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Abstract

The permanent magnet synchronous motor, PMSM, is an efficient electrical motor
that has seen a greater prevalence in the automotive industry from the increasing
demand for electrical vehicles. Managing the temperature of the permanent magnet
rotor is important to optimize motor utilization and avoid hardware failures. Direct
temperature measurements of the moving rotor with a sensor are, however, both
difficult and costly and an observer-based approach to estimate the rotor temperature
can instead be attained using measured currents, voltages and a model.

The work in this thesis studies observers based on a Kalman Filter, KF, and an
extended Kalman filter, EKF. The observability of the system was found to be poor
at low rotational speeds and filter designs were implemented that used low-speed
estimators, that slowly drive the rotor temperature estimate towards the coolant
temperature. For circumstances when the inductance accuracy in the model was
limited, EKFs with inductance estimation and gain scheduled noise covariance ma-
trices were also evaluated. There were also potential numerical robustness issues,
so normalized and rescaled state variable system descriptions were evaluated.

The simulation analysis of the KFs showed a great reduction in rotor tempera-
ture estimation error of roughly 40 ◦C when using a low-speed estimator, compared
to without the use of a low-speed estimator. In circumstances with limited induc-
tance accuracy, the EKF with inductance estimation had a maximum temperature
estimation error magnitude of ≈ 2.5 ◦C compared to ≈ 11 ◦C of the KF design. Us-
ing an EKF with lower sampling frequency and gain scheduling did, however, come
at the cost of robustness. Normalizing or rescaling state variables had a visible ef-
fect on the noise covariance settings but did not show noticeable improvements of
the computational robustness in a simulation environment with high numerical pre-
cision.

The thesis was concluded with a brief analysis using measurement from a real
but different motor model. The worst case estimation error magnitudes was approxi-
mately 12 ◦C for the rotor temperature. The estimation results were very sensitive to
model parameter accuracy and more testing has to be conducted using experimental
data, but the results presented show some promise.
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1
Introduction

1.1 Motivation

The permanent magnet synchronous motor, PMSM, is a synchronous electric motor
that is driven by alternating current with field excitation from a permanent magnet
rotor [Linquip Technews, 2021]. The PMSM has traditionally been found in high-
performance servo applications like the industrial robotics industry. The PMSM is
an attractive choice for their quick dynamics and high precision of control, which
has lead to their expanded use in a wide variety of fields. The lack of current for
magnetization also leads to a highly efficient motor that has a high torque density
[Alaküla et al., 2013]. However, operating a PMSM requires a control system utiliz-
ing sinusoidal waveforms. One such technique to produce optimal torque is through
Field-Oriented Control, a common practice for PMSMs in the automotive indus-
try [Linquip Technews, 2021]. The analysis in this thesis is mainly intended for
PMSMs in battery electrical vehicles, BEV, and hybrid electric vehicles, HEV.

To achieve a high degree of utilization, there is, however, an associated cost in
the form of high-quality sensor data. One of the important variables for maintain-
ing high performance is the rotor temperature. The rotor temperature affects torque
because of its effect on rotor demagnetization. To avoid unsafe operating temper-
atures that could lead to hardware failure, the rotor temperature can also be used
as an input to a thermal management control system. Excessive rotor temperature
can also lead to permanent demagnetization. Direct measurement of the rotor tem-
perature with a sensor is both difficult to implement and costly [Wallscheid et al.,
2017]. There is, however, more easily available sensor information such as motor
currents and the voltage controller references, which could be used to estimate the
rotor temperature with an observer based on modeled motor characteristics.

Scientific Background
Sensorless state estimation of PMSMs is a extensively researched topic. Originally,
the PMSM was common in high precision servo systems with intricate sensor in-
stallations but has expanded to the Adjustable Speed Drives market, which includes
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1.1 Motivation

the automotive industry, because of its energy efficiency [Bojoi et al., 2013]. Po-
sition sensors are expensive to install and not always reliable in harsh operating
environments. Because of the difficulty associated with direct measurements on the
moving rotor, obtaining rotor position, flux linkage, and temperature can be prob-
lematic [Bojoi et al., 2013]. It might also be beneficial to retain the sensors and use
the sensorless estimation as back-up to aid in the detection of hardware failures.
Sensorless PMSM schemes refer to methods that do not have sensors for direct
measurements on the rotor. Measured currents and voltage references can instead
be used for estimation of PM flux linkage, and in turn rotor temperature, with the
use of a mathematical model of the motor. The reason for using current measure-
ments and voltage references is because these quantities are already available and
used by the PMSM current controller.

There are many different sensorless methods and a way to divide the approaches
is by categorizing them by direct and passive methods. A direct approach is by uti-
lizing some form of signal injection to extract state information [Bojoi et al., 2013].
Disrupting the control signal is, however, in opposition to the overarching goal of
the thesis of maintaining a high level of accuracy in the control. Signal injection
methods are generally more applicable at lower speeds, where the PM thermal
stress tends to be low and therefore not as interesting to analyze. It also comes
with disadvantages such as reduced efficiency and torque harmonics [Wallscheid
et al., 2017]. Comprehensive background information regarding the topic of sen-
sorless control of PMSM motors can be found in [Bojoi et al., 2013]. The methods
found in [Kumar et al., 2014] are developed for induction motors but the paper
gives nevertheless a good overview of Model Reference Adaptive techniques for
state estimation in electric motors. The techniques reviewed in that paper concerns
sensorless vector-control strategies. It is also stated in that paper that variations of
important induction motor parameters across the operating range, such as the stator
and rotor resistances, inhibit accurate speed estimations. The article also remarks
on that some of the more advanced techniques to account for parameter variations
include the integration of machine learning. In [Ichikawa et al., 2006], they instead
try to correct for position estimation errors caused by deviations of the inductances
for synchronous reluctance motors and an extended motor model for inductance
compensation caused by magnetic saturation is presented. An Extended Kalman
Filter, EKF, for stator flux linkage estimation with an augmented state vector that
includes inductances can be found in [Vyncke et al., 2010]. The proposed observer
was used for direct torque control (DTC) of a PMSM by controlling the stator flux
linkage vector, where added parameter estimations are evaluated for both isotropic
and anisotropic motors. Isotropy refers to the characteristic of uniformity in dif-
ferent directions as opposed to anisotropy which refers to property dissimilarities
along different axes. In the context of electrical motors, the an/-isotropic character-
istic concerns the reluctance along different axes [Vyncke et al., 2010]. The article
also highlighted the possibility of introducing inverted inductances in the model for
reducing the complexity of partial differentiation.

13



Chapter 1. Introduction

An overview of a few issues for rotor-temperature estimation, which includes
low-speed operations, inverter model inaccuracies and some proposed solutions can
be found in [Wallscheid et al., 2017]. Temperature management is an important fac-
tor in optimizing motor utilization and reducing the risk of destroying insulation
varnish and to prevent irreversible permanent magnet demagnetization. It can also
help alleviate thermal stress that might reduce motor lifetime. The article also em-
phasizes that sensor-based temperature measurement on rotating motor parts can
be costly and difficult and that accurate models involving finite element analysis or
computational fluid dynamics might be inapt for real-time monitoring. A different
method for inductance estimation through an affine projection of the motor model
is used in [Cho et al., 2018], where an adaptive model is used for flux linkage es-
timation to the purpose of torque compensation. The increase in rotor permanent
magnet temperature is observed as a decrease of the magnetic flux linkage, which
in turn decreases the torque. A rotor temperature estimation with neural-network
techniques to handle inductance uncertainty and low-speed estimation can be found
in [Ding et al., 2020], where the temperature estimation is motivated by safe and
efficient drive operation. Fuzzy control is used as part of the adaptation mechanism
in that approach.

1.2 Objectives

The focus of this thesis is a passive and indirect approach to rotor temperature
estimation by utilizing an observer with current and voltage measurements. At-
tempts to estimate the torque will also be performed alongside the PM temperature,
using the flux linkage estimation. The actuation torque is an important quantity for
regulating the motor and even with the presence of torque measurement sensors,
the torque estimation can be useful as a backup or for error-detection in hardware.
A common method for state estimation is the Kalman filter. The Kalman filter
can be described as an optimal estimator for linear systems with Gaussian noise
assumptions [Gustafsson, 2012]. There are, however, flux linkage observability
issues at low-speed operating points or when fully stopped. The motor model is
also affected by parameter-varying characteristics from varying motor speed and
magnetic saturation, which introduces further difficulty in accurate state estima-
tion [Wallscheid et al., 2017]. Because of these issues, the standard Kalman filter
might not be directly applicable. There are a multitude of different approaches and
research on how to deal with these issues [Bojoi et al., 2013]. The current state-of-
the-art research is primarily on augmenting the more traditional approach of state
observers with some form of machine learning [Ding et al., 2020]. For this thesis,
external environmental temperature measurements are already assumed to exist and
the estimator is expected to make use of this for low flux linkage observability com-
pensation, which was a solution inspired by [Wallscheid et al., 2017]. The objective
of this thesis is to provide a basis for decision-making of observer design through
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1.3 Delimitations

analysis and comparisons of different state-estimation schemes of rotor temperature
estimation.

Important considerations for the evaluation include:

• The ability to deal with potential observability problems at certain operating
points and limited, non-persistent excitation.

• Sensitivity to model parameter uncertainty.

• Investigate for possible relationships between the optimal observer gain and
the operating speed.

• Computational and memory demand. This includes, e.g., performance evalu-
ations with different filter sampling frequencies.

1.3 Delimitations

There are a variety of different adaptive schemes and sensorless flux-estimation
techniques that deal with the issues concerning both low-speed operating points
and standstill for observer-based methods and the parameter-varying characteristics
of PMSM. To limit the scope of the thesis, certain restrictions are placed on the
adaptive schemes. One such restriction includes machine-learning methods because
of their significant difference in approach to development. This thesis is also limited
to not study methods based on Lumped Parameter Thermal Modeling, LPTM, even
though it is a non-invasive technique used for temperature estimation [Wallscheid et
al., 2017]. A LPTM of the PMSM typically requires a larger amount of parameters
compared to the proposed Kalman filter. If the parameters of the LPTM are un-
known they also have to be identified. An example of a LPTM model of the PMSM
can be found in [Touhami et al., 2017].

1.4 Methods/Outline

The approach chosen to estimate rotor temperature is based on utilizing the rela-
tionship between rotor flux linkage and temperature. Calculations are usually most
easily done in a rotating reference frame, a direct-quadrature (dq) model of the
PMSM, which can be obtained by applying a Clarke and Park transformation on
the standard three-phase system [Bojoi et al., 2013]. The flux linkage can then be
estimated with a Kalman filter design. The PMSM can be modeled as a linearly
parameter varying system, LPV-system, with rotor speed as the varying parameter.
As a baseline approach, the flux linkage is estimated with a Kalman filter with ac-
curate inductance information. The inductance accuracy was found to be important
for estimation performance, which resulted in the development and testing of EKF
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Chapter 1. Introduction

designs that augmented the state estimation vector with inductances, for circum-
stances where only limited or poor inductance accuracy is available.

The outline of the thesis follows:

• 2. Modeling Introduction

– Introducing and deriving the PMSM model used for state estimation.

– Introducing other important equations later used during the simulation.

– Background on the more advanced and detailed model used to generate
reference signal data for the simulation analysis.

• 3. State Estimation Theory

– Detailing the model discretization methods.

– A description of the Kalman filter and the extended Kalman filter.

– Defining the observability attribute of a system, along with a description
of the observability Gramian.

• 4. Kalman Filter Design

– Analysis to determine a suitable sampling frequency.

– Preliminary analysis on how the system behaves with varying rotor
speeds.

– Observability analysis, for determining troublesome operating regions.

– A presentation of the different Kalman filter designs used during the
simulation analysis.

• 5. Kalman Filter Simulation Study

– An evaluation of the different designs and features introduced in the
Kalman filter design section, as well as possible effects of the calibra-
tion.

– Sensitivity analysis of the different model parameters and input signals.

• 6. Extended Kalman Filter Design

– Description of the process of discretizing and analytically differentiat-
ing the system.

– Preliminary analysis to guide the design.

– Presentation of the different designs used during the simulation study.

• 7. Extended Kalman Filter Simulation Study

– Evaluation of the different designs, features and calibrations.

16



1.4 Methods/Outline

– Comparison between the extended Kalman filter with inductance esti-
mation and a Kalman filter design with limited inductance information.

• 8. Measurement Data Study

– Brief experimental setup description and the results of an analysis con-
ducted with measurement data from a real, but different e-machine than
the one used in the simulation study.

• 9. Conclusion and Future Work
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2
Modeling

2.1 Introduction to PMSM Model

The PMSM is customarily driven as a three-phase electrical machine with the al-
ternating currents in the stator windings generating a combined rotating magnetic
field with a rotational frequency proportional to the frequency of the currents. The
term synchronous originates from the proportionality. The PMSM generates torque
by the rotor’s own magnetic flux from the permanent magnet aligning itself with the
rotating flux axis generated by the stator windings. The number of magnetic pole
pairs, Ppole, the rotor has, determine the relation between the mechanical and elec-
trical angular speed. To transition between the mechanical, ωm, and electrical, ωe,
angular speed, the following relation is used:

ωe = Ppoleωm (2.1)

The angle between the stator and rotor flux axis is called the load angle, denoted
δ , and the relation between torque τ and the load angle can be described with:

τ ∝ sin(δ ) (2.2)

This means that at no load, δ is close to 0. At maximum torque, the load angle is
instead at δ = 90◦. Greater load angles, δ > 90◦, will lead to loss of synchronicity
[Alaküla et al., 2013]. Another way to generate torque is by creating non-uniform
air gaps in the rotor. This design characteristic leads to salient motors. The airgaps in
the rotor have an increased reluctance, which inhibits the flow of magnetic flux. By
placing the airgaps strategically, the rotor will align itself to minimize the reluctance
under the centers of poles and moving the airgaps to be between poles instead. This
non-uniform flux distribution does unfortunately also lead to oscillations, torque
ripples, during operation [Linquip Technews, 2020].

Thermal PMSM Modelling
Very accurate thermal PMSM models can be created using methods of finite element
analysis, FEA, or computational fluid dynamics, CFD, the downside being that they
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2.2 PMSM Equivalent Circuit Model

are incredibly computationally demanding [Bojoi et al., 2013]. For practical run-
time rotor temperature estimations, the motor in this thesis is instead modeled by a
simplified dynamic equivalent RL-circuit. The equivalent circuit model is the basis
of the model to be employed as the state dynamics. The actual state being estimated
using the circuit model is the flux linkage λ . Flux linkage is the combined contri-
bution of the magnetic flux from the PM passing through all the windings in the
motor [Alaküla et al., 2013]. Flux linkage is dependent on the PM temperature and
this relation is utilized to estimate the rotor temperature. The details can be found
in Section 2.4.

2.2 PMSM Equivalent Circuit Model

The PMSM motor can be modeled as a three-phase system, where each phase abc is
separated by 120◦. An equivalent RL-circuit can be used to model one of the phases
with the phase voltage ua across the stator winding as shown in Figure 2.1. The re-
sistor Ra models the voltage drop over the cables and windings, and the inductance
La models the stator winding currents own contribution to flux linkage. The volt-
age ea is the induced voltage caused by the rotating permanent magnet, where the
polarity of the induced voltage is chosen to oppose the applied voltage that caused
it, as stated by Lenz’s law [Cheng, 1989]. This induced voltage is sometimes also
referred to as the back-EMF. The equation for how the induced voltage is related to
the flux linkage of the PM rotor, λm, and rotor speed, ω , is based on Faraday’s law
of induction [Alaküla et al., 2013] and is given by:

ea = ωλm (2.3)

Figure 2.1: An equivalent RL-circuit of phase A.

The resulting voltage equation derived from the equivalent circuit is then given by:
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Chapter 2. Modeling

ua = Raia +La
dia
dt

+ωλm (2.4)

The three-phase signals can be represented using vectors in a complex plane,
perpendicular to the motor axis, placed at the origin. With a stationary complex
reference frame, the equivalent circuit can be represented in a vector model with
sinusoidal-shaped coordinates for the electrical quantities [Alaküla et al., 2013].
The three-phase equivalent circuit model is useful for an intuitive understanding
of the model derivation, but it is not the final model used in the implementation.
There is, for instance, another important part in fully deriving the inductance La in
the equivalent circuit in Figure 2.1. The total inductance for each phase-equivalent
circuit is the sum of the self- and mutual inductances, where the self-inductance
denotes the effect the current through a conductor winding has on itself and the
mutual induction is the contribution of the change in current from other nearby
conductors [Cheng, 1989]. This results in a combination of 5 separate, self- and
mutual inductances to keep track of for a three-phase equivalent system, which also
vary as a function of the electrical rotor angle [MathWorks, n.d.(c)]. In Section 2.3,
a transformation into a two-phase dq-reference frame is explained, which alleviates
the concern of keeping track of the rotor angle for state estimation.

2.3 dq-model

Clarke and Park transformations can be applied to the three-phase system model
to facilitate vector control of electrical quantities. A Clarke transformation converts
the stationary three-phase abc-reference frame to an orthogonal two-axis αβ -frame.
The transformation matrix to convert between the different vector quantities is given
by [MathWorks, n.d.(b)]:

[
α

β

]
=

2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]a
b
c

 (2.5)

αβ , dq, and abc refer to the electromagnetic vector quantities such as current,
voltage or magnetic flux in their respective reference frames. Figure 2.2 illustrates
how the vector quantities transform in the complex plane and develop in time and
the illustration is inspired by [MathWorks, n.d.(b)]. The Park transformation[

d
q

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

][
α

β

]
(2.6)

depicts the conversion from αβ -quantities to a direct and quadrature, dq-
reference, frame that rotates with the speed of the rotor. The transformation matrix
chosen and shown in (2.6) is for an initial alignment between the a and d axes,

20



2.3 dq-model

where θ is the electric angle between the a and d axes alignment and follows the
rotor position angle in the rotating dq-reference frame [MathWorks, n.d.(a)].

(a) The vector quantities of abc and αβ in
the complex plane.
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(b) The time-response of the quantities in the
abc and αβ systems.

Figure 2.2: Clarke transformation.

The relation between the reference frame and the magnetic flux of the motor is such
that the d-axis is aligned with the rotors permanent magnet flux axis λm [Štulrajter
et al., 2007].

Utilizing the Clarke and Park transformations in sequence, changes the time-
varying quantities in the system equations of the state-space dynamics to time-
invariant ones. The transformation of the vector quantities in the complex plane and
their respective time-responses can be found in Figure 2.3, with inspiration taken
from [MathWorks, n.d.(a)].

Under the assumption of a balanced symmetrical system, the zero sequence has
been excluded in the two-axis reference frames, as it is only expected to be equal
to 0 [MathWorks, n.d.(a)]. The dq-reference equivalent circuit voltage equations,
rearranged in a suitable structure for the state dynamics is given by [MathWorks,
n.d.(c)]:

dId

dt
=

1
Ld

(−RsId +ωeLqIq +Vd) (2.7)

dIq

dt
=

1
Lq

(−ωeLdId−RsIq−ωeλm +Vq)

The definition of the d-axis inductance Ld and the q-axis inductance Lq is given by:
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Chapter 2. Modeling

(a) The vector quantities of abc, αβ and dq
in the complex plane.
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(b) The time-response of the quantities in the
αβ and dq systems.

Figure 2.3: Park transformation.

Ld = Ls +Ms +
3
2

Lm (2.8)

Lq = Ls +Ms−
3
2

Lm

where Rs is the equivalent resistance of each stator winding, Id , Iq are the currents,
and Vd ,Vq are the voltages of the d and q axis, respectively. The variable λm refers
to the permanent magnet flux linkage, and Ls is the average per phase stator self-
inductance. Lm is the stator self- and mutual inductance fluctuation and Ms is the
average mutual inductance between the stator windings [MathWorks, n.d.(c)].

To find the rotor torque τ for a given flux linkage, the following equation is
applied [MathWorks, n.d.(c)]:

τ =
3
2

Ppole(λmIq +(Ld−Lq)IdIq) (2.9)

In the torque equation, it is also possible to identify the two different components
that contribute to the ability of the motor to generate torque. The first term in (2.9)
is from the PM magnetization and the second term is from the reluctance difference
between the d and q axes. The unit for magnetic reluctance is defined as inverse
Henry [Cheng, 1989].

2.4 Parameter Temperature Dependence

Rotor Temperature
The output from the PMSM state estimation model is the PM magnetic flux link-
age, λm, which ultimately only is useful as an intermediary state. The desired final
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quantities used for evaluation are rotor temperature and torque. To convert between
flux linkage and rotor temperature, equation (2.10) is used, which is based on a
linearized relationship between the two quantities at well parameterized reference
points.

λm = λm0(1+Br(Tr−T0)) (2.10)

Here, λm is the magnetic flux linkage of the PM rotor and λm0 is instead the value
at the well known operating point. The rotor temperature is similarly classified in
a current PM temperature estimate, Tr, and the reference operating point T0. The
parameter Br is the PM remanent flux density temperature coefficient [Wallscheid
et al., 2017].

Stator Resistance
Either a stator temperature measurement or estimate is assumed to be available dur-
ing run-time operations. Unlike the rotor temperature, stator temperature is easier
to measure because of its lack of movement during operation. It is also a useful
variable for overheat protection and resistance calculation. To take advantage of the
stator temperature measurement signal, equation

Rs = Rs0(1+αR(Ts−Ts0)) (2.11)

is used to compensate for the temperature dependence on stator winding resistance
Rs, where similar to equation (2.10) Rs0 is a parameterized reference resistance
at the reference temperature Ts0, and Ts is the stator temperature. The resistance
temperature coefficient of the winding is given by αR and is determined by the
material of the conductor [MathWorks, n.d.(d)].

