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Abstract

Separating valuable minerals from waste rock is an important step in the production
of metals. This is for copper ore done through a process called flotation. A flotation
series consists of tank cells in series where the minerals are collected in a froth on
top of the cells. The level control of the flotation cells is important in order to be able
to collect the froth. The first four flotation cells and the buffer tank before the se-
ries is the process considered in this thesis. This process is found in the concentrator
connected to Boliden’s copper mine Aitik located near Gällivare in the north of Swe-
den. A simulation model of the process was developed using both physical modeling
and experimental data from the real process. When the simulation model of the pro-
cess had been developed, different control structures were tested and evaluated. The
control structures that were tested were coupled PI-controllers, an LQ-controller,
an MPC-controller and a state feedback controller where the state feedback was
determined using reinforcement learning. The reference-tracking properties of the
different controllers were similar while a bigger difference could be seen when it
came to disturbance rejection. The PI-controllers gave a stable performance but
their disturbance rejection was not as good as for the other controllers. One advan-
tage with the PI-structure is its simplicity. Unlike the LQ- and the MPC-controllers,
it does not need a model of the process to control it. The MPC-controller outper-
formed the other controllers when it came to disturbance rejection, but it was a bit
more sensitive to model errors than the LQ-controller which also performed well.
The reinforcement-learning-based controller did not give a better performance than
the LQ-controller and it had issues with robustness in the tuning process, making it
less reliable than the other controllers. The tuning process for it also required ex-
periments that are unreasonable to perform on the real process. There is potential
in reinforcement learning approaches to deal with drifting operating conditions but
this particular approach was not successful. Overall, the results indicate that model-
based controllers have good potential to perform better than the PI-structure that
controls the real plant today.
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1
Introduction

This thesis has been conducted at the mining company Boliden. When metals are
produced, separating the valuable minerals from the rest of the ore is a very impor-
tant process step. When copper ore is considered this can be done with a process
called flotation. The flotation process consists of tank cells in series that are filled
with a slurry of milled ore and water. The purpose of the process is to collect the
minerals in a froth on top of the slurry, this froth is then collected and further pro-
cessed. For this process to work properly and give good recovery of the minerals,
the level control is important. The aim of the thesis is to study how different con-
trol strategies perform when it comes to level control of the flotation process and if
there is potential for improvement compared to the control structure that controls
the plant today. Apart from classical PI-controllers, model-based controllers such
as LQ and MPC will be explored as well as a state feedback controller that uses
reinforcement learning to determine the state feedback.

In the modeling section, a simulation model that describes the pulp levels in
the process is developed. This is done through physical modeling combined with
parameter estimations based on step response experiments performed on the plant.
The tuning-chapter explores the tuning of the different controllers. The result sec-
tion evaluates the different controllers performance when it comes to disturbance
rejection and reference tracking. Real process data is used to design the tests. A
feed-forward extension of the existing control structure that includes a measurable
disturbance is also evaluated as well as robustness towards model errors for the
model based controllers.
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2
Background

Boliden was founded in 1925 when gold was first found at the location that would
become the town Boliden. The company has since grown and today Boliden has
mines in Sweden, Finland and Ireland and the main products are zinc, copper, lead,
nickel, gold and silver. One of the Swedish mines is the open-pit copper mine in
Aitik, located just south of Gällivare in the north of Sweden. The mine has been ac-
tive since 1965 and it is Sweden’s largest open-pit copper mine. Apart from copper
the mine also contains gold and silver [Bolidens Historia n.d.].

The process of producing metals can be divided into three main areas: mining,
concentrating and smelting. The ore is first mined in the mine and then transported
to the concentrator where the first step in extracting the valuable minerals is per-
formed. What takes place in the concentrator can also be divided into three main
steps: milling, flotation and dewatering. The final product from the concentrator is
a concentrate with a higher percentage of minerals than the ore that entered it. This
concentrate is transported to a smelter where the mineral concentrate is refined into
pure metals [Stenlund, 2002].

The flotation process takes place in the concentrator. It makes use of the differ-
ences in surface properties of minerals and rock to separate the two. A flotation cell
is a big tank filled with a mixture of milled ore and water. This mix is referred to
as slurry or pulp. A chemical reagent is mixed with the pulp to make the minerals
water repellent and air bubbles are generated at the bottom of the tank. As these
bubbles rise to the top of the tank, the minerals attach to them. This results in that a
mineral froth is formed on top of the pulp. The froth is collected by letting it flow
over the edge of the tank. This requires good control of the pulp level in the cells.
The level is to be kept high enough for the froth to escape the cell, while the pulp
itself should remain in the tank. There are a number of factors that affect the pulp
level in the cell: the inflow of pulp, the addition of reagents, the generation of bub-
bles, the outflow of pulp and the froth leaving the cell. For the cell, the addition of
reagents, the amount of bubbles produced and the outflow of pulp can be controlled.
How much froth that escapes the cell is a result of how much bubbles there are and
how the total pulp volume in the cell changes [Kawatra, 2011] [Paulina Quintanilla,
2021]. In Figure 2.1 a schematic picture of a flotation cell is shown.
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Chapter 2. Background

Figure 2.1 The main principles of flotation are shown in the figure. The minerals
are separated and concentrated in the froth.

The flotation cells are connected in series to form the flotation process. They
are connected in such a way that the outflow of pulp from the first cell becomes
the inflow to the second cell, the outflow from the second cell is the inflow to the
third and so on. Between the cells there is a valve that can be controlled. The cells
are mounted in such a way that there is a physical height difference between two
successive cells. This difference in height, together with the level difference of pulp
in the cells, is what drives the flow of pulp from the first to the second cell. How
many cells the series consists of depends on which minerals are to be extracted
[Kawatra, 2011].

Historically, the majority of the flotation plants have been controlled by PI-
controllers. However, since there are a lot of cross-couplings within the process
that the single-input-singe-output (SISO) control loops do not explicitly account
for there may be better options. Therefore, the focus of research within the field
has for quite some time been on multi-variable controllers. In [Stenlund, 2002] and
[P. Kämpjärvi, 2003] decoupling strategies for the SISO loops are considered, as
well as feed-forward and LQ-control. These papers test the different strategies in
simulation and show that the performance of the level control can be improved with
more advanced control structures. [Paulina Quintanilla, 2021] states that MPC is
widely accepted to be able to deal with complex processes such as the flotation
process. [Hodouin, 2011] explores MPC as a control structure for both the flotation
and the milling process and [Kevin Brooks and Bauer, 2019] studies if improvement
can be found by combining the MPC controller for the milling line with the flotation
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Chapter 2. Background

controller. Both these papers are based on simulation studies.
In order to perform simulation studies, a model of the process is needed. There

are two main approaches to developing such a simulation model. [Stenlund, 2002]
and [P. Kämpjärvi, 2003] take a starting point in mass balance and make use of
Torricelli’s law to model the dynamics of the pulp level in the cells while the models
in [Kevin Brooks and Bauer, 2019] are developed through system identification
from step response experiments.
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3
Modeling

The part of the flotation process that is to be considered in this project is called the
raw series and in the Aitik concentrator it consists of a blending tank and four flota-
tion cells. A pump pumps the pulp from the blending tank to the first flotation cell.
Between the flotation cells there are valves that control the flow from the previous
tank to the successive one. A schematic overview of the process is seen in Figure
3.1.

Figure 3.1 A schematic overview of the process. A pump is connecting the blend-
ing tank to the left to the first flotation cell. Between the flotation cells there are
valves that control the flow of pulp from the previous cell to the successive one.
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Chapter 3. Modeling

3.1 Blending Tank

When the pulp enters the flotation process it first enters the blending tank. This tank
does not add any air or reagents to the pulp and it functions purely as a buffer tank to
make the inflow to the flotation cells more stable. Pulp is pumped from the blending
tank to the first flotation cell. The relation between the outflow of pulp qoutb [m3/s]
and the control signal to the pump ub [%] is approximated from real process data to
be

qoutb = K f lowbub, (3.1)

where K f lowb = 1.11 [m3/s]. The level hb [%] of the blending tank is modeled as a
simple integrator,

dhb

dt
= Kblender(qin −qoutb) (3.2)

where Kblender = 0.003 [m−3] is a constant tuning parameter adjusted such that the
dynamics of the model matches the real dynamics of the blending tank. In Figure
3.2 the dynamic behavior of the fitted model is compared to the real dynamics.
The step responses are detrended, meaning that the mean value and trends in the
data are removed. This makes it easier to observe the dynamic behavior. During the
experiment the inflow of pulp to the blender, qin, is assumed to be constant.

