
EXAMINATION OF AI-BASED

ESG-SCORES AS A VALID

SOURCE OF ALPHA IN THE

SWEDISH INVESTING

LANDSCAPE

MARCUS HAEVAKER

Master’s thesis
2022:E38

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Acknowledgements

I would like to express my gratitude to my assistant supervisor Carl Hvarfner for
providing continuous support during the writing of this thesis. Furthermore, I would
like to deeply thank Oscar Dahlblom and Gustav Johnsson Henningsson at Sanctify
Financial Technologies for their support, feedback and for providing data used in
the thesis.

1

Contents

1 Introduction 6
1.1 Related work . 6

1.1.1 Stock price prediction . 6
1.1.2 Stock price prediction using machine learning 7
1.1.3 Stock price prediction using sentimental data 7

1.2 Sanctify Financial Technologies . 8
1.3 Objective . 8
1.4 Scope . 8

2 Background 10
2.1 Long positions . 10
2.2 Short positions . 10
2.3 Stock indices . 11
2.4 Adjusted close prices . 12

2.4.1 Ex-dates . 12
2.4.2 Fictional example . 12

2.5 Sanctify ESG-scores . 12
2.6 Predictor benchmarking and evaluation 13

2.6.1 Sharpe ratio . 13
2.6.2 Sortino ratio . 13
2.6.3 Gross return . 14
2.6.4 Technical analysis tools . 14

2.6.4.1 Simple moving average (SMA) 14
2.6.4.2 Momentum (MOM) 14

2.6.5 Mean squared error (MSE) . 14

3 Mathematical and machine learning theory 15
3.1 Introduction to machine learning . 15

3.1.1 Supervised learning . 15
3.1.1.1 Classification . 16
3.1.1.2 Regression . 16

3.1.2 Unsupervised learning . 16
3.2 Classical Autoregressive predictors 17

3.2.1 Autoregressive (AR) processes 18
3.2.2 Autoregressive moving average (ARMA) processes 18
3.2.3 Trends and ARIMA processes 18
3.2.4 Exogenous inputs . 18

3.3 Parameter estimation and prediction 19

2

3.3.1 Dynamic systems . 19
3.3.1.1 Linear state space representation 19
3.3.1.2 The Kalman filter 20

3.4 Decision trees and Random forests 21
3.4.1 Decision trees . 21
3.4.2 Bagging . 22
3.4.3 Random forests . 23

3.5 Support vector machines (SVM) . 23
3.5.1 Linear SVM . 24

3.5.1.1 Non-linearly separable data 26
3.5.2 Support vector regression (SVR) 27
3.5.3 Non linear SVMs and the Kernel trick 28

3.6 Artificial Neural Networks . 30
3.6.1 Multilayer perceptrons (MLPs) 30
3.6.2 Recurrent neural networks (RNNs) 31

3.6.2.1 Vanilla RNNs . 32
3.6.2.2 Long short-term memory (LSTMs) 33

4 Method 35
4.1 Software . 35
4.2 Data . 35

4.2.1 Time span . 36
4.2.2 Train-test split . 37

4.3 Attribute selection . 37
4.3.1 ARIMAX-model . 37
4.3.2 Other models . 37

4.4 Pre-processing . 38
4.5 Model creation . 40

4.5.1 Naive-model . 40
4.5.2 Support Vector Machine . 41
4.5.3 Random forest . 42
4.5.4 Long short-term memory (LSTM) 42

4.6 Trading algorithm . 43
4.7 Calculation of benchmarks . 44

5 Results 45
5.1 Benchmarking . 45
5.2 Cumulative gross returns . 46

6 Discussion 49
6.1 Discussion of results . 49
6.2 Future work . 50

6.2.1 Investment horizons and holding periods 50
6.2.2 New investment universe . 50
6.2.3 Sanctify ESG-scores . 50
6.2.4 Other model-types . 50
6.2.5 Correlation between Sanctify ESG-scores and stock price move-

ment . 51

3

Bibliography 52

4

Abstract

Investing based on environmental, social, and governmental (ESG) criteria has
grown rapidly in recent years. The trend has been driven by both an increased
interest in sustainability, and the fact that ESG related corporate events have been
shown to influence stock prices. In tandem with this development, a number of
companies has pioneered methods to quantify a firm’s ESG performance. One of
these companies is Sanctify Financial Technologies.

In this thesis, numerous machine learning models are used to try and predict
stock prices. ESG scores from Sanctify are then incorporated in some of the models,
these models are then compared to identical models without access to these scores.
The predicted stock prices are then inserted into a custom-made trading algorithm
that creates daily investment portfolios that maximises the expected Sharpe ratio.
The benchmarks used for evaluating the models are the Sharpe ratio, the Sortino
ratio and gross returns.

A random forest regressor using various moving averages of the ESG scores ends
up performing the best. With a Sharpe ratio of 1.185, a Sortino ratio 1.658 and
gross returns of 60.5%, it outperforms the OMXS30GI index on all three benchmarks
during 2020-2021.

In general, the performance of the models varies widely and indicates somewhat
low predictive power. Excess returns are still achieved however, and the results
indicate predictive performance for the Sancify scores on stock prices.

5

1

Introduction

Since the stock market was created as an institution centuries ago the race to achieve
larger and more predictable returns was on. As time passed various qualitative and
quantitative methods were conceived and debates regarding the efficacy of these
various techniques is not a new phenomena.

Regarding the quantitative side, econometrics, i.e. the application of statistical
methods and tools on financial data was developed and the classical multivariate
linear regression model has been popular for the past 100 years [36]. This simple
predictor remained popular as economic datasets in the 20th century were mostly
small and simple to analyse. This has changed in recent decades and tools such as
machine learning has been applied in the field to handle this new surge of data.

In parallel to the developments in quantitative finance, societal expectations on
corporations were changing. In 1970, famous economist Milton Friedman argued
that “The Social Responsibility of Business Is to Increase Its Profits” [19]. In recent
years, this view has largely fallen out of favour and corporations with both financial
and non-financial goals are very much the standard today [39]. Why this happened
is multi-faceted but clearly the motivation for managers and CEO’s to pursue social
and environmental aims includes an insight that responsible business could help to
achieve financial goals [27]. For example, a company with ESG-conscious customers
could lose through poor sustainability practises [27].

This rise in companies engaged in corporate social responsibility (CSR) has been
matched by increased interest to invest in said companies and a company’s perceived
performance in Environmental, Social and Governance (ESG) metrics is now a driver
for stock prices [3, 5]. A challenge when trying to use ESG performance in investment
decisions is that ESG impact of a company is hard to measure in objective numerical
terms [24]. A new set of fintech companies are trying to change this though, by
leveraging advances in machine learning and the enormous amount of sentimental
data available in our age, they aim to provide numerical measurements of company
ESG performance.

1.1 Related work

1.1.1 Stock price prediction

Stock market prediction is the employment of various methods to try and predict
the future prices of stocks. By doing this, the person doing the prediction hopes to

6

achieve better risk-adjusted returns than the market can offer. Research during the
1960s-1970s [16, 17] led to the efficient market hypothesis (EHM). This hypothesis
states that stock market prices are inherently unpredictable. According the EHM,
stock price changes due to sudden events would quickly get priced in, and regular,
long-term excess returns would not be possible. The hypothesis was not universally
accepted however. Dreman and Berry [14] for example, found that stocks with
low price to earning (P/E) ratios outperform those with high P/E ratios. Doubt
regarding the EHM has lead to stock price prediction methods such as technical
analysis. Technical analysts believe that historical stock price and stock trading
volume data can provide information regarding future stock prices [6].

1.1.2 Stock price prediction using machine learning

As data is abundant and the potential gains enticing, a large amount of research
on machine learning as a tool in stock prediction has been published in the latest
decade. These machine learners generally use traditional technical analysis indica-
tors, but apply them on larger data sets and with more powerful models. Selvin et
al. [44] used various deep learning techniques to predict prices of stocks listed on the
New York stock exchange. Convolutional Neural Networks (CNN) [31], Recurrent
Neural Networks (RNN) [15] and Long Short Term Memory (LSTM) [22] were eval-
uated and CNNs was deemed the best model for stock prediction. Vijh et al. [51]
compared the predictive power of Artificial Neural Networks (ANN) and Random
forest regression on the close prices of the stocks of five large American compa-
nies. The ANN performed better in most cases but not uniformly so. Patel et al.
[40] took another approach and compared four prediction models for classification,
ANN, support vector machine (SVM) [7], Random Forest [9] and naive Bayes, in
their respective ability to predict the direction of stock prices for Indian companies
and indices. Chen and Liu [10] used scholar big data on ESG, and machine learning
to create an investment strategy. Linear regression, Lasso regression [49], Support
vector regression (SVR), Ridge regression [23], random forest regression and LSTM
were all used in an ensemble to create the strategy. This strategy outperformed an
identical approach which only relied on traditional financial indicators.

1.1.3 Stock price prediction using sentimental data

With the goal of finding data other than traditional technical indicators to incor-
porate in stock price prediction, plenty of research on using sentimental data from
various sources to predict stock prices has been published. Sul et al. [48] found that
the sentiment in tweets sent by users with less than 171 followers on Twitter, was
significant in predicting the mentioned firm’s stock returns for up to 20 trading days
after the tweet was made. Li et al. [33] created a LSTM based classification pre-
dictor which incorporated both technical indicators based on historical stock data
and news sentiments to predict the direction of stock prices for 12 Hong Kong listed
stocks. The paper concluded that models using both technical indicators and news
sentiment outperformed models that used only one of the data sources. News senti-
ment was in turn confirmed as viable data to use in stock market prediction. Sousa
et al. [47] used the natural language processing (NLP) technique called BERT on
582 data-sources to create sentimental data. This sentiment was used to predict the

7

direction of the Dow Jones index and was successful in 69% of cases. Kordonis et
al. [28] processed tweets with NLP and sentiment analysis. Thereafter, they used
both naive Bayes and SVM to predict the sentiment of tweets. The conclusions of
their work included that the Twitter sentiment could affect stock prices. Therefore,
to some extent, the stock market can be predicted.

1.2 Sanctify Financial Technologies

This thesis has been produced in collaboration with Sanctify Financial Technologies,
a Lund based company engaged in providing numerical ESG-performance scores for
companies worldwide. The company uses an API to receive information from a
large number of sources. NLP is then applied to the information to convert it into
sentimental data which in turn is used to create numerical scores. The scores are
intended to be used by fund managers of various types to incorporate ESG in their
investment decisions.

1.3 Objective

The objective of the thesis is to evaluate whether Sanctify’s AI-based ESG-scores are
a valid source of alpha (positive risk adjusted returns) in the Swedish investing land-
scape. Several predictors which incorporate this data will be created and compared
to both a reference index and identical predictors which lack access to Sanctify’s
data. The viability of the predictors will be examined through three benchmarking
metrics. The Sharpe ratio, the Sortino ratio and gross returns.

1.4 Scope

This objective, at its extreme, could encompass every single stock that Sanctify
keeps scores on, and every single method to incorporate these scores in a stock-price
predictor. As this is unfeasible, a more narrowly defined scope has been decided
upon. The first delimitation is regarding the investment universe, only Swedish
stocks included in the OMXS30 index will be traded by the predictors and con-
versely, the reference index for comparison will be the OMXS30GI index, a variant
of OMXS30 adjusted for dividends.

As the data that Sanctify uses to derive its ESG-scores are scarcely available
before 2016, we will only consider the period from 2016-2021. 2020-2021 has been
chosen as the test period and the 4 previous years will be used to train the predictors.

