
Estimating the risk of insurance fraud based on

tonal analysis

Henrik Steneld

Academic supervisor: Maria Sandsten
Supervisor at Trygg-Hansa: Fredrik Thuring

June 2022

Faculty of Science

Abstract

Insurance companies utilize various methods for identifying claims that are of
potential fraudulent nature. With the ever progressing field of artificial intel-
ligence and machine learning models, great interest can be found within the
industry to evaluate the use of new methods that may arise as a result of new
advanced models in combination with the rich data that is being gathered. For
this end, we decided to evaluate a Long Short-Term Memory (LSTM) - as well
as a residual (ResNet) type of neural network, with the purpose of estimating
the risk of insurance fraud based on acoustic properties of conversations between
customers and company representatives.

Furthermore, we drew a connection between identifying conversations that re-
gard fraudulent claims and detecting deceptive speech. With this connection
in mind, we simulated data representing deceptive speech by artificially alter-
ing the pitch and used it to evaluate four types of acoustic features: Filter
bank energies, cepstral coefficients, mel-frequency filter bank energies, and mel-
frequency cepstral coefficients (MFCC).

We found that a LSTM model could be viable with either feature tried. Addi-
tionally, we found that the filter bank energies yielded the best performance and
it did so on the grounds of having been computed over a multitaper spectrogram.

We did not find any combination of model and feature that could generalize
results from training data onto data used for validation with respect to real
conversations between customers and company representatives.

1

Popular science description

Trying to identify insurance claims that are invalid or even fraudulent is of great
importance for insurance companies. Actually succeeding in doing so may not
always be straight forward. Insurance companies use different methods for in-
vestigating claims that might be of fraudulent nature, some of which includes
speaking directly to the customer. Some may argue that it would be considered
valuable for the insurance companies to be assisted in such conversations by
artificial intelligence that may be able to hint at whether or not what is be-
ing said is typical for fraudulent claims. Such an artificial intelligence could of
course be considered beneficial within related areas as well, such as in criminal
investigations.

The idea with this project is to look into the possibility of constructing a model
that can be used for the aforementioned purpose. We look at fields that we
consider related to the task, namely speaker recognition and lie detection. The
reason for considering speaker recognition is that we are taking the approach of
modelling acoustic properties of the customers speech, as opposed to the content
of what is being said. From science on lie detection we know that when someone
is being deceptive, the pitch in their voice is increasing. This knowledge is used
in the sense that we therefore simulate pitch alterations in ordinary speech and
evaluate various types of acoustic features as input to models trying to identify
the simulated alterations.

2

Acknowledgement

I would like to thank my supervisor at Lund University, Maria Sandsten, for all
the help given throughout this project, it has been incredibly valuable. Also, I
would like to thank Trygg-Hansa and especially Fredrik Thuring who in addition
to having originally come up with the idea of this project has been supportive
and providing all necessary means for completing it.

3

Contents

Introduction 6
1.1 Problem formulation . 6
1.2 Approach . 6
1.3 Structure . 8
1.4 Related work . 9

Method 11
2.1 Acoustic features . 11

2.1.1 Features . 11
2.1.2 Spectrogram . 15
2.1.3 Audio bands . 17

2.2 Neural Network . 19
2.2.1 LSTM Model . 20
2.2.2 ResNet model . 21

Part I: Simulated data 23
3.1 Introduction . 23
3.2 Altering pitch . 23
3.3 Data generation . 24
3.4 Evaluation . 25
3.5 Results . 26
3.6 Conclusions . 27

Part II: Data pre-processing 30
4.1 Introduction . 30
4.2 Voice activity detection (VAD) 30
4.3 Speaker diarization . 31

4.3.1 First phase: Locating turn point candidates 34
4.3.2 Second phase: Reducing turn point candidates 36
4.3.3 Merging segments . 38

4.4 Speaker identification . 39
4.5 Results . 41

Part III: Real data 43
5.1 Introduction . 43

4

5.2 Data description . 43
5.3 Models and data handling . 43

5.3.1 First attempt: LSTM . 44
5.3.2 Second attempt: ResNet 44

5.4 Results . 45
5.4.1 First attempt: LSTM . 45
5.4.2 Second attempt: ResNet 45

5.5 Discussion and future research 45

References 49

5

Introduction

The aim of this project was to assess the validity of information given by an in-
surance customer throughout his or her telephone conversation with a represen-
tative of that company. It was proposed that tonal analysis of the conversation
can determine this validity. We had access to data corresponding to 1324 unique
telephone conversations between customers and company representatives where
the matter of an insurance claim had been discussed. Furthermore, the data was
labeled as being determined to be related to either legit, or fraudulent claims.
In order to achieve success in assessing the validity based on tonal analysis, it
was proposed to utilize science from the field of speaker recognition, from where
candidate acoustic features were deduced. Furthermore, it was proposed that
a Long Short-Term Memory (LSTM) type of neural network would be a viable
model. In addition to a LSTM model, we also implemented and tested a state
of the art residual network (ResNet).

1.1 Problem formulation

We defined the waveform of a relevant audio stream consisting of a telephone
conversation between a customer and an insurance company as a stochastic
process denoted X, and the correct label for a corresponding audio stream X
was defined as Y ,

Y =

{
1 fraudulent claim

0 legit claim
(1.1)

The goal was formulated as estimating p,

p = E(Y |X) (1.2)

utilizing a LSTM- or ResNet type of neural network.

1.2 Approach

To make inference on p, we sought to utilize the data at hand, which was 1324
examples of pairs (X,Y) provided by an insurance company. We recognized

6

that it was likely not feasible to consider X in its entirety. Such data as input
to either LSTM- or ResNet model would be to large with respect to the number
of time steps. Heavy down-sampling was not considered either as, motivated
by the Nyquist-Shannon sampling theorem, we would loose possibly important
information laying in high frequencies. Instead we utilized results from within
the field of speaker recognition.

Speaker recognition is the field of modelling acoustic properties of the speaker as
opposed to the content of what is being said, i.e modelling vocal tract dynamics.
In typical practice, features are extracted from audio and models are built based
on them. There is no shortage in proposed type of features to extract, and new
types are typically being found as tweaks to established ones.

We wanted to select a reasonable type of feature for the task of making in-
ference on p. In order to facilitate the selection, we decided to first work with
simulated data. By generating data and manipulating it in a way deemed typ-
ical for conversations regarding fraudulent claims, we could evaluate a set of
feature candidates before modelling the data set provided by the company.

In order to determine how to simulate reasonable data, we looked at a problem
that was proposedly related. Namely that of identifying when someone is being
deceptive. We looked at previous work that had been concerned with tonal
properties of people being deceptive and we found indications that when some-
one is being deceptive, the pitch in their voice increase (Levitan et al., 2018;
Taylor and Hick, 2007; Villar et al., 2013; Vrij and Semin, 1996). With this in
mind, we generated data upon which we artificially altered the pitch upwards
in irregular sized time intervals. Then, we evaluated different types of features
as input to a LSTM type of neural network for the purpose of identifying data
points that had been altered in pitch. By first working with simulated data we
also had the option to verify that a LSTM model was a viable selection. Had
the LSTM model failed compared to a näıve model on a data set that would
clearly be easier to model, it would hardly be worth going forward.

Given that we had information about how the data from the company was com-
posed, namely as telephone conversations, it was speculated that we could im-
prove an estimate of p by considering certain grounds upon which features were
computed. We looked at different type of spectrograms and band-frequencies.

Before trying out either the LSTM- or the ResNet model on data provided
by the company, we performed pre-processing as means of data simplification.
Suppose that the audio stream X could be separated into three tracks such that

X =
(
Xcustomer ∪Xagent ∪Xsilence

)
(1.3)

Then, it was proposed that only considering features extracted from Xcustomer

would be preferable in relation to considering features extracted from X. The
argument for removing silent parts could be strengthened by results in e.g.

7

Figure 1.1: An overview of the complete process, given a recording X of a
telephone conversation between a customer and a company representative, we
would like to estimate p = E(Y |X), the probability that the claim being dis-
cussed is fraudulent.

(Franklin Nissy & Renisha, 2020).

Finally, the complete process, from audio being generated to p being estimated
is given in Figure 1.1 .

1.3 Structure

It was decided to divide this report into three parts. In the first part, we detail
the work on audio with simulated pitch alterations. Such pitch alterations
are described in Section 3.2. In the second and third part, we look at the data
provided by the company consisting of real telephone conversations. The second
part is dedicated to pre-processing the data, in particular with speaker diarizaion
(identifying who spoke at what time). The third part regards modelling of
p given data prepared in the second part and conclusions drawn in the first
part. There were especially two conclusions from the simulated data that we
hoped would transfer over to the modelling of the data from the company.
First, the conclusion of whether or not a LSTM type of model (as described in
Section 2.2.1) was adequate at all for identifying pitch alterations. Second, the
conclusion of which type of feature that could be extracted from audio that best

8

would encapsulate such alterations, in addition to the basis on which it could
be computed on. The essence of feature extraction is detailed in Section 2.1.

1.4 Related work

This thesis is based on research within several areas. In essence, we have focused
on the task of identifying deceptiveness (i.e lie detection) as artificially simu-
lated, with the aid of neural networks. As such, we highlight some interesting
research that has gone in to the aforementioned fields.

