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Abstract

Queue latency is a fundamental part of end-to-end latency and ensuring low end-
to-end latency is crucial for a good quality of service in the upcoming 5G and 6G
applications. In this work we present a model capturing the essential dynamics of
an end-to-end cellular system upon which we derive a control structure that is suit-
able for tractable analysis, seeking to mitigate queue latency and provide stability
guarantees. We do this by analysing the model and leveraging classic control the-
ory. The controller is evaluated both in a self-built Julia simulation framework and a
state-of-the-art network simulator where it also is compared to state-of-the-art con-
gestion control algorithms. The results are promising and show that the proposed
control structure performs on par with the compared congestion controllers despite
its simple nature. The most prominent area of improvement is in signal estimation,
where we believe that the proposed controller could gain in performance and yield
better results.

Keywords

Congestion control, Adaptive control, Control theory, Latency

3





Acknowledgements

A special thanks goes to our industrial supervisor at Ericsson, Victor Millnert, Ph.D,
who has not only constantly supported and helped us in our work but also led the
thesis work in a well balanced manner and provided invaluable feedback along the
way. We would also like to thank the other Ericsson employees at the S&T de-
partment in Lund for being very welcoming, for sharing their knowledge within
communication systems and for the pleasant conversations at the office.

We would also like to express our gratitude to the Department of Automatic
Control at LTH for sparking our interest in this field, which we did not know about
three years ago. We also thank Adj. Prof. Johan Eker and Prof. Karl-Erik Årzén
for their feedback and for volunteering to be the project’s academic supervisor and
examiner, respectively. This marks the end of our studies at LTH and we are both
very thankful for the years we have spent studying here and proud of this academic
contribution that marks the end of them.

Finally, I, Johan, would like to thank my father, who passed away during my
studies at LTH, for sparking my interest in technology and for his unconditional
devotion and support to me and my siblings.

5





Contents

List of Acronyms 9
1. Introduction 11

1.1 Purpose, method and goals . . . . . . . . . . . . . . . . . . . . 12
1.2 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Individual contributions . . . . . . . . . . . . . . . . . . . . . . 13

2. Background 14
2.1 Communication networks . . . . . . . . . . . . . . . . . . . . . 14
2.2 Congestion control . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Explicit Congestion Notification . . . . . . . . . . . . . . . . . 15
2.4 Active Queue Management . . . . . . . . . . . . . . . . . . . . 16
2.5 L4S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Cellular networks . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Current state-of-the-art . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Model 23
3.1 Terminology and physical representation . . . . . . . . . . . . . 23
3.2 Model approach . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Model dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4. Control 33
4.1 The semi-cascaded P controller . . . . . . . . . . . . . . . . . . 33
4.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Adaptive P Congestion Controller . . . . . . . . . . . . . . . . . 41
4.5 Compensate for link delays . . . . . . . . . . . . . . . . . . . . 41

5. Evaluation 43
5.1 Julia simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Stability evaluation . . . . . . . . . . . . . . . . . . . . . . . . 44

7



Contents

5.3 Simulation with adaptive controller gain . . . . . . . . . . . . . 47
5.4 Best case queue latency . . . . . . . . . . . . . . . . . . . . . . 49

6. Results and validation 51
6.1 Ericsson simulation . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Physical bottleneck . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Virtual bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . 61

7. Discussion and Conclusion 70
7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8. Future work 73
8.1 Signal and parameter estimation . . . . . . . . . . . . . . . . . . 73
8.2 Alternative control structures . . . . . . . . . . . . . . . . . . . 74
8.3 Further analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 77

8



List of Acronyms

AIMD Additive Increase Multiplicative Decrease.

APCC Adaptive P Congestion Controller.

AQM Active Queue Management.

AS Application Server.

BS Base Station.

CWND Congestion Window.

DCTCP Data Center TCP.

ECN Explicit Congestion Notification.

IP Internet Protocol.

L4S Low Latency Low Loss Scalable Throughput.

LAN Local Area Network.

RED Random Early Discard.

RTP Real-time Transport Protocol.

RTT Round Trip Time.

SCReAM Self-Clocked Rate Adaptation for Multimedia.

SIMO Single Input, Multiple Output.

9



List of Acronyms

SINR Signal-to-interference-plus-noise ratio.

TCP Transport Control Protocol.

UE User Equipment.

WAN Wide Area Network.

XR Extended Reality.

10



1
Introduction

Society is changing and new fields are evolving when transmission rates on the in-
ternet increase and companies are looking at new ways of running their businesses.
With the upcoming 5G and 6G cellular networks, high-rate latency-critical applica-
tions such as Extended Reality (XR) gaming, massive multi-player cloud gaming
and remote-controlled robotics are expected to become more widespread and used.
This new class of applications will require a low and predictable end-to-end latency
to ensure a good quality of service [Schulz et al., 2017]. One of the main hurdles to
achieve this is queue buildup due to network congestion and the increased latency
that it brings.

Congestion has historically been mitigated by dropping incoming packets to
network nodes when the queue in the node overflows and by letting the sender in-
terpret the dropped packet as a sign to reduce its transmission rate. To increase the
throughput and reduce the number of dropped packets, larger queues were intro-
duced. However, this solution came with an increased end-to-end latency due to the
increased queue delays that the larger queues led to. A new congestion paradigm,
based on marking packets instead of dropping them, has emerged with the goal
of reducing the queuing delay caused by large queues while maintaining a high
throughput. This is possible due to having smaller queues, marking packets before
the queues overflow and having senders that adapt their transmission rates based on
marked packets instead of dropped packets.

What makes this problem difficult is that all users of a cellular network have
to share the available capacity that constantly changes. The available capacity of
a cellular network is affected by users that move around, new users that enter and
old users that leave a cellular network, to name some examples. High-rate latency-
critical applications naturally want to transmit a large amount of data while main-
taining a low latency, and in order to do so, they must adapt their transmission rate
as the available capacity in the cellular network changes. The idea is that these ap-
plications should adapt their sending rate based on the marked packets that occur
when the network is about to become congested and thus mitigate an increase in the
end-to-end latency.

11



Chapter 1. Introduction

There exist protocols today that react to marked packets and obtain lower end-
to-end latency compared to protocols that react to dropped packets. However, both
types of protocols usually contain lots of tunable parameters that make them difficult
to understand how changes to the parameters will affect the protocol’s performance.

1.1 Purpose, method and goals

The purpose of this thesis is to investigate how applications should react to marked
packets using a control-theoretic approach. To do this, a mathematical model of the
end-to-end system will be constructed and a controller will be derived where it is
possible to reason about stability requirements. In order to aid in model and control
synthesis, a simulation framework will be developed in a suitable programming lan-
guage. The control algorithm will then be evaluated in Ericsson’s network simulator
and compared to state-of-the-art congestion controllers. Ideally, the controller pro-
posed in this thesis should perform on par with current state-of-the-art algorithms
while still being suitable for tractable analysis.

1.2 Delimitations

As mentioned before, the focus of this thesis is to derive a model for a simple
server-client system which sends traffic via the cellular network and then utilize this
model to synthesize an application throughput controller. Considering the limited
time period it is necessary to limit the scope of the thesis. The thesis will therefore
not focus on the details regarding different signal estimation techniques. Instead,
it will assume that the necessary signals, discussed in Section 3.2, can be properly
estimated and are available. For the same reason, the mechanics needed for a safe
deployment over the Internet, such as re-transmission policy, protocol headers and
handshakes, are not considered. Furthermore, the thesis will also limit its scope
by only considering one sender and one receiver with a single path between them,
where information is sent from the sender to the receiver and then back to the sender,
as opposed to having multiple senders, receivers and paths as in a full network. This
is further discussed in Section 3.2.

1.3 Thesis outline

The thesis is structured in the following way. Chapter 2 provides background infor-
mation along with some related work needed to gain a deeper understanding of the
problem treated in this thesis. Chapter 3 presents the derived system model along
with an analysis of it. This is then followed by a presentation and analysis of the
control strategy in Chapter 4. Following this, in Chapter 5, the model and control
structure is evaluated in a self-developed Julia simulation and the results from the
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1.4 Individual contributions

Julia simulation are then validated in Ericsson’s proprietary network simulator in
Chapter 6. A discussion and analysis of the simulation results are presented in Chap-
ter 7 along with some overall conclusions. Finally, in Chapter 8 a discussion about
possible directions for future work and improvements to the thesis is presented.

1.4 Individual contributions

We have worked at Ericsson two days a week and three days from home. We have
had re-occurring meetings with our industrial supervisor Victor Millnert twice a
week. The vast majority of the work has been done by both students together. How-
ever, Johan has taken a bit more responsibility in the work of the background section
and the generation of plots, whereas Samuel has contributed a bit more to the Julia
simulation and the analysis. All in all, we are both very satisfied with each other
and the time and effort we have put into this project.
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2
Background

The overall theme of this chapter is latency and particularly ways to achieve low
end-to-end latency. An important component of end-to-end latency is queue delay,
which in this thesis is the main subject to be mitigated. There are a lot of ways
to reduce queue latency, however, only a few that reduce it without significantly
affecting the throughput performance at the same time.

This chapter explains concepts necessary to grasp and understand the thesis
in its entirety, such as an introduction to communication networks in Section 2.1,
Congestion control in Section 2.2, Explicit Congestion Notification (ECN) in Sec-
tion 2.3, Active Queue Management (AQM) in Section 2.4 and Low Latency Low
Loss Scalable Throughput (L4S) in Section 2.5. Thereafter, the complications of
communication in cellular networks are introduced in Section 2.6 and state-of-the-
art congestion control algorithms are discussed in Section 2.7. Finally, the problem
formulation of the thesis is presented in Section 2.8.

2.1 Communication networks

A network consists of a set of computers sharing resources via network nodes such
as switches, routers and similar gateways. The computers use communication pro-
tocols accepted by the network in order to communicate with each other. The nodes
of the network are interconnected based on physically wired, optical and wireless
radio-frequency methods in various arrangements of network topologies. These net-
works can vary in size, and if the network is confined to a relatively small area, it is
called Local Area Network (LAN) as opposed to Wide Area Network (WAN) which
connects networks in larger geographic areas such as Lund, Sweden or the world.
An example of a WAN is the Internet, which is considered the largest WAN in the
world.

In communication networks, messages (packets containing information or data)
are sent from a sender to a receiver according to certain rules called communication
protocols. There are numerous communication protocols deployed on the Internet
today, and many of them are intended for different stages of the communication
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2.2 Congestion control

path. The Transport Control Protocol (TCP) is of particular interest in this thesis as
it regulates how the packages should be transported. TCP is a connection-oriented
protocol where a connection between sender and receiver has to be established be-
fore data can be sent. To transport the packages in a reliable manner, mechanisms
such as acknowledgements, re-transmission and error detection are used, which
adds to the reliability of the protocol but lengthens the latency.

These networks and communication protocols make it possible to transmit data
reliably over various distances, but in order to do so effectively, some additions are
needed.

2.2 Congestion control

The Internet has never been as large and important as today, nor have as many
demands on it been made. In the past, the emphasis was for packets to reach the
destination and concerns such as latency came second to delivering the packets safe
and sound. As the Internet expanded in size and reach, it eventually became more
congested due to the traffic growth entailed by the expansion. To remedy such con-
gestions and to avoid a potential congestive collapse, various congestion avoidance
schemes were added to the TCP, such as an AQM (discussed in Section 2.4), ECN
(discussed in Section 2.3) and Congestion Window (CWND).

The CWND determines the number of bytes that can be sent out at any time and
is calculated by estimating how much congestion there is on the link. The window
is maintained by the sender as a means of stopping a node between sender and
receiver from becoming overloaded. In most TCP variants, the CWND is driven
by an Additive Increase Multiplicative Decrease (AIMD) approach, meaning that
the CWND additively increases by a set constant when there is no congestion and
multiplicatively decreases by a set factor when congestion is detected.

In order to achieve low latency in networks, it is beneficial to detect congestion
before it causes buffer overflow and thus packet drop since packet drop triggers re-
transmission which in turn leads to high latency. This idea is directly in line with the
idea of L4S (further discussed in Section 2.5), which utilize ECN for this purpose.

2.3 Explicit Congestion Notification

ECN is a mechanism allowing for end-to-end notification of network congestion
with the purpose of reducing packet drops. It is intended to reduce end-to-end la-
tency by giving a faster and explicit signal of congestion. ECN utilizes two bits
in the Internet Protocol (IP) header to notify the presence of congestion. With these
bits it is possible to map four different codepoints, explained in Table 2.1, informing
network nodes if the packet support ECN and if congestion has been experienced.

For ECN to be deployed in a network it is required that all network nodes are
ECN capable, which means that they are able to inspect the ECN codepoint and
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Chapter 2. Background

Codepoint name Binary codepoint Meaning
Not-ECT 00 Not ECN-capable transport
ECT(0) 01 ECN-capable transport
ECT(1) 10 ECN-capable transport

CE 11 Congestion experienced

Table 2.1 Definition of ECN codepoints and their meaning.

change it by setting the CE codepoint in case of congestion. In most variants of
TCP, a marked packet has the same meaning as a lost packet at the endpoints of the
network (sender and receiver). However, this interpretation is not unanimous for all
TCP as it is up to each protocol to define it. A benefit of the explicit notification
from ECN is that the packet drop probability can be reduced, which by avoiding
a re-transmission, improves throughput and end-to-end latency and reduces jitter.
Further improvement can be achieved if the notification is sent at an early stage in
the congestion. This idea is further discussed in Section 2.4 below.