Another important delimitation is regarding investment horizon. The predictors
will be allowed to recompose their investment portfolios on a daily basis. With
the exception of some high-frequency-traders, this is not a realistic strategy for
fund managers due to both administrative hurdles and transaction fees. However,
these hurdles and fees are not present in an academic environment, and the short
investment horizon will still allow for examination of the predictive power of Sanctify
generated ESG-scores. Finally, the predictors have been prohibited from utilizing
short positions in any stock, a concept explained in section 2.2.

When selecting attributes to use for stock price prediction, one has many poten-
tial data sources to utilise. Factors that influence the pricing mechanisms of stocks

8

range from broad macroeconomic data, to firm-specific data disclosed in financial
statements, to posts on social media [48]. Attribute selection is therefore a very
complex and time consuming task when attempting to predict stock prices. As a re-
sult, the scope of the thesis has been limited by largely adopting the same attributes
used by Vijh et. al. [51] in their 2019 paper on stock prediction. This is further
explained in section 4.3.

9

2

Background

2.1 Long positions

When an investor believes that the price of a certain stock will increase, the investor
can buy the stock, or in financial terms, take a long position in the stock. When
holding such a position, the returns for the investor corresponds to the change
in the stock price. A surge from a price at purchase from $100 to $150 at sales
means a profit of $50 for the investor. Normally, an investor can also take leveraged
long positions by borrowing money to invest more than 100% of its funds, or by
purchasing derivatives with innate leverage, such as call options. In this thesis
however, leverage will not be utilised.

2.2 Short positions

If the investor instead believes that the price of the stock will fall, it can instead take
a so-called short position in the stock. A short position is essentially the opposite of
a long one, and the investor makes a positive return if the price of the shorted stock
falls. The investor borrows a stock from an existing owner (lender) and instantly
sells it for the current market price. At a later time the investor buys back the stock
from the market and returns it to the lender. The lender receives interest for the
loan and the investor receives a negative exposure towards the stock price for the
duration of the loan. If the price of the stock in question falls by $50 during the
duration of the loan, the investor takes home a profit of $50 minus interest. If the
price instead surges by $50, the investor instead loses $50 plus interest. The concept
of short positions is important for modern financial markets. Studies have shown
that access to short selling improves market efficiency through increased liquidity
and price discovery [4]. In this thesis however, short selling has been prohibited for
a variety of reasons. The main two being:

1. Modelling purposes.

2. A short-selling ban was requested by thesis collaborator Sanctify Financial
Technologies as their clients mainly composes of long-only investors.

10

2.3 Stock indices

Two stock indices will be mentioned in this thesis. The OMXS30 and the OMXS30GI.
The OMXS30 is a famous index frequently quoted by various analysts as a measure-
ment on how the Swedish stock market is performing. The index is composed of the
30 stocks listed on the Swedish stock exchange with the highest turnover measured
in Swedish Krona (SEK). The index is also reconstituted and rebalanced every six
months, i.e. the 30 stocks and their respective weights are chosen every six months.
[37]. Only the stocks present in the OMXS30 at the time of evaluation can be traded
by the predictors in this thesis. If a stock is added to the index 2020-01-01 and re-
moved 2020-07-01, it can only be traded between those two dates. The reason for
this is so that the predictors can be compared to the reference index on a fair basis.
If the members of the OMXS30 in 2022 could be traded for the entire test period,
we would essentially only trade “winners”, i.e. stocks that have either remained in,
or advanced to the OMXS30, while not trading “losers”, stocks that previously have
been part in the index but was excluded due to low turnover. It should be obvi-
ous that winners on average would provide larger returns so only trading members
of the index at the time of evaluation safeguards against an introduction of bias.
The OMXS30GI is a total return variant of the OMXS30. This means that cash
dividends from the stock included in the index are reinvested in the index, creating
larger index returns.

Figure 2.1: Index performance for OMXS30 and OMXS30GI 2010-2019. The inclusion
of dividends in OMXS30GI leads to higher returns

As the predictors will trade Adjusted Close prices from Yahoo Finance, explained
in section 2.4, which also includes reinvested dividends, OMXS30GI will be used for
comparison with the predictors.

11

2.4 Adjusted close prices

All predictors in this thesis use stock price data from Yahoo Finance. In calculating
portfolio returns Rt from one market day to the next, the following formula is used:

Rt =

∑
i∈S(wi,tpi,t)∑

i∈S(wi,t−1pi,t−1)
− 1 (2.1)

Where S is the set of stocks in the investment universe, wi,t is the portfolio weight
of stock i at time t, and pi,t is the price of stock i at time t. For this formula to
provide an accurate return measurement, stock splits and dividends will have to
be accounted for. This is achieved by using the Yahoo Finance provided Adjusted
Close prices, which adjust for these events by using multipliers for historical stock
prices [53]. Section 2.4.2 explains this in detail:

2.4.1 Ex-dates

To understand the adjusted close, one must also understand the function of the
ex-date. The ex-date is the first trading day on which ownership of a stock does
not entitle the owner to the next dividend. Let us consider a $1 dividend at July 14
with the corresponding ex-date is July 11. In this scenario, all owners of the stock
at the end of trading at the trading day before July 11, is entitled to $1 on July 14.

2.4.2 Fictional example

In the trading week from February 10 to February 14, a stock has the following
splits and dividends

• A 2 : 1 split on February 11, represented by a 0.5 multiplier.

• A $1 dividend on with an ex-date at February 13, represented by a (1– 1
20
) =

0.95 multiplier.

Table 2.1: Fictional example of the calculation of Adjusted close prices

Date Close price Adjusted close price
10/2 $43.00 43.00 ∗ 0.5 ∗ 0.95 = $20.425
11/2 $21.10 21.10 ∗ 0.95 = $20.045
12/2 $21.20 21.20 ∗ 0.95 = $20.14
13/2 $20.00 $20.00
14/2 $20.40 $20.40

2.5 Sanctify ESG-scores

The Sanctify ESG database provides ESG insights for tens of thousands of compa-
nies on numerous exchanges worldwide. The insights are presented in the form of
numerical scores based on NLP analysed news media. The scores are derived from
a very large amount of publications of various sorts and are updated daily. Every
piece of news media deemed relevant for the sustainability profile of a company is

12

categorised according to the 26 sustainability categories defined by the non-profit
organisation Sustainability Accounting Standards Board (SASB). Sentiment analy-
sis is then used to score the media from [-1,1], where positive scores are assigned for
positive news and negative scores for negative news. The score is then added to ei-
ther the E-score (environmental), the S-score (social) or the G-score (governmental)
of the company depending on the particular SASB category. The total ESG-score is
calculated as a simple average of the E, S and G-score. There are two main variants
of the scores, absolute and relative. Absolute scores are not comparable between
companies and instead reflects the current media sentiment for a particular company.
Scores are calculated as a sum of newly added news, and old news multiplied by a
decay factor. The decay factors are available in three variations: short, medium and
long. Relative scores instead are comparable between companies. This is achieved
by incorporating historical ESG performance in the media for long periods combined
with current trends.

In this thesis, only the short-term absolute ESG-scores will be utilised.

2.6 Predictor benchmarking and evaluation

2.6.1 Sharpe ratio

The Sharpe ratio (SR) [45] is commonly used to measure the risk-adjusted returns
of investment portfolios [2] and is therefore a suitable benchmark for our predictors.
The SR is defined by the following formula:

SR =
rp − rf

σp

(2.2)

where rp is the average yearly return, rf the risk-free rate and σp the yearly volatility
The formula applies only for returns and volatility calculated on an annual basis.
Traditionally, the ratio is multiplied by the square root of the number of periods in
a year for shorter periods, such as

√
12 for monthly returns and volatility. Lo [34]

has shown that this approach contains faulty assumptions and leads to incorrect
estimations of annual SR. In this thesis, returns are calculated on a daily basis and
the traditional annualising method will be used, even with its flaws, for simplicity.

2.6.2 Sortino ratio

The Sortino ratio [46] is similar to the Sharpe ratio but varies in one crucial way: it
only accounts for downside risk. The rationale behind the ratio is that an investor
would not mind if the return of a portfolio displays large variance only on the positive
side. A portfolio that yields 1% in January, 100% in February and 30% in March
would satisfy almost any investor even though it displays large variance. What
investors fear is instead volatility on the downside. The formula for the Sortino
Ratio is:

Sortino Ratio =
rp − rf

σp−negative

(2.3)

where rp is the portfolio return, rf the risk-free return and:

σp−negative =

√√√√ 1

N

N∑
n=1

(min(0, rn)2) (2.4)

13

where N is the number of periods and rn the return at period n

2.6.3 Gross return

Gross return, while a sub-optimal measurement from a scientific point of view, is
still used for marketing of financial products due to its simplicity. The gross return
is defined as:

Gross return(t) =
yt − y0
y0

(2.5)

where yt is the value of the portfolio at time t and y0 is the initial portfolio value.

2.6.4 Technical analysis tools

2.6.4.1 Simple moving average (SMA)

The simple moving average (SMA) is a popular tool in technical analysis. The SMA
is defined as:

SMA nt =
xt−n + xt−(n−1) + ...+ xt

n
(2.6)

where SMA nt is the n-day SMA at time t and xt is the underlying (such as a stock
price) at time t.

2.6.4.2 Momentum (MOM)

Another common tool in technical analysis is the momentum (MOM). The MOM is
defined as:

MOM nt = xt − xt−n (2.7)

where MOM nt is the n-day MOM at time t and xt is the underlying (such as a
stock price) at time t.

2.6.5 Mean squared error (MSE)

When performing hyperparameter optimisation, the mean squared error (MSE) will
be used as the measurement to minimise. The MSE is defined by:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.8)

where yi are the true values, ŷi are the predicted values and n is the number of
predictions.

14

3

Mathematical and machine
learning theory

3.1 Introduction to machine learning

Distinguished machine learning experts Tom M. Mitchell and Michael I. Jordan
described machine learning with the following words in a 2015 issue of Science.
“Machine learning addresses the question of how to build computers that improve
automatically through experience. It is one of today’s most rapidly growing technical
fields, lying at the intersection of computer science and statistics, and at the core of
artificial intelligence and data science” [26]. The experts made this observation in
2015 and it is fair to say that the field has been getting ever more attention since
[41].

3.1.1 Supervised learning

The focus of this thesis are models that all fit under the umbrella-term called su-
pervised learning. In supervised learning, we are given labeled data, i.e. pairs
(x1, y1), (x2, y2), ..., (xn, yn) where x1,x2, ...,xn ∈ X, y1, y2, ..., yn ∈ Y , and the goal
is to learn the relationship between X and Y [13]. Each observation xi is a vector of
one or more attributes, or inputs. These attributes are, in an ideal case, correlated
with the corresponding label, or output yi. For example, one could imagine yi as
the power consumption in Lund on day i, and xi being a 24× 1 vector of projected
temperature in Lund for each hour of day i. In its essence, supervised learning is
a tool to address a fundamental prediction problem. Let ŷ(x) be a predictor of an
1-dimensional output y, given an n-dimensional input vector x = (x1, x2, ..., xn).
Machine learning can, in the supervised learning case, be viewed as the study and
construction of an input-output map of the form

y = F (x) (3.1)

where x = (x1, x2, ..., xn) [13]. y can be either continuous as for the temperature in
Lund, or discrete, as in what species of tree a certain photographed leaf belongs to.
This division between discrete and continuous gives rise to another dividing line in
machine learning, classification and regression.

15

3.1.1.1 Classification

Classification is the process of producing a model that is capable of distinguishing be-
tween a fixed set of classes. In the terminology from equation (3.1), y ∈ (1, 2, ..., K)
where 1, 2, ..., K are a set of K discrete classes, for example the species of trees
mentioned above. Classification is not inside the scope of this thesis but an un-
derstanding of the concept is required for several of the model derivations in this
chapter.

