one agent. [Hou and Fantoni,
2015] proposed the use of a distributed leader-follower formation to counter the
centralization problem.

2.1.1.2 Virtual Structure. With a virtual structure, each agent follows the
desired trajectory computed from a centralized system to maintain the formation. It
forces the agent to act as a rigid formation [Chen and Wang, 2005]. This approach
does not consider the interaction between the agents [Saif, 2016].

Figure 2.2 Virtual structure formation approach [Rashid and Issa, 2019]

One drawback of this approach, similar to the leader-follower approach, is its
centralized nature which could result in high computational and communication

22

2.1 Formation Control

costs. In addition, the lack of interaction between the agents can result in unwanted
collisions.

2.1.1.3 Behaviour-based Approaches. In the Behaviour-based approach, each
agent has to adhere to some rules (Behaviours) to achieve a formation. The
inspiration for these rules comes from the collective Behaviour of the motion of
animals. One of the most pioneering works in the distributed Behavioural model
is the one done by Reynolds, [Reynolds, 1987]. Although it was in the context
of computer graphics, it has inspired many researchers in robotics to come up
with rules and control laws to apply this phenomenon in the robotic ecosystem.
In [Reynolds, 1987], the author introduced three heuristic rules that each agent has
to follow in order to maintain the desired formation:

• Flock centering/formation cohesion: The goal of each agent is to stay as
close as possible to nearby agents while also converging to a desired global
objective. They achieved this Behaviour by using an attractive/repulsive force
to maintain the desired global formation.

• Velocity matching/velocity consensus/velocity alignment: This rule ensures
that all agents match the velocity of their nearby neighbours.

• Collision avoidance: This rule ensures collision-free Behaviour with a
predefined safety distance with nearby agents. The agent achieves this with
adequate repulsive forces when other agents are within the safety distance.

Figure 2.3 Behaviour-Based formation approach [Rashid and Issa, 2019]

One notable work done using approach is by [Olfati-Saber, 2006], where he
introduced three flocking algorithms that not only embedded the rules of Reynolds
but also included an analytical proof of their stability. The author did this with the
use of the Lyapunov stability approach.

23

Chapter 2. State of the Art

The main advantage of this kind of approach is the agents’ self-organization
nature, scalability and distributed control. The self-organization nature stems from
the fact that each agent only has to follow the sets of rules in order to maintain
the desired formation. Also, it uses a distributed control approach, which vastly
reduces the computation because each agent only has to interact with other agents
in its neighbourhood. It makes it easy to scale the formation.

Nevertheless, there are some drawbacks. This approach only ensures the
convergence of lattice-type formation with fixed inter-agent distances but does not
ensure patterns like V-shapes or rectangular shapes. Additionally, it is challenging
to perform a stability analysis of this approach.

2.1.2 Other Approaches
Concerning the sensing capability of each agent, two commonly used formation
approaches are displacement-based or distance-based [Sun, 2016].

• Displacement-based approach: We achieve formation by controlling the
displacement of the neighbouring agents with respect to a global reference
system. It requires each agent to have information on the position and
displacement of other agents. In this approach, we require the orientation of
the global coordinate.

• Distance-based approach: The formation is achieved based on the relative
inter-agent distances. This approach does not consider the robot’s orientation
in a global coordinate system, nor does it require a global coordinate
system. Compared to displacement-based approach, it is inherently
distributed. However, it does require more hardware to achieve inter-agent
communication.

Another approach that is gaining popularity is the use of model predictive
control combined with a local principle of potential field models in the objective
function in order to achieve the formation [Soria et al., 2021].

2.1.3 Formation Control Architectures
There are different control architectures for formation control: centralized,
decentralized and distributed [Saif, 2016]. The following paragraphs gives an
overview of the advantages and limitations of each architecture.

2.1.3.1 Centralized Architecture. We control all the agents from one centralized
controller in this control architecture. The controller receives the states of each agent
in the formation as input. Then it computes the necessary signal for each agent and
sends it back to them.

One of the advantages of this approach is that global information of all
the agents is known. This makes it possible to find optimal path planning and
self-organization solutions. Moreover, the dependency on a central computer raises

24

2.1 Formation Control

scalability issues due to the high computational cost and communication power
needed. In addition, a fault in the centralized computer will affect all the agents
in the formation.

2.1.3.2 Distributed Architecture. In the distributed control architecture, each
agent has a controller onboard that computes the control signal based on its current
state and the states of the agents in its neighbourhood. Most formation-based
controllers use this approach. We can ensure information-sharing through cameras,
LIDARs, or peer-to-peer communication. Some works that use this approach are
[Olfati-Saber, 2006], [Saif et al., 2019].

One advantage of this architecture is that it is easy to scale because the
interaction between agents is limited to its neighbours. In addition, since the system
does not depend on a centralized computer, it is reliable. Moreover, due to the lack
of global information of all the agents, the solution resulting from the formation
controller is in general not optimal.

2.1.3.3 Decentralized Control Architecture. In a decentralized control
architecture, the idea is to divide the whole control system into independent
subsystems [Bakule, 2008]. Each subsystem includes its controller. The
communication between the subsystems is mainly done by a mechanical
connection, for example with a physical springs. The controller of each subsystem
only has information on the states of the agents in its own subsystem.

Given that the controller of each subsystem is not aware of the agents in
other subsystems, we cannot apply this approach to formation control. As stated
in [Saif, 2016], most definitions of decentralized formation control conflict with the
distributed architecture because the controllers of each agent can access information
from neighbour agents.

25

3
Theory

In this chapter, we state the theoretical formulation used during this thesis. First,
we define some preliminaries on graph theory. Then we introduce the initial control
strategy used in literature to achieve formation control proposed by [Olfati-Saber,
2006]. Then we explain the extension made by [Saif et al., 2019] to consider effects
when implementing this approach in real systems. Finally, we explain the extension,
we propose in order to include orientation control and coordination between the
UAVs and the UGVs.

3.1 Preliminaries

3.1.1 Graph Theory
In order to represent the interaction within a multi-agent system, we use an
undirected graph G(V , E). V represents a set of vertices V = {1,2,,n} and
E a set of edges E ⊆ {(i, j) : i, j ∈ V , j ̸= i}. Each node represents an agent (robot)
and the edges are its interaction with other agents. An undirected graph (Figure 3.1)
is different from a directed graph in the way the information is exchanged between
two nodes. For an undirected graph the information-sharing is bidirectional. A more
detailed explanation of graph theory can be found in [Diestel, 2010].

Figure 3.1 (a) represents an undirected graph where information between every node is
bidirectional and (b) represents a directed graph where information sharing is limited [Fionda
and Palopoli, 2011]

26

3.1 Preliminaries

We define a weighted adjacency matrix A as an M x M matrix with elements
[ai j] containing the inter-agent position information. [ai j] is d if (i, j) ∈ E and 0
otherwise, where d represents the distance between two nodes (robots).

We define qi as the position of node i in the Euclidean space. The configuration
space of all the nodes can be defined as q = col(q1,q2,,qn). We assume ri to be
the maximum range of communication of all agent (Figure 3.2). We used the same
ri for all agent, r. A spatial neighbour [Olfati-Saber, 2006] of agent i can then be
defined using the Euclidean distance ∥.∥ and communication range r as

Ni(q) = { j ∈ E : ∥qi−q j∥< r} (3.1)

Figure 3.2 Interaction range r between agent i and its neighbours

Given an interaction range, we define a proximity net G(V , E (q)) as a structure
that consists of vertices V and a set of edges as

E (q) = {(i, j) ∈ V ×V : ∥q j−qi∥< r, i ̸= j} (3.2)

With the definition in Equation (3.1), an agent that is part of the formation has
to adhere to the following equality:

∥q j−qi∥= d,∀ j ∈ Ni(q) (3.3)

The proximity net G(V , E (q)) that satisfies the condition in Equation (3.3)
is defined as "α-lattice". The configuration q close to the "α-lattice" due to
edge-length uncertainty δ is defined as "quasi α-lattice" and it satisfies the
following inequality:

−δ ≤ ∥q j−qi∥−d ≤ δ ,∀ j ∈ Ni(q) (3.4)

The degree to which the proximity net deviates from the α-lattice can be defined
using the following deviation energy function:

E(q) =
1

(|E (q)|+1)

n

∑
i=1

∑
j∈Ni

ψ(∥q j−qi∥−d) (3.5)

27

Chapter 3. Theory

where ψ is the pairwise potential function whose global minimum coincides with
the α-lattice. Similarly, in the case of the quasi-α-lattice that includes uncertainty,
the deviation energy function can be defined as

E(q)≤ |ε(q)|
(|E (q)|+1)

δ
2 ≤ δ

2 = ε
2d2

ε ≪ 1 (3.6)

3.1.2 Single and Double Integrator Dynamics
There are multiple ways of modeling an agent when performing formation control.
In this subsection, we will explain the single and double integrator dynamics.

The single integrator only considers the agent’s position and takes as input the
velocity: {

q̇ = p
p = µ

(3.7)

where µ is the input of the system, q is the position and p is velocity.
On the other hand, the double integrator considers the position and velocity of

each agent and takes acceleration as input: q̇ = p
ṗ = a
a = µ

(3.8)

where a is the acceleration.
Depending on the dynamics of the agents, it might be preferable to choose either

a single or double integrator model. The decision boils down to the dynamic nature
of the system and the controller we use to control it. For instance, a single integrator
system would work in a system with a slow dynamic that does not require rapid
changes in velocity set-point during operation. The UGV used in this project is an
example of this system.

3.2 Flocking Algorithm

This section will first discuss the flocking algorithm used in this thesis proposed by
[Olfati-Saber, 2006] and extended by [Saif et al., 2019]. It uses a behaviour-based
approach. The reason for this choice was that it used a distributed architecture with
a control law similar to a PID controller that we could implement in a constrained
hardware like the Crazyflie. We discuss this control strategy which was intended
to be applied to second-order dynamic systems. Then we adapt that to a first-order
dynamic system.

Finally, we propose an extension to the control strategy to include orientation
control and a strategy to coordinate between the UAVs and the UGVs.

28

3.2 Flocking Algorithm

To better understand formation control, [Olfati-Saber, 2006] defines three
different agents, α-agent (the agents in the formation), β -agent (virtual agents that
represent the obstacles) and the γ-agent that considers the objective of the entire
group.

The concept of σ -norm [Olfati-Saber, 2006] and the smooth adjacency elements
are used to define the collective pairwise potential function that was mentioned in
Section 3.1.1. The σ -norm maps a vector in Rm to a non-negative real number
Rm→ R≥0 and is defined as

∥z∥σ =
1
ε

[√
1+ ε∥z∥2−1

]
(3.9)

where the parameter ε > 0. The gradient σε(z) = ∇∥z∥σ of the σ -norm that we
defined previously is

σε(z) =
z√

1+ ε∥z∥2
=

z
1+ ε∥z∥σ

(3.10)

The benefit of the σ -norm is that it is differentiable everywhere, including at z = 0.
This is not the case for the Euclidean norm ∥z∥, which is not differentiable at z = 0.
This norm is helpful when defining the potential function for the formation control.

Let the element ai j of the smooth adjacency matrix A be defined as:

ai j(q) = ph(∥q j−qi∥σ/rα) ∈ [0,1] j ̸= i (3.11)

where ph(z) (bumper function) is a C1-smooth function that maps a real number to
the interval [0,1], "R+→ [0,1]" with a finite cut-off at rα = ∥r∥σ .

ph(z) =

1, z ∈ [0,h)
1
2 + cos

(
π

(z−h)
(1−h)

)
, z ∈ [h,1]

0, otherwise
(3.12)

The use of the bumper function introduces into the proximity net a position-dependent
ai j that varies between the interval [0,1] for values within the cutoff range rα .