3.2 Physical Modeling of Flotation Cells

The outflow from each flotation cell is positioned at the bottom of the tank. The
next tank cell is mounted hdi f f = 1 meter lower compared to the previous one. This
height difference, together with differences in total pulp level in the cells, generate
a hydrostatic pressure over the valve that causes pulp to flow through it. The change
of pulp level in a tank can be described as

dh
dt

=
1
A
(qin −qout), (3.3)

where A [m2] is the cross section area of the tank, qin [m3/s] is the inflow of pulp
to the tank and qout [m3/s] is the outflow. For the flotation cells, h is measured in
meters. Since the valve opening is small in relation to the cross section area of the
cell, the speed of the outflow can be approximated using Torricelli’s law. This means
that it is proportional to the square root of the height difference of pulp between the
tanks connected through the valve. However, since the valves are rarely fully open,
the relation between the valves’ control signal and the flow through it must also be
considered to fully be able to describe the outflow.

The relation between the control signal, u [%], and the outflow is tabulated from
the manufacturer for a typical flotation slurry with a 1 meter hydraulic head and it
typically has a quadratic relation. Therefore, the outflow is modeled as
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3.2 Physical Modeling of Flotation Cells
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Figure 3.2 The response of the level hb for the real blending tank compared to the
response of the model when the control signal ub is changed.

qouti(u) = (k2u2 + k1u+ k0)
√

2g(hi −hi+1 +hdi f f ) (3.4)

where g = 9.8 [m/s2] and k2 [m2], k1 [m2] and k0 [m2] are constants that are to
be determined, hi [m] is the level in the flotation cell and hi+1 is the level in the
successive cell.

To be able to adjust the coefficients so that the model agrees with the real pro-
cess, step response experiments performed on the real process were used. The model
coefficients described above were adjusted so that the model’s dynamic behavior
agreed with the dynamic behaviour of the real process. This was done by perform-
ing a parametric sweep for −0.023 ≤ k2 ≤ −0.20 and 0.11 ≤ k1 ≤ 0.56. To sat-
isfy the steady state condition of the process before the step response experiment
was started, k0 was adjusted. The physical interpretation of allowing k0 ̸= 0 is that
qout = 0 will not necessary coincide with u = 0. This is not physically reasonable
but it was a trade-off made to be able to more accurately model the dynamic be-
havior at normal operating conditions. The different parameter sets were evaluated
by comparing the root-mean-square of the difference between the simulated step
responses and the real response.
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Chapter 3. Modeling

Tank k2 [m2] k1 [m2] k0 [m2]
1 -0.16 0.47 -0.10
2 -0.045 0.23 0
3 -0.079 0.34 -0.045
4 -0.17 0.45 -0.11

Table 3.1 Values of constants in equation (3.4) adjusted at medium and high pro-
duction rate.

In the experiments the control signal was shifted according to square waves and
the resulting changes in level were recorded. There were two or three step responses
available for each of the considered tanks, the difference between the responses
were the production rate. The production rate is related to the inflow of pulp to the
system. A high production rate corresponds to a higher inflow of pulp to the series.
By inspecting each response separately it became clear that the optimal parameter
set for medium and high production rates are quite similar, while the parameter
set for low production rates differs more from the other two. A normal production
rate can from data be seen to be in the range between medium and high production
rates. Therefore, for the tanks with 3 responses available the parameters chosen
were a combination between the medium and high parameter sets. For the tanks
with only two steps available, one for high production and one for low, only the
response for high production was used to determine the model since it will be more
representative of normal operating conditions. The resulting tuned parameters for
each individual cell can be seen in Table 3.1 and the models output along with the
real step response for medium production in the first cell is seen in Figure 3.3.

3.3 System Identification

An alternative approach to the physical modeling is to use system identification
to identify the dynamic properties of the process. This can be done by fitting a
transfer function model to the available step response experiments. This approach
also confirms that the operating conditions for high and medium production rates are
much more similar than for the low production rate. In Figure 3.4 the step response
for medium production on the first cell is seen for the model determined by system
identification where the system was modeled as a simple integrating process,

H(s) =
−0.036

s
U(s). (3.5)

Reflecting on the shape of the step responses in Figure 3.3 and Figure 3.4, it is clear
that the more complex physical model reflects the dynamic behavior of the process
better than the more simple model determined from system identification. It follows
the shape of the step responses more smoothly and also reflect the shape of the step
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3.4 Validation of Physical Model
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Figure 3.3 Detrended step responses for the real process compared to the simulated
model. The responses are from the first cell and the model is obtained from physical
modeling.

responses more accurately. Therefore, the model developed in Section 3.2 will be
the model used in this project.

3.4 Validation of Physical Model

To validate the model of the flotation cell developed in Section 3.2, the model’s
response to a reference change in pulp level is considered. The reference change
is considered since when the reference is changed the control signal must react to
make the pulp level follow the reference. This reaction is what was needed in the
real process to adjust the pulp level and the same control signal can be applied to the
model to see how the simulated level reacts to the same control signal. This makes
the reference change suitable to validate the model. The inflow to the cell, and the
corresponding control signal to the valve, are fed to the model and its response is
compared to the real process’ response. The resulting behavior is shown in Figure
3.5. The model manages to reflect the dynamic behavior of the real process in a
satisfying way and the offset before removing the mean from the data is small.
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Figure 3.4 Detrended step responses for the real process compared to the simulated
model. The responses are from the first cell and the model is obtained from system
identification.

3.5 Process Model of the Raw Series

When the model for each individual cell is decided it is time to put the cells together.
They are connected as visualized in Figure 3.1 where the outflow of the first cell is
the inflow to the second and so on. The complete model is described by equation
(3.6) where qoutb is described by equation (3.1) and qouti is described by equation
(3.4).
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Figure 3.5 The model response and the real process response to a reference
change. The model is fed with the control signal and inflow from process data.

dhb

dt
= Kblender(qin −qoutb)

dh1

dt
=

1
A1

(qoutb −qout1)

dh2

dt
=

1
A2

(qout1 −qout2)

dh3

dt
=

1
A3

(qout2 −qout3)

dh4

dt
=

1
A4

(qout3 −qout4)

(3.6)

The LQ- and the MPC-controllers described in Chapter 4 need a linear pro-
cess model to determine the control gain. This model is obtained by linearizing
the model for the complete system around a linearization point that represents
normal operating conditions. For this process the linearization point is given by
h0 = [0.65 4.63 4.62 4.65 4.6] and u0 = [0.54 0.62 0.63 0.61 0.61]. Since the con-
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Chapter 3. Modeling

troller operates in discrete time the process model is discretized and the state space
representation takes the form shown in equation (3.7).

∆h(t +1) = Φ∆h(t)+Γ∆u(t)

∆y(t) = I∆h(t)
(3.7)

Here ∆h and ∆u represent deviations from the linearization point and the discrete
time linearized dynamics are described by Φ and Γ given below.

Φ =


1 0 0 0 0
0 0.952 0.04707 0.0008829 1.494 ·10−5

0 0.04707 0.9174 0.03461 0.0008838
0 0.0008829 0.03461 0.9174 0.04711
0 1.494 ·10−5 0.0008838 0.04711 0.952



Γ =


−0.01666 0 0 0 0

0.1916 −0.2083 −0.003098 −5.757 ·10−5 −7.446 ·10−7

0.004728 0.2044 −0.1225 −0.003406 −5.902 ·10−5

5.889 ·10−5 0.003835 0.1225 −0.1815 −0.004739
7.437 ·10−7 6.49 ·10−5 0.003101 0.185 −0.1918



3.6 Airflow as a Measurable Disturbance

Each cell in the flotation series has an inflow of air at the bottom of the cell. If the
amount of air injected is changed this also affects the level in the cell since the gas
holdup in the pulp changes. To gain a better understanding of the effect the air has
on the level, experiments were performed on the process. The resulting detrended
step responses are shown in Figure 3.6 along with the fitted first order process model
given by the transfer function

Hair(s) =
1.2873

1+26.66s
Qair(s), (3.8)

where Hair represents the additional level due to the airflow Qair. Since the exper-
iments were only performed on one cell, the other cells are assumed to have the
same dynamic response to changes in the airflow.
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Figure 3.6 The dynamic response for the pulp level when the airflow into the cell
is changed.

