
In
d

u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n

g
in

e
e
ri
n

g
 a

n
d

A

u
to

m
a
ti
o

n

CODEN:LUTEDX/(TEIE-3112)/1-53/(2022)

Bluetooth low energy mesh
logger

- Time synchronization of nodes in a mesh network

Ossian Sandell
Oskar Olsson

Division of Industrial Electrical Engineering and Automation
Faculty of Engineering, Lund University

Abstract

There are many time synchronization systems in large data networks that are
in the works around the world to make sure everyone sees the same time down
to the granularity of sub seconds. When one dives deeper into smaller networks,
like LANs and various networks with embedded systems, a need for higher res-
olution of granularity arises and resolution around the millisecond is desired.
With embedded systems one can develop software for very specific tasks, such
as sampling different kinds of entities. When these samplings are done in an
environment that calls for quick response times (around the millisecond) there
is a need for timestamping each sample. When having a set of data captured at
the same time from different devices, for that data to be comparable with each
other synchronization is needed. Synchronization can provide a certainty, that
each data was captured within desired granularity of time and with respect to
a common time line.

This thesis aims to make a prototype that does sampling from gyroscopes, ac-
celerometers and compasses with as little as one millisecond difference between
every unit that samples. Longer term tests to gather data of the characteristics
of the Bluetooth low energy mesh were made. An algorithm was developed to
determine the time it took for signals to travel within a bluetooth mesh network.

Keywords: IoT, Bluetooth Low Energy, Mesh, synchronization, nRF, Zephyr,
SoC, 9-DoF sensor

i

Acknowledgement

The idea and foundation for this thesis was brought up by Adevo Consulting.
We want to direct our gratitude and thanks to Mattias Wallinius and Maja
Arvehammar at Adevo Consulting for all the support and resources they pro-
vided through the thesis work.

We also want to thank Anders Robertsson and Samuel Estenlund at Lunds Uni-
versity for quickly responding to us and providing help when we asked for it.

The thesis has been fun, stimulating and very relevant for our electronics ed-
ucation. As the work progressed there were many moments that showed us
that we had a completely different understanding for which use cases the work
could prove to be of assistance in. We were delighted to realize what the work
could achieve in the industry of internet of things (IoT) and it motivated us
to research even more of the possibilities of embedded systems and real time
operating system.

ii

Contents

1 Introduction 2
1.1 Background . 2
1.2 Project Aims . 2

1.2.1 Research questions . 2
1.3 Outline . 3

2 Theory 4
2.1 Zephyr . 4

2.1.1 Flags . 4
2.1.2 Devicetree . 4
2.1.3 dts . 4
2.1.4 Overlay . 5
2.1.5 Interrupts . 5
2.1.6 Callback . 5
2.1.7 Configuration of GPIO . 5

2.2 nRF . 6
2.2.1 nRF52840 . 7
2.2.2 nRF5340 . 7

2.3 IDE . 7
2.4 Network . 8

2.4.1 Synchronization algorithms 8
2.4.2 BLE . 11

2.5 Bluetooth mesh . 12
2.5.1 Provisioning a device . 14
2.5.2 GATT . 14
2.5.3 Models in Bluetooth Mesh 16

2.6 Components of the project . 18
2.6.1 The system clocks . 18
2.6.2 9-DoF . 19

3 Experimental setup 20
3.1 Introduction to testing of synchronization 21

3.1.1 First test: Speed of the interrupt 22
3.1.2 Second test: Measurement of BLE mesh signal transfer time 23
3.1.3 Final test: Test bench trial 24
3.1.4 Synchronization through statistical evidence 26

3.2 Including external units . 27
3.2.1 External RTC clock . 27
3.2.2 9-DoF sensor . 27

iii

4 Result 29
4.1 Result of the millisecond time sync test 29

4.1.1 Result of first test . 29
4.1.2 Result of second test . 29
4.1.3 Result of final test . 29
4.1.4 Calculation of the statistical evidence 30

4.2 The code resulting from tests . 30
4.2.1 Synchronization pulses . 31
4.2.2 Selection of synchronization point 32
4.2.3 Compensation for internal drift of clock 34

5 Discussion 36
5.1 Analyzing the final test . 36

5.1.1 The result variation of the cards 36
5.2 Implemented code for synchronization 37

5.2.1 Visualising the complete project 37
5.3 Possible use cases for the results 39

6 Conclusion 40
6.1 Answers to research questions . 40

6.1.1 Synchronization . 40
6.1.2 Interface device . 40
6.1.3 Data storage . 41
6.1.4 Data transfer . 41

6.2 Future work . 42
6.2.1 Implementation of external device 42
6.2.2 Data storage and data transfer 42

References 43

7 Appendix 44
7.1 Terminal output . 44
7.2 Counter . 46

iv

Abbreviations

List of abbreviations and their meaning

API - Application Programming Interface

BLE - Bluetooth Low Energy

CPU - Central Processing Unit

GATT - Generic Attribute Profile

GPIO - General Purpose Input Output

IC- Integrated Circuit.

IDE - Integrated Development Environment

IoT - Internet of Things

I2C - Inter-Integrated Circuit

nRF - Nordic Radio Frequency, a product line from Nordic Semiconductors.

RTC - Real Time Clock

RTOS - Real-Time Operating System

SIG - (Bluetooth)Special Interest Group

SoC - System On a Chip

SDK - Software Development Kit

SPI - Serial Peripheral Interface

TAI - International Atomic Time

TTL - Time To Live

UML - Unified Modelling language

9-DoF - Nine Degrees of Freedom

1

1 Introduction

This thesis will investigate and develop synchronized logging with BLE mesh
communication for the sake of Adevo Consulting AB. The research has been
done at Ideon Lund with the help and supervision of Adevo and through the
Division of Industrial Electrical Engineering and Automation.

1.1 Background

Adevo are interested in the Nordic Semiconductor nRF series of cards for de-
velopment and to investigate their capacity to communicate through a BLE
mesh. They want to have the communication synchronized and tested to see if
it reaches a certain standard. If it is possible to reach the desired standard then
base code for synchronizing and logging data should be developed. There are a
lot of applications for this if it is proven feasible.

1.2 Project Aims

The main aim of the project would be to investigate and prove that synchro-
nization and collecting of data could be done at a threshold of a millisecond. If
done successfully, the secondary aims are developing base code for sensors to log
data synchronized in a BLE mesh setup and find an implementation to transfer
that data to a cell phone.

1.2.1 Research questions

From the basis of the project aims the following questions should be answered.

1. What are the limits of Bluetooth mesh networks and how to synchronize
unit clocks to assert millisecond resolution?

2. How to interface and develop drivers for I2C or SD sensors for Nordic’s
development kit boards(nRF52840 nRF5340) and Zephyr OS?