2.5 PMSM Model Assumptions and Uncertainties

For high-performance systems, it is important to have accurate knowledge of all
motor parameters, which can be tricky for PMSMs because parameters tend to vary
around different operating points. The relation between flux and current is non-
linear and for practical applications, lookup tables or LUTs, are commonly em-
ployed to find the inductance of a certain working point as a function of speed and
torque. This non-linearity is partly because of the magnetic saturation of the rotor,
when an increase in external magnetic fields stops increasing the material mag-
netization further, and all domains of the material, are practically already aligned.
Salient motors have the additional property of an anisotropic rotor. The non-uniform
air gaps cause the reluctance, and in turn inductance, along distinct phase axes to
differ [Vyncke et al., 2010].

The reason PMSM motors experience a decrease in flux linkage and conse-
quently in torque during operation, is because of the rotor core losses, which are
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results of the permanent magnetic rotor being subjected to time-varying magnetic
fields. These losses are lower compared to other types of losses, but also highly
dependent on rotor speed and can end up having a tremendous effect on maximum
achievable speeds. The two main culprits for core losses can be explained with hys-
teresis and eddy current loss effects [Zarei et al., 2012]. Hysteresis losses refer to
the energy that is lost during the constant redirection of the magnetic domains of
the PM rotor when the flux axis is changed. Eddy currents generate losses when
the conducting materials in the rotor induce electromagnetic force that opposes the
magnetic flux it is exposed to [Zarei et al., 2012]. This reduction of the flux linkage
is what the estimation hopefully captures and what ultimately accounts for the rotor
losses and the resulting rotor temperature increase.

The model neglects the effects of space harmonics in air-gaps [Zarei et al.,
2012]. Another neglected effect is the skin effect, referring to the conductor property
differences at high frequencies, that leads to increased resistances [Cheng, 1989].
To run the PMSM at different speeds, a pulse-width modulation (PWM) inverter
feeds the motor with voltages at varying frequencies. The inverter switches the DC
voltages on and off at a high frequency to create a phase voltage that also varies in
frequency [Alaküla et al., 2013]. The errors that arise from a PWM inverter gener-
ating imperfect three-phase sinusoidal voltage are also neglected.

2.6 Motor-CAD Model

A more advanced and complete model was used for performance evaluations of
the state-estimation model. The model performed more computationally demanding
multi-physics calculations to create a more accurate motor model to generate ref-
erence signals for the estimation methods to be evaluated against. Motor-CAD is a
dedicated electrical motor design software that combines electromagnetic, thermal,
and mechanical design modules. The software uses 2D transient and magneto-static
finite element analysis (FEA) solvers in conjunction with thermal analysis using
computational fluid dynamics (CFD), FEA, and empirical correlations. Figure 2.4
illustrates a 3D motor model appearance in Motor-CAD. It is also possible to see the
salient PM rotor design with non-uniform airgaps and consequently also reluctance
along the rotor. The Motor-CAD software [ANSYS Inc, 2019] was also used to
generate motor maps to analyze motor behavior for different dynamic drive cycles.

Dynamic Drive Cycles
Examples of drive cycles used for evaluation of the designed state estimator are
WLTC (Worldwide harmonized Light-duty vehicles Test Cycles) and NEDC (New
European Driving Cycle), which are standardized drive cycles for motor emissions-
level test evaluations. The dynamic test cycles’ profile can be specified as vehicle
speed as a function of time [DieselNet, 2019]. To get corresponding motor torque
and rotor speed data for a given motor and cycle, a simple vehicle model with a
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2.6 Motor-CAD Model

Figure 2.4: A cross-section view of the motor in Motor-CAD, with the motor axis
pointing out of the page. The stator windings are represented by the outer yellow
partitions. The rotor is represented by the inner circle with a blue hue. The perma-
nent magnets in the rotor correspond to the green sections. From the image it is also
possible to ascertain that the motor has 4 pole pairs.

vehicle-speed regulator was used to calculate the required torque for a given refer-
ence speed. The computed torque was then sent to a vehicle model with loss calcu-
lations to calculate the resulting vehicle speeds.

PMSM Simulink Model
The reference-signal generation from motor maps exported from Motor-CAD were
done in Matlab Simulink and is illustrated in a block diagram representation of the
Simulink model, shown in Figure 2.5. For a given dynamic cycle, reference torque
and speed create reference currents Id and Iq from Motor-CAD motor maps. An in-
ternal feedback control loop is then employed to produce the associated reference
voltages. A coolant temperature is used as input to an exported lumped parame-
ter thermal model (LPTM) from Motor-CAD. This consequently generates magnet
temperature and flux linkages to get the final actuating currents and torque.

Figure 2.5: Motor-CAD block model structure in Matlab Simulink
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3
State Estimation Theory

3.1 Model Discretization

When designing an observer for a larger embedded computer system, there are a
lot of benefits in working with digital control systems. Two major attributes are
their flexibility and cost efficiency. Discretizing the continuous-state form of the
PMSM motor, derived in Section 2.3, can be done in many different ways. A com-
mon approach is to convert the process to a stroboscopic model, which shares the
computers’ sampled discrete-time sequence view of signals. Signals are often sam-
pled with a hold circuit that holds the input signals to be piece-wise constant, i.e.,
a zero-order-hold transformation (ZOH). Applying the discrete piecewise-constant
input signals to the continuous state-space system given in (3.1),

ẋ = Axc +Buc (3.1)
y =Cxc +Duc

transforms the description to the sampled data system shown in (3.2),

x[k+1] = Φx[k]+Γu[k] (3.2)
y[k] =Cx[k]+Du[k]

where the state vector is given by x, the input by u and the output by y. The conver-
sions of the dynamics with sample time h is given by:

Φ = eAh (3.3)

Γ =
∫ h

0
eAsdsB

The discrete-time state dynamics can be computed in many different ways, here
a numerical approach in Matlab was chosen using expm(). The simultaneous cal-
culations of Φ and Γ matrices are given by [Wittenmark et al., 2016]:
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3.2 Kalman Filter

[
Φ Γ

0 I

]
= exp

([
A B
0 0

]
h
)

(3.4)

Another approach of approximating analog systems is by converting continuous
differential equations to discrete difference equations. By approximating the differ-
ential operator with the forward Euler method, a substitution of operators is given
by:

dx(t)
dt
≈ x[k+1]− x[k]

h
(3.5)

The continuous system is then transformed into the resulting system:

x[k+1] = (I +hA)x[k]+hBu[k] (3.6)
y[k] =Cx[k]+Du[k]

An alternative approximation of the differential operator is with the backward
Euler method. A substitution using:

dx(t)
dt
≈ x[k]− x[k−1]

h
(3.7)

gives the resulting system after shifting forward one step, x′[k] = x[k−h]:

x′[k+1] = (I−hA)−1x′[k]+ (I−hA)−1hBu[k] (3.8)

y[k] =C(I−hA)−1x′[k]+ (C(I−hA)−1hB+D)u[k]

Euler’s conversion schemes supposedly work well when the sampling frequency
is fast relative to the control signal. A general rule of thumb for the choice of the
sampling period is obtained with (3.9),

hωc ≈ 0.05−0.14 (3.9)

where ωc is the crossover frequency in radians per second of the continuous-time
system. The interval gives a Nyquist frenquency that is about 23-70 times higher
than the crossover frequency [Wittenmark et al., 2016].

3.2 Kalman Filter

With a model definition expanded with measurement noise e and process noise v in
state-space form (3.10),
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Chapter 3. State Estimation Theory

ẋ = Ax+Bu+Nv (3.10)
y =Cx+Du+ e

we have the ability to reconstruct the state vector x from measured outputs y and
input signal u as long as the system is observable. The noise covariance matrices
are given by:

cov(v) = E[vvT ] = Q (3.11)

cov(e) = E[eeT ] = R

Further discussion on the observability of a system can be found Section 3.4. By
using an observer, a model of the plant dynamics separately simulating the system,
we can construct a state-estimate vector x̂. Regulating the estimate in a feedback
structure with the output estimation error, gives the complete observer:

˙̂x = Ax̂+Bu+K(y−Cx̂−Du) (3.12)
ŷ =Cx̂+Du

The estimation error can also be defined using the innovation term ε , named for
how it relates to the innovation in the measurement signal, and it is defined by
ε = y−Cx̂−Du.

The effect of the observer gain K can be seen more clearly by the state-
estimation error dynamics, x̃ = x− x̂. Rearranging (3.12) into the state-estimation
error dynamics gives

˙̃x = (A−KC)x̃+Nv−Ke (3.13)

Equation (3.13) illustrates the competing objectives of the observer gain K; the
speed of minimizing the transient error determined by A−KC versus balancing the
sensitivity to measurement noise e. By taking the properties of the process noise v
and the measurement noise e into account we can find the optimal observer gain
K [Glad and Ljung, 2003]. The observer gain K is then derived from minimizing
the expected error estimate variance. This leads to a stationary Riccati equation,
with the stabilizing constraint that the estimation error x̃→ 0 over an infinite time
horizon [Glad and Ljung, 2003]. The complication arises from the fact that the
PMSM model derived Section 2.3, Equations (2.7), is a LPV system that varies
with rotor speed ω . The LPV system allows for linear estimation techniques, but
since the rotor speed is expected to vary during operation it also means that the state
dynamics are time-varying and inhibit the use of the stationary solution.
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3.2 Kalman Filter

The following chapters utilize the discrete-time state description, so the final
results will also be presented as such. Previous equations are still applicable with a
replacement of notation, differential ẋ operators are changed to left shift operators
xk+1. Double time index k|m is read as value at time k given measurements up to
time m. The discrete-time observer description is then given as:

x̂k+1|k = Φkx̂k|k−1 +Γkuk +Nkvk +Kk(yk−Cx̂k|k−1−Duk) (3.14)

ŷk =Cx̂k|k−1 +Dkuk + ek

The discrete-time estimation error goes to zero when the eigenvalues of the
dynamics Φk−KkCk fall within the unit circle. To solve the compromise of mini-
mizing the transient error and suppression of process and measurement noise, we
once again refer to the state-estimation error:

x̃k+1|k = (Φk−KkCk)x̃k|k−1 +Nkvk−Kkek (3.15)

The recursive form of the estimation error covariance matrix is then given by:

Pk+1|k = cov(x̃k+1|k) = cov(xk+1− x̂k+1|k) =

(Φk− K̃kCk)Pk|k−1(Φk− K̃kCk)
T +NkQkNT

k + K̃kRkK̃T
k (3.16)

K̃ is to denote the need to solve for an optimal observer gain. The complete deriva-
tion of the recursive form involves more steps, but is based on the substitution of
x̂k+1|k with (3.15). Then collecting the error vector and using the assumption that the
stochastic variables, x̃k,vk, and ek, are uncorrelated in order to separate the stochas-
tic terms. Vector covariance properties then allow for the following substitution:

cov[(Φk− K̃kCk)(xk− x̂k|k−1)] = (Φk− K̃kCk)cov(xk− x̂k|−1)(Φk− K̃kCk)
T

= (Φk− K̃kCk)Pk|k−1(Φk− K̃kCk)
T

(3.17)

Completing the squares in Equation (3.16) and using compact notation results in the
following definition for Pk+1|k:

Pk+1|k =(K̃−ΦPCT (CPCT +R)−1)(CPCT +R)(K̃−ΦPCT (CPCT +R)−1)T

+ΦPΦ
T −ΦPCT (CPCT +R)−1CP Φ

T +NQNT

(3.18)

In this form the choice of K̃ can be induced. With K̃ chosen to minimize the covari-
ance matrix Pk+1|k using (3.19),
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K̃k = ΦkPk|k−1CT
k (CkPk|k−1CT

k +Rk)
−1 (3.19)

the minimal state prediction-error covariance becomes:

Pk+1|k = Φk(Pk|k−1−Pk|k−1CT
k (CkPk|k−1CT

k +Rk)
−1CkPk|k−1)Φ

T
k +NkQkNT

k (3.20)

The resulting Kalman filter algorithmic structure can be found in Algorithm 1. It
uses a description that includes the innovation term εk, with its covariance matrix Sk.
The matrix Ik is a square identity matrix with dimensions matching the state-space
system. The structure is employed to avoid repeating computations. The optimal
observer gain K is affected by a large amount of process noise Q by putting a greater
trust in the measurements and a large amount of measurement noise R by putting
greater emphasis on the model. The Kalman filter is described to yield the best
linear unbiased estimate, BLUE, and conditional expectation estimate [Gustafsson,
2012]. With the assumption of uncorrelated stochastic variables with Gaussian noise
distribution, it is also the minimum variance, MV, and maximum likelihood, ML,
estimate [Gustafsson, 2012].

Algorithm 1 Kalman filter [Gustafsson, 2012]

Initialize internal states: E(x0) = x̂1|0, cov(x0) = P1|0
1: repeat
2: function <KALMAN FILTER>(uk,yk)

Measurement update
3: εk = yk−Ckx̂k|k−1−Dkuk

4: Sk =CkPk|k−1CT
k +Rk

5: Kk = Pk|k−1CT
k S−1

k
6: x̂k|k = x̂k|k−1 +Kkεk
7: Pk|k = (I−KkCk)Pk|k−1

Time Update
8: x̂k+1|k = Φkx̂k|k +Γkuk

9: Pk+1|k = ΦkPk|kΦT
k +NkQkNT

k
10: return: x̂k+1
11: end function
12: until Shutdown

3.3 Extended Kalman Filter

For non-linear models there exist many alternative variations for state-estimation
filters. Unlike the linear case there is no optimal equivalent to the Kalman filter. The
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states and outputs are not guaranteed to have Gaussian distributions even though the
noise might be. Calculating the mean and covariance is not sufficient to describe the
conditional probability distribution from previous measurements [Glad and Ljung,
2003]. A non-linear system description with the same uncorrelated noise assump-
tions and covariance matrices as in (3.11), is given by:

xk+1 = f (xk,uk,vk) (3.21)
yk = h(xk,uk,ek)

with functions f and h. To find an observer gain K, we attempt to linearize the
system around a working point. Related to the Taylor expansion, the standard ex-
tended Kalman filter linearizes around the current state estimate x̂. Similar to the
previous section, the standard EKF uses a discrete-time algebraic Riccati equation,
DARE, for propagating the state vector covariance. The estimation-error covariance
matrix Pk is instead updated using matrices of the partial derivates of the non-linear
functions in (3.21):

Fk =
∂ f (x,u,0)

∂x

∣∣∣∣∣
x̂k|k,uk

(3.22)

Hk =
∂h(x,u,0)

∂x

∣∣∣∣∣
x̂k|k−1,uk

(3.23)

Fk and Hk are intended to be symbolically defined Jacobian matrices, but numeri-
cal derivatives might be considered if the non-linear system is too computationally
demanding or complex to differentiate. The standard EKF using only first-order
compensation should work well when the degree of model non-linearity is small.
There are, however, few guarantees regarding convergence for arbitrary set initial
conditions. The complete algorithmic structure is shown in Algorithm 2. It can also
be recognized that a linear state description will revert the standard EKF to a similar
structure as found in the original Kalman filter [Gustafsson, 2012].
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Algorithm 2 Extended Kalman filter [Gustafsson, 2012]

Initialize internal states: E(x0) = x̂1|0, cov(x0) = P1|0
1: repeat
2: function <EXTENDED KALMAN FILTER>(uk,yk)

Measurement update
3: εk = yk−h(x̂k|k−1,uk,0)
4: Sk = HkPk|k−1HT

k +Rk

5: Kk = Pk|k−1HT
k S−1

k
6: x̂k|k = x̂k|k−1 +Kkεk
7: Pk|k = (I−KkHk)Pk|k−1

Time Update
8: x̂k+1|k = f (x̂k|k,uk,0)
9: Pk+1|k = FkPk|kFT

k +Qk
10: return: x̂k+1
11: end function
12: until Shutdown

3.4 Observability

The observability of a system is an attribute of grave importance for the performance
of estimators. It signifies the relation between the internal states and measured out-
puts. States that are unobservable span the kernel of the observability matrix O ,
which for a continuous-time linear system is defined by:

O(A,C) =


C

CA
...

CAn−1

 (3.24)

The system is defined as observable when O has full rank. Full rank of the observ-
ability matrix O for the system A∈Rn×n means that there are n linearly independent
rows to recreate the full state vector through linear combinations of the measured
output y [Glad and Ljung, 2003].

A test of the rank of the observability matrix O does, however, lead to very
binary results. For improved insight of the degree of observability, we can instead
analyze the eigenvector decomposition of the observability Gramian, Ox. A defini-
tion of Ox can be derived from observing the energy of the output signal y(t) [Glad
and Ljung, 2003]. With no input signal and the initial state x0, the output is then
given by:

y(t) =CeAtx0 (3.25)

A scalar measure of the output signals energy is then given by:
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∫
∞

0
yT (t)y(t) = xT

0

∫
∞

0
eAT tCTCeAtdtx0 = xT

0 Oxx0 (3.26)

The Observability Gramian Ox can then be expressed as:

Ox =
∫

∞

0
eAT tCTCeAtdt (3.27)

An eigenvector decomposition of the observability Gramian Ox gives a measure
of the relative observability of the different states. A way to present the results is by
solving for the initial states x0 that give the output magnitude ‖y‖= 1 or:

x0 ∈ Rn; xT
0 Oxx0 = 1 (3.28)

The results were derived for continuous-time systems but are just as applicable
for discrete-time systems [Glad and Ljung, 2003]. The observability analysis for
the non-linear system is, however, a bit more obfuscated. The observability Gramian
created using Fk and Hk are only relevant around the linearized points but will hope-
fully lead to some insight.

The condition number will also be employed in the observability analysis. The
condition number of a matrix, κ(A), is a measure of how close to singular the matrix
A is. It is also used as a rough estimate for the arithmetic precision that may be
required. The condition number defined with singular values, is given by [Holst and
Ufnarovski, 2014]:

κ(A) =
σ1

σr
(3.29)

where σ1 is the largest and σr is the smallest singular value for the matrix A.
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4
Kalman Filter Design

4.1 Analysis of System Dynamics

To determine an appropriate Kalman filter sample time h, the system dynamics were
analyzed. The system dynamics are in the form of the dq-model in Equation (2.7),
with constant values for the inductances Ld , Lq and stator winding resistance Rs.
The system is LPV with respect to the electrical angular speed ωe, which increases
proportionally to the rotor speed. Because the thesis almost exclusively deals with
the electrical angular speed, the notation will be shortened to ω , and for the same
reason the PM magnetic flux linkage λm will instead be referred to simply as λ .
To visualize how the dynamics change, Figure 4.1 displays the eigenvalues of the
continuous system, A(ω), in a root locus plot with varying electrical angular speed.

Figure 4.1: Eigenvalues for the continuous-time system A(ω), as ω : 0 → 4200
rad/s. The response shows that the oscillation frequency increases with increasing
rotor speed, where the cross indicates the starting value 0 rad/s and the circle the
end point 4200 rad/s.
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The real parts of the eigenvalues remain constant when ω ≥ 15 rad/s, while
the imaginary parts increase linearly with ω , which implies that the oscillation fre-
quency of the system response increases proportionally with rotor speed. At the mo-
tor’s maximum rotor speed, 10 000 rpm, the maximum electrical angular speed is
≈ 4200 rad/s and the complex eigenvalues of the continuous-time system is approx-
imately −26± i4200. The system has complex eigenvalues, which have a decaying
sinusoidal response, Aampe−26t sin(4200t+φ), where the amplitude Aamp and phase
φ are determined by initial conditions [Massachusetts Institute of Technology, n.d.]
The quickest system dynamics occur when the rotor is spinning at maximum ve-
locity and the highest oscillation frequency is around 668 Hz. For reassurance of
this observation, step-responses of the system dynamics at different ω are given in
Figure 4.2.

Figure 4.2: Step-responses of the continuous-time system matrix A(ω) for increas-
ing ω , from inputs Vd and Vq to outputs Id and Iq. The figure shows how the system’s
eigenfrequency, gain and coupling interactions changes for different ω .

From the step-responses, it is also possible to observe how the oscillation fre-
quency of the response increases with increasing ω . The step-responses also reaf-
firm an oscillation frequency of ≈ 668 Hz at the motor’s maximum rotor speed. To
sufficiently capture the fastest system dynamics, a sample rate of fs > 2 ·668 Hz is
required to avoid aliasing [Wittenmark et al., 2016].

A different approach to finding an appropriate sampling frequency is by uti-
lizing the crossover frequency ωc, when the open-loop system response has unity
gain. The rule of thumb for choosing the sample time when approximating analog
controllers was shown in Equation (3.9). At maximum rotor speed, the crossover
frequency is ωc ≈ 7870 rad/s which gives a recommended sampling interval of
f ≈ 56 kHz− 0.15 MHz. The sampling rate of the Kalman filter will be further
evaluated in the simulation study, with considerations of the expected embedded
hardware clock-frequency limitations. To evaluate if the recommended sampling
frequency from the crossover frequency ωc is imperative for the observer design,
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Bode plots comparing if the frequency characteristics of the discrete-time system
are sufficiently close to the continuous-time system are given in Figure 4.3. The
discrete-time system is discretized with ZOH with sampling frequencies 1 kHz
and 2 kHz. The figures show that with sampling frequency 1 kHz, the lower fre-
quency characteristics are mostly accurate except for the phase characteristics for
Vd→ Id and Vq→ Iq. With sampling frequency 2 kHz, the frequency characteristics
are mostly accurate up to around 1 kHz. With the assumption that the current and
voltage frequencies will not exceed 1 kHz, a sampling frequency of 2 kHz ought to
suffice.

(a) Sampling frequency 1 kHz. (b) Sampling frequency 2 kHz.

