

Department of Automatic Control

Log Anomaly Detection of Structured Logs

in a Distributed Cloud System

David Nilsson

Albin Olsson

MSc Thesis
TFRT-6176
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by David Nilsson & Albin Olsson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2022

Abstract

As computer systems grow larger and more complex, the task of maintaining the
system and finding potential security threats or other malfunctions become increas-
ingly hard. Traditionally, this has had to be done by manually examining the logs.
In modern systems, this can become infeasible due to either the large amount of
logs or the complexity of the system. By using machine learning based anomaly
detection to analyze system logs, this can be done automatically.

In this thesis the authors have researched the area of anomaly detection, and imple-
mented an anomaly detection pipeline for a specific system. Three different machine
learning based anomaly detection models were implemented, namely a clustering
algorithm, PCA, and a neural network in the form of an autoencoder. These mod-
els were compared and evaluated with regards to a baseline error detection system,
which was already in place for the target system. They were also compared against
each other to find which models performed best, and in which circumstances. To
compare the models, six different types of known anomalies were injected into the
data.

When comparing the performances of the different methods, all of them were found
to outperform the baseline system. In the first experiment, where the models were
trained and tested using data from the same time period, PCA achieved the highest
F1-score of 0.990. In the second experiment the models were trained and tested
using data from separate time periods. In this scenario, the clustering algorithm
outperformed the others, with an F1-score of 0.879. Both PCA and the autoencoder
found many false positives, reducing their precision and thereby their F1-score.

3

Acknowledgements

Thank you to all the people at Ingka Group Digital. Especially the Customer Web
and Customer Admin development teams for supporting us throughout this project.
A special thanks to our supervisor Gustav Hochbergs for always being available
and helping us with the issues at hand. We would also like to thank Magnus Pet-
tersson, the responsible manager at Ingka, for providing us with the opportunity of
writing this thesis. Also, we would like to thank the other thesis workers at Ingka
for providing interesting and insightful discussions about our theses.

Furthermore, we would like to thank our supervisor at LTH, Johan Eker, for provid-
ing great input and discussions about the project and the report. Finally, we would
like to thank Karl-Erik Årzén for being the examiner of this thesis.

5

Contents

1. Introduction 9
1.1 Background . 9
1.2 The System . 10
1.3 Project objectives . 12
1.4 Thesis outline . 12
1.5 Individual contributions . 13
1.6 Related work . 13

2. Cloud Computing 15
2.1 Cloud deployment . 16
2.2 Google Cloud . 16
2.3 Virtualization . 17

3. Machine Learning 18
3.1 Metrics . 19
3.2 Machine learning approaches 21
3.3 Deep learning . 22

4. Log Parsing 26
4.1 Drain . 26
4.2 IPLoM . 28
4.3 AEL . 29
4.4 Performance of log parsing techniques 29
4.5 This project . 30

5. Feature Extraction 31
5.1 Partitioning . 31
5.2 Extracting features . 33
5.3 This project . 33

6. Anomaly Detection 34
6.1 Traditional unsupervised anomaly detection techniques 35
6.2 Deep learning based anomaly detection 36
6.3 This project . 39

7

Contents

7. Method 40
7.1 Project process . 40
7.2 Environment setup . 41
7.3 Log collection . 42
7.4 Parsing and vectorizing data . 43
7.5 Model implementations . 46
7.6 Hyperparameters . 47
7.7 Model evaluation . 48

8. Results 50
8.1 Baseline System . 50
8.2 Window Parameter search . 50
8.3 Hyperparameter search . 57
8.4 Validating the models with other datasets 61

9. Discussion 64
9.1 Baseline . 64
9.2 Clustering . 64
9.3 PCA . 65
9.4 Autoencoder . 66
9.5 Performance and metrics . 67
9.6 Anomaly detection in production 68

10. Conclusion 69
10.1 Future work . 70

Bibliography 71

8

1
Introduction

1.1 Background

In recent years there has been a dramatic increase in complexity in industrial com-
puter systems. They are more advanced than ever, especially since cloud computing
has become a popular concept in the industry. The inherent complexity of these
systems not only makes them more prone to errors and incidents, but also makes
issues harder to detect and repair. For this purpose, keeping system logs is a widely
adopted practise for monitoring the state of applications and has become a key met-
ric for determining the health status of a system. They record the state of the system
by logging critical events during system execution. Traditionally, they have also
helped developers find system bugs and fix potential issues in a system.

Chandola et al. [1] describes anomaly detection as the art of finding abnormal be-
havior in a set of data. Entries are considered anomalous if they do not behave
according to the definition of normal, and the general concept has been used across
many domains for over a century.

As system logs contain information about the state of a system, analyzing logs may
help developers fix issues and detect abnormal behavior. This is a key activity in
the aspect of computer security, where log entries may capture potential data leaks
or similar issues. Furthermore, it may be used as an actual health metric for the
underlying system. Finding potential errors in log files are conventionally done by
manual analysis, where developers conduct manual searches for keywords indicat-
ing an error has occurred. It may also be done by matching rules to the log entries
to find certain undesired patterns in the flow of logs. Because of the highly complex
systems in industrial settings and the vast amount of logs the systems produce, man-
ual analysis of this kind often becomes infeasible to perform in the long run. This
method of analysis is also error-prone, making an automatic method for analysis
preferable.

Automatic log analysis would mostly mitigate the need for manual inspection of

9

Chapter 1. Introduction

logs. It could be done by rule based algorithms, which search for certain behaviors
throughout the system execution. However, as an application is developed, its ex-
ecution flow may change, along with the information available in the logs and the
distribution between different kinds of messages. Using statistical machine learn-
ing based methods, one can analyze the execution flow of an application without
explicit development of the anomaly detection component.

This thesis is done for Ingka Group Digital, which is part of the IKEA franchise.
They are currently using rule based error detection system for various applications
in their environment. Inherently, this system is limited in what kinds of errors it can
find, as well as being hard to maintain and expand. For this reason, they are inter-
ested in exploring the possibilities of machine learning based anomaly detection for
their systems.

1.2 The System

The system being used in this thesis is an opt-out system, which enables customers
to opt-out from receiving various messages from Ingka. It covers various platforms,
such as SMS and e-mail communication.

The system consists of a front end with graphical interfaces allowing users to pass
the necessary information to successfully opt-out from receiving messages. The
back end side of the system updates various databases throughout Ingka’s infras-
tructure. This part is distributed in a cloud environment with multiple cloud ser-
vices running simultaneously, and each interaction between the back end and other
services are constantly logged for debugging and system monitoring. The overall
system architecture can be seen in Figure 1.1.

The notion of anomalies and errors are important in this setting. The main con-
cern would be if an error would prevent a customer from opting out from receiving
messages from Ingka, as this would be a breach of EU law. However, a user being
unable to opt-out could be caused by a plethora of reasons. For instance, the user
themselves may have entered faulty information in the provided input fields. This
in itself is not an error or an anomaly, but would still result in an error response
from some of the API:s. Instead, an anomaly could be a sequence of similar error
responses, which could indicate some kind of attack from the user, or an internal
error regarding an API or the communication between services. It is important to
distinguish that an error is not necessarily an anomaly, and, likewise, an anomaly
does not necessarily consist of errors. As previously mentioned, anomalies are log
messages or sequences of log messages that do not conform to the normal flow of
logs in the system.

10

1.2 The System

Figure 1.1 The overall architecture of the opt-out system.

Available data
Log data from the services deployed are generally stored for one month before being
deleted. Throughout this time it is accessible for debugging potential issues within
the system. However, for the sake of this project, logs will be kept in a separate
storage, allowing multiple one month periods worth of logs to be temporarily stored
and used to train the machine learning models. In the stored data, sensitive infor-
mation such as IP and mail-addresses will be omitted to conform to GDPR laws. A
cleaned log entry may look as follows:

{
" i n s e r t I d " : "09 jxvn " ,
" j s o n P a y l o a d " : {

" logMeta " : {
" e n d P o i n t " : "CMA−OPTOUT" ,
" r e s u l t " : "SUCCESS"

} ,
" message " : "cma− o p t o u t r e s p o n s e s u c c e s s f u l " ,
" name " : " opt −out −be " ,
" p i d " : 3 ,

} ,
" s e v e r i t y " : " INFO " ,
" t imes t amp " : "2022 −03 −01T00 : 0 0 : 1 1 . 9 3 8 9 9 9 8 9 1 Z"

}

In the training phase, the data will be stored in a file provided to the models for easy
access. If the models are actually deployed in production, the stored data will be
discarded and the models will rely solely on streamed data instead.

11

Chapter 1. Introduction

Baseline
The concept of testing is generally difficult in an anomaly detection application.
The data sets are often large and unlabeled, meaning manual evaluation is infea-
sible and the algorithms have no baseline to base their decisions on. This project
differs from this normal setting, as there is currently a hard coded and rule based
anomaly detection in place which should be improved upon. This system analyses
fixed windows of log entries from the past hour, considering specific static fields
within the logs and determines if an anomaly has occurred based on the amount of
messages of this kind from a certain user. This means there are windows labeled as
anomalous according to this system which can be used to compare and evaluate the
different methods.

1.3 Project objectives

Robust anomaly detection systems are key to maintaining a secure and healthy
computer environment. Key aspects in industrial anomaly detection include time
efficiency and accuracy. Time efficiency means the logs have to be processed in a
timely manner, while accuracy refers to the ability to correctly categorize log se-
quences as anomalous or normal. There is a trade-off between a sensitive system
with too many false positives and a system which neglects sequences that are in fact
anomalous.

The objective of this thesis is to improve upon the existing system by exploring,
evaluating, and comparing different machine learning based anomaly detection al-
gorithms. The comparison will be conducted with regards to the standard machine
learning evaluation metrics precision, recall and F1-score. The frequency of false
positives, i.e, how often a model falsely labels a normal sequence as anomalous,
will also be considered.

1.4 Thesis outline

The thesis begins with an introduction where the background and the objectives of
the project are presented. It then moves on to Chapter 2 about cloud computing
where information that will be relevant later in the thesis is presented. The infor-
mation is relevant since the training and testing of the models will be conducted in
a cloud environment. It is also relevant because the system whose logs are being
analyzed is also run in a cloud environment. The thesis then moves on to Chapter
3 about machine learning, which provides a theoretical background of the machine
learning concepts which will be used later in the thesis. Chapter 4, 5 and 6 (Log
Parsing, Feature Extraction and Anomaly Detection) provides the background for
the different steps in the anomaly detection pipeline. In Chapter 7 the method of
collecting logs and performing the different steps in the anomaly detection pipeline

12

1.5 Individual contributions

as well as the implementation and testing of the models is presented. In Chapter 8
the results from the different tests are presented and in Chapter 9 these results are
discussed. Finally, the conclusions drawn from the research are presented in Chapter
10.

1.5 Individual contributions

Most of this thesis was done in cooperation between both authors. Generally, David
focused more on researching and implementing the clustering and PCA algorithms,
as well as the testing pipeline used. Albin focused more on researching different
parsing techniques, as well as implementing the autoencoder. There was an equal
contribution regarding the literature study and the writing of the report itself.

1.6 Related work

Anomaly detection has been used for decades across various domains, and cloud
computing is no exception for this type of application. There has been a lot of re-
search done for anomaly detection in cloud computing systems. One example of this
is in [7], where the authors propose a method for both finding and explaining anoma-
lies in cloud environments. Their method uses a hybrid single/multiple-threshold
anomaly detection method relying on an LSTM-Autoencoder. These concepts will
be further explained in Chapter 3. Their proposed method also includes an anomaly
explanation module which helps identifying the root cause of the anomaly.

Continuous integration and continuous deployment (CI/CD) is vital in large scale
software development for maintaining a healthy software environment. Cross func-
tional collaboration between development and operations (DevOps) is a frequent
term when talking about continuous styles of development. Hrusto [15] presents a
solution for handling feedback and alerts from operations to development using a
smart filter, which utilizes data from system operations to detect anomalous system
behaviors through machine learning based approaches. They especially explore the
possibilities of using deep learning to analyze multivariate time series data from a
distributed computer system.

There has also been a lot of research where the performance of different anomaly
detection methods are compared. In [14] the authors compare both unsupervised
and supervised anomaly detection methods using publicly available production log
datasets. This thesis will only focus on the unsupervised methods since those are
much more relevant to this thesis. The methods Clustering, PCA and Invariants
Mining were compared, with Invariants Mining performing best among those three.
These methods are further explained in Chapter 6. In another paper, [2], other
anomaly detection methods were compared, focusing on deep learning methods.

13

Chapter 1. Introduction

These comparisons were done on the same datasets as the comparisons in [14]. The
unsupervised methods compared were LSTM, Autoencoder and a Transformer. All
of these methods were compared both with and without the use of semantics in the
log messages keys. Both with, and without, the use of semantics the LSTM model
performed better than the other methods.

14

2
Cloud Computing

In recent years, cloud computing has become increasingly common, and important,
in the industry. It helps deliver computing services, such as servers, storage, net-
working, and software, in an on-demand manner over the internet [23]. Ingka is
no exception to this phenomenon, and they have a great fraction of their systems
running in Google’s cloud service Google Cloud. This is one out of many cloud
providers, such as Amazon, Microsoft, and IBM. This thesis will focus on Google
Cloud since that is what Ingka is using for their applications.

National Institute of Standards and Technology (NIST) defines cloud computing
as "a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction" [21]. There are five main
characteristics of cloud computing, namely on-demand self service, broad network
access, resource pooling, rapid elasticity, and measured service.

On-demand self service refers to a customer in need being able to acquire re-
sources, such as CPU time, without human interaction.

Broad network access means these resources should be delivered over the Internet
and be used by platforms at the user’s end.

Resource pooling means multiple customers can be served simultaneously
through dynamically scaled resources depending on customer demand.