3.1.1.2 Regression

In regression, one tries to produce a model with the capacity to produce real-valued,
continuous outputs as a response to one or more inputs. Using equation (3.1) as a
foundation, we have a regression problem if y ∈ Rm. For example, y could be the
previously mentioned temperature in Lund on a certain day.

3.1.2 Unsupervised learning

In supervised learning, the dataset, as mentioned above, consists of pairs of labeled
data and its associated features. In unsupervised learning, the data is not labeled
with classes and the machine learning task is instead to extract information from this
ambiguous set of data. One of the more popular methods in unsupervised learning is
looking for groups of similar examples, called clusters, in the data [29]. By detecting
such clusters, one can then use these for predicting the values of unknown attributes.

Figure 3.1: Clear clustering visible in 2-dimensional data

In the two-attribute example seen in Figure 3.1, one can clearly see the four
clusters and there is certainly no risk of overlap between the clusters. In other
cases, the data is more ambiguously clustered, as can be seen in Figure 3.2. In this
scenario, the human eye will find it hard to determine both the number of clusters,
and where one should place the border between different clusters.

16

Figure 3.2: Ambiguous clustering in 2-dimensional data

This represents a problem, as each data-point must belong to one and only one
cluster. Of course, one could let every data-point be its own cluster but that would
turn the cluster analysis meaningless. To solve the “number of clusters” issue,
implementations of cluster analysis are often constructed in such a way that the
user supply the number of clusters via an input parameter. It is also possible for
a machine learning algorithm to determine the number on its own [29]. Regarding
the issue of which cluster a data-point should belong to, the simplest approach is
to use so called centroids and Euclidian distance. Centroids can be though of as
dots in the middle of an n-th dimensional cluster. The centroid is identified by
the averages of the attributes of the members of the cluster. If the attributes are
non-numerical this can be resolved by converting them to numerals. With centroids
defined in this way, new data-points can simply be identified with the closest (in
Euclidian distance) centroid and in turn, the cluster associated with the centroid.
The Euclidian distance from centroid k, dk is measured with the following equation:

dk(x,xcent) =

√√√√ n∑
i=1

(xi − xcent,i)2 (3.2)

where x are the attributes of the data-point, xcent are the attributes of centroid k
and n the number of attributes. When performing clustering analysis in this sense,
the relative sizes and the chosen unit of the attributes influences the result. To
remove this influence, normalization of all attributes to the unit interval xi ∈ [0, 1]
can be performed.

3.2 Classical Autoregressive predictors

Autoregressive predictors are predictors that model processes where the value of the
process at time t is dependent on the value of the process at some time t− k where
k is a positive integer. These predictors have generally been around for a long time,
for example, the central Yule-Walker equations were formulated in the 1920s and

17

30s [50, 52]. Further developments were regularly made during the last century. The
underlying autoregressive process and extensions to it are introduced in this section.
Furthermore, one method to model and predict the process, the Kalman filter, is
introduced [25].

3.2.1 Autoregressive (AR) processes

A process yt is an autoregressive (AR) process of order p (an AR(p)-process) if [25]:

A(z)yt = yt + a1yt−1 + ...+ apyt−p = et (3.3)

where A(z) is a monic polynomial of order p:

A(z) = 1 + a1z
−1 + ...+ apz

−p (3.4)

where ap ̸= 0 and et is a zero mean white noise process uncorrelated with previous
measurements of y (yt−k where k > 0). z−1 is the unit delay operator, defined as
z−1yt = yt−1. As E[et] = 0 and in turn E[A(z)yt] = 0, the process is stationary if
all zeros of A(z) are within the unit circle.

3.2.2 Autoregressive moving average (ARMA) processes

Building on the previous section, yt is an autoregressive moving average (ARMA)
processes of order p, q (an ARMA(p, q)-process) if [25]:

A(z)yt = C(z)et (3.5)

where A(z) is defined by equation (3.4) and:

C(z) = 1 + c1z
−1 + ...+ cqz

−q (3.6)

3.2.3 Trends and ARIMA processes

If the process yt has clear trends, either in mean or variance, it is not possible to
model it as a stationary process. If the trend is deterministic, it can be modelled as
a deterministic function which later can be subtracted from the process. If the trend
is stochastic, the process could instead be modelled as an autoregressive integrated
moving average (ARIMA) process [25]. The process yt is an ARIMA process of order
p, d, q (an ARIMA(p, d, q) process) if:

A(z)(1− z−1)dyt = C(z)et (3.7)

where A(z) and C(z) is given by equations (3.4) and (3.6)

3.2.4 Exogenous inputs

If additional time series with information correlated to the process yt is available,
it is sensible to expand the model to incorporate this. If only one input variable
is available, an ARMA model can be expanded in the following way, creating an
ARMAX process:

A(z)yt = B(z)xt + C(z)et (3.8)

18

where A(z) and C(z) is given by equations (3.4) and (3.6), xt is the value of the
input variable at time t and:

B(z) = b0 + b1z
−1 + ...+ bsz

−s (3.9)

The ARMAX process can also be modelled to incorporate more than one input
variable:

A(z)yt = B1(z)x1t +B2(z)x2t + ...+Bn(z)xnt + C(z)et (3.10)

where xnt is the value of the n:th input variable at time t. The aforementioned
ARIMA process can also be expanded to incorporate input variables in the same
way, resulting in an ARIMAX process.

3.3 Parameter estimation and prediction

When modelling a process such as an AR, ARMA, ARIMA or ARIMAX, one es-
timates the parameters of the polynomials (A, C, B) with a method such as least
squares, maximum likelihood, or the prediction error method [25]. This will re-
sult in a model that can be used for prediction by inserting the exogenous inputs
(xt, ..., xt−i), the previously observed errors (et−1, ..., et−1−k), and the previously ob-
served outputs (yt−1, ..., yt−1−j). Here i, k and j are positive integers that corre-
sponds to the order of the chosen model.

3.3.1 Dynamic systems

When estimating parameters as explained in section 3.3, the predictor will assume
that the model polynomials are constant. In turn, it will yield non-optimal results if
the characteristics of the system varies with time. If one for example tries to model
the price of the Dow Jones stock market index, the polynomials of the process will
probably differ in 1970 compared to 2020. This issue of non-constant polynomials
can be tackled by different methods but here we will focus on a famous one, the
Kalman filter.

3.3.1.1 Linear state space representation

Consider a linear state space representation of the form:

xt+1 = xt + et (3.11)

yt = Ct|t−1xt|t−1 + wt (3.12)

Where yt is a measurable output variable and xt is an n:dimensional non-observable
internal state vector. et is the white noise error of the process and wt is the white
noise measurement error. If we assume that yt follows an ARMAX(2, 2, 2) process
with unknown parameters, one could express the process as a state space represen-
tation in the following way, we have:

A(z)yt = B(z)xt + C(z)et (3.13)

With A(z), B(z) and C(z) defined as in equations (3.4), (3.9) and (3.6). This can
be written as:

yt = B(z)xt + C(z)et − a1yt−1 − a2yt−2 (3.14)

19

So: yt = Ct|t−1xt|t−1 + wt with Ct|t−1 = [xt, xt−1, xt−2, e−1, e−2,−y−1,−y−2] and
xt = [b0, b1, b2, c1, c2, a1, a2]

3.3.1.2 The Kalman filter

Consider the state space model of equations (3.11) and (3.12). We now introduce

Yt = [y1, y2, ..., yt]
T (3.15)

Which is a vector containing all outputs up to and including time t. The optimal
linear predictor of the hidden state vector x at time t can then be defined as:

x̂t|t = E[xt | Yt] (3.16)

If we split Yt into its current yt and past Yt−1 measurements we get:

x̂t|t = E[xt | yt,Yt−1] (3.17)

Equations (3.18) and (3.19) holds for a vector z that is correlated with both x
and y [25] :

E{x | y, z} = E{x | z}+ C{x,y | z}V {y | z}−1(y − E{y | z}) (3.18)

V {x | y, z} = V {x | z} − C{x,y | z}V {y | z}−1C{x,y | z}T (3.19)

Using this on the expectation in equation (3.17) yields:

E[xt | yt,Yt−1] = x̂t|t−1 + C[xt, yt | Yt−1]V [yt | Yt−1]
−1(yt − ŷt|t−1) (3.20)

Where ŷt|t−1 is the prediction of yt formed at time t− 1. This imply that yt− ŷt|t−1

is the 1-step prediction error. Inserting (3.20) into (3.17) now yields:

x̂t|t = x̂t|t−1 + C[xt, yt | Yt−1]V [yt | Yt−1]
−1(yt − ŷt|t−1) (3.21)

Where C[xt, yt | Yt−1]V [yt | Yt−1]
−1 is referred to as the Kalman gain Kt

We can therefore conclude that the optimal reconstruction of the state vector xt

is given by the following equation:

x̂t|t = x̂t|t−1 +Kt(yt − ŷt|t−1) (3.22)

If we assume that the prediction error yt − ŷt|t−1 is random, the best linear
prediction of xt+1|t is simply given by:

x̂t+1|t = x̂t|t (3.23)

Using equations (3.23) and (3.12) and the fact that wt is white-noise, the best
linear prediction of yt+1|t is be given by:

ŷt+1|t = Ct+1|tx̂t|t (3.24)

The Kalman filter is implemented by recursively predicting ŷt+1|t and updating
x̂t|t according to equation (3.22)

20

3.4 Decision trees and Random forests

3.4.1 Decision trees

Decision trees are obtained by recursively partitioning the available data based on
its attributes and in turn creating a predictor [35]. The recursive partitioning can be
graphically represented as a tree which gives the algorithm its name. A tree consists
of nodes, of which there are two types of: internal nodes and leaf nodes. Internal
nodes correspond to an attribute test where the value of the attribute determines
which branch of the tree to follow. Leaves on the other hand are end nodes and
correspond to an output. If the output is a discrete class, we have a classification
tree, if the output is a continuous numeric value, we have a regression tree. A simple
example of a regression tree can be seen in Figure 3.3

Figure 3.3: Simple example of 2-attribute regression tree

Decision trees are grown by using an algorithm for the partitioning, there are
various such to choose from, but we will focus on the CART-algorithm used in the
Random Forest ensemble. CART recursively partitions data into a tree by utilizing
the Gini index for classification and sum of squared deviations from the mean (SS)
for regression [35, 20]. We refer to [20] for further information about the Gini index.

The SS is defined as:
SS =

∑
D

(yi − ȳ)2 (3.25)

Where D is a set of (xi, yi) – tuples and ȳ is the mean of all y ∈ D . CART uses
the SS by evaluating binary splits for each attribute and choosing the split with the
lowest SS-value. A binary split is a partition that divides the dataset into two sets.
For a continuous attribute this means splitting D into xi > z and xi ≤ z where xi

is the value of the attribute i and z is the dividing value used for the binary split.
For a discrete attribute one instead defines a split by creating a subset of all present
values of xi, this subset is called Si. One then splits into xi ∈ Si and xi /∈ Si.

21

When evaluating a possible binary split, the combined SS of the two new sets are
computed with the following formula:

SS =
∑
D1

(yi − ȳ1)
2 +

∑
D2

(yi − ȳ2)
2 (3.26)

Where D1 and D2 are the sets created by the binary split, i.e. D = D1 ∪D2, ȳ1
is the mean of all y ∈ D1 and ȳ2 is the mean of all y ∈ D2. The value used for the
binary split z for the attribute x is then chosen as the split that results in the lowest
SS-value. This process is repeated for all attributes X and the attributes with the
lowest possible SS-value is selected as the attribute for the split. This attribute and
its corresponding split-value z together constitute the criterion for the partition.