Figure 4.3: Bode plot of the continuous-time and discrete-time systems, comparing
frequency characteristics. The discrete-time systems were sampled at 1 kHz in (a)
and 2 kHz in (b).

4.2 Design of PMSM Kalman Filter

A few different variations of the Kalman filter design were analyzed in this thesis.
To be able to estimate the flux linkage λ , the system description found in (2.7) from
Section 2.3, is expanded with 0 flux linkage dynamics. The most basic design is
with a R3×3 system dynamics matrix, with the state vector augmented to include a
λ estimate and it is described by the relations:

ẋ = Ax+Bu (4.1)
y =Cx
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4.3 Kalman-Gain Analysis

A =

 −
Rs
Ld

ωLd
Ld

0
−ωLd

Lq
−Rs

Lq
− ω

Lq

0 0 0

 B =


1

Ld
0

0 1
Lq

0 0

 C =

[
1 0 0
0 1 0

]
(4.2)

with the internal states x, input u and measured output y:

x = [Id , Iq,λ ]
T u = [Vd ,Vq]

T y = [Id , Iq]
T (4.3)

The system in (4.1) – (4.3) will eventually be augmented to include slow flux
linkage time dynamics in Section 4.4 to allow for an observability analysis, which
requires an asymptotically stable system. Later on in the Sections 4.8, an expanded
KF design that includes the coolant temperature as a state will also be introduced.

Constant-valued inductances and stator winding resistance were used to conduct
a parameter-sensitivity analysis. The matrix A, that describes the system in (4.2) is,
however, forced to be recreated every sample period to account for the varying
parameter ω . Incorporating updated parameter information can be done in conjunc-
tion with the change in rotor speed if the remaining time-varying parameters can be
efficiently updated. A performance comparison utilizing lookup tables, LUTs, for
inductances and temperature compensation for the stator winding resistance can be
found in the simulation study.

The P0 matrix was initialized as Q, which means that the initial variance of the
state error is given as the process noise. With no particular information on how the
process noise enters the system, it is simply chosen as three uncorrelated stochastic
disturbances on the states. The process error dynamics Nk is therefore chosen as
the identity matrix. The term NkQkNT

k in the time update of Pk|k−1 in Algorithm 1,
line 9, simplifies into Q. Without added noise in the reference signal generation, the
exact calibration of the process and measurement noise covariance matrices Q and
R, are not directly apparent during estimation simulations. With the assumption of
uncorrelated stochastic disturbances on the states and measured outputs, Q and R
are chosen as:

Q =

σ2
x1

0 0
0 σ2

x2
0

0 0 σ2
x3

 R =

[
σ2

y1
0

0 σ2
y2

]
(4.4)

with σ referring to the standard deviation of the respective signals. The initialization
of the state vector x̂0 is chosen to match startup values. With currents at zero and a
λc that corresponds to motor coolant temperature, the initial values are:

x̂0 = [0,0,λc]
T (4.5)

4.3 Kalman-Gain Analysis

This section presents a preliminary analysis of how the observer gain K as well as
the error covariance matrix P behave as a function of the electrical angular speed,
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K(ω) and P(ω). The dimensions of the observer gain matrix are K ∈ Rn×m, where
n is the number of states and m is the number of measured outputs and the error
covariance matrix has the same dimensions as the system A matrix, P ∈ Rn×n.

Figures 4.4 – 4.6 display the values of K(ω) and the diagonal of P(ω), the
state estimation error variance var(x̃), as a function of ω after 50 iterations of
Algorithm 1. Through testing it was deemed that the rate of change of the estima-
tion error covariance matrix P was small after 50 iterations of the KF algorithm. The
model of the third order state-space system is described in Section 4.2, discretized
with ZOH. The chosen Kalman filter sample rates effect how the error-variance os-
cillates. At standstill, the flux linkage uncertainty increases and the observer gain
increases as compensation, with the opposite effect for the current estimation. The
greatest change in result occurs from 1 kHz to 2 kHz, when the sampling frequency
fs > 2 ·668 Hz.

(a) K(ω) as a function of ω . (b) P(ω) diagonal, as a function of ω .

Figure 4.4: K(ω) and P(ω) of the discrete-time system, converted with ZOH with
the sampling frequency 1 kHz. The observer gains K1 and K2 correspond to the their
respective measured states in y, or Id and Iq.

Figure 4.7 displays the effect of increasing the magnitude of the noise covari-
ance matrices Q and R, respectively, with a gain of 1000. The effect of increasing
the process noise Q results in observer gains K(ω) that to a large extent rely on their
respective current measurements for the current estimation and a minimal and slow
compensation of the flux linkage with an observer gain close to zero at medium and
higher speeds. Increasing the measurement noise R, increases the reliance on the
model and the observer gains for the currents’ estimation decrease in turn. Unlike
all other designs, the Id measurement has a more prominent influence than Iq on the
flux linkage estimation result with the configuration that increases the magnitude of
R.
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(a) K(ω) as a function of ω . (b) P(ω) diagonal, as a function of ω .

Figure 4.5: K(ω) and P(ω) of the discrete-time system, converted with ZOH with
the sampling frequency 2 kHz.

(a) K(ω) as a function of ω . (b) P(ω) diagonal, as a function of ω .

Figure 4.6: K(ω) and P(ω) of the discrete-time system, converted with ZOH with
the sampling frequency 10 kHz.
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(a) K(ω) as a function of ω . (b) P(ω) diagonal, as a function of ω .

(c) K(ω) as a function of ω . (d) P(ω) diagonal, as a function of ω .

Figure 4.7: K(ω) and P(ω) of the discrete-time system, converted with ZOH with
the sampling frequency 2 kHz. The top row are the results from Q multiplied with
a factor of 103 and the bottom row is the same factor instead multiplied with R.
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4.4 Slow Flux Linkage Dynamics

Because of the poor flux linkage observability at low rotor speeds, an electrical an-
gular speed threshold, ωthreshold , was introduced to determine when the standard
Kalman filter was active. To more accurately asses the value of ωthreshold , an ob-
servability analysis of the observability Gramian Ox can be conducted. The system
does, however, need to be stable to be able to generate the observability Gramian. By
introducing a slow flux linkage dynamic, that minimally alters the behavior of the
KF, Ox can be generated and analyzed. The PM temperature time-constant value
is τm = 1800 s, which is obtained from observing a step response of a PM rotor
temperature change using the lumped parameter model from Motor-CAD. The dy-
namics can be written:

λ̇ =− 1
τm

λ (4.6)

A comparison of the observer gain K(ω) and error covariance matrix P(ω) was
done with different sample times and the results are shown in Figures 4.8 and 4.9.
The percentage error is defined by:

%Error =
Slow−Re f
|Re f |

·100 (4.7)

with the reference value Re f being K(ω) or P(ω) with zero flux linkage dynam-
ics and Slow the corresponding quantity with slow flux linkage dynamics. From
Figures 4.8 – 4.9 we can observe only a negligible difference, most pronounced
when the observer gain crosses zero, which occurs at ω ≈ 3000 rad/s when the
sampling rate is 1 kHz and at standstill when the sampling rate is 2 kHz. The ω

value when the observer gain crosses zero can be seen for the different sampling
rates in Figures 4.4 – 4.5.
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(a) Percentage deviation of K(ω) between
slow and zero λ dynamics.

(b) Percentage deviation of P(ω) between
slow and zero λ dynamics.

Figure 4.8: Percentage deviation of K(ω) and P(ω) with slow and zero λ dynamics,
with sampling frequency 1 kHz.

(a) Percentage deviation of K(ω) between
slow and zero λ dynamics.

(b) Percentage deviation of P(ω) between
slow and zero λ dynamics.

Figure 4.9: Percentage deviation of K(ω) and P(ω) with slow and zero λ dynamics,
with sampling frequency 2 kHz.

4.5 Observability Gramian

With the introduction of slow flux linkage time dynamics that only alter the behavior
of the filter minimally, the system dynamics are stable and we are able to generate
the observability Gramian Ox. By observing how the observability of λ changes for
different ω , we can find an initial estimate for ωthreshold that can be further evaluated
during simulations.

An eigenvector decomposition of Ox does not always lead to near linearly in-
dependent state compositions. For the system dynamics utilized in the standard KF
they are, however, closely associated with the original states. A 3D representation
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of the eigenvector directions of Ox is shown in Figure 4.10. From the figure, it is
possible to observe the close relation between the eigenvectors and the associated
original states. The eigenvectors associated to the currents also have a negative ori-
entation for ω ≥ 50.

(a) (b)

Figure 4.10: Eigenvectors of Ox for the third order continuous-time system in
(4.2) – (4.3) modified with slow flux linkage dynamics (4.6), with electrical angular
speed 0 rad/s in (a) and 50 and 4200 rad/s in (b).

The eigenvalues of Ox are shown in Figure 4.11. From the figure, we can observe
a big jump in magnitude of the eigenvalue for λ that levels off after ω ≈ 250 rad/s.
The magnitude difference of the eigenvalues is quite large and is approximately at
worst case a difference of 1012. This difference is potentially exacerbated by how
different physical variables are numerically quantified for different SI units.

The observability is poor at low rotational speeds and near standstill because the
back-EMF is small during these conditions and as a result the connection between
the flux linkage and the currents is weak. The weak connection essentially inhibits
the ability to estimate the flux linkage from the currents.

To improve the visibility of the results, a table of the required input-signal
magnitudes for a resulting output norm equal to 1 is presented in Table 4.1.
The set of states x, that have an output norm ‖y‖ = 1, is given by the ellipsoid
{x ∈ Rn; xT Oxx = 1} [Stanford University, 2001]. The Table 4.1 and Figure 4.11
show that unlike the other signals, Id observability worsens slightly with increased
rotor speed and that the observability has mostly converged at ω ≈ 500 rad/s.

Because of the large difference in the magnitude of the eigenvalues, we can
also expect that the condition number κ(Ox(ω)) is large as well, which is shown in
Figure 4.12. This is also a possible motivation for normalizing the system dynamics
to improve the numerical stability of the system. The condition number is generated
both from a Matlab routine as well as the singular value definition in (3.29) for
reassurance.

An observability analysis of the ZOH discretized system was also conducted
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Figure 4.11: Eigenvalues of Ox(ω) of the third-order continuous-time system in
(4.2) – (4.3) modified with slow flux linkage dynamics (4.6) as a function of ω .

Table 4.1

State magnitudes {x ∈ Rn; xT Ox(ω)x = 1}
ω [rad/s] |Id | [A] |Iq| [A] |λ | [Wb-turns]
50 9.46 3.59 8.18 ·10−6

500 9.62 3.41 7.02 ·10−6

4200 9.63 3.40 7.00 ·10−6

with sampling frequencies 1 kHz and 2 kHz. The discrete-time system with sam-
pling frequency 2 kHz had a similar eigenvector decomposition of Ox as the
continuous-time system. With sampling frequency 1 kHz, however, the eigenvectors
associated with the currents become positively oriented once again when ω ≥ 3200
rad/s. This change occurred at around the same ω that the state estimation error
variance changes, seen in Figure 4.4. Figure 4.13 displays the eigenvalues of the
observability Gramian Ox(ω) and Figure 4.14 is a plot of the condition number
κ(Ox(ω)) calculated from a Matlab routine for the discrete-time systems. The figure
with eigenvalues show that using a 2 kHz sampling frequency gives slightly larger
eigenvalue magnitudes and the condition number is also slightly smaller except for
when the motor is at maximum velocity, ω = 4200 rad/s. The eigenvalue magnitude
proportions of the discrete-time system is relatively similar to the continuous-time
system, but altered in such a way that it drastically reduces the condition number.
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Figure 4.12: The condition number κ(Ox(ω)) of the third-order continuous-time
system in (4.2) – (4.3) modified with slow flux linkage dynamics (4.6) as a function
of ω , using both a Matlab routine and the singular value definition.

(a) Eigenvalues of Ox(ω) at sampling fre-
quency 1 kHz.

(b) Eigenvalues of Ox(ω) at sampling fre-
quency 2 kHz.

Figure 4.13: Eigenvalues of the observability Gramian of the third-order system
(4.2) – (4.3) modified with slow flux linkage dynamics (4.6) and ZOH discretized,
as a function of ω .
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Figure 4.14: The condition number κ(Ox(ω)) of the third-order (4.2) – (4.3) mod-
ified with slow flux linkage dynamics (4.6) and ZOH discretized with sampling
frequencies 1 kHz and 2 kHz. The condition number was calculated using a Matlab
routine and the y-axis is defined in logarithmic scale.
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4.6 Noise Transfer Function Gain

The effect measurement and process noise have on the flux linkage estimation re-
sult was analyzed for different rotor speeds. A Bode magnitude plot of the transfer
function of the measurement noise e to the estimation error λ̃ is given in Figure 4.15
and correspondingly for the process noise v to λ̃ in Figure 4.16. The noise transfer
functions were derived from the plant model:

x[k+1] = Φx[k]+Γu[k]+ v[k] (4.8)
y[k] =Cx[k]+ e[k]

and the observer model:

x̂[k+1] = Φx̂[k]+Γu[k]+K(y[k]−Cx̂[k]) (4.9)
ŷ[k] =Cx̂[k]

where the resulting dynamics of the estimation error x̃ = x− x̂ can be described as:

x̃[k+1] = Φx[k]+Γu[k]+ v[k]−Φx̂[k]−Γu[k]−K(Cx[k]+ e[k]−Cx̂[k]) (4.10)
= (Φ−KC)x̃[k]+ v[k]−Ke[k]

which gives the process noise to estimation error transfer function Hv(z):

Hv(z) = (zI− (Φ−KC))−1 (4.11)

and the measurement noise to estimation error transfer function He(z):

He(z) =−(zI− (Φ−KC))−1K (4.12)

The transfer functions vary with ω , which affects the system dynamics matrix Φ,
as well as observer gain K, which in turn are both affected by the noise covari-
ance matrices Q and R and the number of iterations. The calibration of the noise
covariance matrices are described in greater detail in Section 5.6. Figures 4.15 and
4.16 both include the results on the observer gain Kk after 1 and 50 iterations of
the time-varying KF algorithm on the state estimation-error covariance matrix Pk.
The model is of the discrete-time dynamic coolant temperature system with sam-
pling frequency 2 kHz. The dynamic coolant temperature KF has an expanded state
vector which includes the coolant temperature and is described in further detail in
Section 4.8.

From the figures, it is possible to observe that the measurement noise is strongly
attenuated and that for both transfer functions, the differences in gain characteristics
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for different ω are reduced after multiple KF algorithm iterations. It is also possi-
ble to observe a strong sensitivity to flux linkage process noise during low rotor
speeds, when the flux linkage observer gain increases. At these low rotor speeds
when ω = 10 rad/s, the dynamic coolant temperature KF will, however, switch to
a low-observability estimator (see Section 4.7) and avoid the increase in process-
noise sensitivity.

(a) After 1 iteration of observer gain K. (b) After 50 iterations of observer gain K.

Figure 4.15: Bode magnitude plot of the transfer function for measurement noise e
to λ estimation error for varying ω .

(a) After 1 iteration of observer gain K. (b) After 50 iterations of observer gain K.

Figure 4.16: Bode magnitude plot of the transfer function for process noise v to λ

estimation error for varying ω .
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4.7 Description and Motivation for Low-speed Mode with
Switching

Based on the related research on PM rotor temperature estimation from the back-
EMF [Wallscheid et al., 2017], the observability of the flux linkage is found to be
low during operating ranges near standstill, which the results in Section 4.5 also
confirm. This leads to an observer gain for λ that spikes when ω = 0. Inspired by
[Wallscheid et al., 2017], a PM rotor temperature estimation scheme that switches
for rotor speeds under a specified ωthreshold is presented. An algorithm design was
tested that keeps the original system dimensions. Because the rotor thermal stress
is generally lower during low rotor speeds, when ω ≤ ωthreshold , the low-speed es-
timator does not use the model to update the state estimation and λ is instead esti-
mated using (2.10) from Section 2.4, from a PM rotor temperature estimation that
exponentially decays to the coolant temperature. When the KF is active the rotor
temperature Tr is instead calculated outside the algorithm with (2.10) using the KF
state estimation output. The torque is also always calculated outside the algorithm
using (2.9) from Section 2.3. A more thorough analysis for finding an appropriate
ωthreshold was conducted in Section 4.5. The switching algorithm was based on the
standard Kalman filter with a ZOH discretization using the sample time h, and is
presented in Algorithm 3, where Tck is the coolant temperature at sample k and T̂rk
is the latest PM temperature estimate. The PM temperature estimate decays with a
time-constant τm = 1800 s.
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Algorithm 3 Direct coolant temperature KF with low speed estimator switch

Initialize internal states: E(x0) = x̂1|0, P1|0 = Q
1: repeat
2: function <KALMAN FILTER>(uk,yk,ωk,Tck , T̂rk−1 )
3: if |ωk| ≥ ωthreshold then

ZOH discretization
4: Block = expm([Ak,Bk;zeros(2,5)] ·h)
5: Φk = Block(1 : 3,1 : 3)
6: Γk = Block(1 : 3,4 : 5)

Measurement update
7: εk = yk−Ckx̂k|k−1

8: Sk =CkPk|k−1CT
k +Rk

9: Kk = Pk|k−1CT
k S−1

k
10: x̂k|k = x̂k|k−1 +Kkεk
11: Pk|k = (Ik−KkCk)Pk|k−1

Time update
12: x̂k+1|k = Φkx̂k|k +Γkuk

13: Pk+1|k = ΦkPk|kΦT
k +Qk

14: else
Low-speed estimator

15: T̂rk = Tck +(T̂rk−1 −Tck)e
− h

τm

16: λk = λ0(1+Br(T̂rk −T0))
17: x̂k+1 = [yk,λk]

T

18: end if
19: return: x̂k+1
20: end function
21: until Shutdown

4.8 Expanded System with Coolant Temperature

A Kalman filter design that more generally takes advantage of the coolant temper-
ature signal measurement, was also developed to include the coolant temperature
Tc as a state. The system description is also based on the idea of updating the flux
linkage below ωthreshold , when it is under low thermal stress, with the coolant tem-
perature. Applying the equation for temperature to flux linkage conversion (2.10),
to drive the flux linkage estimation towards its corresponding value at the coolant
temperature λc, gives the relation:

λc = λm0(1+Br(Tc−T0)) (4.13)

By grouping the constant terms and using it as the input signal, the input signal λ 0
0

is then described by:
λ

0
0 = λm0(1−Br ·T0) (4.14)

50



4.8 Expanded System with Coolant Temperature

where λ 0
0 is the equivalent of the flux linkage estimation at 0 ◦C. The well parame-

terized reference point λm0 was acquired from a LUT that uses both the rotor speed
and torque to generate an output and this is the same parameter used for determining
the current PM temperature estimate Trk using (2.10). The final R4×4 system matrix
was obtained after the inclusion of slow PM time dynamics τm, to circumvent the
previous problem of generating the observability Gramian Ox. The dynamic coolant
temperature system has Tc as a state with dynamics and a measurement signal but
this should not greatly affect the results in comparison to the direct coolant tem-
perature system because the measurement noise and model disturbance for Tc are
assumed to be low. The coolant temperature does, however, affect the flux link-
age estimation even when ω > ωthreshold , which could have a non-negligible bias
towards the coolant temperature even at higher rotor speeds. Considering that the
time constant τm is long, it should, however, only be a minor difference to the direct
coolant temperature observer. The expanded state-space model is described with the
following matrices and state, input and output vectors:

A =


− Rs

Ld

ωLd
Ld

0 0
−ωLd

Lq
−Rs

Lq
− ω

Lq
0

0 0 − 1
τm

λm0Br
τm

0 0 0 − 1
τm

 B =


1

Ld
0 0

0 1
Lq

0
0 0 1

τm
0 0 0

 C =

1 0 0 0
0 1 0 0
0 0 0 1


(4.15)

x = [Id , Iq,λ ,Tc]
T y = [Id , Iq,Tc]

T u = [Vd ,Vq,λ
0
0 ]

T (4.16)

The process and measurement noise covariance matrices Q and R were expanded
to R4×4 and R3×3, respectively, with the modelled covariance of coolant tempera-
ture Tc to be relatively constant and the signal variance subsequently chosen to be
relatively low. The final algorithm description for the expanded KF with coolant
temperature is shown in Algorithm 4. The expanded KF also utilizes ωthreshold and
will at low operating speeds stop updating the estimation error covariance matrix
and update the flux linkage estimation solely with the system model, unlike the di-
rect coolant temperature KF, which utilizes an initial λ value based on the rotor
temperature estimation from when the system states were easier to observe. The
dynamic coolant temperature KF had difficulties with λ estimation during strong
deceleration below the observability speed threshold. A torque threshold τthreshold
and ωthreshold combination was instead used to switch to the low-speed estimator. As
a result of the torque being able to vary widely when the observer has low observ-
ability, the parameter λm0 also has the ability to vary widely because of the change in
operating point for the LUT, while the low-speed λ estimator only changes slowly.
To improve the accuracy of the PM temperature estimation, the parameter value λm0
in (4.15) was kept from before the switch to the low-speed estimator.
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Algorithm 4 Dynamic coolant temperature KF with low speed estimator switch

Initialize internal states: E(x0) = x̂1|0, P1|0 = Q
1: repeat
2: function <KALMAN FILTER>(uk,yk,ωk,τk)

ZOH discretization
3: Block = expm([Ak,Bk;zeros(3,7)] ·h);
4: Φk = Block(1 : 4,1 : 4);
5: Γk = Block(1 : 4,5 : 7);
6: if |ωk| ≥ ωthreshold AND τk ≥ τthreshold then

Measurement update
7: εk = yk−Ckx̂k|k−1

8: Sk =CkPk|k−1CT
k +Rk

9: Kk = Pk|k−1CT
k S−1

k
10: x̂k|k = x̂k|k−1 +Kkεk
11: Pk|k = (Ik−KkCk)Pk|k−1

Time update
12: x̂k+1|k = Φkx̂k|k +Γkuk

13: Pk+1|k = ΦkPk|kΦT
k +Qk

14: else
Low-speed estimator

15: εk = yk−Ckx̂k|k−1

16: Sk =CkPk|k−1CT
k +Rk

17: Kk = Pk|k−1CT
k S−1

k
18: Kk(3, :) = 0
19: x̂k|k = x̂k−1|k−1 +Kkεk
20: x̂k+1|k = Φkx̂k|k +Γkuk
21: end if
22: return: x̂k+1
23: end function
24: until Shutdown

4.9 Normalized System Dynamics

The analysis of the observability Gramian gave an early intuition of possible nu-
merical computation uncertainties. To attempt to alleviate some of the numerical
concerns that might arise from the different signal units, a normalized system de-
scription found in [Glad and Ljung, 2003] was implemented. In an effort to im-
prove the condition number κ(Ox(ω)), we can normalize the signals and limit their
operating range to the interval |xi| ≤ 1. The normalized signals xn,yn and un are
transformed to their original signal values by applying diagonal matrices composed
of the largest operational signal magnitudes across the diagonal, where the largest
signal magnitudes were found in simulations with the greatest operating dynamics:
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x = Dxxn y = Dyyn u = Duun (4.17)

The state-space matrices were then converted to normalized equivalents with the
diagonal matrices as:

An = D−1
x ADx Bn = D−1

x BDu Cn = D−1
y CDx (4.18)

The eigenvalues of the observability Gramian of the continuous R4×4 system as a
function of ω are shown in Figure 4.17, for both the standard and normalized sys-
tem. A comparison of the condition number κ(Ox(ω)) between the standard and
normalized system is shown in Figure 4.18. The magnitude difference of the eigen-
values is smaller after normalizing the system, with the most pronounced change in
eigenvalue corresponding to λ , resulting in a reduction of the maximum condition
number κ(Ox(ω)) by an order of ≈ 104. The dynamic coolant temperature system
has an observability Gramian eigenvector decomposition that still is nearly linearly
independent and closely associated with the original states, but unlike the direct
coolant temperature system it also has a parameter that is dependent on the torque.
An estimate of λm0 is obtained for every ω using reasonable values for the rotor
speed and torque combinations.