Trying to identify deceptiveness with the use of machines has been a topic
of research for a long time. Historically, polygraphs are probably the most
well known type of machine for this purpose, having been used frequently by
law enforcement for decades. However, it is fairly well known that the effi-
ciency of polygraphs has been heavily questioned by the scientific community.
The National Academy of Sciences released a report, National Research Counsil
(2003) where they conclude that ”Overall, the evidence is scanty and scientifi-
cally weak” (p. 212). Nowadays, focus has found its track to more non-invasive
methods, such as modelling visual, and verbal cues. Visual cues are typically
modelled by means of analysing video content, often accompanied by verbal
cues. With respect to verbal cues, there exists work which has proposed certain
vocal markers that are linked to deceptive speech. However, we see that it can
be hard to conclude the existence of reliable such markers. For example, Sporer
and Schwandt (2006) looked into nine markers by analysing 41 previous studies.
Out of the nine, they found that pitch and response latency essentially were the
only markers that could be reliably associated with deception. With respect to
pitch, which plays a rather central role in this thesis, further evidence for it as
a reliable marker is found in for example (Levitan et al., 2018) and (Villar et
al., 2013). However, there is also evidence for the contrary, i.e that increased
pitch is not associated with deceptiveness (Zhang et al., 2022). As such, it is
hard to draw viable conclusions other than that the relationship between verbal
cues and deceptiveness is a field of interest for many researchers. After all, it is
hard to generate or even validate large amount of data where deceptiveness has
occurred in a natural fashion.

Plenty of research has gone into neural networks, especially the type of net-
works that we consider: LSTM and ResNet. In fact, the most cited paper in
the 20th century that concerns the architecture of a neural network was the orig-
inal paper written by Hochreiter and Schmidhuber (1997) detailing the LSTM
model (Schmidhuber, 2021). In the 21:st century, the most cited paper that
regards a neural network architecture is the paper by He et al. (2016), detail-
ing the ResNet used for winning the ILSVRC classification task (Schmidhuber,
2021). Commonly, when neural networks are implemented for the purpose of
detecting fraudulent behavior, it is by means of anomaly detection. For ex-
ample, a LSTM model has been found to display state of the art performance

9

for fraud detection within healthcare (Snorovikhina & Zaytsev, 2020). Other
areas where LSTM networks have been successful in detecting anomalies are
for example in ECG time signals (Chauhan and Vig, 2015), and by means of
intrusion detection within computer networks (Bontemps et al., 2017).

10

Method

2.1 Acoustic features

Historically, many different types of acoustic features for speaker recognition has
been proposed. Some are found by computations directly on the waveform in
the time domain (e.g. Linear predictive codes), while others are computed from
the spectrogram in the time-frequency domain (e.g. Mel-frequency cepstral co-
efficients). The most commonly used feature is likely to be the Mel-frequency
cepstral coefficients, which is why we decided to use this as a starting point.

We decided to consider only features that were to be deduced from the spectro-
gram. Since we considered features deduced from the spectrogram, we sought
to evaluate not only features per se, but also how well they performed as input
to a model with regards to on what estimate of spectrogram they had been com-
puted. It was proposed that perhaps the result could be improved by estimating
the spectrogram either using multitaper techniques or by a parametric approach.

In the following sections we describe the features that we sought to evaluate
(Section 2.1.1), the various types of spectrograms considered (Section 2.1.2)
and audiobands considered due to the knowledge we had of the data being
generated as telephone conversations (Section 2.1.3).

2.1.1 Features

We decided to evaluate four different types of acoustic features as input to the
model for the simulated data. Two of which were computed on the ordinary fre-
quency scale, and two of which were computed on the mel-frequency scale. The
features that we sought to evaluate on the simulated data was filter bank ener-
gies, mel-frequency filter bank energies, cepstral coefficients, and mel-frequency
cepstral coefficients (MFCC). The motivation for evaluating MFCC was its pop-
ularity in related fields. The reasoning for also evaluating mel-frequency filter
bank energies was that they are commonly used as input to neural networks.
Mel-frequency filter bank energies are in essence something that has to be cal-
culated in order to retrieve MFCC, where MFCC are formed as a transform. As

11

such, it was speculated that the reason for the superior result in neural networks
is that a neural network can learn a suitable transform by itself. This type of
speculation was also the motivation for evaluating filter bank energies that are
not deduced from the mel-frequency scale. We sought to allow a neural network
to learn the scaling in of itself by distributing weights accordingly. Finally, cep-
stral coefficients are deduced from filter bank energies the same way that MFCC
are deduced from mel-frequency filter bank energies, which was the motivation
for including them. We detail each type of feature in subsequent sections.

Filter bank energies

Filter bank energies were, out of the four features examined, the simplest. In
order to retrieve this feature, we first had to decide the number of filters in the
filter bank that were to be computed, as this would be the same as the dimension
of the feature vector. A large number of filters would yield a feature vector that
is representative of a high resolution on the spectrum. To compute a KFBE-
dimensional feature vector at a given instance in time, we applied a filter bank
consisting of KFBE evenly spaced band-pass filters of a predetermined shape
onto the spectrum. As such, by applying a filter bank to the spectrum, we sep-
arated the spectrum into parts, where each part carried information consisting
of frequencies at corresponding sub-bands. We decided to use triangular filters
due to the similarity with mel-frequency filter bank energies as detailed in the
subsequent section. A filter bank with triangular filters is depicted in Figure
2.1. In order to move from an applied filter bank to filter bank energies, we
computed the sum of the powers at the frequencies in each band after the filter
bank had been applied to the original spectrum. By considering a spectrogram
as opposed to a single spectrum, we could by applying a filter bank at each time
instance generate a time series consisting of filter bank energies, which was in
fact what we sought to retrieve. When we computed filter bank energies, we
set KFBE = 30. As a final step, we did a log-transform on the complete time
series.

Mel-frequency filter bank energies

The mel-frequency scale is a scale that is used in order to correct for the per-
ception of increasing pitch levels. Our hearing is not linear in the sense that
an increase in pitch of a fixed amount in the ordinary frequency scale (Hz) will
typically not correspond to a perceived increase in pitch that is equal regard-
less of the initial frequency. The mel-scale tries to fix this. Altering sound by
a fixed amount of mels, should ideally imply an altering of a fixed amount in
perceived pitch, regardless of initial mels. O’Shaughnessy (1987) described the
mel-scale as being somewhat linear between 0− 1000 Hz, while being logarith-
mic above 1000 Hz. There is however no fixed definition of the mel-scale in
terms of transformation from the ordinary frequency scale. Historically, there
have been proposed mathematical formulas (O’Shaughnessy, 1987; Cassidy &
Harrington, 1999; Lindsay & Norman, 1977) as well as there have been deduced

12

Figure 2.1: Filter bank with triangular filters illustrated. Note that each filter
spans an equally large proportion of the frequency axis as does its neighbouring
filters. This is in contrast to how a mel-frequency filter bank would look.

tables from acoustic measurements (Baranek, 1949). In order to transform the
ordinary frequency scale into the mel-scale, we utilized the package Librosa (ver-
sion 0.9.1, 2022). Mel-frequency filter bank energies are deduced exactly how
the ordinary filter bank energies are deduced with one exception: The KMEL

band-pass filters are evenly spaced in the mel scale, but considering the ordi-
nary frequency scale (Hz) they are not. A filter bank of evenly spaced band-pass
filters in mel scale is illustrated in Figure 2.2. Traditionally, one uses triangular
filters for computing the mel-frequency cepstral coefficients detailed in subse-
quent section and for that reason, we used band-pass filters of triangular shape
when computing mel-frequency filter bank energies. When we computed mel-
frequency filter bank energies, we set KMEL = 30. Just as in the case for the
ordinary filter bank energies, we did a log-transform as a final step.

Cepstral coefficients

Childers et al. (1977) explains that a rather simple model for vocalized speech
can be formulated in the time domain as the convolution of signals. First, pulses
of air affects the vocal cords which generates glottal pulses that finally reacts
on the vocal tract, producing speech as a result. Beigi (2011) defines this type
of system in the spectral domain as the product of three components U,Gc and
Gv corresponding to: Input from the brain regarding what speech to produce,
the nervous system and vocal tract motor control (regarded jointly), and the
vocal tract dynamics. As the product of U,Gc and Gv in the spectral domain
generate speech H in the spectral domain

H = GvGcU, (2.1)

13

Figure 2.2: Mel-frequency filter bank with triangular filters illustrated. The
KMEL band-pass filters are evenly spaced in mel scale, which, as seen in the
figure, this is not the case when viewing the ordinary frequency scale (Hz).

we can naturally consider speech in the time domain as well:

h(t) = u(t) ∗ gc(t) ∗ gv(t) (2.2)

In speaker recognition, as separated from speech recognition where interest in-
stead lies in the content of the speech, one is usually interested in modelling
the vocal tract dynamics gv (Beigi, 2011). As such, it is naturally considered
beneficial to deconvolve the speech h. This is the main reason for considering
the cepstrum as opposed to the spectrum.

A power cepstrum, as first described by Bogert et al (1963) can be computed as
the squared inverse Fourier transform of the log-transformed power spectrum
(Childers et al., 1977). In the cepstrum, regardless if we consider the squared
inverse Fourier transform or just the inverse Fourier transform, the components
becomes additive. As we take the log-transform of the power spectrum for the
speech we obtain

log(H) = log(GvGcU)

⇐⇒
log(H) = log(Gv) + log(Gc) + log(U).