Rapid elasticity means a customer should be able to rapidly scale their use of re-
sources in accordance with the previous point.

Measured service refers to the problem of measuring the resources used by each
individual customer.

15

Chapter 2. Cloud Computing

2.1 Cloud deployment

Simply put, cloud computing means transforming IT infrastructure into a utility. It
allows customers to access servers and operating systems maintained by a cloud
provider [16]. There are four main service models that categorize the utilities that
are provided [3].

Software as a Service (SaaS) SaaS means cloud customers deploy their applica-
tions in an environment that is hosted and maintained by the cloud provider. The
customers do not have control of the cloud infrastructure and various customers’
applications are commonly organized in shared virtual environments. An example
of a SaaS application would be Gmail.

Platform as a Service (PaaS) PaaS allows customers to utilize the cloud platform
for application development, whereas SaaS only allows customers to deploy already
finished applications. This means PaaS has to include various tools for software
development, which is not accessible through SaaS. A PaaS example from Google
would be Cloud Run, which is described in Section 2.3.

Infrastructure as a Service (IaaS) IaaS allows customers to utilize the infrastruc-
ture of the system they are provided with. To this end, cloud providers commonly
utilize virtual machines to isolate the machines from both the hardware of the phys-
ical machine and other virtual machines (VMs) running on the same physical com-
puter. Google’s compute engine, which is also described further in Section 2.3, is
an example if IaaS.

Data storage as a Service (DaaS) DaaS means customers are presented with the
possibility of utilizing virtual storage within the cloud. This can be seen as a special
case of IaaS, and an example could be Google Drive.

2.2 Google Cloud

Google, as several other IT companies, offer cloud services to both industrial and
private customers. They offer virtual resources on physical hardware, such as com-
puters and hard drives, as well as various virtual machines. The resources are con-
tained within Google’s data centers across various regions all over the world. The
platform offers and utilizes many services developed by Google to enable the in-
frastructure that suits the need of the project to be deployed. The available services
cover many areas, such as API management, AI and machine learning, and the base
for running custom applications within the cloud infrastructure.

The foundation of service deployment in Google Cloud lies in creating projects. A
project acts as the main control unit which specifies what will be achieved with the
deployment, as various metadata describe the applications. Many resources can be
deployed and allocated within the same project, and they can easily communicate

16

2.3 Virtualization

internally. Once a resource is deployed in Google Cloud, it can be monitored and
accessed by either the Google Cloud Console, which is a graphical interface for
managing projects. There is also a command line interface, allowing the customer
to manage their projects from a terminal window[11].

2.3 Virtualization

As previously seen, virtualization is an important tool to manage cloud infrastruc-
ture. It allows deployment of various machines and applications to the same physical
computer. These virtual machines do not have explicit access to physical hardware,
and they are also isolated from other resources being allocated on the same device.

Google Cloud offers various alternatives for virtualization, the main two being Com-
pute Engine and Cloud Run. Compute Engine is a service that lets the customer
deploy a custom VM to Google’s data center. There are a number of presets spe-
cializing in various aspects of computing, such as general purpose, high memory,
and compute-intensive workloads [10]. An alternative to this would be Cloud Run,
which allows customers to deploy containerized applications (e.g., through the use
of Docker) to a platform that automatically scales the resource usage depending on
the needs of the application [9].

Terraform
Virtual resources are commonly managed through automatic orchestration software,
such as Google’s Cloud Run. Terraform serves as an alternative to this. It is a tool
for managing resource infrastructure with regards to, for instance, virtual machines,
storage, and networking. The main way of interacting with Terraform is through its
scripting language, which tells it what resources to use, what plugins to install, and
what initialization steps are required to perform [12].

Docker
Docker is a platform for packaging and running applications in containers, which
are isolated environments which runs completely independently from the operat-
ing system of the host machine. The containers contain all the resources necessary
to run the applications being developed, meaning the underlying file system and
host machine dependencies do not matter. The base unit for creating containers are
Docker images, which acts as an instruction for creating the container. It is often
built from a base image, e.g, containing an operating system, in which the applica-
tion and dependencies are added. Once an image is created, it can be instantiated in
the form of a container, which can run the programs loaded into the image [4].

17

3
Machine Learning

Machine learning is an area of computer algorithms that learns, adapts and improves
upon itself through experience. By analyzing data the algorithms builds models
that can make decisions or predictions based on patterns in the data. These algo-
rithms are widely used where implementing a fixed, conventional algorithm would
either be too complex, time consuming or simply not possible [8]. Applications of
machine learning are used in a lot of different fields, such as, speech recognition,
medicine, credit card fraud, or computer vision [29]. Depending on the goal of the
algorithm and the nature of the data available, there are some different approaches
to machine learning. The basic approaches are:

Supervised learning is when the algorithm has access to a labeled data set in the
training stage. A labeled data set is data that contains the desired output of the
model, mapped to each data entry. The goal of the algorithm is to be able to create
mappings between the data entries and their respective labels so that when presented
with a new entry, the model can predict the corresponding label [8].

Unsupervised learning is when the algorithm does not have access to a labeled
data set in the training stage. Instead of predicting a label associated with each en-
try, unsupervised models try to find structures in the data, often based on similarities
between entries. One way of doing this is clustering. By grouping similar entries to-
gether, clusters are formed. Information about a new data point can then be acquired
by how it is placed in relation to the already defined clusters [29].

Reinforcement learning is a common field of machine learning for, i.e., game the-
ory, simulations, and information theory. It focuses on how a virtual agent should
act in certain scenarios in an environment to maximize some reward metric [29].
E.g, in an arbitrary game against an opponent, losing may yield a negative reward, a
tie may yield a neutral reward (0), and winning a positive one. This reward is given
as feedback to the machine learning agent to indicate whether it performed well or
not.

18

3.1 Metrics

3.1 Metrics

Loss functions
Training machine learning models, especially deep learning models, generally
means minimizing the error measured between the automated prediction from the
model and a ground truth value. This error is often called loss, and is the difference
in performance of the model compared to the expected values. If the model predicts
something that differs greatly from the expected value, the loss will be big, indicat-
ing that the model needs to alter its weights to counter this effect. Ravindra Parmar
[26] describes various types of loss functions and their appropriate applications

Loss functions can roughly be divided into regression and classification losses.

Regression losses are used in tasks where regression is used to predict continuous
values. Thus, distance based loss functions are common. For instance, the Mean
Square Error (MSE), measures the average squared distance between the prediction
and the expected value in accordance with Equation (3.1). L is the loss itself, n is
the number of data points considered, i is the i : th data point in the data set, yi is
the expected value for the i : th data point, and ŷi is the predicted value for the i : th
data point. The fact that the distance is squared means that large deviations from the
ground truth will be penalized.

L =
∑

n
i=1(yi − ŷi)

2

n
(3.1)

Other common loss functions include Mean Absolute Error (MAE), as seen in
Equation (3.2), and Mean Bias Error (MBE), as seen in Equation (3.3).

L =
∑

n
i=1 |yi − ŷi|

n
(3.2)

L =
∑

n
i=1(yi − ŷi)

n
(3.3)

MAE roughly measures the same concepts as MSE, as it does not take the direction
of the loss into account. However, it is more reliable when it comes to occasional
data set anomalies, since it does not use the square as MSE. In extension, the less
common MBE loss function performs the same mathematical operations as MSE,
but does not square the error. In practice, this means the direction of the error will
matter, and could affect the weights of the machine learning model.

Classification losses are used in classification problems which involve predicting
values from a finite set of options. For instance, this could be classifying images of

19

Chapter 3. Machine Learning

cats and dogs, or handwritten digits between 0−9. Cross entropy might be the most
common loss function for classification problems, and is characterized by the fact
that it penalizes predictions that are confident, i.e., close or equal to zero or one,
but wrong. The formula for cross entropy can be seen in Equation (3.4). From this
equation it becomes clear that when the actual label is one, the second half of the
equation vanishes. When the ground truth label is zero, the first half does.

L =−(yilog(ŷi)+(1− yi)log(1− ŷi)) (3.4)

Performance measures
Goodfellow et al. [8] describes various performance metrics which are explained in
this section. To determine the performance of the model being trained and, thereby,
how useful the model actually is, a performance measure is required. There are var-
ious performance metrics, although some are more common than others. Accuracy
is a common performance metric, although it is not useful in all scenarios. It ef-
fectively measures the fraction of correct classifications from a system, and can be
written as seen in Equation (3.5). T P stands for True Positives, T N for True Nega-
tives, FP for False Positives, and FN for False Negatives. It lacks in the aspect of
reliability. If the model tries to find rare entries, the model can achieve high accu-
racy by hard coding that this specific type of entry is never present in a data set. Of
course, this would not be a useful model, but the accuracy metric would still show
high values.

a =
T P+T N

T P+T N +FP+FN
(3.5)

To solve the problems of the accuracy metric, there are alternative metrics such
as precision and recall. Precision is the fraction of predictions that were correct,
according to Equation (3.6). Recall, on the other hand, is the fraction of true data
points that were detected, according to Equation (3.7). These metrics measure the
opposite aspect, meaning a model predicting all values as false would achieve 100%
precision but 0% recall.

p =
T P

T P+FP
(3.6)

r =
T P

T P+FN
(3.7)

Precision and recall are commonly plotted against each other as they tell the user a
great deal about the performance of the model. However, it is not always practical

20

3.2 Machine learning approaches

to use plots to describe how these metrics cooperate. Instead, they can be combined
into a single value representing the performance of the model, in the form of an
F1-score, which can be seen in Equation (3.8), where p is the precision and r is the
recall.

F1 =
2pr
p+ r

(3.8)

3.2 Machine learning approaches

This chapter will mainly focus on unsupervised methods since those are most rele-
vant to the project.

Clustering
As mentioned in the last section, clustering refers to grouping similar entries to-
gether based on their similarities, which lays a foundation for analyzing the data
further. There are many different approaches to clustering, both in regards to how
these clusters are defined as well as how you use the information gained to draw
conclusions [33].

K-means Clustering is a clustering algorithm that tries to minimize the mean
squared error (MSE), described in Section 3.1, of clusters. The MSE between the
mean vector of a cluster and a data point is regarded as the distance between them.
When building the clusters, the algorithm starts with picking K random samples
from the training data as initial cluster mean vectors. The algorithm then, for each
data point, calculates the MSE in regards to each cluster and adds the data point
to the closest cluster. When all data points belong to a cluster, new cluster mean
vectors are calculated and the algorithm is run again until the new mean vectors
are identical to the old ones. Since this can result in very long execution times, a
threshold of either minimum change or maximum iterations is often used [33] .

One of the drawbacks of k-means clustering is that you have to pre-define the
amount of clusters within the data. Hierarchical clustering is an approach where
the number of clusters does not have to be pre-defined. Hierarchical clustering meth-
ods build clusters by recursively either combining or splitting clusters until there is
a certain minimum distance between clusters. Figure 3.1 shows an example of ag-
glomerative hierarchical clustering where each data point is initially considered a
cluster. Clusters that are close to each other are then combined until there exists
a certain minimum distance between clusters. This distance can be computed in a
multitude of ways. One of these ways is to use MSE just as in K-means clustering.
The other way of doing it is called divisive hierarchical clustering, then you start
with all of the data points in the same cluster. The clusters are then split until there
exists a certain minimum distance between each cluster [19].

21

Chapter 3. Machine Learning

Figure 3.1 An example of agglomerative hierarchical clustering where each letter corre-
sponds to a data point and each box corresponds to a cluster

Principal Component Analysis
Principal Component Analysis (PCA) is an algorithm used for dimensionality re-
duction and it aims to represent higher dimensional data in lower dimensions while
still preserving as much of the characteristics of the data as possible. It builds a new
coordinate system based on K principal components, i.e, the coordinate system is
represented in K dimensions. By calculating the variance of the original components
the algorithm finds which components have the most integral part of representing
the data [14]. This new coordinate system can be used in a variety of ways to deter-
mine properties of a new data entry. It can for example be used in outlier detection
by analyzing the properties of a new entry with regards to the found principal com-
ponents. PCA is closely related to Singular Value Decomposition (SVD) which is
commonly used to decompose matrices. Furthermore, it is common to use SVD for
PCA, and it is possible to use PCA for SVD [35].

Figure 3.2 shows a simplified example of how PCA could work in practise. In this
example there are two dimensional data points, represented by the light blue dots.
In this case, they should be represented in one dimension along the dark blue line.

3.3 Deep learning

Deep learning is a field of computer science that tries to mimic concepts in biolog-
ical brains to allow computers to learn from examples of data [6]. This is mainly
done through the use of Artificial Neural Networks (ANNs). They consist of layers
of artificial neurons, or nodes, which are each connected to at least one node in the
next layer of the network. A node also contains information about how to interpret
each of its inputs and at what threshold its output value should be passed along to
the next node in the network. Each network consists of an input layer, which takes
input values and passes it along in the network, and an output layer, which receives
data processed from the earlier stages of a network and processes it with regular
neurons. Between the input and output layer there might be intermediate layers, or
hidden layers. An example of a neural network can be seen in Figure 3.3. A neural

22

3.3 Deep learning

Figure 3.2 Visualization of PCA from two dimensions to one.

network with three or more layers (including the input and output layer) can make
out an algorithm in the realm of deep learning [17].

Figure 3.3 An example of a neural network with an input layer, two hidden layers, and an
output layer.

[6] explains that deep learning is part of the machine learning realm, but that it dif-
fers greatly from traditional methods. Many ordinary machine learning algorithms
utilize labeled and structured data. This means there are predefined fields embedded
in the data for the algorithms to learn, and that there are labels present, acting as a
ground truth for the models to compare with their predictions. Deep learning mit-
igates some preprocessing steps that are typically necessary in machine learning.

