

Department of Automatic Control

Autonomous Docking

of an Unmanned Surface Vehicle

using Model Predictive Control

Sofia Kockum

MSc Thesis
TFRT-6164
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Sofia Kockum. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2022

Abstract

Autonomous docking of marine vessels presents challenges different from the ones
faced when travelling at open sea or in an archipelago. External disturbances due
to the varying environment and accurate positioning at low speed are examples of
these kinds of challenges. The aim of this work has been to develop and implement
an autopilot algorithm for docking. This was to be done for a specific marine vessel,
using model predictive control (MPC). The vessel in question was Saab Kockums’
Piraya, an unmanned surface vehicle (USV).

The problem formulation includes design and implementation of the MPC itself,
as well as handling external disturbances and obstacle avoidance. Different software
approaches to solving the optimization problem have been explored, as well as
different solutions to the matter of advancing towards the desired position. Three
approaches were implemented in an MPC framework.

The developed controllers have been successfully tested in simulations, in
experiments using a small-scale model car dynamically representing the USV, as
well as on the USV at Gränsö, Västervik.

3

Acknowledgments

I would like to thank the Department of Automatic Control at LTH and Saab
Kockums for giving me the opportunity to work with this project and providing me
with everything needed. Thanks to WARA-PS (Wallenberg AI, Autonomous Systems
and Software Program Research Arena – Public Safety) for support with testing my
work on the actual vessel. Thanks also to Jens-Olof Lindh, Saab Kockums, who
contributed with extensive input and ideas during the process.

Also thank you to Alexander Persson, who took his time helping me to work with
the Linux system. I would also like to express my gratitude to my examiner Karl-Erik
Årzén for this opportunity to work with this technology.

At last, a special thank you to my supervisors Anders Robertsson, Birgitta
Wingqvist, and Björn Olofsson, who were always quick to support. A special thanks
to Anders who introduced me to this project.

5

Contents

1. Introduction 9
1.1 Related Work . 9
1.2 Problem Formulation . 10
1.3 Limitations . 11

2. Background 12
2.1 Model Predictive Control . 12
2.2 The Piraya . 14

3. Modelling 16
3.1 Coordinate Systems . 16
3.2 Model of the Ship . 17
3.3 Sway and Yaw Rate . 21
3.4 Disturbances . 21

4. Motion Planning and Control 23
4.1 One Target Position . 24
4.2 Waypoint Following . 25
4.3 Logged Trajectory . 27
4.4 Obstacle Avoidance . 28

5. Implementation and Simulation 31
5.1 Software . 31
5.2 Simulations . 32
5.3 Experiments with Ilon Car . 35

6. Results of Simulations and Experiments with Ilon Car 39
6.1 Simulations . 39
6.2 Experiments with Ilon Car . 45

7. Piraya Experiments at Gränsö 49
8. Conclusions 56

8.1 Future Work . 57
Bibliography 59

7

1
Introduction

Docking of a surface vehicle is a challenging task. Not only due to the necessity of
high precision when maneuvering close to a dock, but also to the need of taking
external disturbances and obstacle avoidance into consideration. The present study
addresses the main challenges one is faced by when performing docking of a surface
vehicle.

Figure 1.1 illustrates possible problematics of docking a boat. These kinds of
situations will not occur with autonomous docking.

Figure 1.1 Att angöra en brygga or Docking the boat. At least this situation will not
be a problem when considering unmanned vehicles. (Drawing loosely based on and
inspired by the movie Att angöra en brygga [Danielsson, 1965]. Illustration made by
the author.)

1.1 Related Work

Development of an autopilot for a marine vessel is described in [Voigt and Alkaysi,
2020]. The vessel in question is a personal watercraft’s. Main focus is to be able
to navigate at open sea with the specific vessel’s dynamic taken in consideration.

9

Chapter 1. Introduction

Navigation was done with waypoint following. To perform docking of an autonomous
surface vehicle (ASV) using nonlinear MPC, with focus on calculating a safe operation
area, is described in [Martinsen et al., 2020]. Regarding the vessel in focus in this
work, the Piraya, a previous project has explored autonomous docking [Wallenberg
AI, Autonomous Systems and Software Program (WASP), 2021a]. Thanks to this, an
efficient interface with sensors of the Piraya and Robot Operating System (ROS) had
already been implemented in the USV’s onboard computer.

Dynamic models for marine vehicles have been investigated, and they differ
from those for ground vehicles as well as aeral vehicles. In [Fossen, 1994], models
for marine vehicles are described. Most marine models are of the type greybox
models. This means that they partially need experimental data to be fully described,
as opposed to whitebox models which can be fully described based on theoretical
knowledge, and blackbox models which are exclusively based on experimental data
[Duun-Henriksen et al., 2013]. Once a greybox model has been described, it is
necessary to identify the specific parameters, and an approach for doing this targeting
USVs is described in [Ljungberg, 2020]. The greybox testing and modelling for the
Piraya has been performed by Ljungberg, and the Piraya system model is described
in [Ljungberg, 2021].

1.2 Problem Formulation

The purpose of this thesis is to explore autonomous docking of the USV Piraya.
This includes motion planning and control, as well as taking external disturbances
and obstacle avoidance into account. The proposition is that the vessel should be
controlled with an MPC. The usage and implementation of such a controller is to be
explored. The intention is that this thesis will contribute to future development of
docking algorithms for USVs.

To explore docking performance with MPC, the following topics are to be
investigated:

• To reach a target position with high accuracy.

• Taking requirements for navigation in harbor environment in consideration.

– Navigation should be at low speed.
– Considering avoidance of possible obstacles such as buoys and shallows.
– Avoidance of the dock, still being able to reach a position close to it.
– Investigation of what the main external disturbances are and how to take

them into consideration.

• Possible procedure(s) to navigate in harbor environment.

• Is MPC a possible solution to control the vessel in question?

10

1.3 Limitations

1.3 Limitations

The physical setup of the vessel is not included in the problem formulation, and
neither is the interface for sending control signals and receiving state data.

Known obstacles should be taken into account, and they are in this case assumed
to be static. Unknown or moving objects are not included.

11

2
Background

Unmanned vessels navigating on sea face different difficulties compared to unmanned
land vehicles. The environments and external disturbances are unpredictable and
nonlinear, causing various types of challenges. Furthermore, to navigate at open sea,
in an archipelago or in a harbor, can cause the seemingly similar environment to
vary substantially. The work described in this thesis will focus on the complexity
of maneuvering in a harbor and, more specifically, to the situation of docking. This
includes challenges of non-linear behavior of the vessel, because of wind, ocean
currents, waves, and drifting. It needs to be investigated how the vessel should
be controlled and maneuver both due to its specific vessel model, and due to the
situational aspects. It is of importance to not collide with the dock, even if it is to
be close to it, and reaching a specified position. The USV in question is part of the
WARA-PS (Wallenberg AI, Autonomous Systems and Software Program (WASP)
Research Arena – Public Safety) [Wallenberg AI, Autonomous Systems and Software
Program (WASP), 2021b] [Andersson et al., 2021]. It is mainly used to collect
data and to cooperate with other, autonomous robots [Wallenberg AI, Autonomous
Systems and Software Program (WASP), 2021a]. It is also an asset at the WASP
Research Arena for Public Safety, WARA-PS, a research arena with focus on public
safety.

Projects including the Piraya have already been developed, meaning that there
are some results possible to base this work on. The system model of the Piraya
is based on the established surface vehicle model described in Section 3.2, with
its specific parameters being investigated and set by [Ljungberg, 2021]. Since the
investigated situation involves docking and maneuvering in harbor area, velocities
will be relatively low, which is also the case when Ljungberg found the specific
parameters, using velocities from 1–2 m/s.

2.1 Model Predictive Control

Model predictive control, MPC, is a type of process control based on an optimization
problem. The general idea of it is to optimize the upcoming states over a finite time

12

2.1 Model Predictive Control

horizon, based on the current state at time instant 𝑡. When optimal control signals
have been computed, the first sample is applied. After this, at time instant 𝑡 + 𝑇𝑠,
where 𝑇𝑠 is the sample period, the optimization problem is solved anew [Åström and
Bernhardsson, 2016].

The optimization problem is based on the model of the process in question. Based
on the model, the behavior of the process can be predicted. The optimization problem
is solved with regard to a set of variables, defined through the process model. A set
of constraints also needs to be defined together with the process model. The cost
function is to be optimized subject to these constraints.

The optimization problem is solved at each time instant, for a number of samples
ahead. The number of samples ahead for which the problem is optimized, is called
the prediction horizon. The prediction horizon is a finite number of time slots, or
seconds. Its length can vary depending on the dynamics of the process, e.g., how far
ahead it would be feasible to predict. Since it is computationally expensive, it is not
desirable to have a prediction horizon longer than necessary.

The control horizon is defined as a subset of the prediction horizon. During the
control horizon, the control signals are allowed to vary, and are in a corresponding
manner a variable in the cost function. Control signals are calculated for the control
horizon but usually only the first values are used as input to the process. In this
thesis, the control horizon and the prediction horizon will be of the same length, as
the control signal is allowed to be changed at every time instant over the prediction
horizon.

A block diagram for a typical usage of MPC can be seen in Figure 2.1.

Figure 2.1 Schematic block diagram of a typical MPC usage. Control signals are
denoted by 𝑢, 𝜏𝐸 is an external disturbance, 𝑟 the reference value (often a reference
trajectory), and 𝑦 the state.

Model predictive control is favorable when systems of several variables are to be
controlled. The constraints are respected, but the process can still be run close to

13

Chapter 2. Background

them, which is favorable for efficiency [Åström and Bernhardsson, 2016]. Its main
advantage is the prediction of future dynamics and adjusted control signals at each
time slot, based on the system model, cost function and constraints.