(2.3)

Due to the (inverse) Fourier transform being a linear transform, we obtain the

power cepstrum denoted ˆh(t) as

ĥ(t) =
(
F−1 (log(Gv) + log(Gc) + log(U))

)2
⇐⇒

ĥ(t) =
(
F−1 log(Gv) + F−1 log(Gc) + F−1 log(U)

)2 (2.4)

14

or expressed differently,

ĥ(t) = (ĝv(t) + ĝc(t) + û(t))
2

(2.5)

Finally, dropping the squared value used in the original definition by Bogert et
al. (1963) and denoting such a cepstrum of h as h̃, we arrive at the relation

h(t) = u(t) ∗ gc(t) ∗ gv(t)
=⇒

h̃(t) = g̃v(t) + g̃c(t) + ũ(t)

(2.6)

By focusing on the vocal tract dynamics and treating everything else as noise,
the cepstrum allows for noise to be assumed additive.

Cepstral coefficients are what we call the frames that arise by taking an in-
verse Fourier transform of the log-transformed filter bank energies. Note, would
the filter bank energies have been computed on non-overlapping rectangular
(boxcar) windows, they would effectively be a resolution reduction of the power
spectrum, meaning that cepstral coefficients as we defined them would effec-
tively be a low-resolution cepstrum. When computing coefficients from filter
bank energies, one typically keep only the first few resulting coefficients. We
decided to keep the first 13 coefficients, meaning that computing cepstral coef-
ficients doubled as a dimensionality reduction of filter bank energies.

Mel-frequency cepstral coefficients (MFCC)

Mel-frequency cepstral coefficients are to mel-frequency filter bank energies what
cepstral coefficients are to filter bank energies. They are the inverse Fourier
transform of the mel-frequency filter bank energies. Typically, as is how we
decided to implement MFCC, one can use an inverse discrete cosine transform
instead of an inverse Fourier transform (Beigi, 2011). Just as for the cepstral
coefficients, when computing MFCC from mel-frequency filter bank energies, we
discarded some coefficients, keeping only the first 13.

2.1.2 Spectrogram

Recall that we sought to evaluate different estimates of spectrograms for ex-
tracting features in relation to identifying pitch altered audio. We define three
spectrograms estimated in different ways as SB , SMT and SAR. They corre-
spond to a baseline, a multitaper spectrogram and a spectrogram estimated un-
der parametric assumptions. To begin detailing each spectrograms considered,
we first define an ordinary spectrogram S(t, f) with a general window that is
to be used for deducing SB , SMT and SAR. We do this by first considering a
discrete-time short-time Fourier transform (STFT) as defined by

Wh(t, f) =

tN−1∑
ti=0

wtih
∗(ti − t+M/2)e−i2πtif (2.7)

15

where w is the input signal (in our case the audio in its waveform) sampled at
discrete instances in time with sampling distance T such that ti − ti−1 = T .
f = 0, Fs

L , 2Fs

L , . . . and L is the number of frequencies considered. Fs = 1/T
is the sample frequency and h is the window function of length M centered at
t. It should be noted that in order to utilize the efficient algorithm that is the
fast Fourier transform (FFT) appropriately, L should be chosen so that L = 2I ,
where I is any integer (Sandsten, 2020). From the discrete-time short-time
Fourier transform we complete the definition of the ordinary spectrogram as

Sh(t, f) = |Wh(t, f)|2 (2.8)

Baseline

We defined SB to be the ordinary spectrogram Sh with h being a Hamming
window, a window function first proposed by Richard W. Hamming which is
the most popular window in the field of speech processing (Beigi, 2011). The
window was of a length corresponding to approximately 20ms. The reason
for considering STFT’s of 20ms was that the waveform generated by speech
is generally considered to be approximately stationary in such time frames.
Furthermore, we computed SB at a time resolution of approximately 10ms,
meaning that we had a 50% overlap of the windows. The discrete-time STFT
and the Hamming window was computed in Python using the package SciPy.

Multitaper

Next we considered instead SMT as an alternative estimate of the spectrogram
utilizing multitapering techniques. A multitaper spectrogram is computed by
taking an (possibly weighted) average over KMT ordinary spectrograms, where
each of the KMT ordinary spectrograms are computed using different window
functions hk (known as tapers in multitaper context),

SMT (t, f) =

K∑
k=1

λkShk
(t, f) (2.9)

Common choices for KMT lies in the range 2− 10 (Sandsten, 2020). For SMT ,
we chose to consider KMT = 7. We used Slepian functions as window functions.
Slepian functions are also known as discrete prolate spheroidal sequences (DPSS)
or Thomson multitapers (Sandsten, 2020). The windows hk, k = 1, . . . ,KMT

was retrieved again using the package SciPy in Python. We did not consider
weights other than λk = 1/KMT . Just as in the baseline case, we used windows
of length corresponding to approximately 20ms and computed the multitaper
spectrogram SMT over a time grid with resolution approximately 10ms. The use
of multitaper techniques could be motivated by the result found in (Kinnunen
et al., 2012) or (Alam et al., 2013).

16

Parametric

We also looked at a parametric estimate of the spectrogam, which we defined
as SAR(t, f). In the parametric set up, we were assuming that the signal (being
audio in its waveform) could be estimated over intervals of 20ms as an Auto-
regressive (AR) model of order 10. This parametric setup was motivated by
the fact that telephone communication is performed via linear predictive coding
and synthesizing where it is common that a linear code of 10 dimensions is
computed. We used the package Librosa (version 0.9.1, 2022) to estimate the
AR-coefficients. They were estimated over 20ms worth of audio but re-estimated
every 10ms so that we had a similar time resolution as we had with the baseline
and multitaper spectrograms. In essence, we had constructed a 10 dimensional
time series over a time grid with resolution 10ms where at every time instance we
had an estimated AR model. From any estimated AR model we could compute
a spectral density and by doing so, at every time point, we could generate the
spectrogram SAR. A spectral density R can be computed from an AR(KAR)
model with innovation variance σ2 as

R(f) =
σ2

|
∑KAR

k=0 ake−i2πfk |2
(2.10)

Finally, we define SAR(t, f) to be the spectral density R(f) computed from an
AR(KAR) model that describes a time series centered at time t.

By means of illustrating the different spectrograms that we had decided to
look into, we simulated a time series consisting of 500 time steps originating
from an AR(4) model, as defined by

xt = 0.8xt−1 − 0.7xt−2 + 0.6xt−3 − 0.5xt− + ϵt (2.11)

with Gaussian innovations
ϵt ∈ N(0, 1) (2.12)

and estimated the power spectral density (i.e the spectrogram at a fixed time
point). The reason for illustrating the estimated spectral densities over data
simulated from a true auto-regressive model is to also illustrate how well a
parametric estimate works if the parametric assumption is in fact true. We did
not expect audio generated by telephone conversations to take the shape of pure
auto-regressive models, although it was proposed that there would be a rather
strong resemblance. The result is depicted in Figure 2.3.

2.1.3 Audio bands

In addition to evaluating different features deduced from different spectrograms,
we looked into whether or not the full frequency range available should be uti-
lized or not. Most of the data we considered was generated by telephone con-
versations. In telephone communication sampling occurs at varying intensities
dependent on available device and protocol. Furthermore, not all frequencies are

17

Figure 2.3: Illustration of the differences between the approaches that we con-
sidered for estimating the spectrogram. Here, the true power spectral density
(spectrogram at fixed instance in time) is depicted along with estimates of dif-
ferent kinds. For the parametric estimate, the AR coefficients were estimated
via Yule-Walker equations in Python with statsmodels (version 0.14.0, 2022)

18

Table 2.1: Different voice bands at which telephone communication tends to
take place (Cox et al., 2009). We evaluated features extracted from the audio,
considering frequencies limited to the different bands detailed in the table. The
idea was that perhaps most information is retained in the lower frequencies
and as such it could be beneficial to consider only eg. narrowband range, even
though data points are possibly generated from wider bands. If performance loss
(in regards to identifying a pitch alteration) was negligible or even negative at
narrower bands, it would possibly be beneficial to consider only narrower bands
in the data set consisting of real data, which contained telephone conversations
generated at unknown voice bands. Performance loss in the widest bands would
indicate that either information outside of what is generated through telephone
communication is acting as distortion, or that the decrease in frequency resolu-
tion is detrimental.

Voice band range (Hz)

Narrowband 200− 3400
Wideband 50− 7000

Superwideband 50− 14000
Fullband 20− 20000

transmitted. For example, wideband (50− 7000 Hz) is recommended1 for Voice
over LTE (VoLTE), while it is demanded by 3GPP to use at least narrowband
(200 − 3400 Hz). One could consider four bands typically used in telephone
communication, all listed in Table 2.1. The idea with evaluating features ex-
tracted from different bands was to try and decide if it would be feasible to
consider the full range of frequencies, or only parts. For example, given that
it is somehow determined that the feature dimension cannot exceed V (due to
e.g. complexity or computational cost), using V bands-pass filter energies from
the range 200 − 3400 Hz would mean a higher resolution in the features than
by considering V bands-pass filter energies over 20− 20000 Hz. As audio in the
data set provided by the company was likely to be generated by communication
at varying band widths, it was proposed that it furthermore could be beneficial
to consider a narrower band for consistency among data points.

2.2 Neural Network

Recall that we looked into estimating p being the probability that an insurance
claim is fradulent conditioned on a recording of a telephone conversation. In
order to acquire such an estimate we had decided to utilize neural networks. It
was proposed that a neural network could learn to detect differences in the input
conditioned on the state of Y . We decided to primarily work with a LSTM type
of network, but to also implement a version a ResNet model for use on data

1AMR-WB is recommended, which is either in 50-6400Hz or in 50-7000Hz

19

provided by the company.