23

Chapter 3. Machine Learning

Figure 3.4 An autoencoder architecture with three hidden layers. The input layer and the
first hidden layer make out the encoder part of the network. The last hidden layer and the
output layer make out the decoder part of the network.

Deep learning models also require less explicit knowledge from human experts as
they are able to automatically identify the most important features in the data.

Some common neural network architectures are:

Feed forward is a network architecture where the information is passed from the
input layers, through each hidden layer, and finally to the output layer. The informa-
tion does not pass through any of these layers more than once, and it is only passed
forward in the network. In Figure 3.3 the information would flow from left to right
[25].

Autoencoders are special neural networks designed to learn efficient encodings
of the input data. The training data is passed as in a normal neural networks, but
are passed along to one ore more hidden layers with smaller dimensions than the
input layer. Once the data is represented in fewer dimensions, the network then
reproduces the data in the same dimensional space as for the input layer, with the
goal of minimizing the reconstruction error [27]. An example of an autoencoder
architecture can be seen in Figure 3.4

Recurrent neural networks work on sequential data, and it is able to remember
what it has encountered previously to help improve future predictions. The states in
the network get progressively updated each time data is read, and each time step also
takes the network states of the previous time step into account. The architecture of a
recurrent neural network can be seen in Figure 3.5. Regular recurrent networks have
a very short term memory, meaning it can not remember very long sequences of
data. This problem is mitigated using a Long Short Term Memory (LSTM) network,
which is a special kind of recurrent network with extra components for handling
longer input sequences. These components are called gates, and they result in a

24

3.3 Deep learning

Figure 3.5 A visualization of a recurrent neural network architecture. The input is in the
form of sequential data, which results in a prediction for each time step in the output step.

longer memory for the neural network. The first gate, cell state, is the effective long
term memory of the network. The forget gate erases information in the cell state
that is no longer needed based on the input from the current timestamp and the cell
state from the previous timestamp. The Input gate determines what information is
added to the cell state based on the input from the current timestamp and the cell
state from the previous one. Finally, the output gate extracts the information from
the cell state [25].

25

4
Log Parsing

Recording system events is a crucial act to maintain a healthy computer system in
an industrial environment. It is common to store vital system information in logs
for developers and engineers to debug potential problems. Although there is much
information embedded within logs, how to effectively analyze them is not a trivial
question. Manual analysis will quickly prove tedious and infeasible considering the
vast amount of data generated each hour. Thus, machine learning techniques have
recently been on the rise in log file analysis. For this to work, the initial step is to
prepare the log data at hand for such algorithms through log parsing.

It is common for log messages to be generated through log-statements from the
source code. Generally, they are informational strings of characters, often mixing
constant strings with variable runtime values. The goal of log parsing is to construct
a log template consisting of the constant string, along with a list of parameters
consisting of the various variable information.

Zhu et al. [34] presents, explains, and evaluates a multitude of log parsing algo-
rithms. They walk through each algorithm thoroughly, explaining their characteris-
tics, techniques, and how they perform compared to other techniques on various data
sets. The evaluations are mainly based on accuracy, robustness, and efficiency. The
top performing log parsing algorithm from their research was Drain, IPLoM, and
AEL, which will be described in this chapter. Their experiments will be described
further in Section 4.4.

4.1 Drain

Drain was proposed by He et al. [13] and aimed to reduce the manual work in
traditional log parsing strategies. It does not require any access to source code or
any other resources, other than raw logs, and is a fixed depth tree based online log
parsing method.

26

4.1 Drain

Drain pipeline
Drain is an online parser, meaning it handles log entries one by one in a streaming
manner. When new messages arrive, the algorithm either assigns it to an existing log
group or creates a new one. To speed up the process of searching through existing
log groups, Drain effectively utilizes a fixed depth search tree which reduces the
amount of log groups to explore. Furthermore, the fixed depth means all leaf nodes
in the tree are found at the same depth.

The tree itself consists of a root node, which is at the top of the parsing tree. At
the bottom, there are leaf nodes, which contain lists of log groups. The log groups
are described by a log event, which is the constant part in a log entry, and a log ID,
which records the IDs of all the log messages in that group. In between the root
node and leaf nodes there are internal nodes, which encode specific rules which
guide the search through the tree. These rules could be the length of log messages
stored further down that path, or specific parameters found in those log messages.

Preprocessing is the first step for incoming logs. The preprocessing is done in the
form of domain-specific regular expressions. The users provide regular expressions
which Drain will use to remove matching fields from the log entry. This is mainly
done to reduce redundant information and potentially improve parsing accuracy.

Traversing the parsing tree is the second step of the pipeline. Drain starts its search
from the root node of the tree. The first step in traversing the tree is to search through
the first layer of internal nodes, which holds information about message length
(measured by the number of tokens in the entry). It will select the path matching
the number of tokens in the incoming log.

The next layer in the tree consists of significant constants within log entries, which
Drain assumes occur within the first few positions of a message. Each constant is
represented as an internal node. If any of the initial tokens contain digits, they will
be represented by "∗" in the tree to restrict the size of the tree.

Finally, Drain has found a leaf node containing a list of log groups. It adds the
incoming log message to the most similar log event of each group. The similarity is
determined by simSeq:

simSeq =
∑

n
i=1 equ(seq1(i),seq2(i))

n
,

where seq1 and seq2 denote the incoming log message and the log event respec-
tively, n is the number of tokens, and equ is defined as:

27

Chapter 4. Log Parsing

equ(t1, t2) =

{
1 if t1 = t2
0 otherwise

where t1 and t2 are tokens in seq1 and seq2 respectively.

Updating the parsing tree Finally, the log group found in the previous step will be
appended with the log ID of the incoming log entry and the group log event will be
updated. If no suitable group is found, Drain will create a new log group containing
only the log ID of the incoming log and the log event being exactly the incoming
message itself.

4.2 IPLoM

Iterative Partitioning Log Mining, or IPLoM, was proposed by Makanju et al. [20]
and excels at finding event type patterns in logs. It operates through iteratively parti-
tioning a batch of log messages, converging towards monotone clusters with regards
to the message format with each iteration.

Partitioning
The partitioning goes through three separate steps to find all possible log lines.

1. The first step is to partition the set of log messages with regards to token
count, meaning the log messages are grouped based on the number of tokens
in the message. It is assumed that log messages that derive from the same
print-statement in the source code have the same format and, inherently, the
same number of tokens.

2. Next, the algorithm further partitions the log messages based on token po-
sition. It creates clusters based on the token index i with the fewest number
of unique tokens. These clusters are populated with the different log variants
where the tokens at index i are the same.

3. Finally, the partitioning is based on bijective relationships meaning there is
a 1 : 1 ratio of adjacent tokens. This typically means there is a strong rela-
tion between these tokens and the messages containing them are therefore
grouped together. However, before passing through this partitioning step, the
clusters are evaluated. If they are considered good already, this step is miti-
gated entirely.

The final step of the algorithm is to find the cluster descriptions, or line format of
the log entries within that cluster. Each cluster is assumed to contain log entries

28

4.3 AEL

derived using the same log format. This is done by counting the number of unique
tokens in each token index of every entry within the cluster. If this count is one, the
token is considered a constant and represents itself in the description. If it is greater
than one, however, it is considered a variable and the index is shown as a wildcard
token, "∗".

4.3 AEL

The task of abstracting execution logs (AEL) means transforming log lines into
execution events which can be used for analysis. Log lines are generally generated
through output statements in the source code of an application, and log entries from
the same output statement are therefore generated by the same execution event.
Furthermore, log entries with identical static parts and similar structure in their
varying parts most likely derive from the same line of source code.

AEL operates by detecting similarities in various log lines and parameterizing them.
It performs three main steps:

1. The first step is to anonymize the log entries by finding tokens corresponding
to varying parts of the message. This is done by looking for token pairs indi-
cating an assignment using the equals sign or phrases indicating assignments
with words like is or are. Variable tokens are replaced with a wildcard token,
in this case "$v".

2. The second step is to tokenize the resulting log lines from the previous step
by separating them into groups based on the number of tokens in each line.
The group names are tuples consisting of the number of static words and the
number of variable tokens of the messages in the group.

3. The third and final step is to categorize each group and abstract them to the
correct execution event. This means matching the tokenized log messages in
each bin, labeling similar ones with the same execution event. Entries that do
not match any previous formats get a new and unique label.

4.4 Performance of log parsing techniques

Zhu et al. [34] defines the parsing accuracy as the ratio of correctly parsed log
entries in relation to the total number of messages. They show that, on average, the
most accurate log parser technique they experimented on was Drain, which reaches
a high accuracy (> 90%) on a majority of the data sets. Other high performing
algorithms were IPLoM and AEL.

29

Chapter 4. Log Parsing

The robustness of the parser is determined by its consistency across different data
sets. A robust method should be consistent when exposed to various types of logs
from different domains, as well as for different amounts of logs to process. They
conclude that Drain, IPLoM, and AEL are robust since they all have high average
accuracies. However, the two latter methods have great variances in their perfor-
mances. Drain and AEL show the best robustness when it comes to variance in
volume of logs, although Drain has higher overall robustness than all other meth-
ods.

The efficiency is determined by the time required to finish parsing the entire batch
of logs. Out of the parsers tested, Drain and IPLoM are the most efficient and their
execution times roughly scales linearly to the volume of logs being handled.

There are three recurring methods throughout these tests, namely Drain, IPLoM,
and AEL, which are all among the top performing methods in the aspects tested.
Furthermore, Meng et al. [22] propose LogAnomaly, a state-of-the-art anomaly
detection framework for log files. They use a log template representation called
Template2Vec which allows them to capture semantic information in the logs.
LogAnomaly itself is discussed further in Chapter 6.

4.5 This project

There are many similarities between the algorithms described so far. They all try to
group similar log messages together by using trees, clusters, or both. In this project,
fast and reliable methods are of interested for processing the logs. Since Drain is
the top performer in most categories, this is the parser used in this thesis.

30

5
Feature Extraction

Traditional log messages consist of strings of characters, meaning they need to be
converted to numerical features before they can be used by an anomaly detection
algorithm. The message is typically converted into a template and features via a
log parser, which is described in the previous chapter. Using this template, the act
of feature extraction is performed in two main steps, namely partitioning and the
feature extraction itself. This is described in [2].

5.1 Partitioning

After having generated a log template from a parser, log entries are commonly
grouped in various ways. For instance, they can be grouped by some ID, such as
for tasks or sessions, present within the data or by time. Chen et al. [2] describes the
main ways to partition chronologically sorted logs into sequences.

Fixed partitioning means partitioning the logs into groups of a predetermined size,
usually determined by the timestamp in the logs. Figure 5.1 shows how a sequence
of numbers can be split using fixed partitioning. The window samples the entries it
can fit within its length, before jumping to the first entry it has not covered in previ-
ous window positions. In practise, this means there is no overlap between partitions.

Sliding partitioning Sliding partitioning means grouping logs based on a sliding
window defined by a window size and a step distance, which is generally smaller
than the window size. Figure 5.2 shows this principle. The window samples entries
within its length, before sliding to a new position, specified by the step distance.
This means the groups are overlapping, meaning the same entries are present in
multiple groups, effectively resulting in more data than in the original data set.

Partitioning based on identifiers, or session windows [14], means partitioning logs
based on a common field contained within a sequence of logs. Figure 5.3 shows
this type of partitioning. The concept of windows is not relevant in this type of

31

Chapter 5. Feature Extraction

Figure 5.1 Illustration of how fixed partitioning divides a dataset into windows

Figure 5.2 Illustration of how sliding partitioning divides a dataset into windows

Figure 5.3 Illustration of how feature based partitioning divides a dataset into windows

partitioning. Instead, each unique value for a specified field is grouped together. This
often indicates they belong to the same task or were created in the same context. A
key characteristic of these groups are their varying lengths.

32

5.2 Extracting features

5.2 Extracting features

After having grouped the log entries, many machine learning based anomaly detec-
tion techniques use an event count vector for each sequence, resulting in a matrix
for all sequences [14]. The rows in this matrix are the event count vectors, in which
each dimension is represented by a specific log message. The number in that dimen-
sion is the number of occurrences of that message within the sequence.

Another, more elaborate, method is described in [2] and is based on deep learning
methods aimed to learn the semantics of the log messages. Here, the words in a
message are transformed to a numerical representation using Word2Vec methods
such as FastText or GloVe. The output can be aggregated to represent the semantic
vector of the message.

5.3 This project

Over the course of this project, multiple anomaly detection algorithms have been
compared. These algorithms, which are discussed in detail in Chapter 6, require
different methods for data partitioning depending on what they analyse.

33

6
Anomaly Detection

Detecting anomalies or outliers in data can be done in a variety of different ways,
and to decide which one is best for the problem at hand is not always trivial. Which
method that is best suited depends on factors such as the nature of the input data,
type of anomalies, the availability of labels and the desired output of the model [1].
Defining what is and what is not an anomaly is not an easy task, the authors of [1]
uses the following definition: "Anomalies are patterns in data that do not conform
to a well defined notion of normal behavior" and classifies anomalies into three
different categories.

Point anomalies are the simplest kind of anomalies. They refer to individual data
instances which by themselves can be considered anomalous. These are usually the
easiest to detect since they usually stand out from the rest of the data points.

Contextual anomalies are data instances which are considered anomalous in the
context of the instance, but do not have to be considered anomalies when compared
to the rest of the data.

Collective anomalies are not anomalies in the same sense as the two previous types.
Collective anomalies are collections of data instances where individual data points
do not have to be anomalies. But when evaluated as a group the whole collection is
deemed anomalous.

