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Abstract

Hearing loss is a complicated phenomena which does not only vary from person
to person, but also, can change characteristics during the day. Despite this, hearing
aids today are fitted only occasionally and thus only capture the slow changes in the
hearing loss. In order for a hearing aid to continuously adapt to a subject’s hearing
loss it has to be able to gauge the users hearing threshold. One way of measuring
the hearing threshold is by examining the auditory brainstem response (ABR).

The problem with measuring the ABR today is that it has to be measured as the
response to a short sound that is repeated thousands of times. This masters thesis
investigates a new method of estimating the brainstem’s response to continuous
sound. This new paradigm builds on the assumption that the brainstem response
corresponds to an impulse response to a system that takes the heard audio as input,
and gives the EEG recording as output.

This thesis explores how well this new paradigm works on hearing impaired people
that use hearing aids. It verifies that the method works for finding the impulse re-
sponses that resemble the cortical response, which is a stronger and slower response.
The method was however not successful when it came to finding the subcortical re-
sponse. A possible reason for this is that a lot of the data needed to be removed due
to outliers.
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1
Introduction

The processing of sound and speech is a complicated task that involves multiple
different parts of the brain. The sound travels through the ear canal and the inner
ear until it reaches the cochlea, where the vibrations of the sound trigger an elec-
trical impulse that propagates through the auditory nerve, brainstem, and thalamus
to the cortex. While the cortex is the part of the brain that is usually studied with
regard to speech processing, the electrical impulse actually goes through significant
processing before reaching the cortex[Maddox and Lee, 2018]. It is the subcortical
activity, and more specifically, the sound processing in the brainstem, that is studied
in this thesis.

To gain an understanding of how speech is being processed by the brain, brain
activity has to be measured. One method to do this is with electroencephalography
(EEG). The EEG measurements are typically recorded with electrodes spread out
over the scalp. The components of the EEG signal that correspond to a stimulus
response is small compared to the rest of the EEG signal [Luck and Kappenman,
2012], which in this case, can be seen as noise. This means that the responses have a
low signal-to-noise ratio (SNR). Cortical activity has higher SNR than subcortical,
partly explaining why cortical activity is more commonly studied [Maddox and Lee,
2018]. Furthermore, subcortical responses, such as the brainstem response, have a
high-frequency content [Luck and Kappenman, 2012], making these signals hard to
distinguish from noise.

Because of the low SNR, the brainstem response is usually studied through evoked
potentials (EP). This means exposing a person to a repetitive stimulus while record-
ing the EEG signals. This repetitive stimulus can for example be a chessboard pat-
tern that switches colors, or, as is the case when the auditory response is studied,
a series of click sounds. The EEG signal is then split into smaller segments, here
called epochs. Each epoch is associated with one instance of the repetitive stimu-
lus, that is to say, one color change of the checkered pattern or one click sound.
The average EEG signal is then calculated for all the epochs. This average is the
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Chapter 1. Introduction

Figure 1.1 A schematic figure showing what a traditional ABR can look like. The strongest
peak is called wave V and appears at average 5.7 ms after the sound is played.

EP and shows the brain’s response to the stimulus. The EP reflects both cortical
and subcortical activity [Laguna and Sörnmo, 2005]. This method of obtaining the
brainstem response is based on signal detection theory. It is based on the assumption
that the response is stationary and embedded in noise that is uncorrelated with it.
Since the noise is uncorrelated it is different from epoch to epoch and the averaging
will therefore uncover the stationary brainstem response [David M. Green, 1966].

The EP that is used to study the subcortical processing of sound, is called the au-
ditory brainstem response (ABR) and is usually obtained when a test subject is
listening to clicks, although other short sounds can also be used. A sketch of what
such a response can look like can be seen in Figure 1.1.

The ABR consists of seven waves which are numbered with roman numerals ac-
cording to the order they appear in the responses. These waves are sometimes stud-
ied in clinical settings since the morphology and latencies of the wave carry valuable
information about a patient’s hearing. For example, the larger peaks, such as wave
V, can be used to determine hearing thresholds [Lv et al., 2007]. This is for example
used with infants when examining their hearing [WHO, 2010].

There is a great limitation, however, with the traditional ABR. Since it is typically
obtained by averaging over thousands of short sounds, it can not be used to inves-
tigate the subcortical processing of natural speech. Instead, the stimulus has to be
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Chapter 1. Introduction

repetitive which might lead to some patients losing focus. The unnatural sounds
might also be distressing to listen to for some patient groups like those with de-
mentia. Furthermore, the limitations in the stimulus greatly affect the ability to do
research about subcortical sound processing. For instance, it is not possible to in-
vestigate whether the brainstem responds the same way to its native language and
an unknown language when the sound has to be so short.

Looking at the ABR from a mathematical modeling point of view, it might seem
natural to view the click sound as an impulse of stimulus. The ABR, in turn, could be
seen as a system response to an impulse of stimulus. In other words, the ABR would
act as an impulse response to the brainstem. If this would be the case, algorithms
from system identification could be used to obtain the ABR. The possible advantage
of computing the ABR this way is that there exist algorithms to identify impulse
responses even if the stimulus is not an impulse.

This way of estimating impulse responses and comparing them to cortex related EPs
has been done in a number of studies, for example [Lalor et al., 2009] and [Aljarboa
et al., 2022]. Recently the method has also been adapted to find impulse responses
that are thought to correspond to the ABR [Maddox and Lee, 2018]. This impulse
response was called the temporal response function (TRF) or the speech-derived
ABR, since it was estimated with continuous speech as stimulus. It carries morpho-
logical similarities to the traditional ABR, for example, it has a peak corresponding
to wave V in the traditional ABR.

It should be noted that despite there being promising morphological similarities be-
tween the impulse responses and their corresponding EPs, they are not necessarily
equivalent. For one, the impulse response relies on the assumption that the system
is linear and time-invariant, which is not necessarily true. Furthermore, it has been
suggested that the impulse response does not always perform the same as its cor-
responding EP and that it can not be used in the same clinical setting for diagnosis
[Lalor et al., 2008].

As mentioned before, the traditional ABR can be used to determine hearing thresh-
olds. This begs the question of whether the speech-derived ABR can be used in
the same way. If the speech-derived ABR can be used in the same way, it would
allow for the determination of the hearing threshold using natural sounds. This in
turn opens up for the possibility of hearing devices that continuously can measure
hearing thresholds and automatically adjust the hearing aid setting if need be.

So far, however, the research conducted has only had normal hearing test subjects
and it is therefore not clear how and if a hearing impairment affects the speech-
derived ABR. This thesis aims to give more insight into this by estimating the
speech-derived ABR methods using data collected from hearing-impaired test sub-
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Chapter 1. Introduction

jects. Furthermore, the data used in this report has been collected under other con-
ditions than previously. Instead of using insert phones to play the sound stimulus,
the sound was here played from a loudspeaker. This adds more uncertain transfer
steps into the analysis which might complicate the system identification.

The main goal of this thesis is to explore whether it is possible to find an impulse
response resembling the ABR using this new data set. It also sets out to find suitable
ways of evaluating the results.
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2
Background

2.1 EEG signals

This section gives a brief overview of EEG signals, what they are and what problems
that can occur when working with them. Most of the information stated is inspired
by [Laguna and Sörnmo, 2005].

Electroencephalography (EEG) is a method of recording brain activity. As the name
suggests, the method works by recording the electrical activity in the brain that
stems from the neurons in the brain, which, like other neurons, send signals that are
partially electric.

The EEG is usually measured by placing a number of electrodes on the scalp. Some-
times they can also be placed directly on the cortex, measuring the non-invasive
scalp potential, however, is much more common. The scalp electrodes are usually
placed according to the international 10/20 system. [Mitra and Bokil, 2008]

In the 10/20 system, each electrode has a two or three character long name. The
first is a letter that describes the region of the scalp; F for frontal, P for parietal, C
for central, T for temporal, O for occipital, and A for auricle. Sometimes two letters
are used when more electrodes are placed in between the standard electrodes. The
second character describes the angle with which the electrode deviates from the
central line that goes from the nose to the neck. This second character is typically a
number, but it is a z (for zero) for electrodes on the central line. Figure 2.1 shows
the placement of the different electrodes.

The electrodes record electrical potentials, this means that a reference potential is
needed. Preferably, the reference should be affected by the same noise as the mea-
surement electrodes without being affected by the neural activity. Common ways
of constructing a reference include, averaging the potential from all electrodes and
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Chapter 2. Background

Figure 2.1 How electrodes can be placed during an EEG measurement and what they are
named. Image by [Oxley, 2020].

using an electrode on the mastoid, which is a location behind the ear. [Mitra and
Bokil, 2008]

The EEG signal is oscillatory. In general, if a person is active during the measure-
ment the oscillation will have a higher frequency content than if the person was
resting. The shape of the EEG spectrum typically follows a 1/f curve, meaning that
lower frequencies are stronger.

Artifacts and noise
There is a lot of noise and artifacts in a raw EEG signal, both of a technical and
biological origin. This section aims to give insight into common sources of noise,
how to identify it, and, if possible, what to do about it.

Noise with technical origin. A common noise source in any type of electrical
measurement is the power line. Depending on the country, this noise is either a 50
Hz or a 60 Hz sinusoid. It is the oscillating current in the power line that has the
possibility of inducing noise in the electrodes. This can be mitigated by shielding
the measurement setup from the power line as well as other electronic devices that
produce the noise. The noise can easily be identified when looking at the frequency
content of the EEG signal through a so called periodogram, an estimation of the

14



2.1 EEG signals

frequency content. Typically, clear peaks will be visible at 50/60 Hz if there is power
line interference. Multiples of the base frequency can appear also.

If the recording contains power line interference, it can be dealt with using signal
processing. The simplest way is to use a filter which targets and stops one specific
frequency. Such a filter is called a notch filter and is described in further detail in
Section 2.4.

The next type of technical noise is a low frequency drift in the EEG signal. This can
be taken care of with a high-pass filter, which removes the slow changes in the base
line.

The base line can also be affected when the electrode moves slightly. This is called
an electrode-pop, and as the name suggest, it results in a sudden change in the base
line.

Noise with biological origin. When measuring the EEG, the only interesting sig-
nals are those associated with brain activity. Unfortunately, many processes in the
body give rise to electrical fields that are indistinguishable from the electrical activ-
ity to the recording electrode. It is therefore important to use knowledge about the
different electrical signals when analysing EEG signals.

One of the common sources of biological artifacts are eye-movements and eye-
blinks. These can be seen as large bumps in the EEG, that is to say they have a
fairly low frequency content. These eye-related movements alter the electric po-
tential between the cornea and the retina and are more pronounced the closer the
electrode is to the eyes. A common way of removing these artifacts from the EEG
signal is by measuring the eye-related electrical fields separately with a so called
electrooculogram (EOG). The EOG signal can then be used in artifact cancellation
algorithms. If an EOG signal is not available, however, the simplest way to han-
dle the artifacts is to identify them and simply exclude them from the modeling or
analysis.