A typical, general optimization problem for an MPC could look like (2.1). Here,
the cost function 𝐽 (𝑥, 𝑢, 𝑥ref) is to be minimized with regard to variables 𝑥 and 𝑢,
subject to the model of the process, initial conditions where the first value of the
prediction horizon, 𝑥0, is equal to 𝑥init, and the constraints for the variables, X and
U. The difference between state 𝑥𝑖 and the reference value 𝑥ref,𝑖 for each sample is
penalized with a weight matrix 𝑄. Changes in control signals, Δ𝑢 𝑗 = 𝑢 𝑗 − 𝑢 𝑗−1, are
penalized with weight matrix 𝑅, to avoid oscillation. The cost function is summed
over the prediction horizon 𝑁 .

minimize
𝑥,𝑢

𝐽 (𝑥, 𝑢, 𝑥ref) =
𝑁+1∑︁
𝑖=0

𝑥𝑖 − 𝑥ref,𝑖

2
𝑄
+

𝑁∑︁
𝑖=0

‖Δ𝑢𝑖 ‖2
𝑅

subject to 𝑥𝑖+1 = 𝑓 (𝑥𝑖 , 𝑢) ∀𝑖 ∈ 0 . . . , 𝑁
𝑥0 = 𝑥init

𝑥 ∈ X
𝑢 ∈ U

(2.1)

2.2 The Piraya

The vessel used is the Piraya of Saab Kockums, and can be seen in Figure 2.2. It
has a length of 4 m and a width of 1.4 m. The motor is an outboard motor and is
placed in the back of the vessel. The Piraya is equipped with a number of sensors. For
positioning, Onboard INS (Inertial Navigation System) and GPS (Global Positioning
System) without RTK (Real Time Kinematic) were used. This provided position,
heading, forward velocity, and heading rate.

The vessel is controlled through throttle and angle of the throttle, in this thesis
called rudder position. These can be controlled in a ROS environment.

14

2.2 The Piraya

Figure 2.2 The Piraya vessel of Saab Kockums, with a length of 4 m.

15

3
Modelling

To describe the dynamics of the vessel, a system model is necessary. This will be
described in the following, as well as the two frames necessary to describe the vessel’s
state.

3.1 Coordinate Systems

Two coordinate frames are of interest for the model setup: the global frame and the
local frame of the vessel. The global one, indexed 𝑛, is the NED-frame (north, east,
down). This frame is considered a tangent to the Earth and is rotating with the Earth’s
axis. Since the vessel in this work will move within an area small enough for the
Earth’s curvature to have negligible impact, and the vessel will follow the Earth’s
rotation, neither will have a considerable impact. This global frame is principally
used for tracking of the vessel’s position. The position in global coordinates will in
the following sections and chapters of this thesis be notated without the 𝑛-index.

The vessel’s local frame, with index 𝑏, is body-fixed and useful for the control of
the vessel. It enables tracking of forward and sideways velocities, as well as rotational
velocities. The six degrees of freedom for the vessel’s local frame are described in
Table 3.1, where the same notation as in [Fossen, 1994] is used. It may be noted that
the nomenclature for velocity in the 𝑧-direction is heave when considering surface
vehicles. The heave usually concerns offset in 𝑧-direction due to waves. The forces
and moments will be seen in the system equations of the vessel, in Section 3.2. The
two frames in relation to each other can be viewed in Figure 3.1.

16

3.2 Model of the Ship

Table 3.1 The six DOF of the vessel in the body-fixed frame.

DOF Axis and Euler angle Velocity Motion Forces and Moments
1 𝑥𝑏 𝑢 surge 𝑋

2 𝑦𝑏 𝑣 sway 𝑌

3 𝑧𝑏 𝑤 heave 𝑍

4 𝜙 𝑝 roll 𝐾

5 𝜃 𝑞 pitch 𝑀

6 𝜓 𝑟 yaw 𝑁

Figure 3.1 Coordinate systems NED, with index 𝑛, and local frame of the boat, with
index 𝑏.

3.2 Model of the Ship

The ship model is based on the nonlinear model described in [Fossen, 1994]. It is
expressed as described in Equation (3.1). The components of this equation will be
further explained in the following.

¤̃𝜼 = R̃(𝜼̃)𝝂̃
M̃ ¤̃𝝂 + C̃(𝝂̃)𝝂̃ + D̃(𝝂̃)𝝂̃ + g̃(𝜼̃) = 𝝉̃ + 𝝉̃𝐸

}
(3.1)

The pose vector, 𝜼̃ contains the coordinates in 𝑥-, 𝑦- and 𝑧-directions as well as
the angle rotations around the mentioned axes. The velocity vector 𝝂̃ contains the
corresponding linear and angular velocities. This model is of 6 DOF (indicated by
tilde), which would be accurate for, e.g., an underwater vessel. As the vessel for
this project is a surface vessel, the number of DOFs is reduced to 3 (variables now

17

Chapter 3. Modelling

indicated without tilde). It is assumed that the offset along 𝑧-direction due to waves
and that the roll and pitch are negligible in the case of position tracking. Hence, in
the following equations of the model, the pose vector is reduced to position in 𝑥, 𝑦,
and yaw 𝜓, and velocity vector to the corresponding velocities:

𝜼 =


𝑥

𝑦

𝜓

 , 𝝂 =


𝑢

𝑣

𝑟

 . (3.2)

The transformation matrix R(𝜼) in 3 DOFs will have the simplified appearance as
shown in (3.3). This matrix transforms from the vessel’s local, body-fixed coordinate
system to the global, NED coordinate system.

R(𝜓) =

cos(𝜓) − sin(𝜓) 0
sin(𝜓) cos(𝜓) 0

0 0 1

 (3.3)

The matrix M is divided into two parts, in accordance with [Fossen, 1994], which
are described below. The M𝑅𝐵 is the rigid body inertia matrix, dealing with forces
due to moving the rigid body, and M𝐴 is the added inertia matrix, dealing with
forces and moments due to hydrodynamics [Ljungberg, 2020]. For notation of the
hydrodynamic derivatives, 𝑋 ¤𝑢 , 𝑌 ¤𝑣 , 𝑌 ¤𝑟 , 𝑁 ¤𝑟 , in this section, the same notation as in
[Fossen, 1994] and [Ljungberg, 2020] is used. As an example for explanation retrieved
from [Ljungberg, 2020], 𝑋 is the hydrodynamic added mass force in the 𝑥𝑏-direction,
due to an acceleration ¤𝑢 along the 𝑥𝑏 axis: 𝑋 = 𝑋 ¤𝑢 ¤𝑢, where 𝑋 ¤𝑢 = 𝜕𝑋/𝜕 ¤𝑢.

M = M𝑅𝐵 + M𝐴 =


𝑚 0 0
0 𝑚 𝑚𝑥𝐺
0 𝑚𝑥𝐺 𝐼𝑧

 +

𝑋 ¤𝑢 0 0
0 𝑌 ¤𝑣 𝑌 ¤𝑟
0 𝑌 ¤𝑟 𝑁 ¤𝑟

 (3.4)

Here, 𝑚 is the vessel’s mass, and 𝐼𝑧 is the inertia about the boat’s local 𝑧 axis. The
variable 𝑥𝐺 is the distance from center of mass to the origin of the coordinate system
of the boat. These will coincide, hence simplifying the rigid body inertia matrix to

M𝑅𝐵 =


𝑚 0 0
0 𝑚 0
0 0 𝐼𝑧

 . (3.5)

The 𝐶-matrix describes Coriolis and centripetal forces which arise as the local
coordinate system of the vessel moves and rotates with respect to the fixed, global
coordinate system [Ljungberg, 2020]. In the same manner as the M-matrix, this is
divided into a matrix of rigid body kinematics and hydrodynamics:

C(𝝂) = C𝑅𝐵 (𝝂) + C𝐴(𝝂) (3.6)

18

3.2 Model of the Ship

The Coriolis matrices are described in accordance to [Ljungberg, 2020], and simplified
in accordance to Equation (3.7a) due to the same assumption that 𝑥𝐺 is negligible.

C𝑅𝐵 (𝝂) =


0 0 −𝑚(𝑥𝐺𝑟 + 𝑣)
0 0 𝑚𝑢

𝑚(𝑥𝐺𝑟 + 𝑣) −𝑚𝑢 0

 =


0 0 −𝑚𝑣
0 0 𝑚𝑢

𝑚𝑣 −𝑚𝑢 0

 (3.7a)

C𝐴(𝝂) =


0 0 −(𝑌 ¤𝑣𝑣 + 𝑌 ¤𝑟𝑟)
0 0 𝑋 ¤𝑢𝑢

𝑌 ¤𝑣𝑣 + 𝑌 ¤𝑟𝑟 −𝑋 ¤𝑢 0

 (3.7b)

The matrix D(𝝂) is the hydrodynamic damping and is, as suggested by [Fossen,
1994], expressed as in (3.8), with the linearized damping moments and forces. The
surge and steering mode can be decoupled when considering a slender vessel at low
speed, which is the case here.

D(𝝂) = −

𝑋𝑢 0 0
0 𝑌𝑣 𝑌𝑟
0 𝑁𝑣 𝑁𝑟

 (3.8)

In Equation (3.1), the term g(𝜼) denotes static forces, inter alia due to gravitational
forces. In [Ljungberg, 2021], these are assumed to be zero.

The external disturbances 𝜏𝐸 are, in this case, the three main ones of wind, waves
and currents:

𝝉𝐸 = 𝜏wind + 𝜏waves + 𝜏current (3.9)

The vector u = [𝑢𝑡 𝑢𝑟]𝑇 is the control signals, from thruster (𝑢𝑡) and rudder (𝑢𝑟).
Note that bold u is the vector containing these control signals, and should not be
confused with surge, 𝑢. The vector 𝝉 (see Equation 3.10) is the impact on the vessel
from the control signals, i.e., the propulsion forces and moments [Fossen, 1994]
[Ljungberg, 2021]. Since the Piraya only has one, 𝑥-axis centered outboard motor,
the actuator forces can be modelled relatively simply. As in [Ljungberg, 2021], it
is assumed that the dimension and direction of the force from the motor will be
proportional to the number of revolutions and the angle of it. If the motor is not
mounted in the middle of the vessel’s rotation center there will be a moment. For the
considered vessel, the motor is mounted in the middle in the back of the boat, hence
the displacement along the 𝑦-axis is zero but nonzero along the 𝑥-axis. This gives the
actuator forces along 𝑥-, 𝑦-axis, and about 𝜓 as in (3.10). Here, the parameters 𝜏𝑖
are modelling the actuator forces and Δ𝑥 is the offset along the 𝑥-axis of where the

19

Chapter 3. Modelling

motor is mounted and the vessel’s center of rotation.