2.4 Active Queue Management

AQM is a policy for managing buffers in various nodes of a network. The purpose
of the AQM is to reduce network congestion by notifying the sender through con-
gestion signalling, using ECN. The idea of AQM is to mark or drop packets before
buffers become full since a full buffer requires incoming packets to be discarded
which causes large delays. Enqueuing a packet only if the queue is shorter than its
maximum size (measured in bytes or latency) and dropping it otherwise, is a disci-
pline known as drop-tail. Queues using the drop-tail discipline have a tendency to
considerably increase latency and penalise bursty flows [Floyd and Jacobson, 1993].
Many AQM disciplines try to avoid these issues by dropping or marking packets ac-
cording to a probability function, p(t), in advance of a possible future congestion
scenario.

Dropping a packet means that the node discards the packet. The receiver then
notifies the sender that a packet has been lost, which understands that congestion has
happened. Marking a packet instead exploits the two ECN bits in the IP header used
to signal congestion. By using ECN, the receiver can immediately notify the sender
that congestion has occurred, without the sender having to understand it itself with
a dropped packet, which would cause delay.

The algorithms used in AQM for marking or dropping packets vary depending
on what the network, in which it is used, is designed for. An example of an AQM
based on Random Early Discard (RED) involves setting a min threshold and a max
threshold, neither predefined and can be adjusted and vary in different nodes of
the network. The thresholds are used to determine if an incoming packet should be
enqueued or not. When a new packet reaches a node implementing RED, it is always
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Figure 2.1 Example of two different possible mark probability functions that could
be used in various AQM algorithms. The step function (in red) can be varied by the
parameter TS and the ramp function (in blue) can be varied by the parameters TL and
TH . A queue length below TL would never result in a dropped or marked packet while
a queue length above TH would result in all packets being dropped or marked for the
blue ramp function.

queued if the queue length, measured in bytes, is below the minimum threshold. If
the queue length is in between the thresholds, the packet drop is determined by a
probability function, p(t), that depends on the queue length. In the final case, where
the queue length is above the max threshold, an incoming packet is always dropped.
A visual representation of this technique can be seen in the blue line in Figure 2.1,
where in this case the queue size is measured in bytes.

Although the mark probability function used in different AQM’s varies [Leung
and Muppala, 2001], all of them are non-decreasing functions defined on t ∈ R+

and p(t) ∈ [0,1]. Two alternatives of a mark probability function are visualized in
Figure 2.1.

2.5 L4S

L4S is a technology intended to ensure low latency and low packet loss for all
Internet traffic without much reduction of throughput [Briscoe et al., 2022b]. L4S is
based on ECN and the idea is to signal congestion early when the queue latency in
a network node starts growing above a defined threshold. With this new approach,
it is possible to keep a low queue delay and thus, a lower end-to-end latency while
at the same time maintaining sufficient link utilization.

The process of congestion signalling to sender rate adaptation in L4S is de-
scribed in the following way. The sender, through the use of a specific ECN code-
point (explained in Table 2.2) signals that the packet supports L4S. The nodes in the
network will then recognize the packet as an L4S packet and if congestion occurs
change the ECN bits to indicate that congestion has happened. When the packet

17



Chapter 2. Background

Codepoint name Binary codepoint Meaning
Not-ECT 00 Not ECN-capable transport
ECT(0) 01 Not L4S-capable transport (Classic)
ECT(1) 10 L4S-capable transport (L4S)

CE 11 Congestion experienced

Table 2.2 Definition of L4S codepoints and their meaning.

reaches the receiver, and if CE is indicated somewhere along the path, the receiver
notifies the sender about the congestion. Finally, the sender, notified of the conges-
tion, adapts its sending rate with its congestion control algorithm.

In order for L4S to function properly, it is required that some conditions are
met. The first regards the endpoints, where the receiver must be able to detect any
CE codepoint and notify the sender of the experienced congestion. The sender must
in the case of congestion reduce its sending rate. The last requirement regards the
various network nodes where congestion can occur, such as routers, switches and
Base Station (BS)s. These nodes should be able to distinguish an L4S packet from
a classic packet1 and treat them differently, to effectively manage congestion. A
traffic flow of classic packets should be treated normally and sent to the classic
queue, while L4S traffic have a separate reserved L4S queue. Therefore, two differ-
ent queues are present in the L4S system.

In order to be able to distinguish L4S packets from classic packets, it is required
that some ECN codepoints are interpreted differently compared to the interpretation
presented in Table 2.1. The L4S codepoints and their meaning are presented in
Table 2.2.

As can be seen in Table 2.1 and 2.2, codepoints ECT(0) and ECT(1) have dif-
ferent meaning in the tables. In the standard implementation of ECN, codepoints
ECT(0) and ECT(1) are both interpreted as ECN-capable transport. However, in
L4S the codepoints, aside from indicating that the packet is ECN-capable, also in-
dicate what type of support the packet has, either L4S or Classic. As mentioned
above, this allows for different treatment and queueing, where packets with the
ECT(0) codepoint should be sent to the classic queue and packets that are L4S-
capable should be sent to the L4S queue.

There is, however, a coupling between the two queues and by adjusting it in
a clever way the queues will behave as if there only exists one queue from a net-
work perspective. The coupling also guarantees that both queues share the available
capacity equally. This means that neither the L4S traffic nor the classic traffic will
starve the other one out. The details of the coupling are outside the scope of this the-
sis, however, the interested reader can find the details of the coupling in [Briscoe,
2019] and get an understanding of how L4S can be implemented in Figure 2.2.

Historically, ECN marked packets were interpreted as packet loss and the sender

1 A classic packet has no L4S support and is not L4S-capable, as explained in Table 2.2
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Random
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Scheduler

head.time

head

head.time

head
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p2
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b2

n out

Classic AQM

L4S AQM

Figure 2.2 Simplified overview of the structure in a network node that implements
L4S. The incoming traffic can either come from an L4S or a Classic sender and by
inspecting the ECN bits, it is possible to distinguish the two possible senders. Nat-
urally, L4S traffic is sent to the L4S AQM while classic traffic is sent to the Classic
AQM. The two AQMs use the queue latencies in combination with the chosen mark
probability functions, pc(t) and pl(t) to determine if the packet should be marked or
not. Finally, the packet gets scheduled and leaves the network node. By coupling the
two queues in a clever way, which is outside the scope of this thesis, L4S guarantees
that L4S traffic and classic traffic share the available link capacity equally while en-
suring low latency for both types of traffic.

decreased its sending rate accordingly. However, with L4S, ECN marks are not
treated as packet loss and instead have a much lower impact on the sending rate re-
duction [Briscoe et al., 2018]. This interpretation allows for more gentle congestion
control and even throughput performance.

2.6 Cellular networks

In cellular networks, the amount of information you can send between a User Equip-
ment (UE) and a BS is dictated by the link quality between these two entities. Usu-
ally, the UE is a mobile phone and the transmitted signals from the BS are affected
by obstacles such as buildings and trees before it arrives at the UE. This, among
other things, causes variation in the link quality and the maximum information one
can send with the same signal power. A decrease in link quality can be counteracted
with an increase in signal power by the BS. However, because of the physical lim-
itations on antenna sizes and other regulations, the signal power can not increase
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Chapter 2. Background

indefinitely, and with many users connected to the same BS, the resources in the BS
have to be shared. The number of UE that wish to transmit data might also limit the
available bandwidth for a user. The details of the BS are not the focus of this thesis
and will not be discussed in more detail but later on in the thesis, it will be of great
use to know that the BS have to degrade and determine the performance of the users
to serve traffic from all the connected users.

2.7 Current state-of-the-art

SCReAM
Real-time media streaming and other interactive services play a prominent role
in today’s internet. Such communication is often latency-critical and imposes a
lot of requirements on transport. A protocol to tackle these requirements is Self-
Clocked Rate Adaptation for Multimedia (SCReAM) [Johansson and Sarker, 2017],
a window-based congestion control algorithm intended for Real-time Transport Pro-
tocol (RTP) traffic. SCReAM is based on the self-clocking principle of TCP and
implements a similar technique to what is proposed in [Shalunov et al., 2012] to es-
timate network queue delay. The self-clocking principle is in essence a convention
to only send new data upon receiving acknowledgements of previously sent pack-
ages. SCReAM also supports L4S, which makes it suitable for comparison in this
master thesis.

The SCReAM algorithm mainly consists of three parts: network congestion con-
trol, sender transmission control and media rate control. All of which reside on the
sender side of the algorithm. Since the algorithm is intended for RTP, extra blocks
such as a media encoder and an internal queue for RTP packets are also present in
the implementation. SCReAM is open source and thus its implementation details
can be found online2.

DCTCP
Another state-of-the-art TCP algorithm is Data Center TCP (DCTCP) [Bensley et
al., 2017], proposed for deployment in data centres. [Alizadeh et al., 2010] writes of
a trend in data centre design to build highly available, highly performant computing
and storage infrastructure using low-cost commodity switches. However, such low-
cost switches tend to have limited queue capacities and thus be more susceptible to
packet loss caused by congestion [Bensley et al., 2017]. DCTCP tries to solve this
by using ECN, already available in commodity switches, combined with a control
scheme at the source in a smart way.

The algorithm involves three main components:
Marking at the switch: For marking at the switch a mark probability function is
needed in the AQM. Initially, the red step function in Figure 2.1 was used, where an

2 https://github.com/EricssonResearch/scream
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2.7 Current state-of-the-art

arriving packet is marked with the CE codepoint if the queue size is greater than TS
upon its arrival and not marked otherwise. However, DCTCP also works with other
mark probability functions.
ECN-echo at the receiver: The DCTCP receiver echoes back the congestion infor-
mation to the sender using the ECN-echo flag in the TCP header.
Controller at the sender: An estimate of the fraction of packets that are marked,
called α , is maintained by the sender and updated once for each sending window of
data according to:

α ← (1−g) ·α +g ·F, (2.1)

where F is the fraction of packets that were marked in the last sending window and
g ∈ [0,1] is a weight, deciding how F affects α in the new estimate.

Although DCTCP is designed to only be used in data centres, it is a promising
development for algorithms in wide area networks as well, thus suitable for com-
parison in this master thesis. DCTCP was one of the first TCP algorithms developed
for L4S and laid the foundation for L4S-based protocols.

TCP Prague
In a meeting in Prague in July 2015, members of the Internet Engineering Task
Force (IETF) agreed to a list of modifications to DCTCP to make it safe to use
over the public Internet. It was suggested that this list could be called ”the Prague
requirements“ [Briscoe et al., 2018] and that the variant of DCTCP implementing
the requirements could be called TCP Prague [Schepper et al., 2021] to distinguish
it from DCTCP.

Since TCP Prague stems from DCTCP, the core scalable congestion control
algorithm is the same. However, in order to make TCP Prague safe for deployment
over the public Internet, it adopts new developments such as accurate ECN TCP
feedback [Briscoe et al., 2022a], recent acknowledgement (RACK) [Cheng et al.,
2021] and Paced Chirping [Misund and Briscoe, 2019]. In the start-up phase of
the algorithm, the delay-based approach of Paced Chirping aims to increase the
sending rate rapidly and reduce any overshoot. This allows TCP Prague to quickly
utilize the available link capacity both in start-up and when the available capacity
increases, e.g. other flows depart or the link capacity increases. A full and more
detailed description of TCP Prague and its benefits and drawbacks can be found in
[Schepper et al., 2021].

BBR
Since its release in 2016 by Google, BBR [Cardwell et al., 2016] has gained much
attention. It was first deployed in its B4 network and YouTube, after which sev-
eral papers [Hock et al., 2017; Scholz et al., 2018; Jain et al., 2018] analysed its
behaviour in simulations and real network testbeds and concluded that BBR can
substantially improve throughput in these experiments.
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The core idea of BBR is to estimate the bandwidth of the bottleneck (BtlBW ),
measure the Round Trip Time (RTT), calculate a bandwidth-delay product (BDP)
and control the throughput based on these. There are four control states in BBR:
StartUp, Drain, ProbeBW and ProbeRTT.

Similar to the start-up phase in classic TCP, StartUp is essentially a state where
the sender increases its transmission rate with a fixed gain, for each RTT to probe
for the maximum available bandwidth and build up a queue in the bottleneck. When
the queue is consistently non-empty for three RTTs the algorithm transitions to the
Drain state. In this state, a different gain parameter is used to reduce the sending rate
below BtlBW . When the inflight packets match BDP the state machine transitions
to ProbeBW.

In ProbeBW, the algorithm probes for available bandwidth during one RTT with
a gain larger than one followed by a phase of reducing the sending rate with a gain
less than one for one RTT. The gain is thereafter set to one for six RTTs after
which the cycle restarts. Whenever the lowest RTT has not been sampled for ten
seconds, BBR enters the ProbeRTT state to correctly estimate the lowest possible
delay between the entities. This is done by reducing the inflight packets to four for
at least one RTT and then returning to ProbeBW.