Similarly to eye-movements, the electrical activity of the heart can also be measured
in the EEG. These artifacts also have a low frequency content but usually have a
small amplitude compared to the EEG. For some people and measurements, how-
ever, the heart interference might be quit evident. They are most easily recognized
by the fact that they have a very regular occurrence in the signal with one bump for
every heart beat. This activity of the heart can be measured with an electrocardio-
gram (ECG) which can also be used in artifact cancellation algorithm. Alternatively,
samples that contain heart activity can be excluded when doing the analysis.

If many EEG channels have been recorded, but neither EOG or ECG, then indepen-
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Chapter 2. Background

dent component analysis (ICA) principle component analysis (PCA) can be used
[Mitra and Bokil, 2008]. ICA, as the name suggests, separates mixed signals into in-
dependent components. Both the EEG and the EOG are independent from the EEG
but mixed into the recording. These separated out independent components can be
used to cancel the noise, similarly to when the EOG and ECG had been recorded.
Similarly, PCA identifies the principle components, which also can correspond to
the noise sources [Hyvärinen et al., 2001].

A draw-back with using PCA or ICA is that it requires multiple electrodes. The
number of independent or principle components that can be found with the algo-
rithms, is the same as the number of signals that are used in the algorithm. This
means that if only three EEG channels have been recorded, three independent or
principle components can be found, even if there exist more underlying components
[Hyvärinen et al., 2001].

Lastly, muscle movements in the face can give rise to noise as well. This is typically
a noise in the range of 15-30 Hz. If these frequencies are not of interest for the
analysis, a filter can be used to remove these frequencies.

2.2 Rectified signals

In the context of this thesis, a rectifier is a digital preprocessing step that ensures that
the processed signal is non-negative. Two different methods for rectifying signals
are mentioned in this thesis, although more methods exist.

The first method is called half-wave rectification and is illustrated in Figure 2.2. In
this method, negative values are replaced with zeros.

The second method is called full-wave rectification and is also illustrated in Fig-
ure 2.2. Instead of replacing the negative samples with zero, their signs is flipped,
resulting in positive values.

2.3 Auditory evoked potential (AEP) and event related
responses

The traditional auditory evoked potentials
Evoked potentials (EPs), as mentioned in chapter 1, are responses in the EEG signal
that are associated with an event, e.g. a click sound. EPs have a comparatively low
amplitude, only about one tenth of the background EEG or less, and are therefore
hard to observe directly. The EPs are therefore estimated from EEG signals that
have been recorded for a long time, with many identical events, e.g. thousands of
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2.3 Auditory evoked potential (AEP) and event related responses

Figure 2.2 An example of different rectifying methods, i.e. different methods of making
a signal non-negative. The top most plot shows the signal before it has been rectified. The
middle plot shows a half-rectified signal and the bottom one a full-wave rectified signal.

click sounds. The EEG signal is then divided into segments, called epochs, were
each epoch is associated with one instance of the event. The EP is then obtained as
the average of EEG across all epochs. [Laguna and Sörnmo, 2005]

The auditory evoked potential is divided into three different parts, depending on
latency. The earliest responses is the auditory nerve and brainstem response (ABR),
which span the latencies up until 10 ms after the event. After that follows the middle-
latency evoked potentials from 10 to 60 ms, and lastly the long latency components
at latencies 60 to 200 ms. In this thesis. The earliest responses have a much smaller
amplitude. This is because the response stems from more and more neurons as the
responses get further along the auditory pathway. More neurons do not only lead to
a stronger signal but also one with a lower frequency content since the neurons are
not as well synchronised [Luck and Kappenman, 2012].

The ABR is typically measured with an electrode on top of the head in the Fz or
Cz location in the 10/20 system, that is to say, on the forehead, and a reference
electrode close to the ear, e.g. on the mastoid or the ear lobe. The response consist
of five to seven fast oscillations, with peaks that are denoted with roman numerals
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Chapter 2. Background

Figure 2.3 A schematic figure showing what a traditional long-latency response to sound
can look like. It consists of three clear peaks at 50, 100 and, 160 ms.

in order of latency. The strongest peak is wave V with and it has a latency of about
6 ms. [Luck and Kappenman, 2012] A schematic plot of what the ABR can look
like can be seen in Figure 1.1. The ABR response is non-linear with respect to the
stimulus intensity. The response does not only have a higher amplitude, but is also
faster when the stimulus is stronger [Nousak and Stapells, 2009].

The first peaks in the long-latency are denoted P50, N100, P160, and N200. The
letters P and N are used to signal that the peak is positive and negative respectively.
The number indicates at what latency the peak is expected in milliseconds, meaning
that P50 is a positive peak that occurs 50 ms after the stimulus. [Luck and Kappen-
man, 2012] A schematic plot of what the long-latency response can look like can be
seen in Figure 2.3.

Impulse responses and evoked potentials
The first comparisons between AEPs and impulse responses were done in [Lalor et
al., 2009]. In that study, the new event-related response was called auditory-evoked
spread spectrum (AESPA) and it was inspired by similar work done with visual
EPs [Lalor et al., 2006]. While the AEP is a traditional EP obtained by averaging,
the AESPA method is based on the assumption that the EEG signal is the output
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2.3 Auditory evoked potential (AEP) and event related responses

from the convolution of the amplitude modulated audio signal and an unknown
impulse response. It is this unknown impulse response that is the AESPA and it was
estimated linear least-squares, using regularisation to reduce the over all estimation
error.

The sound signals used during the first AESPA experiments were broadband Gaus-
sian noise, pure tones and a mixture of broad band Gaussian noise and short sounds
used when measuring a traditional AEP. These AESPA responses were compared
to a regular AEP obtained when averaging the EEG signal from when the stimulus
is a short repetitive sound. The results showed morphological similarities between
the AEP and the AESPA with peaks in the group average AESPA that correspond
to peaks in the AEP. The found peaks all corresponded to cortical activity, mean-
ing that the AESPA did not show the response of the brain stem. The paper [Lalor
et al., 2009] further shows that the AESPA can give rise to the same response as
the AEP when generated with discrete stimuli and that the AEP is strongly spatially
correlated to the AESPA when it is generated with a tone. That is to say that the two
responses come from more or less the same parts of the brain. The paper suggests
that the AEP and the AESPA stem from similar neural generators in the brain and
that the AESPA is a generalization of the AEP.

The AESPA was later expanded to use speech as stimulus [Lalor and Foxe, 2010].
In this new AESPA, the speech envelope is used as the input to the system, i.e.
the speech envelope was used as a regressor in the least-squares estimation of the
impulse response. The envelope of a speech signal only captures the rough outline
of how the signal varies, but no details. This was argued to be acceptable since it has
been shown that it is the envelope that is the most important component in speech
recognition. This second paper also suggests that the AESPA shows the response of
cortical activity, and more specifically the response of the early auditory cortex.

Based on the work with the AESPA, efforts were made to capture the brainstem
response to natural speech. In a paper by [Maddox and Lee, 2018] the brainstem
response was estimated using linear regression, however, this time a half-wave rec-
tified audio signal was used as a regressor, not the speech envelope. This new regres-
sor has the advantage of preserving high frequency components which are essential
for the ABR. The signal was rectified to reflect the fact that the auditory pathway is
not affected by the sign of the incoming sound.

In [Maddox and Lee, 2018], the EEG recordings were done with three different
types of stimuli; a pseudorandomly timed click-train, a periodic click-train and con-
tinuous speech. The traditional ABR was also calculated as the response to the pe-
riodic click-train, and it was used to validate the response of the pseudorandom
timed click-train. The pseudorandomly click-train, in turn, was compared with the
speech-derived response. The responses were compared using Pearson’s correlation
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Chapter 2. Background

coefficient and the results show that the response to the two click trains is highly
similar, meaning that the pseudorandom clicks produce a response which is simi-
lar to periodic clicks. The pseudorandom click train was also shown to have strong
similarities with the speech-derived response. The speech-derived response also has
peaks, just like the ABR, wave V being the peak that showed up most consistently
across the responses although wave VI was also visible in the average response.

2.4 Filtering

Filtering is a common step when preprocessing EEG signals. High-pass filters can
be used to remove base-line drift in the signal, notch filters can be used to remove
power-line interference and band-pass filters can be used when analysing a specific
frequency band in the EEG. However, one has to be careful when filtering since the
filters usually affect the signals more than just in the desired way [de Cheveigné and
Nelken, 2019].

In this section, it is described what is meant by a filter, different attributes that are
used to describe a filters properties, as well as what pitfalls one have to be aware of
when filtering.

General information about filters
Filtering can be done with hardware in continuous time. Most of the filtering in this
thesis, however, happens in the digital domain. In this case, filtering a signal x(n)
with a filter, with impulse response h(n), results in a signal y(n) which is computed

y(n) =
∞

∑
i=−∞

h(i)x(n− i) = h(n)∗ x(n) (2.1)

were ∗ denotes the convolution operator, in this case, discrete convolution. The letter
n is used to indicated that the signals exist in the discrete time domain.

There are four major types of filters; low-pass, high-pass, band-pass and band-stop
filters. These describe how the filter affects different frequencies, e.g. a low-pass
filter lets low frequencies pass through it while high frequencies are stopped by it.
Band-pass and band-stop filters have a band of frequencies that are unaffected or
stopped, respectively. A notch filter is a special case of a band-stop filter, were the
band of the stopped frequencies is so thin that the filter more or less targets one
specific frequency.

What constitutes a high frequency is described by the cutoff frequency, usually de-
noted fc. An ideal low-pass filter, for instance, is supposed to not affect frequencies
below the cutoff frequency at all, while all frequencies over the cut off should be
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2.4 Filtering

Figure 2.4 An example of two low-pass filters with the same cutoff frequency but with
different bandwidths.

completely blocked. Band-pass and band-stop filters have two cut off frequencies,
one for when the band starts and one for when it stops.

In reality, however, there is often a more gradual change between how frequencies
are affected, and there will be a band of frequencies that are attenuated by the fil-
ter without being stopped completely. This is illustrated in Figure 2.4, which also
shows how this band of frequencies can be different between filters even if the cutoff
frequency is the same. There are multiple ways of describing this band of frequen-
cies, in this thesis, the bandwidth will be used. It can be defined slightly differently,
but here it is defined as the frequency at which the attenuation has reached -3 dB.
The bandwidth, in other words, describes the steepness of the slopes in Figure 2.4
and is different for the two different features.

Another way to characterise a filter is to describe whether it has a finite impulse
response (FIR) or an infinite impulse response (IIR). As the names suggested, these
descriptions characterise the impulse response h(n) and if it has a finite or infinite
length.

