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Abstract 

This paper goes over the process of evaluating the environmental variables, which are most likely to 

predict the locations of prehistoric settlements in a Scanian setting. This is accomplished by 

selecting variables which have shown to be successful in previous similar study areas and testing the 

spatial correlation between each variable and known settlement presence. This is followed by an 

overlay analysis in a GIS environment to test the overlapping areas between the variables. A 

theoretical background, which legitimise and problematise the methods used are included to put 

predictive modelling in context with archaeological scientific development. The results show that 

soil type, distance to major lakes and rivers and distance to coastline shows statistically significant 

positive correlations with settlement presence. This also holds true for the overlaid intersecting 

areas between said variables. 
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1.0. Introduction 
Before conducting archaeological surveying or excavations, it is preferable to be aware of the area’s 

most likely to contain the material of interest, not only to save time and funds, but also learn about 

prehistoric human spatial behaviour. To find out which these areas are, interdisciplinary methods 

based on geographical theory are often used. The base for these kinds of processes are the 

environmental variables, which are geographical features whose spatial relation to the studied 

objects can be measured and mapped. While many geographical features can be related to the 

presence of settlements, some are more strongly correlated to these objects than others. It is therefore 

necessary to identify which variables are the most relevant for this task, which is the topic of this 

thesis.  

 

This will be done by first discussing the background of spatial analysis and predictive modelling in 

archaeological research. We will identify how these variables are used as the basis for constructing 

parameters within a GIS environment and later used as components in a statistical analysis to 

achieve a successful predictive model.  

Previous research conducted in study areas similar to the one chosen in this study, is presented and 

used to identify which variables could be relevant for predicting settlement presence in the chosen 

study area. This assumes that similarity in geographical features and proximity between areas yields 

approximately the same correlation patterns. This is a topic which will be further explored later on. 

Following this, I will present the theoretical background behind predictive models derived from 

geographical features in relation to human activity.  

The methodological steps necessary to take for assessing the analytical value of the chosen 

parameters and how these can be made usable for a statistical analysis are described thenceforth. The 

material and processing methods applied to them are presented in the chapter thereafter.  

This is followed by the analysis chapter, where the methodological steps described previously, are 

applied on a sample of sites within the chosen study area.  

Finally, I will discuss the results with the goal of answering the research questions and make 

suggestions for future research and predictive model construction. 

§ 1.1. Purpose and aims of the study 

The purpose of this study is to lay the necessary foundation for future research, regarding the 

creation and validation of an archaeological predictive model for prehistoric settlements in a Scanian 

and southern Swedish setting. This aim is fulfilled through discussing and testing the correlation 

between environmental parameters and the location of settlements through inductive methods with 

already identified sites in the study area. The main aims are therefore to establish which the most 

prominent environmental variables are and, in the process, further develop our understanding of 

variable selection for this purpose. 
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1.2. Research questions 

There are three main research questions which needs to be addressed in order to approach the 

answers which this thesis is intended to provide. 

 

- Can a clustered pattern be observed, which would indicate the existence of influence from 

one or more environmental parameters? 

- Based on the accessible data, which variables are the most important for predicting the 

presence of prehistoric settlements in Scania? What are their relative levels of importance 

according to observed results and their performance in conjunction with each other? 

- Is it possible to extract fundamental principles and notions from this conclusion, which might 

aid the development of predictive models in other regions? 

 

1.3. Introduction to predictive modelling 

In this chapter, the fundamental principles behind archaeological predictive modelling and a brief 

research history will be discussed in three different aspects: Spatial analysis, GIS technology and 

statistical techniques. The first part 1.3.1, which is addressing the topic of spatial analysis, is 

covering the relationship between distance and geographical location with human settlement 

distribution and how these fits into the subject of archaeology. The second part, subchapter 1.3.2, 

covers the role of GIS technology in this matter. The third part 1.3.3, covers the different statistical 

approaches that are used to describe and analyse these relationships. Modern archaeological 

predictive modelling (APM) consists of these three parts, which makes them important to address 

and explore in order to understand the practice of APM. 

1.3.1. Spatial analysis and predictive modelling 

 

Studying the spatial relationships between archaeological material and their surroundings has always 

been of interest to archaeological researchers, it gives us a better insight into prehistoric human 

activity by giving the objects of study a geographical and spatial context to relate to.  

As described by Stanton W.Green: “To a certain extent, archaeology can be viewed as a discipline 

involved in sampling space in order to understand human behaviour” (Allen & Stanton. 1990, p.3). 

 

An example of early spatial analysis in archaeology is the work conducted by the 19th century British 

archaeologist General Pitt Rivers, who documented multiple scaled plans and sections used to 

display the locations of artefacts and features on a site in three dimensions (Wheatley & Gillings 

2002 p.2-4).  

 

From the understanding of spatial relationships, we can draw several conclusions, ranging from 

prehistoric human exploitation of the environment’s natural resources to social power dynamics 

within a single settlement. 
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Based on the relationships between human activity and geography, we can construct models that 

explain and visualise them in the shape of maps and tables.  

If a significant correlation can be observed between signs of human activity and environmental 

variables, we can make predictions about the probability of finding archaeological material in areas 

that have yet to be surveyed. This leads to the subject of archaeological predictive modelling (APM). 

 

A predictive model is commonly described as a technique to predict the location of archaeological 

sites or materials in a region based on a sample or fundamental notions concerning human behaviour 

(Verhagen 2018, p.1). This definition captures the essence of what a predictive model is, i.e., a tool, 

whose reliability depends on our current knowledge of prehistoric human behaviour, as well as the 

quantity and quality of the data sample we have access to. A predictive model should not be treated 

as a truth-teller which exceeds human capability, as it is entirely reliant on our ability to recognise 

the relevant components that the model should consist of. 

While settlement patterns in an archaeological context have been studied since the middle of the 

1900’s, the proposed links between human activity and environmental variables were largely 

anecdotal. The patterns were observed and pointed out, but no real efforts to map the statistical 

correlation between the environmental parameters and signs of human activity of this pattern was 

made until the 1970’s, when data analytics was introduced to archaeological settlement studies 

(Judge & Sebastian et al 1988, pp.30-32). These studies were nevertheless essential in providing the 

theoretical framework through which predictive models would later be developed.  

Among the pioneers of archaeological predictive modelling, the most prominent figure is Kenneth L. 

Kvamme, who has made several contributions which has led to the fundamental groundwork for 

predictive modelling within archaeology. The most notable of which is the chapter “Development 

and testing of quantitative models” within the book “Quantifying the present and predicting the past” 

of which Kvamme contributed to. In this chapter, he establishes the fundamental expression for the 

relationship between site presence and geographical extent all within the quotient named after him 

“Kvamme’s gain” (Judge & Sebastian et al 1988 p. 329). 

As described by another distinguished APM researcher, Martijn Van Leusen, the development of 

archaeological predictive modelling has two main root causes: One is its utility in the early stages of 

spatial planning for major projects and the other is the scientific role it has in developing our “insight 

into past human behaviour in relation to the landscape”.  

The method of filtering out potential areas of interest containing cultural remains became necessary 

when CRM (cultural resource management) developed in the USA in response to legislation 

regarding the protection of cultural remains. This development would also be seen in Europe, when a 

meeting was held by the Council of Ministers of Europe in Valetta, Malta in 1992. In this meeting, 

the representatives of the member states came to an agreement (known as the Malta agreement), 

which requires the member states to devise means for protecting their cultural heritage as part of the 

regular spatial planning process (Van Leusen 2005, p.1). 