It was reported in [Hock et al., 2017; Ma et al., 2017] that the first version of
BBR (BBRv1, with its core algorithm described above) suffers from RTT unfairness
towards loss-based congestion controls and overloads the bottleneck link when co-
existing with other flows. This caused substantial packet loss in links with shallow
buffers. Since then, Google has updated BBR in BBRv2 3 with the goal of solving
these issues and to better coexist with classic TCP such as TCP Cubic [Ha et al.,
2008] flows. In BBRv2, there is also support for ECN and BBRv2 uses a DCTCP-
inspired way of adapting its sending rate to ECN-markings [Pan et al., 2022] similar
to Equation (2.1).

2.8 Problem formulation

Finally, the components explained in this chapter should be tied up in a formulation
of the problem addressed by this thesis. The problem formulation is best described
by the following sentence: To derive a congestion controller for low latency ap-
plications in an L4S system with performance on par with these state-of-the-art
algorithms, yet simple enough to do tractable analysis on.

3 https://github.com/google/bbr/blob/v2alpha/README.md
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3
Model

This chapter presents the approach for modelling a system in a cellular network
utilizing the mechanics explained in Chapter 2. The derived model is a simplified
representation of the real system in order for it to be analysable, yet capture enough
dynamics for it to be representable. The terminology used in the model approach is
presented in Section 3.1, the model itself is presented in Section 3.2 and its dynam-
ics in Section 3.3. Finally, the model is analysed in Section 3.4.

3.1 Terminology and physical representation

In the coming sections, the following terminology is used which is graphically sum-
marized in Figure 3.1.

An Application Server (AS) is an adaptive sender that reduces its sending rate
when it receives congestion signals in the incoming packets to the AS. The AS
controls the sending rate of the traffic going down to the user equipment. There
are many possible implementations of an AS but one could think of this as a cloud
gaming server that generates the graphics for all users.

User equipment is the final destination of the traffic, for example, a mobile
phone, that receives the packets generated in the AS and uses it in some way, for
example by displaying the information on the screen if the packets generated on the
AS is a video stream.

A non-bottlenecked resource is a network node that does not induce any sig-
nificant queuing delays and can thus be seen as it mainly forwards packets. Many
routers, switches and gateways on the internet can be modelled this way.

A bottlenecked resource is the network node where persistent queues are built
up and can be viewed as the slowest link of the system. The maximum data that can
be sent between the AS and UE is limited by the bottleneck.
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Figure 3.1 To the left: Simplified overview of how an AS and a UE communicate
with each other. In the middle: A model of the network when the bottleneck appears
before the UE. To the right: A model of the network when the bottleneck appears
after the UE. The green arrows are link delays before the bottleneck and the blue
arrows are link delays after the bottleneck.

3.2 Model approach

Network packets travelling from an AS to the UE pass through several network
nodes before it arrives. Any one of the network nodes can theoretically be the bot-
tleneck resource, i.e. the slowest link, and determine the maximum available send-
ing rate before queues are built up. However, the bottleneck of a network is usually
known and engineered to be the access link [Briscoe et al., 2018] and in the cellular
network domain, this corresponds to the BS. By implementing L4S in the bottle-
neck, the coupling between the AQM’s, as discussed in Section 2.4, will make the
bottleneck behave as a single queue from a network perspective even though two
queues are present in the implementation of L4S.

Physical processes, such as an inverted pendulum or a water tank, adhere to cer-
tain mathematical expressions that are possible to derive in many cases. A complex
combination of hardware and software, however, is unfeasible to model precisely
and a simple model that captures the essentials between inputs and outputs is there-
fore often desirable when modelling software systems [Nylander et al., 2018]. The
same reasoning can also be applied in this thesis and from a modelling and control
perspective, the bottleneck resource is where the most important dynamics of the
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Controller d→ Plant

d←

u

{m,RT T,b}
Application server Base station

Figure 3.2 Model of traffic from the AS to the bottleneck resource and back to
the AS. The delays before the bottleneck are included in d→ while delays after the
bottleneck are included in d←. The rate that leaves the AS is denoted by u.

system lie and is, therefore, the focus when deriving the model presented here.
The proposed model, visualized in Figure 3.2, consists of an AS, a BS and link

delays, d→ and d←, between them. Inside the AS lies the controller regulating the
sending rate, u. The acknowledgements arriving at the AS can be used to obtain
three relevant signals. The first part is an ECN marking, denoted by m, notifying the
sender of network congestion and described in Section 2.3. The second part is the
RT T of the acknowledged packet that just arrived at the AS, and the third part is the
packet size and the inter-packet spacing used to determine the departure rate of the
BS denoted by b.

Converting ECN-markings to a mark probability
Reacting to ECN markings highly depends on the incoming packet rate and the
current RTT. For instance, receiving three ECN markings out of ten packets arriving
in a time window is very different to receiving the same number of markings out of
a hundred packets in the same time window. In the former, a substantial reduction
of throughput might be necessary to prevent a large end-to-end latency, while in the
latter no reduction at all might due.

This phenomenon is something classic TCP suffers from, where the size of the
sending window is cut by a factor of 2 when it receives an ECN notification. In
effect, classic TCP reacts to the presence of congestion, not to its extent. In turn,
this often leads to buffer underflows and loss of throughput [Briscoe et al., 2018].

More information, allowing for a better control of throughput, can be found in
the mark probability p(t) ∈ [0,1]. Essentially, a number between (and including) 0
and 1, indicating the fraction of packets that are ECN marked in the queue of the
BS. The marking strategy varies in different implementation scenarios and BSs and
a cellular user might in fact utilise multiple different BSs and naturally experience
different marking strategies. However, in this thesis, a certain p(t) will be assumed
in order to describe and analyze the system. The way different mark probability
functions impact the system is discussed in Section 7.1.

The mark probability at any time can accurately be estimated over time using
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for instance a moving average filter, a first-order discrete filter or by calculating the
fraction between marked and unmarked numbers of bytes in a RTT. The latter of
which is implemented in SCReAM [Johansson and Sarker, 2017]. Since the mod-
elling and control part is the sole focus of this work, and to make the master thesis
more applicable, it is assumed that the mark probability, p ∈ [0,1] is present in the
feedback signal instead of binary marks, m ∈ {0,1} as would be the case in an ac-
tual implementation. Filtering or smoothing m to get p on the sender side is a design
choice of L4S to ensure that congestion signals arrive back to the sender as fast as
possible [Briscoe, 2019]. Due to time constraints, the best way to obtain p from m
is not evaluated and left for future work and mentioned in Section 8.1.

3.3 Model dynamics

As discussed earlier, the approach used in this thesis is to model the bottleneck
resource as a queue and treat other resources along the path (from AS to UE and
back to the AS) as nodes that only contribute to the static link delays, d→ and d←,
and not as nodes that limit the maximum sending rate. Nodes existing on the forward
path, i.e. between the AS and the queue, contributes to d→ while nodes that exist on
the backward path, i.e. between the queue and the AS, contributes to d←. Next, the
dynamics for the two types of bottlenecks studied in this thesis will be presented: i)
a physical bottleneck, and ii) a virtual bottleneck.

Physical bottleneck dynamics
In a physical bottleneck, the dynamics can be described by denoting u(t) as the
sending rate from the AS and introduce the incoming rate to the queue as a time
delayed version, a(t) = u(t−d→) and b(t) as the departure rate of the queue. The
queue growth, q̇(t) can then be expressed as

q̇(t) = a(t)−b(t)

and the length of the queue, q(t), at time t can be found by integrating q̇ as

q(t) =
∫ t

0
q̇(x)dx.

The departure rate of the queue is described as

b(t) =

{
bmax(t) if q(t) ̸= 0
min

(
a(t),bmax(t)

)
if q(t) = 0

where bmax(t) denotes the available link capacity at time t. Exceeding bmax(t) with
a(t) will lead to queue build up and an increase in queue latency. To fully utilize
the system and have minimum queue latency, a(t) should be equal to bmax(t) with
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3.3 Model dynamics

q(t) = 0. If the maximum link capacity of the queue, bmax(t), is constant, the queue
latency, l(t), can easily be expressed as

l(t) =
q(t)

bmax(t)

and the mark probability function used in the AQM, paqm(t), as

paqm(t) =
[

l(t)−TL

TH −TL

]1

0

where TL denotes the minimum queue latency before any packets are marked, TH
denotes the queue latency at which all packets are marked and TH −TL determines
the slope of the line. The specific mark probability function considered in this thesis,
paqm(t), is the blue function in Figure 2.1.

The three signals arriving back to the AS in this model are

p(t) = paqm
(
t−d←

)
RT T (t) = d→+d←+ l(t−d←)

c(t) = b(t−d←)

where p(t) is a time-delayed version of paqm(t), RT T (t) is the current round trip
time and c(t) is a time-delayed version of the amount of data leaving the queue,
obtained by observing the rate of acknowledgements currently being received.

Virtual bottleneck dynamics
One way of obtaining lower queue latencies for a traffic flow is to assign priority to a
traffic flow passing through the BS. This will lead to the traffic being prioritized over
lower-priority traffic and thus reduce the physical queue and its associated latency
(as long as the traffic does not exceed the physical capacity of the bottleneck, of
course). However, there might still be a maximum capacity associated with such a
high-priority flow. In a virtual bottleneck this constraint is not a physical limitation
but a virtual capacity limit, hence, the name of ”virtual bottleneck“.

In a virtual bottleneck with priority there exists two limits, bmax(t) which is
the physical upper limit on how much data the user can send and bmax

virt (t) which is
the virtual upper limit that is assigned to the user. A necessary requirement is that
bmax
virt (t)< bmax(t) (because otherwise the physical capacity will be a limiting factor,

and it will be a physical bottleneck as presented before). Naturally, in a virtual
bottleneck system, there is a physical queue (as before) q(t), but unique to the virtual
bottleneck is that there is also a virtual queue qvirt(t). The physical queue follows
the same dynamics as before, but the virtual queue follows the dynamics presented
in the equations below. In other words, if the user sends more than bmax

virt (t) bps, a
virtual queue will build up and eventually result in marked packets since the virtual
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queue latency will increase. The rate that leaves the physical queue, however, can
get as large as bmax(t) before a physical queue starts growing and it is, therefore,
possible to obtain a lower latency in systems with virtual queues compared to only
using physical queues [Briscoe, 2019].

If the bottleneck is implemented as a virtual bottleneck with priority, its queue
dynamics instead becomes

q̇virt(t) = a(t)−bvirt(t) q̇(t) = a(t)−b(t)

qvirt(t) =
∫ t

0
q̇virt(x)dx q(t) =

∫ t

0
q̇(x)dx

with the output from the virtual queue being

bvirt(t) =

{
bmax
virt (t) if qvirt(t) ̸= 0

min
(
a(t),bmax

virt (t)
)

if qvirt(t) = 0

and the output from the physical queue being

b(t) =

{
bmax(t) if q(t) ̸= 0
min

(
a(t),bmax(t)

)
if q(t) = 0

which in essence describes that the output of the physical queue can exceed the
virtual limit, bmax

virt (t) when a(t) > bmax
virt (t) by borrowing resources in the BS from

the non-prioritized users. The physical limit bmax(t), can however not be exceeded.
Assuming that bmax

virt (t) and bmax(t) are constant, the virtual and physical queue la-
tencies are described by

lvirt(t) =
qvirt(t)
bmax
virt (t)

l(t) =
q(t)

bmax(t)

and the mark probability function is given by

paqmvirt =

[
lvirt(t)−TL

TH −TL

]1

0
.

The outputs arriving back to the AS with a virtual bottleneck are

p(t) = paqmvirt (t−d←) (3.1)

RT T (t) = d→+d←+ l(t−d←) (3.2)

c(t) = b(t−d←). (3.3)

Although the dynamics of a physical bottleneck and a virtual bottleneck with
priority are similar to each other, there are some key differences that make them
behave differently.
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First of all, p(t) is a function of l(t) in the physical bottleneck and instead a
function of lvirt(t) in the virtual bottleneck. In a virtual bottleneck, this allows the
sender to reduce its sending rate when a virtual queue latency is present but before
a physical queue latency is formed. This can also be seen by looking at the output
RT T (t), which is identical in a virtual and physical bottleneck. In a virtual bottle-
neck, it is possible to obtain p(t) > 0, signaling that u(t) should be lowered, while
having l(t) = 0. This is not possible in a physical queue where having p(t)> 0 im-
plies that l(t) > 0. This discrepancy makes RT T (t) difficult to use in combination
with p(t) if the queue type is unknown.

The second thing to note is that the output, b(t) are identical in both implementa-
tions. In neither queue types, it is not possible that b(t) is greater than the maximum
rate that can leave the queue, i.e. b(t) ≯ bmax(t). In a virtual queue on the other
hand, it is possible that b(t) is greater than the rate that leaves the virtual queue, i.e.
b(t) > bmax

virt (t). This means that the system will behave differently depending on if
the queue is physical or virtual.

The fact that the system behaves differently depending on what kind of bottle-
neck makes it more problematic to design a good controller for the system. Another
circumstance that has to be considered is the fact that the type of bottleneck might
even shift during a session if the UE connects to another BS which alters the feed-
back signals behaviour. This is discussed in more detail in Chapter 4 where a con-
trol structure that functions with both physical and virtual bottlenecks is presented,
analysed and discussed.