Problems that arise from filtering
As mentioned before, filters can be a wonderful tool that helps when analysing
signals, however, they can also affect the signals in undesirable ways. This section
describes some of the problems that filters can cause and how to handle them.
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Chapter 2. Background

Causality. One aspect to consider when using a filter is that of causality. A causal
filter is if the output signal only depends on past values of the input. In terms of the
impulse response function, h(n) from equation (2.1), this means that h(n) = 0 for
all negative n [Devasahayam, 2000]. Similarly an anti-causal filter only depends on
future values of the input and only has non-zero elements for negative n. If a filter
is neither causal nor anti-causal, it is referred to as an acausal filter.

To investigate the causality of a filter, one should study the filter’s impulse response.
If this is not readily available, it can be obtained by creating an impulse signal, that
is a signal δ (n) such that

δ (n) =

{
1 ; n = 0
0 ; n ̸= 0.

(2.2)

The impulse response can than simply be obtained by applying the filter to δ (n).

Upon investigation of the definition of a filter in equation (2.1), it might seem pe-
culiar that you could apply a filter without having access to the impulse response.
However, in reality it is common to use filtering functions in e.g. MATLAB, and
in that case, the impulse response is typically hidden within the function and not
known by the user of it.

For an example of the different causalities, see Figure 2.5, were three different im-
pulse responses with different causalities have been plotted. The base filter that
has been used to produce the plots is a 2nd order Butterwort filter with cutoff fre-
quency 100 Hz, which is causal. The anti-causal filter was obtained as suggested by
[Maddox and Lee, 2018], by reversing the input signal, applying a causal filter, and
then reversing the output of the filter. The acausal filter was done by applying the
causal filter both in the forward and backward direction using MATLAB’s function
filtfilt (resulting in a fourth order filter).

An important thing to notice in Figure 2.5, is that the input has been spread out over
time. Recalling equation (2.2), the input signal was only non-zero at lag 0, while
the output signals are non-zero for multiple lags. The causal filter has been spread
out forward in time, meaning that the output is active longer than the input signal
was. The anti-causal filter, on the other hand, is non-zero before the input signal
has become non-zero. And the acausal filter becomes non-zero before the input and
stops being non-zero after it.

It is recommended in [Maddox and Lee, 2018] that, when preprocessing the signals
to find the impulse response from audio signal to EEG signal, only to use causal
filter on the EEG signal and anti-causal filters on the audio signal. If this principle
is not followed, this leads to an acausal estimated impulse response. This would
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2.4 Filtering

(a) A causal filter which
only depends on past values
of the input signal because
the impulse response is
zero for negative lags.

(b) An anti-causal filter
which only depends on fu-
ture values of the input sig-
nal because the impulse re-
sponse is zero for positive
lags.

(c) An acausal filter which
depends on both past and
future values of the input
signal because the impulse
response is non-zero for
both positive and negative
lags.

Figure 2.5 Three different impulse responses with different causality, the vertical line indi-
cates lag 0. The filter has had the effects of spreading out the input signal over multiple time
lags.

correspond to the EEG signal being affected by sounds that will be heard in the
future, which should not be the case.

Another reason causality is important in this thesis, is because of the way the source
of a response is determined. As mentioned previously, in a traditional AEP the ear-
liest peaks, that occur just milliseconds after the stimulus, are said to correspond to
subcortical activity. However, if wrong causality filters have been used, a peak that
is associated with cortical activity can occur early in in the estimated response. If
one is not cautious in this case, one might mistake cortical activity for subcortical
activity.

Another aspect to be aware of is that, similarly to how some peaks can occur earlier,
peaks can also be delayed because of the filtering. This means that, even if filtering
is done with the right causality, one should be careful when drawing conclusions
that relay heavily on at which lag the peak occurs, if the delay caused by filtering
has not been carefully examined.

Ringing. Some times, filtering a signals leads to oscillations in the output signal
even if there were no oscillations in the input. This effect is called ringing and
becomes more pronounced when the cutoff in the frequency domain is sharper. [de
Cheveigné and Nelken, 2019]

The oscillations tend to have a frequency close to the cutoff frequency [de
Cheveigné and Nelken, 2019]. This information can help separate the ringing from
other oscillations that occur naturally in the EEG and audio signals.
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Chapter 2. Background

(a) An impulse response that shows some
ringing.

(b) An impulse response that shows a lot
of ringing.

(c) The amplitude response of the filter
associated with Figure 2.6a.

(d) The amplitude response of the filter
associated with Figure 2.6b.

Figure 2.6 A comparison between two filters with different amounts of ringing. It is evident
that the filter with more ringing has a sharper cutoff in the frequency domain, exemplified
by that the attenuation for f = 1000 Hz is about 50 dB stronger for the filter with a lot of
ringing.

Just like with the question of causality, it is good to plot the impulse response to get
a feeling for the ringing of the filter. It is also good to plot the amplitude response
to see how sharp the cutoff in the frequency domain is. For an example of this, see
Figure 2.6.

2.5 Statistics

The following section contains definitions of some statistical terms that are used in
this thesis.
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Periodogram
Let x(n) be a signal vector of length N, where n = 0,1,2...N − 1, and let X( f ) be
the Fourier transform of the signal. Then the periodogram R̂x( f ) is

R̂x( f ) =
1
n

∣∣X( f )
∣∣2 (2.3)

and is an estimate of the spectral density of the signal [Lindgren et al., 2014]. The
periodogram has a large variance.

Correlation
Pearson’s correlation coefficient r for two stochastic variables x and y is obtained as

r(x,y) =
1

N −1

N

∑
i=1

xi −µx

σx

yi −µy

σy
, (2.4)

where N is the number of observations of the variables, µx and µy are their mean
values, and σx and σy are their standard deviations. The coefficient measures the
linear dependence between two stochastic variables [MATLAB, n.d.]

Null hypothesis and confidence intervals
This Section is based on [Blom et al., 2017].

Let X be the stochastic variable with a probability density function PX (k) for an
outcome k. Typically, PX (k) will be given by a standard density function that de-
pends on one or more unknown parameters. For instance, X could have a binomial
distribution, in which case

PX (k) =
k

∑
j=0

(
n
j

)
p j(1− p)n− j. (2.5)

Here k is the number of times a certain outcome, with a probability p of occurring,
has happened, given n trials and PX (k) denotes the probability that at most k oc-
curances happen during n trials. If the probability p is unknown, a null hypothesis
can be formulated that can either be supported or rejected with an observation. For
example, let the null hypothesis H0 be

H0 : p = p0, (2.6)

that is to say the the initial guess is that the probability is p0, for some value of p0.
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Chapter 2. Background

This null hypothesis can then be compared to an new alternative hypothesis called
H1, which usually takes one of three forms

H1 :


p > p0

p < p0

p ̸= p0.

(2.7)

To dismiss the null hypothesis an observation x either has to be large enough or
small enough to make the null hypothesis unlikely. Given a desired probability s of
rejection of a correct null hypothesis, the limit a should be found such that

P(X ≥ a)≲ s
P(X ≤ a)≲ s
P(X ≤ alower)≲

s
2 and P(X ≥ aupper)≲ s

2 ,

(2.8)

respectively, for each variant of H1. The notation a ≲ b means that a is less than b,
but still close to b. means that If the observation x falls within the limit, i.e. smaller
than a, larger than a, and between alower and aupper, respectively, the observation is
said to lay within the (1− s) confidence interval of H0. For instance, if s = 0.05 the
confidence interval is a 95 percent confidence interval. If the observation is outside
the confidence interval, however, the null hypothesis is rejected in favour of the new
hypothesis H1. Since the probability of falsely rejecting a correct null hypothesis
should be low, the probability s should be chosen to be a small value.

The parameter s is usually called the p-value and is usually dented with a p. This
symbol s was chosen here in order to avoid confusion with the probability p in the
example.

The example above follows a stochastic variable with a specific and known type of
distribution, however, the method works as well if the distribution has only been
estimated from observations.

2.6 Estimating impulse responses

Impulse responses, sometimes called temporal response functions (TRFs), are a
way to describe the relation between input and output to a linear time-invariant
(LTI) system, not just filter systems as in section 2.4. Given the input u(t) and the
impulse response h(t), the output y(t) can be obtained as

y(t) =
∫

∞

−∞

x(τ)h(t − τ)dτ = x(t)∗h(t), (2.9)
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2.6 Estimating impulse responses

were the time parameter t is used to indicate continuous time, and ∗, in this case,
denotes continuous convolution. In this thesis, the input signal is an audio signal
and the output is the EEG signal that has been recorded when the audio signal was
played.

The impulse response is connected to the frequency response function H by the
Fourier transform F

H(ω) = F
(
h(t)

)
. (2.10)

If a Fourier transform is applied to equation (2.1), this gives

Y (ω) = H(ω)U(ω), (2.11)

where Y (ω) and U(ω) are the Fourier transforms of y(t) and u(t), respectively.
This means that the impulse response can be estimated by estimating the frequency
response function which in turn can be estimated with

Ĥ(ω) =
Y (ω)

U(ω)
, (2.12)

where the hat notation ˆ indicates that Ĥ(ω) is an estimate of H(ω). The frequency
content can easily be obtained with the fast Fourier transform (FFT).

There are some problems, however, with estimating the frequency response function
with equation (2.12). One major problem is that the estimation is not robust because
division with zero arises if U(ω) = 0 for some ω . A simple solution is to add a small
constant ε into the denominator

Ĥ(ω) =
Y (ω)

U(ω)+ ε
. (2.13)

This might still cause problems, however, since U(ω) could be equal to −ε for
some ω . Further alteration is therefore necessary for example using the more robust
estimation

Ĥ(ω) =
Y (ω)U∗(ω)

U(ω)U∗(ω)+ ε
, (2.14)

where ∗ denotes the complex conjugate, meaning that the denominator now is
strictly positive for all ω if ε is positive. Also, note that if ε = 0 equation (2.14)
gives exactly the same result as the original equation (2.12). This way the trans-
fer function is estimated as a Tikhonov-regularized Wiener Filter in the frequency
domain [Wikipedia, n.d.]

The term U(ω)U∗(ω) is the periodogram of the input signal. Unfortunately, as
mentioned in Section 2.5, has a large variance. Similarly, Y (ω)U∗(ω) also has a
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Chapter 2. Background

high variance. This means that the estimate Ĥ(ω) can also be expected to have a
high variance unfortunately.

