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Abstract

Many people listen to podcasts on a weekly basis, and they have grown much in
popularity in recent years. However, compared to traditional broadcast medi-
ums such as television and radio, there are very few tools available for analyzing
podcasts. In this Master’s thesis, I employed different machine learning mod-
els to classify the topics covered in podcast episodes, which would facilitate the
analysis. The dataset I used consisted of texts collected from Swedish online fo-
rums and spanned 65 different topics. After training and evaluating the models
on the forum dataset, the best one reached an F1 score of 0.72, which consisted
of a pre-trained Swedish BERT model and a logistic regression model head. This
model outperformed the TF-IDF baseline, which obtained an F1 score of 0.66.
The final evaluation was then done on an excerpt of the podcast transcriptions,
where the transformer model obtained an accuracy of at least 0.46, outperform-
ing the TF-IDF baseline by 75%.

Keywords: Topic classification, transformers, podcasts, machine learning, natural lan-
guage processing
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Chapter 1

Background and motivation

In the recent years, the consumption of podcasts has increased substantially across the world.
Podcasts are a large source of entertainment and many people listen to multiple podcast
series every week. However, compared to older broadcast mediums, such as television and
radio, content creators have access to far less analysis tools to help them know what they are
doing right, what they are doing wrong, but also to know what kind of companies they could
approach for paid promotion.

GetReachAudio is a company which collects data on consumer behavior for different
kinds of streamed media, such as podcasts. They then use this data to help the creators and
producers better understand what they should do to reach out to a wider audience. One
powerful tool in this would be to analyze the episodes and classify which topics that are cov-
ered as well as mapping when they are covered in the episodes. Combining this analysis with
consumer data from the distributor, one could see if there are any topics that result in few
or many listeners. This information could then be used to create content that attracts more
listeners and identify what kind of companies could be interested in promoting themselves
on the podcast.

At the moment of writing this thesis, to the best of my knowledge, there is no such
algorithm available for creators, and even though it is possible to do the topic classification
manually, it is not a feasible task. Instead, machine learning could be used to train a model
to recognize which topics are covered.

In this Master’s thesis, I used natural language processing and machine learning to predict
when a topic is covered in individual podcast episodes. This was done in collaboration with
both GetReachAudio and Softhouse Consulting Öresund, which is a software consulting
firm located in Malmö. I used the podcast Dumma Människor (eng. Dumb People) produced
by Clara Wallin with Lina Thomsgård and Björn Hedensjö as hosts to test the classification
models. Though the ultimate goal is to use the predicted topics to help creators in improving
their podcast, this is outside scope of the thesis and I only focused on the topic prediction.

To train the final topic classifiers, I used pre-trained transformers and fine-tuned them on
two corpora: The Swedish Reuters corpus and texts from online Swedish forums. As results,
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1. Background and motivation

Swedish BERT, trained on Swedish texts, yielded the best performance.
I used this model to categorize the podcasts from Dumma Människor, where I first tran-

scribed speech from all available podcast episodes into text using publicly available natural
language processing tools from Google Cloud Platform. Finally, I carried out a small-scale
evaluation of the models on about one hundred test segments from the podcast transcrip-
tions.

1.1 Contributions
In this Master’s thesis, I created a classifier to determine the topics of a series of podcast
episodes. I trained the model on data collected from Swedish online forums, spanning 65
different topics.

1. I first created a baseline model by using a TF-IDF representation of the texts and a
logistic regression head for classification.

2. The model was then expanded by using transformers to generate contextual embed-
dings of the texts, which increased the F1 score from 0.66 to 0.71 and 0.72 to 0.75 for
an ordered and a shuffled sampling of the same training dataset.

3. Thereafter, I experimented with a small feed-forward neural network instead of logistic
regression as a model head. This yielded better results for the training dataset, reaching
an F1 score of 0.72 and 0.77. However, this proved to have lower performance on the
podcast dataset.

4. I also applied a fine-tuning procedure to the Swedish and the multilingual BERT model
by unfreezing one layer. This resulted in the same f1 score for the Swedish BERT and
0.63 F1 score for the multilingual BERT.

Manual evaluation on podcast transcriptions showed that the best model was the one that
used Swedish BERT without fine-tuning and a logistic regression model head. This model
reached an accuracy of at least 0.46 on the podcast data.

1.2 Related work
The field of natural language processing is constantly advancing and growing. One big con-
tributing factor to this is the vast access to written text data from social media and Wikipedia
for example. This makes it easy to collect massive datasets to train powerful natural language
processing models. However, as the access to massive texts increases, the need for models to
handle texts grows as well. The applications for these kinds of models range from text classi-
fication and sentiment analysis to text summarization, translation, and question answering.

In a recent report, Dhar et al. (2021) discuss and surveys the applications of a number of
text mining tasks, one of which being topic classification. Other fields covered in the report
are sentiment analysis, text summarization, question and answering systems and filtering of
documents.
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1.2 Related work

Ikonomakis et al. (2005) discuss in an older report using machine learning for text clas-
sification. In this they find that the data used to train the models is very important and can
have a large impact in how accurate the model is. A drawback with the models they evaluated
was that they could not handle homonyms properly, i.e they did not differentiate between
words that were spelled the same but had different meanings.

However, there are currently models which remedy the problem with homonyms. One
recent approach proposed by Vaswani et al. (2017) is the transformer architecture pre-trained
on very large corpora. These transformers result in large models with up to 340M parameters.
They are very powerful, outperforming the state-of-the-art in several of the NLP fields such
as translation, question, answering, and categorization. One powerful feature of the models
is that they generate text embeddings which consider the context rather than simply looking
at every individual word.

One of the most successful transformer-based model is BERT (Devlin et al., 2018). Ini-
tially, BERT was trained on English Wikipedia articles. Then BERT was extended to a mul-
tilingual version with a training corpus including other languages. The National Library
of Sweden (Kungliga Biblioteket) has developed a Swedish version of BERT which is publicly
available and free to use for a range of natural language processing tasks.

Thompson and Mimno (2020) built a model using BERT for topic modeling. They then
compared the transformer-based approach to more conventional methods, such as Latent
Dirichlet Allocation, or LDA. The results showed them that BERT produced topic clusters as
good as, or better than conventional methods.

Remmer et al. (2021) describes a topic classifier for Swedish using transformers and is
close to our thesis. They focus on the international classification of diseases or ICD codes, which
is a way of recording the diagnoses of patients. In their paper, Remmer et al. (2021) use
Swedish BERT to train a model to classify the ICD code from a written medical journal. They
compared this to baseline models, which were K-nearest neighbors, support vector machines,
and decision trees. They found that Swedish BERT performed better than the baseline when
the ICD codes were grouped into 10 categories instead of using all 263, reaching a micro
F1 score of 0.80 and a macro F1 score of 0.58. However, Swedish BERT was found to have
very poor performance, with a micro and macro F1 score of 0 when considering all 263 codes
simultaneously.

There have also been approaches to train cross-lingual classifiers where a model trained
on one language is transferred to another language. In a recent report, Schwenk and Li (2018)
propose a certain dataset to train and evaluate such models. The dataset is derived from a
collection of annotated news articles from the news agency Reuters and has balanced class
prior probabilities. The original dataset, released by Lewis et al. (2004), is labeled with one or
more label per text and can be used for individual languages as well. Among these languages,
Swedish is included.
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1. Background and motivation
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Chapter 2

Dataset

For this thesis, I used three datasets: one for the initial testing, one for training, and the last
one for the real world application test. The initial testing dataset consisted of annotated news
articles in Swedish, collected from the news agency Reuters. The training dataset consisted
of texts collected from Swedish online forums flashback.org and familjeliv.se, where
the texts were annotated with their corresponding thread topic. The last dataset, used for
real world testing, consisted of transcriptions of 109 podcast episodes. Originally, this dataset
was unlabeled and I used it as test set. I applied the different models to it and experts from
GetReachAudio carried out a qualitative evaluation of the automatic annotation.

2.1 Reuters corpus
The Swedish Reuters Text Categorization Collection Data Set is a corpus from Reuters news
agency. This dataset is part of a large multilingual dataset consisting of over 487,000 Reuters
news articles in 13 different languages. The articles were written between the 20th of August
1996 and the 19th of August 1997 and released to the public to be used for natural lan-
guage processing, machine learning, and information retrieval systems in 2005. Apart from
Swedish, the full dataset also contains articles in Danish, Chinese, German and Spanish to
name a few languages. In Swedish, there are 15,731 news articles annotated with at least one
topic out of 1435 possible topics.

Furthermore, the topics are not evenly distributed: A few ones appear over one thousand
times while many only appear once. Figure 2.1 below shows that a lot of topics only appear
100 times or less. Figure 2.2 is the same histogram, but excluding all topics appearing less
than 200 times in the dataset.