Predictive models have been seen as problematic though, due to the potential exclusion of areas 

containing sites. In cultural heritage management, this is generally seen as unacceptable, but in 

archaeological science it is seen as a chance to further develop the accuracy of the models.  
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Computer technology developed in the early 1980’s to the point where both digital processing and 

visualisation became possible to the average researcher without a data scientific or computer 

scientific background. Archaeologists were early in adopting this technology which would be called 

Geographical information systems (GIS) (Verhagen 2018 pp.1-3). This will be further explored in 

the next part. 

1.3.2. The impact of GIS technology  

During the processual archaeology movement beginning in the 1960’s, external factors were 

emphasised to be the key influence behind human behaviour. This behaviour leaves patterns in 

space, which in turn can be measured and quantified to identify the generative process. This 

approach came to be through the applications of a wide range of spatial analytic methods and 

techniques (Wheatley & Gillings 2002, p.6). 

In conjunction with this new approach to spatial analysis of quantitative data, the emergence of 

Geographical information systems technology created new possibilities never seen within 

archaeological spatial analysis. The main difference between GIS and computer aided design and 

mapping programs is the spatial database, which can contain a large amount of information that is 

spatially referenced and can be subject to queries and analysis (Wheatley & Gillings 2002, p.11). 

This is very useful in archaeological practice and research, where often large amounts of data are 

handled, and spatial references are needed. 

While Geographical information systems have played a major role in archaeological practice such as 

field walking and distribution maps, it has also played a very important role in the development of 

predictive models. A GIS provides the confines in which we are constructing the environmental 

parameters based on geographical and spatial data. The quality of a predictive model is not only 

dependent on the mathematical principles behind it or the logic applied, it is also dependent on the 

quality of data and the ability to process it through the software. What determines the quality of the 

data is mainly twofold (Chapman 2006, p. 54):  

- Degree of resolution, which mostly refers to the size of the image pixels from photographs. It 

could also mean the level of detail in surfaces which are built based on relative numerical 

values, such as elevation surfaces.  

- The positional accuracy, which refers to how well the data is defined to be positioned 

compared to its actual position. This is crucial for any type of measurements to be done 

based on the parameters. The accuracy is affecting their assumed extent and relative position 

to each datapoint. 

The importance of these two factors when using or creating environmental parameters within a GIS 

cannot be overstated. The ability to create reliable datasets which will be the basis for further 

processing in a GIS environment depends both on the instruments used in the field and on the level 

of competence of the surveyor using the instruments (Chapman 2006, p.54). Limitations in both 

should be addressed when creating predictive models based on processed datasets derived from field 

surveying.  

The ability within a GIS environment, to process geographical data into new datasets which could 

function as environmental parameters, along with the ability to handle a large amount of data with 
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spatial references, is invaluable to the development of predictive modelling. Also, the simplicity of a 

well-made predictive map is a great tool for convincing local governments and developers of the 

archaeological potential of an area and thus prevent the risk of damaging sites (Verhagen 2007, pp. 

17-18). 

Without a GIS, the construction and visualisation of a predictive model would be done manually in 

the field or drawn on a map. This would be exhausting and time-consuming with potential errors 

made through mistakes. These issues can be eliminated in a GIS, where distances and measurements 

of the variables are done by the software. Assuming that the input data is accurately measured, and 

an adequate resolution is acquired through satellite, aerial and/or terrestrial instruments, this will 

enable the task to be done faster, easier and more cost effective (Allen & Stanton 1990 p.165). 

Within a GIS, it is possible to reconstruct landscapes based on elevation data acquired through 

measurements done from aerial or terrestrial vehicles. The output of this process is called a digital 

elevation model or a DEM, which is a surface displaying the distribution of elevation values over an 

area through attribute values in cells. These surfaces are often displayed by a grid of squares with 

individual elevation values, whose size depend on the spatial resolution. They could also be 

displayed as TIN surfaces, which represents the topography of the landscape through interconnected 

triangles (Allen & Stanton 1990, pp. 166-167).  

An important aspect of the DEM’s for archaeological predictive modelling is the ability to create 

several different datasets from it. A generated surface displaying elevation or slope values, can be 

the basis for creating cost-surfaces, where the pedestrian traversing difficulties are visualised. 

Another example of surfaces created based on elevation are viewsheds, where the area visible from a 

given point is displayed (Chapman 2006, pp. 22-23). The utility of a DEM for constructing 

environmental parameters has been tested and verified through several studies. Perhaps the most 

widely used of whom, for its utility, is slope. Slope is calculated in the GIS software through 

interpolating the surface discrepancy between the individual cells with elevation attributes. This 

makes it an estimate rather than an exact description of reality, due to the dependency on the level of 

resolution, which decides how detailed and accurate the interpolated surface is (Chapman 2006, p. 

117).  

The importance of the slope variable for predicting settlement presence seems to be different 

depending on other environmental variables that are present. Steep slopes seem more tolerable when 

there is a close proximity to water sources, while mild slopes are favourable close to smaller water 

streams, where there’s a lesser risk of flooding. This is presumably due to the risk of flooding when 

close to major rivers at low elevation. A study suggested for example, that areas vulnerable to 

flooding had a significant underrepresentation of Neolithic settlements, despite them being located in 

otherwise favourable locations (Mihu-Pintilie & Nicu 2019, p.14). 

This difference of importance depending on other external factors seems to also be the case for the 

viewshed. The less obstructions and the higher elevation, the more visible a point is, which at the 

same time grants greater visibility from said place. The hypothesis is then naturally that high 

visibility is preferable to low.  

This doesn’t seem to always be the case on all places, which was demonstrated in a study presented 

in an article named “Using Viewshed Analysis to Explore Settlement Choice: A Case Study of the 
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Onondaga Iroquois”. In this study, Iroquois settlement location choices were studied with respect to 

a DEM-derived viewshed. The author of the article recognised that none of the settlements within 

the study area had a “commanding view of the landscape”, instead preferring low hills and gentle 

slopes. The reason for this is interpreted to be longer growing seasons, sacrificing a naturally more 

defensive position for agricultural convenience (Jones 2006, p. 14). This example shows that 

viewsheds can be useful but should be taken into account with other environmental parameters when 

predicting settlement locations. 

In summary, archaeological predictive modelling has been greatly facilitated by the implementation 

of GIS technology. It has enabled archaeological practitioners and researchers to create basic models 

rather easily by utilising the large storage capacity of geographically referenced data in the 

geodatabase, the convenient visualisation that the GIS software provides and the ability to create 

parameters based on geographical data. Although it has undoubtedly made the process easier, all the 

limitations of the software will also be what limits which methods and analyses we are able to 

perform in that environment if we are solely reliant on a particular software. These methods and 

analyses will be further explored in the following chapter. 

1.3.3. Statistics in archaeological predictive modelling: 

To perform a spatial analysis, the features and objects we wish to study need to be defined in 

quantitative terms. These terms are expressed as positions, sizes and shapes or the boundaries of said 

objects. These objects are our data points, which are systematic observations done by professionals. 

The systematic nature of the measurements and observations make their definition unambiguous, 

allowing us to have a reliant standard of measurement (VanPool & Leonard 2011, p. 6). This means, 

in geospatial predictive modelling terms, that we have a consistent way of categorising sites. A 

standard projected coordinate system also enables our model to be accurate when applied to 

geographically referenced data points. 

 

If we wish to study the environmental variables as confined spaces which contain the objects whose 

presence we want to predict, we need to treat said space and objects as data, not actual physical 

geographical areas and sites. This simplification of reality is necessary to erase any ambiguity which 

otherwise may demand too many variables to be considered than what is possible or available. 