(a) Eigenvalues of Ox(ω). (b) Eigenvalues of Ox(ω) of the normalized
system.

Figure 4.17: Eigenvalues of the observability Gramian of the fourth-order
continuous-time standard and normalized system as a function of ω .

A comparison of the standard and normalized discrete-time systems is also
given, with the eigenvalues of the observability Gramian displayed in Figure 4.19
and condition number in Figure 4.20, using a sampling frequency of 1 kHz.
Figures 4.21 and 4.22 display the eigenvalues and condition numbers of the dis-
cretized system with sampling frequency 2 kHz. Discretizing the dynamic coolant
temperature system lowers the condition number significantly compared to the
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Figure 4.18: Condition number κ(Ox(ω)) of the standard and normalized
continuous-time fourth-order systems as a function of ω . The condition number
was calculated using the Matlab routine cond() and the y-axis is in logarithmic
scale.

continuous-time system. After normalizing the system, the biggest change in eigen-
value magnitude was once again for λ and unlike its continuous-time counterpart,
the condition number also decreased with increased rotor speed. The system with
2 kHz sampling frequency also had slightly higher eigenvalues, improved observ-
ability, with only a minor increase in the condition number.
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(a) Eigenvalues of Ox(ω). (b) Eigenvalues of Ox(ω) of the normalized
system.

Figure 4.19: Eigenvalues of the observability Gramian of the fourth-order discrete-
time system as a function of ω , with sampling frequency 1 kHz.

Figure 4.20: Condition number κ(Ox(ω)) of the standard and normalized observ-
ability Gramian of the fourth-order discrete-time system as a function of ω , with
sampling frequency 1 kHz. The condition number was calculated using the Matlab
routine cond() and the y-axis is in logarithmic scale.
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(a) Eigenvalues of Ox(ω). (b) Eigenvalues of Ox(ω) of the normalized
system.

Figure 4.21: Eigenvalues of the observability Gramian of the fourth-order discrete-
time system as a function of ω , with sampling frequency 2 kHz.

Figure 4.22: Condition number κ(Ox(ω)) of the standard and normalized observ-
ability Gramian of the fourth-order discrete-time system as a function of ω , with
sampling frequency 2 kHz. The condition number was calculated using the Matlab
routine cond() and the y-axis is in logarithmic scale.
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4.10 Kalman Filter Simulation Environment

The Kalman filters were implemented in Matlab Simulink to simulate the sensorless
PMSM estimation schemes. The input signals for the system are reference signals
generated from Motor-CAD simulations. The KF model was initialized with noise
covariance matrices and parameters for the system dynamics. The stator winding
resistance Rs was a constant value, defined at a well parameterized reference tem-
perature. The initialization also included the requisite parameters for the equations
to compensate the stator winding resistance with the stator temperature Ts (2.11)
and calculating the torque and rotor temperature from the flux linkage estimation.
The inductances Ld and Lq were both defined as LUTs that matched the inductance
with a specific rotor speed and torque combination as well as constant values based
on the average of the LUT. Figure 4.23 shows a depiction of the inductance LUTs.

(a) Ld LUT representation. (b) Lq LUT representation.

Figure 4.23: A depiction of the Ld and Lq LUT, respectively, which gives an induc-
tance value in units of mH from a given torque and rotor speed combination.

The Kalman filters executed at sampling-time intervals h. The current flux link-
age estimation λ̂k from the Kalman filter was used to estimate both the torque and
PM rotor temperature from Equations (2.9) and (2.10). The rotor temperature was
calculated by reordering Equation (2.10) to instead calculate the rotor temperature
for a given flux linkage value. The flux linkage to rotor temperature conversion
was very sensitive because of the divisions with both the reference point λm0 and
the remanent induction temperature coefficient Br, which both are small numbers.
A change in flux linkage of ≈ 1 mWb-turns corresponds to a temperature change
of ≈ 15◦C.

The Simulink model also included a number of first-order low-pass (LP) filters.
The Kalman filter itself possessed the capability to filter out noise from the input
signal if calibrated correctly but additional LP-filters have been added to separately
tune the estimations of the different signals. The transfer function of the continuous-
time representation of the LP-filter with unit filter gain is described by:
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H(s) =
1

τLPs+1
(4.19)

where τLP is the filter time constant which is inversely proportional to the cut-off
frequency. The overarching goal was to estimate the PM rotor temperature change,
which occurs on a significantly longer time frame, and introducing minor time de-
lays from LP-filters with shorter time constants can be reasonably motivated. An
LP-filter was applied to the rotor temperature estimation. The PM rotor tempera-
ture was calculated from flux linkage reference points λm0 that were obtained from
a LUT at a given torque and rotor speed combination. The time constant for the
LP-filter used in rotor temperature estimation was instead chosen to smooth out the
change in working points λm0. An additional LP-filter was placed on the input actu-
ation torque from the Motor-CAD reference signal. The current regulator can cause
noise in the actuation torque reference-signal generation during noisy test cycles
and high speed, low torque steady-state operations. The torque LP-filter time con-
stant was chosen to be relatively fast and was used to avoid changes in LUT tables
and low-speed estimator switches because of noise. A block model representation
of the Simulink KF implementation is shown in Figure 4.24.

Torque ref LP

LUTs

ω

Ld ,Lq,λm0

Ts Rs compensation
Rs

Id , Iq,Tc,Vd ,Vq

Kalman Filter

Id , Iq/Îd , Îq

Ld ,Lq/L̂d , L̂q

λ̂

λm0

LP

τ̂

compute.
τ̂

T̂r

compute.

T̂r

LP
Rotor temp.

estimate

Figure 4.24: Block model of the Simulink KF implementation. The dashed LP-filter
for the current input signals for the τ̂ computation is not always active. There are
also variations of the design that use either reference or estimated input currents
for the τ̂ computation block. The EKF model uses estimated inductances instead of
the LUT results to calculate the torque. Only the direct-Tc KF uses the Tr estimate,
during the low-speed estimator.
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5
Kalman Filter Simulation
Study

5.1 Motor-CAD Reference Signals and Motor Model

The simulation study contains the results and analysis of the KF observer designs
and was run with reference signals, generated from Motor-CAD simulations us-
ing two dynamic cycles, NEDC and WLTC. The test cycles are standardized ve-
hicle drive cycles that were used in conjunction with the generated Motor-CAD
reference signals for Kalman filter evaluation. The test cycles are illustrated in
Figures 5.1 and 5.2, which show how the electrical angular speed and torque evolve
in time. A NEDC test cycle is shown in Figure 5.1 and a WLTC cycle in Figure 5.2.
To evaluate the different low-speed estimators and observe the cooling process, a
test cycle containing a substantial warm-up which then transitioned to a steep de-
cline in speed was created. A modified WLTC cycle with more aggressive dynamics
and a long cooldown period was used for that purpose.

In Table 5.1 a few relevant characteristics of the motor used in the simulation
study is also presented.

Table 5.1: A few key characteristics of the Nissan Leaf motor used in the simulation
study, which are presented in following table.

Nissan Leaf motor characteristics.
Maximum torque [Nm] 270
Maximum rotor speed [rpm] 10 000
Average LUT Ld [H] 2.165 ·10−4

Average LUT Lq [H] 6.5 ·10−4

Rs at 25 ◦C [Ω] 8.1 ·10−3

Coolant water temperature [◦C] 60
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(a) NEDC electrical angular speed ω . (b) NEDC torque.

Figure 5.1: NEDC cycle with ω and torque over time.

(a) WLTC electrical angular speed ω . (b) WLTC torque.

Figure 5.2: Electrical angular speed ω and torque over time for the high-speed
WLTC cycle with cooldown period.

5.2 Comparison with Updated Parameters

The parameters that describe the system dynamics can vary widely during operation.
To determine the significance of the parameter variations, a comparison between
simulations with constant parameters Rs,Ld and Lq and working-point dependent
inductances from LUTs and stator-winding resistance with stator temperature com-
pensation was done. The flux linkage estimation is shown in Figure 5.3a and the
rotor temperature estimation in Figure 5.3b for the direct coolant temperature KF.
A comparison between torque estimations was excluded because of the difficulty
to meaningfully ascertain differences from an estimation plot. The large flux link-
age estimation spikes occur when ω is low, which can be explained by the low
observability. Estimating the rotor temperature from the flux linkage is very sensi-
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tive to errors, resulting in large PM temperature estimation errors. Figure 5.3b does,
however, show a large improvement when utilizing LUT inductances. The impact
of stator winding temperature compensation was low in comparison, but its effect
increased during operations that heated the stator considerably.

(a) Flux linkage λ estimation. (b) Rotor temperature Tr estimation.

Figure 5.3: Results for λ and Tr estimation with NEDC cycle and error with con-
stant model parameters, updated Rs and working-point dependent inductances. The
reference signals were temperature and flux linkage generated by the Motor-CAD
model. A drastic improvement in the λ and Tr estimation was obtained by correcting
for the inductance variations. The tests were done using the direct-Tc KF.

5.3 Comparison with Low-speed Estimator

Low-speed Switch
To illustrate the effects of the low-speed estimator, Figure 5.4 shows the flux link-
age estimation, Figure 5.5, shows the rotor temperature estimation and Figure 5.6,
shows the torque estimation with and without the low-speed estimator for the di-
rect coolant temperature KF. The low-speed estimator ωthreshold was chosen to be
500 rad/s in the comparisons. Figure 5.4 shows a large improvement in the λ esti-
mation with the alternative estimation method, avoiding the use of the flux linkage
observer gain when it spikes during the low-observability mode. The major im-
provement in λ estimation also results in a similar improvement in rotor tempera-
ture Tr estimation, but not the torque estimation.
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Figure 5.4: Flux linkage estimation and error comparison, with and without low-
speed estimator switch. Using a low-speed estimator drastically improves the flux
linkage estimation. The ωthreshold was chosen to be 500 rad/s using the direct-Tc KF.

Figure 5.5: Rotor temperature estimation and error comparison, with and without
low speed estimator switch. The ωthreshold was chosen to be 500 rad/s using the
direct-Tc KF.
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Figure 5.6: Torque estimation and error comparison, with and without low-speed
estimator switch. The improvement in the flux linkage estimation does not greatly
impact the torque estimation results. The ωthreshold was chosen to be 500 rad/s using
the direct-Tc KF.

Electrical Angular Frequency Threshold
Different ωthreshold were tested to find what value worked best during simulations.
A comparison of the rotor temperature estimation with different threshold values
can be seen in Figure 5.7. A table with L1-norm averages of the respective esti-
mation errors is given in Table 5.2 and correspondingly for the standard deviation
in Table 5.3. From Table 5.3, it is possible to observe that the error-signal vari-
ation increases with increasing ωthreshold , but with only minor changes from 500
to 600 rad/s. In Table 5.2, the best choice of ωthreshold that minimized the estima-
tion errors varied depending on which of the outputs that were prioritized. Because
the purpose of estimating the flux linkage is to estimate the rotor temperature and
torque, ωthreshold should be chosen accordingly. The design that minimized the rotor
temperature estimation error used a threshold value of 600 rad/s. It should also be
noted that increasing the threshold, decreased the time the KF was active and the
low-observability sensitivity must be weighed against the KF inactivity time.
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Figure 5.7: Comparison of different ωthreshold for rotor temperature estimation and
error. Minor Tr estimation improvements can be seen by increasing the threshold
slightly. Test were done using the direct-Tc KF.

Table 5.2: A ωthreshold at 600 rad/s was found to minimize the Tr estimation error,
whereas a ωthreshold at 400 rad/s minimized λ and τ estimation errors.

L1-norm average error for different ωthreshold

ωthreshold [rad/s] ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]
400 31.67 0.5040 0.4439
500 34.98 0.4921 0.4458
600 34.83 0.4869 0.4460

Table 5.3: The standard deviation of the estimation error increased with increasing
ωthreshold , but levelled out at around 500 rad/s.

Standard deviation of error for different ωthreshold
ωthreshold [rad/s] σλ of error [µWb-turns] σTr of error [◦C] στ of error [Nm]
400 65.95 0.1217 1.957
500 81.51 0.1432 1.966
600 81.45 0.1433 1.966
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5.4 Comparison with Coolant Temperature State
Augmentation

Parameter Tuning
To be able to start the evaluation process, a few of the KF design parameters were
first calibrated through simulation studies. A collection of L1-norm error averages
for the flux linkage, rotor temperature and torque estimation using varying ωthreshold
and τthreshold combinations is shown in Table 5.4. The dynamic coolant tempera-
ture KF had difficulty estimating the flux linkage when decelerating to under the
observability speed threshold. The flux linkage fluctuations caused by changes in
torque can not be correctly estimated during low observability, resulting in rotor
temperature estimation spikes. The table shows that a τthreshold = −20 Nm with
ωthreshold = 600 rad/s yields the best rotor temperature estimation but considering
all three estimation errors, the best results were given with τthreshold =−20 Nm and
ωthreshold = 500 rad/s.

Table 5.4: The best overall estimation results were given using the
ωthreshold = 500 rad/s and τthreshold = −20 Nm combinations for the dynamic-Tc
KF.

L1-norm error average with varying ωthreshold and τthreshold combinations.
ωthreshold [rad/s] τthreshold [Nm] ‖λ̃‖1 average [µWb-

turns]
‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]

400 -20 188.17 0.9551 0.5042
400 -10 228.62 1.1020 0.5111
500 -20 176.59 0.6878 0.5035
500 -10 216.63 0.8169 0.5101
600 -20 185.79 0.6873 0.5061
600 -10 226.73 0.8197 0.5131
700 -20 195.32 0.6888 0.5104
700 -10 237.19 0.8245 0.5179

The KF low-speed cool-down characteristics were calibrated by reducing the
PM temperature time constant τm. Although the tests used slightly shorter time
constants τm, it was still slow enough to expect the same negligible difference in
observer gain and estimation error covariance when comparing the slow flux link-
age dynamic system with zero flux linkage dynamics. In Figure 5.8, the dynamic
coolant temperature KF flux linkage and rotor temperature estimation error for vary-
ing PM temperature time constants during the cool-down period are shown. Their
respective L1-norm average errors are shown in Table 5.5. During the cool-down
period, the torque was 0 and was therefore excluded for the τm calibration tests.
From the simulation tests, it appeared that the best estimation results are given for
τm = 1500 s. To determine how the faster PM time constant performed during spo-
radic activation of the low-speed estimator, Table 5.6 shows the L1-norm average
estimation error for the NEDC test cycle. The table shows only a minor degradation
of the estimation, indicating the new time constant may be a worthy trade-off for
the improved estimation during cool down.
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Table 5.5: Lowering the PM temperature time constant τm slightly to 1500 s im-
proved the low-speed estimator simulations results during the cool-down period.

L1-norm average error for different τm

τm [s] ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C]
1800 97.74 1.2704
1700 79.38 1.0003
1600 66.41 0.7868
1500 66.31 0.7261
1400 94.87 1.0515

(a) Flux linkage estimation error. (b) Rotor temperature estimation error.

Figure 5.8: Flux linkage and rotor temperature estimation errors for varying PM
temperature time constants τm. The estimation was evaluated for the cool-down
period of the motor, after a 300 second lead-in sequence with the KF active.

Table 5.6: Lowering the PM temperature time constant τm did lead to a minor degra-
dation of the estimation error when the motor is more active, but can be a worthy
trade-off for the improvement during extensive cool down periods.

L1-norm average error for different τm, NEDC cycle
τm [s] ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]
1800 160.60 0.7265 0.4512
1500 160.72 0.7278 0.4512

Direct and Dynamic Coolant Temperature KF Comparison
A comparison between the direct and dynamic coolant temperature KF designs is
found in Figure 5.9 and Table 5.7 using the modified high-speed WLTC test cycle
with cool-down period. The flux linkage estimation was substantially better for the
direct-Tc KF but that only resulted in a minor improvement in the torque estimation
and a worse rotor temperature estimation. With more fine tuning, both KF designs
can achieve very similar performances, however, the remaining analysis done in this
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section was conducted with the dynamic-Tc design.

(a) Flux linkage estimation and error. (b) Rotor temperature estimation and error.

Figure 5.9: Flux linkage and rotor temperature estimation performance for a high-
speed WLTC test cycle with cool-down period, comparing the direct and dynamic
coolant temperature KF design.

Table 5.7: The superior direct-Tc KF λ estimation only translates into a minor τ esti-
mation improvement and a slightly worse Tr estimation compared to the dynamic-Tc
KF design.

L1-norm average error for different KF designs, WLTC high-speed cycle with cool-down period
KF design ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]
Direct-Tc KF 47.452 0.6144 0.4021
Dynamic-Tc KF 108.67 0.5497 0.4214

5.5 Torque Estimation

The maximum torque estimation error was fairly significant and was not improved
with the refinement of the KF designs up to this point. The Motor-CAD current
reference signals were used as input for both the KF and the torque estimation,
but unlike the KF that can calibrate the noise covariance matrices Q and R to handle
noisy input signals, the torque estimation was greatly affected by the high-frequency
noise in the input current signals. The current signal estimation from the KF was,
however, a LP-filtered version of the reference signal and a comparison between
the reference and estimated current signal as input for the torque estimation can
be found in Figure 5.10. In Figure 5.11, the torque estimation error using the es-
timated currents is compared to using LP-filtered reference currents that used the
same time constant as the torque reference LP-filter. The torque reference signal
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was used as an input to various LUTs and was LP-filtered to avoid potential issues
that could occur from using a noisy input signal. The filtered reference currents were
not used for the KF, which would require a recalibration of the measurement noise
covariance matrix R to avoid the flux linkage estimation deteriorating. The current
reference signals were LP-filtered with a time constant of 0.1 s and this yielded the
best torque-estimation results. Further LP-time constant analysis can be found in
Section 5.7.

Figure 5.10: Torque estimation and error. Comparing the torque reference signal to
the torque estimation using current reference signals and estimated currents from a
NEDC test cycle. The torque estimation error was greatly reduced when using the
estimated currents.
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Figure 5.11: Torque estimation error using the estimated currents and the LP-filtered
current reference signals from a NEDC test cycle. The estimation error was reduced
when the current reference signals were low-pass filtered using the same time con-
stant as the torque reference signal.

5.6 Effects of Different Noise Covariance Matrices

To evaluate the effect the noise covariance matrices Q and R have on estimation
performance, noise was introduced in the Motor-CAD reference signal generation.
How the measurement noise e and process noise v were introduced to the plant
dynamics in state-space form can be seen in (3.10) and the definition of the noise
covariance matrices Q and R can be found in (3.11). Noise with the following char-
acteristics were introduced in the reference signal generation; the standard deviation
of the process noise v:

σId = 0.05A σIq = 0.05A σλ = 2.5 ·10−4 Wb-t σTc = 0.1◦C (5.1)

and the standard deviation of the measurement noise e:

σId = 0.5A σIq = 0.5A σTc = 0.1◦C (5.2)

Noisy reference signals were generated for a NEDC test cycle and the Kalman
filter Q and R matrices were chosen to match the noise variances of the reference
signal. In practice, the noise covariance matrices needed to be tuned to work prop-
erly and to increase the weight of the model estimation, a gain was applied to the R
matrices during simulation. The L1-norm average estimation errors as a function of
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R gain, kR, can be found in Figures 5.12 and 5.13, where the torque reference signal
used for the evaluation is the LP-filtered input signal to the KF and LUTs. Of the
choices included in the test, kR = 105 and kR = 106 showed the greatest improve-
ments in rotor temperature estimation performance. A plot of the rotor temperature
estimation and error using some of the best choices of R gain along with the un-
modified Q and R matrices, that matched the noise variance in the reference signal
generation, are found in Figure 5.14. The final choice of kR was dependent on the
prioritization of either the rotor temperature or torque estimation.