This corpus is interesting as it is widely available and thus enables performance compar-
isons. I carried out the initial testing before collecting the final training dataset, enabling
me to determine how many samples were required to correctly identify a topic for a base
model. This dataset did not need any processing since it was already labeled and divided into

11
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2. Dataset

Figure 2.1: Histogram of all topic frequencies in the Swedish Reuters
dataset.

separate news articles.
Below is an example text from the dataset which was annotated with six topics, ORSDN,

181502, IINV, C15, C151 and CCAT. The topics correspond to business categories. For ex-
ample CCAT means Corporate/Industrial (Lewis et al., 2004).

STOCKHOLM, 6 dec (Reuter) - Öresunds substansvärde justerat för utdelning
uppgick den 30 november till 190 kr per aktie, innebärande en ökning med 29%
sedan årsskiftet. Det skriver Öresund i ett pressmeddelande. Investmentbo-
lagsrabatten var den 30 november 20% på substansen.
’STOCKHOLM, 6 Dec (Reuter) - Öresund’s net asset value adjusted for divi-
dends on November 30 amounted to SEK 190 per share, implying an increase
of 29% since the turn of the year. Öresund writes this in a press release. The
investment company discount was 20% on the substance on November 30.’

2.2 Corpus of Forum Posts
flashback.org and familjeliv.se are two different online forums in Swedish. They are
available for download from Språkbanken. Since the podcast data was unlabeled and could
not be used to train a classifier, I used this as training dataset for the topic classifier. The
language in the podcasts is quite informal and these forum texts with labeled data are quite
similar to that of Dumma Människor.

Since both websites had forums and threads spanning a wide range of topics, I could
collect several thousand sentences over 65 different topics. Even though the forums had many
more potential topics, I only used the topics which could be interesting for the podcast. See
the appendix for the full list of collected categories .

Below is an example text from the Fysik, matematik och teknologi (eng. Physics, mathematics
and technology) category.

12
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2.2 Corpus of Forum Posts

Figure 2.2: Histogram of topic frequencies given the most common
topics in the Swedish Reuters dataset.

det har iaf varit en rolig diskussion vilket då är perfekt, för då får man fart åt den
riktningen genom att andas ut i sådana fall. så bara att stå och andas i motsatt
riktning dit man skall kommer tillslut göra att man kommer fram, eftersom man
" kastar " vatten och kol. det där med att kasta saker är väl rätt lösning men med
en stor damm kan det ta sin lilla tid. men när du andas in motverkas inte kraften?
befinner sig mitt ute på en isbelagd damm. kan det vara svaret? ja det tycker jag.
‘it has at least been a fun discussion which is perfect, then you can get speed
in that direction by breathing out in that case. just standing and breathing in
the opposite direction of where you’re going will eventually get you there, since
you “throw” water and carbon. I guess the thing with throwing things is the
correct solution, but with a large pond this could take quite a while. but when
you breathe in doesn’t the force counteract? Being located in the middle of an
ice covered pond. could that be the answer? Yes I think so.’

Another example text from the Medicin och Hälsa (eng. Medicine and health) category can
be seen below.

det gör att kroppen får en dunderdos över det normala, alltså mer den normala
produktionen. har du ens någon erfarenhet av detta kliniskt? prolaktinnivåerna
kan t.ex. ses bli förhöjda. circadin har modifierad frisättning, utsöndring av
melatonin sker kontinuerligt under nattens gång. de är inte restriktiva, trodde
det var första alternativet för alla som har svårt att somna. har funderat lite på
att beställa över nätet men vet inte om jag vågar riktigt. då passar ett melaton-
inpreparat med
‘it gives the body a thunderstorm above normal, ie more than the normal pro-
duction. Do you even have any experience with this clinically? prolactin levels
can e.g. be seen to be elevated. circadin has modified release, secretion of mela-
tonin occurs continuously during the night. they are not restrictive, I thought it
was the first option for anyone who has difficulty falling asleep. I have thought

13



2. Dataset

a bit about ordering online but do not know if I really dare. then a melatonin
preparation fits too’

To create the training dataset, I extracted sentences from each forum. Since an individual
post could consist of just a few words, resulting in little meaning, I concluded that a post
would not constitute an individual text. Instead, I added posts from the same thread to each
other until the text reached the maximum limit of 512 characters, since this was the maximum
input length for the transformer models. This would hopefully create more context and
meaning to each text used to train the model. Hopefully this is clear in the quotes above. I
then labeled each text with the forum in which it was posted. Figure 2.3 shows a histogram
of the sequence lengths in the training dataset.

Figure 2.3: Histogram of the sequence lengths in the training dataset.

In the preprocessing step, I lowercased all the texts. The use of the uppercase letters
varied across the posts and some contained words written all in capital letters. It would have
been possible to use language technology techniques to make all sentences start with a capital
letter to restore a “normal” writing style. This would have been done by making all letters
after a period followed by a whitespace upper case. However, since the posts are not manually
checked for periods and other punctuation signs, I could not take for granted that replacing
all such occurrences would not lead to errors for other words. Because of this I kept the texts
as they were. In other words, there were possible sources for errors, so I decided that having
the text all in lower case was the best option.

The full resulting dataset consisted of about 10,000 text entries from each topic. Because
I added texts from the same thread to each other, this meant that the texts from the same
thread would be clustered close to each other in the list of texts. Because of the order, I trained
two models. One model was trained on the first n texts from each topic and another one was
trained on n random texts from each topic. I did this to see whether it made a difference
if the model was trained on some data from all threads or all data from some threads. Here
n = 1000 was used, which is why the histogram in Figure 2.3 only contains 65,000 texts.

14



2.3 Dumma Människor Podcast Corpus

2.3 Dumma Människor Podcast Corpus
I used the podcast dataset for the real-life application test. It consisted of unlabeled tran-
scriptions from the first 109 full length episodes of the podcast Dumma Människor.

The text below is a short excerpt of the 109th episode of the Dumma Människor podcast
called Det underbara lidandet (eng. The wonderful suffering) released 2022-02-09.

Har du någon gång träffat en människa som inte verkar ha några problem som
inte verkar ha något lidande i sitt liv du kan sluta vara avundsjuk på den personen
i detta nu för att den personen befinner sig garanterat i något som väldigt mycket
liknar helvetet
‘Have you ever met a person who does not seem to have any problems who does
not seem to have any suffering in his life you can stop being jealous of that person
right now because that person is guaranteed to be in something very similar to
hell’

When I started my thesis, these were the only available full length episodes. The podcast
however consisted of additional shorter episodes which served as samples to the full length
episodes, but these were not included in the dataset.

GetReachAudio provided MP3 files of all the episodes. I used the speech-to-text tran-
scription tool in Google Cloud Platform to generate the transcriptions. The files gener-
ated from the Google Cloud Platform service returned the transcriptions in smaller chunks.
Within the chunks, every word was given a timestamp. I used these timestamps to assign start
and end times for the chunks. This was to make it easier to track the topics in the episodes.

As before, every transcription segment was made sure to not be longer than 512 charac-
ters, and if this was the case I truncated the text at the first blank space before the 350th
character. The remaining characters then formed a new text segment, and the start and end
times were updated. Similarly as for the other datasets, Figure 2.4 shows a histogram of the
sequence lengths.

Figure 2.4: Histogram of the sequence lengths in the podcast dataset.
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2. Dataset

Since there were two people talking in the podcast, often at the same time, the transcrip-
tion was not perfect and would occasionally miss a few seconds of speech. It was however
deemed that the transcriptions captured the essence of what the speakers said.

When listening to the podcast on streaming platforms, one notices that the episodes start
with a short segment from sponsors of the podcast. These sponsors might vary, which means
that the segments can be different depending on when someone is listening to the episode.
This was no problem however, since the opening segment was not included in any MP3 file
and therefore not included in the transcriptions.

16



Chapter 3

Approach

This chapter describes the necessary concepts and components in order to understand all the
aspects of this thesis. I start first with techniques to encode the word input and category out-
put into vectors. In the input encoding, I describe two techniques, bag-of-words and subword
segmentation, the latter being used by transformers. Then I move on to the description of
the learning architectures, logistic regression, neural networks and transformers, and finally
the metrics I used to evaluate the performance as well as data stratification.

3.1 Input/Output Formatting

3.1.1 Sentence Tokenization
Bag-of-words. Bag-of-words is a simple tokenization method in which all individual
words in a dataset constitute a token. The implementation used in this thesis does not differ-
entiate between higher and lower case, i.e Sweden and sweden are mapped to the same token.
The words constitute the vocabulary, and are mapped to an individual index, where the vo-
cabulary can be very large for large datasets (Nugues, 2014). For each text, the frequency of
every word in the text is recorded and used in the vectorization. A short example is shown
below.