3.4 Model analysis

Before digging into the control aspects of the time-varying and non-linear process,
which dynamics are described above, some fundamental limitations are studied by
linearizing the system with physical queues around two different equilibrium points.
In this analysis, time delays in the process are left out and the only output that is
considered is a non-saturated version of the mark probability, p(t) with TL = 0. This
results in a significant aid in notation while preserving the fundamental dynamics
of the system. The system with these relaxations is then described by

q̇(t) = u(t)−b(t) (3.4)

b(t) =

{
bmax(t) if q(t) ̸= 0
min(u(t), bmax(t)) if q(t) = 0

(3.5)

and the output of the system as

p(t) =
q(t)

THbmax(t)
. (3.6)
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Linearization around a non-empty queue
Observing the system in equilibrium where q0 ̸= 0 and bmax do not change, the
time-varying and non-linear system described in Section 3.3 boils down to a time-
invariant and linear system that is easier to analyze. The departure rate from the
queue under these conditions is described by b(t) = bmax and Equation (3.4) be-
comes

q̇(t) = u(t)−bmax.

Introducing the state vector x =
[
q bmax

]T and choosing u(t) = bmax results in the
equilibrium point (q,bmax,u, p) = (q0,bmax

0 ,u0, p0). The dynamics around this point
is given by 

f1(x,u) = q̇ = u−bmax

f2(x,u) = ḃmax = 0
g(x,u) = p(x,u) = q

TH bmax

and their partial derivatives evaluated in the equilibrium point are(
∂ f1
∂q

∂ f1
∂bmax

∂ f2
∂q

∂ f2
∂bmax

)
=

(
0 −1
0 0

)
(

∂ f1
∂u

∂ f2
∂u

)T
=
(
1 0

)T(
∂g
∂q

∂g
∂bmax

)
=
(

1
TH bmax

0

−q0
TH (bmax

0 )2

)
.

By introducing the new variables, ∆q = q− q0, ∆bmax = bmax− bmax
0 , ∆u = u− u0

and ∆p = p− p0, the linearized system can be expressed as(
∆q̇

∆ḃmax

)
=

(
0 −1
0 0

)
︸ ︷︷ ︸

A

(
∆q

∆bmax

)
+

(
1
0

)
︸︷︷︸

B

u

∆p =
(

1
TH bmax

0

−q0
TH (bmax

0 )2

)
︸ ︷︷ ︸

C

(
∆q

∆bmax

)
.

The controllability matrix, ζ , can then be expressed as

ζ =
(
B AB

)
=

(
1 0
0 0

)
which has rank 1 and the only state that is controllable is q.

The observability matrix, Q, can now also be expressed in the following way

Q =
(
C CA

)
=

( 1
TH bmax

0

−q0
TH (bmax

0 )2

0 −1
TH bmax

0

)
.
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which has rank 2 and indicates that both q and bmax are observable.
In summary, having a queue results in a system where both the states q and bmax

are observable and q is the only controllable state. The following section describes
how this changes when the system operates around an equilibrium without a queue.

Linearization around an empty queue
Similarly to the previous section, the goal is to find an equilibrium point and analyze
the system around that point. The departure rate from the empty queue when u(t)<
bmax(t) is the current sending rate, denoted by u0. Equation (3.4) becomes

q̇ = u(t)−u0.

With the same state vector as the previous section, x =
[
q bmax

]T , the equilibrium
point is described by (q,bmax,u, p) = (0,bmax

0 ,u0,0). The system around this point
becomes 

f1(x,u) = q̇ = u−u0

f2(x,u) = ḃmax = 0
g(x,u) = p(x,u) = q

TH bmax

and the partial derivates evaluated in the equilibrium point are(
∂ f1
∂q

∂ f1
∂bmax

∂ f2
∂q

∂ f2
∂bmax

)
=

(
0 0
0 0

)
(

∂ f1
∂u

∂ f2
∂u

)T
=
(
1 0

)T

(
∂g
∂q

∂g
∂bmax

)
=
(

1
TH bmax

0

−0
TH (bmax

0 )2

)
.

Introducing the new variables, ∆q = q−q0, ∆bmax = bmax−bmax
0 , ∆u = u−u0 and

∆p = p− p0 the system can be expressed as(
∆q̇

∆ḃmax

)
=

(
0 0
0 0

)
︸ ︷︷ ︸

A

(
∆q

∆bmax

)
+

(
1
0

)
︸︷︷︸

B

u

∆p =
(

1
TH bmax

0
0
)

︸ ︷︷ ︸
C

(
∆q

∆bmax

)

which yields the following controllability and observability matrices

ζ =

(
1

TH bmax
0

0
0 0

)
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Q =

(
1 0
0 0

)
.

Both of them have rank 1, where q is the only controllable and observable state.
Due to having an empty queue, bmax is no longer observable which aligns with the
intuition behind Equation (3.5). By operating in the q(t) = 0 branch, there is no
information about bmax as long as u < bmax.

Time-varying and non-linear difficulties
As previously mentioned, bmax(t) makes the system time-varying and more diffi-
cult to analyze compared to time-invariant systems. The two linearizations above
assume that bmax(t) does not change and describe the system in steady-state well.
To complement the linearizations and to understand how the system behaves when
bmax(t) do change, reasoning about changes in bmax(t) is presented below.

If u(t0) = bmax(t0) and the system has a certain queue q0 = q(t0), an increase in
bmax(t), while keeping u(t) = u(t0), will lead to an observable reduction in queue
latency. The closer q0 is to 0 the harder it will be to observe the increase in bmax(t).
A decrease in bmax(t) under the same conditions (u(t0) = bmax(t0) and q0 = q(t0)),
will always result in an increase in queue latency which is possible to observe for
the sender no matter the queue size q0.

On the other hand, if u(t0) < bmax(t0) and the system is in steady-state, the
queue will be empty. An increase in bmax(t) will not be possible to observe due to
the empty queue, but a decrease in bmax(t) below u(t0) will lead to a queue latency
that is possible to observe for the sender.

To summarize, due to the non-linearity and time-varying aspects of the system,
whether the state bmax(t) is observable or not is dependent on the current state of the
system and in which direction bmax(t) changes. An increase in bmax(t) is unobserv-
able if there is no queue and observable if there is a queue. A decrease in bmax(t)
to bmax

new (t) is unobservable if there is no queue and u(t) < bmax
new (t) and observable

otherwise.

Model analysis - summary
Although time delays were not included in the linearization and relaxations were
made to p(t), conclusions regarding the actual model can still be drawn. Detecting
increases in available link capacity is only possible if the process queue is non-
empty and decreases in available link capacity are generally possible to detect. For
latency-critical applications, the queue should be as small as possible for minimum
queue latency while from the perspective of observing increases in available link
capacity, the queue should be as large as possible.

Since different BSs can implement both physical and virtual queues, the only ap-
proach to detect if congestion is present or not is to observe p(t) instead of RT T (t).
Consequently, this has to be considered when designing the control algorithm for
the model.
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The model dynamics described in Section 3.3 introduce challenges due to the dis-
tinction between physical and virtual bottlenecks and as discussed in Section 3.4 the
latency of the virtual queue is no longer captured in RT T (t). This makes RT T (t) dif-
ficult to use when controlling the system, whereas p(t), which is latency dependent
in both queue types, becomes a natural replacement. The current state-of-the-art al-
gorithms that work in both queue types, tend to be complex and difficult to analyse.
In this chapter, a control structure simple enough to analyse, yet with performance
on par with the state-of-the-art algorithms is presented.

The proposed control structure, visualized in Figure 4.1, is presented in Sec-
tion 4.1. Following this, in Section 4.2, a stability analysis of the system will be
presented in three steps. Thereafter, an analysis of the error signal and its implica-
tions on the control strategy is performed in Section 4.3. Finally, the full controller
with an adaptive gain and the resulting control law is presented in Section 4.4.

4.1 The semi-cascaded P controller

The goal of the control algorithm is to have a predictable and low end-to-end
latency. To achieve this the algorithm needs to be conservative with regards to
throughput in order to not fully fill the queue and respond to decreases in link ca-
pacity quickly. At the same time, applications demanding high throughput should
also be satisfied and utilize any available link capacity. With this in mind, it would
seem reasonable to control the system in a cascaded fashion, as shown in Figure 4.1,
where the inner loop responds quickly to decreases in link capacity and the outer
controller guarantees that any available link capacity is utilized.

The control strategy proposed in this master thesis is similar to cascaded con-
trol but instead of having two controllers, where one controller’s output drives the
set point of the other controller, this strategy only uses one controller but with two
feedback loops. The outer loop drives the system towards a set target value of p(t),
denoted pref . This makes sure that any available link capacity is utilized, no matter
if the queue is physical or virtual. The inner loop takes care of the other problem -
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P-control + d→

d←
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Plant
vpref u a

b pc

Controller

Figure 4.1 Proposed control structure with the outer loop controlling the signal v,
determining the desired growth rate of the queue and the inner loop adds c to v to get
the incoming rate to the queue that corresponds to the calculated queue growth.

making sure that decreases in available link capacity are responded to quickly. By
feeding back the rate that leaves the queue, b(t), in the inner loop, it is possible to
quickly detect decreases in available link capacity when a queue is present, since
the rate that leaves the queue will decrease. This feedback also helps drive the sys-
tem towards pref when there is an increase in available link capacity and a queue
is present since the outgoing rate will increase. If there is no queue when bmax(t)
changes, b(t) will not change and the controller will not have any immediate infor-
mation about the capacity increase.

By forming the difference between the rate at which packets enter and leave the
queue, v(t) = a(t)−b(t), the queue can be viewed as a pure integrator, q̇(t) = v(t),
similar to what has been done in [Nylander et al., 2018]. The idea is to view v(t)
as the control signal purely affecting the growth rate of the queue in the process.
The bitrate that leaves the AS, u(t), and ultimately a(t) that enters the queue, is
calculated by adding a time-delayed version of b(t) denoted by c(t) to v(t). Since
the process is now seen as a pure integrator, a P controller is proposed which will
be able to follow reference values without any stationary errors as long as there are
no disturbances acting on the output of the controller [Åström and Murray, 2008].
The control law is then given by

u(t) = c(t)+K
(

pref − p(t)
)

(4.1)

where K is the P controller gain. The control structure described above is visualized
in Figure 4.1.

4.2 Stability analysis

There are many ways to analyze a control system and derive conditions on its sta-
bility. In this section, the stability analysis in continuous time will be presented in
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P-control d→

d←

Plant
vpref

p

Figure 4.2 The model structure used to analyse stability

three steps. The first part is a stability analysis of the system without any time de-
lays and without saturations in p(t). The second part will present a stability analysis
with time delays but without saturations in p(t). The third part analyses the stability
of the system with delays and with saturations in p(t).

The inner loop in Figure 4.1 exists so that the controller can output the signal
v, determining the queue growth rate. Assuming that c matches the output b of the
system, the inner loop is assumed to not alter the stability of the system and is
ignored in the stability analysis. The system that is analysed in this section can be
seen in Figure 4.2.

To derive the transfer function describing the plant, a few intermediate steps
are presented for a better understanding of the final expression. The idea is to use
Gpv(s) = Gpl(s)Glq(s)Gqv(s) and derive the three transfer functions separately and
combine them afterwards. When a queue is present, the queue growth rate is de-
scribed by

q̇(t) = v(t−d→)

and the plant can be seen as an integrator with the transfer function from v to q as

Gqv(s) =
e−sd→

s
.

The queue latency is given by

l(t) =
q(t)
bmax

and the transfer function from q to l as

Glq(s) =
1

bmax
.

Before finding the transfer function between p and l, two problems with p(t) have
to be addressed. As seen in Equation (3.3), p(t) is bounded between 0 and 1 and
contains an offset from 0. By introducing a non-saturated version of p(t)

p̂(t) =
l(t)−TL

TH −TL
=

l(t)−TL

∆T

and adding an offset to p̂(t) according to

p̃(t) = p̂(t)+
TL

∆T
= p̂(t)+ poffset
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+ C(s) e−sd→ = G1(s)

e−sd← = G2(s)

G0(s) +

h(·)

r e v
w

p̃

p̂−
p

Figure 4.3 Block diagram suitable for stability analysis where r = pref and
w =−poffset is introduced to aid in notation.

with a saturation function, h(p̂(t)) as

p(t) = h(p̂(t)) = [p̂(t)]10

the system dynamics are unchanged and the transfer function from v to p̃ can be
written as

G p̃v(s) =
1

bmax∆T s
e−sd→ = G0(s)e−sd→ .

A block diagram of the system can now be illustrated as in Figure 4.3 and used
to derive transfer functions suitable for analysis. Since a P controller is used, its
transfer function is described by C(s) = K.

System without time delays and no saturations
Lets start by investigating the stability of the system with no time delays and no
saturations. This can be represented with G1(s) = G2(s) = h(·) = 1 in Figure 4.3
and the loop transfer functions are then found by

P =W +G0C(R−P)⇔ P =
1

1+G0C
W +

G0C
1+G0C

R (4.2)

where

Gpr(s) =
G0(s)C(s)

1+G0(s)C(s)
=

K
bmax∆T s

1+ K
bmax∆T s

=
1

1+ bmax∆T
K s

(4.3)

and

Gpw(s) =
1

1+G0(s)C(s)
=

1
1+ K

bmax∆T s

=
bmax∆T

K s

1+ bmax∆T
K s

.