By implementing this algorithm on the whole set D, we label the root node with
this criterion and grow two new branches from the node. These two sets are then
split with the same method. It is worth mentioning that attributes are allowed to
be split multiple times. This process is repeated recursively for all created nodes
until at least one of the following is true:

1. Every y ∈ D are equal.

2. No more attributes to split are available. This can only occur if all attributes
are discrete.

3. The best possible split for D, which results in D1 and D2, leaves either D1 or
D2 empty.

If 1 is true, the node is converted into a leaf node with the value/class y. If 2
and/or 3 is true, the node is also converted into a leaf node, but the value of the
leaf becomes the average of all y ∈ D (regression) or the majority class of all y ∈ D
(classification).

3.4.2 Bagging

Bagging, or bootstrap aggregation, [8] is an ensemble method for improving accuracy
of various predictors. (An ensemble method is to employ more than one predictor
and use their combined predictions to improve performance). For a predictor with
N tuples of training data (xi, yi) where y is the target label or number, and x is an
array of input attributes, N tuples of data are randomly chosen with replacement
(after each individual selection). These N tuples together constitute a set called
S1. This implies that each (xi, yi) tuple can appear between 0 and N number of
times in S1. Several of these sets S1, S2, S3... are made and predictors are trained on
these sets individually, generating numerous predictors trained on unique sequences
of training data. For classification, a majority vote system where the individual
predictors vote on classes are used for prediction while standard averaging is used
for regression. A fictional example of applying bagging with 7 data points of test
data and three predictors for regression is presented in table 3.1 and Figure 3.4:

22

Table 3.1: Fictional data on seven companies

Company name Profit (x1) Revenue growth, % (x2) Market cap (y)
A 5 3 50
B 3 20 65
C 6 3 63
D 4 4 50
E 4 -10 20
F 10 0 90
G 2 1 28

Figure 3.4: Three predictor fictional example of bagging. The target to be predicted is the
market cap of Company X. The training data is from table 3.1

3.4.3 Random forests

Random Forests [9], is an ensemble method that combines bagging, decisions trees
and random attribute selection. K sets of training data Si are generated by using
bagging on the original test data S. Each set Si is used to train a decision tree
predictor and together these trees form a so called “forest” [20]. When calculating
the optimal split for a node, a subset of size j attributes are selected from the full
set of all attributes of size n. This selection is done without replacement so if we
set j = n, we consider all attributes at each split.

3.5 Support vector machines (SVM)

The Support Vector Machine is a machine learning algorithm originally developed
for classification. In essence, it uses hyperplanes to divide data-sets into different
classes. Through extensions, the algorithm can also be used for regression [18].

23

3.5.1 Linear SVM

In the most basic case, training data for classification consist of N pairs of data
on the form: (xi, yi) where i = 1, 2. . . , N , y ∈ −1, 1 and all x are of dimension D
To further simplify, we assume that the data is linearly separable. With linearly
separable we mean that we can separate the two classes by drawing a hyperplane
on the x1, x2, x3, ..., xD-space. A hyperplane is simply a plane generalised to any
dimension so for D = 2 the hyperplane is simply a line on the x1, x2 space. This
hyperplane can be described by:

w · x+ b = 0 (3.27)

where w is orthogonal to the hyperplane and |b|
||w|| is the perpendicular distance from

the hyperplane to the origin. The examples located the shortest distance from the
separating hyperplane are called support vectors and the Support Vector Machine’s
task is to orientate the hyperplane in a way that maximises the distance between
the support vectors and the hyperplane.

Figure 3.5: Hyperplane that divides two linearly separable classes. d1 = d2 is the margin
while H1 and H2 are support vectors [18]

When we implement the SVM, we therefore strive to select w and b so that the
training data fulfil the following inequalities:

xi ·w + b ≥ 1 for yi = 1 (3.28)

xi ·w + b ≤ 1 for yi = −1 (3.29)

These two inequalities (3.28) and (3.29) can be combined into:

yi(xi ·w + b)− 1 ≥ 0 ∀i (3.30)

We call the distance between the support vectors and the hyperplane, the margin.
The SVM is defined in such a way that the margin between the hyperplane and the

24

first support vector, is equal to the distance between the hyperplane and the second
support vector. Now, in order to maximise distance between the support vectors
and the hyperplane, we need to maximise this margin. Linear algebra shows that
the margin is 1

||w|| so we minimize the l2-norm ||w|| which is equal to minimizing
1
2
||w||2. We get the following optimisation problem:

min
1

2
||w||2 s.t. yi(xi ·w + b)− 1 ≥ 0 ∀i (3.31)

As we have N constrains, we introduce an n-dimensional vector of Lagrange multi-
pliers α, where αi ≥ 0 ∀i, to incorporate the constrains in the minimization:

Lp =
1

2
||w||2 −α(yi(xi ·w + b)− 1∀i)

=
1

2
||w||2 −

N∑
i=1

αi(yi(xi ·w + b)− 1)

=
1

2
||w||2 −

N∑
i=1

αiyi(xi ·w + b) +
N∑
i=1

αi

(3.32)

Differentiating Lp with regards to w and b yields:

∂Lp

∂w
= 0⇒ w =

N∑
i=1

αiyixi (3.33)

∂Lp

∂b
= 0⇒

N∑
i=1

αiyi = 0 (3.34)

The so called dual form of the Lagrange objective function, LD, can now be calcu-
lated by inserting (3.33) and (3.34) into (3.32).

LD =
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj s.t. αi ≥ 0∀i,
N∑
i=1

αiyi = 0

=
N∑
i=1

αi −
1

2

∑
i,j

αiHijαj where Hij ≡ yiyjxi · xj

=
N∑
i=1

αi −
1

2
αTHα s.t. αi ≥ 0 ∀i and

L∑
i=1

αiyi = 0

(3.35)

Which is a maximisation problem of convex quadratic form, it can be solved by
utilizing a quadratic programming solver.

max
α

[
N∑
i=1

αi −
1

2
αTHα

]
s.t. αi ≥ 0 ∀i and

N∑
i=1

αiyi = 0 (3.36)

The solver will give us the vector α which in turn can be inserted into equation
(3.33) to give us w. We now study equation (3.30) and note that any data point
that is a support vector will satisfy the following equation:

25

ys(xs ·w + b) = 1 (3.37)

where ys and xs are the output and attribute-vector of a support vector. Inserting
w from (3.33) into (3.37) yields:

ys
∑
m∈S

(αmymxm · xs) + b = 1 (3.38)

Where S denote the complete set of support vectors. S can be determined by
locating all indices i where αi > 0. Furthermore, as ys ∈ −1, 1 we have y2s = 1 and
in turn:

y2s
∑
m∈S

(αmymxm · xs) + b = ys (3.39)

b = ys −
∑
m∈S

(αmymxm · xs) (3.40)

To further improve our measurement of b, one can use an average of all support
vectors instead of one specific xs

b =
1

Ns

∑
s∈S

(
ys −

∑
m∈S

αmymxm · xs

)

Withw and b determined, new vectors of attributes x̄ is classified by by the equation:

ȳ = sgn(wx̄+ b) (3.41)

3.5.1.1 Non-linearly separable data

To extend the model mentioned above to cases where the data is not linearly sepa-
rable.

Figure 3.6: Hyperplane through two non-linearly separable classes [18]

26

The constraints from inequalities (3.28) and (3.29) are modified with a dynamic
slack variable ξi. As ξi can vary for different indices i, it is now possible for every
single data point to fulfil its related constraint.

xi ·w + b ≥ +1− ξi for yi = +1 (3.42)

xi ·w + b ≤ −1 + ξi for yi = −1 (3.43)

ξi ≥ 0 ∀i (3.44)

These three inequalities (3.42), (3.43) and (3.44) can be combined into:

yi (xi ·w + b)− 1 + ξi ≥ 0 where ξi ≥ 0 ∀i (3.45)

Even though we can fit all data points, it is desirable to have as few points on
the wrong side of the dividing hyperplane as possible, so we modify our objective
function to incorporate a cost-hyperparameter C for these misclassifications. C can
be chosen freely and represents the trade off between maximising the margin and
minimising misclassifications. A smaller C implies a larger emphasis on maximising
the margin and vice versa for a larger C.

min
1

2
∥w∥2 + C

N∑
i=1

ξi s.t. yi (xi ·w + b)− 1 + ξi ≥ 0 ∀i (3.46)

This minimization is performed with a similar method as used on (3.31) in the
previous section. With w and b determined with this method, new vectors of at-
tributes x̄ is once again classified by equation (3.41)

3.5.2 Support vector regression (SVR)

As mentioned earlier in section 3.1.1.2, regression is the task of predicting a contin-
uous, real valued output y with the help of one or more attributes found in an input
vector x. If we call the predicted output from the regression f(xi) and the true
value yi, the absolute error of the prediction can be formulated as |f(xi)–yi|. When
performing regression, there are essentially an infinite number of classes, which turns
the concept of a margin meaningless. The SVR-algorithm still relies on minimising
the L2 norm of the coefficient vector w but with some modifications.

27

Figure 3.7: One-dimensional example of Support Vector Regression. Note the tube formed
by the error toleration ϵ [18]

Figure 3.7 depicts regression where x is one-dimensional. When implementing an
SVR, two hyperparameters are needed, ϵ and C. ϵ corresponds to a specific amount
of error toleration. If |f(xi)–yi| ≤ ϵ, the model will not penalise this misclassifica-
tion. Missclassifications outside of the ϵ-tube are handled in a similar way as for the
support vector classification (SVC), with flexible slack variables ξ+i for f(xi) < yi
and ξ−i for f(xi) > yi These are determined by:

yi ≤ f(xi) + ϵ+ ξ+i if f(xi) < yi (3.47)

yi ≥ f(xi)− ϵ− ξ−i if f(xi) > yi (3.48)

The penalty function to be minimized can then be written as:

C
N∑
i=1

(ξ+i + ξ−i) +
1

2
∥w∥2 (3.49)

This needs to be minimized subject to the constraints ξ+i ≥ 0, ξ−i ≥ 0 ∀i in
addition to equations (3.47) and (3.48).

Using similar techniques as in section 3.5.1 yields w and b. New vectors of
attributes x̄ are regressed by:

ȳ = w · x̄+ b (3.50)

3.5.3 Non linear SVMs and the Kernel trick

The SVC and SVR explained above have limited usefulness since it operates on an
assumption that the data is (at least approximately) linearly separable or regress-
able.

28

Figure 3.8: Data where no linear hyperplane would provide useful classification [18]

In Figure 3.8, we see a 2-dimensional classification problem where this assump-
tion does not hold. No line can even approximately divide the two classes. To solve
this classification problem, we need to extend our method of creating linear SVMs to
nonlinear cases. This is done by mapping the attributes onto a higher dimensional
space [21]. A 2-D attribute vector x = (x1, x2) could for example be mapped onto
3-D, using the mappings z = (z1, z2, z3) = ϕ(z) = (x1, x2, x1x2). In this 3-D space we
can then find the optimal dividing hyperplane as explained in 3.5.1 and 3.5.2. This
method does have some issues, however. First, one needs to find a mapping function
ϕ that performs well. Second, utilising this method involves many computationally
heavy dot-products [21]. These issues can be resolved by using a so called Kernel
function on the attribute data. A Kernel function K is defined by:

K(xi,xj) = ϕ(xi) · ϕ(xj) (3.51)

This means that all higher dimension dot-products can be calculated in the lower
original dimension. Furthermore, we actually do not need to determine the mapping-
function ϕ when employing a Kernel function. Three common Kernel functions are:

Polynomial kernel of degree h: K (xi,xj) = (xi · xj + 1)h (3.52)

Gaussian radial basis function kernel: K (xi,xj) = e
−

∥xi−xj∥
2

2γ2 (3.53)

Sigmoid kernel: K (xi,xj) = tanh (κxi · xj − δ) (3.54)

Where h, γ, κ and δ are free parameters determining the behavior of the Kernel
functions.