Text: Excuse me, could you help me find the house key?
Tokenization: [excuse:1, me:2, could:1, you:1, help:1, find:1, the:1, house:1, key:1]

The tokens are then mapped to indices corresponding to the word’s position in the vocab-
ulary. This tokenization method does not take multiple meanings of the same word into
consideration, since a word always is mapped to the same index. Because of this, in a sen-
tence like

17



3. Approach

Text: The key to success is communication

the word key would be mapped to the same index as key in the first sentence, even though
the meaning of the word is different.

WordPiece Another tokenization method is WordPiece proposed by Wu et al. (2016).
In this method, the words in a sentence are split up into sub-words, or wordpieces, until
all sub-words can be found in a defined vocabulary. This tokenization technique is used in
BERT models, where the English BERT base model uses a vocabulary with 30,000 tokens.
According to Wu et al. (2016) a vocabulary with 8,000 to 32,000 wordpieces achieves both
good accuracy and fast decoding. Similarly as for the bag-of-words the tokens are mapped to
indices which are used as input to the a model. Below is the tokenization of the sentence

Hej och välkomna till podcasten Dumma Människor!
“Hello and welcome to the podcast Dumb People!”

for the tokenizers used in both the multilingual BERT base model and the Swedish BERT
base model.

Multilingual BERT:

He, ##j, och, v, ##äl, ##kom, ##na, till, pod, ##cast, ##en, Dum, ##ma, M,
##än, ##nisk, ##or, !

Swedish BERT:

Hej, och, välkomna, till, podcast, ##en, Dum, ##ma, Människor, !

After this, the tokens would be mapped to their corresponding index. Here it is clear
to see that the tokenizer for Swedish BERT contains more Swedish words compared to the
multilingual one, which is reasonable. We can also see that the word Dumma is split into Dum
and ma, for both versions. This means that the vocabulary does not have to contain different
inflections of the same word, but prefixes and suffixes are stored to account for this.

TF-IDF TF-IDF representation, or term frequency inverted document frequency, is a
way to vectorize texts in a collection of documents. This is a more sophisticated version of
bag-of-words where the term frequency part constitutes the frequency of a word in a specific
document and the inverted document frequency is the total number of documents divided
by how many documents the word is found in. In some cases the logarithm of the inverse
document frequency is used. The TF-IDF value is then obtained by multiplying the two parts
together. This gives a numerical representation of words which can take into account which
words are more important in which documents (Nugues, 2014).

In this thesis, a TF-IDF vectorizer was imported from the Python library scikit learn,
which has slightly different implementation compared to the description above. There were
furthermore several settings which could be used when vectorizing a collection of documents,
but since the TF-IDF vectorization was to be used in an initial model, it was deemed that
the default settings were sufficient. Then the difference was simply that the implementation

18



3.1 Input/Output Formatting

added 1 to both the numerator and denominator in the IDF value as well as adding 1 after
computing its logarithm, resulting in the formula below

TF-IDF = TF ·
[
log(

1 + n
1 + d f (t)

) + 1
]
, (3.1)

where n is the number of documents and d f (t) how many documents term t occurs in. Each
sentence, which would constitute a row in the matrix representation, was then normalized
to have length 1, i.e the L2 norm equal to 1. The words were then ordered alphabetically and
capital letters were ignored.

Using the following two Swedish documents as example

Document 1: Jag har alltid velat vara bra på att spela fotboll.
eng. I have always wanted to be good at playing football.

Document 2: Vi gick alltid och kollade på bio tillsammans.
eng. We always went to watch a movie together.

we get a total vocabulary of 16 words. The first document, or sentence, has 10 individual
words which gives every word there a term frequency of 1, and 0 for all other words in the
vocabulary. Next, using equation 3.1, the inverse document frequency is log(3/2)+1 = 1.4 for
jag, har, velat, vara, bra, att, spela and fotboll since there are 2 document and they only appear
in 1 document. For the words that occur in both documents, i.e alltid and på we instead get
log(3/3) + 1 = 1. After normalization this leads to the vector representation



alltid 0.24
att 0.33
bio 0
bra 0.33

fotboll 0.33
gick 0
har 0.33
jag 0.33

kollade 0
och 0
på 0.24

spela 0.33
tillsammans 0

vara 0.33
velat 0.33

vi 0



⊺

3.1.2 Output encodings
For classification tasks with k different possible targets, the target of a sample should be one
hot encoded. This means that a target is mapped to an index and then encoded with a 1 × k
vector containing a 1 on the index corresponding to that class and 0 everywhere else. As an
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example the three classes family, sport and money would be mapped to 0, 1 and 2 respectively.
The one hot encoded vectors for each class would then be

family→
[
1 0 0

]
sport→

[
0 1 0

]
money→

[
0 0 1

] (3.2)

3.2 Logistic Regression
Logistic regression is a rudimentary machine learning algorithm that fits a linear curve to the
logistic function of the odds that a sample belongs to one specific class (Agresti, 2018). See
the equation below.

log(
p

1 − p
) = β0 + β1x1 + ... + βmxm = x · β (3.3)

In Equation 3.3 above, p is the probability that a sample belongs to a certain class. Since all
texts used in this thesis are assigned to one class, the classification is binary and the probabil-
ities used during training are simply either 1 or 0. x is a row vector with m entries containing
the features of the data and the column vector β of the same size holds the trainable weights
which constitute the logistic model (Agresti, 2018). One can then expand this to a dataset
containing n data points as

log(
p

1 − p
) = Xβ (3.4)

where p instead is an n sized column vector containing the probabilities for each data point
and X is an n × m feature matrix.

Looking at Equation 3.4 one can see that the left hand side tends to±∞ as the probability
approaches 1 and 0. The expression can however be transformed as

log(
p

1 − p
) = Xβ ⇔ p

1 − p
= eXβ ⇔ p = 1

1 + e−Xβ (3.5)

where the probability p can take any value between 0 and 1. This equation produces the
characteristic s-shaped logistic curve, see figure 3.1. The model is finally fitted by defining a
loss function and optimizing the model weights with respect to it.

3.3 Loss functions
A loss, or error function is used to measure the performance of a model, so that an opti-
mizer can update the model weights during training. The loss is defined as a function of the
model weights and needs to be differentiable in order for an optimizer to find the optimal
weights. To measure the final performance of a model, other techniques are used. See section
Performance metrics.

For a regression problem the error function could be mean squared error, which computes
the average Euclidean distance squared from each data point to the fitted line (Ohlsson and

20



3.4 Optimizing the Weights

Figure 3.1: Example of logistic curve. Here the graph describes the
chance of passing an exam as a function of how many hours of study-
ing.

Edén, 2020). In this thesis however, it is suitable to use crossentropy error, since we are doing
classification. This is defined as

E(ω) = −
1
N

N∑
n=1

c∑
i=1

dniln(yni) (3.6)

given a set of weightsω, total number of samples N and number of classes c. yni is the network
output from node i, in this case output i from equation 3.18, given the input from pattern n.
The target dn is a one hot encoded vector, which means that dni takes the values

dni =

1 if input n belongs to class i
0 if input n does not belong to class i

In Equation 3.6 it is clear to see that if dni = 1 and the returned probability for class i,
yni , is close to zero, the loss will be large.

3.4 Optimizing the Weights
With a loss function defined, the optimal model is found by minimizing the loss with respect
to the model parameters. There are a several methods available for this kind of problem, but
some of the most common ones are, stochastic gradient descent, LBFGS and Adam.

3.4.1 Stochastic Gradient Descent
For every iteration, or epoch, in stochastic gradient descent the training data is stochastically
split into minibatches of size P. For every minibatch, the gradient of the error function
Ep with respect to the model weight ω is then calculated, whereupon the model weights
are updated by taking a step in the opposite direction of the gradient. The reason for this
approach is that it reduces the risk of ending up at a local minimum, since the minibatches
are different every time. Even though the individual minibatches differ, all samples in the
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training data are used before starting a new epoch. Equation 3.7 below shows how the model
weight are updated for a learning rate η (Ohlsson and Edén, 2020).

∆ωk =
1
P

P∑
p=1

∆ωpk, δωpk = −η
∇Ep

∇ωk
(3.7)

3.4.2 LBFGS
LBFGS, where BFGS stands for Broyden-Fletcher-Goldfarb-Shanno and the “L” stands for “lim-
ited memory”, is a quasi Newton optimization method. In a regular Newton optimization
method one finds the optimal point xopt by starting at an initial point x0 and taking steps as

xk+1 = xk −H−1g (3.8)

until the solution has converged. In Equation 3.8 above H is the Hessian and g is the gra-
dient of the loss function with respect to the model weights ω. It is however cumbersome
to compute the inverse of the Hessian which makes Newton methods ineffective, especially
if the input data has many dimensions. Quasi Newton methods solve this by approximating
the inverse Hessian instead. The approximation Gk , after k iterations is given by the update
scheme (Ohlsson and Edén, 2020)

Gk+1 =
(
1 − vpT

pTv
)
Gk
(
1 − pvT

pTv
)
+

vvT

pTv
(3.9)

where the variables p and v are given by

p = ωk+1 − ωk

v = gk+1 − gk

The next point is then calculated as

ωk+1 = ωk + αkGkgk

where the parameterαk is determined by solving the one-dimensional minimization problem
(Ohlsson and Edén, 2020)

αk = minαωk + αGkgk (3.10)

“Limited memory” in the algorithm refers to that only a certain number of p and v vectors
are stored at the same time. This naturally results in less memory allocation (Nocedal and
Wright, 2006).