 

Within the discipline of archaeology, we are reliant on incomplete data due to the inability to 

retrieve and analyse everything that has taken place on any given site in the past. This 

incompleteness makes it necessary to acquire a sample of the features or objects we want to research 

(VanPool & Leonard 2011, p. 2). We will have to assume that this sample is an adequate 

representation of the objects or features in terms of distribution, qualitative attributes, and quantity in 

order to generalise the observed pattern to the entire area of interest. The reliability of this will be 

further explored in the analysis chapter. 

At its core, predictive modelling is a statistical evaluation of the probability of a feature being 

present within a confined space, which is the dependent variable. The value of the dependent 

variable depends on one or several independent variables, which in this case are the environmental 

parameters. 

 



11 
 

 

 

There are two ways that the values of individual independent variables can affect the dependent 

variable (Verhagen 2007, p. 74): 

- Negative correlation: The higher the value of the independent variable is, the lower the value 

in the dependent variable is. An example of this may be distance to water sources and slope 

gradients, which often negatively correlates with the presence of remains from human 

activity 

- Positive correlation: As opposed to negative correlation, the higher the value of an 

independent variable is, the higher the value of the dependent variable is. Examples of this 

can be the amount of exposure to sunlight an area has or the total area which is visible from 

any given point within a zone. 

The level of correlation is represented by a scale ranging from the values -1 to 1. With -1 being a 

perfect negative correlation between the dependent variable and the independent variable, i.e., if one 

increases the other one is decreasing to the same degree. The opposite relationship is true if the level 

is 1, then an increase or decrease in the value of one variable will also result in the exact same 

change in the value of the other. A level value of 0 represents a perfectly random relationship 

between the independent and dependent variables, which means that there is no correlation. 

There are multiple different ways to create the probability distribution zones within a model, the 

most common of which is multiple logistic regression analysis, which is a statistical technique that 

expresses the relationship between individual independent variables and the dependent variable 

separately (Drennan 2009, p.264). Or binomial logistic regression, where there are only two possible 

alternatives (Yaworsky et al 2020): either sites are expressed to be present within the area of the 

model or it isn’t (The model consists of “yes” and “no” zones). This lack of nuance isn’t a problem, 

because of the dualistic nature of the issue: Either a model predicts a site presence, or it doesn’t.  

When expressing the probability of site presence and absence in a formula, this is how it’s usually 

done (Ejstrud 2004, p.10): 

P(site | AxBxCx) = 1-P(~site | ~Ax~Bx~Cx) 

Where P stands for probability, site stands for the feature whose occurrence we want to examine, “|” 

means “given that ''. Ax, Bx and Cx are the independent environmental variables and “~” means 

“not”. The statement of the formula therefore reads out:  

 

The probability of site presence given the following parameters equals the difference 

between 1 and the probability of site absence, given the absence of the parameters in 

question  

 

This statement assumes that we have all the necessary information about the location of all possible 

sites in the study area, leaving no room for uncertainty. Although when we are analysing a 

distribution of sites within a geographical area, we are dealing with incomplete datasets, due to the 

inability to survey an area completely in most cases. This results in areas being absent of sites, which 
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could mean that they are not yet surveyed, not necessarily avoided by ancient people for settlement. 

Therefore, the more well surveyed an area is and the more data points we have, the more accurate a 

picture we get of the performance of the parameters when we test them against the known sites. 

 

There are several different techniques, which has been implemented in APM, the most common of 

which will be represented below: 

Logistic regression is a technique, which is non-parametric (Svedjemo 2003, p. 8). This means it’s 

unassuming of both the nature of the variables (if they are nominal or expressed in a ratio) and how 

the data is spatially distributed. This allows us to use non-quantified variables such as soil type along 

with quantified variables such as distance from the coastline with the same technique, which is 

needed if we want to compare predictive power between variables.  

Another statistical technique, which has seen recent use within archaeological quantitative analyses 

is Bayesian statistics. While it has been used primarily within radiocarbon dating, it shows some 

promise for predictive modelling as well, where it has started to find its way into archaeological 

predictive modelling (Otarillo-Castilla & Torquato 2018, pp. 8-12). The technique builds upon our 

previous knowledge of the probability of a hypothesis being true or false depending on what data we 

have acquired as of yet and what that tells us. 

What bayesian statistics try to solve is the following: 

“Given a certain outcome, what is the probability that the parameter or parameters are behind the 

result?” (Ortman et al 2007).  

The probability of our hypothesis being true changes depending on new input when data is collected 

from the surveying process, which refines the model. This is very useful for evaluating the predictive 

power of individual parameters, with a hypothesis made of them containing sites to a higher degree 

than random chance. 

After the model is constructed, its performance is expressed by a value, which is called Kvamme’s 

gain. The formula is as follows (Judge & Sebastian et al 1988, p. 329): 

“1 – (Percentage of total area covered by the model) / (Percentage of total sites within model area)” 

As discussed previously, the closer the gain value is to 1, the better the predictive model is in 

narrowing down the areas which most probably contain sites, with the ideal predictive model of a 

Kvamme’s gain value of 1 covering a small percent of the entire study area and includes all of the 

archaeological sites. 

Another very important part to consider is data representativity. If we rely on a predictive model, 

which tells us where it is worthwhile to survey and excavate, we might neglect surveying the areas 

where low probability of finding sites is suggested. This could have the consequence of us further 

reinforcing the result of the model by finding more sites within the high probability areas than the 

other areas, making the model a self-fulfilling prophecy rather than an accurate tool to predict the 

distribution of sites in relation to environmental factors. It would therefore be more statistically 

rigorous to survey the entire study area equally (Verhagen et al. 2010).  
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Often overlooked, but very relevant when discussing sample and study area size is statistical 

significance, i.e., the probability of the observed pattern to be that of random chance. The 

importance of this will be explained later in the methodology chapter of this paper. 

In essence: The chosen statistical technique will define the shape and extent of the surfaces we 

expect will contain sites within our study area, which can be as important as the choice of 

environmental parameters for our model. After the environmental variables have been chosen and 

the analysis made, the model is tested through calculating Kvamme’s gain, which will give us back 

an assessment of the model's performance. The model is then validated through applying it to other 

study areas, which will either reinforce its usability or put it to question. 

1.4. Previous research 

In this chapter, different case studies are presented to illuminate which kinds of variables we can 

expect to be relevant to use in a Scanian environment to predict the locations of prehistoric 

settlements.  

 

Because every landscape and environment is different, we have to evaluate which parameters to 

assess based on the local geographical features. In this paper, I will investigate which variables are 

the most relevant for predicting prehistoric settlement locations in a southern Swedish setting with 

north-western Scania as study area. To get a good starting point in this endeavour, I will go through 

six different case studies, all of which relate to the chosen study area in geographical proximity, 

extent, and environmental characteristics. The variables used in these studies will form the starting 

point from which the variable selection will occur. 

1.4.1 Brandenburg, Germany: 

In 2010, Benjamin Ducke wrote the paper “Regional Scale Predictive Modelling in North-Eastern 

Germany'', in which he describes the design, implementation and application of a region-wide 

predictive model of prehistoric settlements and graves in Brandenburg state, North-eastern Germany. 