29

Figure 3.9: Data from Figure 3.8 re-mapped to 3-D [18]

Figure 3.9 displays attribute space that the Gaussian radian basis function kernel
defines implicitly when it is used on the data from Figure 3.8 [18]. Unlike in Figure
3.8, in Figure 3.9, we can clearly find a separating hyperplane.

When using one of the functions (3.52), (3.53), (3.54) or any other Kernel func-
tion, the parameters of the nonlinear SVM that lead to the largest margin can be
calculated with similar methods as used for the various linear SVMs described in
sections 3.5.1 and 3.5.2.

3.6 Artificial Neural Networks

Artificial Neural Networks (ANNs) are created by connecting many small units
called neurons into large network capable of solving prediction problems. ANNs
get their name from their resemblance of the interconnected simple neurons that,
through strength in number and interconnection, emulates our human brains. The
behaviour of the network can be determined by the weights of the links that connect
the neurons [29]. The machine learning related task when implementing ANNs can
essentially be reduced to provide algorithms that can determine weights that result
in acceptable classification/regression performance.

3.6.1 Multilayer perceptrons (MLPs)

An MLP is defined by an input layer, one or more hidden layers and an output
layer. These layers in turn consist of one or more of the mentioned neurons. With
two hidden layers, the architecture can look like Figure 3.10.

30

Figure 3.10: An MLP with 2 hidden layers, 6 attributes and 2 outputs [13]

The input layer consists of neurons that only receive data from one of the at-
tributes in the input vector x, the number of input neurons is therefore equal to the
number of attributes. Trainable weights connect the neurons in the input layer to
the neurons in hidden layer 1. Additional weights in turn connect these neurons,
to neurons in hidden layer 2. Lastly another set of weights connects to the neurons
in the output layer. Data propagates through the network until the output nodes
are reached. In regression, one output node is generally used unless multi-output
regression is to be performed. In classification, the number of output nodes can
vary depending on how many classes one must classify to. The number of hidden
layers and nodes in every hidden layer on the other hand, can only be determined
empirically as there exists a trade-off. Too many hidden neurons produce overfitting
and too few results in a lack of generalisation for the network [1]. If the inputs to a
node are x1, x2, . . . , xn and the weights are w1, w2, . . . , wn, the output y of the node
is determined by the following equation:

y = f(x1w1, x2w2, . . . , xnwn) (3.55)

Where f is referred to as the activation function. In principle, any function can be
used and a common one is the sigmoid function defined as:

sigmoid(x) =
1

1 + e−x
(3.56)

The output from the node is then propagated forward to the next layer, this process
is then repeated for all nodes and all layers until the output nodes are determined.

3.6.2 Recurrent neural networks (RNNs)

An MLP is an example of a feedforward neural network. These networks are simple
in the sense that information flows forward and only forward in the network. Looking

31

at Figure 3.10 we see that all ”arrows” with information flow to the right and do
not form any cycles. For each new input-vector x, one receives an output vector y.
If the data is in the form of a time-series, no regard is given to specific time t that
the input vector represents. In reality, we often want to capture the time-dynamics
of the input data and its effect on the output and to achieve this we can implement
a RNN. In a general sense, the only difference between an MLP and an RNN can
be described with the following equations [13]:

ŷt = f (Xt) where Xt := seqT,t(X) = (xt−T+1, . . . ,xt) (3.57)

ŷt = f(xt) (3.58)

where xt−j is a jth lagged observation of xt. Equation (3.57) here represents the
workings of an RNN and equation (3.58) an MLP.

3.6.2.1 Vanilla RNNs

By modifying a feedforward neural network, such as an MLP with so called recurrent
links, we can create a simple, or vanilla RNN.

Figure 3.11: A RNN with 1 hidden layer, 4 attributes and 1 output

In Figure 3.11 we see such an RNN. The recurrent links are highlighted in green
and symbolise using node-outputs from previous time-steps as inputs in future time-
steps. As a result, the network now reacts not only to the input vector, but also
to various node-outputs from previous steps. We see that the recurrent links can
be used in various ways, one can use the previous outputs to influence the current

32

input node or let an internal node be influenced by its previous output. As every
new input-output relation in an RNN is affected by the previous relation and in
turn, the relation before that, the network implicitly contains the reaction from all
previous input-output relations [29]. For an internal node with a recurrent link with
itself, the output of the node can be described as [12]:

ht = f(Whhht−1 +Wxhxt + bh) (3.59)

Where ht is the internal node output at time t, f the activation function and Whh

a vector of weights given to the given to the recurrent link and Wxh the vector of
weights given to outputs from the previous layer. bh is a vector of bias terms. Simple
RNNs were introduced by Elman in 1990 [15] and are only capable of learning short
and simple patterns. More complicated patterns remained unsolved even with their
introduction [29].

3.6.2.2 Long short-term memory (LSTMs)

The long short-term memory (LSTM) [22] is an attempt to solve some of the issues
with the RNN. As mentioned, the RNN can only learn short-term pattern, i.e. short
term memory. The LSTM derives its name from the fact that it can learn both long
and short-term patterns, i.e. long short-term memory. LSTMs maintain this long-
term memory by using memory cells as nodes. These state of these memory cells, the
cell states, are then regulated with associated gates. Every cell state Ct is altered by
a forget gate ft, an input gate it and an output gate ot Mathematically, this relation
can be explained by the following equations [32]:

ft = σ (Wf [ht−1;xt] + bf) (3.60)

it = σ (Wi [ht−1;xt] + bi) (3.61)

C̃t = tanh (Wc [ht−1;xt] + bc) (3.62)

ot = σ (Wo [ht−1;xt] + bo) (3.63)

Ct = Ct−1 ∗ ft + C̃t ∗ it (3.64)

ht = tanh (Ct) ∗ ot (3.65)

Here σ is the sigmoid function from equation (3.56), Wf ,Wi,WC and Wo are
weight vectors, bf ,bi,bC and bo are bias-vectors, C̃t the cell state candidate, [x; y]
is vector concatenation of vector x and y and ∗ is element-wise multiplication. xt is
the input to the cell at time t this could be either an attribute or the output from
a neuron on a previous layer. Lastly, ht is the hidden state output.

33

Figure 3.12: A LSTM-cell [11]

The process of updating the cell state can be explained by Figure 3.12. The
steps are:

1. ht−1 and xt are concatenated, multiplied by a weight vector Wf and inserted
into the sigmoid function. Ct−1 is multiplied by this output ft ∈ [0, 1] so
(1− ft) ∈ [0, 1] is the forget factor used on the previous cell state Ct−1.

2. C̃t and it are calculated and multiplied element-wise. The result is added to
the cell state. The cell state Ct has now been calculated.

3. Ct is passed forward to be used in calculating Ct+1.

4. ot is calculated and multiplied with tanh(Ct). The result of this is the hidden
state ht. This is passed forward to the next layer of the neural network and
to itself for the next time-step where it will constitute ht−1.

34

4

Method

4.1 Software

The analysis of this thesis was performed in Python 3.9.7. The Numpy and Pan-
das libraries were used for basic mathematical functions and data structuring. For
machine learning, pre-made predictors from Scikit-learn were utilised for SVM and
Random forest while PyTorch was used to create neural networks.

4.2 Data

Stock market data on the 34 companies that were part of the OMXS30 index for the
entire or part of the analysed time period, (see section 4.2.1) were downloaded from
Yahoo finance through the Python library yfinance. The data includes adjusted close
prices, close prices, open prices, day-high prices, and day-low prices. The frequency
of the data is daily on a trading day (c. 252 days per year) basis.

35

Table 4.1: The composition of OMXS30 from 2016-2021. A stock is present in the invest-
ment universe of the models if it is present in OMXS30

Stock ticker Included in OMXS30 Excluded from OMXS30
EVO.ST 2021-01-01 n.a.
SCA-B.ST Prior to 2016 n.a.
TELIA.ST Prior to 2016 n.a.
SWED-A.ST Prior to 2016 n.a.
TEL2-B.ST Prior to 2016 n.a.
NDA-SE.ST Prior to 2016 n.a.
INVE-B.ST Prior to 2016 n.a.
ABB.ST Prior to 2016 n.a.
AZN.ST Prior to 2016 n.a.

ATCO-B.ST Prior to 2016 n.a.
HEXA-B.ST 2018-07-01 n.a.
GETI-B.ST Prior to 2016 n.a.
ERIC-B.ST Prior to 2016 n.a.
BOL.ST Prior to 2016 n.a.

ATCO-A.ST Prior to 2016 n.a.
ELUX-B.ST Prior to 2016 n.a.
SWMA.ST Prior to 2016 n.a.

ESSITY-B.ST Prior to 2016 n.a.
VOLV-B.ST Prior to 2016 n.a.
HM-B.ST Prior to 2016 n.a.
SEB-A.ST Prior to 2016 n.a.
ALFA.ST Prior to 2016 n.a.
SHB-A.ST Prior to 2016 n.a.

ALIV-SDB.ST 2017-01-01 n.a.
SKF-B.ST Prior to 2016 n.a.
SKA-B.ST Prior to 2016 n.a.
KINV-B.ST Prior to 2016 n.a.
SINCH.ST 2021-07-01 n.a.
SAND.ST Prior to 2016 n.a.
ASSA-B.ST Prior to 2016 n.a.
SECU-B.ST Prior to 2016 2021-06-30
SSAB-A.ST Prior to 2016 2020-12-31
FING-B.ST 2016-01-01 2018-06-30
LUNE.ST Prior to 2016 2017-12-31

The Sanctify ESG-scores for the 34 companies were downloaded for the same
period through an API provided by Sanctify.

4.2.1 Time span

The analysed time period is 2016-01-01 – 2021-12-31. Stock market data for the
relevant companies, of course extend much further back than 2016, and it is possible
that the predictors would have performed better with access to longer time-series
of data. As explained in section 1.4 however, the data that Sanctify derive their
scores from are scarcely available before 2016. As the main objective (section 1.3)

36

is to examine the predictive power of Sanctify ESG-scores, a shorter time span was
deemed better suited for the task.

4.2.2 Train-test split

When creating machine learning predictors based on supervised learning, a split of
the available data into training and test data is necessary. The training data is used
to train the predictors which later are evaluated on the test data. The data was
split in train data: 2016-01-01 – 2019-12-31 and test data 2020-01-01 – 2021-12-31,
a 2

3
split. This split was selected to include the covid induced market crash of March

2020 in the test data. This market crash represented a unique market environment
not seen since the last century and therefore challenges the predictors which are
trained in a more stable market environment.

4.3 Attribute selection

To evaluate the effect that ESG-data can have on stock price prediction, several
models with or without access to this data are created and compared. To further
evaluate the general effectiveness of the more advanced models, they are compared
against a dynamic ARIMAX-model implemented via a Kalman filter. This model
will be called the ”Naive model”. The attribute selection can therefore divided into
two categories. Attribute selection for the Naive model and attribute selection for
the all other models.

4.3.1 ARIMAX-model

With an ARIMAX model, the attributes can be said to be the exogenous inputs
mentioned in section 3.2.4. As the ARIMAX-model was created as a simple bench-
mark, it also uses a simple version of this exogenous input. The only exogenous input
used in this model is the latest available Sanctify short-term absolute ESG-score.
This correspond to the attribute named ’ESG’ in table 4.3.

4.3.2 Other models

The selection of attributes, was as explained in section 1.4, inspired by Vijh et. al.
[51]. For the base models without access to ESG-data, the following attributes were
used.