This optimizer was used when fitting the logistic regression model.
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3.4.3 Adam
The Adaptive moment estimation or Adam is another optimization method but works quite
differently compared to LBFGS. This is a method which uses a running average of both the
gradient and the square of gradients. These running averages are stored in two vectors m and
v respectively, which are given by the following expressions (Ohlsson and Edén, 2020)

mi
k+1 = β1mi

k + (1 − β1)gi
k

vi
k+1 = β2vi

k + (1 − β2)[gi
k]

2

Using

m̂i
k+1 =

mi
k

1 − βk
1

(3.11)

v̂i
k+1 =

vi
k

1 − βk
2

(3.12)

the resulting update algorithm of the weights ωi is expressed as

ωi
k+1 = ω

i
k − η ·

m̂i
k+1√

v̂i
k+1 + ϵ

, (3.13)

where i is the index of the weight, η, β1 and β2 are the learning parameters of the algorithm
and ϵ is a small value in order to avoid division by zero in the first iteration (Ohlsson and
Edén, 2020).

Expanding the expression for m̂i
k+1 for small k we get

m̂i
2 =

mi
2

1 − β1
1
=
β1mi

1 + (1 − β1)gi
1

1 − β1
1

=
β1(1 − β1)gi

0 + (1 − β1)gi
1

1 − β1
1

=
β1gi

0 + gi
i

1

m̂i
3 =

mi
3

1 − β2
1
=
β1(β1(1 − β1)gi

0 + (1 − β1)gi
1) + (1 − β1)gi

2

1 − β2
1

=
β2

1 gi
0 + β1gi

1 + gi
2

1 + β2
1

from which we clearly can see that m̂i
k+1 can be expressed as

m̂i
k+1 =

gi
k + β1gi

k−1 + β
2
1 gi

k−2 + . . .

1 + β1 + β
2
1 + . . .

(3.14)

which is a weighted average of the gradients g. Similarly we obtain the following expression
for v̂i

k+1

v̂i
k+1 =

[gi
k]

2 + β2[gi
k−1]

2 + β2
2[gi

k−2]
2 + . . .

1 + β2 + β
2
2 + . . .

(3.15)

which is a weighted average of the gradients squared. Using β1, β2 < 0 it is also ensured that
the most current gradient has the largest factor, and that the values do not explode (Ohlsson
and Edén, 2020). This optimizer was used in all models which used a pre-trained transformer.
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3.5 Feed-forward Neural Networks
A feed-forward neural network is a network where the input goes through one or several
layers of nodes (weights) and the output from each node in a layer is used as input to the
nodes in the next layer. This means that there can be no feedback loops. The smallest feed-
forward neural network has only one layer with one node and can be used to map linear
dependencies (Ohlsson and Edén, 2020). Looking at the model in Figure 3.2 below, we see
that there are two inputs to the output node, the variable x and the bias, where the bias is
built into the model and does not have to be manually put in. The total output from the
model is given by Equation 3.16.

Figure 3.2: Small feed-forward neural with one layer and one node.

y = w0 · bias + w1 · x (3.16)

Given the values in Table 3.1 and bias set to 1, the small model would find the optimal values
for the parameters w0 and x1 according to Table 3.2

x y
0 2
2 3

Table 3.1: Example values for the small model in Figure 3.2

w0 w1
2 0.5

Table 3.2: Optimal fit of parameters w0 and w1 in figure 3.2

The neural networks can however be much larger with several layers and nodes to capture
more complex patterns. In the illustration above, the model was used for regression, but it
could similarly be used for classification. Using the previous model as an example one could
say that all samples above the fitted line would belong to a class 1 and all samples below the
line would belong to another class 2. A feed-forward neural network is optimized using the
same principle as for logistic regression. In this thesis I used feed-forwards neural networks
as model heads after the pre-trained transformer in the model architecture. I addition to
this, feed-forward neural networks are also used inside the transformer models. To optimize
these models, I used the Adam optimizer.
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Layers
There are several different kinds of layers that can be deployed in a neural network, where
the application dictates which ones to use.

One of the most widely used layers in a neural network is a fully connected layer. This is
a layer where all the nodes are connected to every node in the previous and the next layer. In
other words, this means that every output from the previous layer is used as input to every
node and the output of a node is used as input to all nodes in the next layer (Ohlsson and
Edén, 2020). The architecture of a fully connected layer is shown in Figure 3.3.

In order to reduce over training one can insert a dropout layer in between two layers,
which takes the probability of a weight in the next layer not being updated. By not updat-
ing some weights, the model is less prone to only recognizing the training data, and hence
generalizes better (Ohlsson and Edén, 2020).

Figure 3.3: Overall architecture of fully connected layers.

Activation functions
In order to model non-linear behaviour the nodes in a layer can have activation functions,
which transforms the output using non-linear functions (Ohlsson and Edén, 2020). List 3.5
below includes the most common choices, see Figure 3.4 for graphical representations of the
functions.

Rectified linear unit (ReLU): f (x) = max(0, x)

Sigmoid: f (x) =
1

1 + e−x

Hyperbolic tangent: f (x) = tanh(x) =
ex − e−x

ex + e−x

Using the small network in Figure 3.2 as an example, I apply an activation function f to
the output node. The new output yact is then given by Equation 3.17 below.
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Figure 3.4: Plots of the activation functions listed in List 3.5

yact = f (w0 · bias + w1 · x) (3.17)

In neural networks used for classification, the softmax activation function is often used in the
output layer, see equation 3.18 below. This is a natural choice since the function normalizes
the output values to be between 0 and 1 and also add up to 1. The output values for each
index then correspond to the probability of a data point belonging to the class of that index
(Ohlsson and Edén, 2020). The predicted class is then found by taking the argmax of the
returned vector.

f (xi) =
exi∑n

j=1 ex j
(3.18)

In the equation above xi is the output from node i in the last layer and n the number of
nodes in that layer.

3.6 Transformers
The encoder-decoder architecture is a common and powerful setup in machine learning and
typically used to train a model to be able to replicate, or generate data similar to the data
used to train it (Ohlsson and Edén, 2020). This can for instance be used to generate images,
but it has also been widely used in language and text models. Here the encoder takes an input
sequence of symbols, x : {x1, . . . , xn} and produces and encoded vector z : {z1, . . . , zn} of it.
This is then used as input to the decoder which outputs a sequence of symbols {y1, . . . , ym},
one symbol at a time. The symbols are then put into the decoder again to generate subsequent
symbols. The transformer, proposed by Vaswani et al. (2017), uses such an encoder-decoder
architecture and has proven successful in natural language processing models.
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Figure 3.5: Visual representation of multi-head attention. Taken
from Vaswani et al. (2017).

An important concept used in transformers is attention. This entails taking a query and
a set of key-value pairs, where the query is mapped to an output of a weighted sum of the
values. Here, the queries, keys and values are all vectors. The weights are obtained by using
scaled dot-product attention, which takes the query and key vectors of dimension dk and the
value vector of dimension dv as input. The weights are then determined by calculating the
dot-product of the query and every key, dividing by

√
dk and applying a softmax layer. See

Equation 3.19, which uses matrices Q, K and V containing a set of queries, and the keys and
values. The factor

√
dk is to ensure that the softmax does not have small gradients for large

input matrices (Vaswani et al., 2017).

attention(Q,K,V ) = softmax(
QKT
√

dk
)V (3.19)

Instead of using the attention mechanism once where the query, key and value vectors
have the same dimension as the model dm, Vaswani et al. (2017) used multi-head attention. This
entails the vectors being linearly projected to dk , dk and dv dimensions h times. Meanwhile,
the attention function is performed on all projected vectors, outputting vectors with dimen-
sion dv. The vectors are then concatenated and projected again to produce the final output.
See Figure 3.5. In their approach Vaswani et al. (2017) used h = 8 and dk = dv = dm/64 with
a model dimension of 512.

The approach used by Vaswani et al. (2017) has an encoder with 6 layers of the same kind
and within those layers two sub-layers. The two inner layers are 1: A multi-head attention
layer and 2: A fully connected feed-forward neural network, see Figure 3.6. Every sub-layer
ends with a normalizing layer which takes the input plus the output of a sub-layer, called
residual connections by Vaswani et al. (2017). In order for this to be feasible, the dimension
of the input and output of a hidden layer need to be the same, which in this approach was
set to 512.