2.2.1 LSTM Model

Long Short-Term Memory (LSTM) networks are a branch of recurrent neural
networks (RNN). An ordinary RNN is rather simple in its idea, and we present
the idea in its simplest form with a single hidden unit. Input xt, t = 1, . . . , n,
is fed to a hidden unit ht which is also fed by ht−1. In turn, ht feeds yt and
ht+1. For x being an input vector of length n, we say that U, V,W are weights
that are scalar for (1, n) dimensional input, but d-dimensional vectors for (d, n)
dimensional input. Furthermore, y is an output of length n, meaning that for
every sequence x, a sequence y of the same length will be yielded as output.
We denote an activation function, such as for example the Sigmoid function as
ϕ and observe that the complete model can be defined as{

yt = ϕy(Wht)

ht = ϕh(Uxt + V ht−1)
(2.13)

The simple model with one hidden unit is depicted in Figure 2.4.

With a RNN, It is possible to stack layers of hidden units. When doing so,

instead of feeding h
(0)
t to h

(0)
t+1 and yt, one directs the feed to h

(0)
t+1 and h

(1)
t . To

stack multiple hidden units in one layer, proceed just as for an ordinary neural
network, i.e by feeding the input directly to all units of the same layer.

If one is interested in a single output from an input sequence (sequence to
vector), such as we were when estimating the risk of fraud based on a complete
time series, one allows the hidden unit to produce output only to itself and for
the final value of y, i.e for yn.

When training a RNN, it is common to use back propagation through time,
which essentially is an algorithm that unravel the RNN and then performs back
propagation the same way as is done for an ordinary plain artificial neural net-
work (ANN). When the input consists of a long sequence, i.e for large n, the
unraveling of a RNN leads to a very deep model, which in turns means that
the gradient is of risk for either ”vanishing” (being suppressed to values close
to 0), or to ”explode”. Development of the LSTM model stems primarily from
work on suppressing the issue with vanishing or exploding gradient. Hochreiter
and Schmidhuber (1997) described in a well-cited paper how a model involving
multiplicative gates could partly solve the issues with the gradient. The full
model of a LSTM network with memory cells, as Hochreiter and Schmidhuber
(1997) called them, is a rather complex model.

The models that we implemented of the LSTM type all had varying number
of layers of hidden LSTM units, each connected to the next, conceptually like-
wise to how a simple RNN has its hidden units connected. At the final LSTM

20

Figure 2.4: Illustration of a basic recurrent neural network with a single hidden
unit. For a given instance in time t, the hidden unit ht produces one output
that is fed to both yt and ht+1. The hidden unit ht takes both xt and ht−1 as
input.

layer, the output was fed to an ordinary ANN, which in turn produced the out-
put that we sought to evaluate. We implemented the model in Python using
the package Keras (version 2.7, 2022). Loss function was set to be binary cross
entropy. We used Adam as learning rate algorithm, as it is the most commonly
used (Amidi & Amidi, n.d).

2.2.2 ResNet model

A residual network (ResNet) is a type of neural network which incorporates
residual connections between layers in order to deal with the problem of vanish-
ing gradient. The residual connections can be seen as shortcuts between layers
of the network, such that output from one layer is passed on not only directly
to the next but also to a layer connected via a residual.

Residual networks gained attention when He et al. (2016) constructed such
a network with a depth of no less than 152 layers that won the ILSVRC classi-
fication task on the ImageNet test set in 2015. However, residual networks may
be used for tasks other than image classification. In fact, one co-author of the
original paper that detailed a LSTM network describes the residual network as
a feedforward version of a LSTM network (Schmidhuber, 2021), which has its
strength primarily on sequential data. Fawaz et al. (2019) demonstrated that
a residual network outperforms many other types of neural networks that can
be used for classifying time series. Their result shows that out of eight different
architectures tried out on both uni-variate and multi-variate time series (for a
total of 98 data sets), the residual type of network performs best on average.

We implemented the same architecture that Fawaz et al. (2019) used for their
ResNet, with the means of trying it on our data set. The model consisted of
three blocks, where each block along with the input had a residual connection to
adjacent blocks. Furthermore, each block consisted of three convolution layers
and batch normalization. The three convolution layers in the first block had 64
filters, while the layers in the second and third block had 128 filters. In each
block, the kernel size was 8, 5 and 3 for the three layers respectively. After the

21

final block there was a layer of global average pooling (GAP) and a single node
with Sigmoid as activation function.

22

Part I: Simulated data

3.1 Introduction

In this part, we looked at the evaluation of a LSTM model in conjunction with
various features. We wanted to evaluate the model on the basis of simulated
pitch alterations in a fashion that had been reasoned to be typical in conversa-
tions regarding insurance claims. As previously explained, such pitch alterations
were speculated to take the form of upward alterations at various intensities in
irregular time intervals. This was motivated by the proposal that when someone
is talking about a fraudulent claim, they are essentially being deceptive in in-
tervals. Focus lay on evaluation of the various features that had been proposed
in Section 2.1.1. With respect to the LSTM model per se, we wanted to verify
that it performed considerably better than a simple näıve model. Furthermore,
the features that were of interest could all be deduced from spectrograms. It
had been proposed that prior knowledge of the data, being that it consisted of
noisy telephone audio, could be a reason for considering either SMT or SAR as
defined in Section 2.1.2 and therefore we also evaluated features computed over
these.

3.2 Altering pitch

In order to simulate relevant data we had to perform pitch alterations in a
controlled fashion. There exists many different approaches for altering pitch
in an audio stream. Many of which are detailed by Royer (2019). In general,
common methods are by operations either in time domain, or in frequency
domain. One approach that operates in the time domain is to stretch the time
interval, and then re-sample so that the original length is preserved. Time
stretching could be performed by the use of a phase vocoder, originally described
by Flanagan and Golden (1966). By means of simplicity, we implemented an
alternative approach also described by Royer (2019), where one instead operates
in the frequency domain. The operation is rather simple: Scale the spectrum
with a factor determined by the number of semitones to shift so that the shifted

23

Figure 3.1: The spectrogram of a linear chirp with pitch altered upwards by six
semi-tones in the time interval 1.5 - 5 s. Note how the pitch is altered more at
higher frequencies. The method for altering pitch was to scale the spectrogram
according to Sshifted(t, f) = S(t, f/β), β = 26/12.

spectrum Rshifted is given by

Rshifted(f) = R(f/β), β = 2k/12

where k is the number of semitones to shift by. A pitch alteration using this
method is illustrated in Figure 3.1.

3.3 Data generation

Pitch alteration was to be performed on some audio that would lay as ground
for the simulated data set. For this purpose, 15 minutes of speech was recorded
by one person. The recording was done with an iPhone 13 Pro and the speech
consisted of reading from a well-known book. The sampling rate was 48 kHz
with 16 bits per sample. The audio stream was loaded in Python using the
package Librosa (version 0.9.1, 2022). Thereafter the audio stream was cut into
450 clips, two seconds each. Half of the clips, chosen at random, were altered
in pitch. For those clips altered, only part of the clip was altered in pitch.
The starting point (between 0 − 1 seconds in) was chosen at random for each
clip. So was the end point (minimum 0.25 seconds after start, maximum at
full length). The amount of shift that was performed was chosen at random for
each clip and it was set to be either one or two semitones up, always shifting up.

24

Table 3.1: Data sets used in the set up. Original data set constructed by ex-
tracting two second clips from 15 minutes of book reading. Half of the resulting
data points were at random time instances altered by a random amount in pitch.
Data set DA and DB are generated by processing the original data set. Feature
extraction and evaluation was performed only on processed data sets.

Data set Description

D0
Original data set constructed by random
pitch alterations. Sampling rate at 48kHz.

DA
Down sampling of original data. Target

sampling rate set to 8kHz.

DB
Data generated by recording of telephone conversation

where original data set was played back.

From the generated clips, two new data sets were formed. The first data set was
formed by having all clips down sampled from 48 kHz to 8 kHz. The second
data set was formed by replaying the pitch shifted audio (at 48 kHz) through
actual mobile telephones. Note, when replaying audio through telephones we
could not be certain at what audioband the audio was transmitted and recieved.
However, given that both the network operator and mobile phones used sup-
ported VoLTE it was assumed that the band was at least wideband, possibly
wider. With regards to the first data set, the reason for down sampling was two
folded. First, there are many different methods for shifting pitch, some which
preserves acoustic characteristics of the speaker better than other. By heavy
down sampling it was hoped that the impact from the choice of pitch shifting
method would be attenuated. Second, it seemed reasonable to mimic the sample
rate one commonly would find in telephone audio.

The complete data sets were separated into three sets each: Model (50%), Val-
idation (25%) and Test (25%). We denote the data sets as detailed in Table
3.1.

3.4 Evaluation

In order to obtain results that could be interpreted as the tendency of the acous-
tic features to catch the artificially altered pitch, we looked at the test data set
and counted how many correct classifications that were made using respective
feature as sole input. The main metric of interest was determined to be the rate
of correct classification, known in the context as accuracy. Furthermore, we
took note of the loss from the loss function as an additional metric of certainty.
Loss would give an insight into the ability of correctly estimating the probability
of pitch being altered.