The parameter ε works similarly to the regularisation parameter in other types of
modeling schemes. To determine a suitable value for ε one might look at the peri-
odogram of the input signal since U(ω)U∗(ω) has to be significantly larger than ε

to affect the estimation. Typically, the spectrum will show a higher amplitude con-
tent at low frequencies. This means that ε can be chosen such that only frequencies
lower than a certain cutoff frequency affect the estimation.
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3
The data

The data was collected by Eriksholm Research Center prior to the start of this thesis.
The study was approved by the ethics committee for the capital region of Denmark
(journal number H-1-2011-033). The study was conducted according to the Dec-
laration of Helsinki, and all the participants signed a written consent prior to the
experiment.

The study consisted of 11 subjects. The subjects are called TP01-TP11 through out
this thesis. For one of these subjects, the exact age was not recorded, only that the
participant was between 70 and 79 years. The rest of the subjects were of the ages
76-85 with a mean of 79.7.

All of the participants had some level of hearing loss. The mean and standard de-
viation of the subjects’ hearing loss can be seen in the audiogram in Figure 3.1. It
shows the hearing threshold for different frequencies, that is, how much a sound
of a given frequency must be amplified for the subject to hear that frequency. Dur-
ing the experiment they used test hearing aids with frequency specific gain based
on their audiogram. All additional hearing aid features were turned off during the
experiment.

During the experiment, the participants sat in a sound proof room with a loudspeaker
1.65 m straight in front of them. They where presented with the audio book with
five stories by H.C Andersen narrated by a male speaker. The stories were; Den
Flyvende Kuffert, Den Standhaftige Tinsoldat, Storkene 1, Storkene 2 and Klokken.
Some of the stories were longer and were therefore split in two. This resulted in a
total of 8 tracks, each about 6 minutes long. The splitting is illustrated in figure 3.2.
All the audio was in Danish, which was the native language of all the participants.

The participants were asked to relax and listen to the story. They where not specifi-
cally asked to attend to the story and it was not tested whether they had been listen-
ing. While they were listening to the audio book, one track at the time, their EEG
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Chapter 3. The data

Figure 3.1 The average audiogram for the test subjects. The error bars mark one standard
deviation. The hearing loss is in average the same for both ears and stronger for high fre-
quencies, which is common for hearing loss.

Figure 3.2 An illustration of how some of the stories have been split into two different
tracks, and which track corresponds to which story. Each track then corresponds to one EEG
recording per test subject.
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Figure 3.3 An illustration of the electrodes. The red circle marks the main electrode at Fpz,
and the blue circles mark the mastoid electrodes at A1 and A2. Modified version of image by
[Oxley, 2020].

was recorded using three sintered Ag-AgCl active electrodes. Two of the electrodes
were placed on the left and right mastoid respectively, the third was placed on the
high forehead on a location called FPz. The placement can be seen in Figure 3.3.

The audio used during the experiment were wav files with a sampling frequency of
44.1 kHz. Since the volume of the sound was noticeably different in the different
stories, the files were normalized to a common RMS value. The calibration tone
was a 1 kHz pure tone. Besides being played in the loud speaker, the sound was
also connected to the EEG system. This results in a second version of the audio
signal, called the stimtrack. Because it is recorded by the EEG system, it has the
same sampling rate as the EEG signal, which is 16 384 Hz, and was filtered with
the same aliasing filter as the EEG prior to digitisation (a low pass filter with a fifth
order cascaded integrator-comb (CIC) filter response with a -3 dB point at 1/5th of
the sample rate). The recording systems in total causes an 8 ms delay to the recorded
signals. The EEG signal has also been processed in the same way as the stimtrack.
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4
Methods

4.1 Overview

The work in this thesis mainly consists of two parts. The first is preprocessing of
the data, which was done in python. After that, the processed signals were written
to binary files that were imported into MATLAB were the estimation of the impulse
response was done. A block diagram of what has happened to the signals can be
seen in Figure 4.1. This Figure also takes into account the data collection that was
described in detail in chapter 3.

This chapter will start by describing how the audio signal was aligned with the
EEG signal, which involves finding the onsets of the signals. After that the rest
of the preprocessing will be described, including how outliers in EEG signal were
handled. After that, the modeling will be described as well as the method that will be
used to evaluate the results, the bootstrapping method. Here, there has been a lot of
focus on how the algorithms can be tested to ensure that they perform as expected.

Once it has been established that the algorithm perform as expected on simulated
data, they were used to find the cortical response. Here some more experiments
were performed to test how different methods of preprocessing affected the results.

Finally it is described how the algorithm was applied to find the subcortical re-

Figure 4.1 A block diagram that shows what has been done with the EEG signals and what
they have been affected by.
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4.2 Signal alignment

sponse.

4.2 Signal alignment

As mentioned in chapter 3, there exist two versions of the audio signal. One is
the original wav file that was played during the experiment. This signal is called
audio through out the thesis. The other version of the audio was recorded by the
EEG signal and is called the stimtrack. During the experiment, the EEG recording
was started before the audio started to play. This means that the audio signal is not
aligned in time with the EEG signal and the stimtrack.

The alignment was done in two steps. The first step was estimating the onset of
the audio and stimtrack signals. This was done by estimating the derivative in the
beginning of the signals, before any sound starts, and marking the first big change
in the derivative as the onset of the signal. In this case, big meant a derivative that
was more than 10 standard deviations from the mean absolute derivative in the silent
part of the signal.

In the second step the shift between the the stimtrack and audio signal was computed
by calculating the cross correlation. Since the two signals show the same underlying
audio, the time at which the maximal correlation occurs corresponds to the shift
between the signals. The shift was computed using code from [Fridman, 2015].

For the above mentioned alignment procedure to be possible, the signals have to be
sampled with same rate. As mentioned in chapter 3, however, they are not. Accord-
ing to the documentation, the audio signal is sampled with a sampling frequency of
44,1 kHz while the stimtrack is sampled with 16384 Hz. This means that the signals
have to be resampled before doing the alignment. The resampling can, however,
be complicated if the recording has been done with systems running on different
clocks. If the clocks have drifted in sampling frequency since they were calibrated,
this can lead to problems when trying to resample the signals since their sampling
frequencies can not be trusted.

Such a drift in the internal system clock can be noticed by computing the shift
between the two signals in smaller time windows. If the computed shift is different
for windows in the beginning and the end of the signal, then the resampling has
not worked properly and the drift has to be estimated. One way of doing this is by
assuming that the drift has happened in the clock of the EEG signal. In reality, the
drift might have happened in the clock in the audio system, or in both clocks, the
assumption is only made to make the estimations easier and when the clock drift is
small, as is the case here, later analysis will not rely on the truth of this assumption..
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The drift was estimated by plotting the computed shift as a function of time for all
tracks and all subjects. The shift was computed in three-seconds-windows, and the
resulting shifts were plotted against the start of the time window. The drift of the
EEG clock can be found by estimating the slope in the plots. To reduce the influence
of outliers, when estimating the slope, the linear model fitting was performed twice,
once including all the data points and then a second time that only included the
data point that where ±50 samples from the line of the first model fit. If no data
points were found to be used for the second model fitting, the track was excluded
for the estimation of the drift. The track was also excluded from the estimation if
the threshold estimation could not be performed.

After the alignment was done, the Pearson correlation coefficient between the stim-
track and audio signals was calculated to ensure that the alignment had worked as
intended. If the correlation between the signals was still lower than 0.7, the record-
ing for that given track and subject was excluded from the modeling. This was the
case for 3 out of the 88 tracks.

4.3 Preprocessing the EEG signals

Firstly the EEG signals were referenced by taking the difference between the FPz
electrode and the left and right mastoid electrode respectively. This results in two
EEG signals, also called EEG channels, and are called FCZ1 and FCZ2. FCZ1 is
the difference between FPz and the left mastoid, and FCZ2 to the right mastoid.

The preprocessing was done one recording at a time. This meant that the signals
were about 6 minutes long. In order to make the recordings more standardised, they
were shortend to be exactly 5 minutes, except for recordings associated with audio
track 4A, which were shortend to 4 minutes.

The signals were then filtered, first with a causal first order Butterworth high-pass
filter with a bandwidth of 1 Hz. This was done in order to eliminate any drift in the
signal.

The signals can be quite far from zero in the initial samples, causing a transient
when filtering. Usually this can be avoided by giving the filtering function initial
conditions, however, this was not successful in this thesis and the transient remained
even when initial conditions were taken into account. Because of this, the transient
was removed by removing the first two seconds of each recording.

Since the experiment was conducted in Denmark, the power-line interference is ex-
pected to be at 50 Hz and multiples thereof. The interference can be seen in the
spectrum which is plotted in Figure 4.2. The EEG signals were thus notch filtered
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4.3 Preprocessing the EEG signals

Figure 4.2 An example of what the spectrum of the EEG signals can look like. There are
clear peaks visible in 50 Hz intervals which are most likely caused by power line interference.

from 50 to 400 Hz in steps of 50 Hz. The multiples higher than 400 Hz were as-
sumed to be much too high to affect the modeling since the aim is to look for
responses with a much lower frequency content. The notch filters were grouped to-
gether to two filters with notches at four frequencies each. The reason for using two
compound filters, instead of just one, was that numerical difficulties occurred when
too many notch filters were put in series. The notch filters were causal IIR filters
width a bandwidth of 5 Hz.

After the filtering, outliers were found in the EEG signal. How these were handled
is described in greater detail below.

Finally, just before the modeling, the EEG signal was normalized. The reason this
was not done earlier was that the preprocessing was done individually for each
recording, while the modeling uses all the recordings from one subject. If the nor-
malization was to be done before the recordings had been put together to one long
output signal, different normalisations would have been performed on different parts
of the signal. The normalization was a z-score normalization, meaning that the mean
of the resulting signal is zero and the standard deviation is one.

Outlier removal
The EEG data contains outliers caused by eye blinks and eye movement, among
other things. As mentioned in section 2.1, there are multiple ways of handling out-
liers. In this thesis two different methods were tried and compared. One of the meth-
ods is to mark the most extreme values as outliers, and then putting it and the values
around it to zero, as was done in [Maddox and Lee, 2018]. In this thesis, the window
in which the values were replaced by zeros was 0.5 s wide and centered around the
outlier. The other method is to simply mark these values as outliers, but not setting
them to zero. In the modeling step the signals will be split into short windows, and
windows containing samples marked as outliers are excluded from the modeling.

What percentage of samples that are outliers mainly depends on how much the test
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Figure 4.3 The first few seconds of an EEG signal before and after the outliers have been
removed. It can be seen that the removal did not manage to remove all artifacts as there is
two left, one at about 12 s and one at about 16 s. The threshold for removing therefore has to
be altered to remove a higher percentage of the signal.

subject has blinked or moved their eyes. Since this is not channel dependent, the
same threshold can mostly be used for both EEG channels. To determine a suitable
threshold, the recordings were examined one by one by plotting the EEG signals
before and after the removal. An example of such a plot can be seen in Figure 4.3.
If the given threshold seemed to have removed all the artifacts without removing too
much else, the used threshold was chosen. If too much or little was removed, the
threshold was altered accordingly and the removal was redone. Looking at Figure
4.3, it is obvious that several of the artifact were not removed, the threshold had
thus to be adjusted to a higher percentage.