𝝉 =


𝜏𝑥
𝜏𝑦
𝜏𝜓


𝜏𝑥 (𝑡) = 𝑢𝑡 (𝑡) cos(𝑎𝑢𝑟 (𝑡))
𝜏𝑦 (𝑡) = 𝑢𝑡 (𝑡) sin(𝑎𝑢𝑟 (𝑡))
𝜏𝜓 (𝑡) = Δ𝑥𝑢𝑡 (𝑡) sin(𝑎𝑢𝑟 (𝑡)) ∝ 𝜏𝑦 (𝑡)


(3.10)

The control signals 𝑢𝑡 and 𝑢𝑟 are integers in the intervals [0, 100] and [−100, 100],
respectively. For throttle, a signal of 𝑢𝑡 = 0 corresponded to the motor being at rest,
motionless, while 𝑢𝑡 = 100 corresponded to maximal surge. For rudder, since the
motor can be rotated ±𝜋/6 rad, the scaling coefficient 𝑎 = 𝜋/600, in (3.10). Note
that this gives us the definition set U for the control signals u; u ∈ U.

This gives us the simplified model of the Piraya vessel, in 3 DOFs:

¤𝜼 = R(𝜓)𝝂
M¤𝝂 + C(𝝂)𝝂 + D(𝝂)𝝂 = 𝝉 + 𝝉𝐸

}
(3.11)

In [Ljungberg, 2021] the model described in (3.11) is discretized using an Euler
explicit method. The result is

𝑢(𝑡 + 𝑇𝑠)
𝑣(𝑡 + 𝑇𝑠)
𝑟 (𝑡 + 𝑇𝑠)

 =

𝑢(𝑡)
𝑣(𝑡)
𝑟 (𝑡)

 +

𝜃1𝑢(𝑡) 𝜃2𝑣(𝑡)𝑟 (𝑡) 𝜃3𝜏𝑥 (𝑡)
𝜃4𝑣(𝑡) 𝜃5𝑢(𝑡)𝑟 (𝑡) 𝜃6𝜏𝑦 (𝑡)
𝜃7𝑟 (𝑡) 𝜃8𝑢(𝑡)𝑣(𝑡) 𝜃9𝜏𝑦 (𝑡)

 (3.12)

which, in a shorter form will be written as

𝝂(𝑡 + 𝑇𝑠) = 𝝂(𝑡) + 𝚿(𝑡) (3.13)

in this thesis. The parameter 𝑇𝑠 = 0.2 s is the time steps at which the data were logged
when the parameters 𝜽 were determined. The size of Δ𝑥 is determined together with
the other parameters, hence it is part of 𝜽. It could be worth to notice, that only
linear damping was taken into consideration, as it was assumed to be dominant at
low speeds. In the same manner, the wake was neglected, as it has a negligible effect
at low speeds.

Ljungberg determined and validated the parameters of 𝜽, and they are stated in
[Ljungberg, 2021] to be

𝜽 = [𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 𝜃9]
= [−0.0478 0.1259 0.0166 −0.2375 0.1526

. . . 0.0737 −0.3191 0.0031 −0.0345] . (3.14)

20

3.3 Sway and Yaw Rate

Since the parameters were verified for velocities up to 2 m/s, the definition set for
surge is set to 0 ≤ 𝑢 ≤ 2, called V. If velocity is negative, i.e., the vessel is reversing,
it will be due to external disturbances since the allowed control-signal interval will
only cause forward motion.

3.3 Sway and Yaw Rate

In the model (3.12), it can be seen that the sway and yaw rate are related through
the 𝜏𝑦 term. This means that when setting the rudder to turn one way, the vessel
will also get a sideways velocity in the counter direction. This means that certain
maneuvers may be difficult or not possible to accomplish. For instance, if the vessel
has a dock or other type of obstacle close to port, then a control signal to turn
starboard make the vessel initially sway to port and possibly cause a collision. This
correlation can be distinctively seen in the simulations (Chapter 6), as well as noticed
in some of the experiments (Chapter 7).

3.4 Disturbances

There are several difficulties to modelling waves and currents in a harbor environment,
since these are specific due to the set of the specific area. Out of the three main
disturbances, wind would be the easiest one to measure, if access to an anemometer
is possible.

To model wind disturbances in simulations, one can choose to do it in several
ways. In [Naukowe and Miller, 2014], a simple model is established in such a way
that a relative wind differs from 0 to 1 m/s in velocity, and with an angle differing
between 0° to 40°.

In [Fossen, 1994], another approach is discussed, which is a more complex model.
Wind is modelled in terms of a mean speed of the wind combined with smaller
variations simulating gusting.

In [Yang et al., 2013], the disturbances of wind, waves and current are all lumped
together into a vector, giving time-varying environmental disturbances.

Yet another approach could be to model the drag force of wind in respect to the
drag coefficient and the vessel’s reference area at each time instant. The drag force 𝐹𝑑
would be defined as in Equation (3.15) [Wikimedia Foundation, Inc., 2022], where 𝜌
is the density of the wind, 𝑢 its relative velocity to the vessel, 𝐴 the reference area,
and 𝑐𝑑 the drag coefficient,

𝐹𝑑 =
1
2
𝜌𝑢2𝑐𝑑𝐴. (3.15)

To only model wind could be sufficient in simulations, but when running experiments
with the boat it might not be sufficient to assume an offset is only due to wind. To be
able to compensate for all kinds of disturbances, they could be lumped together in

21

Chapter 3. Modelling

such a manner as to measure the offset per second, when all actuator forces are zero.
This would give a vector of offset velocities in global coordinates, along the 𝑥- and
𝑦-directions, as well as rotational. The offset vector is multiplied with the inverse
of the rotation matrix, R(𝜓)−1, to obtain the corresponding offset in the body-fixed
frame. If these are added to the velocities in the model as shown in (3.12), this would
give an approximation of all three main disturbances. This last type of disturbance
modelling was implemented into the simulations.

Given a measured offset in the global frame of 𝑢𝑛,𝑑 , 𝑣𝑛,𝑑 , and 𝑟𝑛,𝑑 in 𝑥- and
𝑦-direction for a time period of 𝑇𝑠 , the system equation of (3.12) could be expressed
as 

𝑢𝑑
𝑣𝑑
𝑟𝑑

 = R(𝜓)−1

𝑢𝑛,𝑑
𝑣𝑛,𝑑
𝑟𝑛,𝑑


𝑢(𝑡 + 𝑇𝑠)
𝑣(𝑡 + 𝑇𝑠)
𝑟 (𝑡 + 𝑇𝑠)

 =

𝑢(𝑡)
𝑣(𝑡)
𝑟 (𝑡)

 +

𝜃1𝑢(𝑡) 𝜃2𝑣(𝑡)𝑟 (𝑡) 𝜃3𝜏𝑥 (𝑡)
𝜃4𝑣(𝑡) 𝜃5𝑢(𝑡)𝑟 (𝑡) 𝜃6𝜏𝑦 (𝑡)
𝜃7𝑟 (𝑡) 𝜃8𝑢(𝑡)𝑣(𝑡) 𝜃9𝜏𝑦 (𝑡)

 +

𝑢𝑑
𝑣𝑑
𝑟𝑑




. (3.16)

22

4
Motion Planning and
Control

For the task of finding the correct position by a dock and navigating in harbor
environment, three main approaches have been developed and implemented. The first
approach focuses on one target position. The second approach has the implementation
of reaching waypoints on its way to the target position. The third approach is to follow
an already logged trajectory.

For these three approaches, an additional application of obstacle avoidance was
developed. The function of this can be added on to any of the three approaches.

It is assumed that coordinates and eventual heading of target position, waypoints,
dock, or obstacles are known and given in the controller. These could for example be
known from a map or correspondingly.

Differences in the cost functions and constraints of the approaches will be
described in the following section. However, they are all based on the general
optimization problem

minimize
𝜼,𝝂,u

𝐽spec (𝜼, 𝝂, 𝜼ref , 𝝂ref , u)

subject to
𝝂𝑖+1 = 𝝂𝑖 + 𝚿𝑖

𝜼𝑖+1 = 𝜼𝑖 + 𝑇𝑠R(𝜓𝑖)𝝂𝑖+1

}
∀𝑖 ∈ 0 . . . , 𝑁

𝜼0 = 𝜼init, 𝝂0 = 𝝂init

u ∈ U
𝜼 ∈ X
𝝂 ∈ V,

(4.1)

where 𝐽spec is the cost function to be specified for the approach, 𝜼 and 𝝂 are as
described in (3.2), 𝜼ref and 𝝂ref their corresponding reference values which also are
specified for the approach, u is the control signals, and 𝑇𝑠 the sampling period. The
constraints are given by the model dynamics, initial conditions with initial values
𝜼init and 𝝂init, and the variable constraints X, U, and V. In (3.13), 𝚿𝑖 is defined. If

23

Chapter 4. Motion Planning and Control

disturbances are added to this, 𝚿𝑖 will have an additional term of [𝑢𝑑 𝑣𝑑 𝑟𝑑]𝑇 ,
as defined in (3.16).

In all the cost functions specified for the approaches, the weight matrix 𝑅 will
penalize usage of control signals and hence, in extension, energy. Based on empirical
testing, 𝑅 is defined as

𝑅 = diag(0.001, 0.01). (4.2)

A matrix 𝐼 will penalize change of control signals, to avoid oscillation. Matrix 𝐼 is
the identity matrix.

4.1 One Target Position

For the first approach, a single target position is given, which includes 𝑥- and
𝑦-coordinates as well as the heading. The path to the target position is not specified.
This means the path is planned purely based on the MPC, with cost function defined
as

𝐽endpoint (𝜼, 𝝂, 𝜼ref , 𝝂ref , u) =

𝜼0 − 𝜼ref,0

2
𝑄1

+ 𝑞𝜓𝑐𝜓 (𝜼0) + ‖𝝂0‖2
𝑄2

+
𝑁∑︁
𝑗=0

(

𝜼 𝑗+1 − 𝜼ref, 𝑗+1

2

𝑄1
+ 𝑞𝜓𝑐𝜓 (𝜼 𝑗) +

𝝂 𝑗+1 − 𝝂ref, 𝑗+1

2
𝑄2

+

u 𝑗 − u 𝑗−1

2
𝐼
+

u 𝑗

2
𝑅

)
. (4.3)

Definition of the weights are given in the following.
When only one target position is given, all reference values will be the target

position. This means that all optimized path positions over the prediction horizon
will strive to that one position. Hence, the cost function (4.3) is penalizing when
being far away from the target position, with quadratic cost and weight matrix 𝑄1.
Velocities are also penalized with quadratic cost and weight matrix 𝑄2.