Since Gpr and Gpw have the same pole, w will not be able to destabilize the system.
For any value, K > 0, the pole of the closed-loop system will always lie in the
left half-plane and result in a stable system. A suitable value of K is, as expected,
dependent on bmax and ∆T .
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System with time delays and no saturations
Secondly, the system with time delays but without saturations is examined. This is
represented with h(·) = 1 in Figure 4.3. The closed-loop transfer functions can be
found by

P =W +G0G1C(R−G2P)⇔ P =
1

1+G0G1G2C
W +

G0G1C
1+G0G1G2C

R (4.4)

and similarly to the case without time delays, the transfer functions Gpw and Gpr
have the same denominator. This means that the signal w will, once again, not affect
the stability of the system. Since delays are present in G1 and G2, it is no longer
sufficient to analyse the stability with the closed-loop poles. The stability of the
system can instead be analysed with the Nyquist stability criterion [Nyquist, 1932]
by forming G(s) = G0(s)G1(s)C(s) and H(s) = G2(s) and examining the open-loop
transfer function Gol(s) = G(s)H(s). In the following paragraph, an analytic upper
bound on the control parameter K is derived using the Nyquist criterion.

The Nyquist criterion states that conclusions regarding closed-loop stability can
be drawn by examining the open-loop transfer function

Gol(iω) = G(iω)H(iω) =
K

bmax∆Tiω
e−iωd→e−iωd←

at two critical frequencies. At the cross over frequency ωc, where |Gol(iωc)| = 1
it must hold that arg(Gol(iωc)) > −π and for the frequency ω0 that results in
arg(Gol(iω0)) = −π it must hold that |Gol(iω0)| < 1. The first step is to find the
frequency ωc at which |Gol(iωc)| = 1 and by defining D = d→+ d←, ωc can be
found as

|Gol(iωc)|=
∣∣∣ K
bmax∆Tiωc

e−iωcD
∣∣∣= ∣∣∣ K

bmax∆Tiωc

∣∣∣= K
bmax∆T ωc

= 1

which has the solution

ωc =
K

bmax∆T
. (4.5)

The second step is to make sure that arg(Gol(iωc)) > −π for the cross over fre-
quency ωc. The argument of Gol(iωc) is given by

arg(Gol(iωc)) = arg
( K

bmax∆Tiωc
e−iωcD

)
=

arg
( K

bmax∆Tiωc

)
−ωcD =−π

2
−ωcD.
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Gol

h(·)

pref

p

p̂

Figure 4.4 Open-loop transfer function, Gol, in feedback with non-linearity, h(·)
suitable for analysis with Nyquist plots and Circle Criterion.

By inserting the ωc found in Equation (4.5), the expression for stability becomes

−π

2
−ωcD >−π

⇔−π

2
− K

bmax∆T
D >−π

⇔ π

2
>

KD
bmax∆T

which yields the following condition

K <
π

2
bmax∆T

D
(4.6)

needed to obtain a stable closed-loop system. The stability condition also aligns with
the theory that the time delays in the system put an upper bound on the speed of the
closed-loop system [Åström and Murray, 2008]. In essence Equation (4.6) shows
that larger delays, D, require a lower K and delays approaching 0 would, in theory,
allow for an infinitely large K similarly to the analysis made by investigating the
closed-loop pole in Equation (4.3). The rate bmax that leaves the queue also needs
to be considered when choosing a suitable K together with the slope of the mark
function determined by ∆T . A ∆T very close to zero can be seen as turning the blue
ramp mark function into the red step mark function in Figure 2.1 which naturally
makes the system more difficult to control towards a certain reference value.

System with time delays and saturation
Finally, the system with time delays and saturation is analysed to derive a condi-
tion on the control parameter K that guarantees stability. Similarly to the previous
analysis, the offset w does not affect the stability of the system and can be ignored
in this analysis. By placing G2(s) before h(·) in Figure 4.3, the block diagram can
be redrawn as in Figure 4.4 which is suitable for analysis with the Circle Criterion
[Shiriaev et al., 2004].

The Circle Criterion guarantees a globally asymptotically stable system if the
non-linearity, h(·), can be sector bounded by two lines with slopes k1 and k2 and if
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1

1

k1

k2

h(·)

Figure 4.5 The red, k1, and green, k2, lines sector bounds the blue non-linearity,
h(·) caused by the saturations. The slopes are k1 = 1 and k2 = 0.

−1

Re

Im

Figure 4.6 In order to guarantee an asymptotically stable with the Circle Criterion,
the Nyquist plot of Gol can not lie inside the shaded region determined by k1 and k2.

the Nyquist plot of the open-loop transfer function does not enter a circle with its
diameter lying on the x-axis between −1/k1 and −1/k2. The non-linearity, h(·), is a
saturation between 0 and 1 which is represented in Figure 4.5 with the blue line.
The red and green lines, given by k1 and k2, sectors bounds h(·) and their slopes are
trivially found as k1 = 1 and k2 = 0. Therefore, if the control parameter K is chosen
such that the Nyquist plot does not enter the shaded region in Figure 4.6, the system
is guaranteed to be asymptotically stable.

Since Gol contains an integrator and delays, the gain at low frequencies will
go towards infinity and the phase for low frequencies will be -90°. Therefore, the
closest Gol will ever get to the shaded region in Figure 4.6 will be for ωc = 0. To
derive a sufficient condition for stability, it must therefore hold that

lim
ω→0+

Re(Gol(iω))>−1. (4.7)
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Expanding Gol(iω) leads to

Gol(iω) =
K

bmax∆Tiω
e−iωD =

K(cos(−Dω)+ isin(−Dω))

bmax∆Tiω
=

K(icos(−Dω)− sin(−Dω))

−bmax∆T ω
.

From this, the real part of Gol(iω) can be extracted as

Re(Gol(iω) =
K sin(−Dω)

bmax∆T ω
=
−K sin(Dω)

bmax∆T ω
.

The limit in Equation (4.7) then gives

lim
ω→0+

Re(Gol(iω)) =
−K sin(Dω)

bmax∆T ω
=
−KD

bmax∆T
>−1

which yields

K <
bmax∆T

D
. (4.8)

The derived condition is a sufficient but not a necessary condition for stability,
meaning the system is guaranteed to be asymptotically stable if the condition is
met and the system might lose its asymptotic stability if a larger K is chosen. The
condition is similar to Equation (4.6) but more conservative which is the price one
has to pay to guarantee asymptotic stability with saturations present in the system.

Finally, one should note that the analysis above is done in continuous time and
that further analysis is needed to derive conditions on an implemented discretized
controller. However, the derived conditions on stability in Equation (4.6) and (4.8)
are still relevant and can be used as a guide in choosing control parameters.

4.3 Error analysis

In many classic control problems, particularly in industrial settings, there is com-
monly no bound on the magnitude of the error between process output and reference
value. There is, however, usually a bound on the control actuation which can be lim-
ited by for example the range or speed of the actuator. This is not the case in this
thesis. Since pref and p(t) both are bounded by [0,1], this means that the error e(t)
is bounded according to e(t)∈ [pref−1, pref ]. For a P controller this means that also
the control action, which is given by v(t) = K ·e(t), is bounded since e(t) is present
in v(t).

Therefore, the value of pref greatly impacts the way the controller adapts to
increases or decreases in available link capacity since pref ·K determine the slope of
the response. If pref < 0.5 the controller responds faster to decreases and slower to
increases in available link capacity. The opposite behaviour can be seen if pref > 0.5.
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Equal control response to both increases and decreases in available link capacity is
achieved when pref = 0.5.

Although the saturation of p(t) limits the controller, the saturation also guar-
antees that the system output (with respect to p(t)) can not become unstable. The
worst-case scenario is thus that u(t) and p(t) oscillate with constant magnitude in-
stead of oscillating with increasing magnitude. However, as l(t) is unbounded, the
physical queue latency could in theory grow to infinity.

4.4 Adaptive P Congestion Controller

The prominent factor determining the stability condition of the system, according
to Equation (4.8), is bmax(t). It is therefore important to choose a gain parameter K
such that the system is asymptotically stable even if bmax(t) changes. This implies
that one either has to have good knowledge of which values bmax(t) will assume or
one has to have good margins. However, a too small K will make the controller slow
which also is not desirable from a throughput perspective. Ideally, the gain parame-
ter should adapt to the current bmax(t), which avoids the trade-off. One example of
how to do this is by letting K be determined through

Kadapt(t) = β
bmax(t)∆T

D
(4.9)

where bmax(t) is estimated and β is a percentage used to determine how close to
the stability condition in Equation (4.8), Kadapt(t) is. A similar approach to adapt
the gain that only uses signals available for the controller and therefore easier to
implement is

K(t) = β
c(t)∆T

D
. (4.10)

Combining the control law from Equation (4.1) with the adaptive K(t) from Equa-
tion (4.10) results in the complete controller which in this thesis is called Adaptive
P Congestion Controller (APCC) and described by the following control law

u(t) = c(t)+K(t)
(

pref − p(t)
)
. (4.11)

4.5 Compensate for link delays

Controlling systems with persistent delays can be tricky and generally constrain the
speed of the control actuation. This can also be seen in Equation (4.6) and (4.8)
where a larger value of D results in a smaller gain K to obtain an asymptotically
stable system.

Compensating for the link delays could be achieved with a Smith predictor
[Smith, 1959] where the idea is to compensate for process delay. This would be
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done by accurately modelling the system process, capturing its dynamics in a model
with and without delays, letting the output signal from the model with delay can-
cel out the signal from the real process and only feed back the output from the
model without delay for the controller to act upon. The predictor would perfectly
compensate for the delays under the assumption that the model perfectly matches
the system plant, however, in reality, such a perfect match would be very difficult to
achieve. Designing a Smith predictor for the model in this thesis would be beneficial
in steady-state and when the reference value changes and could in theory improve
the performance. However, the longest latencies that occur in the system are those
due to abrupt reductions in link capacity which would not be captured and a Smith
predictor was therefore deemed unnecessary.
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5
Evaluation

To test the control structure presented in Section 4.1 and to evaluate the stability
analysis made in Section 4.2, a simulation environment in Julia was developed.
There are numerous open-source network simulators available which could be used
for this purpose, however as Ericsson’s state-of-the-art network simulator, later on,
was used to test the algorithm in a real-world setting, there was no need to set up
and learn these frameworks to perform the evaluation.

The developed Julia simulation environment is described in Section 5.1, the
evaluation results are first presented and analysed in Section 5.2 with a fixed gain
parameter, followed by an analysis of the results from the same simulation case but
with an adaptive gain in Section 5.3. Finally, the results are related to a theoretical
lower bound on the achievable queue latency, derived in Section 5.4.

5.1 Julia simulation

In order to test the designs made in this thesis and quickly iterate new versions of
model and control structures, a self-built simulation environment has been imple-
mented in Julia. The simulation is based on the Discrete Events package1 available
for Julia and the simulation has the following structure. Packets are transmitted from
a sender to a queue node and then back again to the sender. Between these entities
are static link delays. The packets are serviced in the queue with a deterministic
service rate with added Gaussian noise to the service time for every packet. The ser-
vice rate changes at determined timestamps in order to simulate changes in available
link capacity. The sender estimates the outgoing rate of the queue by dividing the
packet size by the time since the last packet arrived and is able to adapt its sending
rate once for every arrived packet. The packets are saved for post-simulation plot-
ting and analysis. The tunable parameters in the simulation are consequent with the
ones presented in Section 3.3 and some of them are bmax(t), TL, TH , d→, d←, pref ,
β and K.

1 https://docs.juliahub.com/DiscreteEvents
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For the purpose of simplicity and to quickly develop a working model and con-
trol structure, the simulation is built to be quite simple and only information rel-
evant to our model and control synthesis is simulated. Hence, no communication
protocol, IP envelope or re-transmission policy is implemented. Multiple connected
users, scheduling and priority of flows are also not included for the same purpose.

5.2 Stability evaluation

To get a good understanding of what control parameter K that is suitable, the
continuous-time stability conditions derived in Equation (4.6) and (4.8) are eval-
uated in the packet-based Julia simulation. To perform the evaluation, a simulation
case with step and ramp changes to bmax(t) is used. Step changes are the most diffi-
cult to perform well on from a queue latency perspective and if the controller reacts
well to these changes, the controller is likely to perform well in other scenarios as
well.

The simulation case is 20 seconds long and consists of four sections. At the be-
ginning of the simulation, bmax starts of at bmax = 5 Mbps until t = 5 s where bmax

changes to 13 Mbps. At t = 10 s, bmax is lowered to 8 Mbps and at t = 15 s, bmax is
ramped down with a slope of −1 Mbps/s. The Gaussian noise affecting the service
rate, mark thresholds, link delays and reference value are kept constant during the
simulation and their values are chosen as, σ = 105, TL = 0.008 s, TH = 0.014 s,
∆T = 0.006 s, D = 0.020 s and pref = 0.5. Since the stability boundaries in Equa-
tion (4.6) and (4.8) is dependent on bmax, ∆T and D, the boundaries will change
as bmax changes in the simulation. The fixed control parameter, K, used during the
entire simulation case is chosen to lie on the stability boundary determined by Equa-
tion (4.8) when bmax = 5 Mbps and is calculated as

K =
bmax∆T

D
=

5 ·106 ·6 ·10−3

20 ·10−3 = 1.5 ·106

while the initial sending rate is set to 0.3 Mbps. The control law is described by
Equation (4.1) and the results from the simulation case are presented in Figure 5.1
and contain four interesting behaviours that are highlighted below.