The method for classifying the clips was the same for all features in order to

25

Figure 3.2: Architecture of neural network. Input is an audio stream of shape
(124, dX), followed by a layer of 24 LSTM memory cells and two dense layers
with 16 and 8 nodes respectively. A single dense with Sigmoid activation func-
tion as output.

minimize additional influence over the result apart from that yielded by the
features themselves. For classification, a LSTM network as described in Section
2.2.1 was designed. The network was kept rather simple in its architecture.
It accepted matrices of dimension (124, dX) as input, where the number of
columns dX was considered dimensions of the acoustic features and each row as
the features represented at different instances through time (124 in total for 2s
audio). First, a layer of 24 LSTM memory cells. Thereafter, two layers with 16
and 8 dense nodes respectively were added for increased complexity. Drop-out
was implemented in all layers in order to reduce the tendency for over-training.
Drop-out rate was set to 0.2. Early stopping was implemented such that train-
ing would not continue if more than 20 epochs consecutively had not yielded any
improvement in loss on validation set. The architecture is depicted in Figure
3.2.

3.5 Results

All in all, we evaluated a total of 58 combinations of features, data sets, spectral
estimates and frequency bands. The results for DA is presented in Table 3.2.
Results for DB is presented in Table 3.3.

We note that on data setDA, we obtained the best result by considering features

26

Table 3.2: Result of evaluation on data set denoted as DA. Presented is the
accuracy of which the LSTM model managed to correctly classify data points
as being either pitch shifted or not. Loss as defined by the binary cross entropy
is presented in parenthesis. Features denoted, F0: Filter band energies, F1:
Mel-frequency filter band energies, F2: Cepstral coefficients, F3: Mel-frequency
cepstral coefficients (MFCC). Note that all featuers are detailed in section 2.1.1.

Baseline (SB)

Feature Accuracy (loss)
F0 0.96(0.15)
F1 0.94(0.19)
F2 0.96(0.16)
F3 0.96(0.17)

Multitapering (SMT)

Feature Accuracy (loss)
F0 0.97(0.09)
F1 0.96(0.19)
F2 0.96(0.12)
F3 0.97(0.12)

computed on the multitaper spectrogram. This was prominent for all features
where either accuracy, loss, or both was improved from baseline while none of
the metrics were worsened. Furthermore, we saw that the best result was found
when considering filter bank energies (detailed in Section 2.1.1).

When considering data set DB , it was not clear which method for estimation
of spectrogram performed best. On average, the parametric approach had the
worst accuracy and loss out of the three. Considering the baseline and multita-
per approach over all four features at all bands, then for the 16 combinations,
we found the highest accuracy with baseline eight times and with multitaper
spectrogram eight times yielding a tie in such a sense. The accuracy was on
average best when considering the narrowest of the bands (narrowband), and
worst when considering the widest band (fullband). Furthermore, the variability
of the metrics was least for the narrowband.

3.6 Conclusions

First, we concluded that utilizing an LSTM for identifying pitch altered audio
is considerably better than leaving it to chance. A naive model, defined as a
coin flip (recall that half of the data was pitch altered, the other half not) would
by design yield an expected result of 50% correctly classified clips. Even after
passing the audio through cellular phones (as in DB), a LSTM network man-
aged to correctly classify more than 90% of the clips.

We concluded that it was beneficial to consider filter bank energies as acoustic
feature. This conclusion was made primarily on the basis of results found for
data set DB .

Results on DA suggested that it could be beneficial to utilize multitapering
techniques, as for the features tried they all showed an improvement in either

27

Table 3.3: Result of evaluation on data set denoted as DB . Presented is the
accuracy of which the LSTM model managed to correctly classify data points
as being either pitch shifted or not. Loss as defined by the binary cross entropy
is presented in parenthesis. Features denoted, F0: Filter band energies, F1:
Mel-frequency filter band energies, F2: Cepstral coefficients, F3: Mel-frequency
cepstral coefficients (MFCC). Note that all featuers are detailed in section 2.1.1.
Result marked as x means that no result within 20 epochs was found.

Baseline (SB)

Feature Narrowband Wideband Superwideband Fullband
F0 0.91(0.28) 0.94(0.24) 0.93(0.27) 0.83(0.40)
F1 0.93(0.27) 0.86(0.48) 0.90(0.41) 0.89(0.35)
F2 0.93(0.25) 0.90(0.27) 0.87(0.38) 0.86(0.44)
F3 0.90(0.25) 0.89(0.60) 0.86(0.43) 0.86(0.35)

Multitapering (SMT)

Feature Narrowband Wideband Superwideband Fullband
F0 0.91(0.24) 0.92(0.28) 0.94(0.21) 0.83(0.41)
F1 0.91(0.32) 0.90(0.27) 0.90(0.36) 0.90(0.37)
F2 0.94(0.19) 0.91(0.48) 0.81(0.55) 0.76(0.48)
F3 0.89(0.26) 0.84(0.49) 0.87(0.34) 0.81(0.40)

Parametric (SAR)

Feature Narrowband Wideband Superwideband Fullband
F0 0.79(0.61) 0.81(0.37) 0.81(0.46) 0.76(0.64)
F1 x 0.90(0.33) 0.89(0.38) 0.89(0.39)
F2 x 0.94(0.38) 0.81(0.42) 0.77(0.50)
F3 0.83(0.41) 0.90(0.45) 0.87(0.36) 0.80(0.71)

28

accuracy, loss, or both, while also not showing any worsening. We found this to
be interesting, as typically features are not computed over multitaper spectro-
gram but over spectrograms formed using Hamming windows.

Data set DB showed that with audio generated by telephone communication, it
should be viable, given the present setup with feature dimensions, to consider a
narrower band as opposed to anything wider (even though possibly available).

As for translation to the data set provided by the company, we concluded to
primarily look at filter bank energies at the narrowband frequencies 200− 3400.
The reason for going forward with features generated at such a narrow band
was primarily that we saw a relatively large worsening in accuracy of pitch shift
identification considering bands too wide. This in combination with the fact
that we could not know over which audio band a given telephone conversation
had taken place, making the decision a bit conservative as well. We also con-
cluded that the filter banks were to be computed on spectral estimates obtained
utilizing multitapering techniques. After viewing the results, we could not see
any reason for considering a parametric spectral estimate.

29

Part II: Data pre-processing

4.1 Introduction

This part regards pre-processing of the data set that was provided by the com-
pany. In particular, we wanted to extract only parts of the audio streams, ideally
being generated by speech from the customer as opposed to silence or speech
from the company representative. Recall that we had defined the three parts
constituting any data point X as Xcustomer, Xagent and Xsilence. In most cases,
an audio stream X in the data set was generated by a telephone conversation.
As such, there was a lot of different environmental background noises, as well
as varying audio quality, meaning that we had to use adaptive techniques for
preparing Xcustomer, preferably with few hyper-parameters to be tuned. The
act of identifying parts in audio generated by speech is commonly referred to
as voice activity detection. Identifying who spoke when can be referred to as
speaker diarization.

4.2 Voice activity detection (VAD)

Voice activity detection was implemented as means of removing silent parts from
the audio. Beigi (2011) describes that an efficient method for removing silence
is to identify when the signal energy drops below a certain threshold. Such a
threshold can be determined in various ways, Beigi (2011) proposes for example
to set the threshold based on some initial time (e.g. first 0.2 seconds) where
no speech would be assumed present. However, as the data consisted mostly of
telephone conversations, we noted that setting such a threshold to be accurate
for the entire data set would be a challenge. Some conversations had for exam-
ple initial loud tones generated by telephone noise. As such, it was proposed
to construct an adaptive threshold based on a long-term moving average. Voice
activity detection was ultimately performed by identifying when a short-term
moving average of the energy in the signal dropped below a threshold deter-
mined by a weighted long-term moving average.

For energy level E calculated as the sum of powers over all frequencies and

30

re-calculated at every 1/T seconds, define time intervals as,

ts = time interval (length) of short-term moving average

tl = time interval (length) of long-term moving average

and moving averages as,

short term: Ms(t) =

⌊tsT⌋∑
s=0

E(t− s)

long term: Ml(t) = α

⌊tlT⌋∑
s=0

E(t− s)

Then we can further define an indicator for voice activity as

V (t) = 1{Ms(t) < Ml(t)} (4.1)

To remove silent parts from the audio stream we then discarded parts of the
audio stream where V (t) = 0. The idea is illustrated in Figure 4.1. Before cal-
culating the short term and long term moving averages however, weighting of
the frequency spectrum was performed. The reason for weighting the spectrum
was that without doing so the result was dis-satisfactory, which was speculated
to be due to noise at frequencies not typical for human perception. It was spec-
ulated that the noise interfered with the energy level generated by the actual
voice, and as such it was proposed that it would be beneficial to boost the am-
plitude at the frequencies typical for human perception while also attenuating
the frequencies more typical for noise. For this, a binary high-pass filter was
introduced with cut-off at 80 Hz. In addition, the A-weighting function, being
a spectral weighting function commonly used for environmental noise measure-
ments, was applied. This led to more satisfactory result. Illustration of the
moving averages and indicator function can be seen in Figure 4.2 which is from
an actual telephone conversation. In the end, the hyper-parameters was set by
trial and error to be ts = 0.1, tl = 60, α = 0.1.

4.3 Speaker diarization

Speaker diarization was the act of separating the audio made up of telephone
conversations into parts, where each part belonged to different speakers. As
we made the assumption that all conversations consisted of speech from two
distinct persons, we could adopt a technique suggested by Beigi (2011). First,
we would utilize an algorithm for detecting turn points, which would be the
time points where there had possibly occurred a change in speaker. This would
result in many small disjoint segments. Second, as the number of turn points

31

y

Figure 4.1: The method for removing silent parts of audio visualized. Segments
consisting of silence is first identified, thereafter removed from the audio stream,
generating a truncated version where only speech is present.