While the optimal path is being calculated, that is, while the desired target position
is not yet within the prediction horizon, distance the target coordinates (𝑥end, 𝑦end)
will be highly penalized. However, error in the heading, w.r.t. the heading at the target
position, should not be as heavily penalized while being far away from the goal but
should increase as the target position is being approached and coming closer. Neither
should velocities strive to be zero, as the reference velocities 𝝂ref for end state were
set to zero, while approaching the goal state. Hence, the weights 𝑄1 and 𝑄2 while
aiming for the desired target position, are chosen as

𝑄1 = diag(100, 100, 0), 𝑄2 = diag(0, 0, 0). (4.4)

As the target position is being approached, it becomes more important to reach the
exact goal state. As soon as the desired target position is within the prediction horizon,

24

4.2 Waypoint Following

the weight matrices will be changed such that there will be more weight on the 𝑥-
and 𝑦-position coordinates and on the velocities. When the last optimized position
over the prediction horizon is within a certain tolerance of the target position, the
state optimization will be more exact with the weight matrices as

𝑄1 = diag(1000, 1000, 0), 𝑄2 = diag(100, 100, 100). (4.5)

For the heading, on the other hand, the cost is defined as suggested in [Martinsen
et al., 2020], with heading cost function 𝑐𝜓 (𝜼 𝑗). The defined cost of the heading
consists of one part of the heading error, and one part which is a Gaussian function
and reduces the penalization when the goal position is far away. The heading error
cost can be seen in (4.6), where 𝑞𝜓 = 20 and 𝛿 = 10.

𝑞𝜓𝑐𝜓 (𝜼 𝑗) = 𝑞𝜓
1
2
(1 − cos(𝜓 𝑗 − 𝜓ref)) exp

((𝑥 𝑗 − 𝑥ref)2 + (𝑦 𝑗 − 𝑦ref)2

2𝛿2

)
(4.6)

This method will generate a rather straight path. Depending on the target heading and
from which direction the vessel is approaching, only having one specified desired
target point could be sufficient. However, in, for example, a situation when the vessel
is travelling from the west towards a target position at east with target heading north,
it could be desirable to travel a smoother path and reach the target position from the
south. Especially if there is a dock, or similar, to the east of the target position. This
is illustrated in Figure 4.1.

Figure 4.1 Illustration of when it might not be sufficient to only specify a target
position, where the vessel will take the shortest route (full line) and precision of end
heading might be suffering. For precision, to take the dashed route could be more
efficient, giving a smoother path.

4.2 Waypoint Following

The second approach is the waypoint approach. This enables another path than the
most straight forward, with the possibility to add points to reach in order on the
way towards the target position. The number of waypoints can differ from one up to
any number. In the scenario described previously, when reaching a target position

25

Chapter 4. Motion Planning and Control

from the west with end heading to the north, it would with this waypoint solution be
possible to add a waypoint south of the target position. The vessel would then have a
smoother approach, first going south of the target position and reaching it with the
correct heading. The waypoints are reached in order, having only one waypoint at a
time as reference point. When the vessel is within a specific radius of the waypoint,
the reference value will switch to the next waypoint. This makes it possible to keep a
smooth path. Simulations of the vessel in question were made, where the vessel’s
surge 𝑢 was kept around 2 m/s, and full rudder signal was given. This showed that
the model had a turning radius of 12 m. The waypoint radius in the simulations is
hence 5 m, to make it reach the point close enough but still have a relatively smooth
path. This is with the assumption that the desired route is somewhat forward and not
to make a U-turn. If this is desired, the waypoint radius should be considered to be
changed to approximately 12 m. A schematic of the waypoint following can be seen
in Figures 4.2 and 4.3. In these figures, it is possible to clearly see how the vessel
first gets a side velocity to port when it turns rudder to go to starboard, as mentioned
in Section 3.3. The desired waypoints are given as a vector with coordinates of each

Figure 4.2 Waypoint following. Green circles are of radius corresponding to when
the reference point is set to the next waypoint. Red lines indicate the reference path
if the vessel were to reach each point precisely and then turn in place. Black line
indicates the actual, travelled path.

point, in the order in which they are to be reached. The waypoints can be defined
through, for example, sea maps as in [Eniro Sverige AB, 2022]. Hence, it is assumed
that no reference direction will be given, but only 𝑥- and 𝑦-coordinates in the global
frame. The reference value for heading will be set to zero at all the given coordinates,
but will have zero weight in the weight matrix 𝑄1, as in (4.4), such that only reaching

26

4.3 Logged Trajectory

Figure 4.3 Reference image from simulations, as reference for the drawing in
Figure 4.2.

the desired waypoints is prioritized. The cost function is then chosen as

𝐽waypoints (𝜼, 𝝂, 𝜼ref , 𝝂ref , u) =

𝜼0 − 𝜼ref,0

2
𝑄1

+ ‖𝝂0‖2
𝑄2

+
𝑁∑︁
𝑗=0

(

𝜼 𝑗+1 − 𝜼ref, 𝑗+1

2

𝑄1
+

𝝂 𝑗+1 − 𝝂ref, 𝑗+1

2
𝑄2

+

u 𝑗 − u 𝑗−1

2
𝐼
+

u 𝑗

2
𝑅

)
. (4.7)

Notice that the function for heading error, (4.6), is not used in this case, since no
weight is to be put on heading positioning while following the waypoints. The
only given, desired heading will be defined for the desired target position, after all
waypoints have been reached. In the same manner as for the approach of only having
one target position, when the target position is within the prediction horizon, the
weight matrices will be changed to

𝑄1 = diag(1000, 1000, 1000), 𝑄2 = diag(100, 100, 100). (4.8)

It is assumed that the waypoints are given in the desired reaching order in the given
vector. No matter the vessel’s initial state, the MPC will begin with optimizing
the trajectory to reach the first waypoint, and thereafter continue with the second
waypoint of the vector, and so on. Like in the case of optimizing for a single target
position, all optimized states over the prediction horizon will strive to only one point
as reference value, e.g., the current waypoint. This means that 𝜂ref is constant over
the prediciton horizon.

4.3 Logged Trajectory

The third approach is to follow a trajectory logged by an earlier simulation or logged
when it was travelled by the real vessel. The advantage of this is that it is known

27

Chapter 4. Motion Planning and Control

to be a feasible route, under the current circumstances. It could also be a trajectory
computed by a higher level path planner. Unlike the waypoint following, these points
will be connected to a certain speed. It is of importance that the data are logged
with the same sampling period as the model is simulated with, to reach the same
speed. If for example the reference trajectory is logged with time steps 𝑇𝑠 = 0.2 s
at a velocity of 1 m/s and the model follows it with time step 𝑇𝑠 = 0.5 s, it will be
travelling with a velocity of 0.4 m/s. Unless this is a desired behavior, the trajectory
could be resampled.

Unlike the two approaches previously mentioned, this does not have a target
point and hence only has the weight matrices described in (4.4). The cost function is
defined as

𝐽loggedTraj (𝜼, 𝝂, 𝜼ref , 𝝂ref , u) =

𝜼0 − 𝜼ref,0

2
𝑄1

+ ‖𝝂0‖2
𝑄2

+
𝑁∑︁
𝑗=0

(

𝜼 𝑗+1 − 𝜼ref, 𝑗+1

2

𝑄1
+

𝝂 𝑗+1 − 𝝂ref, 𝑗+1

2
𝑄2

+

u 𝑗 − u 𝑗−1

2
𝐼
+

u 𝑗

2
𝑅

)
. (4.9)

4.4 Obstacle Avoidance

For obstacle avoidance, two areas of use have been investigated. The first is avoidance
of a point obstacle, for example a rock. It is possible to add a radius to this obstacle,
for which it is not allowed to travel within the corresponding circle. In addition, it
is possible to add a "safety radius" with a soft constraint in the MPC, using a slack
variable. The slack variable is a part of the cost function in the MPC, where it is
optimized for each position. The slack variable is multiplied with a high figure in the
cost function, such that if it needs to have a value greater than zero, there will be a
high cost, and so it will only be greater than zero if it is unavoidable. The second
scenario implemented is the dock at Gränsö. The goal is to get close to the dock
but not to touch it. Therefore, the coordinates of the dock are introduced as a hard
constraint. This is implemented with regard to the Euclidean distance between the
vessel’s position and the position of the dock, plus the vessel’s dimensions and a
safety margin of choice. The coordinates of the dock and the potential obstacle leave
us with the allowed set of values for the state vector, 𝜼 ∈ X.

As an example, if the obstacle avoidance slack variable was to be added to the cost
function of reaching a target position, as discussed in Section 4.1, the optimization

28

4.4 Obstacle Avoidance

problem would be to minimize

𝐽obstacle (𝜼, 𝝂, 𝜼ref , 𝝂ref , u, s) =

𝜼0 − 𝜼ref,0

2
𝑄1

+ 𝑞𝜓𝑐𝜓 (𝜼0) + ‖𝝂0‖2
𝑄2

+ 𝑘𝑠𝑠0
𝑁∑︁
𝑗=0

(

𝜼 𝑗+1 − 𝜼ref, 𝑗+1

2

𝑄1
+ 𝑞𝜓𝑐𝜓 (𝜼 𝑗) +

𝝂 𝑗+1 − 𝝂ref, 𝑗+1

2
𝑄2

+

u 𝑗 − u 𝑗−1

2
𝐼
+

u 𝑗

2
𝑅
+ 𝑘𝑠𝑠 𝑗+1

)
(4.10)

where the slack coefficient 𝑘𝑠 was chosen to a high figure to give high penalization
when the slack variables was given a value, in this case 109. For all the slack variables
holds that s ≥ 0.