Even though these different types of abnormal behaviors can be categorized, what
is, and what is not, considered normal behavior might change over time. This might
be because of new features added to the system or other system updates. Since there
will be no available labeled data in this thesis, the focus will mainly be on unlabeled
anomaly detection techniques. Acquiring labeled data is often hard and expensive
when it comes to anomaly detection. Labeling has to be done manually by a human
who has to be an expert at the system at hand. In some cases it can be hard, even for
an expert, to find all anomalies in a data set since there may exist anomalies that are
not known beforehand. According to the authors of [14] unsupervised techniques

34

6.1 Traditional unsupervised anomaly detection techniques

are therefore often far more applicable in real world environments.

6.1 Traditional unsupervised anomaly detection
techniques

Clustering based techniques groups similar data points into clusters and evaluates
new data point entries by placing them inside or outside already created clusters.
There are a few different approaches to how you distinguish anomalies from nor-
mal data. You can assume that all data points that do not belong to a cluster is an
anomaly, but this could result in a situation where anomalies form a cluster and
therefore would not be caught by the model. To address this issue you could instead
calculate the density or size of the cluster where it is placed. If the density or size is
under a certain threshold the cluster is considered anomalous. An implementation
of a clustering based technique proposed by [18] called LogCluster is divided into
two different training phases. In the first phase event count vectors are clustered us-
ing agglomerative hierarchical clustering and a representative event count vector is
calculated for each cluster. The second phase is used to further adjust these clusters
and possibly create new ones by adding new event count vectors one by one. The
model is then ready for use. By calculating the distances to nearby clusters, a new
event count vector can be considered normal or anomalous.

Nearest Neighbor based techniques based techniques work similarly to the clus-
tering techniques. Instead of creating and calculating distances to the closest cluster,
nearest neighbor techniques calculate the distance to the nearest neighbor or, alter-
natively, the density around a data point. This means that it requires less computing
power in the training phase but it is quite computationally costly in the testing phase.
The performance heavily relies on how the distance is defined for the problem [1].

Spectral anomaly detection techniques are techniques where the data is trans-
formed into a lower dimensional space where the characteristics of the normal in-
stances, and therefore also the anomalous instances, are more clearly defined. One
frequently used approach is to use Principal Component Analysis (PCA) described
in Section 3.2 [1]. He et al. [14] uses the PCA algorithm to construct two different
sub-spaces, one normal space and one anomalous space where the normal space is
built by the first K principal components and the subspace built by the rest of the
components is considered anomalous. By projecting a new entry onto the normal
subspace and checking the length of the projection into the anomalous subspace an
entry can be reported as anomalous. It is anomalous if the length in the anomalous
subspace is larger than a certain threshold. The authors use squared prediction error
(SPE) to represent the length of projections.

Invariants Mining is a technique where program invariants are mined. A program
invariant is a linear relationship that always hold true during program execution.

35

Chapter 6. Anomaly Detection

Logs that can be grouped together into sessions, e.g, by the use of session IDs,
can represent the execution flow of that session. The invariants mined represent the
normal execution flow of the system under different circumstances, such as different
workloads or different parameter values. This method uses event count vectors to
generate an event count matrix. Using singular value decomposition the number of
different invariants to be mined can be calculated. These invariants are then mined
using a brute force search algorithm. When a new log sequence arrives it will be
checked against the mined invariants and will be reported as anomalous if it breaks
the rules of the invariants [14].

As mentioned in [2] traditional and statistical models, even though they have im-
proved over the years, still have some limitations. They offer insufficient inter-
pretability which means that they often only flag a sequence as anomalous without
providing any more information about the anomaly. They also have Weak adaptabil-
ity which means that they do not respond well to changes in system behavior. Some
models even have to be retrained from scratch when new system functions and fea-
tures are added. They also rely heavily on handcrafted features which means that
the model often has to be specifically tailored to the specific system.

6.2 Deep learning based anomaly detection

To combat the limitations of traditional and statistical methods [2] proposes to use
deep learning to detect anomalies. Deep learning often applies neural networks such
as recurrent neural networks (RNNs) or convolutional neural networks (CNNs).
A lot of research has been done in recent years regarding the application of deep
learning in anomaly detection, and in [2] the authors compare some of the deep
learning methods for anomaly detection.

Autoencoder
One way to perform anomaly detection using deep learning is to use autoencoders.
Chen et al. [2] deploy an autoencoder to learn the representation of normal log se-
quences. As mentioned in Section 3.3, the autoencoder first encodes the data by
using neural network layers of smaller dimensions than the original data. It then
decodes and tries to represent the data again in its original dimension. This is visu-
alized in Figure 3.4. By comparing the input and the output of the model, i.e, the
original log sequence and its encoded and decoded version, the data can be consid-
ered an anomaly if the difference is too big.

DeepLog
DeepLog is a deep learning neural network proposed by Du et al. [5], which is an
approach for anomaly detection that takes inspiration from natural language pro-
cessing (NLP). Just like a language, system logs follow certain logical patterns and

36

6.2 Deep learning based anomaly detection

control flows. By viewing log sequences as sentences and entries as words the log
data behave very much like a language. A deep learning network is used to model
this. A Long Short-Term Memory (LSTM) network allows DeepLog to learn the
patterns of normal execution and flag anomalous events. By analyzing the log se-
quence DeepLog creates a probability distribution of the next log entry to appear.
If the new log entry does not meet the probability threshold, it will be considered
anomalous.

DeepLog first parses free text log entries into structured, sequential data. They ex-
tract a log key from each data entry. A log key is the type of the message and refers
to the constant string of the log message with variables removed. Variables will be
abstracted with an asterix (*) in the log key. The parameter values for each log is
stored in a separate vector which will be used in addition to the log key

DeepLog contains three main components: log key anomaly detection model, pa-
rameter value anomaly detection model and the workflow model. In the training
stage the log files are parsed into log keys and parameter vectors. Sequences of log
keys are used to train the log key anomaly detection model and the system workflow
model. For each distinct log key there is also a parameter value model trained on
the parameter vectors of a specific log key.

Figure 6.1 An illustration of how DeepLog’s log key model determines if an anomaly has
occurred.

In the detection stage, a new log entry is parsed into a log key and parameter vector.
Firstly the log key is checked with the log key model. This is done by viewing a
history of log keys for the n latest log messages. The last message is this sequence
is extracted as a label, and the remaining n− 1 log keys are passed to the log key
model. The output of the model is the top k predictions for the final log key in the
sequence. The output of the model is compared to the ground truth value, and if
the ground truth is among the top k predicted values, the sequence is considered
as normal. If not, it is considered as anomalous. The values of n and k are not
predetermined can be tuned for optimal performance. The log key model pipeline
is visualized in Figure 6.1.

37

Chapter 6. Anomaly Detection

If the log key is normal the parameter vector model will check if the parameter
vector is normal for that log key. This is done in a similar way as for the log key
anomaly detection. However, instead of comparing the output of the model with the
ground truth directly, the Mean Squared Error (MSE) between the ground truth and
the prediction is compared. If the MSE is outside a confidence interval, based on
the validation MSE from the training phase, the parameter vector is considered as
anomalous. If either of the log key or parameter vectors is abnormal, the workflow
model will provide semantic information to help diagnose the anomaly. An analyst
can report anomalies as false positives. If this happens, DeepLog can use this data
to update the models.

LogAnomaly
LogAnomaly, proposed in [22], builds upon the same principles as DeepLog, using
LSTM networks to learn sequential log patterns and create probability distributions
of the next log entry. The key difference is that LogAnomaly also takes the seman-
tic information in the logs into account when creating and indexing log templates.
Meng et al. [22] uses the term log template instead of log key, these terms will be
used interchangeably. DeepLog simply indexes the different log templates and all of
them are considered equally different. LogAnomaly uses the semantic information
in the logs to create semantic relationships between log templates. Instead of only
indexing the different log templates, LogAnomaly creates template vectors which
contain semantic information about the log entry. This vector is created using the
Template2Vec method mentioned in Chapter 4. Before Template2Vec can be applied,
the logs have to be parsed and the templates have to be created. This is done using
the, at the time, state-of-the-art logparser FT-Tree [32].

By using the methods FT-Tree and Template2Vec sequences of log messages are
converted to sequences of log template vectors. An LSTM network is then used
to extract sequential and quantitative features from these sequences in the offline
training component of the model. In the online detection component, the log en-
try is compared and matched with the existing log templates. If there is a match
the log is converted to the log template vector. Otherwise the log template will be
approximated by analyzing the similarities between the new log entry and existing
log template vectors and matching the new template vector to the most similar ex-
isting template. This is done with the assumption that new types of log templates
will only differ by a small margin from previously known log templates. This al-
lows the model to handle new log messages and provide results even though a log
message has never been seen before. The trained LSTM model then determines if a
log sequence is normal or anomalous. Meng et al. [22] recommends that the offline
training is done periodically, e.g. weekly, to incorporate new system behaviors and
log messages.

38

6.3 This project

Transformer models
Both LogAnomaly and DeepLog rely on LSTM networks to learn patterns in log
data. One alternative to using LSTMs or other types of RNNs is to use a trans-
former. The first use of a transformer model in log anomaly detection was done by
Nedelkoski et al. [24] who proposes Logsy. Nedelkoski et al. utilizes Tokenization
of raw log messages instead of using a log parser. However, Chen et al. [2] used
Logsy with both the log preprocessing of DeepLog and LogAnomaly by only using
log template indices and adding semantic information. The Logsy model has two
phases. During the offline phase the model is trained and parameters are tuned by
using log messages. In the online testing phase each log message is run through
the model and an anomaly score for each message is generated. The transformer
model proposed by Vaswani et al. [28], is a model architecture that relies on an
attention mechanism to draw global relationships between input and output. An at-
tention mechanism maps queries and key-value pairs, in the form of vectors, to an
output. The transformer itself maps input embeddings to a sequence of intermedi-
ate symbol representations, before generating an output sequence. This is done by
dividing the model into an encoder and a decoder. Both parts consists of six layers
with output normalization between each one. Each encoder layer passes the data
through a multi-head self-attention function (see [28]) and a fully connected neural
network. The decoder layers perform the same steps, but also adds an additional
attention function on the output from the encoder.

Another implementation of a transformer model is done by [31] who proposes
LSADNET. LSADNET utilizes a one-dimensional convolutional network (Conv1D)
in combination with a globally sparse transformer model to find both global and
local dependencies in the data. LSADNET utilizes log parsers to perform template
extraction, different log parsers were tested by Zhang et al. with Drain, FT-Tree
and Logsig being the top performing ones. The log templates are then vectorized
using three different log vectorization components: log template semantic embed-
ding (LSE), log key embedding (LKE) and log template transfer value (LTF). Where
LSE represents the semantic information of the log message and LKE represents the
log template. LTF represents the characteristics of the system, meaning it contains
information about the likelihood of the next log template. These vectors are then
combined into one vector, representing the whole log template. This is the vector
that is then used by the model to create a probability distribution of the next log
message.

6.3 This project

This section has presented various methods for anomaly detection used in the indus-
try. For this thesis, the focus will be on finding collective anomalies and the methods
Clustering, PCA and autoencoder will be compared and evaluated.

39

7
Method

7.1 Project process

To start up the project, a literature study was conducted with the aim of finding
best practices and state-of-the-art methods for log anomaly detection. The literature
was found through the use of academic databases such as Google scholar and LUB-
search (Lund University libraries). This resulted in various articles being read and
summarized, and were to be referenced at later stages to determine suitable methods
for the specific applications of this project.

With the knowledge gained during the literature study, the opt-out system was stud-
ied and log files were collected. Understanding the back end communication of the
system was crucial for determining suitable methods. Because the system is dis-
tributed, involving various independent systems, there is no good way of following
a sequence of messages, it was determined that a frequency analysis method proba-
bly would be the best choice. However, sequence analysis would still be of interest
to explore how useful it would be in this context and if it could still yield any useful
results.

To further analyze the logs and prepare them for the anomaly detection itself, the
log messages needed to be categorized using a log parser. All of the state-of-the-art
parsers that were identified during the literature study were created for unstructured
log messages with the purpose of structuring the data within the message. Since
the logs from the opt-out system already were structured, a new way of parsing
and categorizing these messages, utilizing their structured nature, was explored.
The method implemented was inspired by the Drain-method. The method was later
deemed too static, hard coded for the specific system, and it did not handle new
log messages or small message changes very well. Instead, another approach was
taken where unstructured messages, containing the important information in the
structured ones, were created and parsed by the state-of-the-art log parser Drain.
An existing implementation of Drain by the LogPai team was used, which had to be
slightly tweaked to accommodate the needs in this thesis.

40

7.2 Environment setup

To further prepare the log messages for analysis, window partitioning methods were
implemented, which allowed partitioning logs according to fixed and sliding win-
dows, based on either the number of messages or the timestamp embedded within
each message. This means that a window either contains a fixed number of messages
or all the messages within a certain time window.

The algorithms chosen for further experiments were LogCluster, PCA analysis, and
an autoencoder. For LogCluster and PCA analysis, open source implementations
by the LogPai team were used [14] . There was also an implementation of an au-
toencoder, but it relied on a specific data structure that could not be replicated in
this setting. For this reason, a dense neural network was implemented and used in
its place.

To evaluate the implemented methods, anomalies had to be injected into the data.
Examples of various types of anomalies were presented by Ingka. These anomalies
were then replicated and randomly distributed in the test data set. By analyzing
which, and how many, of these anomalies each model finds, conclusions about their
performances could be drawn.

When using machine learning methods you have to provide input parameters which
can alter their performance. To fairly evaluate these methods, a parameter search
was conducted. Since this requires a lot of runs, an environment was set up in GCP
where simultaneous virtual machines could be deployed with different parameter
setups.

The models were trained and tested on the data collected during the month of March
2022 where both a window and hyper-parameter search was conducted. The best
performing methods and parameter choices were then validated with data from the
month of April 2022, to see how the performance changes with alternative data sets.