The expressed goal was to provide the necessary information and research perspective to understand 

the archaeological landscape of Brandenburg. (Ducke 2010, p.1) 

 

The environmental parameters which were included are: 

- Soil type  

- Elevation, slope, aspect  

- Rivers and lakes 

- Previously identified graves and settlements within the study area 

 

The Euclidean distance to water bodies such as lakes and rivers as well as sites were of interest, as 

such the parameter was defined as a buffeted zone around these items, within which an 

overrepresentation of sites are expected to be found. By experimenting with the data, Ducke found 

that a buffer zone of 500 metres was sufficient for all kinds of water bodies, although a 

differentiation of distances based on the type of stream improves model quality he adds (Ducke 2010 

p. 2). 
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The most promising soil type was regarded to be clay and peaty soils, due to the fertility of the soil. 

However, the importance of this type seems to depend on time-period, with a high amount of 

Neolithic sites showing preference for it, while sites from the bronze age instead showing a 

preference for a high altitude with good visibility over the landscape (Ducke 2010, pp. 4-5).  

 

Ducke concludes through testing that terrain curvature was not relevant and thus excluded from the 

analysis, although the data suggests that there seems to be a slight preference for surfaces where 

there is an east and south-east facing aspect. He also added buffer zones with a radius of 500 metres 

from a randomised sample of the known sites.  

 

The study area was divided into 13 different sections based on geographical boundaries which has 

divided the region historically, in order to test the model on areas with different topographical 

characteristics and archaeological contexts. The statistical technique used is Dempster-Shafer theory 

of evidence. The author motivates this choice based on the presence of uncertainty, which techniques 

such as Bayesian statistics and logistic regression do not account for but is relevant for estimating 

site presence probability in cases where absence of one parameter and presence of another might 

contradict each other (Ducke 2010, pp. 2-3). 

 

The results showed that soil quality and proximity to rivers were very significant for predicting 

settlement presence (Ducke 2010, p. 4). The presence of other sites was also an important factor, 

with a radius of 2 kilometres around each site, the total area of all buffer zones combined an area of 

10% of the study area, while containing almost half the known sites (Ducke 2010, p. 3), this gives a 

Kvamme’s gain value of between 0.75 and 0.8, which makes the parameter very useful for 

predicting settlement presence. 

 

The region of Brandenburg is close to Scania, with similar geographical characteristics. This fact 

along with the promising results that this paper shows, one could make a convincing argument that it 

could and maybe even should be used as a reference when evaluating the possibilities of predicting 

site presence in southern Sweden. With that said, the spatial and temporal scales are very large, 

which makes it hard to pinpoint which variables perform the best in predicting archaeological 

settlements or other sites in general, because of the seeming scale-dependence of this matter. 

1.4.2 Eastern Jutland, Denmark: 

In the academic paper “Ejstrud, Bo “Indicative models in landscape management: Testing the 

methods”, 2003”, the archaeological researcher Bo Ejstrud wrote a chapter titled “Indicative models 

in landscape management: Testing the methods”.  

 

In this chapter, he discusses and compares the different methods of producing archaeological models 

for locating sites, which are invisible on the surface and can thus be ignored and damaged by 

agricultural or infrastructural projects in Denmark. 

The purpose of this is to conclude which type of technique performs the best on the archaeological 

material within the study area in eastern Jutland (Ejstrud 2003, pp. 1-2). 
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The environmental parameters Ejstrud selected when creating the models were: 

- Soil type 

- Slope, aspect, relief, and exposure (all derived from a digital elevation model) 

- Distance to water 

- Presence of wetlands 

 

The author judges the aspect variable to be of “absolutely no importance to settlement location in the 

area investigated, at any time in history”. He adds though that many different pieces of information 

can be derived from a DEM, which could be useful. Variables assigned to altitude and altitude 

discrepancies are expected to have a weak performance in a flat landscape such as in Denmark 

(Ejstrud 2003, p. 3).  

 

The author mentions that Mesolithic graves are located on the same site as contemporary 

settlements, but in later periods they are located on ground with high elevation for visibility (Ejstrud 

2003, p. 6). This information may be useful if we want to identify the potential location of sites 

based on the presence of Mesolithic graves. 

 

For maximising the validity of the models, the author restricted the data points from 10,000 

observations to 1000, all of which were dated and had their positions adequately defined within the 

landscape. The temporal scale was not an issue, due to the well-defined periodical divisions between 

the 1000 data points, although the author deemed it too time-consuming to make separate models for 

each time-period. He therefore grouped all material from the Mesolithic to the early roman iron age 

(9000 BC to 200 AD) together (Ejstrud 2003, p. 5). 

 

The author describes a settlement pattern where the early settlements during the Mesolithic were 

always close to water sources such as rivers, lakes, and coasts, with a gradual shift to the inland due 

to the need for access to grazing pastures and fertile soil for agriculture, while still being close to 

water sources. In the late Bronze age, the settlements are observed to be located out on the moraine 

plains, instead of being close to water streams and coasts (Ejstrud 2003, p. 6). 

 

The different methods tested were the following (Ejstrud 2003, pp. 7-11): 

 

Boolean overlay/Binary addition: The study area is divided into zones where there either is an 

expected site presence or where there isn’t one. All variables are, for simplicity’s sake, deemed to be 

of equal importance as each other. The more positive variables overlapping, the more probable site 

presence is estimated to be. 

 

Weighted binary addition: This method works the same as the one mentioned above, but the 

variables are assigned weights based on how frequently sites occur in them individually. The more 

the site presence frequency is affected by a decrease or increase in value of a variable (for example 

distance to water sources), the more weight the variable is assigned to have. This method cannot be 

used on variables with a nominal scale, like soil types for example. 

 

Logistic regression: This method measures the probability of site presence or absence as a function 

of variable presence. When applied to a study area containing previously identified sites, it assumes 

that areas (often raster cells in a GIS) representing “non-sites”, i.e., where no currently known sites 
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are located, are areas with a negative output and therefore do not contain sites. Logistic regression 

also assumes that the variables are normally distributed (the mean values are the most common 

values).  

 

- Dempster-Shafer theory: To solve the issue of assuming that areas representing non-sites are 

areas actually absent of sites, an element of uncertainty could be accounted for. This is a 

necessary step for accurately assessing the potential of an area containing an incomplete set 

of data, which most archaeological study areas are. This uncertainty, accounting for 

ignorance, is built into the method which the Dempster-Shafer theory is based on. The 

concept of absence is different from the non-sites of the logistic regression method, in this 

case, it represents areas where surveying has been avoided rather than areas where no sites 

exist, the resulting zones are thus not treated as negative evidence for potential site presence. 

 

The result of Ejstrud’s comparison shows that the Dempster-Shafer method performs better than the 

other methods, especially when it comes to settlement prediction, with a Kvamme’s gain of 0,83 for 

mesolithic, 0,48 for neolithic and 0,33 for late bronze age and early iron age (Ejstrud 2003 p. 11).  A 

major downside of using Dempster-Shafer theory is that it is relatively complicated to use and isn’t 

as supported in commonly used GIS software’s as compared to the other methods. 

 

Ejstrud’s work is an excellent reference for selecting appropriate environmental parameters for 

Scania, due to historical connections between regions and very similar geographical characteristics. 

His work also provides a valuable insight into which statistical methods might be the most 

appropriate to use based on the given variables. 