The smooth collective potential function used in order to design the formation
algorithm can be defined as

V (q) =
1
2 ∑

i
∑
j ̸=i

ψα(∥q j−qi∥σ) (3.13)

where ψ is a smooth pairwise attractive/repulsive potential with a finite cut-off at rα

and a global minimum at dα = ∥d∥σ . This potential is differentiable even at singular
configurations q j = qi.

The potential ψα can be defined as follows:

29

Chapter 3. Theory

ψα(z) =
∫ z

dα

φα ds (3.14)

where φα is an action function that is zero for z≥ rα

φα = ph(z/rα)φ(z−dα) (3.15)

φ(z) =
1
2
[(a+b)σ1(z+ c)+(a− c)] (3.16)

σ1(z) =
z√

1+ z2
(3.17)

where φ(z) is an uneven sigmoidal function that satisfies the following:

0 < a≤ b (3.18)
φ(0) = 0 (3.19)

c =
|a−b|√

4ab
(3.20)

In order to include an obstacle avoidance in the formation, [Olfati-Saber, 2006]
proposed the use of an agent-based representation of neighbouring obstacles by
introducing the term β -agent. A β -agent, also known as a virtual agent, appears at
the obstacle’s frontier when an α-agent is close to it. The position qi,k and velocity
pi,k of a β -agent is produced by projecting the α-agent to the obstacle, as which can
be seen in Figure 3.3. The calculation of the position and velocity of the β -agent
is in Appendix A. The repulsive potential function that considers the interaction
between an α and β -agent is:

ψβ (z) =
∫ z

dβ

φβ (s)ds≥ 0 (3.21)

where the repulsive action function is,

ψβ (z) = ph(z/dβ)(σ1(z−dβ)−1) (3.22)

where dβ = ∥d′∥σ ,
The adjacency matrix element of the interaction between these two agents is

bi,k = ph(∥qi,k−qi∥σ/dβ) (3.23)

The constraint on the agent-to-obstacle for an α-agent is specified as follows:

∥q̂i,k−qi∥= d
′
,∀k ∈ Nβ

i (3.24)

Nβ

i = {k ∈ Vβ : ∥q̂i,k−qi∥< r
′} (3.25)

30

3.2 Flocking Algorithm

Figure 3.3 β −agents, (a) wall obstacles (b) spherical obstacles [Olfati-Saber, 2006]

where r
′

is the interaction range between the obstacle and the robot.
The collective potential function that includes the three agents, stability of which

has been proven in [Olfati-Saber, 2006], is

V (q) = cα
1 Vα(q)+ cβ

1 Vβ (q)+ cγ

1Vγ(q) (3.26)

where

Vα(q) = ∑
i∈Vα

∑
j∈Vα\{i}

ψα(∥q j−qi∥σ) (3.27)

Vβ (q) = ∑
i∈Vα

∑
k∈Nβ

i

ψβ (∥q̂i,k−qi∥σ) (3.28)

Vγ(q) = ∑
i∈Vα

(
√

1+∥qi−qr∥2−1) (3.29)

Taking into consideration the collective potential functions of the three
agents discussed previously, a distributed algorithm for flocking is proposed by
[Olfati-Saber, 2006], that includes the formation term uα

i , the obstacle avoidance

31

Chapter 3. Theory

term uβ

i , and the navigation term uγ

i :

ui = uα
i +uβ

i +uγ

i (3.30)

uα
i = cα

1 ∑
j∈Nα

i

φα(∥q j−qi∥σ)ni j + cα
2 ∑

j∈Nα
i

ai j(q)(p j− pi) (3.31)

uβ

i = cβ

1 ∑
j∈Nβ

i

φβ (∥q̂i,k−qi∥σ)n̂i,k + cβ

2 ∑
j∈Nβ

i

bi,k(q)(p̂,k− pi) (3.32)

uγ

i =−cγ

1(qi−qr)− cγ

2(pi− pr) (3.33)

where c1,c2 for (α,β ,γ) are positive gains, qr and pr are the navigation goal, which
would come from a higher-level planning system.

The formation and obstacle terms includes two terms

ui = f g
i + f d

i (3.34)

where on the one hand, f g
i = −∇V (q) is a gradient-based term which drives the

formation and obstacle potentials mentioned in Equations 3.27 and 3.28 to their
minimum value. This corresponds to desired inter-agent and safety distances. A
better way of understanding the concept of potential minimization is to assume a
spring is connected to each agent in a formation, see Figure 3.4. Reaching a minimal
potential is similar to reaching a point where there is no tension or pressure applied
to the springs.

Figure 3.4 Concept of potential minimization using spring tension

32

3.2 Flocking Algorithm

On the other hand, the consensus term, f d
i matches the velocity of agent i with

agents in its interaction range and it acts like a damping force. The vectors ni j and
n̂i,k are

ni j =
q j−qi√

1+ ε∥q j−qi∥2
n̂i,k =

q̂i,k−qi√
1+ ε∥q̂i,k−qi∥2

(3.35)

One issue with the control law (3.30) that arises during implementation in
a real robotic system is perturbations caused by unmodelled dynamics. These
perturbations produce a steady-state error in the system that is difficult to eliminate.
The reader can find more information on this problem in [Saif et al., 2019]. Based on
the proposal by [Saif et al., 2019], we extend the formation control law by including
an integrator term to handle the steady-state error:

uα
i = cα

1 ∑
j∈Nα

i

φα(∥q j−qi∥σ)ni j + cα
2 ∑

j∈Nα
i

ai j(q)(p j− pi)+ cα
3

∫ t

0
er

i dt (3.36)

where

er
i = ∑

j∈Nα
i

φα(∥q j−qi∥σ)ni j (3.37)

3.2.1 Adaptation to Single Integrator Dynamics
In order to apply this control law in a first-order integrator dynamic system, we
adapted the control law stated in Equation (3.30), the result of which is as follows:

ui = uα
i +uβ

i +uγ

i (3.38)

uα
i = cα

1 ∑
j∈Nα

i

φα(∥q j−qi∥σ)ni j + cα
3

∫ t

0
∑

j∈Nα
i

φα(∥q j−qi∥σ)ni jdt (3.39)

uβ

i = cβ

1 ∑
j∈Nβ

i

φβ (∥qi,k−qi∥σ)n̂i,k (3.40)

uγ

i =−cγ

1(qi−qr) (3.41)

One vital observation about the control law presented in Equation (3.38), if we
only consider the formation and obstacle avoidance term, is that we do not require
information about the global frame, but rather the relative distances between the
agents.

33

Chapter 3. Theory

3.2.2 Formation Control with Orientation
The majority of the distance-based controllers in the literature are mostly for
formation stabilization. [Sun, 2016] proposed the concepts of orientation agents.
[Sun, 2016] defined orientation agents as those that have information about the
global coordinates and that are used to orientate the whole formation. By defining
the relative position between these agents, an additional input can be added to the
controller to achieve the desired orientation.

We also define a new concept of orientation agent. The difference compared to
[Sun, 2016] is that we only require one of the agents to have information on the
orientation of the global coordinate. Furthermore, we propose an orientation-based
controller using the concept of rotational potential (rotational spring), see
Figure 3.5. The following equation is intended for rotation around the z-axis,
but it is extendable to the three axes of rotation:

V (∆δ) =
1
2
(∆δ)2 (3.42)

where ∆δ = δre f −δc, δ is the angle of the vector from the centroid to the orientation
agent and {.}re f refers to the desired angle while {.}c refers to the current one. A
visual illustration of this concept can be seen in Figure 3.5.

Applying the gradient to Equation (3.42), we get the following additional
component in the control law:

uδ
i = ∇V (∆δ) = cδ

1 (δre f −δoa)r̂z (3.43)

where the r̂z,i indicates the direction of the acceleration (green arrow in Figure 3.5)
needed for each agent in order for it to rotate with respect to the centroid. One
way to understand this concept is to imagine we are applying a centrifugal force to
each agent based on the direction and magnitude obtained from the gradient of the
orientation potential. We can obtain this vector by performing the following cross
multiplication:

r̂z = f ×

0
0
1

 (3.44)

where f is the vector from the formation centroid qc and the orientation agent.

3.3 Coordination between UAV and UGV

In order to develop a coordination strategy, we make the following assumption
concerning the use case:

34

3.3 Coordination between UAV and UGV

Figure 3.5 The black square is the original formation and orientation, the red square is the
desired orientation. The orientation agent is coloured Dandelion.

Assumption 1-F . This strategy is intended in the case whereby the UGVs act as
mobile charging stations or emergency landing stations and try to be as close as
possible to as many UAVs that are available.

With Assumption 1-F , we define the concept of cluster configuration Cq. A cluster
configuration consists of Nc number of clusters of UAVs and Nu number of UGVs.
We impose the condition that Nc = Nu, Figure 3.6.

We initialize Cq with K-means++ center initialization proposed by [Arthur and
Vassilvitskii, 2007], using these as the initial center locations of the UGVs. We
decided to use this clustering method because it is not computationally expensive.
In addition, due to the initialization strategy, we can find clusters as close as possible
to each of the UGVs while preventing intersections between the UGVi− ci cluster
configuration. To decide when to reconfigure a cluster configuration, we introduce
the concept of total energy to maintain or change a configuration. We define the
concept of energy as the Euclidean distances. The energy to maintain a cluster

35

Chapter 3. Theory

Figure 3.6 In the figure, ci is the cluster, Emk ,ci is the energy it takes UGVk to maintain
cluster ci, Eck ,ci is the energy it takes UGVk to change to cluster ci.

configuration can be computed as:

Em,Cq = ∑
n∈Nu

Em,n,k (3.45)

Em,n,k = ∥ck−qUGV,n∥ (3.46)

where Em,i,k is the energy of the current configuration at the current time instant. It
is considered to be the energy it takes UGVi to maintain its current cluster ck. On
other hand, the energy to change a configuration is defined as:

Ec,Cq = ∑
n∈Nu

Em,n,k (3.47)

Ec,n,p = min(∥cp−qUGV,n∥), p ∈ 1...Nc,k ̸= p (3.48)

The energy to change is the energy of a cluster configuration ck close to the
current one with the minimal overall energy compared to other possible clusters
configurations. We modify the Cq when the total energy to change the configuration

36

3.3 Coordination between UAV and UGV

is less than the energy it takes to maintain the cluster. The following Algorithm 1 is
a pseudo-code of the algorithm.

Algorithm 1 Coordination algorithm between UAVs and UGVs

0: Cq,c← computeCluster(UGV,UAV) {Current configuration}
0: Cq,a {Alternative configuration}
0: while { }do {Main control loop}
0: Cq,a← computeCluster(UGV,UAV)
0: Em← computeEm(UGV,Cq,a,Cq,c)
0: Ec← computeEc(UGV,Cq,a,Cq,c)
0: if Ec ≤ Em then
0: Cq,c← Cq,a
0: end if
0: end while=0

After obtaining the new Cq, we then apply a two robot formation between each
cluster and its corresponding UGVs.

37

4
Modelling

This section details the mathematical models used to describe the Crazyflie UAV
and the three-wheeled omni-wheels robot. After that, we explain the simplified
model used to perform simulation and testing of the proposed formation and control
algorithms.