3. What are the limitations of logging storage and how should data and time
stamps be stored?

4. How to transfer data and timestamps in an efficient way to a mobile phone
with full security?

2

1.3 Outline

The four questions in section 1.2.1 should be done in their started order with re-
spect to time and if the implementation of the synchronization takes longer time
than expected then that should be prioritized to complete before moving on to
the next step. The project is built so that the next step can not be taken unless
the previous one is completed. The software will be programmed in Zephyr
OS which is linux based. The software will be developed on a system-on-a-chip
(SoC) of model nRF52840 and be written in the Connect SDK development tool
for Visual Studio Code. C-guidelines will be followed. All devices are chosen
and provided by Adevo Consulting AB. In chapter 2 the theory about Zephyr
and nRF is given. This chapter also delves into BLE and its mesh some theory
about the components of the project is laid out. Chapter 3 is about experimen-
tal setup and describes how the project was approached. The result are then
presented in chapter 4 and discussed in chapter 5. Finally section 6 contains the
conclusions of the thesis and also contains possible extensions for future work.

3

2 Theory

In the theory section of this thesis description and functionality of important
aspects of this project is given. This section highlights what has been important
to understand for completing the project and also makes it easier for the reader
to understand dilemmas and suggested solutions.

2.1 Zephyr

Zephyr is an open source and linux-based project. Information about Zephyr is
gathered from their official website (Zephyr,2022)[9]. The Zephyr OS is designed
for use on resource-constrained and embedded systems. Its kernel supports mul-
tiple chip architectures including ARMv8-M (Cortex-M) which the nRF52840
and nRF5340 are built around (see section 2.2.1 and 2.2.2 for more details about
each board).

Zephyr is a real-time operating system (RTOS). This RTOS is designed with
Bluetooth low energy (BLE) in mind, making Zephyr perfect for the energy
constrained devices used in the project. BLE is a “low energy” protocol of
communicating through Bluetooth that requires certain features for it to be
used and implemented. Zephyr provides what is necessary for BLE to be imple-
mented and uses it as a form of wireless communication. The code in Zephyr is
written in the programming language C, Zephyr i primarily written in C (some
C++) and supports natively applications written in the C language. To utilize
Zephyr’s functions it is important to understand the following aspects of embed-
ded systems: flags, devicetree, overlay, interrupts, callback and configurations.

2.1.1 Flags

When creating I/O with Zephyr’s GPIO the communication is modifiable through
flags. These flags include input/output, different ways on how the communica-
tion is triggered and configuring interrupts.

2.1.2 Devicetree

A devicetree in Zephyr is a hierarchical data structure that describes the hard-
ware of supported boards. As the name suggests, devicetree is a data structure
with nodes in a tree fashion and is accessible through Zephyr in human-readable
text format.

2.1.3 dts

dts stands for devicetree structure and is a name for devicetree bindings, which
is the grouping and implementation of devices to a specific file. This file declares
each requirement of the belonging device.

4

2.1.4 Overlay

If changes to the devictree is needed, i.e., for defining new inputs and outputs,
an overlay file can be created. In an overlay file you can define new pins for I/O
or edit existing ones, as well as making aliases for the pins for easy access from
the source files. The overlay file is compiled together with the dts file and can
thereafter be flashed onto the board.

2.1.5 Interrupts

An interrupt service routine (ISR) in Zephyr allows you to execute a function
asynchronously in response to a hardware or software interrupt. The ISR seizes
the control of the current thread in work with very little overhead.

2.1.6 Callback

A callback function is made to be available for other functions. It is executed
right after when its associated pin is activated or triggered. With callback you
can specify how you want the function to communicate with the chip on its
board.

2.1.7 Configuration of GPIO

When declaring the functionality of a certain peripheral, for example a certain
I/O-pin and on which flank it should trigger and if it should be an input or an
output. The configuration is a function which often returns an integer of 0 if the
implementation was successful, and in that way it is possible to detect an error
by implementing an if case. This is an example of how GPIO can be configured,
and configuration is also done for external units and models in similar fashion.

5

2.2 nRF

In this section, explanation about Nordic and the nRF52/53 series is given. The
section attempts to demonstrate the interesting aspects of using two different
types of cards and the interest in comparing the results. Information about
Nordic and their products are retrieved from their website (Nordic,2022)[1].

Nordic Semiconductor is a Norwegian fabless 1 semiconductor company special-
izing in wireless communication technology that powers the Internet of Things
(IoT). Nordic offers a variety of processors with wireless multiprotocol System-
on-Chips for development purpose. For this project the work has been on the
nRF5340 and nRF52840. These boards are SoC’s that pack multiple functional-
ities, such as Bluetooth low energy, Bluetooth mesh, NFC and multi-threading.

Figure 1: Comparison of our Bluetooth LE SoCs. The figure is retrieved from
(nRF, 2021)[10]

In Figure 1, the prestanda of the two cards can be seen. The two cards CPU
performance makes it possible for different configurations of the 3 Bluetooth
low energy layers (see Section 2.4.2 for BLE layer explanation), nRF52840 can

1Produces schematic and sale of semiconductors, but the production is outsourced.

6

have single-chip configuration and the nRF5340 can have dual-chip configura-
tion. The two configuration explanations are gathered from (Zephyr,2022)[3]
and are described as the following:

Single-chip configuration: Meaning that all layers of BLE and the application
are run on the same chip. This means less power consumption since all the
layers only need one chip to run but it may affect the processing time.

Dual-chip configuration: The application and host will be run on the same IC
while the Controller and Radio Hardware will be run on another meaning there
are more stacks to process the communication within a mesh, possibly lowering
the processing time.

2.2.1 nRF52840

The nRF52840 has a single Arm Cortex-M4 CPU leading to Single-chip config-
uration which means host, controller and radio hardware will be running on the
same IC. The nRF52 and nRF53 Series are all-flash based SoCs. The informa-
tion is gathered at Nordic product description of nRF52840 [10].

2.2.2 nRF5340

The nRF5340 has SoC with two Arm Cortex®-M33 processors allowing Dual-
chip configuration meaning two separate ICs, one running the Application and
the Host, and a second one with the Controller and the Radio Hardware. The
information is gathered at Nordic product description of nRF5340 [11].

2.3 IDE

The nRF product line has several possibilities for platform development where
you can flash, build and debug code through Zephyr’s meta-tool, “West”. Zephyr
give a basic introduction about West on their website in basics (Zephyr, 2022)
[2]. West allows you to use command lines to work with projects, most com-
monly Git repositories, under a common workspace directory. Segger Embedded
Studio (SES), which is very widely used to interface embedded systems, has an
“nordic” edition which provides interface to nRF’s SoC devices. Since 2021, Vi-
sual Studio Code also has an extension called “nRF connect” which also brings
a complete IDE experience for developing code aimed for nRF chips.

7

2.4 Network

In this project there will be a network for devices to communicate, and here we
describe the general theory of networks and then describe the type of network
communication that is used.

2.4.1 Synchronization algorithms

The following synchronization algorithms and their description have been re-
trieved from a master thesis made on the subject from Time Synchronization in
Short Range Wireless Networks [8]. In any network of nodes that do any type
of sampling it is important to have the samples collected from all the nodes syn-
chronized in time and having the data collected without any sort of timestamps
makes the data more or less worthless.