32

Figure 4.2: Illustration of voice activity detection during 20 seconds of an actual
telephone conversation. From top to bottom: weighted long term moving aver-
age of energy (60 s), short term moving average of energy (1/10 s) and resulting
indicator function V as defined in (4.1). Note that the indicator match up with
activity in short term energy.

33

preferably would be an overestimation (Bonastre et al., 2000), where each rep-
resent a candidate1 time point for a change of speaker, we would try to merge
smaller segments into larger2, labelling each the speech of either speaker A or
B. The technique is illustrated in Figure 4.3.

In order to find turn points, we implemented a version of a method suggested by
Delacourt and Wellekens (2000). Given an audio stream, we calculated a spec-
trogram with frames of 20ms, overlapping by 50% utilizing a Hamming window.
From the spectrogram we extracted MFCC as detailed in section 2.1.1. From
here on, the procedure of finding turn points was separated into two phases.
First we tried to find many turn points, over-segmenting the audio by quite a
lot. Thereafter we would try to reduce the number of turn points by merging
adjacent segments. The two phases and the merging of segments are detailed
in subsequent sections.

4.3.1 First phase: Locating turn point candidates

We formed pairs of adjacent windows from the feature vectors, each stretching
l seconds. With the feature vector time series denoted {X(t)}0≤t≤T , define the
pair of l-seconds large windows as

W (t) = (W
(t)
0 ,W

(t)
1) :

{
W

(t)
0 = {X(u)}t−l≤u<t

W
(t)
1 = {X(u)}t≤u<t+l

The pair W (t) is illustrated in Figure 4.4. From W (t) we could set up hypoth-
esises, form a test statistic C(W (t)) and yield a comparable measure with any
W (s), s ̸= t. The null-hypothesis set up for any W was that the two windows
W0 and W1 was generated by the same multi-dimensional Gaussian distribution,
i.e

H0 : W0 ∈ Nd(µ,Σ), W1 ∈ Nd(µ,Σ)

H1 : W0 ∈ Nd(µ0,Σ0), W1 ∈ Nd(µ1,Σ1)

and the test statistic was the log generalized likelihood ratio 3,

C(W) = −2ln

(
supµ,Σ L(W0 ∪W1, µ; Σ)

supµ0,Σ0
L(W0, µ0; Σ0) supµ1,Σ1

L(W1, µ1; Σ1)

)
By constructing a grid of evenly spaced time points

K = tk :

k = 0, 1, . . . , n

t0 = l

tn = T − l

1Rather than a true time point for a change of speaker
2Instead of simply assuming a change of speaker at each turn point
3As recommended for spontaneous speech by Delacourt and Wellekens (2000)

34

y

Figure 4.3: The method for separating speakers illustrated. Note that silent
parts are removed. First, turn point candidates are identified (red vertical
lines). Thereafter, the segments generated in-between turn point candidates
are clustered using agglomerate hierarchical clustering until there remains two
clusters, representing speaker A and B.

35

we could calculate the realization CK for the entire grid, where naturally

CK := {C(W (t))}t∈K

Now, if a change of speaker actually occurred at time t, then one can expect
that in general, C(W (t)) would be larger than C(W (s)) for any s not being
an instance in time where a change of speaker occurred. As neighbouring time
points around a change of speaker arguably does not constitute a change of
speaker, local maximum in CK would indicate a possible turn point. As such,
the idea as described by Delacourt and Wellekens (2000) was that time points
where local maximum were found were in the first phase considered a turn point
as long as the height relative to adjacent local minimums where larger than some
fraction η of SD(Ck). In addition, for local maximums closer to each other than
some threshold, the (relatively) smallest one would be discarded. In essence, the
idea for a time point tk being considered a turn point is illustrated in Figure 4.5.

In practice we noted that the generated plot did not really resemble Figure
4.5 as there was a lot more noise, taking the shape of many small peaks. This
posed a problem, as large peaks would be considered smaller than expected due
to a local minima (caused by CK being noisy) located close to the peak maxima.
To counter the issue with CK being too noisy, we looked at the prominence of
the peaks. The prominence of all peaks was calculated. Peaks with prominence
less than the fraction η of SD(Ck) were discarded. Thereafter, the peaks were
sorted from smallest to largest (based on prominence) and in an iterative man-
ner they were discarded if they were within the threshold of being to close to
another (larger) peak.

When preparing the data, we used parameters lining up with what Delacourt
and Wellekens (2000) found suitable for telephone conversations. We set win-
dow length l to 2 seconds. η was set to be 1/2. The resolution of the grid,
i.e [tk − tk−1] was set to 1/10 seconds. The threshold for two local maximums
being considered too close in time was set to one second.

4.3.2 Second phase: Reducing turn point candidates

From the first phase, there had typically been extracted numerous turn point
candidates. Before clustering segments, we tried to merge adjacent segments
by identifying turn points that could be dropped. One option for achieving this
was to: Given two adjacent segments separated by one turn point candidate,
set up the hypothesises

H0 : The two segments are generated from the same

multivariate Gaussian distribution.

H1 : The two segments are generated from different

multivariate Gaussian distributions.

36

Figure 4.4: Illustration of a pair W (t) of windows W0 and W1. Time t separates
the two windows that contains all the points {X(s) : s ∈ W0} and {X(s) :
s ∈ W1} respectively.

Figure 4.5: Illustration of condition for considering a time point to be a possible
location for a change of speaker (turn point candidate). Here, time tb and tc are
regarded as turn point candidates. ta is discarded as the height of the peak is
less than a pre-determined fraction η of SD(C(WK)). td is discarded not due to
the size of the peak being to small in itself, but due to tc and td being to close:
so we discard the smallest of the peaks.

37

and test with some pre-determined significance level. If the test statistic would
fall in the critical region: keep the turn point candidate. If not: discard the
turn point candidate.

The use of BIC as metric for clustering speaker segments was first proposed
by Chen and Gopalakrishnan (1998). Now, instead of identifying a suitable test
statistic and significance level, we adopted BIC as metric. BIC as metric is
motivated by Delacourt and Wellekens (2000) who describes that for the second
phase, the segments tend to be longer than the window size used in the first
phase and therefore BIC as metric is appropriate. Importantly, the aim was
still to identify if a turn point candidate could be discarded or not based on the
hypothesises set up, and the means was still to compare two adjacent segments
with their union. For two segments Z0 and Z1 with union denoted Z, the BIC
distance is defined as

∆BIC = −R+ λP,

where R is given as

R =
NZ

2
log | ΣZ | −NZ0

2
log | ΣZ0

| −NZ1

2
log | ΣZ1

|,

and P given by

P = log(NZ)
1

2

(
p+

1

2
p(p+ 1)

)
for p being the dimensions in one feature vector. Note the hyper-parameter λ
which is set in conjunction with a threshold for ∆BIC in order to conclude when
two segments should be represented as one combined segment. Through trial
and error, we set λ to equal 1.5 and a threshold for ∆BIC to 0. An example of
CK generated from an audio stream with corresponding turn points is depicted
Figure 4.6 where both turn points from the first phase is displayed as well as
which could be removed as a result of the second phase.

4.3.3 Merging segments

The final step in separating the speakers was to merge segments into clusters,
one representing each speaker. One approach often employed for this means is
Agglomerative Hierachial Clustering based on some similarity measure (Park et
al., 2021). We decided to implement this kind of ”bottom-up” clustering (further
described in subsequent paragraph). The same acoustic feature (MFCC with 13
coefficients) that was used when identifying turn points was used now. Further-
more, we used the same measure of similarity (∆BIC) and hyper-parameters
for clustering as we did when reducing turn points candidates (λ = 1.5 and
threshold equal 0). The stopping criterion was naturally set to be when we had
reached two clusters.

38

Figure 4.6: Turn points from both phases displayed along with C(w(t)) from
a real audio stream. All vertical lines indicate a turn point candidate found in
the first phase. Only turn points marked as green vertical lines are kept after
the second phase, whereas the segments separated by red lines are considered
too alike.

Agglomerative hierarchical clustering

Agglomerative hierichical clustering is a clustering technique where one works
from the bottom and up. Starting with a set of data elements, one merge the
two elements that are closest as defined by some measure of distance into a
new element. Thereafter one repeats the procedure. This is done until there
exists only as many element as is the target number of clusters. The method is
visualized with the dendrogram depicted in Figure 4.7.

4.4 Speaker identification

After having merged segments into two clusters as described in the previous sec-
tion, we had arrived at the possibility to split up the audio file into two distinct
tracks (recall Figure 4.3). The issue from here on was to identify the person of
interest, i.e to identify a track representing Xcustomer.

From additional data provided we knew that there were 14 individual com-
pany representatives responsible for all telephone conversations in the data set.
Furthermore, each company representative had been assigned a unique identi-
fier which was matched against each data points. As such, we could group data
points by the company representatives. This was key to identify which track
generated from X that was going to represent Xcustomer. For each such group
consisting of a number of audio streams

X0, . . . , Xj , . . . , XG

39

Figure 4.7: Agglomerative hierarchical clustering visualized. One merge data
elements until only the number of desired clusters remains. In this figure, if one
seek to find for example three clusters, one would stop after merger depicted in
blue, yielding clusters: {A, B}, {C}, and {D, E}.

40

one could label the two tracks as Aj and Bj , where one ideally should represent
Xcustomer

j and the other Xagent
j . The problem was to identify if Aj or Bj should

represent Xcustomer
j and therefore be kept (while the rest would be discarded).