The effects of the airflow can be included in the simulation model to make it
more representative of the real process. But including it is not straightforward and
has to be given some extra thought. The level changes caused by the air will not
affect the flow rate out of the cell even though equation (3.4) suggests so. The levels
associated with this equation assumes the same density in both cells. The changed
airflow changes the density in the cell slightly, but this change is minor and as-
sumed to be negligible. To separate the level changes due to the airflow and the
level changes due to a changed pulp volume in the cell, the model developed keeps
track of two separate levels. The first one is the measured and actual level of pulp
in the cell and the second one is a virtual level that subtracts the influence of the air
such that equation (3.4) holds.

3.7 Other Disturbances

There are of course more disturbances to the process than the airflow, this is easy
to observe when looking at Figure 3.5 where a lot of noise is present. There are a
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Figure 3.7 The model output and process output used to model the disturbance.

lot of potential causes for noise in the process, some are measurement related and
some may arise from phenomenon that the model does not account for.

To get a more representative model of these disturbances, a noise model was
developed to catch the over all characteristics of the noise. Starting from a model
on the form

y(t) = G(q)u(t)+H(q)e(t), (3.9)

one can rearrange and find that

w(t) = H(q)e(t) = y(t)−G(q)u(t). (3.10)

Here the noise component w(t) can be seen as filtered white Gaussian noise, y(t)
is the process output, u(t) the process input and G(s) represents the process model
developed in previous sections [Ljung and Glad, 2016]. In Figure 3.7 the process
output and the model output is shown along with the control signal and the inflow
of pulp.

The noise is to be modeled with an autoregressive model (AR-model) which
means that the process can be described as

A(q)w(t) = w(t)+a1w(t −1)+ ...+anw(t −n) = e(t), (3.11)

22



3.7 Other Disturbances

0 20 40 60 80 100

Time [min]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

w
(t

) 
[m

]

Figure 3.8 The noise component w(t).

where n represents the order of the model. This can equivalently be expressed as

w(t) = H(q)e(t) =
1

A(q)
e(t). (3.12)

To fit the model, w(t) is calculated according to equation (3.10), the resulting noise
component can be seen in Figure 3.8. The prediction error ε for the model is given
by

ε(t) = y(t)− ŷ(t|θ̂) (3.13)

where θ̂ represents the estimations of ai in equation (3.11). Comparing the mean
square of ε for different model orders is a measure that indicates which model order
to choose to describe the system. This is shown for ten different model orders in
Figure 3.9.

The figure implies that a model order of at least two should be chosen, but a
significantly higher one does not seem to be necessary.

The next step is to ensure that the prediction errors are free of additional struc-
ture, which means that the model captures the dynamics in a good way. One way
of validating this is to check if the residuals are mutually independent. This can be
checked by forming the estimate

R̂ε(τ) =
1
N

N

∑
t=1

ε(t + τ)ε(t) (3.14)
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Figure 3.9 Mean square error of fit for different model orders.

and checking if the values are close enough to zero. This is often referred to as
residual auto-correlations and for the AR-model of order two this is shown in Figure
3.10.

The residuals for the second order model are correlated and hence it is prefer-
able to choose a model of higher order. A model of order three is evaluated next
and its residual correlations are shown in Figure 3.11. For this model the residual
correlation is not significant.

To further validate the noise model a spectral analysis was performed on the
noise component w as well as on data generated from the model when it was fed with
Gaussian white noise. The periodogram Φω(ω) and the spectral estimate Φ̂N(ω) of
the signals are shown in Figure 3.12 and they are very similar.

The resulting model is an AR-model of order three and the modeled noise com-
ponent ŵ is described as

ŵ(t) =
1

1−2.275q−1 +1.752q−2 −0.473q−3 e(t). (3.15)
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3.7 Other Disturbances

Figure 3.10 Residual correlations for AR-model of order 2.

Figure 3.11 Residual correlations for AR-model of order 3.
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Figure 3.12 Periodogram and spectral estimate for the noise signal, w(t), and the
model of the noise, ŵ(t) fed with Gaussian white noise.
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4
Control Theory

There are different control strategies that can be used to control a process. The
theory of the strategies that are to be considered in this project are summarized in
this chapter.

4.1 PI- control

A proportional-integral controller, referred to as a PI-controller, is a controller that
makes use of the difference between the reference r and the measurement y to de-
termine the control signal. The difference between the reference an the actual value
is the control error e = r− y. The control signal u of the PI-controller is calculated
as

u = K(e+
1
Ti

∫
e dt), (4.1)

where K is the gain and Ti is called the integral time (not to be confused with the
time over which e is integrated). These two parameters are the two parameters to be
tuned in the controller. Since the controller bases its control action on the error, an
error must occur before the controller can change the control signal to compensate
for it. If the disturbance that causes the control error can be measured, feed forward
can be used to compensate for the otherwise resulting error before it occurs.

In Figure 4.1 a control structure of a controller including feed forward is seen.
The additional part of the control signal that enters the process, u f f , is defined by
a gain K f f times the disturbance v. This allows the controller to start compensating
for the disturbance as soon as it appears, instead of waiting for it to cause an error
before correcting it.

Some practical adjustments can be made to the PI-controller to avoid fast
changes in the control signal due to changes in the reference value. One such ad-
justment is to place a weight on the reference value in the proportional part of the
controller such that the control signal is calculated as

u = K(β r− y+
1
Ti

∫
e dt), (4.2)
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Chapter 4. Control Theory

Figure 4.1 A control loop with feed forward.

were 0 ≤ β ≤ 1. If the reference changes as a step, the initial change of the control
signal will become smaller if β is smaller than 1. This setup also reduces the over-
shoot when a reference change is made. Choosing β ̸= 1 only affects the behavior
of the controller when it comes to reference changes, the behavior for disturbance
rejection is unchanged [Hägglund, 2019].

4.2 LQ-control

LQ stands for linear quadratic. This type of controller makes use of a linear process
model, xk+1 = Φxk +Γuk, to minimize the value of the quadratic cost function

J =
∞

∑
k=0

xT
k Q1xk +2xT

k Q12uk +uT
k Q2uk. (4.3)

Here xk are the states of the model at time step k and Q1, Q12 and Q2 are weight
matrices which are chosen when designing the controller. The relative sizes of the
elements in the weight matrices affect the resulting control law that is derived by
solving the algebraic Riccati equation

S = Φ
T SΦ+Q1 − (ΦT SΓ+Q12)(Γ

T SΓ+Q2)
−1(ΦT SΓ+Q12)

T . (4.4)

When the solution S to the Ricatti equation is found, the optimal feedback gain can
be determined according to

K = (ΓT SΓ+Q2)
−1(ΦT SΓ+Q12)

T . (4.5)

The feedback gain will be static and can be solved for offline. The resulting control
law becomes

uk =−Kxk. (4.6)
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4.3 MPC-control

This control law is optimal if the model of the process matches the real process per-
fectly and if there are no disturbances to the process, this however is rarely the case.
A way to compensate for differences between the model and the real process is to
include the integral of the control error of the states as additional states in the model.
This expansion of the model also allows the controller to follow references that are
different from the linearization point [Murray, n.d.]. In this project the controller
will include integral states of the tracking error to make reference tracking possible.
The controller assumes that all states are measurable. If this is not the case or if the
measurements are noisy, a state estimator (e.g. a Kalman filter) can be combined
with the controller to fulfill this requirement.

4.3 MPC-control

The MPC-controller is closely related to the LQ-controller, but there are a couple of
differences. While the LQ-controller has a static feedback gain that can be solved
offline, the gain of the MPC-controller will change in every time step and it must be
computed online while controlling the plant. The MPC-controller solves

min
u0,...,uN

J =
N

∑
k=0

xT
k Q1xk +2xT

k Q12uk +uT
k Q2uk

Subject to xk+1 = Φxk +Γuk

(4.7)

over a finite prediction horizon of N time steps [Glad and Ljung, 2003]. This results
in a sequence of control signals u1, ...,uN . Only the first control signal in the series,
u1, is used and it is applied to the system until the next sample. At the next sampling
instance, the optimization problem is solved again with the updated states and the
first control signal in the next solution is applied during this time step. In this opti-
mization problem, other constraints such as limitations for states or rates of change
for the manipulated variables (u) can be imposed. This way, some physical limita-
tions of the process can be taken into account in the solution to the problem, as long
as there is a feasible solution under these constraints. Similar to the LQ-controller,
integral states of the control errors can be introduced to deal with stationary errors
and reference tracking.