4.1 UAV

4.1.1 Rigid-body Dynamics
The models developed in this section are based on [Greiff, 2017] and [Luukkonen,
2011]. In order to derive the systems equations, we will use the Euler-Lagrange
equations based on the Tait-Bryan rotation convention ZYX [Greiff, 2017]. In
addition, for comparison, the Newton-Euler approach is used. We define three
frames of reference; the global frame G, inertial frame I, and the body frame B.
The notation, for example, GB, describes the rotation of the body frame to the global
frame. The notation .̂ represents the basis vectors in a given frame. Figure 4.1 gives
a visual representation of the relationship between these frames of reference. To
maintain a consistent reference, we denote P [m] the position of the center of mass
of the UAV in a global frame. We denote η [rad] as the Tait-Bryan angle body
rotation in the global coordinate and ω [rad/s] denotes the angular velocity of the
body frame and VB is the linear velocities in the body frame. Finally, we denote with
Ωi [rad/s] the angular speed of rotor i. The s vector contains the linear and angular
positions of the quadcopter. The vector representation is defined as follows:

P =

x
y
z

 ,η =

φ

θ

ψ

 ,ω =

ωx
ωy
ωz

 ,VB =

vx
vy
vz

 ,Ω =

Ω1
Ω2
Ω3
Ω4

S =

[
P
η

]
(4.1)

It is worth mentioning that rotational angles in the Euler convention are roll [φ],
pitch [θ] and yaw [ψ]. The inertial frame is at the position P at the body center of

38

4.1 UAV

Figure 4.1 Left figure shows the relations between the frames of reference. Right figure
shows the axes of the body frames and the rotors. [Greiff, 2017]

mass, while the body frame is positioned at the center of mass but rotated in SO(3)
to the inertial frame. We obtain the rotation of the body to the global frame RGB by
combining the rotation of the body frame to the inertial frame, which according to
the ZYX convention, is given as follows:

R(ψ) =

 cψ sψ 0
−sψ cψ 0

0 0 1

 ,R(φ) =

cθ 0 −sθ

0 1 0
sθ 0 cθ

 ,R(θ) =

1 0 0
0 cφ sφ

0 −sφ cφ

(4.2)

ci and si denotes cos(i) and sin(i). Combining the 3 previous matrixes we stated
previously, we get final rotation matrix:

RGB = R(φ)R(θ)R(ψ) =

 cφ cφ sψ cφ −sθ

cψ sθ sφ − sψ cφ sψ sθ sφ − cφ cψ cθ sφ

cψ sθ cφ + sφ sψ sψ sθ cφ − cψ sφ cφ cθ

 (4.3)

Based on the Euler’s rotational theorem, as stated in [Greiff, 2017], the
following equality holds

R−1
GB = RT

GB = RBG (4.4)

The angular rate vector of the quadcopter in the body frame as stated in [Greiff,
2017] is defined as

ωB =Wη η̇ =

1 0 −sθ

0 cφ cθ sφ

0 −sφ cθ sφ

 η̇ (4.5)

39

Chapter 4. Modelling

where Wη is invertible if θ ̸= (2k−1)φ/2,(k ∈ Z). Given the symmetric nature of
the quadcopter, we define the inertia matrix as

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (4.6)

The force generated by rotor i with rotor speed Ωi [rad/s] and in the direction of the
rotor axis can be obtained as follows [Luukkonen, 2011],

fi = kiΩ
2
i (4.7)

The torque around the rotor axis is related to the angular velocity and acceleration
of the rotor [Luukkonen, 2011] as

τi = biΩ
2
i + IMΩ̇i (4.8)

For the Equation 4.8, k is the lift constant, b is the drag constant and IM is
the inertial moment of the rotor. The total forces generated by each rotor create a
torque T in the z-direction of the quadcopter, while the total body torque τB is the
combination of the torque generated in each of the axes of the corresponding body
frame

τ =
4

∑
i=1

fi = k
4

∑
i=1

ω
2
i ,τB =

0
0
T

 (4.9)

τB =

τφ

τθ

τψ

=

lk(−ω2 +ω4)
lk(−ω2 +ω4)

∑
4
i=1 τMi

 (4.10)

where l is the distance from the rotor to the center of mass of the quadcopter.

4.1.1.1 Newton-Euler Equations. We can also describe the dynamics of the
quadcopter using the Newton-Euler equations [Luukkonen, 2011]. In order to do
so, the quadcopter is assumed to be a rigid body:

mV̇B +ω× (mVB) = RT
GBG+T (4.11)

where RT
GBG is the gravitational term and T is the total thrust. In the inertial frame,

the centrifugal force is null [Luukkonen, 2011], simplifying the previous equation
to

mP̈ = G+RGBT (4.12)ẍ
ÿ
z̈

=−g

0
0
1

+
T
m

cψ sθ cφ + sψ cφ

sψ sθ cφ + cψ sφ

cθ cφ

 (4.13)

40

4.1 UAV

The angular velocity can be obtained through the relation between the angular
acceleration of the inertia Iω̇ , the centripetal forces ω×(Iω), the gyroscopic forces
Γ and the external torque, all expressed in the body frame [Luukkonen, 2011]

Iω̇+ω×(Iω)+Γ= τ

ω̇x
ω̇y
ω̇z

=

(Ixx− Izz)ωyωx/Ixx
(Ixx− Izz)ωxωz/Iyy
(Ixx− Izz)ωxωz/Izz

−Ir

 ωy/Ixx
−ωx/Iyy

0

Ωγ +

τφ/Ixx
τθ/Iyy
τψ/Izz

(4.14)

where Ωγ = Ω1−Ω2 +Ω3−Ω4. The angular acceleration can be obtained by time
differentiating the transformation matrix W−1

η in the inertial frame:

η̈ =
d
dt
(W−1

η ω) =
d
dt
(W−1

η)ω +W−1
η ω̇ =0 φ̇Cφ Tφ + θ̇sφ/c2

θ
−φ̇sφ cθ + θ̇cφ/c2

θ

0 −φ̇sφ −φ̇cφ

0 φ̇/cθ + φ̇sφ Tθ/cθ −φ̇sφ cθ + θ̇cφ Tθ/cθ

ω +W−1
η ω̇

(4.15)

4.1.1.2 Euler-Lagrange Equations. To obtain the quadcopter dynamic
equations, the Euler-Langrage approach uses a conservation of energy approach,
which can be written in terms of translational, rotational and potential energy
[Greiff, 2017]

L (s, ṡ) = Etrans +Erot −Epot =
1
2

mṖT Ṗ+
1
2

ω
T Iω−mgz (4.16)

This results in the following Euler-Lagrangian equation:[
f
τ

]
=

d
dt

(
∂L

∂ ṡ

)
− ∂L

∂ s
(4.17)

The angular and linear velocities are independent and can be treated separately. This
results in the following linear external force, which is similar to the Euler-Newton
relations in Equation (4.12):

f = RGBT = mP̈+mg

0
0
1

 (4.18)

The rotational energy can be rewritten in the inertial frame as

Erot =
1
2

ω
T Iω =

1
2

η̇Jη̇ (4.19)

where J(η) =W T
η IWη is a Jacobian matrix that converts the angular rotation in the

body frame to the angular rotation in inertial frame. This result in the following
external torque:

τ = τB = Jη̈ +
d
dt
(J)η̇− 1

2
∂

∂η
(η̇T Jη̇) = Jη̈ +C(η , η̇)η̇ (4.20)

41

Chapter 4. Modelling

where the C(η , η̇) matrix is the Coriolis term. After isolating the angular
acceleration in the inertial frame, we get a result that is similar to the one obtained
in Equations (4.14) and (4.15):

η̈ = J−1(τB−C(η , η̇)η̇) (4.21)

4.2 UGV

In this section, we describe a kinematic model of a three-wheeled omni-directional
robot by only taking into consideration the geometry of the system dynamics. The
mathematical equation is based on [Galgamuwa et al., 2015].

Figure 4.2 Global coordinate, body coordinate, wheel rotation, and wheel linear velocity.
Figure on the right is the body rotated ψ in the global frame

The axis naming convention of the global and local frame is similar to ones used
in Section 4.1.1. We denote with ψ the orientation of the robot in the global frame,
R is the radius of the robot body, r is the radius of the robot wheel, VB is the velocity
in the body frame, ω [rad/s] is the angular velocity of each of the wheels, vi [m/s]
is the velocity at wheel i, and VG is the velocity in the global frame. The vector
representation is defined as follows:

ω =

ω1
ω2
ω3

 ,VB =

v f
vn
ω

 ,VG =

 ẋ
ẏ
ψ̇

 , (4.22)

We can relate the local body velocity and the global velocity with the following
equations: ẋ

ẏ
ψ̇

=

cosψ −sinψ 0
sinψ cosψ 0

0 0 1

v f
vn
ω

 (4.23)

42

4.2 UGV

Using geometry and the axis representation in Figure 4.2, we can relate the
velocity of the wheels to the velocity of the body frame. The result of this is:

v1 =−vn +Rω (4.24)

v2 = v f cos
π

6
+ vn cos

π

3
+Rω (4.25)

v3 =−v f cos
π

6
+ vn cos

π

3
+Rω (4.26)

where vi = rωi for i = 1,2,3. Simplifying Equation (4.24), we can get the following
equations that relate the local body velocity to the wheels’ angular rotation:v f

vn
ω

=
r
3

 0
√

3 −
√

3
−2 1 1
1/R 1/R 1/R

ω1
ω2
ω3

 (4.27)

By combining Equations (4.23) and (4.27), we can relate the global velocity to
the local wheel rotational angular rates.

4.2.1 Simplified Simulation Model
In order to test the formation control law before performing tests on real hardware,
we developed simulation models for both the UAV and the UGV using transfer
functions. These models represent both the robots’ dynamics and their internal
controller. Although these simulation models do not consider the whole dynamics
of the robots, they were adequate to analyze the controller. We assumed that the x
and y-axes were decoupled for the simulation models.

Figure 4.3 shows the simulation model of the UAV. It consists of a series of
integrators that output the position with an acceleration input. We modeled the
velocity controller with a second-order transfer function using experimental data
obtained from the Crazyflie UAV. It receives as input q̇r and outputs the current
velocity q̇ of the robot. We performed the identification of the transfer function
using the identification toolbox that Matlab offers [Matlab, 2022].

Figure 4.3 UAV simulation model

43

Chapter 4. Modelling

The transfer functions for the two axes are as follows:

t fx =
33.62

s2 +7.488s+33.97
(4.28)

t fy =
34.83

s2 +7.25s+35.04
(4.29)

Figures 4.4 and 4.5 show plots of the input, experimental data, and the result of the
system identification. We obtained a mean squared error of 1.1760e− 04 for the x
axis and 9.405e−05 for the y− axis model.

1 2 3 4 5 6 7

Time (s)

0.0

0.1

0.2

0.3

0.4

V
el

oc
ity

(m
/s

)

Input
Experimental data
Output model

System identification result: X model

Figure 4.4 X-axis: comparison of input, experimental data, and output from identified
model in Equation 4.28

44

4.2 UGV

0 1 2 3 4 5 6 7

Time (s)

0.0

0.1

0.2

0.3

0.4

V
el

oc
ity

(m
/s

)
Input
Experimental data
Output model

System identification result: Y model

Figure 4.5 Y-axis: comparison of input, experimental data, and output from identified
model in Equation 4.29

We modelled the UGV using one integrator. We did not perform identification
of the UGV dynamics and its internal controller because at that stage, no controller
was implemented in the robot. The model receives as input a velocity reference q̇r
and outputs position q. This model can seen in Figure 4.6.

Figure 4.6 UGV simulation model

We model the disturbances as Gaussian noise with mean µ = 0. We converted
the two previous models to discrete time models and the integration in simulation
was done using a first order Euler’s numerical integration method.

45

5
Implementation

5.1 Simulation

To test the formation algorithm’s effectiveness before implementing it in a real
robotic system, we performed simulations in Matlab. We used the models explained
in Section 4.2.1. Although we intended to implement the controller using the
distributed architecture, we implemented the control law for all the robots in a
single control loop similar to the centralized architecture. The downside of this
implementation approach is that the effect of communication delay might not appear
in the results. The code implementation can be found in [Omodolor, 2022a].

5.2 Real-time Experiment

To perform the experiments, we used the Crazyflie quadcopter from Bitcraze
[Bitcraze, 1999], see Figure 5.1, and three-wheeled omni-wheel robots from the
Department of Automatic Control in Lund, see Figure 5.4. The following section
will explain each platform and what controller we used to control them. Finally,
we give an overview of the communication structure. We wrote the whole system
in ROS [Stanford Artificial Intelligence Laboratory et al., 2018] because of the
communication layer and tools it provided.