7.2 Environment setup

To test the capabilities of each anomaly detection method a parameter search is con-
ducted. Without testing different parameters, it is hard to know the full capability
of the method. This means that a lot of training and testing runs need to be per-
formed for each method. Running this locally and sequentially, with one run after
each other, could take a tremendous amount of time. Instead of doing this locally,
an environment in GCP was set up, where simultaneous runs could be conducted.

To be able to run the models in virtual machines, Docker images were created for
each of the models. These images were pushed to a repository in GCP where they
could be accessed by virtual machines with the required permissions. The environ-
ment was set up using terraform, which creates a Compute Engine in GCP based
on a VM image which contains all of the required permissions needed to access the

41

Chapter 7. Method

docker images. When the Compute Engine is created a startup-script is run. This
startup-script pulls one of the docker images and starts it with specified parameters.
Before terminating, the results of the test are put in a json-file and pushed to a bucket
in GCP where it can be accessed. After terminating the test, the Compute Engine
shuts itself off. A visual representation of what happens when the terraform script is
run is provided in Figure 7.1. This terraform-script is started by a shell-script which
can specify both the number of runs, i.e., VM:s created, as well as the parameters
of the run.

Figure 7.1 Sequence diagram of a single run of the testing environment.

7.3 Log collection

Collection of production logs
To perform the experiments, several months of log messages created by the opt-out
system in production will be available. However, due to the vast amount of data,
the virtual machines utilized are not able to handle all the data at once. Instead,
the models are trained on one month’s worth of logs, saving the remaining logs for
possible future evaluations of the models being trained. The log messages come
from three different sources within the system, namely HTTP logs, application logs
and stderr logs. Logs are accessed through files containing the messages in JSON
format. Since the messages from different sources are provided in different files,
they need to be aggregated and sorted by their timestamps to be able to create the
correct sequences.

42

7.4 Parsing and vectorizing data

Collection of anomalies
To test the models there is a need of examples of anomalies that the models can be
tested on. INGKA presented six different types of anomalies that can be used during
the testing stage. These anomalies are:

decryption-failed-v1 and decryption-failed-v2. These errors happen when the
wrong key is used for encryption or decryption. This could mean that someone
is trying to guess or use old encryption keys to try to get access to data.

email-not-found can happen when there is something wrong with the system that
leads to the data about a user being inaccessible.

request-body-validation-failed can happen either because the link sent to the user
was wrongly generated or because a user is trying to do something malicious.

secret-error means that there is something wrong with the handling of secrets in
the system. Either because of the secrets being inaccessible or removed.

api-fail means that something has gone wrong in regards to a request sent to an-
other api. This could either be due to the other api malfunctioning or some kind of
communication problem , e.g,. network problems.

7.4 Parsing and vectorizing data

The vast majority of the prior research in log anomaly detection have studied the
case of unstructured logs in production systems. This thesis tackles a different sce-
nario, where the logs are generated in a structured manner from multiple production
systems in a distributed cloud environment. This means the methods encountered in
the literature study needed to be adapted to the problems of this thesis to work cor-
rectly. The parsing and vectorization steps of the anomaly detection pipeline have
been experimented with to find a suitable solution for this setting.

Most of the parsers mentioned earlier only apply to unstructured log messages.
Since this project instead are dealing with structured messages, there are a few al-
ternatives on how to categorize log messages. One of the problems is that the log
messages from the different systems do not have the same structure. All of them
are JSON messages but not all of them contain the same fields. This means that the
information in individual fields cannot be used to fully categorize these messages.

Initial parsing approach
Log parsing generally means transforming unstructured logs to a structured format
for easy data access and log template extraction. However, the cloud services in this
project output log messages that are already structured, in the form of JSON objects.
These objects do not need to be parsed for easy data access, since there are already

43

Chapter 7. Method

fields defined containing the available data. Instead, they need to be parsed to allow
extraction of log templates and a template id. To this end, the characteristics of a
unique log type needed to be determined, which was initially done by recursively
utilizing the object keys within each log. Some further knowledge of the logs at
hand may be required to fully extend the scope of the log templates. For instance,
HTTP log messages contain a method field with values such as POST or GET,
which should result in to different log templates. Thus, for some data fields, the log
templates should be determined by a combination of the key and its corresponding
value, separated by a colon.

The idea for parsing the structured log messages comes from unstructured log parser
techniques such as AEL and, most importantly, Drain. A parse tree of depth two
was defined. The first layer in the tree was the number of key-value pairs in the top
level of a log message. The next layer was a list of all the log messages with the
same length as the number presented in the previous layer. This list contained a log
template described by the object keys presented as a recursive list of key names. For
each log template a unique identifier is also present.

Final parsing approach
The initial parsing approach was valid, and could categorize each type of struc-
tured log message it was presented with. However, the solution required lots of
prior knowledge about the logs being handled, since the programmer had to man-
ually specify which fields were of interest for the system, and that some explicit
fields should be handled differently. This resulted in the majority of the fields in the
messages being removed, possibly discarding useful information.

A different approach was taken to mitigate these problems. Instead of a custom
parser implementation, an existing, open source, implementation of Drain was used.
However, to use this implementation, the logs needed to be converted to a common
unstructured format before being passed through the parser. The common format
looked as follows:

<Timestamp> <Id> <Severity>: <Content>

Timestamp, Id, and Severity are fields fetched from the log objects directly. They
represent the time of creation, the id of the log message being handled, and the
severity level of the log message, respectively. These values can be seen as gen-
eral information about the log event, but do not affect the log templates being out-
put from the algorithm. The Content part, however, determines the resulting log
templates. It consists of a concatenation of multiple unstructured fields, along with
fields such as severity, which are deemed important for detecting different log types.

A log entry may look as follows:

44

7.4 Parsing and vectorizing data

{
" i n s e r t I d " : "09 jxvn " ,
" j s o n P a y l o a d " : {

" logMeta " : {
" e n d P o i n t " : "CMA−OPTOUT" ,
" r e s u l t " : "SUCCESS"

} ,
" message " : "cma− o p t o u t r e s p o n s e s u c c e s s f u l " ,
" name " : " opt −out −be " ,
" p i d " : 3 ,

} ,
" s e v e r i t y " : " INFO " ,
" t imes t amp " : "2022 −03 −01T00 : 0 0 : 1 1 . 9 3 8 9 9 9 8 9 1 Z"

}

Before parsing this log, its unstructured parts, along with a few other fields deemed
useful, are concatenated into the format previously described. The resulting unstruc-
tured message would look like:
2022 −03 −01T00 : 0 0 : 1 1 . 9 3 8 9 9 9 8 9 1 Z , 09 jxvn , INFO , INFO CMA−OPTOUT SUCCESS

cma− o p t o u t r e s p o n s e s u c c e s s f u l

This unstructured message can then be passed through the parser itself, which ex-
tracts the following template:
INFO <*> SUCCESS <*> r e s p o n s e s u c c e s s f u l

As seen in the log template above, some words are replaced with <*>, which in-
dicates a variable part of the message. These are extracted into a separate feature
vector. In this case, this feature vector would look like this:
[’CMA−OPTOUT’ , ’cma− o p t o u t ’]

This results in a more dynamic solution, which can handle more types of log mes-
sages, and which also requires less prior knowledge about the logs and the system
producing them.

Feature extraction
To further prepare these sequences of log messages for anomaly detection, the log
messages are split into windows of log messages. Since the chosen approaches, at
least LogCluster and PCA, uses event count vectors, sliding windows over time
were used, where, for instance, a window can contain ten minutes of log messages.
This is because it was thought that time based windows would give a better repre-
sentation of the program state than using a fixed number of logs in each window.
The resulting sequences of log messages are then turned into event count vectors.

Before these event count vectors are used in anomaly detection they are first nor-
malized and weighted. The normalization used is zero-mean and the weighting is

45

Chapter 7. Method

done by the tf-idf (term frequency–inverse document frequency) method. In zero-
mean normalization all values are changed the same amount so that the mean of all
values in the dataset is zero. Tf-idf is a weighting factor which is common in text
processing. It is intended to describe how important a word is in a document or col-
lection of documents [30]. In the case of this thesis, it helps with discovering which
message types are more important than other. For example a change from 300 to
350 messages of one type in an hour might not mean as much as a change from 0 to
50 of another type.

7.5 Model implementations

The three models used in this thesis are Clustering, PCA and Autoencoder. PCA
and Clustering were used since they are two commonly used frequency analysis
methods. To incorporate deep learning into the thesis, an autoencoder was also im-
plemented. Most deep learning methods focus on sequence analysis, but the au-
toencoder also has the possibility of using frequency vectors. These methods were
implemented and adapted to suit the setting of this project. Furthermore, the base-
line system, which is described in Section 1.2, was converted from query lines to
Python code. This allowed evaluation of the system using the same pipeline as for
the other methods. The evaluation is described in detail in Section 7.7.

The PCA and LogCluster algorithms were evaluated by utilizing the open source
implementations from LogPai. Their toolkit LogLizer [14] was utilized and adopted
to the setting of this project.

The autoencoder, however, was implemented using the Keras deep learning API
for Python. The same preprocessing as for the other methods was used, and the
resulting data representation was passed to a dense neural network in the form of
an autoencoder. The architecture consisted of an input layer with one neuron for
each type of message in the data set. There was one hidden layer with a number
of neurons that is smaller than the number of neurons in the input layer. The exact
number of neurons in this layer is one of the parameters that will be tuned and
experimented with in the upcoming steps. Finally, there was an output layer with
the same dimensions as for the input layer. The model was trained using MSE as
the loss function, and in each training step the validation loss is stored for later
reference. Then, for each prediction in the test data, the test MSE is compared to
the average validation MSE from the training step. If the reconstructed prediction
differs from the average validation MSE by more than one standard deviation, the
data point will be classified as an anomaly. This prediction routine is inspired by
DeepLog [5] and serves as an alternative to a hard coded threshold value.

46

7.6 Hyperparameters

7.6 Hyperparameters

Window settings
The different window setting parameters are window_size and step_size. These pa-
rameters are either set in seconds or number of messages depending on if a window
based on time or number of messages is used. The PCA and LogCluster algorithms
use the time based windows since they use event count vectors which automatically
are the same length even if the number of messages are different.

LogCluster
For the LogCluster algorithm there are three different parameters that can
be tweaked to ensure the best possible performance of the model to specific
cases. These are nr_bootstrap_samples, anomaly_threshold and max_dist.
nr_bootstrap_samples are the number of samples used for the offline training
of the model. The authors of [14] mention that a number larger than 10000 is infea-
sible due to memory consumption. 10000 is therefore used, since it should provide
the best result while still being usable on normal machines in a timely manner. The
anomaly_threshold parameter dictates the threshold for what should be considered
an anomaly, and the max_dist parameter sets the threshold for when the clustering
process should be stopped. For the window settings-scan, the parameters were set
to their standard value, set by the authors. These values are max_dist=0.5 and
anomaly_threshold=0.3.

PCA
The PCA algorithm has two different parameters. The n_components parameter
which dictates the number of principal components. This parameter is used to con-
trol the variance which is covered by the principal components. The other parameter
is the threshold parameter which dictates the threshold for anomalies. This param-
eter is calculated automatically using Q-statistics if a number is not entered. The
automatically calculated Q-statistics threshold was used in the experiments. For the
window settings-scan, the n_components parameter was set to cover a variance
ratio of 95%.

Autoencoder
There are two main parameters which could impact the performance of the autoen-
coder. There is the number of nodes in the hidden layer, and there is the dropout
rate. The number of hidden neurons basically determines how big of a dimensional
reduction the network will perform. The dropout rate indicates at which rate the out-
put from a neuron will be ignored, and is common measure for counteracting over
fitting a neural network. There are other parameters which could have an impact on
the performance of the network, such as the number of hidden layers and the loss
function used, but these were not altered throughout the experiments conducted in

47

Chapter 7. Method

this project. For the scan for window settings, the number of hidden nodes were set
to ten, and the dropout rate to 0.1.

7.7 Model evaluation

All the implemented models were evaluated using a common testing pipeline, which
is added on top of the ordinary anomaly detection pipeline. An anomaly injection
step is added to the preprocessing, which injects log messages labeled as anomalous
into the testing data. The training data are kept clean, and no anomalies are injected
in this data set. The models are then trained as normal, using the training data set
which represents the normal behavior of the system. After training, the models are
evaluated. This is done by passing the test data to the models, which output a pre-
diction, anomaly or not anomaly, for each window in the data. The predictions are
then compared with the ground truth labels, which allows computation of the var-
ious metrics described in Chapter 3. The metrics recall, precision and f1-score are
used since they are common metrics in classification problems.

First a window parameter search was conducted using standard hyperparameters
for the models. In this search different combinations of step and window sizes was
tested to find which parameters was best for the different models. The best perform-
ing window parameters were then used in a hyperparameter search where different
hyperparameter combinations were tested. The best performing parameter setups
where then tested on the dataset of logs collected during the month of April 2022
while still being trained on the data from March. Lastly the models were also both
trained and tested with the data from April.

Injecting anomalies
To allow injecting anomalies, Ingka provided examples of known anomalies which
could be replicated and injected into the data set. The injection pipeline starts with
sampling a normal data set from an input file to the system. This normal data set is
divided into windows of a certain type, size, and with a specific step length. Each
of these windows acts as a data point for the model to train on, and are split into
training and test data sets.

The training data set will be kept as is, whereas the test data set will be altered to
include a uniform distribution, i.e the same amount of each of the known anomalies
mentioned above. A number of windows are then sampled from the normal data and
anomalies are injected into these windows. The resulting anomalous windows are
then added to the original set of test data and their labels are added to the ground
truth vector.