4.4 Reinforcement Learning for LQ-control

The model is significant for the performance of the model-based controllers, but it
can be hard to find a representative model or the operating conditions in the real
process can drift far from the conditions under which the model was developed.
Based on these observations, it would be desirable if a controller could be developed
without a model while still using the successful state feedback approach of the LQ-
controller. Using reinforcement learning in the controller may be a way of achieving
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Chapter 4. Control Theory

this. Reinforcement learning can be used to update control laws and in this context
it is well described by [F. L. Lewis, 2012]: "In this scheme, reinforcement learning
is a means of learning optimal behaviors by observing the real-time responses from
the environment to nonoptimal control policies."

For now, this will be limited to linear state feedback. In short the strategy is to
gather information of how one linear state feedback controls the system and from
that information determine a new improved state feedback. Recall the cost function
from equation (4.3),

J =
∞

∑
i=0

xT
i Q1xi +2xT

i Q12ui +uT
i Q2ui, (4.8)

and assume that Q12 = 0. Introduce J = Q(xi,ui) as the target function. At time i it
can be expanded as [Enqvist, 2020]

Q(xi,ui) = (xT
i Q1xi +uT

i Q2ui)+
∞

∑
k=i+1

xT
k Q1xk +uT

k Q2uk =

(xT
i Q1xi +uT

i Q2ui)+Q(xi+1,ui+1).

(4.9)

Since state feedback is used, ui can be expressed as ui =−Kxi. Combining this with
equation (4.9) we get

Q(xi,ui) = xT
i Q1xi +uT

i Q2ui +Q(xi+1,−Kxi+1) (4.10)

In the case when Φ and Γ are known along with the solution to the algebraic Riccati
equation S, Q can be expressed as

Q(xi,ui) =

(
xi
ui

)T (
ΦT SΦ+Q1 ΦT SΓ

ΓT SΦ ΓT SΓ+Q2

)(
xi
ui

)
. (4.11)

Q is minimized by the control law in equation (4.6) with K derived by equation
(4.5). When there is no available model of the system, Q can still be expressed
similar to equation (4.11) as

Q(xi,ui) =

(
xi
ui

)T (Sxx Sxu
Sux Suu

)(
xi
ui

)
. (4.12)

The symmetry properties of the matrices in equations (4.11) and (4.12) are the same,
that is Sxx and Suu are symmetrical and ST

xu = Sux. Minimizing equation (4.12) with
respect to u is in the same way as for equation (4.11) done by the control law in
equation (4.6), with K derived by

K = S−1
uu Sux. (4.13)
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4.4 Reinforcement Learning for LQ-control

What now remains to conclude is how to gain information of Sxx, Sxu and Suu. Re-
arranging (4.10) to

Q(xi,ui)−Q(xi+1,−Kxi+1) = (xT
i Q1xi +uT

i Q2ui) (4.14)

leaves a right hand side where all the parameters are known and a left hand side that
are linearly dependent on the parameters in Sxx, Sxu and Suu. With this observation
Q can be written as

Q(x,u) = ϕ(x,u)T
θ , (4.15)

where θ contains the parameters of Sxx, Sxu and Suu and ϕ(x,u) contain the corre-
sponding quadratic combination of the elements of x and u. With Q expressed as in
equation (4.15), equation (4.14) can be rewritten as

(ϕ(xi,ui)−ϕ(xi+1,−Kxi+1))
T

θ = (xT
i Q1xi +uT

i Q2ui). (4.16)

In this equation, the only unknowns remaining are the θ parameters. But since there
are always more θ parameters than one, (even a system with one state and one
control signal will have three parameters in its θ vector) a single equation is not
enough to estimate them all. However, equation (4.15) can be calculated again for
the next time step, and the next after that and so on, until there are enough equations
to estimate all the unknown θ parameters.

Let Ψ represent the matrix where each row is the left hand side of equation
(4.16) except θ and let Y be the vector where each row contains the corresponding
right hand side of (4.16). This gives

Ψθ = Y (4.17)

and using least squares the estimate θ̂ can be found according to

θ̂ = (ΨT
Ψ)−1

Ψ
TY. (4.18)

When the new parameter estimate is found the control law can be updated according
to equation (4.13).
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5
Tuning of Controllers

The control structures can be tuned in different ways. Therefore, it is interesting to
compare different tunings of the same control strategy.

5.1 PI-tunings

In the PI-case, one of the tunings is the one that is run in the plant today. This tuning
is presented in Table 5.1. The blending thank also has an alarm-triggered addition
that adds 10% control signal when the blender level exceeds 95% and it subtracts
5% of the control signal when the level goes below 40%.

An alternative tuning was also developed where the controllers were adjusted
to be about two times more aggressive while keeping the same damping as before.
This resulted in the parameters summarized in Table 5.2. Neither the parameters for
the blending tank nor the feed forward factors were changed and they are therefore
left out of the table. A rate limiter was also implemented in the controllers. It makes
sure that the rate of change of the control signal cannot exceed ±1%/s. This allows
for the controller to be more aggressive without violating the limitation in how fast
the control signal can be changed. The limitation is approximated from the available
open loop step response experiments used to model the process in Chapter 3. From
those experiments, the rate of change during the steps can be observed.

Tank K Ti [s] K f f
blender -0.651 1203 *

1 -1.183 87 0.8
2 -1.279 85 0.8
3 -1.236 83 0.8
4 -0.990 81 0.8

Table 5.1 Controller parameters for the PI-structure that operates in the plant today.
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5.2 LQ-tunings

Tank K Ti [s]
1 -2.1 74
2 -3.4 73
3 -2.4 74
4 -2.3 71

Table 5.2 A more aggressive setting for the controller parameters for the PI-
structure than the one that operates in the plant today.

A comparison between the two tunings can be seen in Figure 5.1 where the
reference for the second tank is changed. The effects this has on the other flotation
cells are also shown. The level adjusted a bit faster for the more aggressive tuning
but at the cost of a bigger dip in the control signal before it finds its new steady state.
The level in the blending tank is not visualised in this section since it is not affected
by the reference change when the system is controlled by the PI-controllers.

5.2 LQ-tunings

When tuning of the LQ- and MPC- controllers are considered, the tuning parameters
are the weights in the weight matrices. A suitable start can be to specify acceptable
deviations from the linearizarion point and use them to construct the weight matrices
in such a way that the diagonal elements are decided as 1/dx2. When a suitable
balance has been found for the LQ-controller without integral states, a weight can
be added to the integral states to allow the controller to follow the reference. The
weight matrices Q1 and Q2 are shown below for one alternative tuning.

Q1 =



0.44 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 1.7 ·10−5 0 0 0 0
0 0 0 0 0 0 0.016 0 0 0
0 0 0 0 0 0 0 0.016 0 0
0 0 0 0 0 0 0 0 0.016 0
0 0 0 0 0 0 0 0 0 0.016



Q2 =


51 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


33



Chapter 5. Tuning of Controllers

20 40 60 80 100 120 140

Time [s]

4.61

4.62

4.63

4.64

4.65

P
u
lp

 l
e
v
e
l 
[m

]

20 40 60 80 100 120 140

Time [s]

4.5

4.55

4.6

4.65

P
u
lp

 l
e
v
e
l 
[m

]

Aggressiv tuning

Real tuning

Reference

20 40 60 80 100 120 140

Time [s]

4.63

4.64

4.65

4.66

P
u
lp

 l
e
v
e
l 
[m

]

20 40 60 80 100 120 140

Time [s]

4.62

4.63

4.64

4.65

P
u
lp

 l
e
v
e
l 
[m

]

20 40 60 80 100 120 140

Time [s]

62

63

64

65

66

C
o
n
tr

o
l 
s
ig

n
a
l 
[%

]

20 40 60 80 100 120 140

Time [s]

60

65

70

75

80

C
o
n
tr

o
l 
s
ig

n
a
l 
[%

]

Aggressiv tuning

Real tuning

20 40 60 80 100 120 140

Time [s]

50

55

60

65

C
o
n
tr

o
l 
s
ig

n
a
l 
[%

]

20 40 60 80 100 120 140

Time [s]

65

70

75

C
o
n
tr

o
l 
s
ig

n
a
l 
[%

]

Figure 5.1 The pulp levels for the different flotation cells and their respective con-
trol signals when the system is controlled by PI-controllers with two different tun-
ings. The reference change in the second cell at t = 50 causes the changes.
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Figure 5.2 The response in the blender tank when a reference change happens in
the second cell. The system is controlled by three different LQ-controllers.