Table 4.2: General attributes

Attribute Definition Formula
H-L Previous day-high less day-low ht−1 − lt−1

C-O Previous day-close less day-open ct−1 − ot−1

SMA 7 7 day moving average of adj. close 1
7

∑7
i=1 yt−i

SMA 14 14 day moving average of adj. close 1
14

∑14
i=1 yt−i

SMA 21 21 day moving average of adj. close. 1
21

∑21
i=1 yt−i

STD 7 7 day standard deviation of adj. close

√∑7
i=1(yt−i−ȳ)

7 where ȳ = 1
7

∑7
i=1 yt−i

ht is the day-high price, lt the day-low price, ct the closing price, ot the open
price and yt the adjusted close price at time t

37

With the ESG-data from Sanctify, an additional seven attributes were created.

Table 4.3: ESG-derived attributes

Attribute Definition Formula
ESG Last available ESG-score Et−2

ESG SMA 7 7 day moving average of ESG 1
7

∑8
i=2Et−i

ESG SMA 14 14 day moving average of ESG 1
14

∑15
i=2Et−i

ESG SMA 21 21 day moving average of ESG 1
21

∑22
i=2Et−i

ESG MOM 7 7 day momentum of ESG Et−2 − Et−8

ESG MOM 14 14 day momentum of ESG Et−2 − Et−15

ESG MOM 21 21 day momentum of ESG Et−2 − Et−22

Et is the Sanctify short-term absolute ESG-score at time t. Scores for the day
t are published on day t + 1 and can therefore be used when predicting prices on
t+ 2.

To deduce the effect of the ESG-derived attributes, four versions of each model
with access to different sets of attributes are created. We call the versions attribute
profiles and name the profiles ESG BASE, ESG SMA, ESG MOM and ESG ALL.
Lastly we add the profile NO ESG, a profile with no access to ESG-data to be used
as comparison. The attribute composition of each profile is explained in Table 4.4.

Table 4.4: Attribute profiles

Attribute NO ESG ESG BASE ESG SMA ESG MOM ESG ALL
H-L x x x x x
C-O x x x x x

SMA 7 x x x x x
SMA 14 x x x x x
SMA 21 x x x x x
STD 7 x x x x x
ESG x x

ESG SMA 7 x x
ESG SMA 14 x x
ESG SMA 21 x x
ESG MOM 7 x x
ESG MOM 14 x x
ESG MOM 21 x x

4.4 Pre-processing

Machine learning operates under the assumption that test and train-data origi-
nates from the same probability distribution. If X is a random variable, both xtest

and xtrain should be vectors of outcomes from X. With time-series data, this is
complicated by the fact that processes can change in structure with time. Such
non-stationary processes need processing to more closely resemble stationary data.
Stock prices are a classical example of non-stationary data. They generally display
both increases in mean and in variance. To remove this structure the data is pre-
processed. Instead of using the absolute price of the stock at time t. We instead set

38

yt as the daily log-return of the stock, i.e. yt = ln(pt/pt−1) where pt is the adjusted
close price (section 2.4) of the stock. This removes much of the increase in mean
and variance as can be seen below in Figure 4.1

Figure 4.1: The adjusted close price of of Volvo AB (VOLV-B.ST) 2015-2019. On the left
we see the unaltered price and on the right the daily log-returns

The attributes were also processed with a similar method. For some attributes
the log difference was extracted, i.e.

x′
t = ln(xt/xt−1) (4.1)

where x is the original attribute and x′
t is the log difference of the attribute. For

other attributes, the standard difference was extracted, i.e.

x′
t = xt − xt−1 (4.2)

where x is the original attribute and x′
t is the standard difference of the attribute.

The reason for this discrepancy is the fact that some attributes can have instances of
sign-switching, i.e. they can display both positive and negative values. Extracting
the log difference from these types of attributes results in unwanted major swings
when a attribute switches from positive to negative or vise versa.

Table 4.5: Processing methods for the attributes

Attribute Log difference Standard difference
H-L x
C-O x

SMA 7 x
SMA 14 x
SMA 21 x
STD 7 x
ESG x

ESG SMA 7 x
ESG SMA 14 x
ESG SMA 21 x
ESG MOM 7 x
ESG MOM 14 x
ESG MOM 21 x

39

To finish pre-processing, standardisation of both attributes and outputs, i.e.
the (xt, yt) tuples is performed with a min-max scaler. The scaler normalises at-
tributes/outputs according to the formula:

xscaled =
x− xmin

xmax − xmin

(4.3)

where x is the original value xmin = min(xtrain) and xmax = max(xtrain). This
normalises all attributes and outputs in the train data to xtrain ∈ [0, 1]. Test data
can be scaled to both > 1 if x > xmax and to < 0 if x < xmin.

4.5 Model creation

A general principle for all models in this thesis is the use of individual models for
each stocks, i.e. no multi-output models are used. Instead individual models for all
stocks are created by for-looping the model creation process. This same principle is
also used regarding the five attribute profiles mentioned in Table 4.4. The process
of stock prediction can generally for all models therefore be described as follows.

Algorithm 1 Model procedure

1: for <every stock> do
2: Extract attributes
3: Pre-processing of data
4: Optimise hyperparameters
5: Train model with train data
6: Predict using test data

Technically, we therefore create 34 × 5 = 170 models of all model-types, (with
model-type we here refer to the machine learning algorithm used, such as SVM or
LSTM). These models will not be evaluated on a individual basis though. Instead
every combination of attribute profile and model-type will be evaluated on its cu-
mulative performance on predicting the entire investment universe. For example,
the 34 individual SVM-regressors based on the ”ESG SMA” attribute profile will
have their predictions merged into one dataframe. This dataframe will then be used
to evaluate the (SVM, ESG SMA) tuple. Each of these tuples will be referred to as
a ”model” from now on. We differentiate between the naive models (section 4.5.1)
and the primary models (sections 4.5.2, 4.5.3 and 4.5.4). Two naive modes, one
with access to ESG-data and one without such access, for comparison purposes. For
each primary model-type (SVM, Random forest, LSTM), five models, one for each
attribute profile, are created.

4.5.1 Naive-model

The Naive models are modelled as ARIMA-models with exogenous inputs (ARIMAX-
models) implemented via Kalman filter. As explained in section 4.4, the output data
was differentiated once, so we have ARIMA-models of order (p,1,q) with an exoge-
nous input. The order of the AR-term p and of the MA-term q was determined
through analysis of the auto-correlation function and the partial auto-correlation
function.

40

Figure 4.2: The autocorrelation function (left) and partial autocorrelation function (right)
of the OMXS30GI index 2010-2019. The shaded areas are 95%-confidence intervals

In Figure 4.2, we see moderate indication for correlation at time-lags 4,10,24.
Since this model is meant to operate as a naive comparison, the order of the AR
and MA polynomials are simply assumed to be 4. Since every stock is modeled
individually, it is possible that the order of the AR and MA polynomials vary for
different stocks. Since this model is naive, we simplify this by assuming that all
stocks have the same polynomial order as the OMXS30GI index. We therefore
arrive at ARIMA(2,1,2) models with exogenous inputs.

A naive approach is used for the exogenous input. We solely use the attribute
named ”ESG” in table 4.3.

With this, we set up the Linear state space representations as:

xt+1 = xt + et (4.4)

yt = Ct|t−1xt|t−1 + wt (4.5)

With yt defined as the stock-price differentiated according to equation (4.2), et is
additive noise allowing the system parameters to change over time and wt is the
white noise measurement error and:

Ct|t−1 = [−yt−1,−yt−2,−yt−3,−yt−4, et−1, et−2, et−3, et−4, Et−2] (4.6)

Where Et is the ESG-score at time t and: et = ŷt − yt where ŷt is the prediction of
yt. We also have: xt = [a1, a2, a3, a4, c1, c2, c3, c4, b2]

We can now recursively estimate stock-prices using the method described in
section 3.3.1.2

4.5.2 Support Vector Machine

The SVM-regressor was implemented through the Scikit-learn class sklearn.svm.SVR
[43]. Hyperparameter optimisation was performed via random search. 50 random
combinations of parameters C, (equation (3.49) ϵ (equations (3.47) and (3.48)) and
γ (equation (3.53) were tested and evaluated through minimisation of the MSE. The
evaluation was performed through cross-validation.

41

Table 4.6: Hyperparameter optimisation, SVM

Hyperparameter Parameter range Scikit learn default
C [0.5, 2.0] 1.0
γ [0.05, 0.50] see [43]
ϵ [0.05, 0.20] 0.10

50 random hyperparameter combinations from the allowed ranges in table 4.6
were tested for each individual stock predictor. No requirement for uniformity in
each model was set so a model could in theory have different values for C for different
stocks. All remaining hyperparameters retained the Scikit-learn default values [43].

4.5.3 Random forest

The Random forest regressor was implemented through the Scikit-learn class
sklearn.ensemble.RandomForestRegressor [42]. The hyperparameters chosen for op-
timisation were:

• The number of trees used in the forest n estimators.

• The amount of features randomly chosen for comparison when splitting a node:
max features.

• The minimum number of required samples in a node for it to be split instead
of being turned into a leaf min samples split.

Table 4.7: Hyperparameter optimisation, Random forest

Hyperparameter Parameter range Scikit learn default
n estimators [25, 400] 100
max features dim(x) ∗ [0.2, 1.0] dim(x)

min samples split [2, 50] 2
Where dim(x) is the number of attributes

As for the SVM, different stocks can have different values on their respective
hyperparameters and the hyperparameters that were not optimised retained their
Scikit-learn default values.

4.5.4 Long short-term memory (LSTM)

The LSTM-architecture which is utilised, is a modified version of Kuguoglu’s Pytorch-
based architecture [30]. Unlike all other models, the data was not simply split into
test and train data as explained in section 4.2.2. Instead a 3-part split into train,
validation and test data was performed. The split was formed by first performing
the 2

3
train/test split as detailed in section 4.2.2 and then splitting the train data

into train data (80%) and validation data (20%). Hyperparameter optimisation was
performed via a self-constructed random search algorithm.

42

Algorithm 2 LSTM hyperparameter optimisation

1: for <every stock> do
2: for i in range(50) do
3: Randomly select a dropout ∈ [0.0, 0.5] (uniformly spaced)
4: Randomly select a learning rate ∈ [10−5, 10−1] (logarithmically spaced)
5: Train with 50 epochs
6: Predict on validation data
7: Calculate the MSE of the prediction

8: Select the dropout, learning rate combination that gave the lowest MSE

In addition to the dropout and the learning rate. The chosen value for other
hyperparameters can be found in table 4.8

Table 4.8: Remaining hyperparameters, LSTM

Hyperparameter Chosen value Description

batch size 64
Number of samples processed
before the weights are updated

weight decay 10−6 Regularisation term with reduces overfitting
hidden dim 64 Nodes per hidden layer
layer dim 2 Number of hidden LSTM-layers
n epochs 50 Number of epochs

4.6 Trading algorithm

The predictors predict daily log-returns for all stocks allowed to trade. These log-
returns are converted to simple returns with the formula rt = erlog,t − 1 were rt is
the simple returns and rlog,t the log-returns at time t. The following question now
arises: How shall one use these predicted returns to construct a trading strategy?
A naive approach would be to simply fully invest in the stock with the largest
predicted next-day return. This approach would be very sensitive to prediction
errors and also would lack in providing risk-adjusted returns, a more sophisticated
approach is therefore used. Utilising one of the benchmarks for the predictors, the
investment portfolio is constructed by maximising the Sharpe ratio (section 2.6.1),
with two additional constraint. No short-selling is allowed and no individual stock
is allowed to account for > 10% of the portfolio. The motive for the first constraint
is explained in section 2.2 and the second is to reduce the impact of large prediction
errors. 10% was deemed as a fair limit as the largest index weight of a single stock
in the OMXS30, as of May 2022, was 7.37% [38] .The maximisation was performed
with a self-made algorithm explained in pseudo code below:

43

Algorithm 3 Trading algorithm

1: procedure
2: stocklist← List of stocks allowed to trade, this varies from date to date
3: predictedreturns← Daily predicted returns for all stocks ∈ stocklist
4: returns← Daily true returns for all stocks ∈ stocklist
5: daterange← start and end dates for the algorithm
6: date← start date for the algorithm
7: while date ∈ daterange do
8: Ωt ← Cov. matrix for the historical returns of the stocks ∈ stocklist
9: R̂t ← Predicted next-day returns for the stocks

10: wt ← maxwt

wT
t ·R̂t

wT
t ·Ωt·wt

where wT
t = (wt,1, ..., wt,N), 0 ≤ wt,i <

1
10
∀i

Where wt,i is the portfolio weight of stock i at time t. Daily portfolio returns
from time t to t + 1 are now given by wT

t · Rt where Rt is the vector with true
stock-returns from time t to t + 1. stocklist correspond to the stocks present in
OMXS30 at date and N is the length of stocklist, table 4.1 explain this in detail.