When injecting anomalies it is assumed that the number of each type of anomaly is
evenly distributed. It is also assumed that each type of anomaly is rare in relation

48

7.7 Model evaluation

to the total amount of log entries in the data set. For these reasons, the number of
anomalies injected is set to 10% of the number of normal entries in the test set.
These anomalies are evenly distributed between the different kinds of anomalies.

49

8
Results

8.1 Baseline System

The results of the Baseline system can be seen in Table 8.1, Table 8.2 and Figure 8.1.
Table 8.1 and 8.2 shows the baseline algorithm’s performance when catching the
different types of errors as well as the average false positive rate, i.e., the number of
normal instances labeled as anomalies. Table 8.1 shows the results from using a step
size of 30 seconds and Table 8.2 shows the results from a step size of 120 seconds.
Overall, the baseline system is good at catching the api-fail error but not the rest of
them, at least not when using a step size of 120 seconds. When using a step size of
120 seconds, the baseline algorithm catches more anomalies the greater the window
size is, but this comes in conjunction with a higher false positive rate. When using
a step size of 30 seconds a significant improvement can be seen, especially when
using larger window sizes. The false positive rate still increases with larger window
sizes but is almost identical to the false positive rate when using a step size of 120
seconds.

This can also be seen when looking at Figure 8.1 which shows the precision, recall
and F1-score for the different step and window sizes. Higher numbers in these cate-
gories implies better performance of the method. As can be seen from these figures,
a step size of 30 seconds performs significantly better than a step size of 120 sec-
onds for all metrics. A rise in false positive rates can be seen for greater window
sizes by looking at the precision graph and the recall graph shows that the larger the
window size is, the more anomalies the algorithm catches.

8.2 Window Parameter search

In this section the results from the window parameter search is described. For this
experiment the default parameters, mentioned in Section 7.6, were used.

50

8.2 Window Parameter search

(a) Baseline Precision

(b) Baseline Recall

(c) Baseline F1-Score

Figure 8.1 The evaluation metrics precision, recall and F1-score for the baseline algorithm
for the window settings parameter-search

51

Chapter 8. Results

Baseline with 30 second step size
120 600 1800 3600

api-fail 1.0 1.0 1.0 1.0
decryption-failed-v1 0.12 0.27 0.58 0.81
decryption-failed-v2 0.15 0.28 0.58 0.76
email-not-found 0.14 0.35 0.57 0.77
secret-error 0.10 0.32 0.56 0.70
request-body-validation-failed 0.13 0.35 0.57 0.75
Average False Positive rate 0.020 0.052 0.118 0.199

Table 8.1 Table of the fractions of different anomaly types found using the Baseline system
with a step size of 30 seconds and varying window sizes. The average false positive rate is
also presented in the bottom row

Baseline with 120 second step size
120 600 1800 3600

api-fail 1.0 1.0 1.0 1.0
decryption-failed-v1 0.02 0.05 0.13 0.24
decryption-failed-v2 0.03 0.06 0.14 0.23
email-not-found 0.02 0.10 0.12 0.28
secret-error 0.01 0.07 0.16 0.25
request-body-validation-failed 0.02 0.04 0.15 0.26
Average False Positive rate 0.020 0.050 0.117 0.198

Table 8.2 Table of the fractions of different anomaly types found using the Baseline system
with a step size of 120 seconds and varying window sizes. The average false positive rate is
also presented in the bottom row

Clustering
The results of the window parameter search for the clustering method can be seen
in Table 8.3 and 8.4, as well as Figure 8.2. These tables show that the clustering
method, as opposed to the baseline method, has a hard time successfully categoriz-
ing the api-fail anomaly as anomalous. It does however perform much better on the
other anomalies. It can also be seen that the model has similar performance with
regards to average false positive rate for both step sizes of 30 and 120 seconds.

Figure 8.4a shows the average precision performances for various window sizes and
window step lengths. It shows that the precision varies heavily between each set up.
The best performance is found for a window size of 120 and a step size of 30. Figure
8.2b shows that the recall metric is heavily dependent on the window step length,
and a length of 120 seconds outperforms step lengths of 30 seconds for all tests
conducted. The best recall value was found for window size = 120 and step size
= 120. The same holds true for the F1-score in Figure 8.2c.

52

8.2 Window Parameter search

(a) Clustering Precision

(b) Clustering Recall

(c) Clustering F1-Score

Figure 8.2 The evaluation metrics precision, recall and F1-score for the Clustering algo-
rithm for the window settings parameter-search

53

Chapter 8. Results

Clustering with step size 30
120 600 1800 3600

api-fail 0.03 0.01 0.00 0.0
decryption-failed-v1 0.95 0.84 0.81 0.75
decryption-failed-v2 0.95 0.91 0.80 0.79
email-not-found 0.99 0.93 0.85 0.78
secret-error 0.98 0.95 0.87 0.90
request-body-validation-failed 0.98 0.98 0.78 0.77
Average False Positive rate 0.001 0.003 0.001 0.001

Table 8.3 Table of the fractions of different anomaly types found using the Clustering
model with a step size of 30 seconds and varying window sizes. The average false posi-
tive rate is also presented in the bottom row

Clustering with step size 120
120 600 1800 3600

api-fail 0.00 0.00 0.00 0.00
decryption-failed-v1 0.98 0.99 0.99 0.98
decryption-failed-v2 0.99 0.98 0.98 0.98
email-not-found 0.99 0.97 0.97 0.98
secret-error 1.00 0.99 0.99 0.98
request-body-validation-failed 0.99 0.99 0.99 0.96
Average False Positive rate 0.001 0.002 0.001 0.001

Table 8.4 Table of the fractions of different anomaly types found using the Clustering
model with a step size of 120 seconds and varying window sizes. The average false posi-
tive rate is also presented in the bottom row

PCA
The results of the PCA window parameter search can be seen in Table 8.5, Table
8.6, and Figure 8.3. Figure 8.3a shows an increasing trend in precision as the win-
dow size increases. The precision is generally slightly better for smaller step sizes,
but they converge towards one, along with the larger step size, for larger window
sizes. Furthermore, Figure 8.3b shows that the algorithm finds most, or all, of the
anomalies that are injected into the test data. One of the recall measurements for
step size = 30 and window size = 120 show an ever so slightly worse result. The
F1-score also reaches its peak for large window sizes, for which the step size does
not seem to matter. This can be seen in Figure 8.3c.

Table 8.5 and Table 8.6 shows the fraction of found anomalies for each type of
anomaly, along with the average fraction of false positives for step sizes 30 and
120, respectively. PCA manages to find all instances of injected anomalies, except
for one api-fail entry, which was also indicated in Figure 8.3a. It can also be seen
that there is a downwards trend in the average number of false positives as the

54

8.2 Window Parameter search

window size increases. This holds true for both window step lengths. On average,
however, a shorter step size yields fewer false positives, especially for smaller sized
windows.

PCA with step size 30
120 600 1800 3600

api-fail 0.99 1.0 1.0 1.0
decryption-failed-v1 1.0 1.0 1.0 1.0
decryption-failed-v2 1.0 1.0 1.0 1.0
email-not-found 1.0 1.0 1.0 1.0
secret-error 1.0 1.0 1.0 1.0
request-body-validation-failed 1.0 1.0 1.0 1.0
Average False Positives 0.023 0.012 0.006 0.002

Table 8.5 Table of the fractions of different anomaly types found using the PCA model
with a step size of 30 seconds and varying window sizes. The average false positive rate is
also presented in the bottom row

PCA with step size 120
120 600 1800 3600

api-fail 1.0 1.0 1.0 1.0
decryption-failed-v1 1.0 1.0 1.0 1.0
decryption-failed-v2 1.0 1.0 1.0 1.0
email-not-found 1.0 1.0 1.0 1.0
secret-error 1.0 1.0 1.0 1.0
request-body-validation-failed 1.0 1.0 1.0 1.0
Average False Positive rate 0.026 0.015 0.006 0.002

Table 8.6 Table of the fractions of different anomaly types found using the PCA model
with a step size of 120 seconds and varying window sizes. The average false positive rate is
also presented in the bottom row

Autoencoder
The window parameter search results for the autoencoder can be seen in Table 8.7,
Table 8.8, and Figure 8.4. Figure 8.4a shows how the precision of the model in-
creases as the windows get larger. The precision performance peaks at a window
size of 1800 seconds, and then slightly decreases for 3600 seconds. It is also clear
that the performance is significantly better for a step size of 120 than that of 30
seconds. Figure 8.4b shows that the recall for the model is 100% for all window
sizes and step sizes tested. Table 8.7 and 8.8 confirms this, as all injected anomalies
are found in each test. Figure 8.4c shows the F1-score of the autoencoder, which
reaches its highest value at a window size of 1800 seconds with a step size of 120
seconds.

55

Chapter 8. Results

(a) PCA Precision

(b) PCA Recall

(c) PCA F1-Score

Figure 8.3 The evaluation metrics precision, recall and F1-score for the PCA algorithm for
the window settings parameter-search

56

8.3 Hyperparameter search

Apart from the average fraction of found anomalies, for each type of anomaly, Table
8.7 and 8.8 also show the average false positive rates for each window size. They
represent the window step lengths 30 and 120 seconds respectively. By comparing
these tables it can be seen that a step size of 120 yields a lower false positive rate
than for the corresponding window size with step size 30.

Autoencoder with step size 30
120 600 1800 3600

api-fail 1.0 1.0 1.0 1.0
decryption-failed-v1 1.0 1.0 1.0 1.0
decryption-failed-v2 1.0 1.0 1.0 1.0
email-not-found 1.0 1.0 1.0 1.0
secret-error 1.0 1.0 1.0 1.0
request-body-validation-failed 1.0 1.0 1.0 1.0
Average False Positives 0.040 0.039 0.044 0.033

Table 8.7 Table of the fractions of different anomaly types found using the Autoencoder
model with a step size of 30 seconds and varying window sizes. The average false positive
rate is also presented in the bottom row

Autoencoder with step size 120
120 600 1800 3600

api-fail 1.0 1.0 1.0 1.0
decryption-failed-v1 1.0 1.0 1.0 1.0
decryption-failed-v2 1.0 1.0 1.0 1.0
email-not-found 1.0 1.0 1.0 1.0
secret-error 1.0 1.0 1.0 1.0
request-body-validation-failed 1.0 1.0 1.0 1.0
Average False Positives 0.022 0.013 0.011 0.014

Table 8.8 Table of the fractions of different anomaly types found using the Autoencoder
model with a step size of 120 seconds and varying window sizes. The average false positive
rate is also presented in the bottom row

8.3 Hyperparameter search

To continue the experiments for each model, the top performing window setup from
Section 8.2 was chosen. For the clustering algorithm, the best average performance
was found for a window size of 120 seconds, and a step size of 120 seconds. For
PCA, these values were a window size of 3600 seconds, and 120 seconds window
step. Finally, the autoencoder yielded the best result using a window size of 1800
seconds and a step size of 120 seconds.

57

Chapter 8. Results

(a) Autoencoder Precision

(b) Autoencoder Recall

(c) Autoencoder F1-Score

Figure 8.4 The evaluation metrics precision, recall and F1-score for the Autoencoder
method for the window settings parameter-search

Clustering
Figure 8.5 shows the precision and recall values for the various hyperparameter
setups that were tested for the clustering algorithm. Each dot represents average
58

8.3 Hyperparameter search

F1-Score anomaly_threshold max_dist
0.972 0.1 0.3
0.967 0.1 0.4
0.939 0.1 0.5

Table 8.9 The three best performing Clustering model parameter setups

precision-recall values, and it effectively illustrates how these metrics correlate
against each other for different setups. It is those values that are commonly com-
bined into an F1-score to determine the overall performance of a model. Table 8.9
shows the top three performing models, in terms of F1-score, along with the cor-
responding hyperparameters. An anomaly_threshold value of 0.1 and a max_dist
value of 0.3 yielded the best overall performance of the model with an F1-score of
0.972. Comparing Figure 8.2c and Table 8.9 shows that the model was able to im-
prove its performance when tuning the hyperparameters, instead of using the default
ones.

Figure 8.5 Plot of precision and recall of different hyperparameter-setups for the clustering
method

PCA
Figure 8.6 shows the precision and recall values for the various hyperparameter
setups that were tested for the PCA algorithm. There is a much more linear relation
between the recall and precision for this model, where higher recall values also
yield high precision values. In Table 8.10 it can be seen that high n_components
values yielded the best F1-scores. An n_components value of 0.97 yielded the best
F1-score, which was 0.990. The performance of the PCA algorithm was already
high while using the default hyperparameters. However, comparing Figure 8.3c with

59

Chapter 8. Results

F1-Score n_components
0.990 0.97
0.988 0.95
0.987 0.99

Table 8.10 The three best performing PCA model parameter setups

Table 8.10 reveals that the algorithm was improved ever so slightly by tuning the
n_components parameter.

Figure 8.6 Plot of precision and recall of different hyperparameter-setups for the PCA
method

Autoencoder
Figure 8.7 shows the precision and recall for the various hyperparameter setups
having been tested for the autoencoder. These measurements are much more spread
out than those for clustering, and especially those for PCA. It seems that this method
is more sensitive to changes in its hyperparameter values. However, there are several
setups yielding very good results for recall, and a few of those show high precision
values as well. The best performing setups can be seen in Table 8.11. The very
best model found used a hidden_nodes value of 6 and a dropout value of 0.1. The
F1-score for this model was 0.953. Finally, comparing Figure 8.4c with Table 8.11
show that the model was improved by tuning the parameters compared to using the
default parameters.