The control law designed with these weight matrices will be referred to as LQ 2.
To make the reference tracking more or less aggressive, the weights for the integral
states, which are the diagonal elements in columns six to ten in the matrix Q1,
can be changed. Two alternatives are [4.4 ·10−5, 0.04, 0.04, 0.04, 0.04] (LQ 1) or
[4.9 ·10−6, 0.0044, 0.0044, 0.0044, 0.0044] (LQ 3) depending on how aggressive
the tracking is supposed to be. The rate limiter was also implemented for the LQ
controller to allow more aggressive tuning without violating the system limitations.
The resulting reaction in the flotation cells to a reference change in the second cell
are shown in Figure 5.3. The corresponding response in the blender is shown in
Figure 5.2 (note the different time scales in the figures). The bigger the weight on
the integral states the faster the response but this causes the control signal deviations
to become bigger as well. Since the blender has less weight on its integral state it
takes the blender longer to return to its reference compared to the flotation cells.
This is desired since the blender is meant to function as a buffer tank that uses its
volume to buffer when the inflow to the series change.

5.3 MPC-tunings

A good starting point when tuning the MPC controller is to start from the weights
chosen for the LQ controller. For this system the matrices tuned for the LQ con-
troller gives an MPC controller with too little effect from the states and the integral
states. Therefore, the changes that were made in the weight matrices, compared to
the LQ case, were that the weights for the states and the integral states were in-
creased. The weights for the control signals were also decreased slightly. For the
controller that will be referred to as MPC 2 the Q1 and Q2 matrices are
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Figure 5.3 The pulp levels for the different flotation cells and their respective con-
trol signals when the system is controlled by three different LQ-controllers. The
reference change in the second cell at t = 50 causes the changes.
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5.4 Reinforcement Learning Based State Feedback Controller

Q1 =



11.1 0 0 0 0 0 0 0 0 0
0 100 0 0 0 0 0 0 0 0
0 0 100 0 0 0 0 0 0 0
0 0 0 100 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0
0 0 0 0 0 0.0044 0 0 0 0
0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 0 0 4


,

Q2 =


25 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

Other alternative tunings where the reference tracking is made more or less aggres-
sive can be MPC 1 with integral state weights (diagonal elements six to ten in Q1)
[0.028, 25, 25, 25, 25] or MPC 3 with [0.0011, 1, 1, 1, 1]. For the MPC controller,
there are other parameters to be decided for the optimization problem in equation
(4.7). The prediction horizon of N samples needs to be chosen. A suitable choice is
to choose it such that the dynamics of the system has time to settle, but not much
longer to keep the optimization problem small. For the flotation cells this corre-
sponds to the number of samples in 150 seconds. Limitations of the states, control
signals and the rate of change of the control signal can be imposed on the solution.
The limitation on the states is set to match the measured range for the levels in the
cells and the control signal is to stay between 0% and 100%. The rate of change
of the control signal is set to stay within ±1%/s. Since the rate of change of the
control signal is regulated by the optimisation problem, no rate limiter needs to be
implemented in the MPC controller. The response from the different controllers to
a reference change in cell two is shown in Figure 5.4 for the blending tank and in
Figure 5.5 for the flotation cells.

5.4 Reinforcement Learning Based State Feedback
Controller

Finding the control law with the reinforcement learning algorithm described in Sec-
tion 4.4 is an iterative process that goes on until the state feedback gains have con-
verged to a solution. When this has happened the gain can be kept constant until
there are major changes in the system, caused by either reference changes or other
disturbances. When new conditions apply the state feedback must once again be
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Figure 5.4 The response in the blender tank when a reference change happens in
the second cell. The system is controlled by three different MPC-controllers.

recalculated. A condition for the tuning to work in a proper way is that the system is
properly excited during the period when data is collected. Otherwise the parameter
estimation may not be accurate. Poor excitation leads to poor parameter estimates
and the resulting control law is hence not guaranteed to be an improvement from
the previous one. It could also in some cases lead to a destabilizing state feedback
when the parameter estimation is poor. To assure that the excitation was sufficient
a disturbance signal was added to the control signal. This disturbance consisted of
a low frequent square wave and white Gaussian noise. During the time the algo-
rithm was run, the inflow to the system was assumed to be constant. During each
iteration 2000 samples were gathered before the control law was updated. There are
25 parameters in the matrix of feedback gains. In Figure 5.6 the 5 elements on the
main diagonal are shown as they approach their stationary values. In this case the
references are set to the initial values of the references in Figure 6.2.

The weight matrices used in the tuning algorithm were

Q1 =


11 0 0 0 0
0 100 0 0 0
0 0 100 0 0
0 0 0 100 0
0 0 0 0 100

 ,

Q2 =


25 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

38



5.4 Reinforcement Learning Based State Feedback Controller

20 40 60 80 100 120 140

Time [s]

4.615

4.62

4.625

4.63

4.635
P

u
lp

 l
e

v
e

l 
[m

]

20 40 60 80 100 120 140

Time [s]

4.5

4.55

4.6

4.65

P
u
lp

 l
e
v
e
l 
[m

]

MPC 1

MPC 2

MPC 3

Reference

20 40 60 80 100 120 140

Time [s]

4.63

4.635

4.64

4.645

4.65

P
u
lp

 l
e
v
e
l 
[m

]

20 40 60 80 100 120 140

Time [s]

4.63

4.635

4.64

4.645

4.65

P
u
lp

 l
e
v
e
l 
[m

]

20 40 60 80 100 120 140

Time [s]

60

62

64

66

68

70

C
o

n
tr

o
l 
s
ig

n
a

l 
[%

]

20 40 60 80 100 120 140

Time [s]

68

70

72

74

76

C
o
n
tr

o
l 
s
ig

n
a
l 
[%

] MPC 1

MPC 2

MPC 3

20 40 60 80 100 120 140

Time [s]

58

60

62

64

66

C
o
n
tr

o
l 
s
ig

n
a
l 
[%

]

20 40 60 80 100 120 140

Time [s]

68

70

72

74

76

C
o
n
tr

o
l 
s
ig

n
a
l 
[%

]

Figure 5.5 The pulp levels for the different flotation cells and their respective con-
trol signals when the system is controlled by three different MPC-controllers. The
reference change in the second cell at t = 50 causes the changes.
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Figure 5.6 The updates for the state feedback gains on the main diagonal of the
gain matrix.

The state feedback found by the RL-algorithm is similar to the state feedback
of a traditional LQ-controller which is designed with the same weight matrices and
the system model developed in Chapter 3. A graphical representation of the state
feedbacks are shown in Figure 5.7. The main difference between the two, in this
case, is that the gains in the first column have more negative values for the RL-
algorithm than for the traditional LQ. These gains correspond to the level in the
blending tank and it means that the level in the blending tank will influence the
control signal to all cells in the series more in the RL-based feedback gain.