5.2.1 Crazyflie
The Crazyflie is an open-source lightweight nano quadcopter platform developed
by Bitcraze [Bitcraze, 1999]. In order to communicate with the quadcopter, we
used the Crazyradio PA, an open-source USB radio bungle, see Figure 5.6. It can
reach a range of 1 km in an ideal situation. To interact with the Crazyflie, we
used the CrazySwarm library [Preiss et al., 2017] that allows the use of ROS as
a middleware. It includes ROS topics that make it easy to communicate with the
quadcopter. We used one Crazyradio PA for every two drones to ensure reliability
in communication. When we used more than two Crazyflies per Crazyradio, there
was a noticeable delay when receiving and sending commands.

46

5.2 Real-time Experiment

Figure 5.1 Crazyflie

The experiments were performed indoors using the Lighthouse positioning
system [Taffanel et al., 2021], see Figure 5.2. It uses the streamVR base station
of Valve Inc and the lighthouse deck that is placed on the quadcopter to estimate its
own position in a global coordinate system by using an extended Kalman filter.

Figure 5.2 Lighthouse positioning system [Taffanel et al., 2021].

5.2.2 Velocity Controller: Crazyflie
This section will explain the structure of the velocity control implemented in the
Crazyflie. The controller in the Crazyflie firmware has four levels of control: attitude
rate, absolute attitude, velocity and position. Currently, there are three types of
controllers: cascaded PID, INDI and Mellinger controller. The main focus will be

47

Chapter 5. Implementation

on the cascaded controller, which consists of multiple controllers in which the input
of one corresponds to the output of another. A block diagram of the PID controller
implementation is shown in Figure 5.3.

Figure 5.3 Different loops of cascaded PID controllers [Bitcraze, 1999].

The first level of control, the attitude rate PID controller, receives as input the
attitude rate and, based on the sensor data from the gyroscope rates, generates the
desired motor commands. The second level, the attitude controller, takes in as input
the desired attitude and, with the attitude from the state estimator, computes the
desired attitude rate. Like the attitude controller, the position and velocity PID
controller receives as input the corresponding reference and data from the state
estimator to compute the corresponding commands.

The Crazyflie also includes different types of controllers that are combinations
of the controllers as shown in Figure 5.3. We took advantage of the controller
already implemented in the Crazyflie firmware. For this project, we used the
hovertype velocity controller. It allows the user to control the body velocity in the
x and y plane and the z distance. In order to send velocity command in the global
frame, we integrated the acceleration coming from the formation controller to obtain
velocity in the global frame. Then we transform the global velocity to local body
velocity using the following transformation matrix

[
ẋG
ẏG

]
=

[
cosψ −sinψ

sinψ cosψ

][
vx,B
vy,B

]
(5.1)

where ψ is the yaw angle of the drone in the global frame. One disadvantage of this
approach is that for a more prolonged experiment period, the velocity reference and
the actual velocity value might diverge. [Saif et al., 2019] proposed the use of the
roll and pitch as command input to the drone by relating them with the acceleration
obtained from the formation controller. We were not successful in implementing
this approach because of the lack of stability of the drone positioning system.

48

5.2 Real-time Experiment

5.2.3 Three-wheeled Omni-wheel Robot
The three-wheeled omni-wheel robot (see Figure 5.4) is a 3D printed mobile robot
that uses the Dynamixel motors for actuation, the Crazyflie with a lighthouse deck
for positioning (see Figure 5.2) and the Raspberry Pi as the main controller.

Figure 5.4 Three-wheeled omni-wheeled robot

We implemented using Python, a velocity controller running onboard the robot;
the implementation can be found in [Omodolor, 2022b]. To communicate with the
velocity controller from an external device, we implemented multiple ROS nodes
that publish and subscribe to ROS topics. These topics include state values (position,
velocity and acceleration) and velocity command. To control the Dynamixel motors,
we used the library [Blomdell, 2022]. It is a re-implementation of the Dynamixel
library in Python from the Department of Automatic Control, Lund. Unlike for the
Crazyflie, we did not use the CrazySwarm library to log data but the Cflib: Crazyflie
Python library by [Bitcraze, 1999].

The schematic representation of the velocity controller can be seen in Figure 5.5.
It uses a PI controller. First, we obtain the current state of the robot from the
lighthouse deck and apply a median filter to reduce the noise in the position, velocity
and acceleration estimate. We compute the error between the reference and the
current state and send that to the PI controller. The PI controller computes the
velocity command for the robot. Using Equations (4.27) and (5.1), we compute
K−1(.) which is the inverse kinematics of the omni-wheel in order to obtain the
necessary angular velocity of the wheels. This controller is implemented for each
of the axis being controlled, namely ẋ, ẏ and ψ̇ .

49

Chapter 5. Implementation

Figure 5.5 Velocity controller for the three-wheeled omni-wheels robot

5.2.4 Communication Architecture
In this section, we will explain the overall communication layer implemented to
perform the formation control in a real robot, see Figure 5.6. Each mobile robot
(ROS_SLAVE) runs its velocity controller onboard in a node and communicates
with the central computer (ROS_MASTER) via ssh using a network router. As we
stated earlier, the formation controller requires inter-agent relative distance; since
there were no sensors to measure these relative distances. However we used the
lighthouse system to extract this information.

Figure 5.6 Communication architecture

50

5.2 Real-time Experiment

Although we intended to run the formation control law onboard the UAVs,
it was not possible to modify the Crazyflie firmware due to time constraints.
We simulated the distributed architecture in the main computer as an alternative.
The implementation consists of the mission controller, drone and omni-wheel
nodes. We have as many nodes as UAVs and as many nodes as omni-wheel,
running their robot formation controller separately. This way, we can isolate each
system as in a distributed architecture. The mission controller node is responsible
for sending the navigation group objectives. Each robot communicates only by
subscribing to the corresponding topic that offers state information about robots
in its neighbourhood. We implemented each nodes in C++, the implementation can
be found in [Omodolor, 2022a]. Figure 5.7 shows how information is exchanged
between the robots and the mission planner.

Figure 5.7 Distributed architecture

51

Chapter 5. Implementation

5.3 Bill of Materials

Table 5.1 shows the bill of material used during this project.

Table 5.1 Bill of materials

Parts Quantity Unit price
C Inc VAT Total Price C

Crazyflie 2.1 5 210 1050
Crazyradio PA USB dongle 2 35 70
Extra parts 1 100 100
Battery + charger 8 10 80
HTC Vive 2 250 500
Lighthouse deck 6 90 540
omni-wheel robot 2 900 1800
Netgear Router 1 50 50
Total cost 4190

52

6
Results

This chapter presents the results obtained from both simulation and experiment.
We considered different scenarios for evaluating the effectiveness of the controller
developed in this thesis. Each of these scenarios builds upon the previous. We
considered the following scenarios:

• Free-space UAV formation.
• Free-space UAV formation with orientation.
• Free-space UAV formation and flocking.
• Obstacle-space UAV formation and flocking.
• Free-space UAV and UGV formation and flocking.

We performed all experiments in the 2D plane, but the algorithm is easily
extendable to 3D space. As we stated in Chapter 5, each robot had its node and
logged data from its node. However, the results presented only considered the data
we logged from the first robot.

6.1 Simulation

6.1.1 Free-space UAV Formation
In this experiment, we performed collision-free formation control with four UAVs
using Equation (3.30) extended with Equation (3.36). We investigated the effect of
noise in two different scenario in Sections (6.1.1.1) and 6.1.1.2.

6.1.1.1 Scenario I. In this first scenario, we performed collision free formation
with guassian noise obtained from experimental data in Section 4.2.1. We used the
parameters shown in Table 6.1.

All the c2 gains were obtained using the equation proposed in [Olfati-Saber,
2006], c2 = 2

√
c1.

53

Chapter 6. Results

Table 6.1 Parameters used to perform the experiments in Section 6.1.1.1

Parameter Value Parameter Value

cα
1 0.2 a = b 5

cα
3 0.09 ε 0.1

cγ

1 0.25 d 0.5 m
k 7 µ 0
hα 0.2 σ 0.001
r 3.5

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

UAV4

Figure 6.1 Path of the four UAVs for the free-space square formation in (6.1.1.1)

The initial and final positions of the robots are marked with a black diamond
and black star, respectively. Figure 6.1 shows the path of each of the agents during
the formation while Figure 6.2 shows the inter-agent distance. As we can see in
the plot, the swarm converged to the desired formation. The inter-agent distances
eventually converge to the desired value.

We set the navigation objective at the position (-1.55,0) m with velocity
(0,0) m/s. Figure 6.3 shows a comparison between the current centroid position

54

6.1 Simulation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D23
D24
D34

Inter-agent distance

Figure 6.2 Inter-agent distance of the four UAVs for the free-space square formation in
(6.1.1.1)

and the target navigation objective. As we can observe, the centroid was able to
track the desired goal. The oscillation that appears in Figure 6.3 is mostly due to the
Gaussian noise added to the system.

0 5 10 15 20

Time (s)

−0.01

0.00

0.01

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 5 10 15 20

Time (s)

−0.01

0.00

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 5 10 15 20

Time (s)

−0.02

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 5 10 15 20

Time (s)

−0.01

0.00

0.01

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.3 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid in (6.1.1.1)

55

Chapter 6. Results

Results for a three and five drone formation can be found in Appendix B.1.1 and
B.2.1. The results of these experiments show that independent of the number of
UAVs the system was still able to converge to the desired formation.

6.1.1.2 Scenario II. To investigate how the controller behaves when subjected
to considerable noise, we increased the standard deviation of the noise to σ = 0.04.
Figure 6.4 shows the path each agent followed. The other parameters used are the
same shown in Table 6.1.

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

UAV4

Figure 6.4 Path of the four UAVs for the free-space square formation with noise standard
deviation σ = 0.04 in (6.1.1.2)

As we can observe in Figure 6.5, despite being subjected to significant noise, the
agents can maintain the formation. Moreover, similar to the previous scenario, as
shown in Figure 6.5, the inter-agent distance did not fully reach the desired value.

56

6.1 Simulation

0 5 10 15 20

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D23
D24
D34

Inter-agent distance

Figure 6.5 Inter-agent distance of the four UAVs for the free-space square formation with
noise standard deviation σ = 0.04 in (6.1.1.2)

6.1.2 Free-space UAV Formation and Orientation
In this experiment, we performed a four drone formation control with orientation
control using the Equation (3.43). We used the same parameters and navigation goal
stated in Section 6.1.1.1 but the orientation gain cδ

1 = 0.25. The orientation vector
which defines the orientation of the formation is the vector from the centroid of
the formation to UAV1. We set the desired orientation angle to 0°with respect to the
global frame of reference. Figure 6.6 shows the path of the robot. The agents’ initial
and final positions are marked with a black diamond and black star, respectively.

57

Chapter 6. Results

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)
UAV1

UAV2

UAV3

UAV4

Figure 6.6 Path of the four UAVs for the free-space square formation with 0°orientation
with respect to the global frame of reference in (6.1.2)

As we can observe, the system was able to converge to the desired formation while
staying close to the desired inter-agent distance, see Figure 6.7. In this experiment,
the controller was able to track the navigation goal, see Figure 6.8. With respect to
the orientation, the formation was able to reach the desired value, see Figure 6.9.