60

8.4 Validating the models with other datasets

Figure 8.7 Plot of precision and recall of different hyperparameter-setups for the Autoen-
coder method

F1-Score hidden_nodes dropout
0.953 6 0.1
0.948 4 0.1
0.947 8 0.1

Table 8.11 The three best performing Autoencoder model parameter setups

8.4 Validating the models with other datasets

Cluster
Training the Clustering model on the data from March and testing it with the data
from April gets the results presented in Table 8.12. The model still performs pretty
well by finding all of the injected anomalies. When comparing the values in Table
8.4 and Table 8.9 it is notable that the False positive rate is significantly higher and
the precision is lower than what was previously achieved. Both training and testing
the model on the data from April yields the results presented in Table 8.13. The re-
call is substantially lower than what was previously achieved which is a result of the
model having a hard time to find the request-body-validation-failed and decryption-
failed-v2 errors. There is however an increase in precision when training on the data
from April.

Precision Recall F1 False positive rate
0.784 1.000 0.879 0.027

Table 8.12 The results of a March-trained clustering model tested with logs from April

61

Chapter 8. Results

Precision Recall F1 False positive rate
0.965 0.685 0.801 0.002

Table 8.13 The results of a clustering model trained and tested with logs from April

PCA
The results from training the best performing PCA model in the previous steps on
the logs from March, but testing on the entire set of logs from April yielded the
results in Table 8.14. Comparing these values with the values in Table 8.5, 8.6, and
8.10, it is clear that the average false positive rate is significantly higher, resulting
in a lower precision score. It also tells how the model suddenly can not find all
types of anomalies being injected, resulting in lower recall, and, inherently, a lower
F1-score. Specifically, the model is having more problems finding the anomaly
types request-body-validation-failed, decryption-failed-v1, and decryption-failed-
v2. However, the model still finds the majority of these types of anomalies.

Precision Recall F1 False positive rate
0.327 0.897 0.479 0.184

Table 8.14 The results of a March-trained PCA model tested with the logs from April

Table 8.15 shows the results from the PCA model being trained on a subset of
the logs from April, and also being tested with the remaining logs from the same
month. It is clear that this solves most of the problems encountered in Table 8.14.
The model manages to find all the anomalies being injected, and has a relatively
low false positive rate. This scenario is comparable to the results presented in Table
8.5 and 8.15, where the model was trained and tested using the logs from March.

Precision Recall F1 False positive rate
0.736 1.000 0.848 0.036

Table 8.15 The results of a PCA model trained and tested with logs from April

Autoencoder
Table 8.16 shows the result from training the best performing autoencoder from the
previous experiments on the logs from March, and testing on the logs from April.
Comparing this result with the values from Table 8.7, 8.8, and 8.11, reveals that the
average false positive rate is much higher. This results in a lower precision value,
and, inherently, a lower F1-score. The model still manages to find all the anomalies
being injected to the test data.

Table 8.17 shows the results from the same autoencoder being trained on a subset
of the logs from April, and being tested using the remaining logs from the same
month. It still finds all of the injected anomalies, and the average false positive rate

62

8.4 Validating the models with other datasets

Precision Recall F1 False positive rate
0.293 1.000 0.453 0.241

Table 8.16 The results of a March-trained autoencoder tested with the logs from April

is much lower than what is seen in Table 8.16, and also comparable to what is seen
in Table 8.7 and 8.8. The F1-score is still lower than what is achieved when the
model is trained and tested using only the logs from March.

Precision Recall F1 False positive rate
0.625 1.000 0.769 0.060

Table 8.17 The results of an autoencoder trained and tested with logs from April

63

9
Discussion

9.1 Baseline

We found that the overall performance, in terms of the F1-score, was best for a
window size of 1800 seconds and a window step length of 30. The precision has a
negative trend as for both window step lengths tested as the window size increases.
In contrast, the recall metric has a positive trend as the window size increases. This
means that as the window size increases, the precision, or the fraction of correct
guesses, goes down. The recall, or the fraction of actual anomalies that were found,
goes up.

It is important to note that the baseline system is hard coded, meaning it looks for
predefined fields within the logs. For this reason, it is logical that the precision will
decrease with larger window sizes, since there is likely more log messages matching
the query in a larger window. Although there might be more messages matching the
query, there is no guarantee that those messages are marked as an anomaly. As we
have mentioned earlier, not all errors are anomalies. For the same reason, it is logical
that the recall increases with larger window sizes, as the system is more likely to find
more messages matching the query that also happens to be marked as an anomaly.

9.2 Clustering

During the window parameter search the clustering algorithm had a fluctuating trend
for the precision metric, where the best value was found for a window size of 120
seconds and a window step length of 30. The recall metric had a negative trend as
the window size increased, and performed the best for a window size of 120 and a
step size length of 120. The F1-score had roughly the same performance behavior
as the recall metric. For this window setting, the best parameter combinations for
the clustering algorithm was anomaly_threshold = 0.1 and max_dist = 0.3.

64

9.3 PCA

The fact that the clustering algorithm performs better for smaller windows with no
overlap is an interesting finding. Generally, machine learning models increase their
performance with more training examples to learn from. Clearly, this is not the case
for this clustering algorithm. From these results we can clearly see a decrease in
performance with more duplicated data. The best windows settings create no dupli-
cated data at all. That could be due to the nature of the agglomerative hierarchical
clustering algorithm. Duplicating data creates intermediate data points between two
adjacent, non-overlapping, data points. These intermediate data points will differ
less from each other than non-overlapping windows would. This could potentially
lead to clusters that originally should not be joined together, being joined together
due to these new, in-between, data points.

What is also interesting is that the clustering model is unable to detect the api-fail
error. This could potentially be due to the error existing somewhere in the train-
ing data, resulting in a cluster created for this error. However, the model was able
to detect this error during the hyperparameter search. When having a lower both
anomaly_threshold and max_dist value, the model could all of a sudden find these
anomalies. The model being able to find this anomaly was due to the lowering of
the anomaly_threshold parameter. The error probably generated an anomaly score,
but not one big enough to be considered an anomaly due to the threshold being too
high.

When training the model on the data from March and testing it on the data from
April, the clustering algorithm performed pretty well compared to the other algo-
rithms. It does not, however, perform well when training and testing on the dataset
from April. What is interesting about these results is that there could be a correlation
between the lower precision of the first test, and the low recall of the second. The
lower precision of the first test could be due to anomalies existing in the dataset,
which are not injected by us and therefore labeled as normal data. If this is the case,
that could lead to the model creating clusters for these errors when training on the
dataset from April. This could be the reason for the low recall in the second test.

9.3 PCA

The window parameter search showed that The PCA algorithm has a positive trend
for precision as the window size increased, and the recall was 1.0 for all setups
except for the window size of 120 and window step length 30. The overall perfor-
mance was found to be best for a window size of 3600 seconds and roughly the
same performance regardless of window step length. A window step length of 120
seconds was chosen to decrease execution time. This window setting resulted in the
PCA algorithm being found to perform best using n_components = 0.97.

As we have previously seen, the PCA algorithm is great at finding the injected

65

Chapter 9. Discussion

anomaly types in our experiments. This can mainly be seen in the recall metrics
throughout the PCA results. An interesting finding is that the precision metric im-
proves the bigger the window size is, which also yields a lot of duplicated data. This
is the exact opposite behavior to what we observed for the clustering algorithm. A
reason for the precision increasing with larger window sizes could be the fact that
this yields higher average event counts for each window in the frequency analy-
sis. Minor changes in these numbers will then have a lesser impact on the relative
difference between different windows. It could also be the case that the PCA algo-
rithm performs better with a more general snapshot of the system behavior, which
the larger windows provide. We also found that our default value for the parameter
n_components (0.95) was one of the best performing values, only slightly surpassed
by n_components = 0.97.

The performance dropped significantly when training the model on the logs from
March, and testing on the logs from April. In the first test, the precision dropped
to just ∼ 0.33 with an average false positive rate of 18.4%. For the entire month of
April, this means thousands of false positives. Furthermore, this is the first test with
these parameters where PCA is unable to find all of the injected anomalies. When
training on the data from April, however, the model is once again able to find all
of the anomalies being injected, albeit with a lower precision than previously seen.
This could have some correlation with what was discussed in Section 9.2. If there
are anomalies present in the data from April, and the PCA model is able to find
them, that could be the reason for the lower precision, as these anomalies are not
labeled. The results from the first test in the validation, where the model was trained
on the data from march, are hard to explain. It could potentially be due to the data
having vastly different characteristics in the two months. However, that does not
explain why the clustering performs so much better in that test.

9.4 Autoencoder

During the window parameter search we found the best performing window setups
for the default hyperparameters for the three models being tested. The autoencoder
managed to achieve 1.0 recall for all window set ups being tested in this phase. The
overall best performance was found for a window size of 1800 seconds and a step
size of 120 seconds. Using this window setting, the autoencoder performed the best
using hidden_nodes = 6 and dropout = 0.1.

From the window parameter search it is clear that the autoencoder has higher preci-
sion for larger windows. Generally, more data yields better results for deep learning
models. However, this is not entirely true in our case. Step size 30 yields more
overlap between windows and, inherently, generates more data points to analyze.
We see higher precision for larger step sizes. This could be due to the overlapping
data creating a much more specific notion of normal, since there will be less differ-

66

9.5 Performance and metrics

ence for each window encountered. If the notion of normal is made more specific,
the model could potentially lower its threshold for what is considered an anomaly,
which would result in a lower precision.

Similarly to the PCA algorithm, the autoencoder’s performance during validation
was much worse when using the data from April as a test set. The false positive rate
was significantly increased, leading to lowered precision. However, in contrast to
PCA, it still manages to find all injected anomalies, resulting in 100% recall. This is
similar behavior to what was seen from the PCA algorithm, which could be because
they both work on the premise of dimensional reduction. For the second test, the
precision is still much lower than what was previously achieved, albeit significantly
improved compared to the first test. The decrease in performance could be due to the
parameters acquired in the previous experiments no longer being applicable since
the data has changed. As discussed in previous sections, it could also be because
there simply are more anomalies present that should be flagged as anomalies, but
are not labeled as ones.

9.5 Performance and metrics

When analyzing the performance of the different models we are using recall, pre-
cision, F1-score and false positive rate. The recall accurately describes a model’s
ability to find the injected anomalies. However, the precision metric does not ac-
curately describe the true precision of the model. One of the main challenges in
anomaly detection is to create a dataset where anomalies are labeled correctly. We
simply do not know if there are unlabeled anomalies in the data. A model finding
these anomalies would therefore result in a lower precision metric when in reality
it should find these instances. Furthermore, we mark entire windows as anomalous
if they contain smaller sequences of messages we consider to be anomalies. In the
test phase of our experiments, there is therefore no guarantee that what the model
marks as anomalous is precisely the messages we have injected. This could be one
of the reasons for the baseline system performing better with larger window sizes,
since there is a higher probability of finding something else in the same window.

During our experiments we were surprised by the high recall performance of our
models. This is likely due to the fact that the anomalies we inject are specific and
contain messages that are rare or never occur in the training data. This makes it
easier for the models to detect than more subtle anomalies would be. Also, when the
messages are this rare, the tf-idf step in the preprocessing makes these occurrences
stand out even more.

67

Chapter 9. Discussion

9.6 Anomaly detection in production

The experiments in this project have been conducted in an environment that does
not mimic a production environment very well. The experiments utilized a dataset
presented as JSON objects in large text files. In production, however, the logs would
be streamed to the anomaly detection application, where they would be parsed and
preprocessed individually, before being stored for later reference. Instead of the par-
titioning methods used in the experiments, a single window would be constructed
periodically from the log history. This would then be passed as input to the appli-
cation, which would determine whether or not it is anomalous. The period between
window samples would have to be explicitly and appropriately defined. It is impor-
tant to consider that longer periods between samples means there could be a delay
from an anomaly actually occurring to it being discovered.

From the results of our experiments we can also say that the models would have
to be continuously retrained to remain viable. We have seen indications that the
performance may differ greatly between months, and it may therefore be appropriate
to retrain the models more frequently. Since the models, especially the clustering
methods, seem to be sensitive to anomalies in the training data, the logs being used
as training data for the next model would have to be analyzed before usage. For
instance, this could be done through manual feedback on the anomalies having been
found to determine if they are true or false positives. If they are actual anomalies,
they should be removed from the next training set and potentially added to a set of
known anomalies that can be utilized in future testing.

There is also a problem regarding completely new types of log messages. These
will create a new log key, resulting in longer event count vectors than what the
models are trained with. This would crash the program if not handled properly.
This would require a new training of the model, with the new log key taken into
consideration. This event should be immediately flagged as an anomaly since the
message has never been seen before. This also means that if the system changes
its general behavior, e.g., from system updates where new types are created, the
models would need to be retrained. There would still be problems regarding new
behaviors until enough such events have occurred for the models to recognize them
as normal.

68

10
Conclusion

Looking back at the objectives of this thesis in Section 1.3, we can safely say that
we have managed to improve upon the existing error detection system. Both in the
aspect of detecting actual faults and anomalies, as well as lowering the number of
false positives, which has previously been an issue for this system. We compared
a clustering algorithm, PCA, and an autoencoder by looking at precision, recall,
F1, and false positive rate, with various training and testing configurations. From
these experiments we have seen that the models perform differently based on the
training and testing data being used. PCA performs the best when being trained and
tested on data from the same period, which indicates that this model would have
to be frequently retrained when deployed in production. The clustering algorithm
seems to be more sensitive to anomalies being present in the training data, and
should be trained with this in mind. The clustering algorithm performs better than
the two other models over time, when using training and testing data sets from
different periods. Finally, the autoencoder performs similarly to PCA but with a
slightly higher false positive rate, and therefore lower precision.

Although we did not find the autoencoder to perform the best, there are a plethora
of unexplored architectures and configurations to continue experimenting with. For
this thesis we used a simple autoencoder with a single hidden layer.