The controller developed so far does not have integral action which means that
it wont be able to follow references if the reference values change or if disturbances
change the operating conditions in other ways. Introducing integral action can be
done by expanding the system with integral states before the RL-algorithm is used.
But this means that there will be more parameters to estimate which will make
the problem harder to solve in an accurate way if the excitation of the system is
problematic. An other approach that will give integral action is to choose the state
feedback for the integral states separately and use knowledge of the system to set
the parameters to appropriate values. This feedback law will not be optimal in the
sense that the integral feedback for the LQ-controller is but if the only purpose
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Figure 5.7 Gain matrix for the state feedback when it is designed with a traditional
LQ-controller and when it is found with the RL-algorithm.
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Figure 5.8 The response in the blender tank when a reference change happens in
the second cell. The system is controlled by the state feedback controller designed
with the RL-algorithm.

is to ensure reference tracking this is enough. For this system the diagonal matrix
with diagonal elements [0.001 0.1 0.1 0.1 0.1] is one such choice. Using the state
feedback found with the RL-algorithm and adding the integral action the controller
can be tested. In Figure 5.8 the level in the blending tank is shown and in Figure
5.9 the cell levels are shown. One thing that is obvious is that the integral feedback
is not as developed and therefore the cells after the one where the reference change
takes place are more affected by it.
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Figure 5.9 The pulp levels for the different flotation cells and their respective con-
trol signals when the system is controlled by the state feedback controller designed
with the RL-algorithm. The reference change in the second cell at t = 50 causes the
changes.
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6
Results

The different controllers that are to be compared are the PI-structure with the pa-
rameter set represented in Table 5.1, the LQ-controller referred to as LQ 2 in Section
5.2, the MPC controller referred to as MPC 2 in Section 5.3 and the state feedback
controller designed with reinforcement learning.

6.1 Inflow and References from Real Process Data

A good way to get an idea of the overall performance of the controllers is to run a
simulation where the inflow and the reference values are extracted from real process
data. Such a test touches upon a lot of things that are likely to happen in production
and therefore it is important for the controllers to be able to handle them. The inflow
to the flotation series includes various periodic disturbances as well as three stops
on one milling line, which can be seen as the big drops in the inflow in Figure 6.1.
The references for the flotation cells during this time period are shown in Figure
6.2. The reference for the level in the blending tank is 65% during the entire time
period.
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Figure 6.1 The inflow of pulp to the blending tank during 24 hours.
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Figure 6.2 The references for the levels in the flotation cells during 24 hours.

The inflow and the references are used as inputs to the system and the simulation
is run with the four different controllers. In Figures 6.3, 6.4, 6.5 and 6.6 the levels in
the cells are shown along with the level of the blending tank and the control signal
for the different controllers.

It is easy to observe that both the the LQ-controller and the MPC-controller are
better than the PI-controllers at following the reference for the flotation cells, they
reflect its shape in a more accurate way. The bumps caused by the abrupt changes
in inflow due to issues with one of the milling lines are visible for the cells in all
the figures, but to different extent. For the model based controllers the bumps are
barely visible, while the disturbances have a bigger impact for the PI-controllers
and the RL-based state feedback controller. It is also notable that the model based
controllers and the RL-based controller suppress the noise in the system more effi-
ciently than the PI-controllers.

The behavior of the level in the blending tank differs more between the control
structures. For the PI-controllers it can be noted that the level at some points exceeds
the alarm limits and therefore the extra addition to the control signal that helps it to
stay within the acceptable interval is activated. This is the main reason for the sharp
peaks in the tracking error for the cell levels. For the LQ-controller, the blending
tank successfully acts as a buffer tank. It uses its volume to handle the majority
of the disturbance and then in a slow manner returns to its reference. This is the
main reason why the levels for the cells are a lot less affected by the disturbance
than for the PI-controllers. For the MPC-case the blender tank also buffers when
disturbances enter. The flexibility of being able to recalculate the control law for
each sample makes it possible for the blender level not to drift as far away from its
reference and to return to it faster than for the other control structures. The behavior
of the blending tank for the RL-based controller is similar to the LQ-controllers but
it does not allow the level in the blender to drift as far as for the LQ-controller.
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6.1 Inflow and References from Real Process Data

Figure 6.3 The levels for the different flotation cells, the blending tank and the
control signal when the system is controlled by the PI-controllers.

To compare the performance of the controllers the root mean square of the track-
ing error is calculated for each simulation. The results are presented in Table 6.1
where the values are normalized with the biggest value found among the flotation
cells. Since the blending tank is intended to be buffering its deviations are not of
interest as long as the level stays within its limitations.

Since the simulation period is quite long and the effects of the major distur-
bances are relatively small the noise suppressing qualities of the controllers are
reflected in the values presented in Table 6.1. The PI-controllers noise canceling
properties are not as good as the other controllers. The difference in performance
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Figure 6.4 The levels for the different flotation cells, the blending tank and the
control signal when the system is controlled by the LQ-controller.

Tank PI LQ MPC RL-based
blender 94 70 13 55

1 0.43 0.26 0.15 0.31
2 1 0.30 0.13 0.54
3 0.54 0.31 0.15 0.35
4 0.80 0.32 0.15 0.40

Table 6.1 Root mean square of the tracking error, The table is normalized with the
biggest value among the flotation cells.
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Figure 6.5 The levels for the different flotation cells, the blending tank and the
control signal when the system is controlled by the MPC-controller.
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Figure 6.6 The levels for the different flotation cells, the blending tank and the
control signal when the system is controlled by the RL-designed state feedback con-
troller.
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6.2 Step Response
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Figure 6.7 Step responses for the second flotation cell with the different con-
trollers.

between the LQ- and the MPC-controller is smaller but also mostly related to the
noise suppressing qualities since the bumps caused by the major disturbances are
small for both controllers. The RL-based controller has a couple of bumps that are
bigger than for the model based controllers. This is part of the reason why it has
worse over all performance than the LQ-controller even though their noise suppress-
ing qualities are similar. The RL-based controller still however performs better than
the PI-controllers.

6.2 Step Response

Step responses are an often used way to compare performance of different con-
trollers. This is also a relevant case for the flotation series since references for levels
are normally changed during production. A reference change from production data
in cell 2 is chosen to evaluate the performance of the controllers. The references in
production are often changed as ramps and this is the case for this reference change
as well. In Figure 6.7 the resulting step responses are shown with the different con-
trollers.

The noise suppressing qualities of the controllers play an important role in this
case too and it is hard to tell from the figure how the controllers perform. To compare
the performances the integral of the absolute value of the tracking error,∫

|e|dt, (6.1)

was calculated. The integral was taken from t = 2.64 just before the step to t = 2.72
which is shortly after the levels have reached the new reference value. The values
are summarized in Table 6.2.
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Tank PI LQ MPC RL-based
1 0.46 0.27 0.09 0.27
2 0.85 0.83 0.68 1
3 0.42 0.20 0.07 0.66
4 0.30 0.20 0.06 0.65

Table 6.2 Integral of the absolute value of the tracking error during a short time
window covering the reference change, the table is normalized with the biggest
value.
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Figure 6.8 Step responses for the second flotation cell with the different con-
trollers. The noise in the system is removed from the simulation.

For the RL-based controller, the effects on the cells after the one that has the
reference change that were observed earlier in Section 5.4 are also clearly seen in
the table as cell three and four have quite big values. The RL-based controller also
seems to have the slowest step response. From the table it seems that the PI con-
trollers handle the step change almost as good as the LQ-controller but it is worth
noting that for the surrounding cells the PI-controllers have the worst performance
after the RL-based controller. Taking a closer look at Figure 6.7 it can be seen that
the level for the PI-controller in fact also has a head start on the other controllers
since its level actually was too high before the reference change. To exclude the
noise canceling properties from the analysis the noise in the simulation was re-
moved. The controllers response to the same reference change without the noise is
shown in Figure 6.8 and the integral of the absolute value of the tracking error is
summarized in Table 6.3.
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6.3 Feed Forward of Air

Tank PI LQ MPC RL-based
1 0.34 0.15 0.03 0.22
2 1 0.70 0.58 0.99
3 0.27 0.13 0.02 0.74
4 0.22 0.07 0.01 0.70

Table 6.3 Integral of the absolute value of the tracking error when the noise is
removed from the simulation, the table is normalized with the biggest value.