In wired networks of master-to-slave or client-to-server there are established
time synchronization protocols that are quite accurate and precise, such as the
Network Time Protocol (NTP) that was first released in 1984. NTP can syn-
chronize its network packets between nodes down to 200µs from each other and
in some cases even as low as tens of µs (in its newest version NTPv4). With
these qualities, NTP is widely used to synchronize clocks in PC’s. Two examples
of algorithms will be briefly explained to give an idea on why synchronization
may be needed.

8

PTP

Precision Time Protocol (PTP), also used over wired networks (proven to work
wireless in LAN too), can have synchronization down to submicro second which
makes it useful in automated control systems. In a client-to-server network with
PTP the client sends out a broadcast containing a time message tc1, the server
receive that broadcast and timestamp the time ts1 when receiving it. Then the
client sends out a follow up message including the actual time tc1 for broad-
casting it. After this the server periodically send out a “delay” message with
the transmission time between the client’s follow up message and the server’s
“delay” message ts2. Finally, the client responds with a delay response message
with the timestamp tc2 of receiving the delay message from the server. With
these timestamps, the server can now calculate the delay between client and
server according to Formulas 1 and 2. Visualization of PTP can be seen in
Figure 2.

Dcs = ts1 − tc1 (1)

Dsc = tc2 − ts2 (2)

The one-way delay Dw and Offset is calculated with:

Dw = tc1 +
tsc
2

(3)

Offset = Dcs −Dw (4)

The server adjusts its clock according to Offset .

9

Figure 2: The different timestamps of PTP.

RBS

In wireless networks, such as Wifi and Bluetooth, often with battery driven
devices, time synchronization becomes a question of energy consumption. Ref-
erence Broadcast Synchronization (RBS) is a protocol for wireless broadcast
networks where the receivers estimate each other’s clocks. So in the client-
server example mentioned in Section 2.4.1, not only is there to be a broadcast
message from the client containing a starting point, but also communication be-
tween the servers to make sure every server has the same starting point in time.
The delays and offsets with the broadcast message caused by the irregularities in
time taking to handle the message package in the receivers and senders network
stack. With RBS, when timestamps occur at the receivers, resulting in being
able to negate the senders time delay and only the receivers package handling
needs to be accounted for in the synchronization.

10

2.4.2 BLE

BLE is a further developed version of the classic Bluetooth, included at version
4.0 developed by Bluetooth Special Interest Group (SIG). It functions as the
classic Bluetooth but with more possibilities of implementation and less energy
demanding. What makes BLE more energy conserving than regular Bluetooth
is that it lets its devices turn the radio controller off to “sleep” and only turns it
on when needed. What further makes BLE differ from its classic version is the
device communication, where the latter only have point-to-point communica-
tion; whereas the former also have broadcasting of messages. Bluetooth official
website has an introduction on their BLE mesh variant [4].

BLE is implemented by Zephyr to establish a mesh network. Zephyr explains on
its website that there are three main layers that together make up the Bluetooth
Low Energy protocol stack. The layers are Host, Controller and Radio Hardware
and they all need to be implemented for the device to use BLE. Zephyr has many
libraries, by configuring and enabling certain libraries with macro APIs they
can be included in the build of an application. This grants usage of predefined
functions that can be used in said application. This three layer hierarchy can
be found in Zephyr’s documentation[9].

Host

Host sits right below the application layer, meaning that when coding in the
application one cannot edit the host layer. The host consists of several network
and transport protocols that gives the device ability to communicate with each
other.

Controller

The Controller implements the link layer of the OSI-model, and is a low level,
real-time protocol that provides standard communication. The link layer guar-
antee the delivery of packets.

Radio Hardware

Hardware implements the required analog and digital baseband functional blocks
that permit the Link Layer firmware to send and receive signals in the 2.4 GHz
band of the spectrum.

11

2.5 Bluetooth mesh

Bluetooth mesh was released officially in July 2017, and was developed and
specified by Bluetooth SIG. According to Ericsson’s whitepaper about mesh
published 2020 it is defined as: The Bluetooth Mesh Profile standardizes a full
stack connectivity solution for mesh networking, extending Bluetooth applicabil-
ity for IoT use cases[14]. It is built upon Bluetooth LE 4.x and requires that
to work and it broadcasts data over Bluetooth low-energy to specified address.

Figure 3: Mesh network

Figures 3 and 4 are retrieved from Ericssons whitepaper [14] about mesh. They
describe the Bluetooth mesh concept. It allows for a mesh network to be set
up between devices (called nodes once provisioned), where communication is
done by relaying. Relaying in a Bluetooth mesh network is based on a managed
flooding communication model. This means a message is forwarded by nodes
until it reaches its destination. The relaying of a message within a network is
known as a hop. A message may hop x amount of times, varying on the Time
To Live(TTL) of the message. This form of communication allows a capillary
network to be formed between nodes. A capillary network is described as the
following by an article from (Ericsson, 2014)[5] : ”... a local network that uses
short-range radio-access technologies to provide local connectivity to things and
devices”. This network extends the reach of its devices, allowing communication
between nodes that are not within direct radio reach of each other.

12

Bluetooth mesh standardizes communication and control actions within this
network and the communication within the network is through BLE. Nodes in
the network can be added at different times and can talk to each other directly.
The network does not need any centralized operation and no coordination is
required. Addresses to certain nodes or groups of nodes are easily configured
through the provisioner. The provisioner is often a smartphone.

Figure 4: Architecture of the Mesh

In Figure 4 the seven layers are defined. Much like the OSI model2, there are
seven layers where each layer has its own task. In short, they all work together to
take data, packet it, authenticate, encrypt and assemble it when transmitting a
message. The layers also work together when receiving a message, they decrypt,
authenticate, handle segmentation and access the data in the message. There
are more functionalities to the mesh model but it is not brought up in this
thesis.

2The Open System Interconnection (OSI) model consists of seven layers model of data
communication

13

2.5.1 Provisioning a device

The process of provisioning devices is as follows; an unprovisioned device will
beacon Bluetooth signals, thus becoming visible to the provisioner. The provi-
sioner is the owner of a network and by provisioning a device the provisioner
will add this device to its own network making it a node. The provisioner,
which is often a smartphone, is a node that implements the configuration client
model. A model in this context means to define the basic functionality of a
node, the model context is further explained in Section 2.5.3. The provisioning
is done by the provisioner sending an invitation and the device responding by
presenting its capabilities. The provisioner and the device exchange public keys,
either in-band or Out of Band. (Out of Band control signals are not being sent
on the same frequency as the data, with in-band the control signals are on the
same bandwidth as the data signals.) The project will provision using OOB for
exchange of public keys. Provisioning is described in more detail on Zephyrs
website about provisioning.[13]

2.5.2 GATT

When it comes to exchanging data between a server and a client, it is easy
to just send a simple data packet with the data you want to send. There is
however a whole protocol that defines low-level interactions, named Generic
Attribute Profile (GATT). In this protocol, every single item of data exchanged
between servers and clients must be formatted, packed and sent accordingly.
This makes for compatibility, especially with values of sensors. With GATT it’s
easy to develop applications and firmware to read sensors. GATT’s architecture
is shown in Figure 5 and is retrieved from O’Reillys article on GATT. [7]

14

Figure 5: Architecture of Generic Attribute Protcol (GATT).