4.4 Preprocessing the audio signals

The first step in the preprocessing of the audio signal is aligning it to the EEG signal.
How this was done has already been described in detail in section 4.2. After that,
the audio signal and the stimtrack signal were processed in the same ways. Firstly,
two seconds in the beginning of each track had to be removed in order to keep the
signals aligned after the filter transient in the EEG signal has been removed.

When the outliers in the EEG were handled by setting them to zero, the stimtrack
and the audio signals were also processed in the outlier removal step. In order to
match the regions of zeros in the EEG, the audio signals were also set to zero at the
same samples.

As mentioned before, rectifying the signals is thought to help with the modeling
since the auditory pathway is indifferent to the sign of the incoming audio [Maddox
and Lee, 2018]. To investigate whether this is necessary, it was tried to model both
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with and without rectifying the signal. The method for rectifying the input signals
was full-wave rectification. This means to invert the sign of all the negative sam-
ples, leaving a signal with only positive values. The advantage of using a full-wave
rectified signal as oppose to a half-wave is that only one impulse response has to be
estimated. Previously, two were estimated, one with the positive values as input, and
one with the inverted negative values and the mean of these two estimations was re-
garded at the estimation of the impulse response [Maddox and Lee, 2018]. Another
advantage is that there are less artificial zeros in the input that do not correspond to
zeros in the output, this might make estimation easier.

Similarly to the EEG signal, the input signals were also normalized just before the
modeling took place.

4.5 Impulse estimation

As mentioned before, the estimation was done in MATLAB. The estimation was
done according to the theory presented in section 2.6. The estimation was done
with windowing using a Hann window. This meant dividing the signals into smaller
segments, called windows, applying a Hann window to those segments before doing
the estimation of the frequency response. The mean frequency for all windows is
then estimated and this mean is used to estimate the impulse response. One impor-
tant reason for dividing the signals in segments is that the data can be assumed to
be stationary for each segment. While the signals in their entirety are not stationary,
short segments are almost stationary.

As mentioned there, the parameter ε decides which frequencies that are used when
estimating the frequency response. Because the spectrogram of the real signal is
very uneven it is hard to choose an ε so that only frequencies of interest are included,
therefore, ε was chosen ad hoc to be 200. This roughly translated to a threshold of a
couple of hundred Hz for the window length 1.3 s, which was used when estimating.

Testing the algorithm
Before the above described algorithm was used on the real data to estimate subcorti-
cal impulse responses, a number of tests were performed. These tests’ main purpose
was to ensure that the algorithm worked as intended. In addition, some tests were
performed to examine the effects of the estimation parameters.

The first step is to ensure that the algorithm can find a known impulse signal. For this
an input signal was convolved with a known impulse response. To make the problem
as similar to the original one as possible, the input signal was the preprocessed
audio signal and the known impulse response looked similar to the traditional ABR
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in Figure 1.1. After the convolution, white noise with a small variance was added.
This gives the final signal high SNR compared to a traditional ABR measurment.

Once it had been established that the algorithm can find a known impulse response,
different values ε were tried. The effect of the window length was also examined.

4.6 The bootstrapping method

An important question is that of determining whether a found impulse response is
significant. This problem is very similar to that of determining whether or not a
response is present when the traditional ABR is measured. One method of doing
this is with bootstrapping [Lv et al., 2007]. Bootstrapping methods relay on a small
amount of data that is used to create many different data sets. In this thesis, boot-
strapping is used to create a null hypothesis of what a parameter value should be if
no response is present. This null hypothesis can then be tested with the original data
to determine if it is significantly different from when there is no response. If it is
significantly different, the null hypothesis, that there is no response, can be rejected.
This method of testing a null hypothesis works just like described in section 2.5, just
that the distribution is unknown and therefore has to be estimated by simulation.

Similarly to [Aljarboa et al., 2022], the bootstrap data sets are created by misalign-
ing the signals a random amount, but no shorter than 15.6 s, in accordance with
[Aljarboa et al., 2022]. By misaligning the signals enough, there should not be any
influence of the audio on the brain activity. This means that the newly created data
is data without an underlying impulse response to find. It should be mentioned here
that [Aljarboa et al., 2022] applied this method on determining the significance of
cortical responses, not subcortical ones. The method should still work, however.

The misaligning was done by moving a random amount of samples of the input sig-
nal from the beginning of the signal to the end. This meant that the algorithm tries
to find correlation between the brain activity and sound that will be heard in the
future, meaning that (causal parts of) the impulse responses that are found should
non-significant. Each impulse response is then used to estimate the output signal.
This estimated output signal was then compared with the real output signal by com-
puting the Pearson correlation coefficient between them, this value is called estima-
tion accuracy. In this thesis, this procedure is repeated 100 times to get an estimate
of the distribution of the estimation accuracy when there is no correlation between
the input and output signals. This distribution is then used to obtain a threshold to
test the null hypothesis of no response in the original aligned data. The p-value of
the confidence interval was chosen to be 0.05, meaning that the threshold was cho-
sen such that the estimation accuracy had to be greater than 95% of the estimation
accuracy that were computed for the misaligned data.
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Testing the bootstrapping method
The method was tested with white noise as input and output to ensure that the false-
positive rate was consistent with the chosen p-value. This was done by creating
100 input-output data sets of random noise and running each of them through the
bootstrapping algorithm to obtain a threshold for each data set, and then comparing
the estimation accuracy obtained for the aligned data with the threshold. Since the
data is just noise, anytime a response is deemed significant is a false-positive.

The bootstrapping algorithm was also tested when there was a response to find. To
do this, a known impulse response was convolved with a white noise input signal to
obtain an output signal without noise. On top of this output signal different levels of
white noise was added to get a noise output signal that was used when estimating the
impulse response. This gives insight into how low the SNR can be for the estimation
to work. For each SNR, ten simulations were done. The results of these tests can
be seen in Section 5.2 and they showed that the algorithm worked properly unless
there was a lot of noise added.

4.7 Finding the cortical response

While the aim of this thesis is to find the subcortical response, the algorithms were
also used to look for the cortical response. This served as a final test for the algo-
rithm using the real data. Since the cortical response has a larger amplitude than the
subcortical one, the SNR in this problem is higher, which makes the problem easier.

To adjust the algorithm to find the cortical response, the signals were down sampled
to a lower sampling rate. This could be done since the cortical response has a lower
frequency content and a lower sampling rate leads to faster estimation. This is espe-
cially valuable since the impulse response that has to be estimated, spans more time
lags than the subcortical impulse response. As mentioned in section 2.3, the long
latency responses last up until 200 ms after the stimulus. To ensure that everything
worked as intended, the impulse response was estimated from -100 ms to 1 s. This
way, it is not only possible to examine if there is a response when it is expected, but
also check that there is no response when it is not expected.

The bootstrapping method was then used to determine whether the found cortical
response were significant or not. The estimated impulse responses was also visually
compared with traditional cortical activity in the AEP.

The modeling was done with some different preprocessing methods to compare how
they affected the data. There was one comparison between the two different ways
EEG outliers were handled in this thesis, as well as an experiment to determine
whether the input signals should be rectified or not. First the experiment with the
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inputs was done and the outliers were handled by ignoring windows containing out-
liers. Then rectified inputs were used to compare the methods of handling outliers.
The results from this can be seen in Section 5.3.

Once a suitable preprocessing method had been found it was applied to the signal
and the whole experiment was then repeated but with reversed input data. Since
the signals are a lot longer than the assumed impulse response, there should not
be any correlation between the reversed input signals and EEG signal. This means
that the bootstrapping algorithm should not deem the result to be significant and the
estimated responses should look like noise. The results from this can also be seen
in Section 5.3.

4.8 Finding the subcortical response

Once it has been established that the algorithm works as intended and what prepro-
cessing worked best, the final step was to try it on the real data to estimate the sub-
cortical impulse response. The procedure was essentially the same as it was when
the cortical response was estimated. Only this time, the signals were not down sam-
pled and the response is estimated for time lags -20 ms to 50 ms. Another difference
to the the cortical estimations, the found impulse responses were low-pass filtered
to obtain a smoother impulse response. The responses were filtered with four with
first order Butterworth, first one with a bandwidth of 2000 Hz, followed by ones
with bandwidths of 1000, 500 and 100 Hz.

Again the estimation accuracy of the estimated impulse response model was com-
pared to the threshold computed by the bootstrapping algorithm to determine the
significance of the response. The estimated impulse responses were then visually
compared to the traditional ABR. Similarly to when the cortical responses were
estimated, the experiment was then repeated using reversed input data.
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5.1 Preprocessing of the signals

Sampling rate drift
An example showing the shift between the audio and stimtrack after resampling
can be seen in Figure 5.1. It shows how the shift is different between the start of
the signals and the end of the signals, indicating that the resampling has not lead to
signals with the same sampling frequency.

The drift in sampling frequency was estimated to be 0.6 Hz with a standard deviation
of 0.05 Hz. The estimation was done using 62 out of the 88 tracks.

Taking the drift into account when resampling, and again estimating the shift be-
tween the signals at different times in the signal, gives that there is no change in
shift along the signal. This is illustrated in Figure 5.2.

Figure 5.1 The shift as computed in different time windows along the stimtrack and audio
signal, when the documented sampling frequencies are assumed to be correct. The fact that
it is a linear trend with a non-zero slope shows that the two signals do not have the same
sampling-rate despite the resampling. The value of the slope corresponds to the drift between
the two sampling rates. The specific recording used for this plot was chosen so that the slope
is clearly visible and is not the same recording as in Figure 5.2.
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Figure 5.2 The shift as computed in different time windows along the stimtrack and audio
signal, when the estimated drift has been taken into account. The fact that there is no trend in
the shift suggests that the signals now are sampled with the same frequency. There are a lot
of outliers though. The specific recording used for this plot was chosen so that the slope is
clearly visible and to show the type of outliers that can be found when computing the shift.
It is not the same recording as in Figure 5.1, which did not show any outliers.

(a) Test person TP11 track 5A. The align-
ment has worked well.

(b) Test person TP11 track 2A. The align-
ment has not worked well.

Figure 5.3 Two examples of results of the first alignment that estimates the onset of a
signal by looking for the first big change in the signal. The red area marks where the signal
is estimated to begin. It is evident that the alignment works well for some signals (left), but
not others (right).

Signal alignments
The first alignment method, that estimated the onset of the signal, worked well for
some signals, see e.g. Figure 5.3a, but less well in others, see Figure 5.3b.