In Figure 6.8 it becomes more clear what the reference tracking properties of the
different controllers are. It can be observed that even though there are differences
in reference tracking properties, the differences are relatively small. This is partly
explained by the rate limiter on the control signal that prevents the controllers from
acting arbitrary fast. When studying the step responses closely some differences
between the controllers can still be observed. The model based controllers and the
RL-based controller reach the new reference quicker than the PI controllers. The
start of the LQ and RL-based controllers responses are slower than the MPC:s and
these controllers also have a small overshoot when they reach the reference. The
initial part of the PI-controllers response is as fast as the LQ:s but as it approaches
the new reference it slows down and takes longer time to converge. One notable
thing when studying Table 6.3 is that the surrounding cells are affected in different
extent depending on the controller. When the MPC is used the surrounding cells
are barely affected. The LQ-controller gives a small deviation in the cell before and
after but the fourth cell gets a smaller impact than the third. For the PI-controllers the
effect of the response to the reference change in cell 2 affects all the surrounding
cells more than for the model based controllers. For the RL-based controller it is
once again the cells after the one with the reference change that also gets an impact
from the reference change. This is part of the explanation to why the control signal
for the RL-based controller behaves differently from the other controllers in Figure
6.8.

6.3 Feed Forward of Air

In the raw series the main variable that is manipulated to change the quality of
the froth, apart from the reagents, is the pulp level. The references for the levels
change regularly, while changes in the airflow are more uncommon. However, in
other parts of the flotation series, for example in the repetition step, the air is a
more commonly used control variable. Since the airflow is a measured variable
the PI-controller could also include feed forward from the airflow. To demonstrate
the effects of extending the controller the raw series is studied when the airflow is
changed as a step in the third cell according to Figure 6.9. The reactions in the levels
are recorded both with feed forward from the airflow and without the addition in the
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Figure 6.9 The inflow of air to the flotation cells.

controller. The resulting levels are shown in Figure 6.10 and the root mean square
of the tracking error is summarized in Table 6.4. To better demonstrate the effects
of the feed forward the noise is removed from the signals and the deviations due to
the change in airflow are shown in Figure 6.11.

The effects of the disturbance in the third cell is reduced with 45% by adding
the feed forward from the airflow. In cell two and four the effects of the disturbance
becomes a little bit bigger, but it only increases with 9.5% and 11% respectively.
That the fourth cell is affected is intuitive since it is downstream from the cell where
the changes take place but it may seem strange that also the the second cell is af-
fected by the air change in the third cell. Recall from Chapter 3 that the volume
of pulp in the cells affect the flow between them, changing the airflow changes the
volume and hence a reaction in the cell before is also expected. The reason that the
disturbance can not be completely eliminated even though it can be measured is the
limitation in how fast the control signal can change. When the airflow changes the
rate of change for the control signal reaches its max while reacting to the distur-
bance when the controller has feed forward. This means that the controller does not
give the full addition that the feed forward factor adds instantly, it takes a while for
the control signal to get to the desired level.
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6.3 Feed Forward of Air

Tank PI PI + ff
1 0.39 0.39
2 0.66 0.70
3 1 0.55
4 0.67 0.75

Table 6.4 Root mean square of the tracking error when the airflow to the third cell
is changed. The table is normalized with the biggest value.
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Figure 6.10 The levels for the flotation cells when the airflow changes in the third
cell. In the left figures the series is controlled with the original PI-controllers and in
the right figures the controllers also include feed forward from the airflow.
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Figure 6.11 The levels deviations in the flotation cells when the airflow changes in
the third cell. In the left figures the series is controlled with the original PI-controllers
and in the right figures the controllers also include feed forward from the airflow. The
noise is removed to more clearly demonstrate the effects.

54



6.4 Model Errors and Robustness

6.4 Model Errors and Robustness

For the model based controllers the accuracy of the model is important for the per-
formance but to create a model that agrees perfectly with reality under all circum-
stances is unreasonable to say the least. Therefore it is interesting to investigate how
much the model can deviate from the real process before the control performance
becomes poor. This is interesting to study for the LQ- and tha MPC-controller since
they are model based. The PI-controllers and the RL-based state feedback controller
will not be considered in this section since these controllers do not make use of a
model. The main uncertainties in the system model is the valve and pump dynamics
and how they relate to different control signals. Both the noise canceling properties
and the reference tracking properties can be affected by model errors and are there-
fore evaluated. For this purpose the same step change that was used in Section 6.2 is
used and both the RMS of the tracking error and the integral of its absolute value is
evaluated. One interesting thing about this sequence is that there is an issue with the
milling line shortly before the reference change, so this kind of disturbance is also
included in the test set. To alter the valve dynamics, equation (3.4) is multiplied by
a constant term, ∆, according to

qouti(u) = ∆(k2u2 + k1u+ k0)
√

2g(hi −hi+1 +hdi f f ).

This leads to that the relation between the control signal and the pulp flow through
the valve changes. The constant terms used were ∆ = 0.5 and ∆ = 1.5. These mod-
ified valve dynamics were used in the model when the controllers were designed,
which lead to that the model for the controller and the process does not agree. In
Figure 6.12 a part of the test sequence is shown for the LQ-controllers designed
with the differing models and for the LQ-controller with the original model. The
same is shown for the MPC-controllers in Figure 6.13.

The impact of the model errors is mostly visible when the issue with the milling
line appears. And it is also a lot more apparent in the MPC case than in the LQ case
since the MPC changes its control action based on the model between samples. In
this case the model for the second cells valve was the only part of the model that
was changed but if all the valves are altered in the same way the effects are similar
but smaller.

In Figure 6.14 the root mean square of the tracking error for the test sequence,
with controllers designed with different models are shown. The values were nor-
malized with the biggest of the values. For the LQ case the cell with the model
errors have good noise canceling properties when the valve is assumed to be slower
(∆ = 0.5) in the model than it is in the actual process, however in this case the sur-
rounding cells are more affected. The opposite is true when the valve model has
faster dynamics (∆ = 1.5) than the actual process. For the MPC-case both a too fast
and a too slow model gives bad performance for the second and third cell, as the
RMS of the error increases the further away from the correct dynamics the model
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Figure 6.12 The level in the second cell when the model for the LQ-controller is
altered to differ from the process.
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Figure 6.13 The level in the second cell when the model for the MPC-controller is
altered to differ from the process.
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Figure 6.14 The normalized root mean square of the tracking error for the different
cells when the valve parameters in the model of cell 2 are scaled in the controller
design.

drifts in any direction. This can also be observed in Figure 6.13 when the milling
line issue happens, the level of the second cell deviates in different directions de-
pending on if the valve dynamics in the model are too fast or too slow but the
deviations are roughly of the same size.

Figures 6.15 and 6.16 are zoomed in on the step response part of the test set
to more clearly see what happens to the reference tracking properties. The model
errors make some difference when it comes to reference tracking, but the effects are
small. The normalized integrals of the absolute error during the step response are
shown in Figure 6.17. The effects of the model error on the LQ and MPC controller
are similar, if the internal model is slower than the actual dynamics the reference
tracking abilities are a bit worse than when the dynamics match but the difference
is not big. Letting the valve dynamics be faster in then model than in the process
does not seam to improve or worsen the performance when it comes to reference
tracking.
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Figure 6.15 The level in the second cell when the model for the LQ-controller is
altered to differ from the process.
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Figure 6.16 The level in the second cell when the model for the MPC-controller is
altered to differ from the process.
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6.4 Model Errors and Robustness
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Figure 6.17 The normalized integral of the absolute value of the tracking error
during the step response for the different cells when the valve parameters in the
model of cell 2 are scaled in the controller design.
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Discussion

RL-based State Feedback Controller
One of the main challenges with the learning based LQ-controller is to gain data
that contains enough information about the system dynamics to accurately being
able to approximate the parameters. If the excitation of the system is not sufficient,
the parameter estimate will be poor and it will result in a potentially even unstable
control law. As it turns out, the natural noise in the system is not on its own suf-
ficient to excite the system enough. Therefore a disturbance to the control signal
had to be added to excite the system more but even with this addition the excitation
of the system was problematic. With weight matrices that had bigger differences
between the weights on the control signal and the states the algorithm got the gains
to converge to reasonable values. However if the difference was too small in the
weight matrices, the feedback gains often converged to unreasonably big values.

The parameters that the estimation had the biggest issues with was the ones re-
lated to the blending tank, probably due to the structure of the weight matrices that
treats the blender tank very differently compared to the rest of the flotation cells. It
could also be an effect of that the blending tank has a big influence on the rest of the
flotation series. It could be easy for the algorithm to associate effects in a cell with
the blender that may actually be related to interaction with another cell close by.
These are issues that probably partly or fully could be solved by better excitation of
the system, more qualitative data for the algorithm to base its decisions on would
improve its robustness and the reliability of the control law. In theory this would
also allow to expand the system with integral states and find the state feedback gain
for the integral states with the algorithm simultaneously to the feedback gain for
the states. The reason that this was not done in this thesis was that the current exci-
tation is too poor to give accurate parameter estimates for such a big system since
introducing the integral states approximately doubles the number of parameters that
need to be estimated by the algorithm.