Service:. The service describes certain amount of data contained within char-
acteristics, the amount of characteristics contained within a service may vary.
Each service is distinguished through a specific number ID called Universally
Unique Identifier (UUID).

Characteristic: Is a container for user data, and includes at least two at-
tributes: the declaration and the value. The declaration provides metadata
about the value.

Attribute: This is the metadata itself and attributes contains the data that’s
supposed to be transmitted

15

2.5.3 Models in Bluetooth Mesh

Mesh has several predefined models for different purposes. These models stan-
dardize the communication between devices from different vendors, the models
represent a specific service and define messages that act on a set of states. As
Woolley states in the article Mesh Model Overview [15], ”... from a network’s
point of view, models make the device what it is”. In applications, these mod-
els are gathered in one or more elements, acting as a virtual entity in a mesh
network. When provisioning a device with a certain model, one can set its own
unique unicast address. There are many models available in Zephyr’s repository,
such as light control, sensor reading, and device configurations, but it is often
necessary to define a custom model that handles messages according to one’s
need.

Model ID

The predefined models use their own reserved vendor model IDs to be included
in the network package’s opcode. Opcode should be included in the head of
the packet that is the message. Opcodes is a number of bytes that tells the
hardware what operations should be done with the message it comes with. The
different IDs for the models are necessary to identify the origin of the message
between the nodes in the Mesh, so one node easily knows how to handle the
message.

Predefined models

In this thesis, several models were used. They provide very basic functionality,
and are described below.

Configuration model

To configure a mesh network there has to be a provisioner to connect the un-
provisioned devices to the mesh. These models provide parameters to the node,
encryption keys and any extra features if there are any defined. This model
is an important part in making the communication in the Mesh in a secure
fashion, and the Mesh becomes resilient against various threats and issues, in-
cluding replay attacks, man-in-the-middle attacks and trash-can attacks. They
are mentioned in Bluetooth’s blog abut provisioning [13].

Health model

This model looks after the attention state of the devices. As its name indi-
cates, it is primarily used to report errors within the mesh and to provide node
diagnostics.

16

Time model

Time models provide functions for date synchronization with granularity of a
1/256th second. The time measurement is based on the International Atomic
Time standard. The time model client role is to send out time synchronization
messages to its respective Time model servers whenever it is needed.

Custom model

Custom models need their own ID’s, called universally unique identifier (UUID),
which is 128 bits. There are macro API’s in the Zephyr library that let you define
ID’s in C code. Depending on what the purpose of the model is, the way the
model sends its messages, how it should be received and associated is defined
through macro API’s.

17

2.6 Components of the project

The project will have components connected to the development card once the
base code is completely developed. One of these components is a RTC which
purpose in the project is to detect drift of the internal clocks making it possible
to compensate. The other is a 9-DoF sensor which will be collecting data at
each server once synchronization within the mesh is done.

2.6.1 The system clocks

The nRF boards each has an internal clock which will start counting from when
the system started. These are what the system uses to track time. This project
will also use an external hardware clock refered to as RTC and this clock can be
battery driven and has a higher precision than the internal clock’s. The clock
uses the entity ticks which depends on frequency of the clock. For example,
a clock with the speed of 32,768 Hz will have the value for one tick to be

1
32678 = 30517ns.

The internal clock

The nRF52840 and nRF5340 use a quartz crystal for the internal clock. This
type of crystal is prone to drifting due to fluctuations in air pressure and temper-
ature. From the data sheet of the cards nRF52840 and nRF5340 specification
of there clock can be found, see Table 1.

Table 1

Data about each cards clock

nRF
52840

32 MHz crystal
SMD 2520, 32
MHz, +/- 10
ppm

Applies only when HFXO
is running

nRF
5340

32 MHz crystal
SMD 2016 32
MHz ftol= ±30
ppm

Only applies when the
high frequency crystal os-
cillator (HFXO) is run-
ning

nRF
5340

32 kHz crystal
SMD 2012
32.768 kHz
ftol= ±20 ppm

Only applies when the low
frequency crystal oscilla-
tor (LFXO) is running.

RTC

This project will use an external RTC produced by Maxim Integrated named
DS3231. Information is gathered from the data sheet.[6]

The DS3231 is a high precision real-time clock applicable at server communicat-
ing through I2C with a Temperature Compensated Crystal Oscillator (TCXO)

18

which compensates for drifts caused by temperature fluctuations.

The crystal in both the internal and the external TXCO, has about 100ppm
accuracy, which if a clock based on the crystal is on for 24 hours would produce
about 8.6 s error (100 ppm translates to an error of 0.0001 seconds every second).

2.6.2 9-DoF

Synchronization would allow data logged and stored with time stamps and the
data should in our case be collected from a 9-DoF sensor. The sensor used
was the ICM-20948 produced by TDK InvenSense, see their website for a short
description and link to data sheet [9-DoF].

The IMC-20948 is a low power 9-axis motion tracking device suitable for IoT
applications. The device packs a 3-axis gyroscope, 3-axis accelerometer and a
3-axis compass. Communication is done through SPI at 7 MHz.

19

3 Experimental setup

In experimental setup the tests and their setup will be explained and how each
test was approached. One reason for the tests was to investigate the possibility
of time synchronizing nodes (see Section 2.5.1 for node description) within a
mesh network (see Section 2.5) to a tolerance of one ms. The devices in these
tests are the nRF52840 and nRF5340 (Section 2.2). The role of the nodes within
the mesh was client and server,respectively. The server may be referred to as a
logger since its main purpose is to log data.

Another reason behind these tests, is that with every test, there were useful
code that could later be included in the final build. Whenever each test was
implemented, the documentation on the subject being implemented was read for
understanding and guidelines. The documentation could be from either Nordic
or Zephyr, see Sections 2.2 and 2.1 for explanation of important aspects of each
documentation.

20

3.1 Introduction to testing of synchronization

The idea was to find out if BLE could make a mesh hop (see Section 2.5) below
one ms. To test this possibility devices would be connected with cables and
also through a BLE mesh network. The communication went through both the
BLE mesh and through cable. In the mesh network one device would be the
client and the other devices connected would be the loggers acting as servers.
The client would send a signal to the servers and each server would respond
through a cable connected to the client. The signal via the cable would tell
the client that the device had received the signal. The client would store the
information on a log at what time it got a response from the server. This log
would then be analyzed for deciding if the signal was within the tolerance of one
ms making it acceptable as a synchronization signal. This would be the setup
for investigating signal’s transfer time in a BLE mesh, also known as a mesh hop.

The test would have to be going on for a longer time to ensure that there would
not occur any errors in code or components. During this longer test data from
logs would be collected and stored. This data would serve as background for
statistical evidence.

Before setting up the test for investigating mesh hop time and gathering data for
statistical evidence, it was necessary to investigate the time it took for signals
being transferred and executed. The interesting signals that were being sent
and processed was when the client sent a signal to the servers through the BLE
mesh and also when the servers responded by sending a signal through cable
back to the client. It was critical to see if and how these time consuming actions
would affect the time for a signal being sent through BLE mesh. Each signal
was isolated and tested on their own before all of them were incorporated in
the test bench trial where multiple nRF-cards would be up and running over a
longer period of time.