By re-using the acoustic features (MFCC with 13 coefficients) that was used
for identifying turn points, we could form a sort of fingerprint for each track
Aj and Bj as being the estimated expected values and covariance matrix of
the acoustic features. Recall that we had assumed a multi-variate normal dis-
tribution for the acoustic features. The hope was that for two audio streams
Xk and Xl, we could match the two tracks most similar (not both being from
one stream), and assume that those two tracks would be generated by Xagent

j .
This would work essentially since for two audio streams we had four tracks but
only three distinct speakers. By iterating through each group of company rep-
resentatives, we would for each audio stream Xj in a group let the other audio
streams in the same group cast a vote on either Aj or Bj being represented by
Xagent

j . The track with the highest number of votes would be discarded as it
would be assumed to be consisting of audio generated not by the customer but
by the company representative. To implement this we needed to have a measure
of similarity between fingerprints. A measure that has been used for example in
the context of image segmentation but under similar assumption on the statis-
tic is the Bhattacharyya measure of similarity (Coleman & Andrews, 1979).
The Bhattacharyya measure can be calculated for two multi-variate Gaussian
distributions p and q as

D(p, q) =
1

4
ln

(
1

4

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

))
+

1

4

(
(µp − µq)

2

σ2
p + σ2

q

)

4.5 Results

The method for extracting Xcustomer from X could not be evaluated thoroughly
as it would mean a lot of manual work in labeling audio segments. However,
by drawing a sample X̂customer

1 , . . . , X̂customer
n , and manually determining for

each audio stream if it is clear that the majority of the speech is uttered by
the customer and not the company representative, we could at least provide
a measure of the success in speaker identification conditional that the speaker
diarization was satisfactory. This measure would however then be of interest
not only for evaluating the speaker identification, but considering that speaker
identification would fail if speaker diarization had failed, this measure would
contribute in the understanding of the level of success for the complete data
preparation.

41

Speaker identification

Denote S1, . . . , Sn to be such that for any 1 ≤ k ≤ n,

Sk =

{
1, if X̂customer

k is identified correctly4

0, otherwise

then, assuming that Si and Sj are independent for i ̸= j and that

E(Si) = E(Sj) = p

we can construct a confidence interval for p, being the probability of Xcustomer

”successfully” being extracted from X with the method in place. We consider
the sum

Bn =

n∑
k=1

Sk

and note that if we consider Sk, k = 1, . . . , n as i.i.d (disregarding any possible
systematical error), we get

Bn ∈ Bin(p, n)

which allows for an exact confidence interval for p as

I =
(
inf{p : P (Bn ≤ x) >

α

2
}, sup{p : P (Bn ≥ x) >

α

2
}
)

with x being the realization of Bn, i.e the number of successes. The confidence
interval I is also known as a Clopper-Pearson interval, which was computed
using the equivalent expression involving the quantiles of a Beta distribution
(Thulin, 2013).

I =
(
B
(α
2
, x, n− x+ 1

)
, B

(
1− α

2
, x+ 1, n− x

))
The resulting 95% confidence interval (α = 0.05) after drawing a random sample
of size n = 20 was computed as

I = (0.68, 0.99)

where x had been retrieved as x = 18.

4subjectively, based on manually determining if a clear majority of the speech is uttered
by the customer.

42

Part III: Real data

5.1 Introduction

After having first evaluated features and the concept of utilizing a LSTM model
on simulated data, we had the set up in place for modelling data provided by the
insurance company. We recall that the conclusions that had been drawn from
the simulated data was that we should seek to evaluate filter bank energies as
input, and to compute such energies on the basis of a multitaper spectrogram
stretching a narrow frequency band of 200-3400 Hz. We modelled the real data
in two attempts, first utilizing a LSTM model and second by the implementation
of a ResNet model.

5.2 Data description

We had access to 1324 recorded conversations between customers and company
representatives. Most of the conversations were via telephones. The majority
of the audio files that was generated had been compressed into mp3 files, thus
most commonly being at a sample rate of 44.1 kHz. We utilized Python and the
package Librosa (version 0.9.1, 2022) to load the audio files into their respective
waveforms. Audio files which was not sampled at 44.1 kHz was still loaded into
a waveform at 44.1 kHz. This was done by utilizing a functionality in Librosa
for down and up sampling.

5.3 Models and data handling

As described in Section 2.2.1, LSTM networks are a branch of recurrent neural
networks that does not suffer from vanishing gradient in the same extent as
predecessors. Likewise, for data sets consisting of long time series (2000+ steps)
tried out by Fawas et al (2019), the ResNet model performed best on average
out of the models tried (Fawas et al., 2019), indicating that the model would not
suffer from vanishing gradient given rather lengthy input sequences. However,
it was still to our understanding that it would not be viable to consider either

43

network for time series of more than a few thousand time steps. As some of
the data points X in the data set yielded features just short of half a million
time steps, we concluded that we had to cut up data points in order to be able
to successfully train the networks. We detail the method for dealing with the
lengthy time series in subsequent sections.

5.3.1 First attempt: LSTM

We implemented a LSTMmodel as described in Section 2.2.1. The least complex
model we tried consisted of a layer of 24 LSTM memory cells, followed by two
hidden dense layers with 32 and 16 nodes respectively. From this model, we
increased the complexity by first adding nodes to existing layers, subsequently
adding on new layers. We kept doing this until we found a model capable of
learning from the training data. We set a limit to the number of epochs at 2000,
if no improvement above baseline determined by random prediction had been
made before the end of the last epoch, we considered the model design incapable.
We tried three different input lengths: 450, 900 and 1800, corresponding to
approximately 10, 20 and 40 seconds worth of audio respectively. All data was
kept, meaning that long data points was cut into many shorter data points.

5.3.2 Second attempt: ResNet

We implemented the ResNet model detailed in Section 2.2.2. On the grounds
of data points possibly being too long with regards to number of time steps, we
decided on two approaches. First, we tried to cut data points into new shorter
data points of length: 450, 900, 1800 and 5400, corresponding to approximately
10, 20, 40 and 120 seconds worth of audio respectively. Second, we tried to
segment each data point into segments of 13500 time steps (corresponding to
approximately five minutes worth of audio). From each segment, a new data
point was constructed by merging time steps from each segment in chronological
order such that the size of the new data point was 1800. For example, with a
data point Z consisting of 30000 time steps, we created two segments S1 and
S2, where S1 consisted of the first 13500 time steps from Z and S2 the following
13500 time steps. To construct new data points of length 1800, we had to pick
900 time steps from each segments. Therefore, each segment was divided into
13500/900 = 15 sub-segments:

S
(1)
1 , S

(2)
1 , . . . , S

(15)
1

with corresponding notation for S2. New data points Zi for i = 1, . . . , 15 was

then formed by merging S
(i)
1 with S

(i)
2 . As such, the resulting length for Zi

would be 1800 time steps. Note, the last 3000 time steps in Z was discarded
(13500+13500 = 27000). Just like with the LSTM model, we set the maximum
number of epochs to 2000.

44

5.4 Results

We failed to find any generalization onto the validation data. In both attempts,
we observed both under-fitting and over-fitting, meaning that a model either
did not fit the training data or that a model fit the noise in the training data
as opposed to the general pattern sought to be found. We aimed to see an
improvement in the loss on the validation set before over-fitting occured, but
did not manage to do so.

5.4.1 First attempt: LSTM

We evaluated models for time series that were of varying length (450, 900 and
1800 time steps). The least complex model that we found which could learn
from data was a model with nine hidden layers, three of which were LSTM layers
with remaining five being ordinary dense. The model is detailed in Figure 5.1.
However, it was only for data being of 450 time steps that we saw any learning
taking place. Furthermore, it was not until after around 1000 epochs that the
model started to learn. We also saw that loss in the validation set started to
worsen at the same time, meaning that the model learnt to identify noise in the
training set (over-training) as opposed to any general patterns. See figure 5.2
which shows how loss in the validation set starts to increase at the same time as
loss in the training set starts to decrease. In fact, we could not find any model
utilizing LSTM memory cells that managed to generalize any training onto the
validation set (within 2000 epochs).

5.4.2 Second attempt: ResNet

Contrary to the LSTM model where we had a hard time finding a model capable
enough to learn from the data, we saw that the ResNet model managed to
fit the training set within the first few epochs. However, we did not see any
generalization onto the validation set. This was the case in both approaches
considered for handling the number of time steps in the data. We experimented
with label smoothing (factor 0.1) and with increasing the kernel size, as well
as halving the number of filters. This led to the model having to go through
many more epochs before learning. Nevertheless, the model eventually did fit
the training set, but still no generalization could be seen onto the validation set.

5.5 Discussion and future research

We did not find any type of model, neither as a version of LSTM nor ResNet
able to generalize any key structures from training data over to validation data.
This was of course something that we had sought to achieve.

First and foremost, there are many ways to deal with lengthy time series data
points for the different type of models and we considered only rather simple

45

Figure 5.1: Design of the LSTM type of network that managed to learn from
data, although no generalization onto validation data occurred. Input was the
feature that had been extracted and was varying in length but remained 30
dimensions wide. Three layers of LSTM memory cells followed, where the first
two layers operated as sequence to sequence with the output fed into the next
layer. The final layer of LSTM memory cells had a single output value for each
cell (64 in total), meaning that the fully connected network that was attached
was fed by an input of 64 dimensions. The input to the fully connected network
of five hidden dense layers all with ReLU activation function yielded an output
mapped by a Sigmoid function in the range 0-1. The final output was to be
interpreted as the probability of fraud.

46

Figure 5.2: Loss from training a LSTM network on data points that are cut
down in length to 450 time steps each. It is clear that overtraining occurs (at
around 1000 epochs) before any generalization has taken place.