1.4.3 Archaeological predictive modelling in Sweden 

Due to the low number of archaeological predictive models in Sweden produced within academia as 

well as cultural heritage management, it is important to carry out a study with the goal of assessing 

which geographical parameters may be important to consider when the construction of these models 

may become relevant. There are however noteworthy contributions on this topic: 

 

The doctoral thesis “Löwenborg, Daniel “Excavating the Digital Landscape: GIS analyses of social 

relations in central Sweden in the 1st millennium AD”. 2010” includes a paper written by the same 

author, which evaluates the potential of predicting burial mound locations in the region of 

Västmanland in central Sweden. When constructing the model, he considers variables such as soil 

type, degree of fragmentation in the landscape (the more fragmented/presence of impediments, the 

more difficult agriculture is), distance to water bodies, survey (density of known registered sites) and 

topographic elevation. The last variable was deemed not useful due to the flat terrain in the area, 

although the author concluded that it was useful in reconstructing the prehistoric shoreline 

(Löwenborg 2010). The similarities between the distribution of burial and settlement sites seems to 

vary depending on time-period, displaying a gradual change from a low to a high position over the 

course of the Mesolithic to the early iron age as seen in the study done by Ejstrud mentioned 

previously (Ejstrud 2004 p. 6). Due to the flat landscape of the study area, one could assume that the 

degree of difference between settlement and burial mound distribution would in this case be low, 
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which could entail that the mentioned variables in the study done by Löwenborg also would be 

appropriate to predict the presence of settlements. 

 

In the master’s thesis “Asserstam, Marcus. Predicting mesolithic pioneer settlements in Eastern 

Middle Sweden, 2010.”, the author is constructing a model based on geographical parameters for 

predicting settlement locations in a eastern Swedish setting. The chosen parameters are slope degree, 

distance to coast and soil type. All of these are chosen based on assumptions regarding preferences 

in habitability and proximity to lanes of transportation (Asserstam 2015) 

 

The paper “Predictive models for iron age settlements on Gotland 200-600 AD '' was written 

in 2003 by the author Gustaf Svedjemo. The author is describing an implementation of a predictive 

model which he himself created for predicting the locations of iron age settlements on the island of 

Gotland. Like in the doctoral thesis by Daniel Löwenborg, the author deemed elevation to be lacking 

importance due to the flat landscape of Gotland. Among the variables used are like the previous 

examples soil type, but also historical land use and settlement patterns from the 18th century, 

information of which the author retrieved from historical maps (Svedjemo 2003). 

 

The successful implementation of archaeological predictive modelling methods on Swedish material 

shows that it is indeed possible to create predictive models in this setting. All of these case studies 

have been done within the frames of rather small study areas, which is appropriate considering the 

research questions, but makes them rather region-specific. For this reason, these case studies should 

be treated as guidelines for variable selection but be critically evaluated for their relevance in the 

specific study area we wish to study, which in this case is Scania. The more predictive models that 

are constructed within a large area, even if the individual study areas of the different models are 

small, the more knowledge we gain of which variables are the most relevant for the region at large 

1.4.4 The importance of case studies 

While evaluating which variables are the most useful for predicting prehistoric settlements, we 

should not reinvent the wheel where it’s not necessary. It’s more appropriate to build further on the 

accumulated research that’s been done and conclusions that’s been proven successful. Scientific 

validation is another reason why previous research is important to have as a guideline of variable 

selection. If the choice of variables is based on pure assumptions without scientific ground and the 

result of the model is successful without a good understanding of the reason behind why, then the 

model may not be replicable in another environment, making the model practically useless as an 

explanatory tool.  

If the study area is widely dissimilar to ours in terms of e.g., elevation variance, then this variable 

will most likely not have a similar role in our study area as in the previous project. Depending on 

which cultures and what time-period we are studying, we can expect settlement patterns to be 

different, with the reasons behind this difference not necessarily being purely environmental. In 

order to conduct a spatial and statistical analysis in a predictive model based on geographical data, 

we need to make sure that these are quantifiable, i.e., are able to be expressed in numerical values 

within a scale. Alternatively, that we can use them as Booleans, which means they either excludes all 

areas outside or within them. 
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From the case studies provided above, we can observe that the environmental parameters are chosen 

based on conventional notions regarding settlement patterns relating to these variables in and around 

the study area. This is generalised across a wide timespan of several thousand years in most cases, 

due to the issue of temporal resolution.  

In the study done by Ejstrud (Ejstrud 2003), dividing the data based on chronological era was shown 

to be useful in highlighting the varying importance of the environmental parameters in relation to the 

time period of which the settlements belong. The reason why this usually isn’t carried out when 

predictive models are created in general, is probably because of the small amount of data points we 

often have access to and therefore aren’t able to use as a base for a statistical analysis. 

The study areas from the case studies presented here are close to each other both geographically and 

in how they resemble each other, this gives us a good reason to assume that the parameters were 

chosen based on this information. Additionally, it is possible to make an argument of why these 

same parameters should be hypothesised to be of importance in Scania as well due to geographical 

similarities and historical links to these regions which might indicate a similar settlement pattern 

being present. 

There are several different factors that influence the ability to be consistent when implementing the 

same methods and testing the same variables as done in other case studies. Data quality in terms of 

spatial resolution and measurement accuracy will most likely always vary between regions and the 

time the studies were conducted. The constructed parameters will also vary a lot depending on the 

decisions made by the individual researcher in terms of extent, accuracy, and rigorous 

implementation of the methods.  

Therefore, there will most likely never be an exact methodological framework, which is applicable 

to every area regarding archaeological predictive modelling. With that being said, it is important to 

take inspiration from previously carried out research projects in order to further enhance the practice 

of scientific APM. 

The notions, which we base the methodology on are derived from the theoretical development which 

has been taking place within academic archaeology and related disciplines. The following chapter 

will go over this topic. 

2.0. Theory 
In this chapter I will go through the theoretical frameworks, which influences archaeological 

predictive modelling relating to geography and space, along with some of the most prominent 

theories behind prehistoric human locational behaviour and settlement patterns. This is followed by 

presenting the two main ways of approaching the construction of archaeological predictive models 

and the importance of the theoretical frameworks in the creation process.   

 

More specifically, I will first present the paradigm shift that has been proposed to be taking place 

within archaeology by Kristian Kristiansen (Kristiansen 2014) and how predictive modelling fits into 

that shift. Secondly, I will discuss the issue of human experience and decision making as 

environmental variables for predictive modelling, as presented by the researchers Lock, Kormann 

and Pouncett (Lock, Kormann & Pouncett 2014) and Gillings (Gillings 2012). Thirdly, the 



19 
 

importance of measuring the degree to which a distribution pattern can be considered as clustered is 

discussed, with Tobler’s first law of geography in mind. Lastly, inductive, and deductive modelling 

is presented and discussed, namely what separates the two categories and what place and roles they 

both have separately from and with each other.  

2.1. The new paradigm 

For the last four decades there has existed a consensus among the archaeological academic 

community regarding the way we are expected to approach the way we are interpreting the past 

through the archaeological material known as the paradigm of post-processualism. This paradigm 

was characterised by the renunciation of the methods and theoretical frameworks imported from the 

natural sciences by the archaeological processualists, which according to the post-processualists is a 

dehumanisation of the past (Kristiansen 2014, p. 12).  

 

Recent developments in genetic research have enabled archaeological researchers to make new 

interpretations about human migration and origins by analysing genomic data which previously 

weren’t possible with only mitochondrial DNA. This development along with extensive isotope 

analysis of metals and our reliance on databases due to the acquisition and usage of large amounts of 

data, have spearheaded archaeological research in a direction where natural scientific methods are 

yet again in the centre. While the post-processual framework is “withering” as described by Bjørnar 

Olsen (Kristiansen 2014, pp. 13-14), it is still very relevant within academic research and is 

contending with as well as working in conjunction with the new quantitative leaps. 