58

6.1 Simulation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D23
D24
D34

Inter-agent distance

Figure 6.7 Inter-agent distance of the four UAVs for the free-space square formation with
orientation in (6.1.2)

0 10 20

Time (s)

−0.01

0.00

0.01

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 10 20

Time (s)

−0.01

0.00

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 10 20

Time (s)

−0.02

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 10 20

Time (s)

−0.02

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.8 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid in (6.1.2)

59

Chapter 6. Results

0 5 10 15 20

Time (s)

0

10

20

30

40

50

60

70

80

O
ri

en
at

io
n

(°
)

Orientation
Orientation reference

Figure 6.9 Evolution of the orientation in (6.1.2)

Results for a three and five drone formation can be found in Appendix B.1.2 and
B.2.2. Similarly, as we observe the Figures in the corresponding Appendix, the
swarm was able to converge to desired orientation while maintaining the formation
and inter-agent distances.

60

6.1 Simulation

6.1.3 Free-space UAV Formation and Flocking
In this experiment, we performed formation and flocking control using four UAVs.
We used the same parameters shown in Table 6.1. Figure 6.10 shows the path of the
robots. The agents’ initial and final positions are marked with a black diamond and
black star, respectively.

−3 −2 −1 0 1 2 3

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

UAV4

Figure 6.10 Path of the four UAVs for the free-space square formation and flocking in
(6.1.3)

As we can observe in the Figure 6.10 and the distance plot in Figure 6.11, the
UAVs were able to maintain a formation while flocking to the desired location.
However, the inter-agent distance does not fully converge to the desired values.
Nevertheless, the error is minor. One interesting observation about these results
is that the formation term converged faster than the navigation term, even though
the gain of the navigation term was slightly more significant than the gain
of the formation term. We did not impose this Behaviour in the code. This
Behaviour results from the formation gain influence being more substantial because
it considers agents in the surroundings. The navigation goal is at position (1.42,0) m
with flocking velocity of (0.0,0.0) m/s. As we can observe in Figure 6.12, the system
converges to the desired navigation points.

61

Chapter 6. Results

0 2 4 6 8 10 12 14 16

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D23
D24
D34

Inter-agent distance

Figure 6.11 Inter-agent distance of the four UAVs for the free-space square formation and
flocking in (6.1.3)

0 5 10 15

Time (s)

0

2

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 5 10 15

Time (s)

−0.01

0.00

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 5 10 15

Time (s)

−0.2

0.0

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 5 10 15

Time (s)

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.12 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid in (6.1.3)

62

6.1 Simulation

6.1.4 Obstacle-space UAV Formation and Flocking
In this experiment, we performed formation and flocking control with obstacle
avoidance with four UAVs. We investigated two different scenarios in Sections 6.1.4.1
and 6.1.4.2 where the position of the obstacle was changed.

6.1.4.1 Scenario I. In this scenario, we placed the obstacle close to the flocking
path of the UAVs. The position of the obstacle and path of the agents are shown
in Figure 6.14. The navigation goal in this case was (1.42, 0) m with a flocking
velocity of (0.1,0) m/s. We placed the obstacle with a radius of 0.25 m at the position
(0,0.75) m. The parameters used in this experiment is shown in Table 6.2.

Table 6.2 Parameters used to perform the experiments in Section 6.1.4.1

Parameter Value Parameter Value

cα
1 0.2 a = b 5

cα
3 0.09 ε 0.1

cγ

1 0.05 d 0.5 m
k 7 µ 0
hα 0.2 σ 0.001
hβ 0.9 ratio 0.6
r 3.5 m robs 2.1 m
dobs 0.3 m

With the ratio in Table 6.2, we compute the distance to the obstacles, dobs. In
addition, using the constant k, we can compute the obstacle’s interaction range robs.
Compared to experiment in Section (6.1.1.1), we used a lower cγ

1 gain, see Table 6.2.
We did this because the formation otherwise collided with the obstacle.

63

Chapter 6. Results

−3 −2 −1 0 1 2 3

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)
UAV1

UAV2

UAV3

UAV4

obstacle

Figure 6.13 Path of the four UAVs for the free-space square formation and flocking with
obstacle avoidance in (6.1.4.1)

64

6.1 Simulation

0 5 10 15 20

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D23
D24
D34

Inter-agent distance

Figure 6.14 Inter-agent distance of the four UAVs for the free-space square formation and
flocking with obstacle avoidance in (6.1.4.1)

0 5 10 15 20

Time (s)

0

2

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 5 10 15 20

Time (s)

0.0

0.2

0.4

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 5 10 15 20

Time (s)

−0.2

0.0

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 5 10 15 20

Time (s)

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.15 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid in (6.1.4.1)

In this first scenario the agents were able to flock towards the goal (Figure 6.15),
while staying close to the desired inter-agent distance (Figure 6.14).

65

Chapter 6. Results

6.1.4.2 Scenario II. In this second scenario, we placed the obstacle directly on
the flocking path of the UAVs. We placed an obstacle of a radius of 0.25 m at the
position (0,0) m. The parameters used of those shown in Table 6.2. The path the
agent followed is shown in Figure 6.16. As we can see in Figure 6.18, the agents
were not able to reach the navigation goal and got stuck in front of the obstacles see
Figure 6.15.

−3 −2 −1 0 1 2 3

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

UAV4

obstacle

Figure 6.16 Path of the four UAVs for the free-space square formation and flocking with
obstacle avoidance in (6.1.4.2)

66

6.1 Simulation

0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D23
D24
D34

Inter-agent distance

Figure 6.17 Inter-agent distance of the four UAVs for the free-space square formation and
flocking with obstacle avoidance in (6.1.4.2)

0 10 20

Time (s)

2.5

3.0

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 10 20

Time (s)

0.00

0.01

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 10 20

Time (s)

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 10 20

Time (s)

−0.02

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.18 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid in (6.1.4.2)

This led to the conclusion that this kind of potential-function algorithm could ensure
local stability but does not ensure that it converges to the global goal. Finding the
ideal gain for the control algorithm’s navigation, obstacle and agent terms was quite

67

Chapter 6. Results

challenging. The reason is that increasing one affects the others. For example, too
high navigation gains cause the formation to collide with the obstacle.

In both scenarios shown in Sections 6.1.4.1 and 6.1.4.2, we can observe in
Figures 6.14 and 6.17, we were able to maintain the desired inter-agent distance.
In addition, the formation centroids was able to track the desired navigation goal
position and velocity, see Figures 6.15 and 6.18.

6.1.5 Free-space UAV and UGV Formation and Flocking
In the final simulation, we performed formation and flocking control of the UAVs
and the UGVs using the algorithm in Section 3.3. The UAV and UGV parameters
are the same as the ones shown in Table 6.2, but the obstacle gain for the UGV
was set to cβ

1 = 2. We set the distance between the UGV and the cluster to 0.5
m. We also imposed a 180°angle between the cluster and the UGV. Figure 6.19
shows the path of each of the agents and the clusters computed. The UAVs’ initial
and final positions are marked with a black diamond and black star, respectively.
The UGV’s initial and final positions are marked with a black square and black
pentagon, respectively. The clusters’ initial and final positions are marked with a
black hexagon and black plus, respectively.

68

6.1 Simulation

−3 −2 −1 0 1 2 3

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)
UAV1

UAV2

UAV3

UGV1

Cluster1

UGV2

Cluster2

Figure 6.19 Path of the three UAVs, two UGVs and clusters for the free-space UAV and
UGV formation and flocking in (6.1.5)

We can observe in Figure 6.19 that the UGVs followed the clusters successfully
and the UAVs maintained their desired inter-agent distance while maintaining a
safe distance between themselves, see Figure 6.20. We imposed a 180°orientation
between the UGV and its corresponding cluster. One observation worth mentioning
is the changes in the cluster configuration. We can observe this in Figure 6.19.
This change is also noticeable in Figure 6.20, with the random changes in distance
from the UGV to clusters. This effect is one of the downsides to the algorithm in
Section 3.3. For certain cluster configuration, the result K-means++ clustering is
not unique.For example, for a cluster with three UAVs and two UGVs, there are
two possible solutions when applying the K-means++ algorithm, see Figure 6.21.
UGV1 can cluster with both C2A or C2B . Since the changes are quick, they did not
cause any noticeable oscillation in the path of each of the UGVs. We can observe
the distance between the UGV and its corresponding cluster in Figure 6.20.

69

Chapter 6. Results

0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23
C1D1
C2D2

Inter-agent distance

Figure 6.20 Inter-agent distance of the four UAVs and two UGVs for the Free-Space square
formation, flocking and coordination of the multi-agent system, CXDY refers to distance
from clusterx to UGVy in (6.1.5)

Figure 6.21 Cluster solutions : sub-index 1A represents cluster 1 solution A in (6.1.5)

70

6.2 Real-time Experiments

6.2 Real-time Experiments

6.2.1 Free-space UAV Formation
In this experiment, we performed a three-UAV formation control using the Equation
(3.30) extended with Equation (3.36). We investigated the normal behaviour of the
drones in Section (6.2.1.1) and the effect of external noise in Section (6.2.1.2).

6.2.1.1 Scenario I. In this first scenario, we performed collision free formation
with three drones. We used the parameters shown in Table 6.3. All the c2 gains were
obtained using the equation proposed in [Olfati-Saber, 2006], c2 = 2

√
c1 as we did

in the simulations.

Table 6.3 Parameters used to perform the experiments in Section 6.2.1.1

Parameter Value Parameter Value

cα
1 0.2 a = b 5

cα
3 0.07 ε 0.1

cγ

1 0.25 d 0.8 m
k 7 r 5.6
hα 0.2

We increased the inter-agent distance in the real-time robot for safety concerns.
The navigation goal is centered at position (0.2,0) m with (0,0) m/s flocking
speed. The initial and final positions of the robots are marked with a black
diamond and black star, respectively. Figure 6.22 shows the path of each of the
agents during the formation. A video demonstration of the video can be found in
free_space_3_UAVs_formation.mp4 and link https://youtu.be/bioNf9_nF8o.

71

https://youtu.be/bioNf9_nF8o
https://youtu.be/bioNf9_nF8o

Chapter 6. Results

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)
UAV1

UAV2

UAV3

Figure 6.22 Real experiment: path of the three UAVs for free-space formation in (6.2.1.1)

As we can observe in Figure 6.22, the UAVs were able to converge to the desired
formation shape. In addition, as we can see in Figure 6.23, the system converged
to the desired inter-agent distance quite well, although this happened at the expense
of the navigation term, which took longer to converge, see Figure 6.24. Finding the
correct tuning parameters was quite challenging. On the one hand, increasing the
gain of the navigation term will cause the system to converge to the desired mission
goal but might break the formation. On the other hand, increasing the gain of the
formation term might ensure we meet the inter-agent distances, but this comes at
the expense of increasing the time the navigation goal takes to converge.

An interesting observation worth mentioning is how the controller prioritized
the formation term. In Figure 6.23, as the formation converged initially, the absolute
error between the navigation goal and the current centroid increased. However,
eventually, both the velocity and the position converged. This phenomenon is
because, although the navigation gain is higher than the formation gain, the
influence of the formation term, which depends on the number of drones in its
neighbourhood, has more weight. For a two-drone formation, this would not be
the case.

72

6.2 Real-time Experiments

0 10 20 30 40 50

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure 6.23 Real experiment: inter-agent distance of the three UAVs for free-space
formation in (6.2.1.1)

0 20 40

Time (s)

0.3

0.4

0.5

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 20 40

Time (s)

−0.10

−0.05

0.00

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 20 40

Time (s)

−0.05

0.00

0.05

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 20 40

Time (s)

−0.1

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.24 Real experiment: absolute error (m) between the navigation goal (position,
velocity) and the current centroid of the three UAVs for free-space formation in (6.2.1.1)

73

Chapter 6. Results

6.2.1.2 Scenario II. In this scenario, we performed the same experiment in
6.2.1.1 but manually included external disturbance to investigate the stability of the
controller. Figure 6.25 shows the path of each of the agents during the formation. A
video demonstration can be found in free_space_3_UAVs_formation_with_external_disturbance.mp4
and link https://youtu.be/OeCVnf5mLak.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

Figure 6.25 Real experiment: path of the three UAVs for free-space formation with external
disturbance in (6.2.1.2)

Despite the added noise, the system was able to converge. Although, as we can
observe in Figures 6.26 and 6.27, the system was able to recover when noise was
added to the system. We can observe this effect in the plot by the sudden rise in
absolute errors and the inter-agent distances.