4.7 Calculation of benchmarks

When the models have been used to predict stock prices and the trading algorithm
has transformed these predictions into financial performance, benchmarking can
be performed. The Sharpe-ratios (section 2.6.1), the Sortino-ratios (section 2.6.2)
and the gross returns (section 2.6.3) are calculated on the outputs of the trading
algorithm.

The naive models and the SVRs are all deterministic models, meaning that they
produce the same results if they are re-fitted to the test data and later used for
prediction one more time. Due to this, the calculated benchmarks for these models
are simply the single observed figure from running these models once.

This is not the case for the LSTM-models and the random forest regressors
though. As explained in sections 3.4.2 and 3.4.3, during construction of a random
forest model, randomness is involved when fitting the model to test data. For an
LSTM, randomness is instead introduced during the fitting procedure as a result
of the weight vectors mentioned in 3.6.2.2. The initial values of these are set by
randomness and these initial values maintain influence even over the epochs.

To partially correct for the randomness in the random forest and the LSTM, the
fitting procedure is repeated 10 times. Prediction on test data is then performed for
every one of these instances. The outputs from the predictions are inserted into the
trading algorithm (section 4.6) and benchmarks are calculated for each instance. The
worst observation, best observation and the mean of all 10 observation is presented
in section 5.1.

44

5

Results

5.1 Benchmarking

In table 5.1 we present the results from the benchmarking:

Table 5.1: Benchmarking results

Model SR Sortino ratio Gross returns
Min Mean Max Min Mean Max Min Mean Max

SVM NO ESG n.a. 1.103 n.a. n.a. 1.535 n.a. n.a. 53.4% n.a.
SVM ESG BASE n.a. 0.897 n.a. n.a. 1.232 n.a. n.a. 42.1% n.a.
SVM ESG SMA n.a. 1.046 n.a. n.a. 1.451 n.a. n.a. 49.9% n.a.
SVM ESG MOM n.a. 1.095 n.a. n.a. 1.553 n.a. n.a. 54.4% n.a.
SVM ESG ALL n.a. 0.700 n.a. n.a. 0.970 n.a. n.a. 29.1% n.a.
RF NO ESG 0.647 0.766 0.830 0.870 1.047 1.162 26.9% 33.6% 37.1%

RF ESG BASE 0.798 0.897 1.011 1.072 1.222 1.386 35.4% 41.3% 47.5%
RF ESG SMA 1.120 1.185 1.280 1.564 1.658 1.793 55.8% 60.5% 68.0%
RF ESG MOM 0.837 1.056 1.174 1.137 1.459 1.643 38.1% 51.6% 60.6%
RF ESG ALL 0.972 1.116 1.317 1.337 1.549 1.850 47.1% 55.6% 70.9%
LSTM NO ESG 0.934 1.033 1.181 1.253 1.395 1.630 45.2% 52.6% 63.8%

LSTM ESG BASE 0.794 1.099 1.406 1.064 1.508 1.964 34.3% 52.4% 73.2%
LSTM ESG SMA 1.064 1.142 1.206 1.446 1.553 1.655 52.7% 59.2% 65.0%
LSTM ESG MOM 0.735 0.826 0.890 0.986 1.112 1.201 33.2% 38.2% 42.7%
LSTM ESG ALL 0.629 0.747 0.852 0.855 1.018 1.155 26.3% 33.0% 39.8%
Naive NO ESG n.a. 0.890 n.a. n.a. 1.235 n.a. n.a. 42.7% n.a.
Naive ESG n.a. 0.923 n.a. n.a. 1.285 n.a. n.a. 44.8% n.a.
OMXS30GI n.a. 0.896 n.a. n.a. 1.229 n.a. n.a. 42.6% n.a.

• As a first observation, the naive models performed very similar to the under-
lying OMXS30GI. The Naive ESG model slightly outperformed the
Naive NO ESG model on every metric.

• Regarding the SVM-models, the NO ESG and ESG MOM attribute profiles
performed the best with NO ESG having the best SR and ESG MOM having
the best Sortino ratio and gross returns. ESG ALL performed the worst,
underperforming both OMXS30GI and the naive-models.

• Regarding the random forests-models, the ESG SMA profile outperformed ev-
ery other model, including SVM and LSTM models, on all metrics. We fur-
thermore observe a low min-max spread for the ESG SMA profile compared

45

to, for example, the ESG ALL profile, indicating less variance between in-
stances. The NO ESG and ESG BASE profiles of the random forests did not
perform well and underperformed both OMXS30GI and their respective naive
comparisons.

• Looking at the LSTM-models, the ESG SMA profile once again dominates.
It outperforms the other LSTM-models on every metric. Similar to the ran-
dom forest case, it also display a low min-max spread. The ESG MOM and
ESG ALL profiles of the LSTM did not perform well and underperformed both
OMXS30GI and their respective naive comparisons.

5.2 Cumulative gross returns

To provide some intuitive information regarding the performance of the models,
charts documenting the development of the cumulative gross returns are shown in
this section. The development of the OMXS30GI is also shown for comparison. For
the random forests- and the LSTM-models, only the final instance is presented.

Figure 5.1: Development of the cumulative gross returns: SVM-models

46

Figure 5.2: Development of the cumulative gross returns: Instance 10/10 of the random
forests-models

Figure 5.3: Development of the cumulative gross returns: Instance 10/10 of the LSTM-
models

47

Figure 5.4: Development of the cumulative gross returns: Naive-models

48

6

Discussion

6.1 Discussion of results

When observing the results from section 5.1 one can draw some conclusions:

1. The ESG SMA attribute profile was the best performing profile: This profile
was used in the best performing of all models (RF ESG SMA) and was also
the profile that led to the best results among the LSTM-models. For the SVM,
the profile was not the best but it still outperformed both the naive predictors
and OMXS30GI on every benchmark metric. Lastly, the ESG SMA LSTM
and random forest models displayed low min-max spreads on the benchmarks,
indicating better prediction potential. The good performance of the ESG SMA
profile compared to the NO ESG profile also indicate (but does not prove)
predictive power of the Sanctify ESG-scores on stock price movements.

2. Stock prediction is very complicated : The difference in performance among the
models was very high, and some attribute profiles performed well with certain
model types and bad with other ones (ESG MOM for example). Furthermore,
the min-max spreads of some models were alarmingly high. As an example,
the max benchmarks of the LSTM ESG BASE model are around twice as high
as the min ones. This implies that the outcome of the random assignment of
weights in the neural network carries significant influence on the benchmark
results. This should not be the case if the model has high predictive power
so one can probably conclude that the predictive power is low. It is possible
that a higher number of epochs while training could alleviate this issue but
when studying the loss functions we found very little reduction in loss when
using more than 50 epochs. Also, the fact that the high min-max spread is
present even in some random forest models suggest that the issue is larger
than the LSTM-models epoch choice. A more likely explanation is that stock
prediction is very complicated and that most models have quite low predictive
power. This would give the random assignment of LSTM weights and the
bagging procedure of the random forests larger influence compared to models
with high predictive power. This is to be expected however. If stock prediction
through machine learning was easy, every data scientist would be rich.

3. Excess returns were achieved : Somewhat contradictionary to the last conclu-
sion, excess returns compared to the OMXS30GI was still achieved in most

49

cases. 9/12 of the non-naive models with access to ESG-data had larger mean
SRs compared to the OMXS30GI and 8/12 had larger mean Sortino ratios.
If we look at the two best performing models, the RF ESG SMA and the
LSTM ESG SMA they outperform the index and provide excess return in ev-
ery one of their 10 instances.

6.2 Future work

6.2.1 Investment horizons and holding periods

The choice to rebalance the model portfolios every trading day is explained in section
1.4. While this is optimal in a theoretical environment with zero transaction cost
nor any legal or administrative hurdles, it is not a realistic trading strategy. To
analyse the effect of more realistic strategies, new trading algorithms that utilizes
holding periods could be developed. Ideally the model should weigh the incurred
financial and non-financial costs of rebalancing the portfolio with the potential gains
from doing so.

6.2.2 New investment universe

As mentioned in section 2.3, the only stocks modelled and traded in this thesis
was stock stocks present in the OMXS30 index during the chosen time period. In
future work, expanding this investment universe could be of significant interest.
Testing the models on a larger set of stocks could provide larger confidence in their
predictive power and would also allow for exploring if the pricing dynamics varies
between exchanges in different countries. Furthermore, it would be interesting to
compare the predictive power of Sanctify scores on large versus small stocks. Small
companies naturally induce less media coverage to analyse but the coverage that
exist could very well generate larger swings in stock prices (at least if the author’s
intuition is correct). A start could be extending the market universe to the entire
Swedish market, instead of limiting it to OMXS30 companies. Later one could try
and expand the analysis to new exchanges to eventually generate more statistically
significant conclusion that applies worldwide. Further research could also choose
other train-test splits and evaluate if the results in this thesis can be replicated in
different market environments.

6.2.3 Sanctify ESG-scores

As mentioned in section 2.5, Sanctify ESG scores exist in many types, and this thesis
has only explored the use of one of these. In further analysis, other score types could
be used in prediction and various types could even be used at the same time. For
example, one could try and model only on environmental scores or combine short
term governmental scores with long term social scores, the possibilities are endless.

6.2.4 Other model-types

Four different models were utilised and evaluated in this thesis. Performance was
generally sufficient for the task and excess returns were achieved in many cases.

50

Further research could expand this by utilizing other predictor-models, for example
Convolutional Neural Networks (CNN). Further research into investment horizons
and holding periods (section 6.2.1) could also include classification rather than re-
gression models. Another method to explore would be to create multi-output models
that model many stocks in one model instead of predicting each stock price in a sep-
arate model.

6.2.5 Correlation between Sanctify ESG-scores and stock
price movement

Sanctify ESG-scores have been utilized as attributes in most of the models presented
in this thesis and it has been shown that these scores can improve the prediction
of stock prices in 2020-2021. What has not been studied however, is the relation
between ESG-scores and stock price movement. In future work, one could try and
and quantify this relation and search for patterns between, for example:

• Movements in ESG-scores and the effect on n-day stock returns.

• Correlation between relative ESG-scores, i.e. the ESG-scores comparable be-
tween companies, and stock performance.

• Analysis of the effect of ESG-scores on stock returns in different market en-
vironments. For example, the market environment in late 2020 was generally
favorable for companies with a high focus on ESG, while late 2021 and early
2022 present an opposite environment.