 

This “third science revolution” proceeding the second, where radiocarbon dating was introduced, 

have paved the way for other quantitative measures of interpreting the past, such as palaeobotanical 

reconstruction of past landscapes and digital models of settlements based on geographical and 

archaeological data (Kristiansen 2014, p. 18).  

As a means of visualising this development, Kristiansen has constructed a model which resembles a 

wheel representing the theme of mobility, which he describes as “the main research theme during the 

next two decades”. Mobility means the study of all things moveable, i.e., humans, animals, raw 

material etc…  

The spokes of the wheel are represented by the methods through which we are analysing and 

theorising about mobility. The opposite facing spokes represent two different theoretical or 

methodological approaches to the same theme, for example the dichotomy of genetics & heredity 

and culture flow, which are two different approaches to the question of migration and how this can 

be traced in the archaeological material. In the same way, human activity and mobility can be 

studied through the dichotomy of settlement and landscape modelling (Kristiansen 2014, pp. 20-21). 

 

 By establishing theoretical frameworks regarding the relationship between landscape and 

settlement, we can also enhance our understanding of the environmental parameters which predict 

tendencies of human settlement.  
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2.2. Human experience as variables 

Environmental variables do not exclusively serve as natural resources or convenient surfaces to build 

on or to cultivate for human settlers, they can also represent the potential and limitations of human 

senses and mobility. One example of this is a study, where the researchers presented several 

different potential routes between barrows in a landscape, depending on cost of movement in terms 

of euclidean distance and slope, but also the most visible and hidden paths between the points of 

interest. The point was to visualise different routes depending on the intentions of the subject. This 

illustrates the need to understand human spatial behaviour patterns as two-dimensional probability 

surfaces rather than points or lines, where there is room for many different possible courses of 

actions given the same circumstances (Lock & Pouncett 2014).  

 

There has been criticism towards understanding human behaviour through mapped environmental 

factors within the subject of archaeology. Perhaps the most prominent critic is Mark Gillings, who 

explained in an article that there is a disconnect between the most avid proponents of GIS 

technology and the academic researchers who wish to develop explanatory models based on 

subjective human experience.  In the article, the author emphasises the relationship between the 

features that we are studying and the variables that may explain the presence of said features. This 

relationship is described as “affordance”, which means the ability of the variable to afford the human 

subject to act in a way, which explains the presence of the studied feature (Gillings 2012). The 

degree of affordance is bestowed upon the environment by the subject, which makes the importance 

of environmental variables highly dependent on the subject who perceives it. 

 

Both of these examples show that the relationship between environmental conditions and human 

decisions is very complex. If the goal is to explain the occurrence of these relationships, it might be 

impossible due to all the potential factors that might influence decisions or affect the experience that 

the subject has in the environment. If instead, the goal is to predict occurrences of features, given 

certain conditions, then explaining the entirety of the complex relationship between features and 

environmental variables is not the focus. The focus is rather to explore the potential of co-occurrence 

of features and conditions as an explanatory model to predict one component given the other.  

 

As such, it is important to be specific when discussing the role of archaeological predictive models, 

they are not frameworks for explaining all the nuances of human spatial experience and behaviour. 

They are instead tools for locating remains from ancient human activity, which as an effect might aid 

in the endeavour of further developing our understanding of spatial behaviour and the experiences 

which might contribute to the observed pattern. 

2.3. Tobler’s first law of geography 

“Everything is related to everything else, but near things are more related than distant things” 

(Tobler 1970) 

 

This sentence was originally written in the journal “economic geography” in the year 1970, where 

the geographer Waldo Tobler described population growth simulation for Detroit between the years 
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1910 to 2000. Tobler recognised that the values of the individual grid cells representing population 

numbers, which overlay the map of the Detroit area were influenced both by the values of the 

adjacent cells and the value of the same cells in the previous decade (Waters 2017, pp. 1-2).  

 

The recognition that similarities between features and areas have both spatial and temporal 

dimensions carries over very well to an archaeological context. The connection between adjacent 

sites, whether they are contemporary in time or are close in spatial proximity is well understood 

within landscape archaeology, where researchers refer to this phenomenon as “regions”. Within 

these regions, it is expected that cultural similarities will be manifested in the archaeological 

material (Allen & Stanton. 1990, P. 74). 

 

Something that may seem obvious at first but is very relevant when discussing natural features as 

environmental variables to be used in a spatial analysis, is the tendency of features to have similar 

characteristics if they are close in proximity. If we can observe a clustered phenomenon when we are 

studying site distribution in a geographical area, there could be a good argument that there are 

geographical features which influence the locations of the observed sites, creating the clusters. It is 

possible to measure the degree of clustering within a GIS environment, i.e., Spatial autocorrelation. I 

will discuss this further in the Methodology chapter  

2.4. Inductive and deductive approaches to predictive modelling: 

The methods used when creating a predictive model are one of the essential points of consideration 

in order to create a high performing tool for assessing the archaeological potential of a given area. 

The amount of surveying an area has had or how many studies have been carried out beforehand are 

some of the factors that may determine which kind of model creation method is more appropriate. 

 

There are two main approaches to the creation of predictive models (Verhagen 2018, p.1): 

 

An inductive model, which is based on observed data gathered from a sample of known sites. The 

environmental parameters that will be researched are determined by the nature of the environmental 

characteristics of the area. With inductive models, the accessible data determines what understanding 

we can gain from the model. 

 

A deductive model, in which a hypothesis about the study area is formed. It is based on previously 

observed and documented information about human behavioural patterns. The hypothesis is formed 

with assumptions of expected human locational behaviour, which can then be tested through 

applying statistical tests with a sample. With deductive models, our theoretical understanding about 

human spatial behaviour determines the quantity and quality of data we can gather from using our 

predictive model. 

 

When considering which approach to take, there are two main factors to consider: 

 

- Is there a well-developed theoretical framework available for settlement location choice? 

This is necessary for creating a theory-driven deductive model based on a hypothesis 

(Verhagen et al 2014, p. 380-381). 
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- Is there enough data to rely on? When creating an inductive data-driven model, if there isn’t 

a large quantity of data in the sample, the resulting model might not be reliable for predicting 

sites (Drennan 2009. p. 80). 

 

For identifying the environmental variables with the most predictive power, both approaches could 

be used. It is important to note that in areas where no surveying has been done, we are reliant on our 

understanding of prehistoric human locational behaviour, while this isn’t the case in well-surveyed 

areas where we have enough data gathered to make fair assessments on the predictive power of the 

variables. 

 

The two approaches are not mutually exclusive, and it is important to recognise their compatibility 

with each other in situations where we are faced with problems such as a lack of data or expected 

bias. One such example is the distribution of sites in Jutland, where the researcher Ejstrud 

demonstrates the correlation between site presence and the travel time to the nearest museum (Van 

Leusen 2005, p.12).  

This example shows that we can’t solely depend on inductive reasoning when considering which 

variables may be relevant for predicting the presence of prehistoric sites, as there may exist a bias 

which affects the physical evidence, which in turn could impair our understanding of the past.  

 

For example, the study conducted in this paper will be inductive in nature, in the sense that the 

parameters are tested by their ability to predict the presence of the data, which is studied, but also 

deductive by filtering them out based on how they have been performing in similar environments 

previously. In the following chapter, the process of assessing the settlement distribution and 

parameter performance will be presented.  

3.0. Methodology 
In this chapter I will go through the methodological steps which are necessary to evaluate the 

predictive potential of the environmental parameters which will be subjected to the analysis, as well 

as the techniques that are used to complete this task.  

The first part goes over the measurement of settlement distribution and whether a clustered pattern 

can be observed which would indicate that one or more external factors are influencing settlement 

distribution. 