74

https://youtu.be/OeCVnf5mLak
https://youtu.be/OeCVnf5mLak

6.2 Real-time Experiments

0 10 20 30 40 50 60 70 80

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure 6.26 Real experiment result: inter-agent distance of the three UAVs for free-space
formation with external disturbance in (6.2.1.2)

0 20 40 60 80

Time (s)

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 20 40 60 80

Time (s)

0.0

0.2

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 20 40 60 80

Time (s)

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 20 40 60 80

Time (s)

−0.1

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.27 Real experiment: Absolute error(m) between the navigation goal(position,
velocity) and the current centroid for free-Space square formation with external disturbance
in (6.2.1.2)

75

Chapter 6. Results

6.2.2 Free-space UAV Formation and Orientation
In this experiment, we performed a three-drone formation control with orientation.
We used the parameters shown in Table 6.3 with the orientation gain cδ

1 = 0.1. As
a reminder, the orientation vector is from the centroid to UAV1. The navigation
goal was set to position (0.9, 0) m and velocity (0,0) m/s For this experiment, we
set the orientation to 0°with respect to the global frame. The orientation vector
which defines the orientation of the formation is the vector from the centroid of
the formation to UAV1. Figure 6.28 shows the path of each of the agents during
the formation. The agents’ initial and final positions are marked with a black
diamond and black star, respectively. A video demonstration can be found in
free_space_3_UAVs_formation_with_orientation.mp4 and link https://youtu.
be/n9QEYacotDA.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

Figure 6.28 Real experiment: path of the three UAVs for free-space formation with
0°orientation in (6.2.2)

Concerning the formation shape, the agent was able to maintain the triangular shape
while converging to the desired inter-agent distance, see Figure 6.29.

76

https://youtu.be/n9QEYacotDA
https://youtu.be/n9QEYacotDA
https://youtu.be/n9QEYacotDA

6.2 Real-time Experiments

0 5 10 15 20 25 30 35

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure 6.29 Real experiment result: inter-agent distance of the three UAVs for free-space
formation with orientation control in (6.2.2)

with respect to the orientation, see Figure 6.31, the formation was able to converge,
but at the expense of an increase in the absolute error with respect to the navigation
goal, see Figure 6.30.

0 10 20 30

Time (s)

0.1

0.2

0.3

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 10 20 30

Time (s)

0.0

0.2

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 10 20 30

Time (s)

0.00

0.05

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 10 20 30

Time (s)

−0.1

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.30 Real experiment: absolute error (m) between the navigation goal (position,
velocity) and the current centroid for free-space formation with orientation control in (6.2.2)

77

Chapter 6. Results

0 5 10 15 20 25 30 35

Time (s)

−20

0

20

40

60

80

O
ri

en
at

io
n

(°
)

Orientation
Orientation reference

Figure 6.31 Evolution of the orientation in (6.2.2)

6.2.3 Free-space UAV Formation and Flocking
In this experiment, we performed formation and flocking control using three
UAVs. We used the same parameters shown in Table 6.3, except for the
navigation gain, which we set to cγ

1 = 0.1 to ensure the swarm maintains the
formation while flocking. The navigation goal is at position (1.7, 0) m with a
flocking velocity of (0.0,0.01) m/s. Figure 6.32 shows the path of the robots.
The agents’ initial and final positions are marked with a black diamond and
black star, respectively. A video demonstration of the video can be found in
free_space_3_UAVs_formation_flocking_control.mp4 and link https://youtu.
be/6S0R5yL2P4g.

78

https://youtu.be/6S0R5yL2P4g
https://youtu.be/6S0R5yL2P4g
https://youtu.be/6S0R5yL2P4g

6.2 Real-time Experiments

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)
UAV1

UAV2

UAV3

Figure 6.32 Real experiment: path of the three UAVs for free-space formation and flocking
in (6.2.3)

As we can observe Figure 6.32 and the distance plot in Figure 6.33, the
UAVs were able to maintain a formation while maintaining the desired inter-agent
distances. As we can observe in Figure 6.34, the system converges to the desired
navigation points. However, there was a lot of oscillation, especially in the velocity.
This difficulty is because of the noise in the velocity estimation of the lighthouse
positioning system used for the UAVs.

79

Chapter 6. Results

0 5 10 15 20

Time (s)

0

1

2

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 5 10 15 20

Time (s)

0.05

0.10

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 5 10 15 20

Time (s)

−0.2

−0.1

0.0

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 5 10 15 20

Time (s)

−0.1

0.0

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.34 Real experiment: absolute error (m) between the navigation goal (position,
velocity) and the current centroid for free-space formation and flocking in (6.2.3)

0 5 10 15 20

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure 6.33 Real experiment result: inter-agent distance of the three UAVs for free-space
formation and flocking in (6.2.3)

6.2.4 Obstacle-space UAV Formation and Flocking
In this experiment, we performed formation and flocking control with obstacle
avoidance with three UAVs and one obstacle. We tested two different scenarios,

80

6.2 Real-time Experiments

in Sections 6.2.4.1 and 6.2.4.2, one where the obstacle was static and the second
with a dynamic obstacle. In both scenarios, we used a spare Crazyflie to obtain the
obstacle’s position.

6.2.4.1 Scenario I. In this first scenario, we placed the obstacle close to
the flocking path of the UAVs. The position of the obstacle is shown in
Figure 6.35. The navigation goal, in this case, was (1.7,0) m with a flocking
velocity of (0.01,0) m/s. We assume the obstacle was of radius 0.25 m. We
used the same parameters as shown in Table 6.3. The ratio between the desired
distance and distance to obstacle was ratio = 0.8, hβ = 0.9. Given the ratio,
we can compute the obstacle’s interaction range robs and the distance to the
obstacles, dobs. Figure 6.35 shows the path of each of the agents and the
obstacle during the formation. A video demonstration of the video can be
found in formation_and_flocking_with_static_obstacle_avoidance.mp4 and link
https://youtu.be/a_QhH9tYjm4.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

Figure 6.35 Real experiment: path of the three UAVs for free-space formation and flocking
with obstacle avoidance in (6.2.4.1)

81

https://youtu.be/a_QhH9tYjm4
https://youtu.be/a_QhH9tYjm4

Chapter 6. Results

0 5 10 15 20 25 30

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure 6.36 Inter-agent distance of the three UAVs for formation and flocking with static
avoidance in (6.2.4.1)

0 10 20 30

Time (s)

0

1

2

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 10 20 30

Time (s)

0.0

0.2

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 10 20 30

Time (s)

−0.1

0.0

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 10 20 30

Time (s)

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure 6.37 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid for formation and flocking with static obstacle avoidance in (6.2.4.1)

In the first scenario the agents were able to flock towards the goal (Figure 6.35)
while staying close to the desired inter-agent distance (Figure 6.36). Concerning the
obstacle, the agents could maintain the desired safety distance from the obstacle,

82

6.2 Real-time Experiments

see Figure 6.38. In this figure, we can observe that all distances are larger than the
safety distance. Figure 6.37 shows the absolute error of the mission goal. Similar to
previous experiments, the system was able to follow the goal but diverged from the
typical straight path it followed in the previous experiment because of the obstacle.

0 5 10 15 20 25 30

Time (s)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
is

ta
nc

e
(m

)

Distance to obstacle reference UAV
DUAV1-O1
DUAV2-O1
DUAV3-O1

Obstacle distances

Figure 6.38 Distance of the three UAVs to the current obstacle for formation and flocking
with static obstacle avoidance in (6.2.4.1)

6.2.4.2 Scenario II. In this second scenario, we used the same parameters
shown in Table 6.3. However, we dynamically changed the location of the obstacle
to see how the formation would react. With respect to the mission goal, we fixed
this to position (0.0,0) m and velocity (0,0) m/s. We randomly changed the location
of the obstacle to see how the formation would react. The agents’ trajectory and the
obstacle’s positions are shown in Figure 6.39. A video demonstration of the video
can be found in formation_and_flocking_with_dynamic_obstacle_avoidance.mp4
and link https://youtu.be/ajUXCxcN_j8.

83

https://youtu.be/ajUXCxcN_j8
https://youtu.be/ajUXCxcN_j8

Chapter 6. Results

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)
UAV_1
UAV_2
UAV_3
Obstacle

Figure 6.39 Real experiment: Path of the three UAVs for free-Space formation and flocking
with dynamic obstacle avoidance second scenario in (6.2.4.2). The discontinuous green line
is the position of the obstacle while the continuous one is the position of UAV3

As we can observe in Figure 6.41, the agents were able to stay above the minimum
safety distance, but at the expense of breaking the desired inter-agent distance, see
Figure 6.40. In addition, we can observe in Figure 6.41 that the system could recover
after the obstacle got too close to the UAV. The slow response time is because
to fight against the obstacle; the obstacle potential must overcome the repulsive
potential caused by agents in the neighbourhood. This slow response of the whole
formation would hinder the application of this method for missions that require fast
dynamics.

84

6.2 Real-time Experiments

0 5 10 15 20 25 30 35

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure 6.40 Inter-agent distance of the three UAVs for formation and flocking with
dynamic obstacle avoidance in (6.2.4.2)

0 5 10 15 20 25 30 35

Time (s)

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance to obstacle reference UAV
DUAV1-O1
DUAV2-O1
DUAV3-O1

Obstacle distances

Figure 6.41 Distance of the three UAVs to the current obstacle for formation and flocking
with dynamic obstacle avoidance in (6.2.4.2)

6.2.5 Free-space UAV and UGV Formation and Flocking
We performed formation and coordination control in an experiment with multiple
UAVs and UGVs. We used parameters for the UAV similar to the ones used in

85

Chapter 6. Results

Table 6.3. As for the UGV, we used the paramters in Table 6.4.

Table 6.4 Parameters (UGV) used to perform the experiments in Section 6.2.5

Parameter Value Parameter Value

cα
1 1 a = b 5

cα
3 0.07 ε 0.1

cγ

1 0.25 d 0.9 m
k 7 r 6.3
hα 0.2 hβ 0.9
ratio 0.8 dobs 0.8
robs 5.6

Given the ratio in Table 6.4, we can compute the distance to obstacle, dobs and
the interaction range of an obstacle. Given the constant k, we can compute the
obstacle’s interaction range robs.The navigation goal was set to position (1.70,0) m
and velocity (0,0) m/s. As a reminder from Section 3.3, we perform two agent
formation between the UGVs and their corresponding cluster. The distance between
UGVs and their clusters is 0.9 m.

In order to evaluate the method in Algorithm 1, we tried two Scenarios in
Sections 6.2.5.1 and 6.2.5.2.

6.2.5.1 Scenario I. In this first scenario, we did a formation and flocking
between three UAVs and one UGV . The UAVs’ initial and final positions are
marked with a black diamond and black star, respectively. The UGVs’ initial and
final positions are marked with a black square and black pentagon, respectively.
The cluster’s initial and final positions are marked with a black diamond and black
plus, respectively. Figure 6.42 shows the path of each of the agents during the
formation and coordination including the computed clusters. A video demonstration
of the video can be found in formation_and_coordination_3_UAVs_1_UGV.mp4
and link https://youtu.be/TUC9AUtMm7s.

86

https://youtu.be/TUC9AUtMm7s
https://youtu.be/TUC9AUtMm7s

6.2 Real-time Experiments

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)
UAV1

UAV2

UAV3

UGV1

Cluster1

Figure 6.42 Real experiment: path of the three UAVs, cluster and one UGV for formation
and flocking in (6.2.5.1)

As we can see in Figure 6.42, the cluster, in this case, corresponds to the centroid
of the three UAV formation. In addition, the UGV could maintain the following
distance to the cluster, see Figure 6.43.