The second alignment method, that computes the shift between the stimtrack and
audio, leads to a better alignment for the trials that were misaligned after the thresh-
old estimation, compare Figure 5.4 with Figure 5.3b.
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Figure 5.4 The signals of Test person TP11 track 2A, after the alignment has been adjusted
by computing the shift between the signals using correlation. The red area marks where the
signal is estimated to begin. The alignment has worked well.

The mean Pearson correlation coefficient between the stimtrack and the audio signal
after the two alignment methods was 0.986 and the standard deviation was 0.021.
This suggests that the alignment worked well. These values were computed for 85
out of the 88 tracks.

5.2 Simulated data

Testing the impulse estimation
The results from simulated data with some different parameter values can be seen
in Figure 5.5 and Figure 5.6.

The estimated impulses in Figure 5.5 and Figure 5.6 look similar to the real under-
lying impulse response. This suggests that the algorithm works well for finding a
known impulse response. It is clear, however, that the parameter ε affects the abil-
ity to find the correct impulse response while the window length does not seem to
affect the estimation.

The greater ε , the further from the real impulse response the estimation is, in Figure
5.5. This is typical for regularization parameters were you usually accept a larger
bias to the estimate in order to get a lower estimation error overall. This is only
effective in noisy signals and in this simulated case there is no advantage to having
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Figure 5.5 The effect ε has on the estimation. The lower the epsilon, the closer to the real
solution the estimation is.

Figure 5.6 The effect window length has on the estimation. There is no clear difference
between the different window lengths.
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Figure 5.7 The percentage of simulations that were deemed to be significant by the boot-
strapping level when there is an impulse response to find among the noise. In other words,
the true-positive rate at different SNRs. For each SNR, ten simulations were done

a large ε .

Testing the bootstrapping method
When running the bootstrapping algorithm with white noise as input and output,
5 out of 100 simulations resulted in that the bootstrapping method determined the
result to be significant. This is in accordance with the p-value, which was chosen to
be 0.05. This is one sign that the algorithm is working as expected.

When the output was obtained by convolving the input with an impulse response,
and then adding noise, the algorithm found impulse responses that were deemed
significant if the noise level was not to high. Results for the different noise levels
can be seen in Figure 5.7

Interestingly, if not surprisingly, the results from Figure 5.7 suggests that the method
struggles with finding existing significant results if the SNR is too low. This is very
relevant since the ABR is notorious for having low SNR.
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Table 5.1 The number of significant impulse responses depending on whether the input
signal was rectified or not. For each category there are four impulses meaning that the sum
for each method is at most 44. More significant impulse responses are found if the input
signals have been rectified using full wave rectification.

Test person
Significant impulse responses

with rectified inputs
Significant impulse responses

with non-rectified inputs
TP01 4 0
TP02 1 0
TP03 4 3
TP04 3 1
TP05 4 0
TP06 4 1
TP07 0 1
TP08 2 1
TP09 0 0
TP10 2 1
TP11 4 0
Total 28 8

5.3 Cortical response

Rectifying the input signal
The number of significant responses for the rectified and non rectified signals can
be seen in Table 5.1. It is evident that more of the responses are deemed significant
when the input signals are rectified before modeling.

Figure 5.8 shows what the impulse responses look like depending on whether the
input signals have been rectified or not. Figures 5.8a and 5.8c show the average
response for all responses that were deemed significant for the non rectified and
rectified case respectively. Figures 5.8b and 5.8d give an example of what the im-
pulse responses look like for one of the participants.

Figure 5.8 shows that when the inputs were not rectified, there were no features at
all to see in the impulses. They all looked more or less flat. When the full-wave
rectification was used, however, some features were visible.

The features in Figure 5.8c are especially interesting. It has three clear peaks; a
positive around 25 ms, a negative around 87 ms, and another positive around 190
ms. This can be compared with the peaks in the traditional long-latency response
P50, N100 and, P160 as seen in Figure 2.3. While the pattern is pretty much the
same, the two first peaks are earlier than expected and the last one later. The earlier
peaks are especially surprising considering that there should be about a 15 ms delay
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(a) The mean impulse responses for all
subjects when the inputs were not recti-
fied.

(b) Non rectified inputs for test person
TP03. Note that the impulse for system
audio to FCZ2 was not deemed signifi-
cant.

(c) The mean impulse responses for all
subjects when the inputs were rectified
using full wave rectification.

(d) Rectified inputs for test person TP03.
All impulse responses were deemed sig-
nificant

Figure 5.8 A visual comparison of what the impulse responses look like depending on
whether or not the input signals have been rectified. While it is hard to see anything in the
impulse responses when the signals have not been rectified, the impulse responses for the
rectified input share features with the traditional cortex response, namely the waves resem-
bling P50, N100 and, P160.
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due to the time the sound has to travel from the loudspeaker, as well as the delay in
the EEG recording system which was reportedly 8 ms.

The offset in the peaks could be explained by filtering, although, the filters that were
examined did not show any clear delays. Furthermore would the filter have to affect
the different peaks differently, which is possible if the phase response is nonlinear.

It should be mentioned that the peaks in the cortical impulse response do not neces-
sarily correspond to the peaks in the long-latency AEP. It is possible that they stem
from different processes in the brain. This could also be one explanation for why
the peaks do not occur at the same lags.

Over all rectifying the signals seems to be an important step. This is in line with
what was stated by [Maddox and Lee, 2018]. Presumably, since the auditory path-
way is indifferent to the sign of the incoming sound, the auditory pathway would
react the same way to the full wave rectified signal as to the original signal. Since
the impulse response is a linear model, it can not capture this nonlinear feature and
therefore the modeling does not work unless the nonlinearity is added before the
modeling.

Outlier removal
How much that was removed of the data due to outliers varied a lot from subject to
subject and on the method for handling the outliers. Table 5.2 shows how much was
removed for each subject.

Using the entries in Table 5.2 it can be calculated that the mean data that was re-
moved is 42% when the outliers are set to zero and, 66% when windows containing
outliers are ignored. That is to say, more data is lost when entire windows are ig-
nored. This, of course, makes sense since what is removed are the outliers alongside
all the other data in the same window.

How the method of handling outliers affects the number of significant impulse re-
sponses can be seen in Table 5.3. When the outliers are set to zero, all the found
impulse responses are deemed to be significant while only slightly more than half
are deemed significant if the windows containing outliers are ignored.

Figure 5.9 shows what the impulse responses look like depending on which method
was used for handling the outliers. Figures 5.9a and 5.9c show the average response
for all responses that were deemed significant for the two methods respectively.
Figures 5.9b and 5.9d gives an example of what the impulse responses look like for
one of the participants, TP05.

When just looking at how many significant impulse responses that were found, ze-
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Table 5.2 How much of the signals that remains for each test subject, after the artifacts
have been removed. For some subjects, e.g. TP01, a lot of the signal remains, while others,
e.g. TP07, barely have anything left after the artifacts have been removed.

Ignoring windows
containing outliers

Setting outliers
to zero

Test person
Remaining in

FCZ1 (%)
Remaining in

FCZ2 (%)
Remaining in

FCZ1 (%)
Remaining in

FCZ2 (%)
TP01 83 81 90 88
TP02 25 26 67 66
TP03 92 92 93 94
TP04 63 60 71 69
TP05 16 16 52 51
TP06 20 22 45 45
TP07 1 1 24 27
TP08 1 2 30 38
TP09 2 2 33 34
TP10 56 57 79 81
TP11 18 12 50 57

Table 5.3 How the method of handling outliers affects the number of impulse responses
that are deemed significant. For each category there are four impulses meaning that the sum
for each method is at most 44. It is evident that setting the outliers to zero results in more
impulse responses to be deemed significant. The left column in this Table shows the same
results as the left collumn in Table 5.1

Test person
Ignoring windows
containing outliers Setting outliers to zero

TP01 4 4
TP02 1 4
TP03 4 4
TP04 3 4
TP05 4 4
TP06 4 4
TP07 0 4
TP08 2 4
TP09 0 4
TP10 2 4
TP11 4 4
Sum 28 44
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(a) The mean impulse responses for all
subjects when the response was deemed
significant and the outliers were set to
zero.

(b) Test person TP05 when the outliers
are set to zero.

(c) The mean impulse responses for all
subjects when the response was deemed
significant and the windows containing
outliers have been ignored.

(d) Test person TP05 when the out-
liers are windows containing outliers have
been ignored.

Figure 5.9 A visual comparison of what the impulse responses look like depending on what
method is used for handling the outliers. When the outliers are set to zero the amplitude of
the response is larger and it contains a large negative peak at lag zero. When all windows
containing outliers are ignored the peaks are weak but could correspond to features in the
traditional cortical response, namely the waves P50, N100 and, P160. The waves are however,
not exactly were they are expected.
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roing the outliers might seem like the favourable method for treating them. When
looking at the found impulses, however, it is clear that the method has problems,
meaning that the bootstrapping method can not be trusted blindly.

The mean impulse response for zeroed outliers in Figure 5.9a has a very large nega-
tive peak at zero that continues to negative time lags, making the estimated impulse
response acausal. Since the EEG signals should not be affected by sounds that will
be heard in the future, this acausal impulse response is faulty.

To investigate the non-causal peak in more detail, the responses for the rest of the
test subjects can be seen in Figure 5.11.

When comparing the plots in Figure 5.11 with Table 5.2 there seems to be a trend
that the subjects where a lot of data was removed are the subjects with large negative
peaks at lag zero. Add to that the fact that the large peak at zero disappears if the
windows containing outliers are ignored. This suggests that the peak is a result of
the outlier handling.

It is plausible that this is an effect of that not only the EEG signal outliers were
set to zero, but that also the input was set to zero for the same lags. This was done
in order to not have inputs that resulted in a zero output since this was thought to
confuse the algorithm. The problem might stem from that setting the same samples
to zero in both the input and the output suggests to the model that the input has
an immediate effect on the output, which would result in a correlation at lag zero.
Because of this, it would be interesting to investigate how well it works to put the
outliers to zero but without putting the input to zero.

A lot of data was removed in the outlier removal, in some instances so much that it
is questionable whether there is any use in keeping the data from that test subject
since there is barely anything left. This definitely affects the results and it is quite
possible that setting the outliers to zero is acceptable if there are less outliers. Seeing
that this is not the case here, it was chosen to handle the outlier by ignoring windows
containing them. This way a lot more of the data is removed but there are no clear
artifacts due to the outlier removal in the estimated impulse response.

Reversing the data
These final cortical response estimations were done using rectified input signals
and by ignoring windows containing outliers. This was because these preprocessing
methods were deemed to be the best based on the results so far.