(a) Flux linkage estimation error. (b) Rotor temperature estimation error.

Figure 5.12: L1-norm average of flux linkage and rotor temperature estimation error
with a noisy NEDC test cycle using different R gains.

Figure 5.13: L1-norm average of torque estimation error with a noisy NEDC test
cycle using different R gains.
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Figure 5.14: Rotor temperature estimation with a noisy NEDC test cycle for differ-
ent R gains.

Increasing the magnitude of the R matrix increases the trustworthiness of the
model in contrast to the measurement signal with the same order and has the abil-
ity to slow down the estimation speed. In Figure 5.15, the effects of the increasing
model reliance by increasing the R gain are seen when estimating the rotor tem-
perature without added noise in the reference signal. To more clearly see the effect
on all estimation errors, the L1-norm average error has been compiled in Table 5.8.
Even with minimal reference signal noise, it appears that increasing the reliance
on the model through increasing the R magnitude improves the estimation results
overall. Similarly to the noisy test cycle, kR = 106 gives the best rotor temperature
estimation results with a slight sacrifice in the torque estimation performance and
will therefore be utilized for the rest of the analysis.

Table 5.8: Increasing the reliance on the model by increasing the magnitude of R
improves the estimation results, even with minimal reference signal noise.

L1-norm average error for different R gains, NEDC test cycle without added noise
R gain kR ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]
1 176.84 0.6880 0.0839
104 160.08 0.5228 0.0739
105 157.22 0.3004 0.0771
106 156.65 0.2619 0.0811
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Figure 5.15: Rotor temperature estimation and error for different R gains from a
NEDC test cycle without added noise.

5.7 The Effect of Low-pass Filters

Test Cycle without Added Noise
An actuation-torque reference signal LP-filter was introduced to remove high-
frequency components that might arise from the current regulator and the added
noise in the reference-signal generation. It is important that noise is removed from
the torque-actuation reference signal because of its utilization in both the logic for
the dynamic coolant temperature KF low-speed estimator switch as well as an input
for LUTs. The effect of using these LP-filters was not very substantial during simu-
lation tests without added noise in the reference signal generation, and a comparison
of this can be found in Figure 5.16. It was, however, important to match the time
constants of the LP-filters for the torque and current reference signals, when using
the current reference signal to estimate the torque, which were both chosen as 0.1 s.
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(a) Rotor temperature estimation. (b) Torque estimation.

Figure 5.16: Rotor temperature and torque estimation with and without reference
signal LP-filters, for a NEDC test cycle without added noise.

Noisy Test Cycle
The flux linkage estimation plot is not very enlightening to analyze because of the
reference signals’ noisiness, but the LUT inductance gives some insight into how a
noisy actuation-torque reference input signal can effect the estimation, which can
be seen in Figure 5.17. How the time constant for the torque-reference signal LP-
filter effects the rotor temperature estimation can be seen in Figure 5.18. It can
be difficult to discern any differences from a torque estimation plot. Instead, by
matching the current and torque reference LP-filter time constants, the L1-norm
error average when using a time constant of 0.1 s gives an average ‖τ‖1 = 0.0910
Nm and a time constant of 0.01 s gives an average ‖τ‖1 = 0.1162 Nm. For both the
rotor temperature and torque estimation, an LP-filter time constant choice of 0.1 s
appears to work well.
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Figure 5.17: LUT inductances using noisy and LP-filtered torque-reference signal.

Figure 5.18: Rotor temperature estimation and error for different torque reference
LP-filter time constants.
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Rotor Temperature Estimation LP-Filter
The PM rotor temperature LP-filter was introduced to smooth out LUT changes
in the λm0 working point. The λm0 working point was used in (2.10) to convert the
estimated flux linkage value to its equivalent rotor temperature value. The rotor tem-
perature estimation for different LP-filter time constants are shown in Figure 5.19,
where the LP-filters are all initialized at coolant temperature. The rotor temperature
estimation from a flux linkage value is very sensitive and the change in λm0 work-
ing point can lead to large rotor temperature changes. Choosing the LP-filter time
constant is a balancing act of increasing the average estimation error and reducing
the estimation error spikes that can occur from changes in the λm0 working point.

Figure 5.19: Rotor temperature estimation and error for different Tr estimate LP-
filter time constants.
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5.8 Sensitivity Analysis

A sensitivity analysis of the different model parameters and input signals was con-
ducted for three steady-state operating points.

Table 5.9: Steady state operating points used for the sensitivity analysis. The ap-
proximate vehicle speed is also shown for a given rotor speed.

Operating points: Torque [Nm] Rotor speed [rpm]
High Torque – Low Speed: 250 Nm 1200 rpm (≈ 19 km/h)
Mid Torque – Mid Speed: 100 Nm 3000 rpm (≈ 50 km/h)
Low Torque – High Speed: 50 Nm 7000 rpm (≈ 115 km/h)

Tables showing the results of the steady-state errors in the last 100 seconds for
different operating points are presented. A parameter perturbation error of +10%
was introduced to the respective parameters. The results are compiled in tables with
the high torque – low speed results found in Table 5.10, the mid torque – mid speed
results in Table 5.11 and the low torque – high speed results in Table 5.12.

Table 5.10: Sensitivity analysis of high torque – low speed operating point.

High Torque – Low Speed, Steady-state error table
Parameter increase of
10%

Flux linkage error
[µWb-turns]

Rotor Temperature
error [◦C]

Torque error [Nm]

Default 26.51 -0.0713 0.3587
Rs -535.3 8.471 -0.6567
Ld 4300 -65.70 0.3570
Lq 335.3 -4.765 19.92
Vd -303.5 4.946 -0.2377
Vq 3900 -58.85 7.340

Table 5.11: Sensitivity analysis of mid torque – mid speed operating point.

Mid Torque – Mid Speed, Steady-state error table
Parameter increase of
10%

Flux linkage error
[µWb-turns]

Rotor Temperature
error [◦C]

Torque error [Nm]

Default -9.985 -0.4632 -0.0289
Rs -114.2 0.9613 -0.1239
Ld 1500 -20.56 -0.0290
Lq 49.64 -1.278 3.652
Vd -72.13 0.3862 -0.0855
Vq 7100 -98.09 6.478
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Table 5.12: Sensitivity analysis of low torque – high speed operating point.

Low Torque – High Speed, Steady-state error table
Parameter increase of
10%

Flux linkage error
[µWb-turns]

Rotor Temperature
error [◦C]

Torque error [Nm]

Default -6.788 -0.5183 -0.0109
Rs -24.84 -0.2804 -0.0173
Ld 2900 -39.38 -0.0110
Lq 3.931 -0.6596 2.961
Vd -18.08 -0.3694 -0.0149
Vq 5800 -76.94 2.060

The introduction of parameter and signal perturbations leads to several convo-
luted interactions. A few perturbation errors lead to errors that cancel out, the most
prominent example being Ld perturbations that yield accurate torque estimations.
Other perturbations lead to the default steady-state error switching sign and result-
ing in a similar or even smaller absolute error; this occurs for a number of Vd esti-
mations, e.g., the torque error in the high torque – low speed operating point. The
perturbations on Vd and Rs do not lead to severe estimation errors, but their effects
alternate depending on the operating point, with similar performance or even an im-
provement for either the rotor temperature or torque estimation but a degradation of
the other estimation.

The largest effect the perturbations had on the overall performance was dur-
ing the high torque – low speed operating point, the operating region with the
largest current magnitudes. The error appears to become more pronounced when
the currents are large. The other two operating points have larger voltages instead,
which appears to yield worse rotor temperature errors for Vq pertubations. Between
medium torque – medium speed and low torque – high speed, medium torque and
speed has a larger Iq current, but in turn the low torque – high speed point has a
larger Id current. From that, it appears that the size of the Iq current magnitude is
generally more important for the estimation results.

Of the parameter and signal perturbations that have the greatest consistent im-
pact, the inductances Ld and Lq stand out; with the rotor temperature estimation
being very sensitive to Ld errors and the torque estimation to Lq errors. The Vq
voltage error also appears to severely impair both the rotor temperature and torque
estimation. There is also a discussion to be had on the respective error tolerances.
The parameters Ld ,Lq and Rs can vary during operation and if their updating mech-
anism is not sufficient, an error margin of 10% is more reasonable to expect for
the parameters. The voltage signals are already in use to regulate the motor, and a
10% voltage error tolerance is most likely too high to warrant estimating the rotor
temperature in an attempt to increase the motor performance.
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5.9 Sample Rate Tests

To evaluate the theoretically hypothesized sampling rates, a number of differ-
ent Kalman filter sampling rates were tested during simulation. Figures showing
the results of the flux linkage estimation and torque estimation are displayed in
Figure 5.20 and for the PM rotor temperature in Figure 5.21. The average estima-
tion errors are shown in Table 5.13. The average estimation error was reduced with
increasing sampling frequency; the improvement from using a 2 kHz sampling fre-
quency to 5 kHz might, however, not justify the increase in hardware demand. The
rotor temperature estimation figure also shows that the 500 Hz and 5 kHz sampling
rate tests give estimation error spikes, but at different times. The 500 Hz estimation
spike occurs when the KF switches from the low-speed estimator to the regular KF,
while the 5 kHz sampling frequency test experiences a diverging estimation error
during the low-speed estimator instead. The low-speed estimation error can, how-
ever, be tuned to better fit a 5 kHz sampling frequency by calibrating the low-speed
thresholds,τm, or even the rotor temperature LP-filter time constant.

(a) Flux linkage estimation. (b) Torque estimation.

Figure 5.20: Flux linkage and torque estimate for different ZOH discretization sam-
pling frequencies.

Table 5.13: The average estimation error decreases with increasing sampling fre-
quency. The estimation improvement using a 5 kHz sampling frequency compared
to 2 kHz might, however, not be worthwhile.

L1-norm average error for different ZOH discretization sampling frequencies
Sampling frequency [kHz] ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]
0.5 177.62 0.4101 0.0863
1 164.84 0.3618 0.0836
2 156.55 0.2619 0.0811
5 156.60 0.2519 0.0779

The sampling frequency effects on rotor temperature estimation with the current
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Figure 5.21: Rotor temperature estimate for different ZOH discretization sampling
frequencies.

KF calibration during the WLTC cool-down period can be found in Figure 5.22 and
Table 5.14. The 5 kHz sampling frequency does once again perform best, but if the
marginal improvement in performance is worth the increase in hardware demand is
dependent on the requirements.

Table 5.14: The average estimation error during an extensive cool-down period for
different sampling frequencies. The estimation improvement using a 5 kHz sam-
pling frequency compared to 2 kHz might, however, not be worthwhile.

L1-norm average error for different ZOH discretization sampling frequencies, WLTC cool-down period
Sampling frequency [kHz] ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C]
0.5 61.885 0.6773
1 53.974 0.5498
2 46.238 0.4817
5 43.981 0.4728
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Figure 5.22: Rotor temperature estimate for different ZOH discretization sampling
frequencies, during the WLTC cool-down period after a 300 second lead-in se-
quence with the KF active. The different initial values at the start of the cool-down
period were most likely the crucial reason for the differing results.

5.10 Normalized System Simulation Analysis

The primary advantage of normalizing the system is the reduction in loss of pre-
cision. Numerical precision might not be a concern during simulation in Matlab
Simulink, but it is for actual hardware implementations. The estimation results can,
however, also be effected by the redistribution of signal magnitude proportions, af-
fecting the noise covariance matrix calibrations for Q and R. In the analysis on the
observability Gramian of the discrete-time system with sampling frequency 2 kHz,
the largest change in eigenvalue occurred for the flux linkage state. On account of
this, tests were performed on the normalized system with changes to the flux linkage
process noise covariance σ2

λ
. The rotor temperature estimation in the tests can be

seen in Figure 5.23. After normalizing the system, the high R gain can be removed
and thereby increase the reliability of the measurement signal and the estimation
speed, while having a similar estimation performance. The estimation results for
the normalized system were even slightly improved by increasing the flux linkage
process noise σλ and yielded the best overall estimation performance out of all the
KF observer designs.
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Figure 5.23: Rotor temperature estimation and error, comparing the standard KF
with R gain and the normalized KF with different σλ .

Table 5.15: By normalizing the system, the large gain on R could be removed in
favor of slight adjustments to the noise covariance matrices. The estimation results
benefited slightly by increasing the λ process noise variance after normalizing the
system.

L1-norm average error for different ZOH discretization sampling frequencies
KF Design ‖λ̃‖1 average [µWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]
Standard KF, R ·106 156.65 0.2619 0.0811
Normalized 167.52 0.3906 0.0843
Normalized,
σλ = 5.5 ·10−4

156.96 0.2634 0.0813

Normalized, σλ = 6 ·
10−4

156.57 0.2473 0.0809

Normalized,
σλ = 6.5 ·10−4

156.41 0.2357 0.0806
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6
Extended Kalman Filter
Design

An extended Kalman filter design with inductance estimation was also developed
for performance comparisons with the standard KF designs. The flux linkage es-
timation was highly dependent on correct inductance values and an EKF design
could be a potential alternative for circumstances when the inductance accuracy in
the model is poor. The EKF utilizes Jacobians of the discrete-time system model
and the process of obtaining them was included in the EKF design. A preliminary
analysis was also performed on the observer gains and observability Gramian to
guide the design of the EKF algorithm to be implemented. An observability anal-
ysis was also conducted on a system with rescaled state variables, in place of the
normalized system description in the linear case.

Inspiration for an alternative EKF design was found in [Vyncke et al., 2010],
where the state vector is instead augmented with inverted inductances 1

Ld
and 1

Lq
.

The primary interest in that article was stator flux estimation of a surface-mounted
PMSM in a stationary reference frame, αβ , where the saliency was considered low
and the reluctance of the direct and quadrature axes was nearly identical. In the
research article [Vyncke et al., 2010], the state vector was augmented with the in-
verted stator inductance, 1

Ls
, to reduce the complexity of the partial differentiation

of the nonlinear state transition and observation functions f (x,u) and h(x,u), re-
spectively. To alter between an EKF implementation with inductance estimation to
an inverted inductance estimation is relatively straightforward, and as a result, both
versions were chosen for comparison.

6.1 Symbolic Differentiation

The extended Kalman filter utilizes the partial differentiation of f (x,u), defined by:

ẋ = f (x,u) (6.1)
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
İd
İq
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L̇q
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1
Ld
(−RsId +ωeLqIq +Vd)

1
Lq
(−ωeLdId−RsIq−ωeλm +Vq)

− λ

τm
+ λm0BrTc

τm
+

λ 0
0

τm

− Tc
τm

−Ld
τL

−Lq
τL


(6.2)

and h(x,u) defined by:

y = h(x,u) (6.3)

y1
y2
y3

=

Id
Iq
Tc

 (6.4)

to linearize around the current state estimate, using the same input signal u as the
dynamic-Tc KF. The partial differentiation is described by matrices Fk and Hk, de-
fined in (3.22) and (3.23). The nonlinear state-space description is based on the
system with coolant temperature (4.15) – (4.16) in Section 4.8, expanded with in-
ductance estimation. The state observation function h(x,u) does, unlike the state
transition function, remain linear after the introduction of inductance estimation. To
avoid the previous observability analysis issues, slow inductance time dynamics are
also introduced. A brief analysis on the effects of introducing slow time dynamics
for the inductances can be found in Section 6.3.

In cases where the differentiation of the nonlinear functions is deemed too
complex or computationally expensive, numerical derivatives might be considered
[Gustafsson, 2012]. For the PMSM model it is, however, possible to generate ana-
lytic derivatives of the continuous-time state-space model and avoid having to nu-
merically approximate the derivatives at every sample. To define the analytic Ja-
cobians, f ′(x,u) and h′(x,u), symbolically in a discrete-time EKF implementation,
some form of discretization of the continuous-time model dynamics has to be em-
ployed in conjunction. One approach is to start by linearizing around the current
state estimate x̂0, utilizing a Taylor expansion. After linearization, the EKF algo-
rithm reverts back to the standard KF, and the linear ZOH method for discretizing
the system can be applied. When linearizing around a stationary equilibrium point,
the new state and input vector, ∆x and ∆u, describe the deviation from the lineariza-
tion point. We are, however, not interested in regulating the signal around a chosen
constant reference signal. To be able to create ∆x and ∆u, that describe the devia-
tion from the current state estimate x̂0, a reference trajectory of the state vector and
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input signal is instead required, which is not accessible. The selection of discretiza-
tion method is not directly apparent and the different methods under consideration
are presented.

Forward Euler Method
The discretization of the nonlinear continuous-time state transition function f (x,u),
is very similar to the linear case when applying the forward Euler method. Forward
Euler is an explicit method [Michael Zeltkevic, 1998a] and by using the differential
operator approximation:

dx(t)
dt
≈ x[k+1]− x[k]

h
(6.5)

the next step state-prediction and its discrete-time nonlinear state-transition
fd(x[k],u[k]) is given by:

x[k+1] = x[k]+h · f (x(t),u(t)) = fd(x[k],u[k]) (6.6)

where the current time t is related to the time step k and sampling time h with t = hk.
The state observation model h(x(t),u(t)) is unaffected by the introduction of induc-
tance estimation as well as the forwards Euler method, leading to the EKF state
observation reverting back to KF implementations. The Jacobian of the discrete-
time nonlinear state-transition Fk = f ′d(xk|k,uk) is then given by:

F =



1− hRs
Ld

hωLq
Ld
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− hωLd
Lq 1− hRs

Lq − hω
Lq 0 − hωId

Lq
h(ωLd Id+RsIq+ωλ−Vq)

L2q

0 0 1− h
τm

hλ0Br
τm 0 0

0 0 0 1− h
τm 0 0

0 0 0 0 1− h
τL

0

0 0 0 0 0 1− h
τL


(6.7)

The state estimation vector x̂, measured output y and input signal u are defined as:

x̂ = [Îd , Îq, λ̂ , T̂c, L̂d , L̂q]
T y = [Id , Iq,Tc]

T u = [Vd ,Vq,λ
0
0 ]

T (6.8)

For the inverted inductance version with 1
Ld

= Ldi and 1
Lq

= Lqi , the Jacobian
Finvk is instead given by:
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(6.9)

The state estimation vector x̂inv, measured output y and input signal u are defined
as:

x̂inv = [Îd , Îq, λ̂ , T̂c, L̂di , L̂qi ]
T y = [Id , Iq,Tc]

T u = [Vd ,Vq,λ
0
0 ]

T (6.10)

Backward Euler Method
For nonlinear systems, the backward Euler method is slightly more complicated to
implement. With the differential operator approximation:

dx(t)
dt
≈ x[k]− x[k−1]

h
(6.11)

the nonlinear state dynamics after a time shift forward becomes:

x[k+1] = x[k]+h · f (x(t +h),u(t +h)) (6.12)

To obtain x[k+ 1],u[k+ 1], a root-finding technique such as the Newton-Raphson
method [Michael Zeltkevic, 1998a] can be employed to solve the nonlinear equa-
tion:

xi[k+1]−h · fi(x[k+1],u[k+1]) = xi[k] (6.13)

where the index i refers to the different states. Backward Euler is an implicit method
and there is a trade-off between an increase in computational cost for numerical
stability [Michael Zeltkevic, 1998a].

An alternative is to use a predictor-corrector method [Michael Zeltkevic,
1998b], an explicit and implicit method in combination. By first approximating
x[k + 1] with an explicit method and then correcting with an implicit technique.
A combination of forward and backward Euler method yields:
Predictor

xp[k+1] = x[k]+h · f (x(t),u(t)]) (6.14)

Corrector
x[k+1] = x[k]+h f (xp[k+1],up[k+1]) (6.15)
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The predictor-corrector method is considered an explicit method and is most often
used with higher-order implicit methods for the correction step [Michael Zeltkevic,
1998b]. If a predictor-corrector method is chosen, another more commonly used
implicit technique might be preferred. An issue that, also, arises with the predictor-
corrector is the need for an approximation of the next input signal up[k + 1], for
which we do not either have a model for or some reference trajectory.

The higher computational cost to use the implicit method with a root-finding
technique could be an interesting option to investigate if numerical stability issues
arise and if time is available.

6.2 Extended Kalman Gain Analysis

The EKF observer gain analysis utilizes the state-transition Jacobian Fk, which in-
corporates the currents and voltages. To analyze how the observer gain K behaves
in relation to the electrical angular speed, a limited number of specific and properly
parameterized operating points were investigated, shown in Table 6.1.

Table 6.1: Torque and rotor speed for the chosen operating points. The values within
the parenthesis is a rough equivalent of the vehicle speed.

Operating points: Torque [Nm] Rotor speed [rpm]
High Torque - Very Low Speed (HT-VLS): 250 Nm 100 rpm (≈ 1.6 km/h)

High Torque - Low Speed (HT-LS): 250 Nm 1200 rpm (≈ 19 km/h)
Mid Torque - Mid Speed (MT-MS): 100 Nm 3000 rpm (≈ 50 km/h)
Low Torque - High Speed (LT-HS): 50 Nm 7000 rpm (≈ 115 km/h)

The observer gains K after 50 iterations of the EKF algorithm, for the four
operating points using the standard inductance EKF are found in Figure 6.1. The
Q and R covariance matrices are similar to the dynamic-Tc KF, using the standard
deviations σ in (5.1) – (5.2) with the following alterations to the process noise v:

σλ = 2 ·10−4 Wb-t σLd = 7 ·10−7 H σLq = 3 ·10−6 H (6.16)
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6.2 Extended Kalman Gain Analysis

Figure 6.1: Observer gains for the standard inductance EKF, with sampling fre-
quency 2 kHz. The observer gains K1,K2 and K3 correspond to the measured states
y, or Id , Iq and Tc, respectively.