21

3.1.1 First test: Speed of the interrupt

The purpose of this test was to measure the processing speed of handling inter-
rupts see Section(2.1.5). Starting from a pre-built sample “button” by Nordic
Semiconductor and modifying it by configuring GPIO’s (2.1.7). One pin was set
to work as an output and the pin would go high if the button’s callback (2.1.6)
was triggered. On the same device an input pin would be set to flag (2.1.1) on
the rising edge3 of the incomming signal.

After completing configuration of I/O’s for the pins the next step was connect-
ing the output pin and the input pin with cable and then send a signal from the
output pin by pressing the button. To measure the time it took for the signal
traveling between the pins. The signal was registered at the input and sub-
tracted by the time it was registered at the output, The times were registered
via the callback of each GPIO. The purpose of this implementation was that
it would register the time for a signal being sent over cable. This would allow
cable communication between devices during the test bench trial, since it could
be stated that the time it took for the interrupt handling and travel through
cable could be neglected. The result of the test can be seen in the Section 4.1.2.

In Figure 6 is an UML diagram of the code’s function calls and handling of
interrupts. The cycle of the interrupt is when the output is triggered and set high
and the input pin registers the high from the output. The time is captured before
setting the output and after registering the input which gives a certification
that the time measures have included the two interrupts being handled by the
processor.

3When going from low to high state.

22

Figure 6: Function calls and interrupts

3.1.2 Second test: Measurement of BLE mesh signal transfer time

Here a mesh network was implemented using the pre-built sample “light” from
Nordic Semiconducor and modifying it by adding time model (see Section 2.5.3)
to it. The time model would allow for sending and receiving signal and the sig-
nals would be time messages referred to as messages. One device would read
messages and send signals through an output that would be the server, whereas
the other device, i.e., the client, would send messages and read on input. Mea-
suring the time it took for a message being sent by the client and receiving an
I/O signal from the server. The time was measured by saving the client’s uptime
in ticks (see Section 2.6.1) when sending messages and then saving the uptime
input was triggered, by subtracting the sending uptime ticks from receiving ticks
the amount of ticks it took for signal being sent over mesh was produced.

In Figure 7 is an UML diagram describing the time captured at the client when
sending the signal, and capturing the time at which the input pin was triggered.

23

Figure 7: Time between sending the signal to when input on the GPIO was
triggered

3.1.3 Final test: Test bench trial

The tests described in Section 3.1.1 and 3.1.2 were the build up for this final
test. This test was set up for collecting data to have a background for statistical
evidence and was designed as follows:

One device would be the client, sending a BLE mesh signal to the servers and
collecting their responses over I/O. There would be five servers receiving the
BLE mesh signal of the client and responding by sending a signal with I/O.
The client would repeatedly unicast a signal in the form of time message signal
over the Bluetooth mesh in an interval of 10 seconds. The response time from
the servers for the same Bluetooth mesh signal would be captured as described
in Section 3.1.2 and stored in an array The array would then be printed and
saved to a csv-file with the program termite4. The test would be running over
72 hours to gather data. The purpose of this was to collect data for statistical
background, to see if the time difference between the five nodes would be greater
than one millisecond.

Multiple tests were run for 0.5 - 2 hours to see if there would occur any errors
in the code or the logging program termite by having it collect data for a long
time. The setup differed, trying different cards as servers and clients.

4Termite is a program working as an external terminal capable to save the printouts in
different formats.

24

The test that ran for 72 hours had a nRF5340 as client and was broadcasting to
a group address within the mesh which had six servers/devices connected to it.
Three of the cards were nRF5340 but one of these was unsubscribed from the
group to fix retransmission problems (see Section 6 bleeding edge). The other
three cards connected to the client were nRF52840. The Terminal was logged
by termite.

Figure 8: Shown in figure: 3 nRF52840dk boards and 3 nRF5340’s all connected
through pins and powered with a USB hub. The two boards appearance is very
similar.

25

3.1.4 Synchronization through statistical evidence

The result of the test in Section 3.1.3 will be presented in the result Section 4,
but what the result showed was the need for statistical decision making when
synchronizing. The decision should be based on statistical background gathered
from tests. This section describes the thought behind using gathered data as
statistical evidence.

When collecting data from different loggers in a mesh network it is only in-
teresting if the time for when the data was collected is comparable to another
sensor in the same mesh network. To synchronize all the nodes having a sensor
that is a part of the same mesh-network, without having the nodes talking with
each other as with other syncronization algorithms(see 2.4.1), every node needs
to have an insurance that the their reference point is synchronized with other
nodes reference point. Loggers/servers receive a signal (in the form of a time
message) from the client that is below one ms to be the sync pulse. The sync
pulse is the pulse that contains the information that will be a reference point
for that specific server/logger and the pulse are an certain amount of signals
sent within a known interval.

The sync pulse will be a time message containing aTAI-time and the server/logger
will save the uptime at which it received the time message. These two time-
stamps will be a pair and will be saved as the sync point (the TAI and uptime
may differ between the servers/loggers connected within the same mesh but
they will have in common that the sync point was set by a sync pulse that was
within the time tolerance of one ms).

To ensure that the pulse that will be the sync pulse is within the tolerance, we
have to look at the statistical evidence and decide which pulse is guaranteed to
be under one millisecond. The statistical evidence says that if 1000 pulses are
sent then approximately 850 will be within the tolerance of one millisecond, so
the signal of the pulse which would be the sync pulse should be included by the
statistical median (the data used here is roughly from the result, see Section for
4.1.3 exact data). By sending 10 pulses, statistical background is generated to
be able to determine which one of the pulses arrived withing the one millisecond
tolerance. This is the statistical evidence that gives the synchronization its in-
surance. If the pulses are set to arrive in an interval of one per second one could
calculate the deviation of each pulse, by getting the time difference between two
pulses and subtracting one second.

Then by sorting the deviations and choosing the median of these to be the sync
pulse the “worst” cases are eliminated and a signal is chosen that is sure to be
part of the statistical evidence. The reason the median is chosen and not the
result closest to zero is that there are uncertainties within the card. The card is
told to send a signal after one second but the calculation of one second comes
with uncertainties caused by the card’s internal clock drift and execution speed

26

of the stack. The sync pulse will set the sync point of the server and all data
collected by a server/logger will have a time stamp that is referenced to the
sync point.

3.2 Including external units

For the final build there needed to be some external devices included and a
9-DoF sensor and a RTC-clock were used. These devices would be connected
and implemented to the SoC (nRF53/52) and tested to see if they would handle
the intended tolerance.

3.2.1 External RTC clock

The system would need precise clock values for each sample of data. To com-
pensate for the internal clock drift, an external clock would be implemented and
used. The clock would be an DS3231 and communicate with the card through
the I2C port.

Driver codes for the DS3231 existed in the Zephyr’s library for use. When
the drivers were added to our code it turned out to be incompatible with the
nRF52840dk internal clock, which led the stack to believe that the frequency
on the internal clock was lower than it was configured to be. Consequently the
DS3231 drivers were modified.