Start-up
During the start-up phase when bmax(t) is unknown, the controller uses
v(t) = K · (pref − p(t)) to increase the outgoing rate of the queue and works as
an integrator to reach bmax(t). Since p(t) = 0, the slope of the increase is deter-
mined by K · pref and as discussed in Section 4.3, the upper and lower bounds of
v(t) can be adjusted by changing pref or K.
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(a) Sending rate and available link capacity during the simulation case
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(b) Experienced queue latency during the simulation case
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(c) Mark probability during the simulation case

Figure 5.1 Signals from the Julia simulation when K = 1.5 ·106.
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Figure 5.2 Zoomed-in version of Figure 5.1(a) between t = 4.99 s and t = 5.40 s.
The ringing occurs when the time delays in the system are larger than the time it
takes to drain the queue.

Stability condition
After the start-up phase, the system starts oscillating, indicating that the stability
boundary has been surpassed. It could be the case that the system would oscillate
for even smaller values of K, however the ramp down at the end of the simula-
tion case confirms that the chosen K does not generate an oscillatory system until
bmax(t)≤ 5.0 Mbps. This confirms that the continuous-time stability condition de-
rived in Equation (4.8) holds for the discrete packet-based simulation if the sample
period is kept short. The simulation case consists of 38 202 packets distributed over
20 seconds which on average results in a time of h = 20/38202 s between the packets
and a sample time of h ≈ 0.5 ms. A discretized controller with a larger and fixed
sample time h will naturally influence the stability boundaries more than a controller
acting on each packet.

Link capacity increase
The third interesting behaviour is how the controller reacts to increases in bmax(t)
after the start-up phase. Because a queue is present at t = 5 s, the inner loop in
Figure 4.1 recognizes that b(t) has increased and helps the controller utilize all
available link capacity quickly. Because of the link delays, d→ and d←, the sending
rate u(t) might however temporarily start ringing. This can be seen in Figure 5.2
which is a zoomed-in version of Figure 5.1(a).

The ringing occurs when the sum of the link delays, D, is larger than the time
it takes to empty the queue. This is the case in Figure 5.2 when bmax(t) increases
from 5.0 Mbps to 13.0 Mbps and a queue is present. The outgoing rate of the queue
becomes 13.0 Mbps until the queue is drained after which the outgoing rate is equal
to the incoming rate. At t = 5.0+d← s, the increase in b(t) is visible to the controller
and it will quickly send at the newly found capacity thanks to the inner loop in
Figure 4.1. When the queue has been drained, it outputs at the same rate that enters
it which is the rate the controller sent d→ seconds ago. If the outer control loop
would not exist, the sending rate u(t) would oscillate between 5.0 and 13.0 Mbps
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forever. Since p(t) = 0, the outer loop will constantly add v(t) = K · pref to b(t) to
form u(t) and eventually stop the ringing. When the ringing stops, u(t) is kept at a
constant level above bmax(t) until the load disturbance caused by w in Figure 4.3 is
rejected. By that time, p(t) increases and v(t) decreases until p(t)= pref is achieved.

The ringing can be mitigated by introducing an estimator that estimates the new
capacity and feeds that back to the controller. However, this is left for future work
and discussed in Section 8.3.

Link capacity decrease
The last behaviour that is highlighted is how the controller reacts to decreases in
bmax(t) which is seen at t = 10 s in Figure 5.1. The inner loop of the controller
quickly realizes that b(t) is changed from 13.0 to 8.0 Mbps and the increase in
queue latency results in p(t) = 1.0 which makes the outer loop output a negative
v(t). This makes u(t)< bmax(t) and causes l(t) and p(t) to decrease and eventually
reach their reference values. Ideally, there would be no queue latency increase but
because of the delays, d→ and d←, in the system, it is not possible to react to link
capacity decreases immediately and a queue latency increase is inevitable.

5.3 Simulation with adaptive controller gain

Having a fixed control parameter as in Section 5.2 when changes to bmax(t) dras-
tically influence the performance of the system, poses challenges. To get a stable
system, the control parameter K has to be chosen with respect to the lowest bmax(t)
that will occur during operation. Adapting K to a low minimum bmax(t) will make
the system behave poorly in conditions when bmax(t) is much larger than the mini-
mum bound. A change in bmax(t) can be viewed as a change to the closed-loop pole
of the system whereas having an adaptive K yields a constant pole placement for
the closed-loop system and thus a constant stability margin regardless of changes in
bmax(t).

The implementation of the adaptive gain in this simulation uses APCC and the
control law is therefore given by Equation(4.11). A satisfactory value of β for the
same simulation case that was described in Section 5.2 was experimentally found
in the Julia simulation to be β = 0.6. The results from the simulation case with
APCC are presented in Figure 5.3 and contain three behaviours that are particularly
interesting and highlighted below.

First of all, the start-up phase is different with an adaptive K(t) compared to the
fixed K in Figure 5.1. Since the simulation case starts of with u(t) = 0.3 Mbps, the
output b(t) will also be 0.3 Mbps and result in a small K(t). When b(t) increases
thanks to the outer loop, the gain also increases and u(t) = bmax(t) after approx-
imately 1 second. At this stage, the gain is below the stability boundary and no
oscillations occur.
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(b) Experienced queue latency during the simulation case

0 2 4 6 8 10 12 14 16 18 20
0.00

0.50

1.00

time (s)

m
ar
k
p
ro
b
ab

il
it
y

p(t)

(c) Mark probability during the simulation case
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(d) Adaptive gain during the simulation case

Figure 5.3 Signals from the Julia simulation when K(t) is adaptive and β = 0.6.
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Secondly, the same ringing in throughput occurs when bmax(t) increases with
an adaptive K(t) as with a fixed K. This will also induce a ringing in K(t) and as
explained in Section 5.2, a larger K and smaller delays make the ringing disappear
faster.

The third and last thing to note is the queue latency when bmax(t) decreases at
t = 10 s. By comparing the queue latency obtained with a fixed K in Figure 5.1(b)
and the queue latency with an adaptive K(t) in Figure 5.3(b) it is clear that there
is no noticeable difference between the two. This is the case due to the adaptive
K(t) being close to the fixed K after the step decrease in bmax(t) and the queue
latency will therefore behave equally. If a lower fixed K would have been chosen,
the slope of l(t) in Figure 5.1(b) at t = 10 s would have been smaller and resulted
in a longer time to reach the reference value but the peak value of l(t) would be
the same. Analysing the lower bound of l(t) when delays are present between the
sender and queue and bmax(t) decreases in a step is interesting and examined in the
coming section.

5.4 Best case queue latency

The delays, d→ and d←, in the system cause the signals between the controller
and the queue to be delayed and introduce theoretical limitations on how fast the
controller can adapt the incoming rate to the queue when bmax(t) changes and also
what queue latencies that is possible to achieve. If the system is in steady state with
u(t) = bmax(t) and q(t) = qss when bmax(t) changes from the steady state value
bmax
ss to the new value bmax

new at time tc, the controller will not receive this information
until d← time units later. When the controller receives the information about bmax

new ,
the controller is able to adapt u(t) but because of the link delay it takes d→ time
units before the new rate reaches the queue. By denoting D = d→+ d← and ∆b =
bmax
ss −bmax

new , it is possible to express the amount of bits that the queue has grown by
as ∆q = ∆b ·D. The new queue size that have occurred purely because of the link
delays and no matter what control structure is used can be calculated as q(tc +D) =
qss+∆q and its queue latency as

lmin = l(tc +D) =
q(tc +D)

bnew
=

qss

bnew︸︷︷︸
time to process
old queue size

+

time to process
additional queue︷ ︸︸ ︷

∆q
bnew

. (5.1)

The minimum latency, lmin, is a theoretical minimum and under the assumptions that
bmax
new is constant and bmax

new < bmax
ss , values below this limit is not achievable without

having the sender predict future values of bmax(t) and react before bmax
new is sent back

from the queue to the sender.
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To give some intuition to the equations above, an example is provided in the
following section where the numbers from Figure 5.1 and 5.3 are used and inserted
into Equation (5.1) to evaluate how close the controller is to the theoretical lower
bound lmin.

Best case queue latency - example
The step decrease of bmax(t) in Figure 5.1 and 5.3 occurs at t = 10 s and hence
tc = 10 s. The time where the step decrease to bmax(t) happens in Figure 5.1 and 5.3
is t = 10 s and hence tc = 10 s. The queue latency right before the step decrease
is 0.011 s and with bmax

ss = 13.0 Mbps the amount of bits in the queue before the
decrease is given by qss = 0.011 · 13 000 000 = 143 000 bits. At t = 10 s, bmax(t)
changes from 13.0 to 8.0 Mbps and ∆b = 13.0−8.0 = 5.0 Mbps. With D = 20 ms,
the queue will grow with ∆q = ∆b ·D = 5 000 000 · 0.020 = 100 000 bits before
any changes to u(t) reaches the queue. The new queue size is given by q(tc +D) =
143 000 + 100 000 bits and the minimum queue latency can now be calculated
according to Equation (5.1) as

lmin =
243 000 bits

8 000 000 bits/s
= 0.030375 s= 30.375 ms.

Comparing lmin to the queue latency obtained in Figure 5.1(b) and 5.3(b) indicates
that the controller is able to perform close to the theoretical limit caused by the
delays. This is due to the inner loop that quickly lowers the sending rate and keeps
the peak value at a minimum in combination with the outer loop that makes sure to
output a negative v(t) when p(t)> pref .
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6
Results and validation

With the simplifications in the Julia simulation, explained in Section 5.1, in mind,
there is a need to validate the obtained model and control law in a setting similar to a
real cellular network. This is done in Ericsson’s state-of-the-art network simulator,
briefly described in Section 6.1. The control algorithm of this thesis will then be
evaluated and compared to the state-of-the-art algorithms highlighted in Section 2.7.
Due to the distinction between the two queue types in Section 3.3, the results will be
presented in two steps. First in a system implementing a physical bottleneck without
priority of users in Section 6.2 and secondly in a system where different users can
be prioritized in a virtual bottleneck in Section 6.3. The main purpose of this chapter
is not to closely study and dissect the details of the performance of each algorithm,
but rather to see if the developed control algorithm can perform on a similar level
as the state-of-the-art algorithms.

6.1 Ericsson simulation

Although the Julia simulation, explained in Section 5.1, captures the essential be-
haviour of APCC, it is not able to capture the behaviour of the control algorithm in
a real cellular network. Therefore, Ericsson’s state-of-the-art network simulator is
used to verify the algorithm in a real-world setting. Due to reasons regarding Erics-
son’s intellectual property, any details of Ericsson’s simulator will not be shared in
this thesis work. The simulator is solely used to verify the results obtained from the
Julia simulation and to compare different control algorithms in a real-world setting.

Instead of adding the structure necessary for a real implementation of APCC,
the algorithm is inserted into SCReAM to be able to test it in a simulation of a
cellular network in the given time frame. In practice, this means that the part of
SCReAM that calculates the target bitrate for its media encoder is overridden by
APCC. The results of this chapter are thus, apart from the control algorithm, also
based on the implementation of SCReAM. Using an already existing implemen-
tation of SCReAM saves time but also comes with its drawbacks. Details of how
SCReAM estimates p(t) and b(t) from acknowledgements are not customized for
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Figure 6.1 Plot of the SINR in the scenario used in Ericsson’s simulator.

APCC and to maximize the performance of the APCC, further modifications to
SCReAM would be needed but are left for future work due to time constraints and
discussed in Section 8.1.

Before moving on and presenting the results, it should be noted that the simu-
lated DCTCP algorithm is a variant of both DCTCP and TCP Prague, it is essen-
tially DCTCP but with an added fast-start feature from TCP Prague. For simplicity,
this mix is referred to as ”DCTCP“, despite it being a variant of DCTCP and TCP
Prague. Another important note is the following key difference between SCReAM,
DCTCP and BBRv2 in Ericsson’s simulator. SCReAM is implemented with an em-
ulated media encoder while DCTCP and BBRv2 are not. This implies that the target
bitrate set by DCTCP and BBRv2 is sent out immediately while SCReAM sets a
target bitrate to a media encoder that tries to generate traffic corresponding to the
target bitrate. Media encoders are not the focus of this thesis but in general, they
cause fluctuations in the actual sending rate and are limited in how fast they can
change their sending rate [Johansson et al., 2018]. This is good to keep in mind
when comparing the results of APCC and SCReAM to DCTCP and BBRv2 in the
coming sections.

6.2 Physical bottleneck

This section compares APCC to the state-of-the-art methods presented in Sec-
tion 2.7 when the BS implements a physical queue as described in Section 3.3.
To evaluate the algorithms, they were all run in a scenario consisting of back-
ground users sending as much traffic as possible, where the total capacity is equally
shared between all users. The available link capacity in the simulation scenario is
divided into three sections as described by the Signal-to-interference-plus-noise ra-
tio (SINR) in Figure 6.1. A decrease in SINR is equivalent to a decrease in available
link capacity and as discussed previously, a step decrease in available link capacity
is a challenging task for any controller to perform well on. An increase in SINR is
equivalent to an increase in available link capacity and is also challenging due to the
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6.2 Physical bottleneck

unobservability in certain states as discussed in Section 3.4. The scenario is simple
to understand and implement but still exposes the algorithms to difficult conditions
and if the algorithms perform well in this scenario, they are likely to perform well
in other scenarios as well.