The particularly low inductance σ settings were chosen from simulations study
tests, dampening rapid estimation changes. The observer gain tests show that the
states Id , Iq and Tc are largely dependent on their respective measurement signal,
with the gains for the coolant temperature Tc staying constant across all operating
points. The current gains experience a slight dip at very low speeds, when the cur-
rents are large but the voltages are smaller. The flux linkage estimation is mostly de-
pendent on the measured Iq current, which is an expected result based on the model.
The λ gain increase is not as pronounced at low speeds, in contrast to the linear
KF model. The inductance gains do, however, experience a greater increase during
lower speeds when the torque is large. The larger observer gains and currents dur-
ing very slow speeds and high torques could lead to inductance estimation spikes.
It also seems that Ld estimate is mostly influenced by the current measurement Iq
while the Lq estimate instead primarily is influenced by the Id measurement.

The observer gain results for the inverted inductance EKF are found in
Figure 6.2. The changes to the standard deviation of the process noise v are as fol-
lows:

σLdi
= 20H−1

σLqi
= 100H−1 (6.17)

The only notable differences in the results are with the inductances, with the ex-
pected change to negative gains from the differentiation of the inverted variable.
The inverted inductance states also experience a similar increase in gain during low
speeds. The differences in state magnitudes could also have a large impact on the
numerical uncertainty of the system and the necessity of rescaling the flux linkage
magnitude that needs to be further investigated.
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Figure 6.2: Observer gains for the inverted inductance EKF, with sampling fre-
quency 2 kHz. The observer gains K1,K2 and K3 correspond to the measured states
y, or Id , Iq and Tc, respectively.

6.3 Slow and Zero Inductance Dynamics Comparison

Similar to the KF design, a test was also conducted to investigate if the slow induc-
tance time dynamics, introduced to be able to generate the observability Gramian,
have a minimal impact on the system. The inductance time constant τL was cho-
sen to be similar in size as the PM time constant, with τL = 2000 s. The relative
% difference in observer gain compared to zero inductance dynamics is shown in
Figure 6.3 for the standard inductance EKF and in Figure 6.4 for the inverted induc-
tance EKF. The difference is overall very small, with slightly smaller differences for
the standard inductance EKF for some of the states.

Figure 6.3: The % deviation in observer gains for the standard inductance EKF, with
sampling frequency 2 kHz. Comparing no and slow inductance dynamics.
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Figure 6.4: The % deviation in observer gains for the inverted inductance EKF, with
sampling frequency 2 kHz. Comparing no and slow inductance dynamics.

6.4 Observability Gramian

Continuous-time System Analysis
To analyze the observability of the non-linear system, the observability Gramian
Ox was generated with the already linear state observation function h(x,u), and the
Jacobian of the state transition function f ′x(x,u). The linearization was conducted
around the same operating points used in the observer gain analysis with a few
additions. The input-signal magnitudes that result in output norm ‖y‖1 = 1 using
Ox are found in Table 6.2 for the standard inductance EKF and in Table 6.3 for
the inverted inductance EKF. An additional operating point at near standstill, with
torque and rotor speed close to 0, was also examined.

Table 6.2: Compiled results for the standard inductance EKF. Identical results to
the inverted inductance design for the currents and flux linkage were obtained, with
a similar large reduction in observability at the near standstill operating point for
λ ,Ld and Lq.

State magnitudes {x ∈ Rn; xT Ox(ω)x = 1}
Operating point |Id | [A] |Iq| [A] |λ | [Wb-t] |Ld | [H] |Lq| [H]
Near standstill 8.69 5.17 29.58 5.53·10−3 1.72·10−2

HT - VLS 10.78 5.13 8.28·10−6 2.65·10−8 3.96·10−8

HT - LS 11.19 4.61 5.71·10−6 1.79·10−8 3.98·10−8

MT - MS 10.24 3.78 6.80·10−6 7.46·10−6 1.05·10−7

LT - HS 9.69 3.44 7.58·10−6 4.58·10−6 3.08·10−7
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Table 6.3: Compiled results for the inverted inductance EKF. The inductance state
magnitude are much larger as well as the required input-signal inductance magni-
tudes for an output norm equal to one compared to the standard inductance design.

State magnitudes {x ∈ Rn; xT Ox(ω)x = 1}
Operating point |Id | [A] |Iq| [A] |λ | [Wb-t] |Ldi | [H−1] |Lqi | [H−1]
Near standstill 8.69 5.17 29.58 1.21·105 4.70·104

HT - VLS 10.78 5.13 8.28·10−6 1.09 0.275
HT - LS 11.19 4.61 5.71·10−6 0.735 0.277
MT - MS 10.24 3.78 6.80·10−6 2.15 0.413
LT - HS 9.69 3.44 7.58·10−6 1.063 0.900

The table results show that both EKF designs have great difficulty estimating
the flux linkage and the inductances at near standstill when both the currents and
voltages are low. Of the remaining operating points, the flux linkage observability
is at its worst at very low speeds, but because the EKF flux linkage observer gains
do not experience any significant increases at this operating point, it might not lead
to issues during simulations. It also appears that the torque has a great impact on
the flux linkage observability, with the high torque - low speed operating point giv-
ing the best result. The inductances also share the highest observability at the high
torque - low speed operating point, with a significant Ld observability decrease for
lower torque operating points and a slightly smaller decrease for Lq. The inductance
state magnitudes for the inverted inductance EKF is much larger and the required
input-signal magnitude for an output norm equal to one is also much larger, but
the observability results for the currents and flux linkage are still identical with the
standard inductance EKF. The changes in observability for the different operating
points are, however, not as dramatic for the inverted inductances. For both designs,
it appears that the Lq observability is most dependent on high torque, but for Ld it
is not as straightforward with the mid torque - mid speed point yielding the worst
observability.

An additional operating point: mid torque - low speed: 100 Nm - 1200 rpm, was
also tested to investigate how the observability changes with torque by comparing
the results with the high torque - low speed operating point. The eigenvalues of Ox
are displayed in Figure 6.5 and Figure 6.6 for the standard and inverted inductance
EKF, respectively. The eigenvector decomposition of Ox still gives eigenvectors that
are strongly associated with the original states but the inductance directions can,
especially during slower speeds, be a stronger mix of each other. Both EKF designs
show a clear observability increase with increased torque for all states except the
currents. Comparing the eigenvalue magnitudes for the different EKF designs also
shows the risk for very high condition numbers. In Figure 6.7 the condition number
κ(Ox) is shown for both designs using both a Matlab routine and the singular value
quotient definition. Figure 6.7 shows that the inverted inductance EKF has increased
numerical sensitivity at lower speed but is surpassed by the standard inductance
EKF at higher speeds.

90



6.4 Observability Gramian

Figure 6.5: Eigenvalues of Ox for the continuous-time standard inductance system,
linearized around different operating points to show the impact of changes in torque.
With the exception of the currents, the observability of the states increased with
torque.

Figure 6.6: Eigenvalues of Ox for the continuous-time inverted inductance system,
linearized around different operating points to show the impact of changes in torque.
With the exception of the currents, the observability of the states increased with
torque.
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Figure 6.7: A comparison of the condition number κ(Ox), between the standard and
inverted inductance continuous-time design at different operating points. Calculat-
ing the condition number using the Matlab routine cond() and using the singular
values with (3.29) yielded identical results.

Discrete-Time System Analysis
An observability analysis was also conducted on the discrete-time system. To be
able to create a stable discrete-time system using the forward Euler method, with
all eigenvalues strictly within the unit circle, a sampling frequency of ≈ 163 kHz
was required for the high speed operating point (7000 rpm). Using a 2 kHz sampling
frequency, similar to the previous KF design, was only fast enough for the very low
speed operating point (100 rpm) and a sampling frequency of 10 kHz was only
sufficient up to the low speed point (1200 rpm). Hardware-intensive approaches to
handle the unstable discrete-time dynamics is possible by increasing the sampling
frequency or by using a different discretization method such as backward Euler
with a root finding method. Another approach that will be tested is to suppress the
observer gains at higher speed by recalibrating Q and R, in a simple form of gain
scheduling [Glad and Ljung, 2003]. The discrete-time Ox eigenvalues are found
in Figure 6.8 and in Figure 6.9 for the standard and inverted inductance EKFs,
respectively. The eigenvalue decomposition was the same as the continuous-time
system with regards to the increased mix of the inductance directions, and to a
lesser extent the mix of the currents, at very low speeds. The two designs had very
similar eigenvalue characteristics for the different operating points. Similar to the
continuous-time system, best flux linkage estimation results appeared to occur at
the high torque and low speed operating point and the lowest observability at the
very low speed point. The currents experienced a large increase in observability at
high speeds, while Lq estimation appeared best during high torque operating points
and Ld estimation appeared worst during mid torque and speed operating points.
The major difference between the EKF designs is the reordering of the eigenvalue
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magnitudes and a comparison of κ(Ox) is shown in Figure 6.10 for the discrete-time
systems. The discretized system has a significantly lower condition number than the
continuous-time system, but, in contrast to the KF designs, the required sampling
frequency to create a stable system at higher speeds is extremely demanding. Figure
6.10 does, however, show a substantial reduction in the condition number using
the discretized standard inductance EKF for all operating points compared to the
inverted inductance design.

Figure 6.8: Eigenvalues of Ox for the discrete-time standard inductance system,
linearized around different operating points. Discretized using the forward Euler
method with a sampling frequency of 163 kHz.

Figure 6.9: Eigenvalues of Ox for the discrete-time inverted inductance system,
linearized around different operating points. Discretized using the forward Euler
method with a sampling frequency of 163 kHz.
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Figure 6.10: A comparison of the condition number κ(Ox), between the standard
and inverted inductance discrete-time design at different operating points. Dis-
cretized using the forward Euler method with a sampling frequency of 163 kHz.

6.5 EKF Algorithm Description

The EKF algorithm implementation includes a few modifications, such as a near
standstill estimator that activates when the speed is close to zero. The observabil-
ity analysis in Section 6.4 showed a greatly reduced observability when both the
torque and speed were low but by solely using a very low speed threshold, the low-
observability estimator only remains active for a brief period if the torque is not
small as well. The near standstill estimation is based on the low-speed dynamic-Tc
KF design in Section 4.8, stopping the estimation error covariance matrix update
and estimating the flux linkage solely with the model dynamics that slowly con-
verge towards the coolant temperature. The inductances have a similar reduction
of observability as the flux linkage near standstill and a more drastic observer gain
increase at very low speeds, but the inductances do not have an equivalent of the
low-speed flux linkage estimation to model their near standstill behavior. An in-
ductance estimation solely based on the system dynamics results in the estimation
slowly drifting towards the lower saturation limits during a prolonged cool down
period and gives a large initial settings error when starting up afterwards. The old
inductance values are therefore kept from before the switch to the near standstill
estimator.

Because the inductance states appear in the denominator of some of the terms,
they are saturated to avoid estimation singularities. The inductance saturation was
most vital during simulations with poor initial settings. The saturation limits were
chosen as modestly expanded values from the inductance LUTs, with the inverted
inductance limits based on the same values.
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A simple form of gain scheduling was also introduced to alter Q and R, to sup-
press the observer gains in an effort to deal with the unstable observer dynamics at
higher rotor speeds. A more thorough analysis of the speed limits and noise covari-
ance matrix calibrations are presented in the EKF simulation study in Section 7.1.
An algorithm description is found in Algorithm 5 for both the standard and in-
verted inductance EKF implementations. The two designs have the same algorithm
description; the differences are the system transition function f (x,u) and its Jaco-
bian Fk (or finv(xinv,u) and Finvk respectively for the inverted inductance design),
the process noise covariance matrix Q calibration, the initial settings for the states
and the saturation limits. Both the state transition function and the Jacobians used
in the algorithm description are the symbolically defined forward Euler discretized
versions. The high-speed recalibration activates for electrical angular speeds over
a high-speed threshold ωHS, were QHS and a R gain kR are used to suppress large
estimation changes.
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Algorithm 5 EKF with near standstill estimator switch, inductance saturation and
high-speed Q and R recalibration.

Initialize internal states: E(x0) = x̂1|0, P1|0 = Q
1: repeat
2: function <EXTENDED KALMAN FILTER>(uk,yk,ωk)

Q, R high-speed recalibration
3: if |ωk| ≥ ωHS then
4: Qk = QHS
5: Rk = R · kR
6: else
7: Qk = Q
8: Rk = R
9: end if

10: if |ωk| ≥ ωthreshold then
Measurement update

11: εk = yk−h(x̂k|k−1,uk)

12: Sk = HkPk|k−1HT
k +Rk

13: Kk = Pk|k−1HT
k S−1

k
14: x̂k|k = x̂k|k−1 +Kkεk
15: Pk|k = (Ik−KkHk)Pk|k−1

Time update
16: x̂k+1|k = f (x̂k|k,uk) . finv(x̂invk|k ,uk) in inverted inductance design
17: Pk+1|k = FkPk|kFT

k +Qk . Finvk in inverted inductance design
18: else

Near standstill estimator
19: Lold

d = x̂k−1(5)
20: Lold

q = x̂k−1(6)
21: εk = yk−Hkx̂k|k−1

22: Sk = HkPk|k−1HT
k +Rk

23: Kk = Pk|k−1HT
k S−1

k
24: Kk(3, :) = 0
25: x̂k|k = x̂k−1|k−1 +Kkεk
26: x̂k+1|k = f (x̂k|k,uk) . finv(x̂invk|k ,uk) in inverted inductance design
27: x̂k+1(5) = Lold

d
28: x̂k+1(6) = Lold

q
29: end if
30: Saturate(L̂d , L̂q) . L̂invd , L̂invq in inverted inductance design
31: return: x̂k+1
32: end function
33: until Shutdown
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6.6 Rescaling State-Variables

Analogous to normalizing the system description for the KF, a rescaling of the state
variables to improve numerical computational robustness for the EKF estimation
was attempted. The largest noticeable change from inverting the inductance states
up to this point is the reordering of the state magnitudes, with the smallest state
magnitude Ld becoming the largest after inversion. A more controlled rescaling of
the smallest states can be done with the scaling factor kλ to give the new flux linkage
state λn:

λn = kλ ·λ (6.18)

and for the inductances with:

Ln = kL ·L (6.19)

Using the new rescaled state variables, the scaling factors also have to be introduced
to the state transition function to preserve the validity of the system model. This
results in the rescaled standard inductance state transition function:

f (x,u) =



−RsIdkL+ωLqn Iq+VdkL
Ldn

−ωLdn Id−RsIqkL−
ωλkL

k
λ

+VqkL

Lqn

−λ+λm0BrTckλ+λ 0
0 kλ

τm

− Tc
τm

−Ldn
τL

−Lqn
τL


(6.20)

The scaling factors are introduced to the inverted inductance model in a sim-
ilar manner, before using the forward Euler method to discretize the system and
finally partially differentiating the discrete-time state transition function using the
rescaled variables. The scaling factor was chosen to place all the state magnitudes
in a similar range. Figure 6.11 displays the effect the scaling factor has on κ(Ox)
for the discrete-time standard inductance system using a sampling frequency of 163
kHz. Choosing more assertive scaling factors worked well with the continuous-time
system but the discrete-time system responds better to the smaller scaling readjust-
ments kλ = 1 and kL = 500. The eigenvalues of Ox for this scaling factor configura-
tion are shown in Figure 6.12. The directions of the eigenvector decomposition for
the rescaled system is, however, a lot more mixed than previously, especially during
the very low speed operating point. The current eigenvectors are slightly dependent
on each other and there is some dependence on λ and Ld for Lq. The greatest depen-
dence between states is, however, between λ and Ld , which occurs for all operating
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points. There are still a lot of similarities to the unscaled system in Figure 6.8, ex-
cept for a increase in λ eigenvalues and a large decrease of inductances eigenvalues,
with the caveat that the eigenvectors from the rescaled system are more dependent
on multiple states.

Figure 6.11: Condition number of the discrete-time standard inductance observabil-
ity Gramian, with different scaling factors. The sampling frequency is 163 kHz.

Figure 6.12: Observability Gramian eigenvalues for the discrete-time standard in-
ductance system, with scaling factors kλ = 1 and kL = 500 and with sampling fre-
quency 163 kHz.

The κ(Ox) for the discrete-time inverted inductance system with different scal-
ing factors can be seen in Figure 6.13. The scaling factors that gave the best results
for the discrete-time inverted inductance system were with slightly larger readjust-
ments using kλ = 104 and kL = 10−3, instead of using factors that placed the state
magnitudes closest to a similar operating range as the remaining states. The best
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scaling factors were found through manually testing different configurations and can
be improved slightly with more fine tuning. The inverted inductance system does,
however, have slightly larger condition numbers with the scaling factors tested, but
the unscaled system also starts at higher values compared to the standard inductance
system. The Ox eigenvalues using the scaling factors that gave the largest reduction
in condition number can be found in Figure 6.14. The eigenvector decomposition
is once again more mixed than the unscaled design, especially during the very low
speed operating point, with the largest dependence between the Tc and λ states. A
slightly lower dependence between the Lqi and λ states is also present. Compared
to the unscaled version in Figure 6.9, there is a large decrease in current eigenval-
ues, an increase for Ldi and a more uniform increase in observability with increased
speed for all states. The observability for Tc also experiences a large increase with
increased speed compared to the other design, where the eigenvalue remained rel-
atively constant for all operating points. This was, however, most likely due to the
strong eigenvector dependence on λ .

Figure 6.13: Condition number of the discrete-time inverted inductance observabil-
ity Gramian, with different scaling factors. The sampling frequency is 163 kHz.
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Figure 6.14: Observability Gramian eigenvalues for the discrete-time inverted in-
ductance system, with scaling factors kλ = 104 and kL = 10−3 and with sampling
frequency 163 kHz.
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7
Simulation Study, Extended
Kalman Filter

This section is dedicated to the simulation-study results and analysis of the EKF
with unknown inductances. A fair performance comparison was conducted, com-
paring the EKF design to the KF design with limited inductance accuracy. With
very limited inductance information, the flux linkage and PM temperature estima-
tion was very poor, as seen in the KF simulation results with constant inductances
in Figure 5.3, and a EKF design can be a possible alternative. The inductance sat-
uration limits are an expansion of the LUT used in the KF simulation study and
the inductance initial conditions are also based on the LUT results with speed and
torque inputs equal to zero. It is, however, also possible to find and tune the settings
through testing. The EKF simulations were conducted with a discrete-time system
discretized using forward Euler method and a 2 kHz sampling frequency, which
gives an unstable system model for a majority of the operating speed range, further
details can be found in Section 6.4.

7.1 Noise Covariance Matrix Simulation Analysis

Standard Inductance State Design
High-Speed Noise Covariance Matrix Simulation Analysis
The EKF was much more sensitive to noise covariance matrix settings compared to
previous KF designs and a lot of effort can be dedicated to fine tuning. The default Q
and R settings were chosen as in Section 6.2, (6.16), with the exception of a change
to σλ :

σλ = 1.8 ·10−4 Wb-t (7.1)

Because the discretized system became unstable for higher rotor speeds when using
the forward Euler method with a sampling frequency of 2 kHz, the noise covariance
matrices were altered to suppress estimation changes at higher speeds. To calibrate
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the high-speed noise covariance matrices, the first 800 seconds of the WLTC high-
speed dynamic test cycle was used, see Figure 5.2. Without any calibrations for
high-speed the Ld and λ estimates can strongly diverge, leading to large PM tem-
perature estimation errors. Similarly to the sensitivity analysis in Section 5.8, the
Ld estimation error did not, however, lead to any major torque estimation errors.
By identifying at which rotor speeds the estimation starts to diverge, a high-speed
process noise recalibration was implemented at ω ≥ 1600 rad/s for σλ and σLd :

σλ = 1 ·10−8 Wb-t σLd = 1 ·10−10 H (7.2)

The rotor temperature and torque estimation results, with and without high-speed Q
calibration, are shown in Figure 7.1. Without altering the noise covariance matrix
settings at higher speeds, the rotor temperature estimation error magnitude exceeded
200 ◦C but the torque estimation error magnitude was surprisingly small and never
exceeded 1 Nm.

(a) Rotor temperature estimation. (b) Torque estimation.

Figure 7.1: Rotor temperature and torque estimation results with and without the
high-speed Q calibration. The standard test results refer to no alterations of Q at
higher speeds, where the rotor temperature estimation error grew very large but the
torque estimation performed surprisingly well.

Interpolating Design, Standard Inductances
Another design was also implemented that interpolates the Q settings between the
different operating speeds and avoids excessive estimation-change suppression at
mid tier operating ranges. A σLq calibration was also introduced to avoid issues
that could emerge when the σ differences were too large. Examples of neglecting
σLq changes can be found for the inverted inductance state design in Section 7.1 in
Figures 7.8 and 7.9. The standard deviation, SD, of the process noise as a function
of ω is shown for the interpolating design in Figure 7.2.