When the code detects a drift with the internal clock, it should notify the client
by sending a message to it. It was initially planned to use the GATT protocol
to send a message and therefore its architecture was studied in Section 2.5.2.
This idea was eventually scrapped in favor for using a custom mesh model
for messaging. The implication of using custom messages (see Section 2.5.3)
includes sending messages to specific addresses with custom data within the
mesh network, and also handling these messages by extracting the data from
the payload custom message package. This would allow a server that has drifted
to send a message at the time it drifted to the client. The client could act upon
this message and restart a time synchronization within the mesh network.

3.2.2 9-DoF sensor

Zephyr uses a devicetree to hold all the description of hardware. Since the driver
code for our 9-DoF sensors did not exist in the Zephyr project code it had to be
implemented. A driver code for an already implemented 6-DoF sensor was used
as a reference. There are two ways of implementing new driver codes for devices
to the Zephyr devicetree: either do the changes “Out of Tree” or “In Tree”. “In
Tree”-changes are the most straightforward process, where the driver code files
are simply added to Zephyr project’s driver folder. Since the project is updated
with new versions regularly, the ”In-Tree” option becomes unreliable with time;

27

any external changes to the project once downloaded would be overwritten with
every new version downloaded.
Additions to the devicetree in an “Out of Tree” manner is a bit more compli-
cated. “Out of Tree” means that the driver code would be added independently
of the Zephyr project’s repository, which means that the driver codes would not
be overwritten with new updated versions of Zephyr.
The driver code was modified to communicate with the board through SPI and
in an ”Out of Tree” manner.

28

4 Result

In this chapter we present the results of the tests described earlier in the report
and also the resulting synchronization structure developed from results of the
tests.

4.1 Result of the millisecond time sync test

This part will report the result of the tests described in Section 3.1

4.1.1 Result of first test

Presented in Appendix 7.1 is the time differences (in µs) between 100 interrupts.
In 41 of the 101 outputs the time difference was 30 517 ns. Since the internal
clock speed is set at 32 768 hz, the minimum time difference can be 1/32678 =
30 517 ns. This could also be converted to one tick (the smallest possible unit
for the processor to count in).

4.1.2 Result of second test

Presented in Appendix 7.2 is the time differences (in µs) between 100 interrupts.
Summary of the result is that the time can vary between ∼ 8000 µs and ∼
60000 µ, showing that the BLE signal may differ with each signal sent. Results
from the first test in Section 4.1.1 shows that the I/O is responsible for 0-30517
ns of the time of the signal, which is at most approximately 0.3% of the total
transfer time of the signal.

4.1.3 Result of final test

In this section the results of the test in Section 3.1.3 are displayed. The result
of the final test was gathered over 72 hours and can be seen in Table 2:

Table 2

Time differences between mesh hops measured by the client

Nbr of
cards

Card type
Max time
difference be-
tween cards

Median time
difference be-
tween cards

Percent of
time difference
under 1ms

2 nRF53 156555 µs 458 µs ∼ 85.8%
3 nRF52 157318 µs 580 µs ∼ 88.4%

5
nRF52 &
nRF53

159790 µs 3143 µs ∼ 0.00004%

To clarify the Table 2, where it says two of nRF53 the data being displayed is
between two cards of the type nRF53. Where it says five of nRF52 & nRF53
the data being displayed is between five cards, two being nRF53 and three being

29

nRF52. The amount of data samples gathered during the 72 hours are 24029.
During the test the amount of transmissions within the mesh was logged; in
99.8% of the sinals there were no package loss within the mesh resulting in no
retransmissions. The result of the three day test is used as statistical evidence,
which is then used for further implementation of the code.

4.1.4 Calculation of the statistical evidence

In this section the statistical probability calculation is presented, see Section
3.1.4 where statistical evidence is explained. The result of Section 4.1.3 says that
∼ 15% of transmissions will have a signal that differ more than one millisecond,
compared to the other signals within the same transmission5. By choosing the
median out of 10 signals as a sync pulse, means that for the sync pulse to
not be within tolerance, 5 or more signals have to “fail”, the ”failures” need
to have the same polarity Z+ or Z− in order to affect the median negatively.
When calculating the possibility of error during synchronization, the ”failures”
are assumed to be of the same polarity. By using the binomial theorem the
following can be summarized in Table 3.

Table 3

Using Binomial Theorem to calculate the probability of five signals
out of ten arriving later than one millisecond at one server

Probability of failure on a single
trial

0.15%

Number of trials 10
Number of successes (x) 5
Cumulative probability P(X > x) 0.009874091

This means that even though including a margin on failure chance and disre-
garding that the error needs to have same polarity to effect the median, the
chance of one server choosing a sync pulse that is not within 1 ms is less than
1%.

4.2 The code resulting from tests

The goal of the base code is to ensure that servers connected in the same mesh
network have a synchronization within the tolerance of 1 ms. The synchroniza-
tion for this project means that each server has a “sync-point” that is related
to the client (time authority). The sync-point is guaranteed to have been sent
from the client and received at the server within the tolerance. This section will
mention synchronization pulses; a synchronization pulse is a time message sent
from the client via the pre-defined model Time cli. It is sent through the mesh
network. This section will show the resulting base code, implemented after the

5The signal is the message from the client directed at one server. The transmission is the
client broadcasting to all the servers

30

test result shown in Section 4.1. The plant UML diagram in Figure 9 will have
the function name corresponding to each arrow.

4.2.1 Synchronization pulses

Pulses of 10 (this is how it is implemented, it is possible to increase/decrease
the amount of pulses) are sent from the client to each server in the network.
These pulses are time messages sent in an interval of 1 second via the
Bt mesh model time cli and the time messages is containing a time stamp in
TAI. Each server saves the time stamp and the up-time at which it arrives to
an paired array6. See plantUML in Figure 9 for visualization of how this work:

Figure 9: An UML diagram over the synchronization process

Set tai

Set tai is a function at the client that when called on, gathers the uptime of
device in tick and converts that to seconds, then updates the TAI pointer at the
client

6An array of pair objects. A pair object is defined in object-oriented programming lan-
guages as an object that holds two values. In this project a pair object was made to hold two
integers

31

Handling of sync pulse

This section illustrates the client sending time messages and the server handling
those messages and storing the information retrieved from them.

• Bt mesh time cli time set() with TAI: time message being sent from the
client over BLE mesh containing TAI value as data.

• Time update cb: callback function at the server which will be triggered to
execute when a time message is received

• Paired time from pulse[x].tick : a paired array that will be updated when
the callback function is triggered. The tick part of the array stores the
current uptime when time message was received and the TAI part stores
the corresponding TAI-value sent by the client.

A time message is sent via Time model from the server containing the TAI
pointer described above. The TAI value and the uptime in ticks since the system
start is saved to an array pairing the two objects together. 10 sync pulses will
arrive with a one second interval, after which the server count the amount of
pulses to 10 a K work 7 function to set a synchronization point is scheduled.

4.2.2 Selection of synchronization point

After 10 sync pulses have been saved to a pair array the next step is to calculate
the difference between two adjacent times at which they arrived at the server,
and then subtract the one second interval. The calculations are saved to the
paired array Time diff pulses which is sorted based on the uptime, the median
values of this array become the global sync-point for that server.