The thresholds that were computed by the bootstrapping method were different from
subject to subject. The mean threshold was an estimation accuracy of 2.4% across
all systems with the original input signal. This is a very low threshold. For the
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(a) TP01 (b) TP02

(c) TP03 (d) TP04

(e) TP06 (f) TP07

(g) TP08 (h) TP09
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(a) TP10 (b) TP11

Figure 5.11a The estimates responses when outliers are set to zero for the different test
subjects. Some of the figures show large negative peaks, e.g. TP02. When comparing these
results with Table 5.2 there seems to be the trend that the subjects where a lot of data was
removed are the subjects with large negative peaks.

reversed input signals the mean threshold was 2.3%, almost the same as for the real
input signal. Furthermore the estimation accuracy was never more than 9%. This
is not completely unreasonable since there is a lot going on in the brain that has
nothing to do with the sound you hear.

It is also worth noting that the test subject with less removed data to a greater extent
seem to have more significant impulse responses. For instance were four significant
responses found for TP01 with 83% and 81% remaining in the two EEG signals
respectively, while none were found for TP09 with 2% and 2% remaining. This is
no hard rule, however, since there were e.g. one significant response for TP02 and
four for TP05 despite TP02 had slightly less data removed.

In total 29 of the impulse responses were deemed significant, when the data was not
reversed, and 1 when the data was reversed.

For an example of how the threshold were for one subject, see Table 7.1. There you
can also see the estimation accuracy values for the original, correctly aligned data,
which is written in a bold font whenever it is larger than its corresponding threshold,
meaning that the estimated impulse response is deemed significant. Similar tables,
for the other test subjects, can be found in the Appendix A. The impulse responses,
that correspond to Table 7.1, can be seen in Figure 5.12.

From Figure 5.12, it is evident that the impulse responses for the reversed input
signal are smaller than those for the original input signals for positive lags. All the
impulse responses, however have about the same amplitude for negative lags.

The estimated impulse responses for all subjects can be seen in Figure 5.14.
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Table 5.4 The results from the bootstrapping method when applied to the data from TP0899
to obtain the cortical response. All the responses for the real data are deemed to be significant,
while the responses for the reversed input signals are not. The notation r indicates that the
signal has been reversed and the bold numbers indicate that the estimation accuracy is large
enough be be deemed significant.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0173 0.0718
Stimtrack −→ FCZ2 0.0118 0.0769
Audio −→ FCZ1 0.0156 0.0797
Audio −→ FCZ2 0.0143 0.0864
Stimtrackr −→ FCZ1 0.0149 0.0069
Stimtrackr −→ FCZ2 0.0140 0.0069
Audior −→ FCZ1 0.0154 0.0043
Audior −→ FCZ2 0.0144 0.0078

(a) Real input signals (b) Reversed input signals.

Figure 5.12 An example of the estimated impulse responses for both the original input
signals, as well as for the reversed signal. The responses for the original input data have
a much larger amplitude for the positive lags, while the negative lags have about the same
values as the values of the impulse responses with the reversed input signal. All the systems
with the original data were deemed significant by the bootstrapping method, while those for
the reversed data, most of the time, were not.
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(a) TP01 (b) TP02

(c) TP03 (d) TP04

(e) TP06 (f) TP07

(g) TP08 (h) TP09
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(a) TP10 (b) TP11

Figure 5.14a The estimates impulse responses with the final preprocessing method, recti-
fying the signal and ignoring windows containing outliers. Many of the plots share features
with the long-latency AEP but some are more or less featureless. Comparing with Table 5.2
it seems that the flat impulse responses correspond to when a lot of data was removed.

Many of the plots in Figure 5.14 show feature similar to the long-latency AEP, just
like the mean response did in Figure 5.8c. Some response, however, have no clear
features and look more or less flat. When comparing with Table 5.2 it seems like
the flat responses correspond to when a lot of data was removed.

Over all, the results suggest that modeling has found an underlying impulse re-
sponse and that the algorithm seems to work on real data.

5.4 Subcortical response

The results in this section use the same preprocessing as for the final results when
estimating the cortical response, i.e. rectifying the input signals and handling the
outliers by excluding windows containing outliers when estimating.

Table 5.5 shows how much of the data that was ignored due to outliers. Just as for
the cortical response, a lot of the signals are unused, especially for some participants
e.g. TP07 were only 1% of the signal remains.

Similarly to the cortical response, the thresholds that were computed by the boot-
strapping method were different from subject to subject. The mean threshold was a
estimation accuracy of 1.16% across all systems with the original input signal. For
the reversed input signals the mean threshold was 1.15%.

An overview over the results from the bootstrapping method can be seen in table
5.6. It shows how many significant impulse responses were found for the original
data, and the reversed data, respectively. For each subject, the maximal number of
impulse responses that were estimated was eight, four with the real input, and four
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Table 5.5 How much of the data that was ignored in the analysis of the subcortical response
due outliers. It is evident that there is barely any data left for some of the participants e.g.
TP07. compare with Table 5.2 for the cortical response

Test person
Remaining in

FCZ1
Remaining in

FCZ2
TP01 84 82
TP02 28 28
TP03 92 93
TP04 64 61
TP05 18 18
TP06 22 23
TP07 1 1
TP08 1 2
TP09 2 2
TP10 60 60
TP11 20 15

Table 5.6 How many impulse responses that were deemed significant for the reversed an
nonreversed inputs signals. For each category there are four impulses meaning that the sum
for each method is at most 44. There were very few responses found for the nonreversed data
and non for the reversed.

Test subject
Impulse responses

in real data
Impulse responses

in reversed
TP01 4 0
TP02 0 0
TP03 0 0
TP04 0 0
TP05 0 0
TP06 0 0
TP07 0 0
TP08 1 0
TP09 0 0
TP10 1 0
TP11 0 0

with reversed input.

The results from Table 5.6 show that barely any significant impulse responses were
found for the subcortical case.

An example of what a significant impulse response can look like can be seen in
Figure 5.15a. The impulse responses for the reversed inputs can be seen in Figure
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(a) Real input signals (b) Reversed input signals.

Figure 5.15 An example of the estimated impulse responses for both the original input
signals, as well as for the reversed signal. None of the impulse responses have any clear
features corresponding to peaks in the ABR.

5.15b.

None of these impulse responses in Figure 5.15a have clear features corresponding
to peaks in the traditional ABR in Figure 1.1. Again, it should be remembered that
there is an expected delay of about 15 ms. This would mean that the strongest peak,
wave V, should be located around 20 ms.

Furthermore, there is no great visual difference between the impulse when the input
signals are reversed or not and the impulse responses for the different system look
more different from each other than they did for the cortical response.

5.5 Stimtrack or audio signal

While the performance is more or less the same, the preprocessing was significantly
more involved for the audio signal. Since the stimtrack is recorded by the EEG
system it is sampled with the same sampling rate and is started at the same time as
the EEG recording. This means that there is no need for aligning the signals and
the issue with drifts in the sampling clocks are avoided. This makes the stimtrack a
more favourable input signal.

5.6 Future work

A major problem with the analysis in this thesis is the handling of outliers. The
data set contains a lot of artifacts due to eye movement, blinks and the electrical
activity of the heart and these are handled in very simple ways that remove a lot of
the data. It is possibly because of this that the algorithm did not work for finding the
subcortical response. Furthermore, the methods are not automated since it requires
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someone who determines a suitable threshold for the outlier removal. This is very
labour intensive. The main focus of future research should therefore be on finding
better methods for handling the outliers. Since the outliers are distinctly different
from the rest of the EEG signal it might be possible to identify them and subtract
them from from the signal instead of throwing away the data completely. As already
mentioned, it would also be good to investigate how well it works to put outliers to
zero but without putting the input to zero for the same values.

If a new data set is collected, this could be done with artifacts in mind. For instance
could the eye movement be measured with an EOG and the electrical activity of the
heart with an ECG. This signal could then be used for artifact cancellation. While
this approach might be infeasible when implementing this technology in a hearing
aid, it could help in examining if it is possible to estimate hearing thresholds from
these impulse responses.

Another alternative, if more data is collected, is to use more EEG channels when
during the recording. This would allow for ICA to filter out artifacts due to eye-
movements or heart activity.

Future work should also look into different ways of evaluating the results from the
estimation. In this thesis the Pearson correlation coefficient between the real output
and the estimated output was used in combination with a bootstrapping method.
While the method seems to work as intended on simulated data and it is a good
check to determine if there is something, there is no guarantee that the something
that is found is of interests. This was obvious when different methods for handling
outliers were compared and there were peaks in the impulse response that presum-
ably stemmed from the outlier removal. Despite the peaks not being associated with
brain activity the bootstrapping method deemed all responses to be significant. One
can therefore not blindly trust the bootstrapping method to verify results.

Another interesting area for future work would be to look more into how the al-
gorithm performs for simulated data with a lot of noise. This could be pared with
experiments that estimate the SNR for a traditional ABR experiment. This could
give more insight into whether this method is feasible for finding ABR like impulse
responses.
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6
Conclusion

In conclusion, this thesis explored the feasibility of estimating the subcortical re-
sponse by estimating the impulse response from the audio to the EEG signal. This
was done to investigate a possible method of determining someones hearing thresh-
old that could be implemented in an adaptive hearing aid to tune its features to better
fit the user’s needs.

Some different methods of preprocessing were investigated. For one, it was deter-
mined that it is important to rectify the input signal before estimating the impulse
response. This mimics the fact that the auditory pathway reacts the same way to
positive and negative stimulus. It was also suggested that replacing EEG outliers
with zeros, as well as setting the input to zero for the same samples, results in ar-
tifacts in the estimated impulse response. A better approach is therefore to reject
signal windows that contain outliers when doing the modeling although more data
is lost this way.

While the implemented algorithm worked well on simulated data and managed to
find significant responses similar to the cortical response, no results were found
that seemed to correspond to the subcortical response. One possible reason for this
might be that a great deal of data was removed from the data set because it contained
outliers. Future research should therefore focus on finding better ways of handling
outliers.
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7
Appendix

A Cortical responses

The tables in this appendix show the results from when the bootstrapping method
was applied when estimating the cortical response. The notation r indicates that the
signal has been reversed and the bold numbers indicate that the estimation accuracy
is large enough be be deemed significant. The definition of estimation accuracy can
be found in Section 4.6.