The rotor temperature and torque estimation results for the interpolating high-
speed Q design can be found in Figure 7.3. The interpolating design allows for
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Figure 7.2: The SD of the process noise as a function of ω for the standard induc-
tance high-speed interpolating design. Between 1500 rad/s ≤ ω ≤ 2200 rad/s, σλ

linearly decreases from 1 · 10−7 Wb-t to 1 · 10−9 Wb-t and σLd from 1 · 10−9 H to
1 · 10−10 H. Moreover, σLq decreases from 3 · 10−6 H to 1 · 10−7 H between 2000
rad/s ≤ ω ≤ 2200 rad/s.

greater estimation changes at medium tier operating speeds and the introduction of
σLq recalibration during high-speeds reduces the maximum torque estimation error.
The design can be further fine tuned by adjusting operating ranges, the number of
interpolation points and start and end values. The process was, however, delicate
because of how the noise covariance settings for one state can affect the other states
and the need to balance improving the rotor temperature estimation at the detriment
of the torque estimation. The efficacy of utilizing an interpolating design is ques-
tionable and is largely dependent on how efficiently it can be implemented because
the difference compared with only using two sets of calibrations was small.
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(a) Rotor temperature estimation. (b) Torque estimation.

Figure 7.3: Rotor temperature and torque estimation results using the interpolating
high-speed Q calibration that also introduces σLq alterations.

Dynamic Test Cycle with Additional Noise
The performance was also evaluated using the WLTC high-speed test run segment
with additional noise introduced in the Motor-CAD reference signal generation,
identical to the simulation tests in Section 5.6. A gain on R, kR, was once again
applied to increase the weight of the model reliance. The estimation error with
different kR can be found in Figure 7.4 for the flux linkage estimation. The rotor
temperature estimation error results are in Figure 7.5 and correspondingly for the
torque estimation in Figure 7.6. It is also important to acknowledge that the flux
linkage reference signal also was noisy and the flux linkage estimation error results
are therefore not as conclusive as the other results.

Increasing kR, reduced the noisiness of the flux linkage estimation. The large
flux linkage estimation spikes were also generally reduced with increasing kR,
which can be seen in Figure 7.4. The large λ̂ spikes resulted in larger maximum
rotor temperature estimation errors when kR was low but the torque estimation did
still perform well overall. The simulation results from using a large kR, have a gen-
erally lower maximum rotor temperature error but the designs did not perform well
during the section the high-speed Q calibration was in use. The best overall results
were obtained when kR = 10 and λ̂ still was relatively noisy, but the high-speed Q
calibration still works reasonably well. Unlike the previous KF design, increasing
kR to deal with a noisier input signal was not enough and the high-speed Q calibra-
tion had to be tuned specifically for each choice of kR.
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Figure 7.4: The flux linkage estimation error for a noisy WLTC test cycle. The flux
linkage estimation noisiness and spikes were greatly reduced when the R gain, kR,
increased.

Figure 7.5: The rotor temperature estimation error for a noisy WLTC test cycle.
The performance varied widely but the best results were with only a smaller R gain,
kR = 10. The worst performance when using a large kR occurred when the high-
speed Q calibration was active and a specific tuning for every kR was required.
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Figure 7.6: The torque estimation error for a noisy WLTC test cycle. The perfor-
mance generally degraded with increasing R gain. The worst performance when
using a large kR occurred when the high-speed Q calibration was active and a spe-
cific tuning for every kR was required.
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Inverted Inductance States
The inverted inductance design was also tested with the same default Q and R set-
tings as in Section 6.2, (6.17), and the same alteration to σλ as previously:

σλ = 1.8 ·10−4 Wb-t (7.3)

For the high-speed Q recalibration, the λ and Ldi states were suppressed when
ω ≥ 1500 rad/s with the following changes:

σλ = 1 ·10−8 Wb-t σLdi = 1 ·10−2 H−1 (7.4)

A comparison between using no high-speed Q calibration and with high-
speed σλ and σLdi alterations can be seen for the rotor temperature estimation in
Figure 7.7. The improvement of using the high-speed recalibration was substan-
tial and when comparing the results to the standard inductance state design in
Figure 7.1, it can also be seen that the rotor temperature estimation error diverged
positively as opposed to negatively during the high-speed segments.

Figure 7.7: Rotor temperature estimation results with and without the high-speed Q
calibration for the inverted inductance design. Without altering Q at higher speeds
the rotor temperature estimation error became very large.

To alleviate issues that arise when the discrepancy in Q settings was too large
after the high-speed recalibration, another design was tested where σLqi also was
altered when ω ≥ 1600 rad/s, as follows:

σLqi = 1H−1 (7.5)
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The inductance estimation results comparing the introduction of σLqi to the high-
speed recalibration can be found in Figure 7.8 and the resulting torque estimation
and error in Figure 7.9. After introducing changes to σLqi during high-speed oper-
ating ranges, the Lqi estimation spikes reduced drastically which consequently also
improved the torque estimation.

Figure 7.8: Inductance estimation results with and without a high-speed Q cali-
bration of σLqi for the inverted inductance design. The Lqi estimation performed
reasonably well during high speeds, but the high-speed Q recalibration to improve
the λ and Ldi estimations subsequently caused issues for the Lqi estimation when
σLqi was too large comparatively, and reducing σLqi to 1 H−1 during the high-speed
calibration improved the Lqi estimation.

Figure 7.9: Torque estimation results with and without a high-speed Q calibration
of σLqi for the inverted inductance design.
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Interpolating Design, Inverted Inductances
An interpolating design was also tested that increased the estimation suppression
linearly with increasing ω when 1500 ≤ ω ≤ 2200 rad/s. The SD of the process
noise as a function ω in addition to the R gain kR is shown for the interpolating
design in Figure 7.10.

Figure 7.10: The SD of the process noise as a function of ω for the inverted induc-
tance high-speed interpolating design. Between 1500 rad/s ≤ ω ≤ 2200 rad/s, σλ

linearly decreases from 1 ·10−8 Wb-t to 1 ·10−9 Wb-t, σLdi goes from 1 ·10−2 H−1

to 1 ·10−4 H−1 and σLqi from 1 H−1 to 0.1 H−1. In addition to the changes to Q, a
R gain kR was also introduced between 1500≤ ω ≤ 2200 rad/s that increases from
102 to 103.

The rotor temperature and torque estimation results can be found in Figure 7.11.
Comparing the results to the interpolating standard inductance state design in
Figure 7.3, shows that there was no clear improvement compared to using the in-
verted inductance state design. Fine tuning of Q and R and the high-speed recali-
bration of the noise covariance matrices have a large impact on the performance,
but utilizing the inverted inductance design requires a relatively greater amount of
high-speed estimation suppression for a similar performance. The analysis of the
observability Gramian in Section 6.4 also showed that κ(Ox) for the discrete-time
system was larger for the inverted inductance design. A more deliberate rescaling
effort with scaling factors appears to be a more promising avenue and the standard
inductance state design was instead the focus for the remainder of the simulation
study.
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(a) Rotor temperature estimation. (b) Torque estimation.

Figure 7.11: Rotor temperature and torque estimation results using the interpolat-
ing high-speed Q calibration with a R gain kR for the inverted inductance design.
The overall estimation suppression with high-speed noise covariance recalibration
was relatively large when using the inverted inductance design for a slightly worse
performance compared to the standard inductance design.

7.2 Near Standstill Estimator

To evaluate the near standstill estimator, which activates when the speed is close to
zero, the standard inductance design with interpolating high-speed Q adjustments
was employed for a NEDC test cycle. In the dynamic-Tc KF in Algorithm 4, the low-
speed estimator activated when the observability was low and the observer gains for
the flux linkage estimation spiked. From the analysis of the observability Gramian
in Section 6.4, the low-observability estimator was instead chosen to activate near
standstill and through tuning from simulation tests, the speed threshold was chosen
to be:

|ωthreshold |= 2.6rad/s (7.6)

The simulation results, however, surprisingly showed that the Lq estimation per-
formed much better than the Ld estimation. Using the same strategy as the dynamic-
Tc KF during the low-observability estimator by: stopping the update of the esti-
mation error covariance matrix P, keeping the old inductance values and only up-
dating the flux linkage estimation with the model (the near standstill estimator in
Algorithm 5) instead caused issues for the Lq estimation. A design was also evalu-
ated, where the P matrix update is perpetually active and the Lq estimation is unim-
peded, showed in Algorithm 6. In the alternative near standstill estimator, the old Ld
estimation is, however, still retained and the λ estimation slowly converges towards
the coolant temperature.
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Algorithm 6 Near standstill estimator with unimpeded Lq estimation.

Near standstill estimator
1: Lold

d = x̂k−1(5)
2: εk = yk−Hkx̂k|k−1

3: Sk = HkPk|k−1HT
k +Rk

4: Kk = Pk|k−1HT
k S−1

k
5: Pk|k = (Ik−KkHk)Pk|k−1
6: Kk(3, :) = 0
7: x̂k|k = x̂k−1|k−1 +Kkεk
8: x̂k+1|k = f (x̂k|k,uk)

9: Pk+1|k = FkPk|kFT
k +Qk

10: x̂k+1(5) = Lold
d

Simulation Comparison
The flux linkage estimation comparing no estimator switch and the two near stand-
still estimator designs can be found in Figure 7.12. The low-observability estimator
that does not update the P matrix near standstill yields the best λ and Ld estimation
results, which according to the sensitivity analysis in Section 5.8 were very impor-
tant to the rotor temperature estimation. The design with unimpeded Lq estimation
had pronounced flux linkage estimation spikes that also could occur for the design
with no low-obsersvability estimator. The rotor temperature and torque estimation
error for the designs can be found in Figure 7.13. The design that suspended the
P matrix update, improved the rotor temperature estimation considerably but at the
detriment of the torque estimation. The design that left the Lq estimation unimpeded
did, however, retained the rotor temperature estimation improvements without com-
promising the torque estimation. A potential issue for the low-observability estima-
tor with unimpeded Lq estimation emerged during long cool-down periods, where
the Lq estimation slowly drifted towards the lower saturation limit. To avoid a large
initial settings error after long cool down periods, the Lq estimation had to be reset
to the initial conditions if the motor remains inactive for a certain time period.
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Figure 7.12: Flux linkage estimation comparing no low-observability estimator and
two near standstill estimator designs. The near standstill estimator that suspends
the P matrix update and retains the old inductance values from before the switch
yields the best flux linkage estimation results. The near standstill estimator design
that allows the Lq estimation to continue has large flux linkage estimation spikes.

(a) Rotor temperature estimation error. (b) Torque estimation error.

Figure 7.13: Rotor temperature and torque estimation error comparing no low-
observability estimator and two near standstill estimator designs. The LP-filter
with comparatively long time constant, used to smooth out the λm0 working point
changes for the rotor temperature estimation, also helped with the flux linkage es-
timation spikes that can occur for both the unimpeded Lq estimator design and the
design without a low-observability estimator switch. The design that left the Lq es-
timation unimpeded retains the rotor temperature estimation improvements from a
low-observability estimator switch without compromising the torque estimation.
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7.3 Rotor Temperature Estimation Tuning

Compared to the previous KF designs, the EKF had problems accurately following
the flux linkage fluctuations that occurred with torque variations. The sensitivity
analysis in Section 5.8 showed that accurate Ld values were very important for the
flux linkage estimation performance and the EKF Ld estimation has to be largely
suppressed to avoid the λ estimation to greatly diverge. The rotor temperature was
calculated with (2.10) and used the λm0 reference point that is obtained from a LUT
with torque and speed inputs. To address the unresponsive flux linkage estimation
during torque variations because of the poor Ld estimation, the λm0 reference point
was instead obtained by limiting the rate of change for the torque input to the LUT.
A comparison between the standard λm0 LUT results and with a torque input rate
limit can be found in Figure 7.14 for a NEDC test cycle.

Figure 7.14: The λm0 LUT reference point results with and without a torque input
rate limit. The λm0 fluctuations were reduced with the LUT adjustments.

The L1-norm of the average error for the rotor temperature estimation for differ-
ent rate-limit magnitudes can be found in Figure 7.15. The torque input rate-limit
magnitude that gave the best results was 14 Nm/s and a plot of the rotor temperature
estimation results along with the results without a torque input rate limit is shown
in Figure 7.16. The same LP time constant of 30 s was used as in the previous KF
designs to smooth out the λm0 working point changes. Without a torque input rate
limit, the average L1 estimation error of the rotor temperature was ‖T̃r‖1 = 1.2847
and with a rate limit of 14 Nm/s it noticeably improved to ‖T̃r‖1 = 0.8792.
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Figure 7.15: The L1-norm of the average rotor temperature estimation error for dif-
ferent torque input rate limit magnitudes. For comparison, ‖T̃r‖1 = 1.2847 without
a rate limiter.

Figure 7.16: Rotor temperature estimation results with and without a torque input
rate limiter. The results were from a rate-limit magnitude of 14 Nm/s and show a
noticeable improvement.

7.4 Initial Condition Analysis

The initial condition settings have been very accurate thus far with: the correct start-
ing coolant temperature Tc and a λ value that corresponds to the coolant tempera-
ture, currents starting from zero and inductance values that are obtained from a LUT
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with torque and rotor speed inputs equal to zero. To test the EKF performance with
imperfect initial conditions, the starting values for each state was increased twofold.
Since the current starting values were set to zero, they were instead chosen to start
from 50 A, a value in the lower operating range. A table summarizing the average
error magnitude for incorrect initial conditions for the respective states can be found
in Table 7.1.

Table 7.1: The average estimation error with erroneous initial conditions. The start-
ing value was increased twofold, but because the current starting values were 0 A,
they were instead set to 50 A.

L1-norm average error with incorrect initial conditions for the respective states.
State with erroneous
initial condition

‖λ̃‖1 average [mWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]

Standard 0.16326 0.8792 0.0382
Id 0.16326 0.8792 0.0382
Iq 0.16328 0.8796 0.0382
λ 0.92777 10.89 0.0383
Tc 0.16326 0.8792 0.0382
Ld 0.16367 0.8771 0.0382
Lq 0.16325 0.8795 0.0382

The results show that the flux linkage initial condition was the most sensitive
setting but the torque estimation still performed well. The flux linkage to rotor tem-
perature conversion is, however, particularly sensitive and a twofold increase results
in a large rotor temperature error which can be seen in Figure 7.17, which includes
the Tr and λ estimation error with a twofold increase of the λ initial condition.
The LP-filter introduced in the rotor temperature estimation to smooth out the λm0
working point changes further prolongs the time before the error was corrected. The
rotor temperature estimation error was also exacerbated by the low-observability es-
timator, which only slowly converges to the flux linkage value corresponding to the
coolant temperature and is not well suited to correct poor initial flux linkage set-
tings. The EKF does, however, quickly correct the flux linkage estimate once it was
active, which can be seen in Figure 7.17, where it switched to the regular EKF at
around 10 seconds. The low-observability estimator caused similar issues for the Ld
estimate, because it holds onto the old inductance value. The flux linkage estima-
tion does, however, not make use of the inductances during the low-observability
estimator and the torque estimation was not greatly affected either due to the small
currents when the low-observability estimator was active. The Ld initial condition
error’s effect on the performance was therefore not as detrimental, evident by the
results in Table 7.1. In spite of the fact that the discrete-time system is unstable for
most rotor speeds, the state estimates rebounded quickly with the chosen default Q
and R noise covariance matrix settings. If there are concerns that the λ initial con-
dition is poorly calibrated, there is also a possibility of introducing a settling time
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for the rotor temperature estimate based on the LP-filter time constant and when the
standard EKF is first activated.

(a) Flux linkage estimation error. (b) Rotor temperature estimation error.

Figure 7.17: Flux linkage estimation and rotor temperature error with a twofold
increase of the λ initial condition. In the first 10 seconds of the NEDC test cycle,
the low-observability estimator was active and the λ estimate quickly recovers after
the standard EKF activates. The rotor temperature estimation error takes longer to
recover because of the LP-filter introduced in the rotor temperature estimation to
smooth out λm0 working point changes.

Inductance Saturation
The inductance saturation is not a relevant concern when the observer is well cali-
brated, but with very poor initial conditions the estimated inductance can cross zero
and cause estimation singularities. The consequences of poor calibrations can be
greatly mitigated. To illustrate the effects, the rotor temperature and torque estima-
tion error with and without inductance saturation is shown in Figure 7.18 for an
initial condition error of 200 A for Iq. The inductance estimation results from the
tests can also be found in Figure 7.19. A starting value of 200 A is extremely inac-
curate, but the effects were substantially minimized after saturating the inductances
but both designs eventually recovered.
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(a) Rotor temperature estimation error. (b) Torque estimation error.

Figure 7.18: Rotor temperature and torque estimation error with an initial condi-
tion error of 200 A for Iq. The effects were greatly minimized when saturating the
inductances.

Figure 7.19: Inductance estimation with an initial condition error of 200 A for Iq.
By saturating the inductances and never letting the estimations cross zero, the effect
was greatly minimized.

7.5 Sample Rate Analysis

The EKF performance was evaluated for different sampling frequencies, which,
opposed to the KF designs, also affected the operating speed range for which the
system was unstable. The flux linkage estimation results for varying sampling fre-
quencies using a NEDC test cycle are shown in Figure 7.20 and the rotor tempera-
ture and torque estimation errors in Figure 7.21. A table composed of the L1-norm
average estimation errors is displayed in Table 7.2. The results were not as straight-
forward as the KF simulation tests, but the torque estimation performance did gen-
erally improve with higher sampling frequencies. Lower sampling rates resulted in
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an unstable system for a larger portion of the operating range and an overall more
dynamic flux linkage estimation. That a lower sampling frequency had an improved
estimation result, is a sign that indicates that the default process noise σλ setting for
the faster sampling rates was slightly too small and suppressive for low to medium
operating speeds. The faster sampling rates did, however, perform better during the
latter portion of the NEDC test cycle, when the rotor speeds were highest, and also
have a generally lower maximum rotor temperature estimation error. The rotor tem-
perature estimation results were also affected by the torque input rate limit tuning
for the λm0 LUT reference point. A more appropriate comparison between differ-
ent sampling frequencies each require a specific tuning of: the Q and R matrices,
the high-speed noise covariance matrix recalibrations and a torque input rate-limit
magnitude to match. Unless the sampling rate is high enough to greatly increase the
stable ω operating region, the expected improvements for increasing the sampling
rate was overshadowed by the incorrect Q, R and torque input-rate limit tuning.

Figure 7.20: Flux linkage estimation results of a NEDC test cycle using different
sampling frequencies. A lower sampling frequency increases the unstable λ operat-
ing region and gives a more dynamic flux linkage estimation result.
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(a) Rotor temperature estimation error. (b) Torque estimation error.

Figure 7.21: Rotor temperature and torque estimation error of a NEDC test cycle us-
ing different sampling frequencies. The torque estimation generally improves with
increased sampling frequency. The rotor temperature results are also dependent on
the torque input rate-limit magnitude tuning.

Table 7.2: The average estimation errors for a NEDC test cycle using different sam-
pling frequencies.

L1-norm average error for various sampling frequencies.
Sampling frequency [kHz] ‖λ̃‖1 average [mWb-turns] ‖T̃r‖1 average [◦C] ‖τ̃‖1 average [Nm]
0.5 0.16372 0.8236 0.0421
1 0.15826 0.8402 0.0429
2 0.16326 0.8792 0.0382
5 0.16327 0.8413 0.0356
10 0.16280 0.8147 0.0358

7.6 Simulation Analysis with Rescaled State Variables

Even though the Matlab simulation environment has very high numerical precision,
a lack of hardware precision can cause issues when implementing the design. In
Section 6.6, state variables were rescaled to reduce the observability Gramian con-
dition number and simulation tests were done with the following scaling factors:

kL = 500 kλ = 10 (7.7)

The default Q and high-speed noise covariance matrix settings have to be tuned
specifically for each combination of scaling factors and with the chosen scaling
factors, the default process noise covariance matrix Q was altered as follows:

σλ = 7 ·10−4 Wb-t σLd = σLq = 1 ·10−3 H (7.8)

and the high-speed recalibration was implemented at three discrete points with the
following changes active between 1500 rad/s ≤ ω ≤ 2000 rad/s :
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kR = 10 σλ = 1 ·10−5 Wb-t σLd = 1 ·10−5 H σLq = 4 ·10−4 H (7.9)

where kR is the gain on R. Between 2000 rad/s ≤ ω ≤ 3000 rad/s further alterations
were made with:

kR = 30 σλ = 2 ·10−6 Wb-t σLd = 3 ·10−6 H σLq = 2 ·10−4 H (7.10)

and at ω ≥ 3000 rad/s with:

kR = 40 σλ = 9 ·10−7 Wb-t σLd = 1 ·10−6 H σLq = 1 ·10−4 H (7.11)

The tested combination of scaling factors that gave the best reduction of the con-
dition number in Section 6.6, were instead with kλ = 1. The EKF observability
analysis was, however, limited to a maximum electrical angular speed of ω = 3000
rad/s and simulation tests were problematic during operating speeds over 3000 rad/s.
Increasing the flux linkage and inductance state magnitude with a scaling factor al-
lows for state estimation with greatly increased Q settings. With kλ = 1 the large
discrepancy in high-speed settings for λ and the inductances for operating ranges
over 3000 rad/s were hard to calibrate without a large kR. A large kR greatly reduced
the estimation convergence for all states and impairs the Lq estimation, leading to
poor torque estimation results.

Simulation results with the aforementioned settings can be seen in Figure 7.22
for the flux linkage estimation. The rotor temperature and torque estimation re-
sults are shown in Figure 7.23, where the torque input rate limit for the λm0 LUT
was slightly reduced to 12 Nm/s for the PM temperature calculations. The aver-
age error magnitude for the respective signals were: ‖λ̃‖1 = 0.1536 mWb-turns,
‖T̃r‖1 = 1.313 ◦C and ‖τ̃‖1 = 0.0082 Nm.