For this problem, the constraints√︃
(𝑥 𝑗 − 𝑥obst)2 + (𝑦 𝑗 − 𝑦obst)2 ≥ (𝑟obst + 𝑟safety) − 𝑠 𝑗 , 𝑗 = 0, . . . , 𝑁, 𝑁 + 1 (4.11)

and√︃
(𝑥 𝑗 − 𝑥dock,𝑖)2 + (𝑦 𝑗 − 𝑦dock,𝑖)2

≥
√︂(𝐿𝑝

2
cos(𝜓 𝑗) −

𝑊𝑝

2
sin(𝜓 𝑗)

)2
+
(𝐿𝑝

2
sin(𝜓 𝑗) +

𝑊𝑝

2
cos(𝜓 𝑗)2

)
+ 𝑚dock,

𝑗 = 0, . . . , 𝑁, 𝑁 + 1, 𝑖 = 0, . . . , 𝐷 − 1, 𝐷 (4.12)

hold. Here, (𝑥obst, 𝑦obst) are coordinates of the obstacle in question, 𝑟obst its radius
and 𝑟safety the safety radius. The parameters (𝑥dock,𝑖 , 𝑦dock,𝑖) are the coordinates for
the dock and 𝐷 the number of coordinates — so, to set the conditions regarding the
dock, each of its coordinates is iterated for each position (𝑥 𝑗 , 𝑦 𝑗) of the vessel in
relation to each of the dock coordinates, (𝑥dock,𝑖 , 𝑦dock,𝑖). The parameter 𝑚dock can
be seen as a margin to the dock, and 𝐿𝑝 and 𝑊𝑝 are the length and width of the
vessel. The direction of the vessel will affect how close the vessel is to the obstacle,
since marine vehicles in general have a greater length than width. The reason why
the vessel’s dimensions currently only are taken into account when being close to
the dock, is that not including it in the constraints for avoiding a circular obstacle
lowered the computation time of the MPC. Since it is desired to let the vessel come
close to the dock, it was prioritized to make use of the dimensions in this situation.
Instead, the safety radius was added to the obstacle.

In a corresponding manner, the slack variable should be added to the cost functions
of waypoint following or logged trajectory, if there are obstacles to take into account.

Illustration for the obstacle avoidance can be seen in Figure 4.4, and for the dock
in Figure 4.5.

29

Chapter 4. Motion Planning and Control

Figure 4.4 Illustration of the situation and different notations of obstacle avoidance.

Figure 4.5 Illustration of the situation and different notations of dock avoidance.

30

5
Implementation and
Simulation

The autopilot using MPC was implemented and tested in simulations. This allowed
for fine-tuning of parameters, such as those in the cost function, and performance, for
example to lower computation time. After successful testing of the implementation,
it was run on a small-scale model car with Ilon wheels. This kind of wheels enables
the vehicle to move freely in the 𝑥𝑦-plane, without the restrictions of principally
only being able to move forwards or backwards, as is associated to vehicles’ normal
wheels. The fact that the car was equipped with Ilon wheels made it possible for it
to physically emulate movement of the boat. Experimenting on the car did not only
simulate movement and usage of the MPC, but also a ROS interface. This facilitated
the preparation for the ROS communication and necessary changes to be made in
order for the implementation to work in this kind of environment in experiments, as
opposed to when only being run in a digital Python environment.

5.1 Software

There are several software solutions available to implementing an MPC controller.
Some of them were tested, to make a decision of which one to use.

MATLAB has a model predictive control toolbox, [The MathWorks, Inc., 2022b].
It has several examples and can be used together with Simulink. Another toolbox
which was tested in combination with the MPC toolbox was the Control System
Toolbox [The MathWorks, Inc., 2022a]. This toolbox facilitated the specification of a
system model.

Another project is CVX/CVXGEN, which allows you to specify a convex
optimization problem [CVXGEN, 2013]. Code is generated, either to use with
MATLAB as interface or to use as C code. CVX also has support for Python.

Yet another tool for solving optimization problems is CasADi [CasADi, 2018]
[Andersson et al., 2019]. It has an intuitive interface for setting up various system
models and cost functions. This tool works with Python, MATLAB/Octave and C++.

31

Chapter 5. Implementation and Simulation

Since control of the real Piraya vessel will be done through ROS, it was desirable
to do simulations in the same programming language as will be used for the Piraya.
Hence, either Python or C++ should be used. It was chosen to use CasADi in Python,
to implement the MPC.

5.2 Simulations

For the simulations, the code was divided into three scripts, in addition to the main
function. A schematic overview of the simulation scripts and their interactions can be
seen in Figure 5.2. In the main function, the MPC function is called. Here the start
position, start velocities, initial control signals, prediction horizon, maximum number
of simulated seconds, and desired references are defined and used as input parameters
to the MPC. Desired references vary depending on which approach is to be run,
as described in Chapter 4. This is information such as target state, waypoints, and
logged reference trajectory. The three other scripts will be explained in the following,
starting with the script performing the MPC, which calls the scripts for calculation
of the reference trajectory or point(s), and the script for simulating boat movement.

MPC and Simulation
The discrete-time system described in (3.12) was set up and defined as a symbolic
CasADi function, with input parameters 𝝂(𝑡) and u(𝑡) and output 𝝂(𝑡 +𝑇𝑠). After this,
two CasADi symbolic arrays of size (𝑁 + 1, 3), where 𝑁 is the prediction horizon in
number of steps (that is, the prediction horizon in seconds divided by the time step
𝑇𝑠), were defined to contain position and velocities, and one CasADi symbolic array
of size (𝑁, 2) was created to contain the control signals. These three arrays were
defined as the variables, to which the problem should be optimized with respect to.
The problem is set up by iterating over the prediction horizon, defining how velocity
and position at time step 𝑡 + 𝑇𝑠 relates to what it was at time step 𝑡. For the velocities,
this is given by Equation (3.12), and for positions it is given by (5.1). That is, they
are defined by the vessel’s system dynamics.

In the case of a measured disturbance vector, as described in Section 3.4, this
was added to the model dynamics. It was both added to the equations by which the
problem setup is described, and to the boat model simulating one time step forward,
as described in Section 5.2.

The velocity at time 𝑡 is multiplied with the time step and added to the last
position coordinate. The velocities are given in the vessel-fixed coordinate system
and are hence multiplied with the rotation matrix to generate coordinates in the global
coordinate system:

𝜼(𝑡 + 𝑇𝑠) = 𝜼(𝑡) + R(𝜓(𝑡))𝝂(𝑡)𝑇𝑠 (5.1)

These constraints were set up for each time instant of the prediction horizon, and so
was the cost function. The cost functions are specified for the different approaches,
and are described in Chapter 4.

32

5.2 Simulations

Figure 5.1 A schematic overview of the simulation scripts.

The optimization problem was solved at each sampling instant. It was also solved
one time just before the iterations began, without sending those first control signals,
but the first values of the optimized state, velocity, and control signals were set as
first initial guesses for the numerical solution of the MPC optimization problem to
avoid extra initial delay which else occured. For each iteration, the first values of the
optimal vectors were set as initial guesses for the next iteration of the MPC.

Reference Calculation
For reference calculation, the functions to calculate the different kinds of reference
points varied depending on how the desired route of the vessel is defined, as described
in Sections 4.1–4.3; if it is only a target state, a target state with sub points along the
way (waypoint following), or a trajectory defined by sampled points. For the first and
second approaches, when only a target position and when having a target position with
waypoints, the weight matrices are to be updated once the target position is within
the prediction horizon. In simulations with no unpredicted external disturbance, it
would be possible to set the condition such that the weight matrices change when
the last optimized state over the prediction horizon exactly equals the target position,

33

Chapter 5. Implementation and Simulation

but since it is not certain that it will be this exact when running experiments, it was
instead set to having a tolerance of closeness. This is done with NumPy’s function
allclose() [NumPy Developers, 2022], which compares two vectors element-wise
and returns true if they are equal within the tolerance, e.g., if |𝑎−𝑏 | ≤ (𝑎tol+𝑟tol ∗ |𝑏 |)
is element-wise true. Here, 𝑎 and 𝑏 are vectors, in this case the last state of the
optimized states and the desired target state. Parameters 𝑎tol and 𝑟tol are absolute and
relative tolerances. For north and east position they were set in the order of 10−8 to
10−5.

For the third approach the reference points are given as a trajectory, which is
logged or calculated by a higher level path planner. For this case the trajectory is
given in a .csv file, being collected as an array. No matter where the simulated vessel
starts, it will be calculated where the closest point of the given trajectory is, and this
point will be set as the first reference point. The following reference points will be
collected from the given vector, for as far as the prediction horizon reaches, and be
matched to the following optimized points of the prediction horizon. The distance is
calculated as the Euclidean norm, and for each MPC iteration it will be calculated
anew, always setting the closest point of the trajectory as the first reference value
in 𝜼ref .

Vessel Movement
The vessel movement script in Figure 5.2 contains a model of the boat, to which
control signals were sent. Using the given control signals, movement of one time
step 𝑇𝑠 was simulated. Since the equations of the boat model, in addition to using
the control signals, also use current state and current velocities, they are also input
parameters. After the next position 𝜼(𝑡 + 𝑇𝑠) and next velocity 𝝂(𝑡 + 𝑇𝑠) have been
calculated through the system equations defined for the boat, they are returned.

Execution Time and Discretization
To be able to use a discretization other than the original 𝑇𝑠 = 0.2 s is useful for
control when the calculations of the MPC is taking longer than 0.2 s. Simulations
showed that the discretization described in this section was feasible, hence no other
discretization (e.g., the Runge–Kutta 4 method) was done.

As mentioned, the time steps of the model in [Ljungberg, 2021] are based on
𝑇𝑠 = 0.2 s. Since the model is Euler discretized in accordance with (3.12), it is
transformed to continuous time as below. Consider Equation (3.12). Dividing with

34

5.3 Experiments with Ilon Car

𝑇𝑠 , we get a continuous-time model, in accordance with (5.2).


¤𝑢(𝑡)
¤𝑣(𝑡)
¤𝑟 (𝑡)

 =

𝜃1
𝑇𝑠
𝑢(𝑡) 𝜃2

𝑇𝑠
𝑣(𝑡)𝑟 (𝑡) 𝜃3

𝑇𝑠
𝜏𝑥 (𝑡)

𝜃4
𝑇𝑠
𝑣(𝑡) 𝜃5

𝑇𝑠
𝑢(𝑡)𝑟 (𝑡) 𝜃6

𝑇𝑠
𝜏𝑦 (𝑡)

𝜃7
𝑇𝑠
𝑟 (𝑡) 𝜃8

𝑇𝑠
𝑢(𝑡)𝑣(𝑡) 𝜃9

𝑇𝑠
𝜏𝑦 (𝑡)


=


𝜃cont,1𝑢(𝑡) 𝜃cont,2𝑣(𝑡)𝑟 (𝑡) 𝜃cont,3𝜏𝑥 (𝑡)
𝜃cont,4𝑣(𝑡) 𝜃cont,5𝑢(𝑡)𝑟 (𝑡) 𝜃cont,6𝜏𝑦 (𝑡)
𝜃cont,7𝑟 (𝑡) 𝜃cont,8𝑢(𝑡)𝑣(𝑡) 𝜃cont,9𝜏𝑦 (𝑡)

 (5.2)

This enables for discretization with time step of other length, 𝑇𝑠. This is shown in
(5.3).