All these experiments were performed in simulation environment and in that
setting it is easy to try different excitations and run many different simulations over
long time periods to collect the data needed. In reality however, running the exper-
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iment on the real process is already very time consuming. It would probably have
to run during even longer time periods to collect enough data since the real pro-
cesses has more disturbances and non-linear phenomena than the simulation model
reflects. Not to mention the fact that performing the experiment heavily will affect
the production since the level changes made by the noisy control signals not only
will affect the cells in the raw series but also the following process steps. To be able
to do it in the real process it also requires that the inflow to the series is kept as close
to constant as possible which can be hard to guarantee during longer time periods.
The algorithm must also be able to run for a couple of iterations until it converges to
a state feedback gain. Overall the experiment in this setting would not be realizable,
and the need to add more excitation to the system while collecting the data makes
it even harder to realize in reality. The consequences of a failed or poorly working
control law in the iterations would also be a lot more severe if it happened in reality
compared to in the simulation that could just be restarted.

The initial vision was that the internal noise in the system would be enough to
excite it. This would have lead to that data could have been collected online while
running the process under normal operating conditions. If this would have worked
the algorithm could have been a good way to adjust the control law online as the
operating conditions change. Changing operation conditions caused by degradation
of the equipment is a common problem in processes, but the processes in the con-
centrator also deals with changes in operating conditions due to variations in the
ore. The properties of the ore varies a lot over a deposit and this causes the op-
erating conditions to drift in different directions as well. This is one of the main
reasons why reinforcement learning approaches are interesting in the first place and
even though there seems to be better options for level control of the flotation se-
ries there may be other areas where RL-approaches can bring things to the table.
This particular approach seems to work better when the system is smaller and fever
things influence the system. The main characteristics of the flotation process are
quite easy to understand and model, but there are other processes where this may
not be the case and where RL-approaches potentially can be helpful in understand-
ing unknown dynamics and correlations.

When implementing and exploring this algorithm, the knowledge of the system
has been really important to have a feeling for what might work and what may
not in terms of weight matrices and the resulting state feedbacks. Without a prior
knowledge of how the system is connected the process would have been a lot harder.
One could argue that this algorithm may have the potential to be run offline in
simulation environment and that the resulting control law then could be applied to
the real system, however that would require a simulation model of the system and
if this model can be developed, then so can models for model based controllers.

To summarize, the issues with exciting the system enough gives problems both
with reliability of the resulting control law and it also makes the experiments that
need to be performed to collect data hard to realize in the real process. This makes
the algorithm unsuitable to use in this process where there are other more reliable
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methods to design a controller that also show better performance for the system.
However this does not mean that RL-approaches are irrelevant for the flotation pro-
cess, just that this particular use of it was not successful but there may be other areas
where this approach or similar ones have more success.

Model Based Controllers and their Sensitivity to Model Errors
There are many similarities and differences between the LQ-controller and the
MPC-controller. One similarity is the role the weight matrices play when tuning the
controllers. But even though the setup is similar, a weight matrix that works well
for the LQ-controller is not guaranteed to work well for an MPC-controller. This
is the case for this system where the weight matrices that worked well for the LQ-
controller give a slow MPC-controller with very slow integral action. The weight
matrices that work well for the MPC-controller on the other hand would give an
LQ-controller that is too aggressive and gets oscillative when big disturbances enter
the system. The tunings for the two different controller types however both have
good noise canceling properties and follow references in a satisfying way. As seen
in Section 6.4 the MPC-controllers performance is more affected by model errors.
When the model is good the MPC-controller performs better than the LQ-controller
but if the model drifts far from the real process this affects the MPC-controller more
than the LQ-controller. In this sense the LQ-controller can be said to be more robust
towards model errors. The disturbance rejecting properties are more affected by the
model errors than the reference tracking properties for both controller types.

Another interesting question is whether the full system should be controlled by
a model based controller or if for example the blending tank should be controlled
by an independent controller and the model based controller only should control
the flotation cells. This would make the tuning procedure easier in the model based
controller since the blending tanks desired behavior is so different from the cells
and the model complexity would be lower. However including the blending tank
in the model gives the controller the possibility to coordinate the actions of the
blender tank with the other flotation cells. This is an advantage since the flow from
the blending tank to the flotation cells affect the levels in the flotation cells.

PI, LQ and MPC, a Comparison
As the result section indicated the model based controllers generally give better per-
formance than the PI-controllers, but the model based structures are more complex.
The need for a good model is the biggest issue with the model based controllers
since their performance are correlated with the accuracy of the model. However, if
the model is good enough, the model based controllers will be superior to the PI-
controllers. With an accurate model the MPC-controller gives the best performance,
followed by the LQ-controller. When the model is good their performance is better
than the performance of the PI-controllers. On the other hand an advantage of the
PI-controllers is that they do not need a model of the system to control it. This is a
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big advantage if accurate models of the system are hard to find or if the operating
conditions change a lot in such a way that models for different operation conditions
differ a lot.

When comparing controllers it is also worth noting that the performance of the
controllers depend on how they are tuned. Tuning the LQ- and MPC-controllers is
not a straightforward process and there are many different tunings that may work
properly depending on which characteristics that are desirable for the controllers.
The PI-controllers could also be retuned to be more ore less aggressive which also
would give different performances.

An advantage of the MPC-controller is that limitations of the system can be
imposed on the controller, making the limitations of the process a natural part of the
controller. These limitations must of course be respected by the other controllers
too, but it requires good tuning and maybe some additions in the controllers to
guarantee that no limitations will be violated. Implementing the rate limiter in the
PI- an LQ-controller is one such example.

It is important to remember that the flotation process only is one part of the pro-
cess line in the concentrator and that even though level control of it is important,
the main goal of the process is to get the best possible recovery of minerals. With
this perspective one could understand that the interaction between the different pro-
cess steps is important for the overall performance of the plant. In this thesis the
different control structures have been compared to each other for a specific part of
the process, but there is nothing preventing us from combining the different con-
trol structures to achieve better overall control. A common approach is for example
to use an MPC-controller as a high level controller for setting the references for
PI-controllers on a lower level in the control structure.

Feed Forward of Measurable Disturbances
For the cells in the later part of the flotation process where the air is a more com-
monly used control variable, introducing a feed forward addition to the controller
that helps compensate for the level changes due to variations in the airflow could be
considered. Today changes in the airflow are made as slow ramps in order for the
level control to be able to compensate as the airflow changes. With the feed forward
addition these changes in air could be done faster without reducing the performance
of the level control. Since the airflow is already a measured variable no new in-
strumentation would be needed to make the addition possible. The only thing that
would have to be done is include the feed forward of the signal in the controller.
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8
Conclusions and Future
Work

This thesis has covered and compared different control structures for the first sec-
tion of the flotation series, the raw series. Even though the control structure of PI-
controllers that control the plant today works well, model based controllers show
even greater potential. The biggest difference where there is room for improvement
is when it comes to the disturbance rejecting properties of the controllers. Here the
model based controllers outperform the traditional PI-controllers. The model based
controllers, and especially the LQ-controller, show good robustness towards model
errors in the model. Since the robustness towards model errors is good the reinforce-
ment learning based state feedback controller that was developed only seems to over
complicate matters. It shows poor robustness and the experiments needed are unrea-
sonable to perform in the real process. Reinforcement learning approaches however
may be more suited to use for other purposes related to the flotation process.

If a model based controller is to be implemented in the system a valid question
that needs further investigation is whether the blending tank should be a part of the
model or if it should be left out. Both approaches have advantages and disadvan-
tages and this thesis does not cover this area. Another related question is how many
flotation cells to include in the model based controller. Should only the raw series
be considered or should the scavenger series or parts of it be included as well?

An addition that can be made to the existing controllers is to extend them with
feed forward from the airflow into the cells. This extension would help the con-
trollers to handle faster changes in the airflow without loosing performance when
it comes to level control. All the necessary measurements already exist so no new
instrumentation would be needed.
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