The simulation test with rescaled λ and inductance state magnitudes gave im-
proved torque estimation, but degraded the rotor temperature estimation. It is, how-
ever, hard to directly compare the different designs because each design has specific
default Q and high-speed noise covariance matrix settings. It is possible to find a
combination of scaling factors with a specific tuning that can improve both the ro-
tor temperatue and torque estimation but fine tuning the noise covariance matrix
settings for each operating region of ω is very delicate, time consuming and has to
be redone for every choice of scaling factors. The estimator performed well if it was
properly calibrated but there are concerns regarding the robustness of the estimator
under slightly different operating conditions, when experiencing unforeseen distur-
bances. Using scaling factors for λ and the inductances, greatly increased the σ

settings for Q, which otherwise were extremely small for the unscaled designs, and
reduce the required numerical precision of the hardware. Increased hardware inten-
sive approaches are, however, most likely unavoidable to increase the robustness of
the estimator, either by using a sampling frequency that is stable for the entire ω

operating region or with a more hardware demanding discretization technique, such
as the backward Euler method discussed in Section 6.1.
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Figure 7.22: Flux linkage estimation results for a rescaled state variable system
using kL = 500 and kλ = 10. The Q settings were greatly increased compared to the
unscaled state variable designs.

(a) Rotor temperature estimation. (b) Torque estimation.

Figure 7.23: Rotor temperature and torque estimation results for a rescaled state
variable system using kL = 500 and kλ = 10. With the Q and R settings used, the
torque estimation was greatly improved at a slight cost of the rotor temperature
estimation performance.

7.7 EKF Comparison with KF with Constant Inductances

To assess how the EKF design performs in comparison to the KF with limited in-
ductance accuracy, simulation tests were conducted on the normalized system KF,
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found in Section 5.10, with constant inductances and the standard inductance in-
terpolating EKF design, found in Section 7.1, with the near standstill estimator in
Algorithm 6. The two designs were chosen because they both gave the best overall
estimation results, but the vast improvement in computational robustness of the nor-
malized system KF over the EKF designs also has to be taken into consideration.
The PM temperature estimation results using the NEDC test cycle, comparing the
KF with constant inductances and the EKF design is shown in Figure 7.24 and the
torque estimation results in Figure 7.25. The constant and estimated inductances are
also showed in Figure 7.26.

The rotor temperature estimation during low to medium speeds was compara-
ble, but the difference during high speeds was pronounced, where the KF could
reach a maximum temperature-estimation error magnitude of around 10 ◦C while
the EKF never exceeded 2.5 ◦C. It was also during the high-speed segment that the
differences between inductances were the largest and most prolonged, resulting in
the largest difference of the slowly changing rotor temperature estimate. The EKF
torque estimation, conversely, consistently outperformed the KF across the simula-
tion test. If the hardware running the observers can manage the increased computa-
tional uncertainty of the EKF designs, it can be a valid alternative to the KF designs
when knowledge of the inductances is poor.

Figure 7.24: Rotor temperature estimation results for the normalized system KF
with constant inductances and the standard inductance, high-speed interpolation
EKF design. The average Tr error magnitude for the KF was ‖T̃r‖1 = 1.51 ◦C and
‖T̃r‖1 = 0.879 ◦C for the EKF. The EKF design showed great improvement over the
KF design during the high-speed segments of the NEDC test cycle.
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Figure 7.25: Torque estimation results for the normalized system KF with constant
inductances and the standard inductance, high-speed interpolation EKF design. The
average τ error magnitude for the KF was ‖τ̃‖1 = 0.473 Nm and for the EKF it was
‖τ̃‖1 = 0.038 Nm. The EKF design consistently outperformed the KF design across
the NEDC test cycle.

Figure 7.26: The constant inductances used for the normalized system KF and the
estimated inductances of the standard inductance, high-speed interpolation EKF de-
sign. The largest and most prolonged difference occurred during the high-speed
segment. It is also possible to see how much better the Lq estimation performed and
why a smaller σLd was necessary.
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8
Measurement Data Study

The focus of the analysis in this thesis has been on simulation results using a detailed
motor model, but to briefly conclude the analysis, estimation results and analysis
from real measurement data are also presented. The measurements were conducted
on a different e-machine than the one used in the simulation analysis and the pre-
vious observer tuning was consequently not applicable. The measurement analysis
was conducted with the normalized system direct-Tc KF, which was the lowest or-
der KF and the easiest to calibrate because of the lowest number of tuning variables
and a simpler low-speed switch logic. The normalized system KF in the simulation
analysis in Section 5.10, allowed for tuning that placed a greater reliability on the
measurement signal, improved numerical robustness and was also implemented for
the different motor.

8.1 Setup

Experimental Setup
The evaluation data used in the analysis presented this section was collected from
rig tests performed with a Borg-Warner e-machine, which had been equipped with
thermocouples in the rotor shaft, close to the magnets. Motor currents, voltage ref-
erences and speed were collected in addition to the measured rotor temperature.
The e-machine was connected to a break dynamometer which allowed for dynamic
test-cycle testing. To collect data from scenarios that would be realistic in a vehi-
cle, a NEDC, and a city-driving cycle (CDC) were executed. During the cycles,
the e-machine coolant was controlled to 50 ◦C, and a cool-down period was also
measured after each cycle, in order to capture the cool-down characteristics.

Model Setup
The parameters for the motor come from LUTs that were working point dependent
and they have been optimized with measurement data using system identification
techniques, provided by BorgWarner. The measurement data was collected from a
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NEDC test cycle, which can be seen in Figure 8.1, and it was slightly different from
the test cycle in the simulation analysis. The observer was also tested on a City
Driving Cycle (CDC), part of the Worldwide harmonized Light vehicle Test Cycles
(WLTC), which can be seen in Figure 8.2.

(a) NEDC electrical angular speed ω . (b) NEDC torque.

Figure 8.1: The normalized ω and torque of a NEDC cycle over time.

(a) CDC electrical angular speed ω . (b) CDC torque.

Figure 8.2: The normalized ω and torque of a CDC cycle over time.

The estimation results from the normalized system direct-Tc KF used a 2 kHz
sampling frequency and had the following noise covariance matrix Q settings:

σId = 10A σIq = 3A σλ = 3.5 ·10−3 Wb-t (8.1)

and the following R settings with a R gain, kR:

σId = 1A σIq = 1A kR = 5.5 (8.2)
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The low-observability estimator threshold was chosen as ωthreshold = 420 rad/s, the
PM temperature time constant as τm = 1300 s and the LP-filter to smooth the work-
ing point λm0 changes for the rotor temperature estimation had a time constant of
120 s.

8.2 Results

The estimation results from the normalized system, direct-Tc KF with real measure-
ment data are shown in Figure 8.3 for the flux linkage estimation of the NEDC test
cycle and in Figure 8.5 for the CDC cycle. There was no flux linkage measurement,
but the reference signal in the estimation results was the corresponding flux linkage
value converted from the rotor temperature measurement and operating point with
(2.10). The rotor temperature estimation and measurement for the NEDC test cycle
are found in Figure 8.4 and in Figure 8.6 for the CDC test cycle.

The KF design tuning for the motor in the simulation analysis was much more
thorough, but the estimation results from the measurement data still performed de-
cently, with a maximum PM temperature estimation error magnitude within± 7 ◦C
for the NEDC test cycle. The observer performed slightly worse for the CDC test cy-
cle with a maximum PM temperature estimation error magnitude within ± 12 ◦C.
The largest deviation of the PM temperature estimate occurred for the CDC test
cycle around 500 s, where the motor strongly decelerates to standstill and the low-
observability estimator continues to converge towards the lower coolant temperature
value.

The λ estimate was, however, not the sole contributing error factor. Possible er-
rors could also be the result of imperfect inductances, which affect the Tr estimation
through the λ estimate. There was also some degree of measurement uncertainty,
with deviations between the rotor temperature measurements from different sensors.
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Figure 8.3: The normalized flux linkage estimation results using real measurement
data for a NEDC test cycle. The reference signal is the corresponding flux linkage
value converted from the rotor temperature measurement.

Figure 8.4: Rotor temperature estimate and measurement for a NEDC test cycle.
The average PM temperature error magnitude was ‖T̃r‖1 = 1.66 ◦C. The accuracy
for different working points was more inconsistent for the PM temperature estima-
tion than in the simulation analysis, resulting in larger PM temperature estimation
fluctuations.
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Figure 8.5: The normalized flux linkage estimation results using real measurement
data for a CDC test cycle. The reference signal is the corresponding flux linkage
value converted from the rotor temperature measurement.

Figure 8.6: Rotor temperature estimate and measurement for a CDC test cycle. The
average PM temperature error magnitude was ‖T̃r‖1 = 2.80 ◦C.
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9
Conclusion

9.1 Objectives in Problem Formulation

The objective of this thesis was to provide analysis of different observer-based ap-
proaches to rotor temperature and torque estimation with current and voltage mea-
surements. The problem formulation identified some important consideration that
required special attention. The parameter-varying characteristics of the motor model
was an unavoidable facet in obtaining adequate estimation accuracy over the entire
operating range. A sensitivity analysis of model parameters and input signals was
conducted to give insight into the affects of parameter uncertainty, which later in-
formed the decision to develop an EKF with inductance estimation.

Another key issue that was identified was observability problems at certain op-
erating points and limited, non-persistent excitation. The observability of the sys-
tem was thoroughly analyzed and low-observability estimators, which utilized the
coolant temperature, was developed.

Another goal was to investigate possible relationships between the optimal ob-
server gain and the operating speed. The observer gain analysis gave some idea of
the behavior of the observer at low-speed operating ranges, but was quite limited.
The most significant impact the relationship between the operating speed and the
observer gain had during the development of observers was when utilizing gain
scheduled noise covariance matrices for the EKF. The tuning could, however, vary
a lot from other factors, such as sampling frequency and state variable rescaling.

The last topic identified during the problem formulation was computational and
memory demand. Hardware resources was an important consideration during the
observer development and analysis, with performance evaluations with different
filter sampling frequencies, the analysis on numerical robustness and the design
choices of the EKF with forward Euler discretization and gain scheduling. Potential
memory issues could occur when managing large LUTs on an embedded system,
but never appeared to be an issue and was not part of the analysis.
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9.2 Summary

Both the extensive simulations and the more limited measurement analysis showed
that an indirect observer-based approach to estimate the rotor temperature and
torque from the currents and voltages has potential. The worst performance was for
the motor used in the measurement analysis, with a rotor temperature error within
± 12 ◦C. It is, however, hard to judge if the error falls within an acceptable range, as
the required error tolerance is very application specific. The torque error tolerance
could range from only a few percentages to a much larger value depending on how
easily torque inaccuracies can be compensated for externally. When calculating the
currents to generate a desired torque value, the PM temperature, or flux linkage,
can be utilized when attempting to solve for the currents that yield the Maximum
Torque Per Ampere. The PM temperature or flux linkage can also be used to ob-
tain the current torque estimate and the maximum/minimum available torque for an
operating point. All the different uses can help improve motor regulation and have
their own acceptable error tolerance. Using the PM temperature instead of the flux
linkage estimate in a torque compensation schemes does, however, introduce possi-
ble errors from working points inaccuracies when converting the flux linkage into a
corresponding rotor temperature. It was, however, difficult to ascertain the accuracy
of the flux linkage estimate, as it was not included in the measurement analysis. The
rotor temperature can also be utilized in the motor’s cooling system and that has its
own set of requirements.

Improper observer tuning was most likely not the only source of errors during
the measurement analysis. Other possible contributing factors, include inductance
inaccuracies and measurement uncertainty. Tuning the observers was, however, very
time consuming and tricky because changes to improve the PM temperature estima-
tion were often to the detriment of the torque estimation. In comparison to the EKF
tuning, the KF designs were much easier to accurately calibrate and more straight-
forward when handling noisy reference signals. By simply introducing an R gain,
the KF designs could manage a noisy input signal, while the EKF required retuning
of the high-speed noise covarariance matrices.

The 2 kHz sampling frequency which was used for the majority of the sim-
ulation analysis, worked well for the KFs, with diminishing return for tests with
increased sampling frequency. Using a sampling rate based on the crossover fre-
quency was not necessary for the KF. The sampling frequency required to stabi-
lize the discrete-time EKF using the forward Euler method was extremely high,
163 kHz at ω = 3000 rad/s. Considering the strain that such a high sampling fre-
quency would place on the implemented hardware, state estimation of a mostly
unstable discretized system with gain scheduling noise covariance matrices was in-
stead attempted. Even though gain scheduling with respect to the noise covariance
matrices was a possible and less hardware-intensive solution, it came at the cost of
the robustness of the observer and challenging tuning requirements. The expected
improvements from increasing the sampling frequency during simulation tests ap-

130



9.2 Summary

peared to be overshadowed by incorrect high-speed noise covariance tuning.
Another vital aspect of the performances for both the KF and EKF was the pa-

rameter accuracy, which also was an important factor for the different motor model
used in the measurement analysis. The sensitivity analysis showed that estimation
results were most sensitive to parameter errors during high torque and low speed
operating points, when the currents are large as well. The increased parameter sen-
sitivity during high torque and low speed was, however, somewhat mitigated by the
different low-observability estimators. The accuracy of the inductances were im-
portant for the flux linkage estimation with greater emphasis placed on Ld , which
in turn was essential for the rotor temperature estimation. The Ld parameter errors
were, however, not especially pronounced in the torque estimation unlike Lq errors
which were important for the torque estimation but not as essential for the PM tem-
perature estimation. The inductance error sensitivity was also evident in the EKF
simulation analysis, where the Lq estimation performed considerably better than the
Ld estimation and consistently yielded an accurate torque estimation as a results.

Kalman Filter
Low-Speed Estimator
The Bode magnitude plots of the noise transfer functions showed a strong sensitivity
to flux linkage process noise at low rotor speeds, when observability also was low.
It was also seen during the simulation analysis that without the low-speed estima-
tor the flux linkage estimation spiked, leading to large rotor temperature estimation
errors. Letting the flux linkage estimation slowly converge to the coolant tempera-
ture was a much better alternative and the low-speed estimator thresholds from the
observability Gramian worked fairly well. There is also a balance to consider of al-
lowing the KF to remain active for as much as possible and avoid the more sensitive
low-observability region.

Direct and Dynamic Coolant Temperature Designs
The dynamic-Tc KF has a slight bias towards the coolant temperature over the
low-observability threshold, but the most pronounced difference between the de-
signs was the direct-Tc KF feedback system for the starting low-speed estimator
PM temperature, from when the observability still was high. The low-speed es-
timator slowly converged to the corresponding flux linkage value of the coolant
temperature. Because of the sensitivity of the flux linkage to PM temperature con-
version, the flux linkage value for which the dynamic-Tc KF stopped at when the
low-speed estimator activated was very important. The low-observability threshold
for the dynamic-Tc KF required special attention to avoid strong deceleration near
the observability threshold, where the low-speed estimator had trouble correcting
the flux linkage estimate. Using different low-observability thresholds and retain-
ing the λm0 working point from before the switch for the dynamic-Tc KF resulted
in a similar performance between the two designs. The flux linkage estimation was
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worse for the dynamic-Tc KF, but it yielded a slightly better PM temperature esti-
mation with only a minor deterioration of the torque estimate.

LP-Filters
The LP-filters were very important for the signals used as inputs in the LUTs of the
model parameters. With filtered current measurement signals the torque estimation-
error was substantially reduced and using a full-order state observer should probably
be reconsidered. A reduced-order observer that only includes the relevant dynamics
to estimate the required states could have a similar performance, but be easier to im-
plement with fewer parameters to tune. The LP-filter to smooth λm0 working point
changes was also remarkably essential, because of the sensitivity of the flux linkage
to PM temperature conversion, the estimate could otherwise vary considerably.

Normalized System
The observability Gramian of the discrete-time model had a lower condition num-
ber than the continuous-time system and by normalizing the system, it started off
relatively high but decreased to under 10 already before ω = 500 rad/s. Using a
low-speed estimator, it was possible to avoid the region where the condition num-
ber was largest. The system without normalization, however, had a condition num-
ber of the observability Gramian that started low but increased to 104 at maximum
rotor speeds. The simulation results for both the KF and the EKF, showed that nor-
malizing the system or rescaling the state variables had a large effect on the noise
covariance matrices Q and R settings. The normalized system KF did not need to
use an R gain and with slightly larger σλ , it gave the best torque and rotor temper-
ature estimation results. The differences were not directly apparent in a simulation
environment with very high numerical precision, but it performed well overall.

Extended Kalman Filter
The EKF expanded with inductance estimation showed promise in circumstances
where the inductance accuracy was limited. Without a mechanism to accurately up-
date the inductances, the observers had issues in some area of the operating region.
The downside, conversely, was a very laborious and sensitive calibration process of
the noise covariance matrices. When tuning the EKF with gain scheduling, it was
better to try to avoid large R gains, as it would slow down the estimation speed
for all states, but if it proved too difficult to only adjust the Q matrix, an R gain
was also incorporated. Moreover, the Lq estimation performed much better than ex-
pected from any observability analysis, which also resulted in a consistently great
torque estimation. An alternative approach could be a reduced-order observer with
Lq estimation and focusing on a more accurate LUT for Ld , if there are memory
limitations in hardware. The poor Ld estimation, which according to the sensitivity
analysis had the greatest affect on the λ and Tr estimation, required heavy estima-
tion change suppression to avoid large PM temperature estimation deviations. This
also meant that the flux linkage estimate had trouble accurately following fluctu-
ations caused by varying torques, but using a rate limiter on the torque input for
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the λm0 reference point LUT, alleviated the issues for the PM temperature estima-
tion. Attempting to estimate three different parameters from effectively two current
equations was possibly a bit ambitious. Luckily, Ld parameter errors did not have
a great affect on the torque estimation and the observer performed decently when
tuned properly.

Inverted Inductance State Design
The observability Gramian for the discrete-time inverted inductance system had a
larger condition number than its standard inductance counterpart and no combi-
nation of rescaling factors could be found to reduce the condition number below
the rescaled standard inductance design. The interaction of rescaling state variables
could be further investigated in the simulation analysis, but finding a combination of
scaling factors with a corresponding noise covariance tuning for the standard induc-
tance state design was already challenging. A more fruitful endeavour is most likely
an investigation of a more robust discretization method that also can be symbolically
differentiated. The process noise covariance settings for the standard inductance de-
sign were extremely small and might not be feasible to implement on an embedded
system. Even though the default Q settings for the inverted inductance design were
more manageable, the high-speed calibration was still very small considering how
large the inverted inductance states were.

Rescaled State Variables
The rescaled state variable simulation analysis showed improvement in the torque
estimation at a cost of the rotor temperature estimation. The search for possible
combinations of scaling factors with corresponding noise covariance matrice cal-
ibrations, which improved both the torque and PM temperature estimation, was
unsuccessful. The observability analysis for the EKF was, however, limited to a
few number of operating points with the maximum speed of ω = 3000 rad/s. The
originally chosen scaling factors, found in the EKF design, had high-speed noise
covariance calibration troubles when ω ≥ 3000 rad/s. The results of the observabil-
ity analysis were also not directly applicable, because a stable system was required
for the observability Gramian, and were generated with a sampling frequency of
163 kHz while the observer only used a 2 kHz sampling frequency. Similar to the
normalized system KF, the increased numerical precision was never pertinent to the
Matlab Simulink simulation environment, but it could be important for an imple-
mentation on an embedded system. Furthermore, the extremely small high-speed Q
settings were somewhat alleviated with the rescaled state variables.

High-Speed Noise Covariance Matrix Calibration
When utilizing the forward Euler method to discretize and symbolically differen-
tiate the system, the sampling frequency required to have a stable system for the
entire ω operating range was extremely high. The trade-off for using the less com-
putationally demanding method, was an unstable system that required a lot of effort
tuning and which was not robust. Without the high-speed calibrations, the overall
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suppression has to be very large or the rotor temperature estimation would devolve
into large estimation errors, which the torque estimation was surprisingly unaffected
by. The tuning was very time consuming and sensitive, but it did give acceptable es-
timation results for a less computationally resource-intensive design.

Low-Observability Estimator
The original low-observability estimator, based on the dynamic-Tc KF that suspends
the P matrix update, improved the PM temperature estimation to the detriment of
the torque estimation. The limited observability analysis did not accurately depict
how much better the Lq estimation was compared to Ld and an alternative low-
observability estimator with unimpeded Lq estimation was used instead. The alter-
native near standstill estimator had short and relatively large estimation spikes, but
the torque estimation performance was overshadowed by the accuracy improvement
of the Lq estimation. The LP-filter with comparatively long time constant in the rotor
temperature also smoothed the effects caused by the short λ spikes and still yielded
an overall improvement compared to not using a low-observability estimator. It was
never a concern during the simulation analysis, but a prolonged cool-down period
will cause the Lq estimation to drift towards the lower saturation limit. Although the
tests with initial-condition errors and saturation limits showed that the states quickly
recovered with the default Q and R settings, logic could be introduced to reset the
Lq estimate to initial conditions during long cool-down periods.

9.3 Future work

The work can be continued in a number of different avenues, the most readily ap-
parent option is a continuation of the real measurement data analysis. More work
has to be done testing all the observer designs, improving the tuning and using mea-
surement data from more tests cycles. There are also potential PWM inverter model
inaccuracies that could be investigated. Another option is focusing on implement-
ing the designs on an embedded system, working under stricter hardware limitations
and real-time requirements. It then becomes more important to optimize the design,
possibly with a reduced-order observer, and being able to handle the introduction of
delays. The low-observability design with the temperature estimation slowly con-
verging to the coolant temperature was also very basic and could be further refined,
e.g., taking in consideration the current magnitudes during low-observability. There
are also a few different options for further EKF developments. Estimating both the
inductances was tricky, but only estimating Lq could be a potential workaround,
allowing for alternative measures to acquire accurate Ld information. Other, more
robust, discretization methods can also be investigated, where the aim is to keep
the system stable over the entire ω operating region with reasonable increases in
computational demands and also being able to symbolically define the Jacobians.
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