𝑢(𝑡 + 𝑇𝑠)
𝑣(𝑡 + 𝑇𝑠)
𝑟 (𝑡 + 𝑇𝑠)

 =

𝑢(𝑡)
𝑣(𝑡)
𝑟 (𝑡)

 +

𝑇𝑠𝜃cont,1𝑢(𝑡) 𝑇𝑠𝜃cont,2𝑣(𝑡)𝑟 (𝑡) 𝑇𝑠𝜃cont,3𝜏𝑥 (𝑡)
𝑇𝑠𝜃cont,4𝑣(𝑡) 𝑇𝑠𝜃cont,5𝑢(𝑡)𝑟 (𝑡) 𝑇𝑠𝜃cont,6𝜏𝑦 (𝑡)
𝑇𝑠𝜃cont,7𝑟 (𝑡) 𝑇𝑠𝜃cont,8𝑢(𝑡)𝑣(𝑡) 𝑇𝑠𝜃cont,9𝜏𝑦 (𝑡)

 (5.3)

5.3 Experiments with Ilon Car

Experiments were done with the Ilon car, a small model car with Ilon wheels.
The wheels enable the car to move freely in the 𝑥𝑦-plane and to simulate the boat
dynamics. Since the Robot Operating System (ROS) is used on both the car and
the Piraya, working with the car would allow testing the MPC and communication
between the ROS packages. The flowchart of the different instants for driving of
the car can be seen in Figure 5.2 and they will be described more detailed in the
following. The car itself can be seen in Figure 5.3.

Figure 5.2 Schematic of the Ilon car system for MPC and boat dynamic simulations.

35

Chapter 5. Implementation and Simulation

Figure 5.3 The Ilon car.

Positioning
For positioning, a lighthouse positioning system [Bitcraze AB, 2022b] was used. A
Crazyflie [Bitcraze AB, 2022a] with a lighthouse deck needed to be mounted to the
car, so a holder for the Crazyflie was modelled in SolidWorks [Dassault Systèmes
SolidWorks Corporation, 2022] and 3D-printed. To this, the Crazyflie was mounted
such that its heading was in the same direction as the car. Lighthouse base stations
were mounted to the ceiling. They emit infra-red laser which is detected by the
lighthouse deck on the Crazyflie and enable positioning of the car.

The positions 𝜼, as defined in (3.2), as well as velocities along the global 𝑥- and
𝑦-axis are obtained through the Crazyflie. These data are in ENU-frame, (east, north,
up) and were converted to the NED-frame as


𝑥NED
𝑦NED
𝜓NED

 =


𝑦ENU
𝑥ENU

−(𝜓ENU − 𝜋
2)

 . (5.4)

Velocities were converted in the same manner from the ENU to the NED frame, and
after this multiplied with the inverted rotation matrix R(𝜓)−1 to obtain velocities 𝝂
of the car’s local, body-fixed frame.

Since the Crazyflie is offset from the center of the Ilon car, this is to be compensated
for. The new coordinates are calculated as follows. Indices "CF" indicate it is the data
given from the Crazyflie. The offset is notated with 𝛿𝑖 , in 𝑥 or 𝑦, respectively. The
angle 𝜓 is calculated such that it will range between −𝜋 and 𝜋. As reference image,

36

5.3 Experiments with Ilon Car

see Figure 5.4. All values are now assumed to be in the NED-frame.

𝑥 = 𝑥CF + 𝛿𝑥 cos(𝜓) + 𝛿𝑦 sin(𝜓)
𝑦 = 𝑦CF + 𝛿𝑥 sin(𝜓) − 𝛿𝑦 cos(𝜓)
𝜓 ∈ [0, 2𝜋)
𝛿𝑥 = 0.185 m
𝛿𝑦 = 0.035 m


(5.5)

The calculated and transformed values are sent to the MPC with a ROS message.

Figure 5.4 Position of the Crazyflie on the car in relation to the car’s mid-point. The
drawing is not true to scale.

Data from the Crazyflie are sampled, and sent directly after calculations, with a rate
of 0.2 s since this is the smallest time step the MPC will have.

MPC
The script with the MPC uses the received position and velocity data as start point
and start velocity, for each MPC iteration. The Crazyflie did not have data for rotation
velocity. This was instead calculated in the MPC as difference in angle divided by
the sample time.

After this, an optimal solution is planned and calculated much in the same manner
as described in Section (5.2). When optimal control signals for thrust and rudder

37

Chapter 5. Implementation and Simulation

have been computed, they are sent to the script for transformation. This describes
one iteration of the script. After this, new start position and velocities are collected.
A callback changes values of current state as soon as a new message with data is
published to the topic, so for the MPC, it will get the current value whenever it is
ready.

Piraya Simulation
The Ilon car is controlled through a script which acquires ROS message of the type
Twist [Open Robotics, 2022], containing velocities in the car’s local coordinate
system. The Twist message expresses linear and angular velocities. To make the car
simulate the boat, velocities 𝝂 are calculated through the system model of the boat,
according to (5.3), using the control signals received from the MPC-calculations.
When these are sent to the script of the car controlling the motors, the car will move
in a boat-like manner. After calculation of how the control signals would cause the
vessel to move, the velocities were divided by 80 to make the car move much slower,
as it had such a small area available. This way, it had better mobility, corresponding
to its size in proportion to the Piraya’s. When sending positive sway with the Twist
object, the car would get a velocity to the left, which is the opposite direction of its
body-fixed NED frame. Because of this, the sway was multiplied with −1 to get the
correct sign.

38

6
Results of Simulations and
Experiments with Ilon Car

The results of the performed simulations and experiments with the Ilon car will be
discussed. Firstly, the simulations will be shown, and secondly, the experiments with
the small-scale car. The results of the experiments with the Piraya are discussed in
Chapter 7.

6.1 Simulations

Simulations were performed for the three different approaches discussed in Chapter 4.
For the case of only one target position, simulations were performed with three

different settings, to show the influence of external disturbances. A simulation without
external disturbances, a simulation with a disturbance not modelled in the MPC, and
a simulation with the same disturbance but also modelled in the MPC, as discussed
in Section 3.4, were performed.

For the approach of following waypoints, an S-shaped curve with waypoints
was to be followed. The coordinates of the waypoints were specified through sea
map of [Eniro Sverige AB, 2022], and the waypoints were to be followed during the
experiments at Gränsö.

To simulate the approach of following a logged trajectory, the reference trajectory
will be of a trajectory previously logged using a model simulation. Control signals
were sent to a model of the vessel, making it run a path. The path was logged with
sampling period 𝑇𝑠 = 0.2 s.

Lastly, simulation of obstacle avoidance was performed. It was implemented to
the case of having one target point. Both a circular obstacle to avoid and a dock to
not get too close to, were added.

One Target Position
The results of using the MPC to optimize to reach a target position can be seen in
Figures 6.1–6.6. The target position was satisfactorily reached for all three cases, when

39

Chapter 6. Results of Simulations and Experiments with Ilon Car

only considering the path. Figures 6.1 and 6.2 are from simulation of an undisturbed
model, i.e., the simulated boat to which the control signals were sent, returned the
expected next states. Figures 6.3 and 6.4 show results from the same setup, but the
simulated boat had an offset corresponding to −0.2 m/s in 𝑥-direction, +0.5 m/s in
𝑦-direction, and zero rotational offset. Lastly, Figures 6.5 and 6.6 show results from
the simulation of where the same offset is assumed to have been measured and hence
is implemented in the model of the MPC, onto which the computations of control
signals are based. For all three cases, 𝑇𝑠 was set to 0.4 s and prediction horizon to
20 s, and thus 𝑁 = 40. The reason to this is to give the vessel enough time to slow
down or react, as it cannot brake. However, the length of the prediction horizon could
be investigated further, for optimal length.

Figure 6.1 Path of undisturbed model. Figure 6.2 Computation time of undisturbed
model.

40

6.1 Simulations

Figure 6.3 Path of disturbed model, with-
out implemented offset in MPC.

Figure 6.4 Computation time of disturbed
model, without implemented offset in MPC.

Figure 6.5 Path of model with imple-
mented offset in MPC.

Figure 6.6 Computation time of model with
implemented offset in MPC.

As can be seen, the target point is reached in all three cases, but the path of the
disturbed model in Figure 6.3 has some curvature and makes a small, extra twirl at
the end. The resulting path of having a calculated offset is straighter, see Figure 6.5.
However, calculation time differs for each MPC iteration. For the undisturbed model,
it is below 0.4 s with a good margin (see Figure 6.2). For the disturbed one, it reaches
above in some cases (see Figure 6.4), but for the one with measured offset, it is often
taking longer than 0.4 s (see Figure 6.6). This means that the control signals would
be sent slower than what the model in the MPC has calculated for, and can degrade
performance of the control. The cause of the long computation times might be that
the model now includes transformation of the offset velocities from the global frame

41

Chapter 6. Results of Simulations and Experiments with Ilon Car

to the body-fixed frame, and the offset in surge and sway at each time instant will
differ, since it will depend on the heading at the instant. This makes it much more
computationally expensive. Still, it gives a more precise result, so it might be a useful
method if it could be acceptable with longer sampling period 𝑇𝑠 .

Waypoint Following
For evaluating waypoint following with the real Piraya vessel at Gränsö, some
reference points had been decided upon from the maps in [Eniro Sverige AB, 2022].
The same points are used in the simulations of the waypoint following. The start
position was set to a position a bit off from the first waypoint,𝑇𝑠 was set to 0.4 s and the
prediction horizon 𝑁 = 50. Results of the simulation can be seen in Figures 6.7–6.9.

Figure 6.7 Simulation of waypoint following, travelled path.

In the figures it can be seen that the S-shape is being followed, after first finding
the first waypoint. It is also possible to see the effect of the sway that arises when
the rudder is turned as it starts aiming for the next waypoint, both by studying the
travelled path and by comparing yaw rate and sway plots, which are mirrored in sign
and proportion.