The decoder of the transformer also consists of 6 layers, but instead has 3 sub-layers. The
additional one, which is the second sub-layer, is a multi-head attention layer that takes the
output from the encoder as input. The first sub-layer is a multi-head attention layer, just as
for the encoder, but here it masks subsequent positions. This is because for a sequence of
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inputs, the prediction for input at index i should only depend on inputs with indices smaller
than i. Lastly, the third and final layer is a fully connected dense layer. The decoder also
uses residual connection between every sub-layer, just as the encoder. After the 6 layers the
decoder ends with a linear layer with a softmax activation function.

Figure 3.6: The transformer architecture, from Vaswani et al. (2017)

Multi-head attention is used in the transformer in three ways

Encoder-decoder attention, where the queries are the output from the decoder of the pre-
vious layer and the key-value pairs are the output from the encoder. This way, the
decoder output can have attention to all positions in the input.

Self-attention, where the queries and key-value pairs are the output of the encoder in the
previous layer. Here all positions in the current encoder can attend to all positions in
the previous encoder.

In the decoder, the self-attention mechanism is designed to block output contributions from
future positions. This means that the decoder should only attend to positions lower
than or equal to its own position. All values corresponding to those positions are then
masked by setting them to −∞ in the softmax layer.

Furthermore, the feed-forward networks Vaswani et al. (2017) used in both the encoder and
decoder are built up by two fully connected layers with a relu activation function after the
first layer. The input and output of these models have the same dimension as the model,
while the hidden dimension shared between the layers is 2048.
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Vaswani et al. (2017) trained embeddings to generate vectors of dimension dm from the
input and output tokens. These embeddings are then fed into the linear transformation fol-
lowed by a softmax layer to generate probabilities for the next possible tokens in the decoder.
Furthermore, positional encodings are used to include the position of a token in a sequence.
These positional encodings are then added to the input embeddings at the beginning of both
the encoder and decoder, meaning that they also have dimension dm. The equation to calcu-
late the positional embeddings is shown below in Equation 3.20.

PE(pos,2i) = sin(pos/100002i/dm)

PE(pos,2i+1) = cos(pos/100002i/dm) (3.20)

Here pos and i are the token position in the sequence and the token position in the embed-
ding vector.

3.7 BERT
BERT, or Bidirectional Encoder Representations from Transformers, proposed by Devlin et al.
(2018) at Google, uses the encoder part in the transformer architecture and has been used
to reach state-of-the-art performances for many NLP applications. Bidirectional means that
in order to predict a token at index i, BERT uses tokens with indices both smaller and larger
than i. This differs slightly from the approach by Vaswani et al. (2017) for the transformer,
though BERT still uses the same overall encoder architecture. This model produces contex-
tual embeddings of texts, which means that it differentiates between the word key from the
bag-of-words example. This is achieved by training the model on a large corpora of texts.
The pre-training of BERT has been done on a text corpus consisting of the text from En-
glish Wikipedia and a corpus called BooksCorpus (Zhu et al., 2015). During pre-training, two
semi-supervised methods were used: masked language modeling and next sentence prediction.

In masked language modeling 15% of the tokens in the tokenized input are masked. Dur-
ing masking there is an 80% probability that the token is replaced by [MASK], 10% probability
that the token is changed to another token and 10% probability that the token remains un-
changed. The model is then trained by trying to predict the masked token and minimize the
crossentropy loss (Devlin et al., 2018).

In next sentence prediction, the BERT model learns to understand relationships between
sentences, which is an important feature for many NLP applications. Each training sample
contains two sentences, A and B. There it is 50% probability that B is the sentence which
follows A, and 50% probability that B is a completely random sentence. During training a
binary classifier is then trained to predict whether B is the next sentence or not.

Devlin et al. (2018) developed two models, BERTbase and BERTlarge which have the same
overall architecture, but differ in model size. Denoting the number of transformer blocks
as L, the hidden size between layers as H and the number of self-attention heads as A the
models can be described as

BERTbase(L = 12,H = 768, A = 12), 110M parameters
BERTlarge(L = 24,H = 1024, A = 16), 340M parameters

In their paper, Devlin et al. (2018) reached higher performance for the large model. However,
I chose to only use the base model since my access to powerful computation tools was limited.
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BERT has led to several implementations in other languages. The ones I used in this
Master’s thesis are Swedish BERT (Rekathati, 2021), developed at Kungliga Biblioteket and
Multilingual BERT developed by Devlin and his team.

3.8 Performance Metrics
3.8.1 Accuracy
The most straightforward way to do measure the performance of a model is to measure the
accuracy which simply means to count how many times the model classifies a sample correctly
and divide that by the total number of samples.

3.8.2 Precision, Recall and F1 score
A more meaningful way to determine how good a model is, is by calculating the precision
and recall, which for multi class classification will assign one metric to each class. Using the
following metrics for a class i.

TP − True positives, sample belonging to class i, classified as class i
FP − False positives, sample not belonging to class i, classified as class i
FN − False negatives, sample belonging to class i, not classified as class i

we define precision and recall as.

precision =
TP

TP + FP

recall =
TP

TP + FN

Looking at the definition we can see that recall is the number of correctly classified sam-
ples divided by the total number of samples from a class, which is a measure of how good the
model is at detecting a class. Precision on the other hand is the number of correctly classified
samples divided by the number of samples predicted to belong to a class. This gives us a
measure of how certain the model is that a predicted class actually is correct.

These two metrics can then be combined by calculating the harmonic mean between the
two, resulting in the F1 score.

F1 score =
2 · prec · rec
prec + rec

This is the metric used to evaluate the models during training in this thesis, since it takes
the most factors into account.
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3.9 Data stratification
Splitting data into training, validation and test sets is standard procedure when training
artificial intelligence models. This is straightforward to do if the data only has one label per
example. Then it’s simply to determine how many samples are needed from each class and
splitting the data from that. When the data has more than one possible class however, there
is no simple method.

The stratification used in this thesis is based on a method for multi-label classification
proposed by Sechidis et al. (2011). Down below in Algorithm 1, the pseudo code is given.

For the algorithm below D is the full dataset which is going to be split into n subsets
D1, . . .Dn, where every data point consists of one pattern x and a set of classes Y. C is the
set of classes that have not yet been assigned to any subset Di .

Algorithm 1 Data stratification algorithm

while |C| ≥ 0 do
cl ← Class with least samples to fill
for each(x,Y) ∈ D do

if cl ∈ Y then
Di ← Subset that asks for most samples of cl ▷ In case of tie, pick randomly
Di ← Di ∪ {(x,Y)}
Cr ← All classes that have been fully assigned to any subset
C ← C \Cr
D ← D \ {(x,Y)}

This stratification method was used to divide the Reuter corpus into training and test
set during the initial testing phase.
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Method

4.1 Testing on the Reuters dataset
I initially trained a classification model on the Reuters dataset, see Section 2.1. The English
version of this dataset is widely used and corresponds to a similar problem to the catego-
rization of Dumma Människor. In this model, I used a TF-IDF representation to vectorize the
news articles, which were then used as input to a logistic regression model. The input was
then stratified using the method proposed by Sechidis et al. (2011) to create a training and
test set. To fit this model, I used the LFBGS optimizer. Since all articles could be part of one
or more topics, I trained one binary model for each topic which classified all articles as either
being part of a topic, or not.

Below in Figure 4.1 is the F1 score plotted as a function of topic frequency in the training
set.

From the plot, I concluded that a about 1500 samples was needed in order to classify a
topic with sufficient accuracy.

4.2 Collecting data and building models
The training dataset for this thesis was collected from the public online forums flashback.org
and familjeliv.se. From there I chose 65 suitable topics, which could be applicable to the
podcast data. For each topic I ensured that it had sufficient number of samples in order
to correctly classify it. Furthermore it was ensured that all texts had a maximum of 512
characters, since this was the maximum number of characters which could be put in to the
transformer models.
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Figure 4.1: The F1 score as a function of the number of occurrences
of a topic in the training set.

4.3 Training data
From the full dataset collected from Flashback and Familjeliv, I extracted 1000 texts from
each topic to use for training and testing, resulting in 65,000 texts. This proved to be the
best compromise for performance, since a larger dataset would take too much time to train
on for the more advanced models later on. From this I used 80% for training and validation
and 20% for testing.

4.4 Building an initial model
I built the first model by using the same setup as for the Reuters data. However, since the
collected dataset no longer had multiple classes for each text, the approach with one bi-
nary classifier per topic proved to be flawed, resulting in low performance. Because of this I
changed all binary topic models to a multinomial logistic regression model which assigned a
text to only one label.