Table 7.1 The bootstrapping test on cortical activity for subject TP01 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0192 0.0718
Stimtrack −→ FCZ2 0.0142 0.0769
Audio −→ FCZ1 0.0152 0.0797
Audio −→ FCZ2 0.0125 0.0864
Stimtrackr −→ FCZ1 0.0153 0.0102
Stimtrackr −→ FCZ2 0.0113 0.0095
Audior −→ FCZ1 0.0156 0.0080
Audior −→ FCZ2 0.0146 0.0087
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Table 7.2 The bootstrapping test on cortical activity for subject TP02 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0263 0.0133
Stimtrack −→ FCZ2 0.0239 0.0238
Audio −→ FCZ1 0.0252 0.0168
Audio −→ FCZ2 0.0258 0.0282
Stimtrackr −→ FCZ1 0.0236 0.0038
Stimtrackr −→ FCZ2 0.0232 0.0029
Audior −→ FCZ1 0.0181 0.0041
Audior −→ FCZ2 0.0249 0.0053

Table 7.3 The bootstrapping test on cortical activity for subject TP03 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0118 0.0282
Stimtrack −→ FCZ2 0.0111 0.0290
Audio −→ FCZ1 0.0126 0.0294
Audio −→ FCZ2 0.0137 0.0296
Stimtrackr −→ FCZ1 0.0121 0.0100
Stimtrackr −→ FCZ2 0.0102 0.0017
Audior −→ FCZ1 0.0113 0.0105
Audior −→ FCZ2 0.0102 0.0031

Table 7.4 The bootstrapping test on cortical activity for subject TP04 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0270 0.0441
Stimtrack −→ FCZ2 0.0317 0.0196
Audio −→ FCZ1 0.0193 0.0464
Audio −→ FCZ2 0.0194 0.0374
Stimtrackr −→ FCZ1 0.0301 0.0297
Stimtrackr −→ FCZ2 0.0289 0.0134
Audior −→ FCZ1 0.0224 -2.7712e-04
Audior −→ FCZ2 0.0203 -4.0971e-05
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Table 7.5 The bootstrapping test on cortical activity for subject TP05 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0204 0.0310
Stimtrack −→ FCZ2 0.0301 0.0311
Audio −→ FCZ1 0.0216 0.0296
Audio −→ FCZ2 0.0233 0.0311
Stimtrackr −→ FCZ1 0.0186 0.0102
Stimtrackr −→ FCZ2 0.0267 0.0187
Audior −→ FCZ1 0.0182 0.0127
Audior −→ FCZ2 0.0192 0.0181

Table 7.6 The bootstrapping test on cortical activity for subject TP06 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0299 0.0426
Stimtrack −→ FCZ2 0.0276 0.0557
Audio −→ FCZ1 0.0242 0.0413
Audio −→ FCZ2 0.0266 0.0582
Stimtrackr −→ FCZ1 0.0340 0.0027
Stimtrackr −→ FCZ2 0.0288 0.0016
Audior −→ FCZ1 0.0221 -0.0026
Audior −→ FCZ2 0.0183 0.0037

Table 7.7 The bootstrapping test on cortical activity for subject TP07 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0468 -8.1977e-04
Stimtrack −→ FCZ2 0.0354 -0.0149
Audio −→ FCZ1 0.0389 0.0056
Audio −→ FCZ2 0.0363 -0.0043
Stimtrackr −→ FCZ1 0.0321 0.0028
Stimtrackr −→ FCZ2 0.0278 0.0110
Audior −→ FCZ1 0.0346 0.0067
Audior −→ FCZ2 0.0418 0.0100
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Table 7.8 The bootstrapping test on cortical activity for subject TP08 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0263 0.0383
Stimtrack −→ FCZ2 0.0260 0.0048
Audio −→ FCZ1 0.0218 0.0433
Audio −→ FCZ2 0.0259 0.0141
Stimtrackr −→ FCZ1 0.0206 -0.0081
Stimtrackr −→ FCZ2 0.0240 6.2468e-05
Audior −→ FCZ1 0.0190 -0.0089
Audior −→ FCZ2 0.0210 -0.0028

Table 7.9 The bootstrapping test on cortical activity for subject TP09 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0307 -0.0297
Stimtrack −→ FCZ2 0.0369 -0.0343
Audio −→ FCZ1 0.0400 -0.0325
Audio −→ FCZ2 0.0393 -0.0422
Stimtrackr −→ FCZ1 0.0359 -0.0030
Stimtrackr −→ FCZ2 0.0340 0.0021
Audior −→ FCZ1 0.0283 -0.0072
Audior −→ FCZ2 0.0247 -0.0017

Table 7.10 The bootstrapping test on cortical activity for subject TP10 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0151 0.0211
Stimtrack −→ FCZ2 0.0221 0.0215
Audio −→ FCZ1 0.0114 0.0199
Audio −→ FCZ2 0.0158 0.0214
Stimtrackr −→ FCZ1 0.0199 0.0060
Stimtrackr −→ FCZ2 0.0175 0.0078
Audior −→ FCZ1 0.0130 0.0045
Audior −→ FCZ2 0.0215 -0.0049
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Table 7.11 The bootstrapping test on cortical activity for subject TP11 when the outliers
have been ignored and the input signals were rectified.

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0164 0.0299
Stimtrack −→ FCZ2 0.0158 0.0243
Audio −→ FCZ1 0.0163 0.0263
Audio −→ FCZ2 0.0173 0.0294
Stimtrackr −→ FCZ1 0.0152 0.0050
Stimtrackr −→ FCZ2 0.0175 2.8603e-04
Audior −→ FCZ1 0.0175 0.0065
Audior −→ FCZ2 0.0163 -0.0055

Table 7.12 The bootstrapping test on subcortical activity for subject TP01 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0090 0.0234
Stimtrack −→ FCZ2 0.0062 0.0336
Audio −→ FCZ1 0.0082 0.0344
Audio −→ FCZ2 0.0068 0.0338
Stimtrackr −→ FCZ1 0.0080 -0.0061
Stimtrackr −→ FCZ2 0.0065 -0.0037
Audior −→ FCZ1 0.0103 -0.0048
Audior −→ FCZ2 0.0083 0.0048

Table 7.13 The bootstrapping test on subcortical activity for subject TP02 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0114 -0.0094
Stimtrack −→ FCZ2 0.0119 -0.0219
Audio −→ FCZ1 0.0085 -0.0097
Audio −→ FCZ2 0.0085 -0.0261
Stimtrackr −→ FCZ1 0.0115 -0.0026
Stimtrackr −→ FCZ2 0.0090 -0.0025
Audior −→ FCZ1 0.0113 -0.0032
Audior −→ FCZ2 0.0126 -0.0028
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Table 7.14 The bootstrapping test on subcortical activity for subject TP03 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0054 0.0041
Stimtrack −→ FCZ2 0.0058 0.0051
Audio −→ FCZ1 0.0057 -0.0018
Audio −→ FCZ2 0.0065 -3.9607e-4
Stimtrackr −→ FCZ1 0.0055 -0.0073
Stimtrackr −→ FCZ2 0.0070 -0.0018
Audior −→ FCZ1 0.0067 -0.0074
Audior −→ FCZ2 0.0062 -0.0036

Table 7.15 The bootstrapping test on subcortical activity for subject TP04 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0192 -0.0143
Stimtrack −→ FCZ2 0.0146 9.6005e-04
Audio −→ FCZ1 0.0116 -0.0117
Audio −→ FCZ2 0.0117 4.0212e-04
Stimtrackr −→ FCZ1 0.0133 0.0050
Stimtrackr −→ FCZ2 0.0146 0.0065
Audior −→ FCZ1 0.0122 0.0021
Audior −→ FCZ2 0.0102 -0.0051

Table 7.16 The bootstrapping test on subcortical activity for subject TP05 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0107 -0.0103
Stimtrack −→ FCZ2 0.0160 -0.0103
Audio −→ FCZ1 0.0123 0.0063
Audio −→ FCZ2 0.0128 -0.0067
Stimtrackr −→ FCZ1 0.0123 -0.0156
Stimtrackr −→ FCZ2 0.0166 -0.0146
Audior −→ FCZ1 0.0110 0.0064
Audior −→ FCZ2 0.0125 -0.0122
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Table 7.17 The bootstrapping test on subcortical activity for subject TP06 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0128 -0.0030
Stimtrack −→ FCZ2 0.0114 -0.0101
Audio −→ FCZ1 0.0106 -0.0011
Audio −→ FCZ2 0.0123 -0.0096
Stimtrackr −→ FCZ1 0.0096 -0.0041
Stimtrackr −→ FCZ2 0.0083 -0.0055
Audior −→ FCZ1 0.0102 6.2404e-04
Audior −→ FCZ2 0.0077 -0.0085

Table 7.18 The bootstrapping test on subcortical activity for subject TP07 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0168 -0.0216
Stimtrack −→ FCZ2 0.0162 -0.0124
Audio −→ FCZ1 0.0165 -0.0347
Audio −→ FCZ2 0.0149 -0.0217
Stimtrackr −→ FCZ1 0.0143 -0.0055
Stimtrackr −→ FCZ2 0.0174 -0.0130
Audior −→ FCZ1 0.0168 -0.0160
Audior −→ FCZ2 0.0164 -0.0132

Table 7.19 The bootstrapping test on subcortical activity for subject TP08 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0075 -0.0078
Stimtrack −→ FCZ2 0.0089 -0.0142
Audio −→ FCZ1 0.0076 0.0101
Audio −→ FCZ2 0.0096 0.0096
Stimtrackr −→ FCZ1 0.0057 0.0019
Stimtrackr −→ FCZ2 0.0093 0.0023
Audior −→ FCZ1 0.0068 0.0029
Audior −→ FCZ2 0.0089 8.9895e-5
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Table 7.20 The bootstrapping test on subcortical activity for subject TP09 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0260 -0.0068
Stimtrack −→ FCZ2 0.0180 -8.5768e-4
Audio −→ FCZ1 0.0211 -0.0070
Audio −→ FCZ2 0.0224 -0.0021
Stimtrackr −→ FCZ1 0.0309 -5.7596e-4
Stimtrackr −→ FCZ2 0.0234 0.0015
Audior −→ FCZ1 0.0181 -2.4524e-4
Audior −→ FCZ2 0.0284 0.0062

Table 7.21 The bootstrapping test on subcortical activity for subject TP10 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0072 -0.0144
Stimtrack −→ FCZ2 0.0094 0.0202
Audio −→ FCZ1 0.0070 -0.0165
Audio −→ FCZ2 0.0098 -0.0235
Stimtrackr −→ FCZ1 0.0074 -5.4464e-04
Stimtrackr −→ FCZ2 0.0101 -0.0056
Audior −→ FCZ1 0.0073 -0.0014
Audior −→ FCZ2 0.0082 -0.0032

Table 7.22 The bootstrapping test on subcortical activity for subject TP11 when the outliers
have been ignored

System Threshold estimation accuracy
Stimtrack −→ FCZ1 0.0092 0.0023
Stimtrack −→ FCZ2 0.0091 0.0019
Audio −→ FCZ1 0.0093 -1.8101e-4
Audio −→ FCZ2 0.0124 0.0041
Stimtrackr −→ FCZ1 0.0087 -0.0057
Stimtrackr −→ FCZ2 0.0104 -0.0035
Audior −→ FCZ1 0.0081 -0.0053
Audior −→ FCZ2 0.0095 0.0032
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