 

The second part covers the topic of parameter construction, which entails the process of constructing 

spatial surfaces based on the environmental variables.  

 

In the third and fourth parts I will go over how the estimated performance of the constructed 

parameters are measured and critically assessed. 

 

To illustrate this process, I will present it in the shape of a flowchart (figure 1), where the process is 

either disrupted or continues depending on the ability to fulfil a stated criterion. The further down in 

the flowchart that a variable is able to climb, the more acceptable it is to use in a predictive model, 

hypothetically. If a variable can pass this process completely, then it is deemed to be suitable to 

include in a predictive model over the area which is studied. 
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Figure 1: The flowchart displays the series of methods that will be used to answer the research 

questions. If a result, which does not support the alternative hypothesis of a statistically significant 

positive correlation between a variable and settlement presence is displayed, then it is excluded from 

the analysis, otherwise the test continues. The chart is created by the author of this thesis. 
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3.1. Are the sites clustered? Spatial autocorrelation 

As I discussed previously in the theory chapter, objects that are close in space tend to share 

similarities. This connection is called spatial autocorrelation which is defined as “the similarity 

between observations as a function of the distance between them” (Lucian-Schrader 2013 p. 57).  

If we have a map over an area with known archaeological sites distributed in it, we want to know 

whether these are clustered or not, to determine if there may be a parameter which contributes to this 

pattern of spatial proximity.  

 

To measure the degree of which the settlement distribution is clustered, I have chosen the Global 

Moran’s I test as it is a reliable tool for measuring spatial autocorrelation and has been used in 

previous studies successfully. One of the earlier implementations of it was in 1990 by Kvamme in 

the paper “Spatial Autocorrelation and the Classic Maya Collapse revisited: Refined techniques and 

new conclusions”. In this paper, the author used said method to reassess the result from a previous 

study in which the settlement distribution during the classic Maya collapse was evaluated, with the 

result of which according to Kvamme “Underscores the need for a careful and thoughtful approach 

to the analysis of data and the importance of linking appropriate methods with the problem at hand” 

(Kvamme 1990, p. 7). 

 

There are also more recent examples of implementing this method. One example is “Archaeological 

Sites in Small Towns—A Sustainability Assessment of Northumberland County” written by Eric Vaz 

in 2020. In this paper, he identified settlement hotspots through the implementation of Global 

Moran’s I test on archaeological material (Vaz 2020).  

 

The Global Moran’s I test works in the following way:  

Within a software environment (for example a GIS), the features whose distribution we wish to 

study and the surface which contains the features are treated as a single unit in order to calculate the 

distribution of the surface values. This is easily done with for example elevation data or other raster 

datasets, where the surface and the data we are studying already are a single unit. I will go through 

how to do this with vector data later in this chapter. 

The result of the analysis is a comparison to an assumed null-hypothesis which states that the 

distribution of features is random. We therefore get three different values as outputs (URL: 

https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/spatial-autocorrelation.htm):  
- A z-score, which indicates how far the result is deviating from the expected null-hypothesis 

of random distribution. A positive score indicates that there is a spatial clustering to some 

degree, while a negative result indicates that areas with similar values (site presence or site 

absence) repel each other. A negative result doesn’t mean that there aren’t any environmental 

parameters affecting the distribution, but rather that they may deviate from the principle of 

spatial autocorrelation.  

 

- A p-value, which states whether the observed pattern (or lack thereof) is likely to be a result 

of chance. A p-value of below 0.05 is generally accepted as being a threshold for statistical 

significance, which tells us that there is a 5% chance of the null-hypothesis of being true, 

which we in that case can reject. 
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- Moran’s value, which is a correlation coefficient between the values -1 to 1. If the resulting 

coefficient is -1, then a perfectly dispersed pattern is observed (Imagine the white or black 

tiles of a chess board). If the coefficient value is 0, then there is no pattern, and the 

distribution of features is perfectly random. If the value is 1, all features are observed to be 

parts of exclusive groups near each other and perfectly separated from other groups (Like the 

colour distribution of a domino brick).  

 

All these factors will tell us whether we can say that we can argue for a pattern of spatial 

distribution, which could be an indication of the influence of an environmental parameter, 

assuming spatial autocorrelation within the parameter in question being present. 
 

The convenience of using a GIS for this task is that it enables us to efficiently perform and visualise 

the global Moran’s I test to establish what pattern we can find within the study area, what 

significance it has and what it means for the environmental variables. 

 

First a fine grid of 500 by 500 metres is created to cover the entire study area, each grid unit is given 

a value based on whether it contains a site or not. A Global Moran’s I test is then applied, to test if 

there is a clustered pattern. Based on Tobler’s first law of geography, assuming a similarity in 

environmental features in areas close to each other, settlements close to each other might have been 

placed there with that environmental feature in mind. The result of the test gives us a clue of the 

importance of geographical factors on site presence, as a random distribution (null hypothesis) 

would be expected over the area if there were no correlations between the geographical features of 

the area and site presence. 

To summarise: Referring to what I mentioned previously in chapter 2.3, if we make the assumption 

that there is a higher likelihood of the areas spatially closest to any given point share many 

similarities to that of the area where said point is located than being significantly dissimilar to it, 

then it is also a higher likelihood that one or more environmental variables can explain the settlement 

distribution pattern if this is observed to be clustered. If the distribution is shown to be clustered and 

not the result of random chance, the next step will be to test the performance of the parameters we 

expect to predict settlement locations. Before that is possible, the parameters have to be constructed. 

This process will be presented in the following chapter. 

3.2. Parameter construction 

The creation and testing of the parameters will be performed in ArcGIS Pro 2.7.0, where both 

analysis and visualisation is possible. It is important to describe the process of how the parameters 

are created from the environmental variables and explain the different methods to make this kind of 

study valid and reproducible in the future. 

In the cases where the environmental variables are continuous, i.e., defined by different levels of 

distance from certain features, it is necessary to divide the levels into well-defined intervals. The 

appropriate division is dependent on several factors, such as spatial resolution (the size of the study 

area), the type of variable studied and the observed settlement distribution (clustered or not and to 

what degree). The intervals defined in this paper, will be based on previous research in the cases 

where this matter has been discussed and evaluated. Buffer zones are created around or from the 
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features which are the objects of interest, whose dimensions are defined by the given intervals. The 

number of settlements (defined as points with their positions set as coordinate values), by joining the 

settlement features with the constructed buffer zones, it’s possible to observe the number of 

settlement features intersecting with the area of the different buffer zones. By knowing the spatial 

extent of the different buffer zones and the number of settlement features intersecting with these, we 

have all the fundamental knowledge we need in order to proceed with the analysis. 

3.3. Parameter performance assessment 

When we are testing the ability of predicting site presence by the individual parameters, the 

necessary step to take after that is to test how well they perform in conjunction with each other. This 

will constitute the zones where the parameters overlap, which hypothetically would perform better 

than areas covered by a single variable. I have chosen the overlay method for this purpose for three 

main reasons:  

 

- Simplicity: The method is easy to explain and implement within a GIS environment 

- Performance: Overlay analysis, especially weighted overlay as a method, is performing well 

in several different predictive modelling studies relating to archaeological material, such as 

in Ejstrud (2003) and Nsanziyera (2018). 

- Availability: It is possible to perform this method in many different GIS softwares such as 

QGIS and ESRI’s ArcGIS, thus making it replicable for many people who wish to adopt the 

same method for their study area. 