87

Chapter 6. Results

0 5 10 15 20 25

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
(m

)

Distance reference
Distance to cluster reference
D12
D13
D23
C1D1

Inter-agent distance

Figure 6.43 Inter-agent distance of the three UAVs, cluster and one UGV for formation
and flocking in (6.2.5.1)

6.2.5.2 Scenario II. In this second scenario, we performed a formation and
coordination between three UAVs and two UGVs. One UGV considers all
UGVs in its neighbourhood as an obstacle. Figure 6.44 shows the trajectory
of each of the agents and clusters. A video demonstration of the video can
be found in formation_and_coordination_of_3_UAVs_2_UGVs.mp4 and link
https://youtu.be/Pn2n2A01h_8.

88

https://youtu.be/Pn2n2A01h_8
https://youtu.be/Pn2n2A01h_8

6.2 Real-time Experiments

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

x (m)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(m

)

UAV1

UAV2

UAV3

UGV1

Cluster1

UGV2

Cluster2

Figure 6.44 Real experiment: path of the three UAVs, cluster and two UGVs for formation
and flocking in (6.2.5.2)

Similarly to the simulation in Section 6.1.5, the UGVs were able to follow
their corresponding cluster. However, the issue of multiple local solutions is more
prominent and causes noticeable oscillations in the UGV movements because
of constant change in the cluster position, making it difficult for the distance
UGV-to-cluster to converge, see Figure 6.45.

89

Chapter 6. Results

0 5 10 15 20 25 30

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance to cluster reference
C1D1
C2D2

Inter-agent distance

Figure 6.45 Inter-agent distance between UAV cluster and two UGVs for formation and
flocking in (6.2.5.2)

90

7
Conclusion

The objective of this thesis project was to implement in a real robot system a
distributed controller for formation and coordination between UAVs and UGVs.
To accomplish this, we investigated the current approaches in literature. We then
chose the one that best satisfies the condition based on our use case, flight duration,
computation load and mission complexity and adopted it for out system.

With the first algorithm, we focused on the agents’ formation, obstacle
avoidance and mission goal for a second-integrator dynamic system. In order to
consider the effect of non-linear dynamics in a real-world implementation, we
introduced, using an approach in the literature, a second algorithm that included an
integral term. To implement this on the UGV, we extended the original algorithm
to a single-integrator dynamical system. We also proposed a new potential term,
"Rotational potential", that makes it possible to rotate the formation with one of the
agents, orientation agent, see Section 3.2.2. Finally, we developed an algorithm
that allows the formation and coordination of UAVs and UGVs using the concept
of cluster configuration, Cq, comprising the energy to maintain said configuration
and energy to change said configuration, see Section 3.3.

During the project, we performed multiple evaluations, both in simulation, using
a simplified model of the UAVs and UGVs, and experiments on real hardware,
Crazyflie and the three-wheeled omni-wheel robot.

Looking at the results obtained in the experiments of this project, we can
conclude that we were able to accomplish the objective of this thesis stated
in Chapter 1. However, there were many difficulties that arose during the
implementation in this thesis. Out of all, the most challenging and time-consuming
task was finding the ideal combination of gains for the distributed control law.
This issue was noticeable when we included obstacles in the experiment. Every
experiment that required to change the position of a static obstacle, we would
require different tuning values to accomplish the formation, obstacle avoidance
and navigation goal objectives. The tuning becomes very tedious when we have
multiple agents, each of which would require its tuning parameters. In addition, the
dynamics of the whole swarm formation was slow. This is typical of potential-based

91

Chapter 7. Conclusion

approaches. This might hinder its application when a fast reaction time, for example,
in an environment with an obstacle moving at a relatively high speed, is required.

With respect to the problems present in Section 6.1.4.1 about the difficulties
tuning the gains when there is obstacle, one alternative solution, which is out of this
project’s scope, is using an external planning algorithm to re-plan the navigation
goals. This way, we can combat the global stability issue. Another alternative is to
make the formation gain flexible by applying an adaptive tuning. We can apply this
adaptive tuning by relating the distance to the obstacle to the cα

1 gain. We can do
this using the exponential decay function:

cα
1 (dobs) = cα

1 (1−b)dobs (7.1)

where b is the decay rate.
An additional alternative would be model predictive control (MPC) [García

et al., 1989]. Thanks to its predictive nature, we can give information about the
obstacles to the controller in the form of constraints. With prior knowledge of the
environment’s state and constraints, the controller could prevent situations like the
one observed in Section 6.1.4.2, where the formation got stuck due to the obstacle.
A downside to using MPC is the computational requirement which might hinder
implementation in systems with relatively lean agents like the Crazyflie UAV.

7.1 Future Work

Although we accomplished the main objectives of the thesis, there are specific
improvements that we can make to the current implementation in order to obtain
a more reliable and distributed system.

The current implementation mimics the distributed sensing using the lighthouse
localization system. One way to thoroughly investigate the developed algorithm in
Secion 3.3 is by investigating how to implement hardware sensors that can measure
inter-agent relative distances without needing a global positioning system. By doing
so, effects like delay will become more prominent in the controller and this would
require modification to the original algorithm.

One further research would be implementing a more advanced controller like
MPC [García et al., 1989] to test and compare with the PID approach used in this
project.

The current controller uses the internal velocity control to control the Crazyflie.
However, we receive acceleration commands from the formation control law. We
convert acceleration to velocity using the Euler integration method. The drift caused
by this integration can become problematic for a prolonged experiment period. For
further work, we want to investigate different acceleration controller designs and
implementations for the firmware of the Crazyflie.

92

7.1 Future Work

The current implementation does not consider the effect of the communication
delay. More investigation would be needed to quantify how the delay affects the
formation performance and how we can include this effect.

The current software implementation, although implemented in a distributed
form, still runs on one computer. However, implementing the distributed control
law in each robot would be challenging because it would require modifications in
the robot’s firmware.

In order to mitigate the local stability issue mentioned in Section 6.1.4.1, further
investigation on different approaches is needed to include an external planner.

Finally, an interesting topic worth investigating is how the algorithm we
developed for coordinating the UAV and UGV would work for a high number of
agents. The current approach requires a centralized system to compute the clusters
and send this back to each UGVs. Centralized approaches like this are prone to
failure. Further investigation on distributing this computation requirement between
the UGVs would also be needed.

93

Bibliography

Arthur, D. and S. Vassilvitskii (2007). “K-means++: the advantages of
careful seeding”. In: SODA ’07: Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, New Orleans, Louisiana, pp. 1027–1035. ISBN:
978-0-898716-24-5.

Bakule, L. (2008). “Decentralized control: an overview”. Annual Reviews in Control
32, pp. 87–98. DOI: 10.1016/j.arcontrol.2008.03.004.

Bitcraze (1999). Controller in the Crazyflie. URL: https : / / www . bitcraze .
io / documentation / repository / crazyflie - firmware / master /
functional- areas/sensor- to- control/controllers/#overview-
of-control (visited on 2022-03-01).

Blomdell, A. (2022). Reimplemenation of Dynamixel library intended to be more
Pythonic. URL: git @ gitlab . control . lth . se : anders _ blomdell /
dynamixel.git. (accessed: 14.05.2022).

Chen, Y. Q. and Z. Wang (2005). “Formation control: a review and a new
consideration”. In: 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Alberta, Canada, pp. 3181–3186. DOI: 10.1109/IROS.
2005.1545539.

Diestel, R. (2010). Graph Theory. Fourth. Vol. 173. Graduate Texts in Mathematics.
Springer, Heidelberg; New York. ISBN: 9783642142789 3642142788
9783642142796 3642142796. URL: https://doi.org/10.1007/978-
3-662-53622-3.

Fionda, V. and L. Palopoli (2011). “Biological network querying techniques:
analysis and comparison”. Journal of computational biology : a journal of
computational molecular cell biology 18, pp. 595–625. DOI: 10.1089/cmb.
2009.0144.

94

https://doi.org/10.1016/j.arcontrol.2008.03.004
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/#overview-of-control
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/#overview-of-control
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/#overview-of-control
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/sensor-to-control/controllers/#overview-of-control
git@gitlab.control.lth.se:anders_blomdell/dynamixel.git
git@gitlab.control.lth.se:anders_blomdell/dynamixel.git
https://doi.org/10.1109/IROS.2005.1545539
https://doi.org/10.1109/IROS.2005.1545539
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1089/cmb.2009.0144
https://doi.org/10.1089/cmb.2009.0144

Bibliography

Galgamuwa, G. I. R. K., L. K. G. Liyanage, M. P. B. Ekanayake, and B. G. L. T.
Samaranayake (2015). “Simplified controller for three wheeled omni directional
mobile robot”. In: 2015 IEEE 10th International Conference on Industrial and
Information Systems (ICIIS), pp. 314–319. DOI: 10.1109/ICIINFS.2015.
7399030.

García, C. E., D. M. Prett, and M. Morari (1989). “Model predictive control: theory
and practice—a survey”. Automatica 25:3, pp. 335–348. ISSN: 0005-1098. DOI:
https://doi.org/10.1016/0005-1098(89)90002-2. URL: https://
www.sciencedirect.com/science/article/pii/0005109889900022.

Gigliotta, O. (2018). “Equal but different: task allocation in homogeneous
communicating robots”. Neurocomputing 272, pp. 3–9. ISSN: 0925-2312. DOI:
https://doi.org/10.1016/j.neucom.2017.05.093. URL: https://
www.sciencedirect.com/science/article/pii/S0925231217311177.

Greiff (2017). Modelling and Control of the Crazyflie Quadrotor for Aggressive
and Autonomous Flight by Optical Flow Driven State Estimation. TFRT-6026.
MSc Thesis. Department of Automatic Control, Lund University, Sweden. URL:
http://lup.lub.lu.se/student-papers/record/8905295.

Hou, Z. and I. Fantoni (2015). “Distributed leader-follower formation control for
multiple quadrotors with weighted topology”. In: 2015 10th System of Systems
Engineering Conference (SoSE), pp. 256–261. DOI: 10.1109/SYSOSE.2015.
7151924.

Luukkonen, T. (2011). “Modelling and control of quadcopter”. Independent
research project in applied mathematics, Espoo 22, p. 22. ISSN: Mat-2.4108.
URL: https://sal.aalto.fi/publications/pdf- files/eluu11_
public.pdf. (accessed: 15.04.2022).

Matlab (2022). System identification toolbox. URL: https://se.mathworks.
com/products/sysid.html. (accessed: 10.04.2022).

Nex, F., C. Armenakis, M. Cramer, D. Cucci, M. Gerke, E. Honkavaara, A. Kukko,
C. Persello, and J. Skaloud (2022). “UAV in the advent of the twenties: where
we stand and what is next”. ISPRS Journal of Photogrammetry and Remote
Sensing 184, pp. 215–242. ISSN: 0924-2716. DOI: https://doi.org/10.
1016/j.isprsjprs.2021.12.006. URL: https://www.sciencedirect.
com/science/article/pii/S0924271621003282.

Olfati-Saber, R. (2006). “Flocking for multi-agent dynamic systems: algorithms and
theory”. IEEE Transactions on Automatic Control 51:3, pp. 401–420. DOI: 10.
1109/TAC.2005.864190.

Omodolor, S. O. (2022a). Code implementation of the swarm controller. URL:
https://gitlab.control.lth.se/stevedanomodolor/formation_
coordination_uav_ugv.git. (accessed: 10.05.2022).