APCC
The insertion of APCC into SCReAM results in a discretization of APCC and can
be described in the following way. The target bitrate of the media encoder is updated
with a sampling period of h = 50 ms and the control loop is executed for every new
media frame generated by the media encoder. The adaptive K(t) is updated every
time the control loop executes and low-pass filtered according to

K(k) = (1−α)K(k−1)+αX

where α = 0.001 and

X = β
b(k)∆T

D
with

β
∆T
D

= 0.6.

A satisfactory reference value was experimentally tuned and found as pref = 0.25.
The mark probability, p(t), is estimated once every RTT and calculated from

the acknowledgements as the fraction between marked bytes and the total amount
of bytes delivered this RTT. The return rate, b(t), is also estimated from the ac-
knowledgements but with a sample period of h = 50 ms and filtered by averaging
the 8 last estimates. The results of running this controller in the SINR-scenario in
Figure 6.1 are illustrated in Figure 6.2 and the most interesting behaviours are high-
lighted below.

The start-up phase is similar to the Julia simulation with an adaptive K(t) in
Figure 5.3. APCC makes sure u(t) is increased as long as p(t) ̸= pref , the gain K
is increased when b(t) increases and the controller sends at bmax(t) around t ≈ 9 s
when p(t) ̸= 0. An overshoot in u(t) is present, similarly to the Julia simulation,
to get rid of the constant load disturbance w in Figure 4.3. At t ≈ 16 s, bmax(t)
decreases and the inner loop of APCC quickly decreases u(t). The delays in D
give rise to a queue latency spike that the outer P controller of APCC removes
by outputting a negative v(t) since p(t)> pref . When the queue latency is removed,
APCC quickly sends at the new bmax(t) until t ≈ 30 s where bmax(t) increases. Since
p(30) ̸= 0 and a queue therefore is present when bmax(t) increases, b(t) increases as
well and the new bmax(t) is found rapidly thanks to the inner loop but at the expense
of an overshoot in u(t) and l(t). In the Julia simulation, an overshoot and ringing
behaviour was present in u(t) but it did not result in an overshoot in l(t).
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Figure 6.2 APCC in Ericsson’s simulator and a physical bottleneck.
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6.2 Physical bottleneck

SCReAM vs APCC
The comparison between SCReAM and APCC in Figure 6.3 shows interesting re-
sults throughout the simulation as discussed below.

As can be seen in Figure 6.3(a), both SCReAM and APCC are relatively slow
in the start-up phase, although SCReAM is slightly faster and does not suffer from
an overshoot. This is likely due to the fact that SCReAM has a dedicated start-up
mode that finds the available link capacity and then switches to a mode for steady-
state as the initial marked packets are perceived. At around t ≈ 16 s the available
link capacity decreases, followed by a reduction of throughput for both algorithms
where APCC is slightly faster than SCReAM. In turn, such a small difference in the
speed of the reduction leads to a substantial difference in the queue latency as can
be observed in Figure 6.3(b). After the decrease in available link capacity, both al-
gorithms undershoot to allow the queue to be reduced before a steady state is found.
At t ≈ 31 s, APCC quickly finds the newly available link capacity at the expense of
an overshoot, which in turn leads to a spike in p(t) and thus a higher queue latency.
SCReAM is slightly slower in this aspect as it probes for the new capacity, but a
similar spike in p(t) can be seen at t ≈ 34 s without a significant increase in queue
latency. There are many tunable parameters of SCReAM and finding a perfect com-
bination of these for this simulation scenario is difficult. However, as APCC is based
on SCReAM and everything except the target bitrate calculation is left unchanged,
the comparison is considered fair and relevant.
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Figure 6.3 Comparison between APCC and SCReAM in Ericsson’s simulator with
a physical bottleneck.
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6.2 Physical bottleneck

DCTCP vs APCC
In this subsection, the performance of DCTCP and APCC is evaluated and a com-
parison can be seen in Figure 6.4.

At the beginning of the simulation, DCTCP uses a specific start-up phase to find
bmax(t) quickly at the expense of queue buildup as can be observed in Figure 6.4(a)
and 6.4(b). Thereafter, DCTCP steadily utilizes the available capacity, but with a
noisy signal. The noisy throughput could most likely be smoothened by a filter if
necessary. DCTCP is able to transmit at a slightly higher rate than APCC throughout
most of the simulation, this might be because of the media encoder implemented in
SCReAM and thus also in APCC. The latency spike at t ≈ 16 s in Figure 6.4(b) is
particularly interesting as it would seem that the slower responding APCC would
yield a higher spike compared to DCTCP. However, as the throughput of DCTCP is
higher before the step decrease in bmax(t) a larger queue is formed compared to that
of APCC, which results in higher latency when bmax(t) decreases. APCC is slightly
faster in finding newly available capacity compared to DCTCP which gently probes
to find it. This can most easily be seen in Figure 6.4(a) and 6.4(c) between t ≈ 30 s
and t ≈ 32 s, as the mark probability is zero and the bitrate steadily increases. The
results from this comparison should be considered with caution as DCTCP neither
was intended for cellular systems nor fully tuned for this simulation nor uses a
media encoder.

57



Chapter 6. Results and validation

0 5 10 15 20 25 30 35 40 45
0.0

5.0 · 106

1.0 · 107

time (s)

b
it
ra
te

uDCTCP(t) uAPCC(t)

(a) Sending rate during the simulation case

0 5 10 15 20 25 30 35 40 45
0.000

0.050

0.100

time (s)

q
u
eu
e
la
te
n
cy

(s
)

lDCTCP(t) lAPCC(t)

(b) Queue latency during the simulation case

0 5 10 15 20 25 30 35 40 45
0.00

0.50

1.00

time (s)

m
ar
k
p
ro
b
ab

il
it
y

pDCTCP(t) pAPCC(t)

(c) Mark probability during the simulation case

Figure 6.4 Comparison between APCC and DCTCP in Ericsson’s simulator with
a physical bottleneck.
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6.2 Physical bottleneck

BBRv2 vs APCC
A comparison between BBRv2 and APCC can be seen in Figure 6.5 and the be-
haviours differ a lot.

During the start-up phase, BBRv2 is in a start-up state and finds the maximum
available link capacity quicker than APCC but at the cost of a large queue latency.
When the maximum available link capacity is found, BBRv2 drains the queue and
starts sending close to the rate at which the queue was built up. At this stage, BBRv2
cycles between a set of states and at t ≈ 16 s, BBRv2 quickly reduces its sending
rate. The value that the spike in queue latency assumes is dependent on what state
BBRv2 was in right before the link capacity decreased. In Figure 6.5(b), the spike
is approximately as large as for APCC but whether BBRv2 was in a state where it
probed and tried to find more capacity or if it was in a state where it backed off and
lowered its sending rate vastly affects the value of the spike.

At t ≈ 30 s, where the available link capacity increases, BBRv2 finds some of
the new capacity earlier than APCC but fails to find all of the capacity immediately.
BBRv2 stays at a somewhat constant level below the maximum available link ca-
pacity until t ≈ 44 s, while APCC utilizes more of the available link capacity after
t ≈ 31 s. The results from this comparison should also be considered with caution as
BBRv2 neither was intended for cellular systems nor fully tuned for this simulation
and does not include a model of a media encoder.

An important concluding remark is that the performance of BBRv2 heavily de-
pends on the numerous tuneable parameters for the different states. Better perfor-
mance could be achieved if BBRv2 was tuned further but the parameters used in
this simulation still yield representable results for the behaviour of the algorithm.
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Figure 6.5 Comparison between APCC and BBRv2 in Ericsson’s simulator with a
physical bottleneck.
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Figure 6.6 Throughput plot of the background user in the simulation with the vir-
tual bottleneck and one APCC user.

Summary of physical bottleneck
All of the algorithms above are able to maintain a low queue latency in most parts
of the simulation, apart from when the link capacity decreases drastically. Some
algorithms handle this task better than others, but one has to keep in mind that the
algorithms each were developed for different purposes that might not align with this
simulation case. The speed at which the algorithms find and utilize newly available
link capacity can differ and if the algorithms are tuned poorly, might be slow.

The spikes in queue latency align with the calculation in Equation (5.1) and
never subceed this theoretical lower bound. However, if even lower latencies are
required, a way to reduce queue latency is to have virtual queues with priority of
flows.

6.3 Virtual bottleneck

With a virtual queue, the system dynamics change to the dynamics presented in
Section 3.3 with a soft upper bound bmax

virt (t) instead of the hard bound bmax(t).
In combination with the ability to prioritize flows, this allows algorithms to achieve
very low end-to-end latency without a substantial reduction of throughput. Although
the stability of APCC has not been analysed in a virtual queue, it might still bring
some insight to simulate and compare the algorithms in such a system.

The simulation case for the virtual bottleneck is the same as the one presented
in Section 6.2 with the exception of the bottleneck being virtual and that bandwidth
therefore can be borrowed from background users when flows are prioritized. This
is what enables such a low queue latency for the prioritized flow. For SCReAM,
DCTCP and APCC, the parameters that were used in the simulation with a physical
bottleneck are also used in this simulation case. For BBRv2, the parameters had to
be lightly tuned in order to achieve a reasonable comparison in this simulation.

Figure 6.6 displays a plot of the sum of the background users’ throughput. This
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data comes from the same simulation as APCC and should therefore only be com-
pared with the plots in Figure 6.7. The share of capacity can most easily be seen up
to t ≈ 8 s, where the throughput of the background users steadily decreases from
60 to 50 Mbps at the same time as the throughput of APCC increases from 0 to
10 Mbps in Figure 6.7(a). The effect of APCC being prioritized is best seen in the
undershoot at t ≈ 16 s in Figure 6.6, where the background users’ throughput tem-
porarily is reduced, in order to guarantee a low queue latency for APCC.

The results from the comparison with the different algorithms are presented
below.

APCC
The simulation of APCC in a virtual bottleneck with priority can be seen in Fig-
ure 6.7 and behaves similarly to the physical bottleneck with some key distinctions
highlighted below. The throughput seems to be slightly more oscillatory, which
likely is due to no direct feedback of bmax(t). Since the flow of APCC is priori-
tized over the other competing flows of the background users, the queue latency
in Figure 6.7(b) is substantially lower compared to the queue latency in a physi-
cal bottleneck. However, the same overshoot of throughput when detecting newly
available link capacity can be seen at t ≈ 31 s. Another thing to note is that the gain
is higher between t ≈ 9−16 s and t ≈ 32−45 s, which might be due to achieving
a lower queue latency and thus a lower RTT.
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Figure 6.7 APCC in Ericsson’s simulator and a virtual bottleneck.
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SCReAM vs APCC
A comparison between SCReAM and APCC in a virtual bottleneck with priority is
shown in Figure 6.8 and the most interesting aspects are discussed below.

SCReAM is much faster in finding the maximum available link capacity com-
pared to APCC during the start-up phase. Another thing to note is that SCReAM
finds the maximum available link capacity at t ≈ 2.5 s in the virtual bottleneck in
Figure 6.8(a) while it takes approximately 7 s to find it in the physical bottleneck
in Figure 6.3(a). APCC requires approximately 8.0 s in both cases. At t ≈ 16 s,
SCReAM undershoots a bit more compared to APCC but quickly settles at the new
link capacity and sends at a close to constant rate until t ≈ 31 s while APCC is os-
cillatory and constantly lower than SCReAM. In contrast to the physical bottleneck,
a queue latency never occurs and is kept below 1 ms during the entire simulation
for both algorithms. APCC reacts faster to the increase in link capacity at t ≈ 31 s
but overshoots while SCReAM gently finds the new capacity and oscillates less.
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Figure 6.8 Comparison between APCC and SCReAM in Ericsson’s simulator with
a virtual bottleneck.
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DCTCP vs APCC
The results from the comparison between DCTCP and APCC, displayed in Fig-
ure 6.9, show similarities to the results in the physical bottleneck. The key areas of
difference between the algorithms are in the start-up behaviour and the noise level of
the throughput signal. Since the throughput of DCTCP is unfiltered, the noise level
of the signal is greater than the throughput of APCC. Once again, since DCTCP
has a specific start-up phase, it is much faster at utilizing the available capacity at
the beginning of the simulation compared to APCC. DCTCP is able to transmit at a
higher rate throughout most of the simulation, this is again most likely due to it not
having an emulated media encoder as in the case with APCC. The latency spikes in
Figure 6.9(b), seem to be more persistent and slightly higher in the DCTCP case,
however, this behaviour is expected as DCTCP has a more noisy bitrate overall.
Just as for the results in the physical bottleneck, with the same reasoning about
their validity, the results in this comparison should be viewed with caution.
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Figure 6.9 Comparison between APCC and DCTCP in Ericsson’s simulator with
a virtual bottleneck.
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BBRv2 vs APCC
A comparison between BBRv2 and APCC in a virtual bottleneck with priority is
shown in Figure 6.10 and discussed below.

Similarly to the physical bottleneck, BBRv2 uses a start-up state to quickly find
the maximum available capacity. The BBRv2 throughput oscillates at the beginning
followed by a section where p(t) = 0 which indicates that the maximum available
link capacity is not utilized for either BBRv2 or APCC until t ≈ 8 s. At this stage,
BBRv2 varies more while APCC is smoother. When the link capacity decreases,
BBRv2 obtains its largest queue latency while the queue latency of APCC remains
low. Apart from this spike, the queue latency is low for both algorithms during the
entire simulation. The link capacity increase at t ≈ 30 s is utilized by APCC imme-
diately while BBRv2 struggles to utilize it. It seems that BBRv2 enters a state where
it does not recognize the increase until t ≈ 38 s. The fact that BBRv2 has different
states becomes clear at t ≈ 38 s where BBRv2 starts looking for new capacity which
it finds at t ≈ 40 when p(t) ̸= 0.