Cal median time

Function to start the process of calculating and selecting the server’s sync point
and is called upon right after the server has received the 10 pulses described in
Section 4.2.1 Paired time from pulses and Time diff pulses are paired arrays.

Collecting time differences

The array gathered from the sync pulse function explained in Section 4.2.1 is
calculated in preparation for sorting.

• Time diff pulses[x].tai = paired time from pulses[x+1].tai : transferring TAI
value from previous array to the new array that will be calculated on.

• Diff : Calculating difference of 2 adjacent tick-values

7K work is used when scheduling of events in the thread and is a functionality provided
by Zephyr

32

Figure 10: a figure how the synchronization pulse is processed

• Time diff pulse[x].ticks=k ticks to us(diff) - 1s: taking the time diff and
converting it to microseconds and subtracting 1 second, then storing the
value in the array with a paired value of TAI.

The Time diff pulses array has a third paired category called uptime, here the
raw value of the ticks are saved to make it easier when selecting the syncpoint.

Selecting median of time differences

Sorting of time diff pulses and choosing the servers global sync point.

• Sort : function that sorts the array Time diff pulses based on the calcu-
lated ticks.

• Set sync point : selecting the median values of sorted array Time diff pulses,
TAI and uptime values will be the global sync point of the server.

The sync point will be a reference when collecting data with timestamps.

33

4.2.3 Compensation for internal drift of clock

Once synchronization is set at a server the validity of the syncpoint is as long
as the internal clock doesn’t drift further than 1 millisecond. By having an
external clock of higher precision and comparing it to the internal clock it is
possible to tell if drift of a magnitude greater than 1 ms has occurred and if so
the mesh network would be resynchronized by the client. In the UML diagram
in Figure 11 the code checking for drift is described.

Figure 11: How the code is checking drift with the TCXO

Check drift

A function that is able to be scheduled to be performed at a chosen interval.

• Internal ticks = K up time ticks: store the internal clocks value for com-
paring

Processing the DS3231

Function to gather external clock value and storing for comparing

• Get DS3231 uptime ticks: function that communicates with external com-
ponent RTC, that retrieves its clock value in ticks. Stores the amount of
tick to variable External ticks

• External ticks*scale: since the RTC clock speed is different to the internal
clock speed a scaling is performed for comparing.

34

Comparing

Compare the values of internal and external clock and if the difference is greater
than one millisecond a message is sent via custom model to the client to start a
new synchronization.

35

5 Discussion

In this section the results from Section 4 are analyzed, how the result matters
and plausible reasons for how the results turned out. It will also briefly touch
some use cases in which the results could play a role.

5.1 Analyzing the final test

The result from this test (see Section 4.1.3) met our expectations: 86% - 88%
of the broadcast signals were received at the servers within 1 millisecond from
each other on cards of the same type. This result meant that the project contin-
ued focusing on cards of the same type when establishing a mesh. The median
time retrieved from the final test can be mainly attributed to the time it take
for a mesh hop, and not the time it took for the interrupt handling and cable
traveling, since the result given in Section 4.1.2 shows that it can be neglected.

Focusing on the result of signal transmission time for cards of same type meant
that the code was in need of implementation to be repeatable, meaning that
instead of the synchronization trial being accurate 85% of the time it would be
a certainty that the synchronization was a success. The synchronization would
be repeatable and have the same outcome each time. The implementation of
this synchronization model would not be possible without the the statistical
evidence from the final test.

5.1.1 The result variation of the cards

From the result of the final test (see Section 4.1.3) it became clear that a
mesh network including two different card types was not possible, since only
1 out of 24029 trails were within the tolerance of 1 ms resulting in a success
of ∼ 0.00004%. The result of this could be explained by the fact that the
two card types had different chip-configuration, see Section 2.2. The different
chip-configurations can affect the network packet handling, resulting in different
processing speeds of message sent over the mesh. There could be a limitation on
the synchronization depending on chip-configuration of the nodes in the mesh
seeking synchronization, but more tests and research are needed in order to
conclude the chip-configuration’s implications.

There was also a difference between the two different boards. The two nRF5340
(servers) had between themself a median time of 468 µs and the three nRF52840
(servers) had between themselves a median time of 580 µs. This difference is
probably caused by the fact that the more servers in a network, the more time
it took for the client’s stack to handle all incoming GPIO interrupts. One
possibility explaining the increased delay is that when the client sends out a
broadcast message, the more server nodes there are in the mesh, the higher
the risk is that one server misses the broadcast and must wait until it gets the
message by the flood-principle.

36

5.2 Implemented code for synchronization

The result of the implemented code that is mentioned in Section 5.1 gave the
synchronization within the mesh a repeatability, setting a sync point could be set
within the tolerance. Meaning this project would be able to be built on further
to hopefully one day be a working prototype. In section 4.1.4 calculation is
done on what the percentage outcome of setting a sync-point from 10 pulses
would be. It should be noted that these calculations are approximated and
balanced in favor of failure. The result of these calculations is that the chance
of a sync-point being set that is not within the tolerance is less than 1%. This
calculation depends on the number of cards withing the mesh, the probability
of one synchronization failing becomes greater the more cards there are in the
mesh. This could be combated by raising the amount of pulses that are used
in setting the sync point. More trials and tests would be needed to find the
optimal amount of nodes and sync pulses for this code implementation.

5.2.1 Visualising the complete project

All code that has been or is planned on being implemented has followed a vision
for the final project build. In this section that vision is tried to be visualised by
depicting a flowchart for the goal of the final build, see flowchart in Figure12.

37

(a) Flowchart for client (b) Flowchart for server

Figure 12: Flowcharts

Seen in Figure 12a is the flowchart for the client. The input of a button pressed
will start an output of sync-signals being sent to servers. The client will then be
in a passive state until a signal from a server will start the process of re-syncing
or receiving data from a server.

Seen in Figure 12b is the flowchart of the server. The server will start the
synchronization process when an input from a sync-signal is detected. Once
synchronization is completed it will be in a stage where it is logging data at the
sampling frequency. The drift of the internal clock will be checked regularly and
if it has drifted then an output in the form of resync-signal will be sent to the
client. Before storing a logged value the memory space will determine if it is
possible to store another value else the collected data will be sent to the client.
There is also an input, to trigger data transfer to server.

38

5.3 Possible use cases for the results

The results indicate it would be possible to synchronize servers within a mesh
to a tolerance of 1 ms, which would allow data that is collected within this
mesh to be comparable to each other knowing that the difference between two
timestamps at max differ one ms. A field in which such a thing may be applicable
is the field of robotics. The following is a citation from article OH, (Y.T,2019)
[12] “Geometric errors in robots, i.e., errors in joint angles and datum location
error, are considered to be the main sources of position error”. So a possible
application for the research of this project is to equip sensors that are wireless
to each axis of a robotic arm and collect data so the errors may be documented
and possibly compensated for. These errors cause end effector inaccuracy and
eventually the robot needs to be calibrated. This is often done offline, and causes
downtime in production. Having a 9-DoF sensor on each axis of the robot arm
and having sampling done synchronized in time can provide an ability to do the
calibration in real time.