Logged Trajectory
The results of following a logged trajectory can be seen in Figures 6.10–6.11.
This trajectory and the MPC model was logged with sampling period 𝑇𝑠 = 0.2 s.
Figure 6.10 shows results when start position and velocities were the same as when
the trajectory was logged. Figure 6.11 shows when the vessel started some distance
away from the trajectory and with zero start velocities.

42

6.1 Simulations

Figure 6.8 Simulation of waypoint follow-
ing, control signals.

Figure 6.9 Simulation of waypoint follow-
ing, velocities. Surge and sway in m s−1, yaw
rate in rad s−1.

Figure 6.10 Following a logged trajectory reference, with same initial values as
when the trajectory was logged. The 𝑥- and 𝑦-axes are in meters.

Obstacle Avoidance
Obstacle avoidance while reaching a target position, with a circular obstacle and
a dock with absolute positions, was also tested. The circular object had a radius
of 1 m and a safety radius of 3 m. This means, if the vessel were to enter within
the 3 m radius, there would be high penalization of the slack variable. The dock was
to be kept at a distance of 0.4 m, in relation to its size and angle, as described in
(4.11). The obstacle was set up in such a manner so that the vessel’s start position,
target point, and obstacle was placed along a straight line, forcing the vessel to face
the obstacle. Simulation results can be seen in Figure 6.12. As the vector of slack
variables was added to the cost function and, for each time instant, it was needed to
recalculate the distance due to the vessel’s heading, the MPC computation in the case
of obstacle avoidance takes too long to be feasible. The time step 𝑇𝑠 was set to 0.4 s
and the prediction horizon 𝑁 to 10. As can be seen, the vessel takes a right turn by

43

Chapter 6. Results of Simulations and Experiments with Ilon Car

Figure 6.11 Following a logged trajectory reference, starting at a position away
from the logged trajectory. The 𝑥- and 𝑦-axes are in meters.

Figure 6.12 Obstacle avoidance with a target position as reference. The circular
obstacle can be seen as the green dot, the dock is illustrated with the light blue line.

the obstacle, going south of it. If the prediction horizon was possible to make longer,
it might have optimized the control inputs differently, to facilitate reaching the target
position from another angle as this would mean less use of the control signals u.
It would be possible to, instead of shortening the prediction horizon, increase the
sampling period. However, this would lower the accuracy of the target positioning too
much. One possible solution to this would be to lower the velocities and approach the
target position slowly when being close, but it is difficult to foresee how this would
affect the control, as the vessel would be more sensitive to drifting and might need to
adjust heading, but having the correlation of sway and yaw rate making it difficult to
adjust too much if close to a dock.

44

6.2 Experiments with Ilon Car

6.2 Experiments with Ilon Car

Experiments with the Ilon car tested to reach a single target position and to reaching
it with a waypoint on the way. Results can be seen in Figures 6.13–6.15 for the single
target position, and in Figures 6.16–6.18 for the approach of reaching a waypoint
before the target position. It can be noticed, that for the waypoint reference, the radius
of when to switch aiming point was set to 0.1 m, as opposed to the Piraya’s 5 m.

45

Chapter 6. Results of Simulations and Experiments with Ilon Car

Figure 6.13 Path of Ilon car, experiment of the approach of having one target
position as reference. The 𝑥- and 𝑦-axes are in meters.

Figure 6.14 Control signals of Ilon car, experiment of the approach of having one
target position as reference.

Figure 6.15 Velocities of Ilon car, experiment of the approach of having one target
position as reference. Surge and sway in m s−1, yaw rate in rad s−1.

46

6.2 Experiments with Ilon Car

Figure 6.16 Path of Ilon car, experiment of the approach of having a waypoint to
reach before the target position.

Figure 6.17 Control signals of Ilon car, experiment of the approach of having a
waypoint to reach before the target position.

Figure 6.18 Velocities of Ilon car, experiment of the approach of having a waypoint
to reach before target the position. Surge and sway in m s−1, yaw rate in rad s−1.

47

Chapter 6. Results of Simulations and Experiments with Ilon Car

In both results, the path looks irregular with sharp turns. The control signals vary
a lot too, along with the velocities. Some unevenness could be observed in the car’s
movement, but not the extent as observed in the diagrams. The observed unevenness
can partially be explained by attempts to compensate for shaky positioning when an
outlier position value is received, causing uneven control signals and in extension
an uneven path. Another part could be that the velocities were kept so low, and that
the wheels had problems gripping the floor, making them grip and slip at times. The
additional unevenness seen in the diagrams, in both positions and velocities, is most
likely because of error in the received data from the Crazyflie positioning system.
This data is probably also what is causing the controller to the, at times, strange
control actions. However, it can be seen that the car in general manages to get the
position correct.

48

7
Piraya Experiments at
Gränsö

The MPC script was tested on the actual Piraya vessel at Gränsö, Västervik, during
May 2022. A map of the area can be seen in Figure 7.1. The image is a cropped
screenshot of the map provided by [Team of OpenSeaMap, 2022].

Figure 7.1 The test area, with the dock from which the experiments were conducted
to the right. The picture is a cropped screenshot of the map from [Team of OpenSeaMap,
2022].

The only modifications made, were regarding the interface. Three experiments
were to be performed; to reach a target point, to travel along a set of waypoints, and
to reach a target point with a certain desired angle by the dock. The two latter will be
discussed here, since the first one mainly ensured that the vessel responded correctly
to the MPC commands and moved reasonably.

49

Chapter 7. Piraya Experiments at Gränsö

In simulations, it was feasible to set a maximum velocity of 2 m/s, except for
when unexpected disturbances were added. In reality, unexpected disturbances were
always present, and so it was not possible to set an allowed maximum velocity since
it would not be able to keep it and the problem would be considered infeasible.
Instead, a maximum of the throttle signal was set, to attain a maximum velocity of
approximately 2 m/s. This gave a satisfactory surge of just below 2 m/s.

It was decided to not evaluate the function of following a logged trajectory. A
logged trajectory could approximately be compared to having lots of waypoints. As
the waypoint following worked well, it was decided to prioritize other experiments
with the Piraya.

For the waypoint experiment, the points which were also used in the simulations,
forming the S-like curve, were to be followed. The vessel was further away and
facing the opposite direction than in simulations, but still manages to reach the first
point and all the following points satisfyingly. It could be worth to mention, it was
quite windy during the test, with winds up to 8 m/s from the south-west, hence
approximately straight towards land where the dock was placed. The time step for the
MPC was set to 𝑇𝑠 = 0.4 s. The result can be seen in Figures 7.2–7.5. A comparison
of the approximate route in the test area can be seen in Figure 7.3. The curve has
been edited onto a cropped screenshot of a map from [Team of OpenSeaMap, 2022].
It can be possible to discern the correlation of sway and yaw rate, as discussed in
Section 3.3, for each control with respect to the waypoints. The drifting at the end
can be explained by force from the wind. The MPC was stopped when the vessel had
reached the target point, but logging continued. This experiment was done with the
simple waypoint-controller, without an offset implemented.

50

Chapter 7. Piraya Experiments at Gränsö

Figure 7.2 Travelled path when the Piraya was controlled through waypoint following.
Each time a waypoint is reached and the next one is set as reference point, it is possible
to notice the correlation of sway and yaw rate, as discussed in Section 3.3.

Figure 7.3 A comparison of the approximate route in the test area. The curve has
been edited onto a cropped screenshot, with lowered opacity for better visualization,
of a map from [Team of OpenSeaMap, 2022].

51

Chapter 7. Piraya Experiments at Gränsö

Figure 7.4 Control signals when the Piraya was controlled through waypoint
following.

Figure 7.5 Velocities when the Piraya was controlled through waypoint following.
The reason to the sway being zero is that no sensor data about sway were given. Surge
and sway in m s−1, yaw rate in rad s−1.

For finding the desired target position closer to the dock, the result can be seen in
Figures 7.6–7.9. The desired target position was reached satisfactorily, even though the
vessel’s start position was on a distance and facing the wrong direction. A photography
of the Piraya when target position had been reached through in this experiment, can
be seen in Figure 7.10. The target position was some meters away from the dock,
facing south. After the vessel had reached the target position, it keeps drifting since
it cannot brake or have negative surge. However, notice that it is doing this at very

52

Chapter 7. Piraya Experiments at Gränsö

low velocities. End velocities were 𝝂 =
[
0.2453688 0.0 −0.016875638

]𝑇 m s−1.
Regarding the correlation of sway and yaw rate, it can be noticed that yaw rate
increases at time = 20 s and at time ≈ 95 s the vessel turns starboard. At time = 20 s,
it is possible to notice that the travelled path deviate a bit to port. However, the same
behavior is not as noticeable at time ≈ 95 s. As sway was not logged, it is difficult to
see the exact correlation.

Figure 7.6 Travelled path when a specified target position was to be reached.

53

Chapter 7. Piraya Experiments at Gränsö

Figure 7.7 A comparison of the approximate route in the test area. The curve has
been edited onto a cropped screenshot, with lowered opacity for better visualization,
of a map from [Team of OpenSeaMap, 2022]. A part of the dock is not visible on the
map, which makes the vessel look further away from it than it was in reality.

Figure 7.8 Control signals when a specified target position was to be reached.

54

Chapter 7. Piraya Experiments at Gränsö

Figure 7.9 Velocities when a specified target position was to be reached. Notice the
two peaks of yaw rate at time = 20 s and at time ≈ 95 s. Surge and sway in m s−1, yaw
rate in rad s−1.

Figure 7.10 Real Piraya reaching its target position, as in Figure 7.6.

55

8
Conclusions

A model predictive controller for docking a sea vessel at low speeds has been
developed, as well as a base for using the Ilon car to simulate the vessel’s behavior.
It has then been shown that the model defined by [Ljungberg, 2021] was feasible,
and that it was possible to successfully control the vessel by using it in an MPC,
which gave satisfactorily results, shown through both simulations and experimental
evaluation on the real vessel (a Piraya vessel). In both cases, the control shows high
accuracy. Regarding heading at the target position, it was even more accurate when
controlling the real vessel. This was most likely due to that the vessel in reality
has a smaller turning radius than the model. Another noticed difference between
simulations and experiments was regarding the correlation of sway and yaw rate. The
behavior of deviating to the opposite side when turning one way, could be clearly
seen in simulations. At some instants of the experiments it could be observed, but
not at all times.