51

Bibliography

[1] Pattern Recognition and Signal Analysis in Medical Imaging. In Anke Meyer-
Baese and Volker Schmid, editors, Pattern Recognition and Signal Analysis in
Medical Imaging (Second Edition), pages 197–243. Academic Press, Oxford,
January 2014.

[2] George O Aragon and Wayne E Ferson. Portfolio performance evaluation. Now
Publishers Inc, 2007.

[3] Stevan Bajic and Burcin Yurtoglu. Which aspects of csr predict firm market
value? Journal of Capital Markets Studies, 2018.

[4] Alessandro Beber and Marco Pagano. Short-Selling Bans Around the World:
Evidence from the 2007–09 Crisis. The Journal of Finance, 68(1):343–381,
2013.

[5] Bloomberg. ESG by the Numbers: Sustainable Investing Set Records
in 2021 . https://www.bloomberg.com/news/articles/2022-02-03/

esg-by-the-numbers-sustainable-investing-set-records-in-2021/,
2022. Accessed: 2022-06-04.

[6] Lawrence Blume, David Easley, and Maureen O’hara. Market statistics and
technical analysis: The role of volume. The journal of finance, 49(1):153–181,
1994.

[7] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152, 1992.

[8] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August
1996.

[9] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001.

[10] Qian Chen and Xiao-Yang Liu. Quantifying esg alpha using scholar big data:
an automated machine learning approach. In Proceedings of the First ACM
International Conference on AI in Finance, pages 1–8, 2020.

[11] Christopher Olah. Understanding LSTM Networks. https://colah.github.

io/posts/2015-08-Understanding-LSTMs/. Accessed: 2022-05-24.

[12] Robert DiPietro and Gregory D. Hager. Chapter 21 - Deep learning: RNNs
and LSTM. In S. Kevin Zhou, Daniel Rueckert, and Gabor Fichtinger, editors,
Handbook of Medical Image Computing and Computer Assisted Intervention,

52

https://www.bloomberg.com/news/articles/2022-02-03/esg-by-the-numbers-sustainable-investing-set-records-in-2021/
https://www.bloomberg.com/news/articles/2022-02-03/esg-by-the-numbers-sustainable-investing-set-records-in-2021/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The Elsevier and MICCAI Society Book Series, pages 503–519. Academic Press,
January 2020.

[13] Matthew F. Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in
Finance: From Theory to Practice. Springer International Publishing, Cham,
2020.

[14] David N Dreman and Michael A Berry. Overreaction, underreaction, and the
low-p/e effect. Financial Analysts Journal, 51(4):21–30, 1995.

[15] Jeffrey L. Elman. Finding Structure in Time. Cognitive Science, 14(2):179–211,
1990.

[16] Eugene F Fama. The behavior of stock-market prices. The journal of Business,
38(1):34–105, 1965.

[17] Eugene F Fama. Efficient capital markets: A review of theory and empirical
work. The journal of Finance, 25(2):383–417, 1970.

[18] Tristan Fletcher. Support Vector Machines Explained.

[19] Milton Friedman. The Social Responsibility of Business Is to Increase Its Prof-
its. In Walther Ch Zimmerli, Markus Holzinger, and Klaus Richter, editors,
Corporate Ethics and Corporate Governance, pages 173–178. Springer, Berlin,
Heidelberg, 2007.

[20] Jiawei Han, Micheline Kamber, and Jian Pei. 8 - Classification: Basic Concepts.
In Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data Mining (Third
Edition), The Morgan Kaufmann Series in Data Management Systems, pages
327–391. Morgan Kaufmann, Boston, January 2012.

[21] Jiawei Han, Micheline Kamber, and Jian Pei. 9 - Classification: Advanced
Methods. In Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data Mining
(Third Edition), The Morgan Kaufmann Series in Data Management Systems,
pages 393–442. Morgan Kaufmann, Boston, January 2012.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neu-
ral Computation, 9(8):1735–1780, November 1997. Conference Name: Neural
Computation.

[23] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation
for nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[24] Jennifer Howard-Grenville. Esg impact is hard to measure-but it’s not impos-
sible. 2021.

[25] Andreas Jakobsson. An introduction to time series modeling. Studentlitteratur,
2019.

[26] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, July 2015.

[27] Tim Koller, Robin Nuttall, and Witold Henisz. Five ways that esg creates
value. The McKinsey Quarterly, 2019.

53

[28] John Kordonis, Symeon Symeonidis, and Avi Arampatzis. Stock price forecast-
ing via sentiment analysis on twitter. In Proceedings of the 20th Pan-Hellenic
Conference on Informatics, pages 1–6, 2016.

[29] Miroslav Kubat. An Introduction to Machine Learning. Springer International
Publishing, Cham, 2021.

[30] Kaan Kuguoglu. Building rnn, lstm, and gru for time
series using pytorch. https://towardsdatascience.com/

building-rnn-lstm-and-gru-for-time-series-using-pytorch-a46e5b094e7b.
Accessed: 2022-04-06.

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[32] Hao Li, Yanyan Shen, and Yanmin Zhu. Stock Price Prediction Using Attention-
based Multi-Input LSTM. In Proceedings of The 10th Asian Conference on
Machine Learning, pages 454–469. PMLR, November 2018. ISSN: 2640-3498.

[33] Xiaodong Li, Pangjing Wu, and Wenpeng Wang. Incorporating stock prices and
news sentiments for stock market prediction: A case of Hong Kong. Information
Processing & Management, 57(5):102212, September 2020.

[34] Andrew Lo. The Statistics of Sharpe Ratios. Financial Analysts Journal, 58,
February 2003.

[35] Wei-Yin Loh. Classification and regression trees. WIREs Data Mining and
Knowledge Discovery, 1(1):14–23, 2011.

[36] Marcos Lopez de Prado. Beyond Econometrics: A Roadmap Towards Financial
Machine Learning. SSRN Scholarly Paper 3365282, Social Science Research
Network, Rochester, NY, September 2019.

[37] Nasdaq. NASDAQ OMX STOCKHOLM 30 INDEX. https://indexes.

nasdaqomx.com/docs/methodology_OMXS30.pdf. Accessed: 2022-04-13.

[38] Nasdaq. Weightings values for DRBG . https://www.nasdaq.com/docs/2022/
05/05/OMXS30_(1).pdf, 2022. Accessed: 2022-06-18.

[39] Andreas Nilsson and David T. Robinson. What Is the Business of Business?
Innovation Policy and the Economy, 18:79–106, January 2018. Publisher: The
University of Chicago Press.

[40] Jigar Patel, Sahil Shah, Priyank Thakkar, and K Kotecha. Predicting stock and
stock price index movement using Trend Deterministic Data Preparation and
machine learning techniques. Expert Systems with Applications, 42(1):259–268,
January 2015.

[41] Raffaele Pugliese, Stefano Regondi, and Riccardo Marini. Machine learning-
based approach: Global trends, research directions, and regulatory standpoints.
Data Science and Management, 2021.

54

https://towardsdatascience.com/building-rnn-lstm-and-gru-for-time-series-using-pytorch-a46e5b094e7b
https://towardsdatascience.com/building-rnn-lstm-and-gru-for-time-series-using-pytorch-a46e5b094e7b
https://indexes.nasdaqomx.com/docs/methodology_OMXS30.pdf
https://indexes.nasdaqomx.com/docs/methodology_OMXS30.pdf
https://www.nasdaq.com/docs/2022/05/05/OMXS30_(1).pdf
https://www.nasdaq.com/docs/2022/05/05/OMXS30_(1).pdf

[42] Scikit learn. sklearn.ensemble.RandomForestRegressor. https:

//scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html. Accessed: 2022-05-19.

[43] Scikit learn. sklearn.svm.SVR. https://scikit-learn.org/stable/

modules/generated/sklearn.svm.SVR.html. Accessed: 2022-05-19.

[44] Sreelekshmy Selvin, R Vinayakumar, E. A Gopalakrishnan, Vijay Krishna
Menon, and K. P. Soman. Stock price prediction using LSTM, RNN and
CNN-sliding window model. In 2017 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pages 1643–1647,
September 2017.

[45] William F. Sharpe. Mutual Fund Performance. The Journal of Business,
39(1):119–138, 1966. Publisher: University of Chicago Press.

[46] Frank A Sortino and Robert Van Der Meer. Downside risk. Journal of portfolio
Management, 17(4):27, 1991.

[47] Matheus Gomes Sousa, Kenzo Sakiyama, Lucas de Souza Rodrigues, Pe-
dro Henrique Moraes, Eraldo Rezende Fernandes, and Edson Takashi Mat-
subara. Bert for stock market sentiment analysis. In 2019 IEEE 31st Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), pages 1597–
1601. IEEE, 2019.

[48] Hong Sul, Alan Dennis, and Lingyao Yuan. Trading on Twitter: Using Social
Media Sentiment to Predict Stock Returns: Trading on Twitter. Decision
Sciences, 48, June 2016.

[49] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[50] George Udny Yule. On a method of investigating periodicities in disturbed
series, with special reference to wolfer’s sunspot numbers. Philosophical Trans-
actions of the Royal Society of London Series A, 226:267–298, 1927.

[51] Mehar Vijh, Deeksha Chandola, Vinay Anand Tikkiwal, and Arun Kumar.
Stock Closing Price Prediction using Machine Learning Techniques. Procedia
Computer Science, 167:599–606, January 2020.

[52] Gilbert Thomas Walker. On periodicity in series of related terms. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, 131(818):518–532, 1931.

[53] Yahoo. What is the adjusted close? https://help.yahoo.com/kb/SLN28256.

html. Accessed: 2021-04-15.

55

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://help.yahoo.com/kb/SLN28256.html
https://help.yahoo.com/kb/SLN28256.html

Master’s Theses in Mathematical Sciences 2022:E38
ISSN 1404-6342

LUTFMS-3443-2022

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

	Introduction
	Related work
	Stock price prediction
	Stock price prediction using machine learning
	Stock price prediction using sentimental data

	Sanctify Financial Technologies
	Objective
	Scope

	Background
	Long positions
	Short positions
	Stock indices
	Adjusted close prices
	Ex-dates
	Fictional example

	Sanctify ESG-scores
	Predictor benchmarking and evaluation
	Sharpe ratio
	Sortino ratio
	Gross return
	Technical analysis tools
	Simple moving average (SMA)
	Momentum (MOM)

	Mean squared error (MSE)

	Mathematical and machine learning theory
	Introduction to machine learning
	Supervised learning
	Classification
	Regression

	Unsupervised learning

	Classical Autoregressive predictors
	Autoregressive (AR) processes
	Autoregressive moving average (ARMA) processes
	Trends and ARIMA processes
	Exogenous inputs

	Parameter estimation and prediction
	Dynamic systems
	Linear state space representation
	The Kalman filter

	Decision trees and Random forests
	Decision trees
	Bagging
	Random forests

	Support vector machines (SVM)
	Linear SVM
	Non-linearly separable data

	Support vector regression (SVR)
	Non linear SVMs and the Kernel trick

	Artificial Neural Networks
	Multilayer perceptrons (MLPs)
	Recurrent neural networks (RNNs)
	Vanilla RNNs
	Long short-term memory (LSTMs)

	Method
	Software
	Data
	Time span
	Train-test split

	Attribute selection
	ARIMAX-model
	Other models

	Pre-processing
	Model creation
	Naive-model
	Support Vector Machine
	Random forest
	Long short-term memory (LSTM)

	Trading algorithm
	Calculation of benchmarks

	Results
	Benchmarking
	Cumulative gross returns

	Discussion
	Discussion of results
	Future work
	Investment horizons and holding periods
	New investment universe
	Sanctify ESG-scores
	Other model-types
	Correlation between Sanctify ESG-scores and stock price movement

	Bibliography