39

6 Conclusion

In this section a conclusion to the project is given, answering the research ques-
tions from Section 1.2.1 that were asked before the project started and looking
at how this project might be developed further with future works.

The project has been run with the aim to produce and develop a base code,
meaning that priority has been to produce something of value for the company
rather than researching the specifics over each choice. There have been certain
parts of the project that have been challenging and the problem of the challenge
has been explained to Adevo. Adevo has then taken responsibility to address
these problems and to solve them so that the development of the project may
continue.

The project has been developed at the bleeding edge which has been noticed at
times with certain bugs or uncertainties.

6.1 Answers to research questions

See Section 1.2.1 for the questions that the project set out to answer. These
questions were formed by Adevo AB. Although they have not been explicitly
addressed, trying to produce and develop the code for a synchronized BLE mesh
logger has helped to get these questions partly answered.

6.1.1 Synchronization

What are the limits of mesh networks and how to synchronize unit clocks to
assert ms resolution?

The limits of mesh network found through the 72 hours test was that messages
would arrive within the tolerance ca 85% of the time. With the knowledge
of the limitations the code was developed to establish synchronization through
statistical measures.

6.1.2 Interface device

How to interface and develop drivers for I2C or SD sensors for Nordic’s devel-
opment kit boards(nRF52840 nRF5340) and Zephyr OS?

Implementing a driver makes it possible for external devices, such as the RTC
and the 9-DoF, to communicate with the operating system Zephyr. Drivers
are interfaced differently if they are included in Zephyr libraries or not. If a
device has its driver in Zephyr’s library the only need is to include the header
file in the source files, enable configuration of the device in the prj.conf file and
bind the device’s ID in its .yaml file. If the device (in this project the 9-DoF
sensor) is not included in Zephyr’s libraries the device needs to be added to the

40

device-tree manually. Adding devices to the device-tree build can be done in- or
out-of-tree. If adding the device in-tree it will be removed once Zephyr releases
a new version if not performing a pull-request to Zephyr adding it permanently
to Zephyr libraries. The benefit of adding out-of-tree is that the implementation
is not threatened by getting deleted by any updates to Zephyr versions. Once a
driver is added to the devicetree in an out-of-tree manner, the same procedure
that is done for devices with drivers already included in Zephyr’s library should
be performed.

Adding communication between a sensor and the board is done by looking at
the board’s pin layout and how that layout is configured for certain communi-
cation, for example I2C or SPI. In the dts file an overlay is then added that
specifies which communication form and pin the device will be using and that
it is compatible with the driver of that device.

6.1.3 Data storage

What are the limitations of logging storage and how should data and time stamps
be stored?

Data and time stamps should be stored in a paired array similar to what has
been used collecting time pulses when performing synchronization. Using this
type of array to store data makes it possible to connect a certain positional
values with a certain point in time. When using this type of array to store data
when logging, the length of the array is unknown and this will affect storage
and memory. there was not enough time to investigate this and it will need to
be looked at further in future works (see Section 6.2).

6.1.4 Data transfer

How to transfer data and timestamps in an efficient way to a mobile phone with
full security?

When implementing the external clock a model was implemented to send cus-
tom messages. This custom model allowed for modification of the payload of
messages sent and extracting the information of the message when received.
The custom model also allowed being sent to any address within the same mesh
network as sender, meaning that hopefully this custom model could be cus-
tomized to send data to a mobile phone that has entered the same network
as the sender. However, there was not enough time in this project to further
develop the custom model and test if it works or the security of it, will have to
be done as future work (see Section 6.2).

41

6.2 Future work

Some of the future work are the loose ends that were not able to be completed
within the designated time frame. These have already been mentioned in Section
6.1 and in this section they will be given a brief description.

6.2.1 Implementation of external device

The RTC was included in the project’s base code, and was communicating with
the main card. However, the preexisting implementation of the RTC’s driver
was so that when enabled to communicate over I2C it would lower the master
(main card) internal clock speed. Adevo will look at this and rework the imple-
mentation of the driver.

The 9-DoF sensor did not have a driver preexisting so an out-of-tree driver was
implemented, but there was a pathing error that needed to be worked through
with the help of Adevo and time ran out.

6.2.2 Data storage and data transfer

In Sections 6.1.3 and 6.1.4 it is mentioned what was able to be implemented
within the time frame but what could be expanded upon in a future work.
Data storage would be looked at, namely how to expand and resize paired arrays
so that there would be room for more data values and what the limitation of this
would be. The possibilities of using alloc to reserve space on the stack should
be further investigated.

42

References

[1] About nordicsemi. https://www.nordicsemi.com/About-us. Accessed:
2022-05-15.

[2] Basics - Zephyr. https://developer.nordicsemi.com/nRF_Connect_
SDK/doc/latest/zephyr/develop/west/basics.html. Accessed: 2022-
05-15.

[3] Bluetooth Stack Architecture. https://docs.zephyrproject.org/latest/
connectivity/bluetooth/bluetooth-arch.html. Accessed: 2022-05-15.

[4] Bluetooth Technology Overview. https://www.bluetooth.com/learn-
about-bluetooth/tech-overview/. Accessed: 2022-05-15.

[5] Capillary Networks - a smart way to get things connected. https : / /
www.ericsson.com/en/reports-and-papers/ericsson-technology-

review/articles/capillary- networks-- a- smart- way- to- get-

things-connected. Accessed: 2022-05-15.

[6] DS3231. https://datasheets.maximintegrated.com/en/ds/DS3231.
pdf. Accessed: 2022-05-16.

[7] GATT. https://www.oreilly.com/library/view/getting-started-
with/9781491900550/ch04.html. Accessed: 2022-05-15.

[8] Kristoffer Hilmersson and Filip Gummesson. “Time Synchronization in
Short Range Wireless Networks”. In: (2016).

[9] Introduction - Zephyr Project Documentation. https://docs.zephyrproject.
org/latest/introduction/index.html. Accessed: 2022-05-15.

[10] nRF52840. https://www.nordicsemi.com/Products/nRF52840. Ac-
cessed: 2022-05-15.

[11] nRF5340. https://www.nordicsemi.com/Products/nRF5340. Accessed:
2022-05-15.

[12] Yeon Taek Oh. “Study of Orientation Error on Robot End Effector and
Volumetric Error of Articulated Robot”. In: Applied Sciences 9.23 (2019),
p. 5149.

[13] Provision. https://docs.zephyrproject.org/3.0.0/reference/
bluetooth/mesh/provisioning.html. Accessed: 2022-05-16.

[14] Whitepaper on Bluetooth Mesh. https://www.ericsson.com/en/reports-
and-papers/white-papers/bluetooth-mesh-networking. Accessed:
2022-05-15.

[15] Martin Woolley. “Bluetooth Mesh Models Technical Overview”. In: no.
March (2019), pp. 1–41.

43

7 Appendix

7.1 Terminal output

Figure 13: 100 prints of time for interrupt handling

44

Figure 14: 100 prints of time for interrupt handling

45

7.2 Counter

Figure 15: 100 BLE mesh messages and their response time

46