95

https://doi.org/10.1109/ICIINFS.2015.7399030
https://doi.org/10.1109/ICIINFS.2015.7399030
https://doi.org/https://doi.org/10.1016/0005-1098(89)90002-2
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://doi.org/https://doi.org/10.1016/j.neucom.2017.05.093
https://www.sciencedirect.com/science/article/pii/S0925231217311177
https://www.sciencedirect.com/science/article/pii/S0925231217311177
http://lup.lub.lu.se/student-papers/record/8905295
https://doi.org/10.1109/SYSOSE.2015.7151924
https://doi.org/10.1109/SYSOSE.2015.7151924
https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
https://se.mathworks.com/products/sysid.html
https://se.mathworks.com/products/sysid.html
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.12.006
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.12.006
https://www.sciencedirect.com/science/article/pii/S0924271621003282
https://www.sciencedirect.com/science/article/pii/S0924271621003282
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/TAC.2005.864190
https://gitlab.control.lth.se/stevedanomodolor/formation_coordination_uav_ugv.git
https://gitlab.control.lth.se/stevedanomodolor/formation_coordination_uav_ugv.git

Bibliography

Omodolor, S. O. (2022b). Velocity controller for the three-wheeled omniwheel
robot. URL: https://gitlab.control.lth.se/stevedanomodolor/
omniwheels_controller.git. (accessed: 10.05.2022).

Preiss, J. A., W. Hönig, G. S. Sukhatme, and N. Ayanian (2017). “Crazyswarm: A
large nano-quadcopter swarm”. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE, Marina Bay Sands, Singapore, pp. 3299–3304.
URL: https://doi.org/10.1109/ICRA.2017.7989376.

Rashid, A. and B. Issa (2019). “A survey of multi-mobile robot formation control”.
International Journal of Computer Applications 181, pp. 12–16. DOI: 10 .
5120/ijca2019918651.

Reynolds, C. (1987). “Flocks, herds, and schools: a distributed behavioral model”.
ACM SIGGRAPH Computer Graphics 21, pp. 25–34. DOI: 10.1145/280811.
281008.

Saif, O. (2016). Reactive navigation of a fleet of drones in interaction. PhD Thesis
2016COMP2269. Université de Technologie de Compiègne. URL: https://
tel.archives-ouvertes.fr/tel-01459859. (accessed: 30.04.2022).

Saif, O., I. Fantoni, and A. Zavala (2019). “Distributed integral control of multiple
uavs, precise flocking and navigation”. IET Control Theory Applications 13.
DOI: 10.1049/iet-cta.2018.5684.

Shi, H., L. Wang, and T. Chu (2005). “Virtual leader approach to coordinated control
of multiple mobile agents with asymmetric interactions”. In: Proceedings of
the 44th IEEE Conference on Decision and Control, pp. 6250–6255. DOI: 10.
1109/CDC.2005.1583163.

Soria, E., F. Schiano, and D. Floreano (2021). “Predictive control of aerial swarms
in cluttered environments”. Nature Machine Intelligence 3. DOI: 10.1038/
s42256-021-00341-y.

Stanford Artificial Intelligence Laboratory et al. (23, 2018). Robotic operating
system. Version ROS Melodic Morenia. URL: https : / / www . ros . org.
(accessed: 28.04.2022).

Sun, Z. (2016). Cooperative Coordination and Formation Control for Multi-agent
Systems. PhD Thesis. Research School of Engineering, College of Engineering
and Computer Science, The Australian National University. DOI: 10.25911/
5d74e8717068e.

Taffanel, A., B. Rousselot, J. Danielsson, K. McGuire, K. Richardsson, M. Eliasson,
T. Antonsson, and W. Hönig (2021). “Lighthouse positioning system: dataset,
accuracy, and precision for UAV research”. CoRR abs/2104.11523. arXiv:
2104.11523. URL: https://arxiv.org/abs/2104.11523.

96

https://gitlab.control.lth.se/stevedanomodolor/omniwheels_controller.git
https://gitlab.control.lth.se/stevedanomodolor/omniwheels_controller.git
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.5120/ijca2019918651
https://doi.org/10.5120/ijca2019918651
https://doi.org/10.1145/280811.281008
https://doi.org/10.1145/280811.281008
https://tel.archives-ouvertes.fr/tel-01459859
https://tel.archives-ouvertes.fr/tel-01459859
https://doi.org/10.1049/iet-cta.2018.5684
https://doi.org/10.1109/CDC.2005.1583163
https://doi.org/10.1109/CDC.2005.1583163
https://doi.org/10.1038/s42256-021-00341-y
https://doi.org/10.1038/s42256-021-00341-y
https://www.ros.org
https://doi.org/10.25911/5d74e8717068e
https://doi.org/10.25911/5d74e8717068e
https://arxiv.org/abs/2104.11523
https://arxiv.org/abs/2104.11523

Appendices

A
Calculation of Position and
Velocity of β -agent

The β -agent is an agent that represents an obstacle which is used in the obstacle
term in Equation 3.30. The position (q̂i,k) and velocity (p̂i,k) of a β -agent of an
obstacle Ok represented by a wall or a sphere, see Figure 3.3, of an α-agents (qi, pi)
[Olfati-Saber, 2006], are given as follows:

• For obstacles with hyperplane boundaries with unit normal ak that pass
through the point yk, see Figure 3.3, we can compute the position and the
velocity of the β -agent as:

q̂i,k = Pqi +(I−P)yk p̂i,k = Ppi (A.1)

where P is the projection matrix and we can calculate it using the following
equation:

P = I−akaT
k (A.2)

• For obstacle k with spherical shape with radius Rk that are centered at position
yk, we can calculate the position and velocity of the β -agent i as

q̂i,k = µqi +(1−µ)yk, p̂i,k = µPpi (A.3)

where µ , ak and P are calculated as follows:

µ =
Rk

∥qk− yk∥
(A.4)

ak =
qi− yk

∥qi− yk∥
(A.5)

P = I−akaT
k (A.6)

98

B
Simulation Results

In this appendix section, we show the results we obtained from the simulation
using the parameters in Table 6.1 but applied to three and five drone formations.
The goal is to show the effectiveness of the control law applied to a different
number of agents. In Appendix B.1, we show the result obtained for a three UAV
formation with a static navigation goal and similar experimental parameters but
adding orientation. Appendix B.2 shows similar results but applies to five UAVs.
In both cases, we can observe that the proposed orientation control law was able to
converge to the desired values, see Figures B.7 and B.11.

99

Appendix B. Simulation Results

B.1 Three UAVs

B.1.1 Formation

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x (m)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
(m

)

UAV1

UAV2

UAV3

Figure B.1 Path of the three UAVs for the free-space formation

100

B.1 Three UAVs

0 5 10 15 20

Time (s)

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 5 10 15 20

Time (s)

−0.02

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 5 10 15 20

Time (s)

−0.025

0.000

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 5 10 15 20

Time (s)

−0.02

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure B.3 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid for the three UAVs

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure B.2 Inter-agent distance of the three UAVs for the free-space formation formation

101

Appendix B. Simulation Results

B.1.2 Formation with Orientation

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x (m)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
(m

)
UAV1

UAV2

UAV3

Figure B.4 Path of the three UAVs for the free-space formation with 90°orientation

0 5 10 15 20 25 30 35

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
D12
D13
D23

Inter-agent distance

Figure B.5 Inter-agent distance of the three UAVs for the free-space formation

102

B.1 Three UAVs

0 10 20 30

Time (s)

0.0

0.2

0.4

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 10 20 30

Time (s)

−0.2

−0.1

0.0

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 10 20 30

Time (s)

0.0

0.1

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 10 20 30

Time (s)

−0.05

0.00

0.05

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure B.6 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid for the three UAVs

0 5 10 15 20 25 30 35

Time (s)

0

20

40

60

80

O
ri

en
at

io
n

(°
)

Orientation
Orientation reference

Figure B.7 Evolution of the orientation for the UAVs

103

Appendix B. Simulation Results

B.2 Five UAVs

B.2.1 Formation

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x (m)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
(m

)

UAV1

UAV2

UAV3

UAV4

UAV5

Figure B.8 Path of the five UAVs for the free-space formation

104

B.2 Five UAVs

0 5 10 15 20

Time (s)

−0.01

0.00

0.01

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 5 10 15 20

Time (s)

−0.01

0.00

0.01

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 5 10 15 20

Time (s)

−0.02

−0.01

0.00

0.01

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 5 10 15 20

Time (s)

0.00

0.02

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure B.10 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid for the five UAVs

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D15
D23
D24
D25
D34
D35
D45

Inter-agent distance

Figure B.9 Inter-agent distance of the five UAVs for the free-space formation

105

Appendix B. Simulation Results

B.2.2 Formation with Orientation

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

x (m)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
(m

)
UAV1

UAV2

UAV3

UAV4

UAV5

Figure B.11 Path of the five UAVs for the free-space formation with 90°orientation in
(B.2.2)

106

B.2 Five UAVs

0 5 10 15 20 25

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

D
is

ta
nc

e
(m

)

Distance reference
Diagonal distance reference
D12
D13
D14
D15
D23
D24
D25
D34
D35
D45

Inter-agent distance

Figure B.12 Inter-agent distance of the five UAVs for the free-space formation

0 10 20

Time (s)

0.00

0.05

0.10

A
bs

ol
ut

e
er

ro
r(

m
) Position-x

0 10 20

Time (s)

0.0

0.2

A
bs

ol
ut

e
er

ro
r(

m
) Position-y

0 10 20

Time (s)

−0.025

0.000

0.025

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-x

0 10 20

Time (s)

−0.05

0.00

0.05

A
bs

ol
ut

e
er

ro
r(

m
) Velocity-y

Figure B.13 Absolute error (m) between the navigation goal (position, velocity) and the
current centroid for the five UAVs

107

Appendix B. Simulation Results

0 5 10 15 20 25 30

Time (s)

0

10

20

30

40

50

60

70

80

O
ri

en
at

io
n

(°
)

Orientation
Orientation reference

Figure B.14 Evolution of the orientation for the five UAVs

108

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
August 2022
Document Number
TFRT-6181

Author(s)

Stevedan Ogochukwu Omodolor
Supervisor
Björn Olofsson, Dept. of Automatic Control, Lund
University, Sweden
Anders Robertsson, Dept. of Automatic Control, Lund
University, Sweden
Tore Hägglund, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Distance and orientation-based formation control of UAVs and coordination with
UGVs
Abstract

Nowadays, research in autonomous drones has increased thanks to the advancement of drone
technology. Nevertheless, there are still limitations when performing specific missions due to flight
duration, computational load and mission complexity. This thesis investigates ways to solve this
problem by taking advantage of multiple UAVs and UGVs. This thesis aims to implement and
evaluate strategies for formation and coordination of multiple UAVs and UGVs. Firstly, we present a
brief review of state of the art on formation and flocking control, further specifying the
advantages and limitations of each approach.
 Secondly, we use a behaviour-based approach to obtain multi-UAV formation control. We adapt the
algorithm to apply it to a single integrator system model to control the UGVs’ formation. We then
propose an extension to the original algorithm to consider orientation during formation and a leader-
follower strategy to coordinate the interaction between the units using a cluster-based approach.
 Finally, we tested our proposed control laws in simulation and in experiments. The simulations were
done in Matlab, while the real-implementation experiments were performed using the Crazyflie
quadcopters and three-wheeled omniwheel robots.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-108

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Title Page
	List of Abbreviations
	List of Figures
	List of Tables
	List of Symbols
	Contents
	Introduction
	Thesis Outline

	State of the Art
	Formation Control

	Theory
	Preliminaries
	Flocking Algorithm
	Coordination between UAV and UGV

	Modelling
	UAV
	UGV

	Implementation
	Simulation
	Real-time Experiment
	Bill of Materials

	Results
	Simulation
	Real-time Experiments

	Conclusion
	Future Work

	Bibliography
	Calculation of Position and Velocity of -agent
	Simulation Results
	Three UAVs
	Five UAVs