4.5 Using BERT embeddings
Next instead of using a TF-IDF representation of the texts, I used BERT sentence transform-
ers to generate contextual sentence embeddings. For this step, the Swedish cased version of
BERT model was downloaded from the python library sentence_transformers. This model used
a tokenizer which deployed the WordPiece tokenization described in the previous chapter. I
used this BERT base to generate embeddings for the dataset, which were then used as input to
a logistic regression model. In this step, the layers of the BERT model were frozen and hence
not fine-tuned. The reason for using the cased version while the training data was lower case,
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was because this model was only available as the cased version.

4.6 Adding Feed-Forward Neural Networks
Using the same BERT embeddings as before, I trained new models by replacing the multi-
nomial logistic regression with a feed-forward neural network. This network, similarly as
the logistic regression model, also only predicted one topic per text. The neural network
consisted of one layer with 480 nodes with a sigmoid activation function followed by a hid-
den layer with an equal number of nodes and the same activation function. Lastly, since the
model should predict one out of 65 topics, I used an output layer with 65 nodes and softmax
output activation function. Before every layer there were also a dropout layer with p = 0.3.
The batch size for this experiment was 32 and as optimizer, I used Adam with η = 10−3,
β1 = 0.9, β2 = 0.999 and ϵ = 10−7.

As a stopping criterion during training for this model, I monitored the loss on the valida-
tion data, which consisted of 10% of the training data. If the validation loss did not decrease
for 5 epochs, the training loop was terminated. In addition to this, I set the maximum number
of epochs to 100 epochs.

4.7 Multilingual BERT and Fine-tuning
The next step in trying to improve the model was to unfreeze the last layer in the BERT
model and fine-tune the transformer model to the input data. For this I used the PyTorch
implementation of BERT, since this was the only implementation that supported freezing
and unfreezing layers. Once again WordPiece was used for the sentence tokenization. This
model setup consisted of the transformer as base followed by a layer with as many output
nodes as there were categories. The last layer once again had a softmax output activation
function.

Using this setup I fine-tuned the last layer of the Swedish BERT base cased and multilingual
BERT base cased models. Here, the cased versions were used since they were the recommended
versions in PyTorch. For this experiment, I used a batch size of 15 and the Adam optimizer
with η = 10−4, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. Similarly as before the validation loss
determined when the model were done training. Since these models were much more time
consuming to train, I terminated training if the loss not decrease for 2 epochs instead of 5.
Due to the same reason, the training procedure in this part was only done on the shuffled
sampling of the training dataset.

4.8 Model evaluation
In the evaluation of the models, the podcast transcriptions were used as test dataset. Just as
for the training data, it was ensured that all texts had a maximum length of 512 characters.
The models were evaluated by extracting one segment per episode from the podcast data and
using the most promising models to predict their topics. For this, I chose all the models which
had been trained using a transformer model. Thereafter a qualitative evaluation was made
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on the models to determine the best model. This qualitative evaluation was done by sending
the topic classification results to GetReachAudio where they ranked the models using three
grades Good, Quite good and Bad. After this, I calculated the accuracy for the best one and
compared it to the accuracy of the baseline model. Due to time consuming training procedure
I evaluated the fine-tuned Swedish BERT model myself, whereupon it was compared to the
other five model to determine its grade. The reason for not evaluating all models was to
relieve the work load, since the process was quite time consuming.
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Chapter 5

Results

All tables and figures below contain results from the test split of the training dataset, ex-
tracted from Flashback and Familjeliv.

5.1 Overall Performance
Table 5.1 below presents the macro F1 score, weighted F1 score and accuracy of the models
trained on the shuffled sampling of the training dataset. Table 5.2 shows the corresponding
values for the ordered sampling of the dataset. Here we can see that the initial model which
deployed several binary classifiers was not suitable for this application. Furthermore, all mod-
els which used Swedish BERT outperformed the baseline model on all performance metrics.
We can also see that the multilingual model is worse compared to the models which were ex-
clusively pre-trained on a Swedish corpus. Furthermore, the fine-tuned Swedish BERT model
and the original Swedish BERT model with a feed-forward neural network (FFNN) model
head achieved the same performance on the training dataset.

Method Macro F1 Weighted F1 Accuracy
Binary TF-IDF+ logistic 0.22 0.22 0.14
TF-IDF + logistic 0.66 0.66 0.66
Swedish BERT + logistic 0.71 0.71 0.71
Swedish BERT + FFNN 0.72 0.72 0.72
Fine-tuned multilingual BERT 0.62 0.62 0.63
Fine-tuned Swedish BERT 0.72 0.72 0.72

Table 5.1: Macro and weighted F1 score as well as accuracy of the
models trained on the shuffled dataset from Flashback and Familjeliv.
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Method Macro F1 Weighted F1 Accuracy
Binary TF-IDF + logistic 0.24 0.24 0.15
TF-IDF + logistic 0.72 0.72 0.71
Swedish BERT + logistic 0.75 0.75 0.75
Swedish BERT + FFNN 0.77 0.77 0.77

Table 5.2: Macro and weighted F1 score as well as accuracy of the
models trained on the ordered dataset from Flashback and Familjeliv.

5.2 Breakdown by Category
Figure 5.1 illustrates the individual F1 scores for the different categories in models trained on
the shuffled sampling of the training dataset. Figure 5.2 shows the corresponding graph for
the ordered sampling of the dataset. To reduce text in the figure, the F1 scores are plotted
against the index of its corresponding category. In these figures, we can see that the initial
binary model approach has lower F1 score than all other models for almost every topic. We
can also see that the pre-trained Swedish transformer models have quite similar F1 scores as
each other for the same topics. For some topics, the baseline model actually has the highest
F1 score, but over all topics the transformer models perform better.

Figure 5.1: F1 scores of all topics in models trained and tested on the
shuffled dataset from Flashback and Familjeliv.

Figure 5.3 shows the precision and recall for the initial model which used 65 individual
binary classifiers to predict the topics. Here we can see that the recall is low while the preci-
sion is high for both the ordered and shuffled sampling of the training dataset. This suggests
that the model assigned very few samples to a topic, but that it usually was correct.

Table 5.3 shows the five topics with the best and worst F1 scores for the model with the
highest performance on the forum dataset, i.e the Swedish BERT model with a FFNN head.
Here we can see that the topics with the highest performance are usually easily defined, such
as Bilar (Cars) or Aktier (Shares). These topics do not share much overlap between other top-
ics, see the appendix for the full list of topics. Meanwhile, the topics with low performance
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Figure 5.2: F1 scores of all topics in models trained and tested on the
ordered dataset from Flashback and Familjeliv.

can be somewhat harder to define. For example Relationer och samlevnad (Relationships and
cohabitation) and Barn och familj (Childen and family) can be quite similar and difficult to sep-
arate from each other. To illustrate this, Table 5.4 shows the two topics which the lowest
performing topics are most frequently misclassified as.

Category Category (eng.) F1 score
Bilar Cars 0.93
Matlagning och metoder Cooking and methods 0.93
Aktier Shares 0.92
Politik: utrikes Politics: foreign 0.92
Musik Music 0.91
Relationer och samlevnad Relationships and cohabitation 0.60
Medier och journalistik Media and journalism 0.59
Barn och familj Children and family 0.58
Rädsla/skräck Fear/terror 0.56
Psykologi Psychology 0.49

Table 5.3: The five topics with the best and worst F1 scores from
the model using Swedish BERT and a feed-forward neural network,
trained on the ordered sampling of the texts from Flashback and
Familjeliv.

5.3 Qualitative Evaluation
Table 5.5 shows the manual qualitative evaluation of the performance on the podcast tran-
scriptions. This evaluation was done by using all transformer-based models and classifying
all text segments in all the podcast episodes. From this, one text segment per episode was
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Figure 5.3: F1 scores for all categories in the binary classifier models,
tested on the test split of the dataset collected from Flashback and
Familjeliv.

extracted together with its predicted topics for all models. The text segments together with
their topic predictions were then manually evaluated by GetReachAudio. The models were
numbered as model 1-6 so as to not create bias for any model. In the evaluation, GetReachAu-
dio noted every text which was classified correctly by any model. From this, they then deter-
mined which models that were correct the most times, which models that were correct some
of the times and which models that were correct the least times. The models were then given
the grades Good, Quite good or Bad depending on how well they performed on that scale.

In Table 5.5 we see that the model that achieved the highest F1 score on the training
dataset, i.e Swedish BERT + FFNN, did not perform the best on the podcast dataset. Instead,
the models which used Swedish BERT and logistic regression were found to be the best.

The accuracy of the model trained on the ordered sampling was found to be at least 0.45
and the accuracy of the model trained on the shuffled sampling at least 0.46. For the baseline
model, the accuracy was found to be at least 0.26.