47

approaches. Even though LSTM can handle varying length input, we decided
to use input of fixed length for the reason of time efficiency. We trained the
model with mini-batches, typically of size 64, and as such each input to every
individual mini-batch had to be of the same length. In order to fully take ad-
vantage of the way that LSTM can train on data with varying length we would
have to drop the concept of mini-batches, increasing computational time. The
ResNet on the other hand, being a convolutional type of network with residual
connections, mandates input of fixed length. This means that all input to a
ResNet model will have to be of the same length regardless of initial length. By
cutting up data into segments that are reasonable in size, i.e somewhere in the
range of a few hundred time steps up to possibly a few thousand, we loose long
term dynamics from the conversations. We tried to handle this by applying an
adaptive type of approach for lengthy inputs, however we believe that possibly
important full-conversation type of dynamics is lost regardless. One possibility
that we considered to evaluate but found to be outside the scope of this project
was to implement a compression mechanism. Especially, we considered that it
might be interesting to look at the use of an auto-encoder in order to project
sequences consisting of N time steps into compressed sequences of M time steps,
M < N .

Ignoring the issues with lengthy inputs, we recall that we made the assump-
tion that whatever is changing when someone is discussing an invalid claim is
(amongst others) the pitch, which we considered due to its proposed link to
properties of deceptive voice. This assumption could perhaps be far-fetched, or
even wrong. However, the impact of the assumption was likely not very large,
as both the features and models that we considered were rather standard within
the fields of speaker recognition and time series modelling anyway.

48

Bibliography

Beigi, H. (2011). Fundamentals of speaker recognition. Springer, Boston, MA.

Royer, T. (2019). Pitch-shifting algorithm design and applications in music
(Dissertation).

Flanagan, J. L., Golden R. M. (1966). Phase vocoder. The Bell System Tech-
nical Journal, 45 (9), 1493-1509. DOI:10.1002/j.1538-7305.1966.tb01706.x.

Franklin Nissy, M. F., Renisha, G. (2020). Telephone Voice Speaker Recogni-
tion Using Mel Frequency Cepstral Coefficients With Cascaded Feed Forward
Neural Network Iconic Research And Engineering Journals, 3 (8), 164-170

Bonastre, J. -F., Delacourt, P., Fredouille, C., Merlin, T. and Wellekens,
C. (2000). A speaker tracking system based on speaker turn detection for
NIST evaluation. IEEE International Conference on Acoustics, Speech, and
Signal Processing. Proceedings (Cat. No.00CH37100), 2, II1177-II1180. DOI:
10.1109/ICASSP.2000.859175.

Delacourt, P., Wellekens, C. J. (2000). DISTBIC: a speaker-based segmentation
for audio data indexing. Speech Commun. 32, 111–126. DOI:10.1016/S0167-
6393(00)00027-3

Shaobing Chen, S., Gopalakrishnan, P. S. (1998). Clustering via the
Bayesian information criterion with applications in speech recognition. Pro-
ceedings of the 1998 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP ’98 (Cat. No.98CH36181), 2, 645-648.
DOI:10.1109/ICASSP.1998.675347.

Park, T. J., Kanda, N., Dimitriadis, D., Han, K. J., Watanabe, S., Narayanan,
S. (2021). A Review of Speaker Diarization: Recent Advances with Deep Learn-
ing. DOI:10.48550/arXiv.2101.09624

Coleman, G. B., Andrews, H. C. (1979). Image Segmentation by Clustering.
Proceedings of the IEEE, 67 (5), 773-785. DOI:10.1109/PROC.1979.11327

Villar, G., Arciuli, J., Paterson, H. (2013). Vocal pitch production during
lying: Beliefs about deception matter. Psychiatry, Psychology and Law, 20 (1),
123–132. DOI:10.1080/13218719.2011.633320

49

Levitan, S., Maredia, A., Hirschberg, J. (2018). Acoustic-Prosodic Indicators of
Deception and Trust in Interview Dialogues. DOI:10.21437/Interspeech.2018-
2443.

Cox, R., Campos, S., Lamblin, C., Sherif, M. (2009). ITU-T
coders for wideband, superwideband, and fullband speech communica-
tion [Series Editorial]. Communications Magazine, IEEE, 47, 106-109.
DOI:10.1109/MCOM.2009.5273816.

Charbonneau, K., Colin, N., Gaspar, R., Ule, H. (2012). A-weighting the
equal loudness contours. The Journal of the Acoustical Society of America
131 (4):3502. DOI:10.1121/1.4709236

McMinn, T. (2013). ”A-weighting”: Is it the metric you think it is?. Annual
Conference of the Australian Acoustical Society 2013, Acoustics 2013: Science,
Technology and Amenity, 165-168.

Amidi, A., Amidi, S. (n.d). Deep Learning Tips and Tricks cheatsheet.
https://stanford.edu/ shervine/teaching/cs-230/cheatsheet-deep-learning-
tips-and-tricks

Thulin, M. (2013). The cost of using exact confidence intervals for a bino-
mial proportion, Electronic Journal of Statistics 8, 817-840. DOI:10.1214/14-
EJS909

Fawaz, I. H., Forestier, G., Weber, J., Idoumghar, L., Muller, P-A. (2019).
Deep learning for time series classification: a review. Data Mining and Knowl-
edge Discovery 33, 917–963. DOI:10.1007/s10618-019-00619-1

McFee, B., Metsai, A., McVicar, M., Balke, S., Thomé, C., Raffel, C., Zalkow,
F., Malek, A., Kyungyun Lee, D., Nieto, O., Ellis, D., Mason, J., Battenberg,
E., Seyfarth, S., Yamamoto, R., viktorandreevichmorozov, Choi, K., Moore, J.,
. . . Thassilo. (2022). librosa/librosa: 0.9.1 (0.9.1). Zenodo. [computer software].
DOI:10.5281/zenodo.6097378

Sandsten, M. (2020). Time-Frequency Analysis of Time-Varying Signals and
Non-Stationary Processes. An Introduction.

Vrij, A., Semin, G. R. (1996). Lie experts’ beliefs about nonverbal
indicators of deception. Journal of Nonverbal Behavior, 20 (1), 65-80.
DOI:10.1007/BF02248715

Taylor, R., Hick, R. F. (2007). Believed cues to deception: Judgments in self-
generated trivial and serious situations. Legal & Criminological Psychology,
12 (2), 321-331. DOI: 10.1348/135532506X116101

Zhang Z., McGettigan C., Belyk M. (2022). Speech timing cues reveal de-
ceptive speech in social deduction board games. PLoS ONE 17 (2):e0263852.
DOI:10.1371/journal

50

National Research Council (2003). The Polygraph and Lie Detection. Wash-
ington, DC: The National Academies Press. DOI:10.17226/10420

Beranek, L. L. (1949). Acoustic measurements. New York: McGraw-Hill

O’Shaughnessy, D. (1987). Speech Communication: Human and Machine.
Addison-Wesley Publishing Company, pp. 150

Cassidy, S., Harrington, J. (1999). Techniques in speech acoustics. Springer,
pp. 18

Lindsay, P. H., Norman, D. A. (1977). Human information processing: An
introduction to psychology (2nd ed.). New York: Academic Press.

Kinnunen, T., Saeidi, R., Sedlak, F., Lee, K. A., Sandberg, J., Hansson-
Sandsten, M., Li, H. (2012). Low-Variance Multitaper MFCC Features: A Case
Study in Robust Speaker Verification. IEEE Transactions on Audio, Speech,
and Language Processing, 20 (7), 1990-2001. DOI:10.1109/TASL.2012.2191960

Alam, J., Kinnunen, T., Kenny, P., Ouellet, P., O’Shaughnessy, D. (2013).
Multitaper MFCC and PLP features for speaker verification using i-vectors.
Speech Communication, 55 (2), 237-251. DOI:10.1016/j.specom.2012.08.007

Snorovikhina, V., Zaytsev, A. (2020). Unsupervised anomaly detection for dis-
crete sequence healthcare data. AIST

Chauhan, S., Vig, L. (2015). Anomaly detection in ECG time sig-
nals via deep long short-term memory networks. IEEE International
Conference on Data Science and Advanced Analytics (DSAA), 1–7.
DOI:10.1109/DSAA.2015.7344872

Bontemps, L., Cao, V. L., McDermott, J., Le-Khac, N-A. (2017). Collective
Anomaly Detection based on Long Short Term Memory Recurrent Neural Net-
work. arXiv. DOI:10.48550/ARXIV.1703.09752

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image
Recognition. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770-778. DOI:10.48550/ARXIV.1512.03385

Schmidhuber. (2021). The most cited neural networks all build on work done
in my labs. https://people.idsia.ch/ juergen/most-cited-neural-nets.html

Sporer, S.L., Schwandt, B. (2006). Paraverbal indicators of deception: a meta-
analytic synthesis. Appl. Cognit. Psychol., 20, 421-446. DOI:10.1002/acp.1190

Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural Com-
put. Nov 15;9 (8). 1735-80. DOI:10.1162/neco.1997.9.8.1735

Childers, D. G., Skinner, D. P., Kemerait, R. C. (1977). The cepstrum: A
guide to processing. IEEE 65 (10). 1428-1443. DOI:10.1109/PROC.1977.10747

51

Bogert, B.P., Healy, M.J., Tukey, J.W. (1963). The quefrency analysis of time
series for echoes : cepstrum, pseudo-autocovariance, cross-cepstrum and saphe
cracking.

52