Different kinds of methods for travelling towards a target point were explored and
shown to be effective. The vessel could plan its path after input of conditions such as
waypoints, target heading, obstacles, and measured offset. However, the computation
time in some simulation cases, as with the implemented, measured offset, exceeded
the assumed sampling time. To reduce computation time, a proposal for possible
modification is to choose a shorter control horizon. This would reduce the number of
variables to be optimized for the whole prediction horizon.

Experiments with the Ilon car did not show as high accuracy as the simulations
and when running on the real Piraya. Since simulations and experiments of the
MPC-implementation worked well, the undesired behavior of the Ilon car is probably
because of fault in positioning and measured velocities. Implementing a Kalman
filter or outlier detection could help to reduce the faulty signals, to deduce what
position values are probable.

Experimenting with the real Piraya showed that it could successfully follow
waypoints even in the presence of moderate wind, without it being measured and
taken into account.

To summarize in relation to the problem formulation in Section 1.2, an MPC
for performing docking has been developed and implemented. Three approaches to

56

8.1 Future Work

handle the situation of reaching a docking position, as well as a suggestion of handling
external disturbances, obstacles, and close to dock maneuvering, have been designed.
This has been done with consideration to the conditions of harbor environment, for
instance as all maneuvers are performed at low speeds, and through the path planning.
For the three main approaches, a proposal is to use the one having a single target
point as reference when target position is relatively close and nothing further in the
environment needs to be considered. The approach of using waypoints could be
suggested to be used when the target position is desired to be reached from a certain
angle, for instance if the target position is a delimited mooring. Waypoints could also
be used when target position is far away and some headland, mark, or similar should
be rounded before, bur velocities still should be low. To use the approach of logged
trajectory is suggested when it is of importance that the trajectory, before reaching
the target position, is performed with precision. This could be if there are lots of
seafarers in the area. The approaches could also be used in combinations, for example
to follow a logged trajectory or path decided by a high level path planner, but once
a certain area has been reached the approach of only having one target position is
practiced.

8.1 Future Work

To the developed control design and implementation, it would be possible to add
functions to make it even more autonomous. Target state, waypoints, and obstacles
could be perceived and computed autonomously instead of added manually. For
example, a LiDAR sensor could be implemented to spot obstacles, and could be used
together with a sea map for detecting known shallows. With a LiDAR sensor, moving
obstacles could be included, and could possibly be avoided using the same approach
as discussed for static obstacles. Usage of the MPC in combination with a high level
path planner could also be a further extension, for instance in the case of following a
logged trajectory.

For further improvement of the MPC implementation, it could be investigated
exactly how many values should be set as initial guesses for the optimization problem.
In this thesis, only the first values of the optimal solutions were set, as this showed
the quickest computation time of the MPC for experiment cases at Gränsö. However,
the optimal number differs due to the situation, and to adjust this appropriately could
possibly decrease computation time. Also, the tuning of the weight parameters in the
cost function have potential of being further investigated, for the optimal relation
between them, even if the current, described parameters have approximately the
correct dimensions.

Regarding the system model of the vessel, it was noticed that the turning radius
of the simulated vessel and the real vessel differed. This and an updated estimation
could be a desired extension of the model. It could be interesting to further investigate
this behavior for more precise controlling. To log sway and be able to observe the

57

Chapter 8. Conclusions

correlation could be a first step.
Another extension to the model could be to add the function of using negative

throttle, for the possibility of having negative surge. This would make accuracy even
higher in the sense that the vessel could easier stay at a desired position, and not keep
drifting forward even if it is at low speed.

Hopefully, the developed controller can be used for future support of development
of autonomous docking, being applied on other USVs and improve safety when
navigating in harbors.

58

Bibliography

Andersson, J. A. E., J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl (2019). “CasADi
– A software framework for nonlinear optimization and optimal control”. Math-
ematical Programming Computation 11:1, pp. 1–36. doi: 10.1007/s12532-
018-0139-4.

Andersson, O., P. Doherty, M. Lager, J.-O. Lindh, L. Persson, E. A. Topp, J.
Tordenlid, and B. Wahlberg (2021). “WARA-PS: a research arena for public safety
demonstrations and autonomous collaborative rescue robotics experimentation”.
Autonomous Intelligent Systems 1. doi: 10.1007/s43684-021-00009-9.

Åström, K. J. and B. Bernhardsson (2016). Model Predictive Control (MPC).
url: https://www.control.lth.se/fileadmin/control/Education/
DoctorateProgram/ControlSystemsSynthesis/2016/MPC.pdf (visited
on 2022-06-02).

Bitcraze AB (2022a). Crazyflie 2.1. url: https://www.bitcraze.io/products/
crazyflie-2-1/ (visited on 2022-04-20).

Bitcraze AB (2022b). Lighthouse positioning system. url: https://www.bitcraze.
io/documentation/system/positioning/ligthouse- positioning-
system/ (visited on 2022-04-20).

CasADi (2018). CasADi. url: https://web.casadi.org/ (visited on 2022-06-
10).

CVXGEN (2013). CVXGEN: code generation for convex optimization. url: https:
//cvxgen.com/docs/index.html (visited on 2022-05-10).

Danielsson, T. (1965). Att angöra en brygga. AB Svensk Filmindustri.
Dassault Systèmes SolidWorks Corporation (2022). Solidworks. url: https://www.
solidworks.com/ (visited on 2022-04-20).

59

Bibliography

Duun-Henriksen, A., S. Schmidt, R. Røge, J. Møller, K. Nørgaard, J. Jørgensen, and
H. Madsen (2013). Model Identification Using Stochastic Differential Equation
Grey-Box Models in Diabetes – Scientific Figure on ResearchGate. doi: 10.1177/
193229681300700220. url: https://www.researchgate.net/figure/
Illustration-of-the-concept-of-grey-box-modeling-White-box-
models-are-based-mainly-on%7B%5C_%7Dfig5%7B%5C_%7D236138545
(visited on 2022-05-12).

Eniro Sverige AB (2022). Eniro kartor. url: https://kartor.eniro.se/ (visited
on 2022-06-01).

Fossen, T. I. (1994). Guidance and Control of Ocean Vehicles. John Wiley & Sons.
Ljungberg, F. (2020). Estimation of Nonlinear Greybox Models for Marine Ap-

plications. Licentiate Thesis no. 1880. Department of Electrical Engineering,
Linköping University.

Ljungberg, F. (2021). “Systemidentifiering för Piraya”. Saab Kockums AB.
Martinsen, A. B., G. Bitar, A. M. Lekkas, and S. Gros (2020). “Optimization-Based

Automatic Docking and Berthing of ASVs Using Exteroceptive Sensors: Theory
and Experiments”. IEEE Access 8, pp. 204974–204986. doi: 10.1109/ACCESS.
2020.3037171.

Naukowe, Z. and A. Miller (2014). “Model predictive control of the ship’s motion
in presence of wind disturbances”. Scientific Journals Maritime University of
Szczecin 39, pp. 107–115.

NumPy Developers (2022). Numpy.allclose. url: https://numpy.org/doc/
stable/reference/generated/numpy.allclose.html (visited on 2022-
05-24).

Open Robotics (2022). Geometry_msgs/twist message. url: http://docs.ros.
org/en/noetic/api/geometry%7B%5C_%7Dmsgs/html/msg/Twist.html
(visited on 2022-04-20).

Team of OpenSeaMap (2022). OpenSeaMap - The free nautical chart. url: https:
//map.openseamap.org/ (visited on 2022-06-07).

The MathWorks, Inc. (2022a). Control system toolbox. url: https : / / se .
mathworks.com/products/control.html (visited on 2022-05-10).

The MathWorks, Inc. (2022b). Model predictive control toolbox. url: https:
//se.mathworks.com/products/model- predictive- control.html
(visited on 2022-05-10).

Voigt, J. and A. Alkaysi (2020). Autopilot for a Personal Watercraft. Master’s thesis,
TFRT-6103. Department of Automatic Control, Lund University.

Wallenberg AI, Autonomous Systems and Software Program (WASP) (20, 2021a). Au-
tonoma drönare på räddningsuppdrag. url: https://www.mynewsdesk.com/
se/wallenberg-ai-autonomous-systems-and-software-program/

60

Bibliography

pressreleases / autonoma - droenare - paa - raeddningsuppdrag -
3138536 (visited on 2022-03-15).

Wallenberg AI, Autonomous Systems and Software Program (WASP) (2021b). WARA-
Public Safety. url: https://wasp- sweden.org/research/research-
arenas/wara-ps-public-safety/ (visited on 2022-06-07).

Wikimedia Foundation, Inc. (2022). Drag equation. url: https://en.wikipedia.
org/wiki/Drag%7B%5C_%7Dequation (visited on 2022-05-08).

Yang, Y., J. Du, H. Liu, C. Guo, and A. Abraham (2013). “A trajectory tracking robust
controller of surface vessels with disturbance uncertainties”. IEEE Transactions
on Control Systems Technology 22, pp. 1511–1518. doi: 10.1109/TCST.2013.
2281936.

61

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2022
Document Number
TFRT-6164

Author(s)

Sofia Kockum
Supervisor
Birgitta Wingqvist, Dept. of Automatic Control, Lund
University, Sweden
Björn Olofsson, Dept. of Automatic Control, Lund
University, Sweden
Anders Robertsson, Dept. of Automatic Control, Lund
University, Sweden
Karl-Erik Årzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Autonomous Docking of an Unmanned Surface Vehicle using Model Predictive
Control
Abstract

Autonomous docking of marine vessels presents challenges different from the ones faced when
travelling at open sea or in an archipelago. External disturbances due to the varying environment and
accurate positioning at low speed are examples of these kinds of challenges. The aim of this work has
been to develop and implement an autopilot algorithm for docking. This was to be done for a specific
marine vessel, using model predictive control (MPC). The vessel in question was Saab Kockums’
Piraya, an unmanned surface vehicle (USV).
 The problem formulation includes design and implementation of the MPC itself, as well as handling
external disturbances and obstacle avoidance. Different software approaches to solving the
optimization problem have been explored, as well as different solutions to the matter of advancing
towards the desired position. Three approaches were implemented in an MPC framework.
 The developed controllers have been successfully tested in simulations, in experiments using a small-
scale model car dynamically representing the USV, as well as on the USV at Gränsö, Västervik.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-61

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Tom sida