As stated in the comparison between BBRv2 and APCC in a physical bottle-
neck, the performance of BBRv2 varies a lot depending on the parameters used.
This is also the case with a virtual bottleneck and it is possible to obtain better
performance of BBRv2 with other parameters. Like in the physical bottleneck, the
results of this comparison should be viewed with caution as the BBRv2 traffic in the
simulation lacks a media encoder and uses non-optimal parameters which makes the
comparison less fair. However, the trends and some typical behaviours of BBRv2
are still captured in Figure 6.10.

Summary of virtual bottleneck
In the virtual bottleneck, all algorithms are able to achieve very low queue latency
during the entire simulation despite the abrupt decrease in link capacity. This will
always be the case as long as there exists resources that the prioritized users can
borrow. Instead of an increase in queue latency for the prioritized users, the back-
ground users get a temporarily lower throughput while the prioritized users adapt to
the new link capacity.
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Figure 6.10 Comparison between APCC and BBRv2 in Ericsson’s simulator with
a virtual bottleneck.
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7
Discussion and Conclusion

This chapter discusses and analyses the results presented in the previous chapters
along with the benefits of the derived model and proposed control structure in Sec-
tion 7.1. Conclusions related to the problem formulation of the thesis are drawn in
Section 7.2.

7.1 Discussion

When analyzing the results presented in Chapter 6, it is clear that the overall per-
formance of all the compared algorithms is similar and that there is no clear best
or worst performer in all aspects of the simulation. Best throughput performance,
in both queue types, is achieved with DCTCP as it utilizes the available capacity
throughout the simulation without high queue latency. The most notable difference
in queue latency performance, in the physical queue, between the algorithms be-
comes evident when the available link capacity suddenly decreases, where APCC
performs best with BBRv2 and DCTCP as the close second contenders. However,
one has to keep in mind that the algorithms were developed for different purposes
and that neither DCTCP nor BBRv2 is designed for conversational media services
as APCC and SCReAM are. For this reason, both APCC and SCReAM use an em-
ulated video-encoder which in other words creates a layer of ”inertia“ present in
SCReAM and APCC that are not present in BBRv2 nor DCTCP.

Another note is that not enough time has been spent on tuning the algorithms
to perform at their best in this specific simulation scenario, which also affects the
fairness of the comparison. DCTCP and BBRv2 both implement a fast start phase
of the algorithm which makes them outperform SCReAM and APCC in this regard.
Implementing a fast start phase for APCC could drastically improve the throughput
performance at the beginning of the simulation, however, due to time constraints
such an implementation has been left for future work. This is further discussed in
Section 8.1

In the virtual bottleneck, it is evident that all of the algorithms perform very well
from a latency perspective and that prioritization of flows drastically reduces the
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experienced queue latency. When looking at the end-to-end latency problem from a
bigger picture, it becomes clear that not all performance is related to the congestion
control algorithms. Although better latency performance can be achieved with a
good congestion control algorithm, latency performance gains can for instance also
be achieved in the prioritization of flows in the AQM and minimizing the link delays
in a clever way. However, since the main focus of this thesis has been to develop a
simple algorithm suitable for tractable analysis, most of the time spent has been in
this area.

Implementation drawbacks
Replacing the way SCReAM updates its sending rate with APCC, has allowed for
testing of APCC in a simulated cellular network, but it also means that APCC is de-
pendent on the way SCReAM estimates its incoming signal b(t), p(t) and RT T (t).
Since APCC has been developed from control theory, it is highly dependent on its
feedback signals. In fact, the authors of this thesis have found that the performance
of APCC substantially differs with different estimation techniques of b(t), p(t) and
RT T (t) and the frequency by which they are fed back. This is most notable in the
way that SCReAM estimates b(t), which likely is the cause of the overshoots in the
simulation of APCC. This phenomenon is discussed as future work in Section 8.1.

Effects of the mark probability function
As discussed in Section 2.4, the mark probability function p(t) can vary in different
BSs. This means that the stability condition in Equation (4.8) and particularly the
slope, ∆T of the mark function p(t) might vary with different BSs. In turn, this
affects how the system behaves at different operating points, pref , where it might be
more difficult for the system to operate around a point in a steep slope compared to
a moderate one, especially if a non-linear p(t) is used.

Model correctness
The behaviour of APCC in the Julia simulation as seen in Figure 5.3 is surprisingly
similar to the behaviour observed in the Ericsson simulation despite the latter be-
ing a much more complex and ”complete“ simulator. Most notable is the start-up
behaviour, the tendency to overshoot with increases in available capacity and the
queue latency spike when the capacity drops, all of which can also be found in
the Ericsson simulations. The similar behaviour indicates that the relatively simple
model presented in Chapter 3 and which the Julia simulation is based on captures
the dynamics of the cellular system quite well. The simplicity of the model is an im-
portant aspect of control design as it allows for tractable analysis in systems which
otherwise would be very difficult to analyse and develop a control-based algorithm
for.
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The benefit of simplicity
As mentioned above, being able to analyse a system is an important aspect, which
in most cases enables prediction of algorithm behaviour and thus a reduction of test-
ing time. The simplicity, analyzability and predictability of the algorithm behaviour
is something that the authors of this thesis have been striving for when design-
ing APCC. Comparing the methods used to analyze the system in this thesis with
methods such as limit cycles and Poincaré maps used in the analysis of DCTCP in
[Alizadeh et al., 2011], it is clear that it is far easier to analyze APCC.

7.2 Conclusion

In this master thesis, an adaptive control algorithm for low latency applications
over the cellular network has been derived. The controller stems from classic con-
trol theory, enabled by modelling the communication system mathematically. By
analysing the results in Chapter 6, it is possible to conclude that the simple adaptive
P controller, APCC, presented in Section 4.1 and Section 5.3 is able to perform on
par with the current state-of-the-art algorithms, yet simple enough to do tractable
analysis on. Moreover, having many parameters in an algorithm allow for algo-
rithm flexibility and can yield satisfactory results but be difficult to tune. On the
other hand, an algorithm with fewer parameters limits the flexibility but allows for
tractable analysis and performs sufficiently in the simulations of this thesis.
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8
Future work

Although the results of this thesis have been satisfactory, there are some areas that
have not been explored due to time constraints. The goal of this chapter is to provide
a guideline and present in which direction one should continue this work to make
the performance of the controller even better. There are, of course, multiple ways of
improving the controller and some of them are emphasized in the coming sections.

8.1 Signal and parameter estimation

The continuous-time signals, u(t), b(t), bmax(t) and p(t), are theoretical construc-
tions used in this thesis that allows the use of powerful analysis tools from control
theory. In any actual implementation of the system, information about the continu-
ous signals is instead present in discrete packages and how the continuous signals
are estimated from discrete packages will influence the performance of the con-
troller. This thesis uses the same estimation techniques as in SCReAM and a po-
tential way of making APCC better would be to estimate the continuous signals
differently.

Estimating the mark probability
The mark probability function, p(t), is used in the bottleneck to mark individual
packets according to a certain probability based on the queue latency. Acknowl-
edgements arriving back to the controller will either have their ECN bit set or not
and how to estimate p(t) from individual marked packets is not trivial. The way
SCReAM does it, described in more detail in Section 6.2, is to calculate the frac-
tion between marked bytes and delivered bytes this RTT without any memory of
previous estimations. DCTCP, on the other hand, uses a similar technique with an
added exponentially weighted moving average filter to have a memory of previous
estimates which was shown in Section 2.7. The most suitable method of obtaining
p(t) from marked acknowledgements when using the controller in this thesis has
not been evaluated and a different method for estimating p(t) might improve the
performance.
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Estimating the slope of the mark probability
APCC is from an implementation aspect quite simple. The choice of K(t) is as
stated in Equation (4.10) dependent on β that the AS is free to choose, b(t) which
is constructed from acknowledgements, D which can be inferred from the RTT and
finally ∆T which is not measurable. The good thing is that, if a rough estimation
of ∆T is known, the uncertainty in ∆T can be compensated for by adjusting the
β parameter. If a more accurate estimate of ∆T is necessary for implementation
purposes, it should be possible to apply system identification methods to identify
and estimate ∆T .

Estimating the outgoing rate of the bottleneck
As mentioned in Section 7.1, the outgoing rate estimate of the bottleneck, b(t), is
likely what causes the overshoots when the link capacity increases in Figure 6.2
and 6.7. Similar to the mark probability above, b(t) also has to be estimated from
the acknowledgements that might have a varying time gap between them. The fact
that not all packets are acknowledged immediately in an attempt to send less data,
makes the task even more challenging [Sarker et al., 2021]. The way SCReAM
estimates b(t), described in Section 6.2, shows that it is possible to estimate b(t)
and allows for the simple control law in Equation (4.1). An even better estimate
is believed to be able to remove the overshoots when the available link capacity
increases and result in better performance of APCC.

Estimating available link capacity in start-up
An obvious area of improvement for APCC in Figure 6.2 and 6.7 is in the start-
up phase where the available link capacity is unknown. Compared to DCTCP and
BBRv2, which both have a certain start-up phase, APCC requires a much longer
time to find and utilize the available link capacity. There are various possible tech-
niques to do a quicker start-up and in essence, they all quickly build up a queue
followed by a backoff in sending rate. Paced chirping [Misund and Briscoe, 2019],
used in DCTCP, is one of these methods where a chirp signal of packets is sent with
a decreasing inter-packet gap spacing. The sender analyses the acknowledgement-
spacing, specifically from the point at which the gaps between acknowledgements
become larger than the gaps between sent packages to determine the available ca-
pacity. The focus of this thesis has been on the link capacity changes in steady-state
but an implementation of the controller in a real application would benefit from
having a specific start-up phase and Paced chirping is a promising solution for that.

8.2 Alternative control structures

APCC performed well in the physical bottleneck while the throughput in the virtual
bottleneck was more oscillatory. The oscillations occur because the system dynam-
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ics are changed in a virtual bottleneck compared to a physical bottleneck. One pos-
sible way of reducing the oscillations and improving the steady-state behaviour in
the virtual bottleneck would be to add derivative action to the controller. Derivative
action comes with implementation trade-offs due to amplification of high-frequency
noise if the measurement signal is not filtered. This would most likely not be an is-
sue here since the measurement signal, p(t), is a constructed software signal from
individual packets and therefore not subject to noise from a sensor, which is often
the case in control problems. Choosing two parameters, the proportional and the
derivative gain is naturally more difficult than only choosing the proportional gain
in the P controller. However, with a proper analysis of the virtual bottleneck, similar
to the one presented in Section 3.4 for the physical bottleneck, it should be possible
to derive stability conditions for the two parameters of a PD controller. Adapting
the two parameters to have the same stability margins as b(t) changes should also
be feasible and theoretically result in a less oscillatory throughput.

8.3 Further analysis

The stability analysis of the P controller in Section 4.2 is based on the dynamics of
a physical bottleneck, in the continuous-time domain and under the assumption that
the inner loop of the controller does not alter the stability. All of these aspects could
be analysed further to get a better understanding of the system and briefly discussed
below.

Analysis of virtual bottleneck
The dynamics of a virtual bottleneck are as described in Section 3.3, different to the
dynamics of a physical bottleneck. This becomes evident when comparing the re-
sults of the controller in a physical and a virtual bottleneck where the latter yields a
more oscillatory throughput. To understand what parameters affect the performance
in the virtual bottleneck, similar analysis as the one of the physical bottleneck in
Section 4.2 would be required. With a virtual bottleneck and its soft upper limit,
bmax
virt , the assumption that the inner loop of the controller can be ignored during the

analysis no longer holds. As a result, the virtual bottleneck could require analysis
in the Single Input, Multiple Output (SIMO) domain where the single input is the
throughput, a(t), and the two outputs of the system would be b(t) and p(t) as in Fig-
ure 4.1. Naturally, this becomes a more challenging analysis to perform compared
to the analysis of the physical bottleneck but would also resemble the dynamics of
the virtual bottleneck better.

An alternative way, that would allow the stability analysis for the physical bot-
tleneck to also be valid for the virtual bottleneck, would be to focus on creating
an estimator of bmax(t) in the physical bottleneck and bmax

virt (t) in the virtual bottle-
neck. By feeding the inputs and outputs of the system, u(t), b(t) and p(t), into an
estimator that outputs either bmax(t) or bmax

virt (t) to the controller, depending on the
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bottleneck type, the proposed P controller and its stability analysis would still be
useful. The difference would be that c(t) in Equation (4.1) would be replaced with
the estimation of bmax(t) or bmax

virt (t). The problem to solve would instead be how to
estimate bmax(t) or bmax

virt (t) from u(t), b(t) and p(t), but might be a better alternative
to the SIMO analysis above.

Analysis of discretized system
Similarly to most control loops today, APCC will be implemented in a discrete
environment and a useful addition to the stability analysis in Section 4.2 would
therefore be to discretize the system. This would make it possible to, for example,
discuss what sampling times are necessary to obtain good performance and if any
new behaviours arise when discretizing the system.
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