However, these scores should not be taken too literally since the accuracy measurement
was not straightforward. In the evaluation, I recorded a successful classification only if I was
sure that the topic classification was correct. There were many occurrences where it was
either difficult to determine the topic of a text segment, or it was difficult to tell whether the
topic classification was correct or not. Furthermore, there were also some occurrences where
a topic classification was close, but not good enough to say that it was correct. Because of this
the accuracy could be higher, which is why I wrote “at least” before the accuracy. However,
the accuracy scores can be compared between the models, which shows that the transformer-
based models outperformed the baseline model by 73% and 75%. Again these values might
vary, but it is clear that they are better than the baseline model.
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Category (eng.) Most confused topics (eng.)
Children and family Equality and discrimination

Feminism
Media och journalism Censorship and freedom of speech

Politics: domestic
Psychology Social anthropology, ethnology and sociology

Work
Relationships and cohabitation Eroticism and sexuality

Children and family
Fear/terror Health

Psychology

Table 5.4: The five topics with lowest F1 score and their most con-
fused topics from the model using Swedish BERT and a feed-forward
neural network, trained on the ordered sampling of the texts from
Flashback and Familjeliv.

Model Grade Accuracy
Swedish BERT + FFNN shuffle Quite good −

Swedish BERT + FFNN order Quite good −

Swedish BERT + logistic shuffle Good > 0.46
Swedish BERT + logistic order Good > 0.45
Fine-tuned multilingual BERT shuffle Bad −

Fine-tuned Swedish BERT shuffle Quite good −

Table 5.5: Scores from the manual evaluation on the podcast data.
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Chapter 6

Discussion and Conclusion

6.1 Discussion
The first model, which consisted of one binary classifier for every topic proved to have very
low performance on this dataset. Because the dataset just has one label per text, for every
individual classifier, only 1/65 of the data is going be part of the topic which the model tries
to recognize. The rest is not going to be part of that topic. This means that the dataset is
skewed for every topic and the model seems to expect that very few texts are going to be part
of a category. We can see this in Figure 5.3, where the recall typically is very low and the
precision is very high. This happens because the model in fact assigns very few samples to a
topic, but when it does, it is usually correct. A model with this characteristic can be useful,
but for this application it is not the desirable behavior.

Changing the binary models into one large multinomial logistic model proved to increase
the performance greatly across the board, see Table 5.1 and Table 5.2. This is not surprising
since the model now was trained on a dataset where all possible labels were evenly distributed
among the texts.

As Tables 5.1 and 5.2 show, the pre-trained transformers outperform the baseline model
in all cases apart from the multilingual model. The fact that using contextualized sentence
embeddings generated by BERT leads to higher performance, as opposed to using a TF-IDF
representation is no surprise. We can also see from the graphs in Figures 5.1 and 5.2 that
there is not much separating the F1 scores for individual topics for the Swedish transformer
based models. This indicates that using Swedish BERT to represent the texts is the most
contributing factor to a high performing model. The results here also suggests that the choice
of model head does not make a big difference, which is why I chose to only use a model head
with one layer for the fine-tuned BERT models.

Furthermore, the fine-tuned Swedish BERT model achieved the same performance as the
BERT models with a FFNN model head which were not fine-tuned. It is somewhat strange
that it did not outperform the original models, since fine-tuning BERT intuitively should
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produce a better model. One possible reason for this could be that the fine-tuned model only
had one final layer after the transformer whereas the other had three layers. This results in
that the latter model adapts as well to the training data, resulting in another kind of fine-
tuning.

Another reason for these results is that the training procedure for the BERT models with
one unfrozen layer was much more time consuming. For the model where all BERT lay-
ers were frozen I could experiment a lot with the number of layers, hidden nodes, learning
rates, batch sizes, dropout probability and activation functions to find the optimal set of hy-
perparameters. This was because the only highly time consuming factor was to generate the
contextual embeddings, which only had to be done once. However, one epoch for fine-tuning
BERT lasted for more than one hour, even when running the computations on a GPU. This
meant that I had to wait a long time before I knew whether a setup was good or not, and
then possibly make changes to improve the model.

One way to remedy this could be to use less data, but this would also have affected the
model performance negatively. We want the model to see as much data as possible to be able
to generalize. Recalling the experiment on the Reuters corpus, which showed that a category
should have about 1500 samples in the training data. From this the training set should have
been even larger, since I only used 1000 texts from each topic. However, using more than
1000 proved to be unfeasible when when it came to time restrictions. With more powerful
computation tools it is likely that the models could have been better, at least with respect to
the training dataset.

Comparing the two fine-tuned models it is clear that Swedish BERT performs better than
its multilingual counterpart. This is not particularly surprising since the Swedish version has
been pre-trained only on Swedish texts, whereas multilingual BERT has not. As previously
mentioned, the model could likely be improved given more time to find the optimal set of
hyperparameters. A multilingual model could however prove useful in order to expand the
podcast analysis to more languages than Swedish.

The best final model model however, did not come from the model with the highest F1
score on the training dataset from Familjeliv and Flashback. Instead, the qualitative analysis
found that the models using a logistic regression model head performed the best. This is
somewhat surprising, since high performance on similar data should lead to high performance
for the test data. The most likely explanation for this is that using a model head with a few
fully-connected layers, as opposed to logistic regression, leads to overfitting to the training
data. This is due to the model with fully-connected layers being more complex. Because of
this, instead of finding general patterns and qualities in the data, it might pick up on features
specific to the training data. This naturally lowers the performance on another dataset. The
same argument can be used for the fine-tuned Swedish BERT model, which also seems to
overfit to the training data. However, the less complex logistic regression model seems to
generalize better and performs better on the podcast data. In order to use fine-tuned models
to classify the topics in a podcast, it then seems that the training data needs to be more similar
to the podcast data.

We can also see that the qualitative evaluation of the podcast dataset did not seem to
differentiate much between the ordered or the shuffled dataset, although for all models the
F1 score was higher for the ordered dataset, see Tables 5.1 and 5.2. However, since we want
the model to generalize as much as possible, a lower F1 score on the training data might not
be that bad, which is shown by the qualitative evaluation. Since the shuffled dataset should
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contain more versatile texts, as it picks any text from any thread, this should be the best
option even though the F1 score is lower in the training set. The reason the ordered models
achieve higher F1 score might be due to that the texts are sampled from less threads. Making
the model slightly biased towards those threads.

When comparing these results to to those of Remmer et al. (2021), we see that the perfor-
mance metrics are roughly the same for the case where they divided the dataset into smaller
blocks. The F1 score obtained for this setup is a little bit lower compared to Remmer et al.
(2021), whereas they used less topics (10 compared to 65). The similarity in results is reason-
able since they were trained to perform the same kind of task.

One possible way to improve the performance of the models could be to use that the same
topic is often covered for a longer period of time. This is at least the case for this podcast.
The hosts tend to talk about one subject for some time and not change subject frequently.
This could have been introduced to the model by using the previous two or three topics as
input in addition to the text vectorizations. Furthermore, one could use that some topics
are probably more likely to follow each other than others. For example it does not seem
likely that someone would talk about religion and then directly after talk about cooking and
cooking methods. In order to be able to use this however, I would have needed a dataset
where these features could be extracted.

For the dataset I used, I could have used the previous topics as input and not shuffle
the data in the training loop. However, this would not have been a good idea since all texts
with the same label followed each other, apart from in between topics. This would likely
not resemble how someone would speak. Instead, the dataset would have had to consist of
annotated texts from a blog or another podcast. To my knowledge, no such datasets were
available, but it would have been interesting to see what impact these features would have
had on the final models.

There is a large difference in how well the models recognizes different topics, see Figure
5.2 and 5.1. The 5 topics with the highest F1 scores and the five topics with the lowest F1 scores
for the model with the best performance metric are shown in Table 5.3. Here you can see that
the topics with high F1 scores are topics which are quite “narrow”, i.e they don’t include much
texts which could belong to another topic. For example Aktier (Shares), Matlagning och metoder
(cooking and cooking methods) and Bilar (cars). These labels are quite niche which makes it
easy for a computer to differentiate between them.

On the other hand, there are the categories Relationer och samlevnad (Relationships and
cohabitation), Barn och familj (Children and family) and Psykologi (Psychology) which have
low F1 scores. This can be linked to that they have much in common with other topics.
Particularly the first two, which can be seen in Table 5.4. Furthermore, psychology is a very
wide subject and can contain texts which are quite different from each other. Texts from
different categories that are similar to each other, or texts from the same category which are
different from each other naturally makes it harder for the model to recognize the patterns.
One way to remedy this could be to merge topics which are similar.

Furthermore, the training data itself is not perfect. The texts from Flashback and Famil-
jeliv are completely unprocessed, apart from making the text lower case. Because the data
is taken from public forums, the text might contain spelling errors, poor grammar or the
threads can go off-topic. All of these factors makes the texts less predictable and can lower
the performance. However, this was the most suitable publicly available dataset I could find
for the podcast data since the language most resembles spoken language.
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Finally, the podcast transcripts adds error to the final evaluation since they are not per-
fect either. This is to some degree due to unchangeable factors, such as that there are two
people speaking in the podcast which makes the transcriptions worse. Furthermore, NLP
models in Swedish are usually not as advanced as NLP models in other languages, such as
English. Advances in the field could improve the Swedish transcription, which would likely
also improve the model performance on the podcast data. This was a factor to consider in the
qualitative evaluation as well. If the transcriptions are accurate, it would be easier to evaluate
the models, and the accuracy measure would be more trustworthy.