From the results acquired in this thesis, we can conclude that using an anomaly de-
tection system would be an improvement to the rule based error detection system
currently in place. Although, there are more challenges to overcome before using
these methods in production. At this stage, we do not find the autoencoder to per-
form at the same level as the other two methods. Although, it could possibly be
improved with other configurations. If frequent training is an alternative, the PCA
algorithm would be a good option. Finally, if you can maintain a clean training data
set, the clustering method would be a valid alternative where you would not need as
frequent training as for PCA.

69

Chapter 10. Conclusion

10.1 Future work

The ultimate goal, building on the results from this thesis, would be to deploy
the anomaly detection to a production environment. Before doing this, however,
it would be interesting to research other hyperparameter and window size combi-
nations, as well as experimenting further with data from different time periods. It
would also be interesting to study the performance of other autoencoder architec-
tures in this setting. Another aspect that would be interesting to look into before
deploying the models in production is the response time of the models, i.e., how
long it takes for an anomaly to be detected.

To get these anomaly detection models ready for production, there is still some way
to go. You have to look into how the logs could be streamed to the system, and
how the stream would affect the current anomaly detection pipeline. One would
have to determine how the logs would be partitioned, how long an acceptable delay
for detecting the anomalies would be, and how a clean training dataset would be
maintained.

70

Bibliography

[1] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly detection: a survey”.
ACM Comput. Surv. 41 (2009). DOI: 10.1145/1541880.1541882.

[2] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu. “Experience report:
deep learning-based system log analysis for anomaly detection”. CoRR
abs/2107.05908 (2021). arXiv: 2107.05908. URL: https://arxiv.org/
abs/2107.05908.

[3] T. Dillon, C. Wu, and E. Chang. “Cloud computing: issues and challenges”.
In: 2010 24th IEEE International Conference on Advanced Information Net-
working and Applications. 2010, pp. 27–33. DOI: 10.1109/AINA.2010.
187.

[4] Docker Inc. Docker overview. [Online; accessed 20-April-2022]. URL:
https://docs.docker.com/get-started/overview/.

[5] M. Du, F. Li, G. Zheng, and V. Srikumar. “Deeplog: anomaly detection and
diagnosis from system logs through deep learning”. In: CCS ’17: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. 2017, pp. 1285–1298. DOI: https://doi.org/10.1145/
3133956.3134015.

[6] I. C. Education. Deep learning. [Online; accessed 9-May-2022]. URL:
https://www.ibm.com/cloud/learn/deep-learning.

[7] R. A. Ghalehtaki, A. Ebrahimzadeh, F. Wuhib, and R. H. Glitho. “An un-
supervised machine learning-based method for detection and explanation of
anomalies in cloud environments.” 2022 25th Conference on Innovation in
Clouds, Internet and Networks (ICIN), Innovation in Clouds, Internet and
Networks (ICIN), 2022 25th Conference on (2022), pp. 24–31. ISSN: 978-1-
7281-8688-7. URL: http://ludwig.lub.lu.se/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&AuthType=ip,
uid&db=edseee&AN=edseee.9758126&site=eds-live&scope=site.

[8] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

71

https://doi.org/10.1145/1541880.1541882
https://arxiv.org/abs/2107.05908
https://arxiv.org/abs/2107.05908
https://arxiv.org/abs/2107.05908
https://doi.org/10.1109/AINA.2010.187
https://doi.org/10.1109/AINA.2010.187
https://docs.docker.com/get-started/overview/
https://doi.org/https://doi.org/10.1145/3133956.3134015
https://doi.org/https://doi.org/10.1145/3133956.3134015
https://www.ibm.com/cloud/learn/deep-learning
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edseee&AN=edseee.9758126&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edseee&AN=edseee.9758126&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edseee&AN=edseee.9758126&site=eds-live&scope=site
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography

[9] Google. Cloud run. [Online; accessed 20-April-2022]. URL: https : / /
cloud.google.com/run.

[10] Google. Compute engine. [Online; accessed 20-April-2022]. URL: https:
//cloud.google.com/compute.

[11] Google. Google cloud overview. [Online; accessed 20-April-2022]. URL:
https://cloud.google.com/docs/overview.

[12] HashiCorp. Terraform documentation. [Online; accessed 9-May-2022]. URL:
https://www.terraform.io/docs.

[13] P. He, J. Zhu, Z. Zheng, and M. R. Lyu. “Drain: an online log parsing ap-
proach with fixed depth tree”. In: 2017 IEEE International Conference on
Web Services (ICWS). 2017, pp. 33–40. DOI: 10.1109/ICWS.2017.13.

[14] S. He, J. Zhu, P. He, and M. R. Lyu. “Experience report: system log analysis
for anomaly detection”. In: 27th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October 23-27,
2016. IEEE Computer Society, 2016, pp. 207–218. DOI: 10.1109/ISSRE.
2016.21. URL: https://doi.org/10.1109/ISSRE.2016.21.

[15] A. Hrusto. Towards optimization of anomaly detection using autonomous
monitors in devops. 2022. URL: http://ludwig.lub.lu.se/login?
url=https://search.ebscohost.com/login.aspx?direct=true&
AuthType=ip,uid&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.
e02869a2.16f5.429c.bc2c.bcd279ecab26&site=eds-live&scope=
site.

[16] IBM. Cloud computing. [Online; accessed 20-April-2022]. URL: https://
www.ibm.com/cloud/learn/cloud-computing.

[17] IBM Cloud Education. Neural networks. [Online; accessed 9-May-2022].
URL: https://www.ibm.com/cloud/learn/neural-networks.

[18] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen. “Log clustering based
problem identification for online service systems”. In: 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C).
2016, pp. 102–111.

[19] O. Maimon and L. Rokach. Data mining and knowledge discovery handbook.
New York : Springer, c2010, 2010.

[20] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios. “Clustering event
logs using iterative partitioning”. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD
’09. Association for Computing Machinery, Paris, France, 2009, pp. 1255–
1264. ISBN: 9781605584959. DOI: 10 . 1145 / 1557019 . 1557154. URL:
https://doi.org/10.1145/1557019.1557154.

72

https://cloud.google.com/run
https://cloud.google.com/run
https://cloud.google.com/compute
https://cloud.google.com/compute
https://cloud.google.com/docs/overview
https://www.terraform.io/docs
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.e02869a2.16f5.429c.bc2c.bcd279ecab26&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.e02869a2.16f5.429c.bc2c.bcd279ecab26&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.e02869a2.16f5.429c.bc2c.bcd279ecab26&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.e02869a2.16f5.429c.bc2c.bcd279ecab26&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsswe&AN=edsswe.oai.lup.lub.lu.se.e02869a2.16f5.429c.bc2c.bcd279ecab26&site=eds-live&scope=site
https://www.ibm.com/cloud/learn/cloud-computing
https://www.ibm.com/cloud/learn/cloud-computing
https://www.ibm.com/cloud/learn/neural-networks
https://doi.org/10.1145/1557019.1557154
https://doi.org/10.1145/1557019.1557154

Bibliography

[21] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Tech. rep.
800-145. National Institute of Standards and Technology (NIST), Gaithers-
burg, MD, 2011. URL: http : / / csrc . nist . gov / publications /
nistpubs/800-145/SP800-145.pdf.

[22] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao,
P. Sun, and R. Zhou. “Loganomaly: unsupervised detection of sequential and
quantitative anomalies in unstructured logs”. In: IJCAI. 2019.

[23] Microsoft. What is cloud computing? [Online; accessed 20-April-2022].
URL: https://azure.microsoft.com/en-us/overview/what-is-
cloud-computing/#uses.

[24] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao. “Self-
attentive classification-based anomaly detection in unstructured logs”. In:
2020 IEEE International Conference on Data Mining (ICDM). 2020,
pp. 1196–1201. DOI: 10.1109/ICDM50108.2020.00148.

[25] Pragati Baheti. The essential guide to neural network architectures. [On-
line; accessed 10-May-2022]. URL: https://www.v7labs.com/blog/
neural-network-architectures-guide.

[26] Ravindra Parmar. Common loss functions in machine learning. [Online; ac-
cessed 11-May-2022]. 2018. URL: https://towardsdatascience.com/
common-loss-functions-in-machine-learning-46af0ffc4d23.

[27] M. Sakurada and T. Yairi. “Anomaly detection using autoencoders with non-
linear dimensionality reduction”. In: Proceedings of the MLSDA 2014 2nd
Workshop on Machine Learning for Sensory Data Analysis. MLSDA’14. As-
sociation for Computing Machinery, Gold Coast, Australia QLD, Australia,
2014, pp. 4–11. ISBN: 9781450331593. DOI: 10.1145/2689746.2689747.
URL: https://doi.org/10.1145/2689746.2689747.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention is all you need”. In: I. Guyon et al.
(Eds.). Advances in Neural Information Processing Systems. Vol. 30. Cur-
ran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/
paper / 2017 / file / 3f5ee243547dee91fbd053c1c4a845aa - Paper .
pdf.

[29] Wikipedia contributors. Machine learning — Wikipedia, the free encyclo-
pedia. [Online; accessed 19-April-2022]. 2022. URL: https : / / en .
wikipedia.org/w/index.php?title=Machine_learning&oldid=
1081891971.

[30] Wikipedia contributors. Tf–idf — Wikipedia, the free encyclopedia. [Online;
accessed 26-May-2022]. 2022. URL: https://en.wikipedia.org/w/
index.php?title=Tf%5C%E2%5C%80%5C%93idf&oldid=1071253989.

73

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#uses
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#uses
https://doi.org/10.1109/ICDM50108.2020.00148
https://www.v7labs.com/blog/neural-network-architectures-guide
https://www.v7labs.com/blog/neural-network-architectures-guide
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1081891971
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1081891971
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=1081891971
https://en.wikipedia.org/w/index.php?title=Tf%5C%E2%5C%80%5C%93idf&oldid=1071253989
https://en.wikipedia.org/w/index.php?title=Tf%5C%E2%5C%80%5C%93idf&oldid=1071253989

Bibliography

[31] C. Zhang, X. Wang, H. Zhang, H. Zhang, and P. Han. “Log sequence anomaly
detection based on local information extraction and globally sparse trans-
former model”. IEEE Transactions on Network and Service Management
18:4 (2021), pp. 4119–4133. DOI: 10.1109/TNSM.2021.3125967.

[32] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen, H.
Dong, X. Qu, and L. Song. “Syslog processing for switch failure diagno-
sis and prediction in datacenter networks”. In: 2017 IEEE/ACM 25th Inter-
national Symposium on Quality of Service (IWQoS). 2017, pp. 1–10. DOI:
10.1109/IWQoS.2017.7969130.

[33] Z.-H. Zhou. Machine Learning. Springer Nature eBook, 2021.
[34] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu. “Tools and

benchmarks for automated log parsing”. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering: Software Engineering in Prac-
tice (ICSE-SEIP). 2019, pp. 121–130. DOI: 10.1109/ICSE-SEIP.2019.
00021.

[35] Zichen Wang. Pca and svd explained with numpy. [Online; accessed 8-June-
2022]. 2019. URL: https://towardsdatascience.com/pca-and-svd-
explained-with-numpy-5d13b0d2a4d8.

74

https://doi.org/10.1109/TNSM.2021.3125967
https://doi.org/10.1109/IWQoS.2017.7969130
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://towardsdatascience.com/pca-and-svd-explained-with-numpy-5d13b0d2a4d8
https://towardsdatascience.com/pca-and-svd-explained-with-numpy-5d13b0d2a4d8

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2022
Document Number
TFRT-6176

Author(s)

David Nilsson
Albin Olsson

Supervisor
Gustav Hochbergs, Ikea IT AB
Johan Eker, Dept. of Automatic Control, Lund
University, Sweden
Karl-Erik Årzén, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Log Anomaly Detection of Structured Logs in a Distributed Cloud System
Abstract

As computer systems grow larger and more complex, the task of maintaining the system and finding
potential security threats or other malfunctions become increasingly hard. Traditionally, this has had
to be done by manually examining the logs. In modern systems, this can become infeasible due to
either the large amount of logs or the complexity of the system. By using machine learning based
anomaly detection to analyze system logs, this can be done automatically.
 In this thesis the authors have researched the area of anomaly detection, and implemented an
anomaly detection pipeline for a specific system. Three different machine learning based anomaly
detection models were implemented, namely a clustering algorithm, PCA, and a neural network in the
form of an autoencoder. These models were compared and evaluated with regards to a baseline error
detection system, which was already in place for the target system. They were also compared against
each other to find which models performed best, and in which circumstances. To compare the models,
six different types of known anomalies were injected into the data.
 When comparing the performances of the different methods, all of them were found to outperform
the baseline system. In the first experiment, where the models were trained and tested using data from
the same time period, PCA achieved the highest F1-score of 0.990. In the second experiment the
models were trained and tested using data from separate time periods. In this scenario, the clustering
algorithm outperformed the others, with an F1-score of 0.879. Both PCA and the autoencoder found
many false positives, reducing their precision and thereby their F1-score.

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-74

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Introduction
	Background
	The System
	Project objectives
	Thesis outline
	Individual contributions
	Related work

	Cloud Computing
	Cloud deployment
	Google Cloud
	Virtualization

	Machine Learning
	Metrics
	Machine learning approaches
	Deep learning

	Log Parsing
	Drain
	IPLoM
	AEL
	Performance of log parsing techniques
	This project

	Feature Extraction
	Partitioning
	Extracting features
	This project

	Anomaly Detection
	Traditional unsupervised anomaly detection techniques
	Deep learning based anomaly detection
	This project

	Method
	Project process
	Environment setup
	Log collection
	Parsing and vectorizing data
	Model implementations
	Hyperparameters
	Model evaluation

	Results
	Baseline System
	Window Parameter search
	Hyperparameter search
	Validating the models with other datasets

	Discussion
	Baseline
	Clustering
	PCA
	Autoencoder
	Performance and metrics
	Anomaly detection in production

	Conclusion
	Future work

	Bibliography