6.2 Conclusion
In this Master’s thesis, I explored different approaches to topic classification for podcasts. To
do this, I collected a dataset of texts from Swedish online forums, spanning 65 different topics
which I used to train the models. The dataset was chosen due to its colloquial language, which
should resemble the language in the podcast as much as possible. Furthermore, it was easy to
label all the texts with its corresponding forum topic. This means that no time consuming
manual annotation had to be made.

Initially I constructed a multi-label classifier, which could assign any, or no, topic to each
text segment. This approach turned out to be flawed, since the dataset used for training only
contained texts with one label each. The baseline here consisted of a TF-IDF representation
of the texts and a logistic regression model head, which only reached an F1 score of 0.22 and
0.24 for a random and ordered sampling of the training dataset respectively. Because of this,
I instead proceeded to train a classifier which only assigned one topic per text.

The same baseline model setup was used to produce a much better performance, reaching
an F1 score of 0.66 and 0.72 for the shuffled and ordered sampling respectively. This approach
was then expanded by using a pre-trained transformer to generate contextual embeddings of
the texts, instead of using a TF-IDF representation. The transformer used here was Swedish
BERT, which increased the F1 score to 0.71 and 0.75 respectively, as well as the accuracy to
0.71 and 0.75. Changing the logistic regression model head to a small feed-forward neural
network increased the F1 score further to 0.72 and 0.77 and the accuracy to 0.72 and 0.77.

As a final experiment I tried to fine-tune a multilingual transformer, multilingual BERT,
and the Swedish BERT to the the training data by unfreezing the last layer in the encoder
architecture. Here, the Swedish BERT model performed equally well as the best BERT model
in the previous step. The multilingual model, however, only reached an F1 score of 0.63.

However, a qualitative evaluation on an excerpt of the podcast transcripts showed that
the best model for podcast topic classification was the one which deployed Swedish BERT
and a logistic regression model head. This reached an accuracy of at least 0.46 on the podcast
dataset, outperforming the TF-IDF baseline model by 75%.

6.2.1 Future Work and Final Words
In order to obtain a higher performance, one has to use better data which is more similar to
the podcast transcriptions. Furthermore, since the training data was collected from online
forums, it is possible that some automatically assigned topics are not completely correct.
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It would also be beneficial to find more data to expand the model with more topics.
Furthermore, considering a multilingual approach to the topic classifier could be a good
option. Since the company is located in Malmö, it could be useful to be able to classify topics
in both Danish and English podcasts.

In order to obtain a more trustworthy evaluation, the podcast transcriptions needs to be
a bit more accurate. This would likely also lead to better model performance. Since advances
are constantly made in natural language processing tools, this is highly achievable.

To my knowledge, at the time of writing, there are no topic classifiers available, such
as the models created in this master´s thesis. Because such tools could be useful, the work
done here is highly relevant. Lastly, even if the model does not classify all topics in a podcast
correctly it does give a good outline of the topics covered in an episode. This can likely be
used in a rudimentary episode analysis, and with some improvements it could prove to be a
powerful tool in improving podcast content.
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A. Tables

Category Category
Aktier Korruption och missförhållanden i offentlig verksamhet
Alkohol och dryck Medicin och hälsa
Arbete Medier och journalistik
Resor: Asien Mode
Astronomi och rymdfart Motorsport
Barn och familj Musik
Bilar Olyckor och katastrofer
Biologi Organiserad brottslighet
Bitcoin och andra virtuella valutor Paranormala fenomen, ockultism och ufologi
Bollsport Politik: inrikes
Bostad, hem och trädgård Politik: utrikes
Censur och yttrandefrihet Privatekonomi
EU Psykologi
Erotik och sexualitet Relationer och samlevnad
Etik Religion
Feminism Restauranger, barer och nattklubbar
Film och filmproduktion Rollspel och Sällskapsspel
Filosofi Rädsla/skräck
Fysik, matematik och teknologi Serier och serietidningar
Glädje Skönhet
Historia Socialantropologi, etnologi och sociologi
Hockey Sorg
Humor Språk
Husdjur Stadsplanering, infrastruktur och arkitektur
Hälsa Tatuering och piercing
Irritation Telefoni, surfplattor och läsplattor
Jakt, fiske och vildmark Träning
Jämställdhet och diskriminering Träning, kost och kosttillskott
Kemi och pyroteknik Utbildning och studier
Klimat, miljö och geovetenskap Vapen och militär
Konspirationer och alternativa teorier Vintersport
Matlagning och metoder Resor: Övriga världen
Litteratur

Table A.1: List of all possible topics in the training dataset collected
from Swedish online forums in Swedish.
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Category (eng.) Category (eng.)
Shares Corruption and Misconduct in Public Business
Alcohol and Beverage Medicine and Health
Work Media and Journalism
Travel: Asia Fashion
Astronomy and Space Motorsport
Children and Family Music
Cars Accidents and Disasters
Biology Organized Crime
Bitcoin and other virtual currencies Paranormal phenomena, occultism and ufology
Ball sports Politics: Domsetic
Housing, Home and Garden Politics: Foreign
Censorship and Freedom of Speech Personal Finance
EU Psychology
Erotica and Sexuality Relationships and Cohabitation
Ethics Religion
Feminism Restaurants, Bars and Nightclubs
Film and Film Production Role Play and Board Games
Philosophy Fear/Horror
Physics, Mathematics and Technology Comics and Comic books
Joy Beauty
History Social Anthropology, Ethnology and Sociology
Hockey Care
Humor Language
Pets Urban Planning, Infrastructure and Architecture
Health Tattoo and Piercing
Irritation Telephony and Tablets
Hunting, Fishing and Wilderness Training
Gender Equality and Discrimination Exercise, Diet and Supplements
Chemistry and Pyrotechnics Education and Studies
Climate, Environment and Earth Sciences Weapons and Military
Conspiracies and Alternative Theories Winter Sports
Cooking and Methods Travel: Rest of the World
Literature

Table A.2: List of all possible topics in the training dataset collected
from Swedish online forums in English.
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Trots den stora populäriteten hos podcaster finns det få verktyg för kreatörer att
utvärdera och analysera sina avsnitt. I detta arbete har jag tränat olika modeller för
att klassificera ämnen i podcasts, som ska kunna användas i ett sådant verktyg.

Väldigt många personer lyssnar på en eller flera
podcaster varje vecka, och antalet lyssnare ökar
ständigt. Trots detta finns det väldigt få verktyg
tillgängliga för kreatörer att utvärdera innehållet
och ta deras podcastserie till nästa nivå. Vidare
är det också värdefullt för kreatörer att veta vilka
företag de kan vända sig till för betalda samar-
beten. GetReachAudio är ett företag som sam-
lar användardata och statistik för podcaster och
hjälper kreatörer ta beslut om hur de ska utveckla
sin podcast. Ett värdefullt verktyg i ett sådant
beslut är att kunna analysera vilka ämnen som
berörs i ett avsnitt, samt när i avsnittet de tas
upp. Detta kan visa huruvida vissa ämnen resul-
terar i större lyssnarintresse, samt ge en indikation
om vilka sorts företag som skulle vilja marknads-
föra sig själva i podcasten.

I mitt arbete har jag tränat olika modeller
för att klassificera ämnena i olika podcastavsnitt.
Podcasten som användes för att testa modellerna
var Dumma Människor.

För att träna modellerna skapade jag ett
dataset genom att hämta en stor mängd tex-
ter från onlineforumen Flashback och Familjeliv.
Dessa användes för att språket skulle påminna om
språket i podcasten, det vill säga vara så nära tal-
språk som möjligt. Från dessa forum samlades

texter från 65 olika kategorier, där 1000 texter
från varje kategori användes i träningsprocessen.
Här bestämdes en texts kategori av vilken rubrik
den tillhörde i forumet.

För detta tränades en rad modeller som använde
sig av för-tränade modeller på en stor textcorpus.
Se figur 1 för hela arkitekturen. Dessa modeller
jämfördes sedan med en enklare basmodell för att
se hur stor förbättring de gav.

Figure 1: Den övergripande modellarkitekturen
som användes.

En kvalitativ utvärdering av modellerna på pod-
castdatan visade att den bästa modellen var den
som använde sig av en modell för-tränad på sven-
ska texter. Resultaten visade även att de mod-
eller som finjusterats för träningsdatan prester-
ade sämre för podcastdatan. Den slutgiltiga mod-
ellen klassificerade rätt kategori i podcasten unge-
fär hälften av gångerna och presterade 75% bättre
än basmodellen.
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