 

The overlay method relies on two things: 

- Data, which is geographically referenced 

- A hierarchy of importance assigned to the variables (if the overlay is weighted) 

 

The logic behind the method is the following: If we have two different variables whose presence 

affects human survival in a positive manner, then it would be preferable to settle within either of 

these two as opposed to settling in an area absent of either of them, but it would be even more 

preferable to settle where both of them are present at the same time.  

 

The performance value is expressed in Kvamme’s gain, which tells us the degree of settlement 

quantity overrepresentation in a given area in relation to its size. The hypothesis is that areas where 

environmental variables intersect have a larger overrepresentation than its individual components, 

assuming equal importance between all variables. 

 

Assuming equal importance for all variables is misleading, therefore a weighting is usually 

performed, where either expert opinion is involved, or we rely on empirical data as a basis for testing 

the level of statistical significance. The goal of this study is to test and discuss parameter 

performance, not to create a predictive model, which is the reason why a weighting will not be 

performed. The performance of the environmental variables at different spatial levels are tested, 

which might alleviate future research in assigning weights to these variables.  
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3.4. Parameter significance 

When we have established which parameters we wish to include in the construction of our predictive 

model, there is a convenient method to use for determining whether the correlation between the 

variable and settlement presence is strong enough to not be considered a result of random chance. 

This is called the Kolmogorov-Smirnov single sample statistic (KS). 

 

Using this method on archaeological material has been successful previously, for example in the 

paper “GIS and Remote-Sensing Application in Archaeological Site Mapping in the Awsard Area 

(Morocco)”. In this work, the authors tested both the statistical correlation between site presence and 

many different environmental parameters along with the significance of these correlations. They did 

this through the following procedure presented below (Nsanziyera 2018, pp. 9-11): 

 

 First, we make subdivisions within the individual parameters, Secondly, an assumption is made that 

the percentage of sites covered by the parameter directly corresponds to the percentage of land a 

parameter covers, this is our null-hypothesis which we will try to reject, with the alternative 

hypothesis being that there is a significant deviation from this null-hypothesis. In KS terms, the null 

hypothesis is our expected cumulative frequency. Thirdly, an empirical observation is done to 

establish how many sites are covered by the respective subdivisions, which is called the observed 

cumulative frequency. 

 

The difference between the expected and the observed frequencies is expressed as a d-value. The 

higher the d-value is above a defined threshold (D), the more the observed frequency differs from 

the expected frequency and the null-hypothesis could potentially therefore be rejected. 

The threshold value depends on the size of the sample. The larger sample size, the less convincing 

the correlation between the dependent variable (settlement presence) and the independent variables 

(the studied parameters) need to be in order to be deemed as not a result of random chance.  

To determine the threshold D-value we use the following formula (Lee 2005): 

 

    “D = 1.358 / √N” 

 

Where 1.358 is a constant and N is the number of known sites in the study area. The constant 

depends on what margin of error we wish to apply, 1.358 corresponds to a p-value of 0.05, which is 

a standard marker for there being a 5% or less chance of the result being one of random chance 

(Massey 1951, p. 4). 

 

The formula for the critical value D is derived from the assumption that the expected behaviour of a 

statistic is a function of the sample size, which is called “large-sample theory”. This theory states 

that the larger sample we have, the more accurate the values representing the observed correlation 

between the dependent variable and independent variables are (Lockhart 2020). This means that 

even if we don’t have access to the knowledge of all settlements which has existed in a given area, 

the correlation between the presence of settlements that we are aware of and the parameters we are 

studying is expected to be similar to the actual value if we knew the locations of all settlements that 

have existed in that area, given a large enough sample size. 

 

If the D statistic is lesser than any of the d values of the individual subdivisions of the parameters, 

then we can reject the null-hypothesis and say that the settlement distribution has something to do 
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with the parameter in question. If none of the subdivisions has a d-value greater than the threshold 

D-value, then we cannot disprove the null-hypothesis. 

In essence, there needs to be either a very strong observed correlation between the dependent and 

independent variables or a moderate correlation with a large sample size to make the argument that 

the correlation is statistically significant. 

4. Materials and methods 
In this chapter, the material, which is studied, along with the methods applied to these in order to 

perform the analysis is presented. First, the study area is described and put into context with the 

surrounding areas, with a brief overview of the area’s prehistoric cultural history. Secondly, the 

sources from which the data is gathered are presented, finally the variables that are chosen based on 

previous research are presented with descriptions of the processing methods. 

4.1. The study area 

The study area is in north-western Scania and covers a land area of 1 063,46 km² (excluding the area 

covered by major lakes). To the west, the area is bordered by the Danish straits. To the north, there is 

the border between the counties of Scania and Halland. The southern and eastern borders are 

arbitrarily drawn by the author to get a study area of an appropriate size containing an appropriate 

amount of data points (settlements). 

 

The area is chosen for two reasons: 

- The number of already identified settlements within the area gives an adequate sample size of 

87 data points. The density of settlement sites was regarded as sufficient for limiting the area 

size, while being able to work with a sample close to 100 data points.  

- The relative topographical and environmental diversity of the study area compared to other 

considered parts of Scania provides an interesting testing ground for the components of a 

predictive model.  
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Figure 2: The map displays the location of the study area within the county of Scania in a black 

outline. 

 

Below follows an overview of the different parts of the chosen study area (Blomberg & Helgesson 

1996 p.134-140): 

 

Between the mountainous peninsula of Kullaberg in the north-western part of the study area, the hills 

of Söderåsen in the eastern part and Hallandsåsen in the northern part, the area is characterised by 

coastal plains and river basins (Berglund & Rapp 1988 p.19).  
 

In the middle of the area the plains of Ängelholm are situated, where the river Rönne å flows 

through. This alluvial plain hosted settlements along Rönne å already in prehistoric times, a tendency 

which seems to have had a continuity into later ages, judging by the many villages and churches that 

were located along the river during the Middle Ages (Blomberg & Helgesson 1996).  

 

Being exposed to extensive agricultural activity over the many years of human habitation, the many 

wetlands and small rivers that were present before industrial agriculture are now mostly gone, giving 

place to arable land. 

This plain is somewhat of a geological anomaly, due to the presence of most of the postglacial sand 

in Scania, which is otherwise not a common soil type in this part of Sweden (Helgesson 2002 p.7). 
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One of the major post glacial ridges of southern Sweden runs through the northern part of the study 

area, called Hallandsåsen. This region was mostly sparsely populated during prehistoric times apart 

from the western edges of the ridge near the coast. The topographical variation in this area is the 

most extreme in the entire study area, exceeding 150 metres. 

 

In the western part of the study area the region is characterised by fertile soil in the central and 

southern parts, along with topographically elevated positions in the northern parts. The Bjäre 

peninsula is in the north-western part of the study area, which with its great overview over both the 

coast along with the fertile plains to the south, contains a rich amount of prehistoric material 

remains. In the south-eastern part of the study area, the north-western parts of the glacial ridge of 

Söderåsen is located. 

 

 
Figure 3: Topographical overview over the study area, with elevation ranging from 3 metres below 

sea level (dark green) to 211 metres above sea level (dark orange). Observed settlements as 

registered by Riksantikvarieämbetet are represented by blue dots. The hilly Bjäre-peninsula is 

located in the western part, while the majority of the northern study area is covered by the hills of 

Hallandsåsen to the north. The northwestern part of Söderåsen stretches into the southeastern part 

of the study area. Sources: Lantmäteriet, Riksantikvarieämbetet 
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4.2. Riksantikvarieämbetet 

The settlement data that will be used for testing the predictive power of the environmental 

parameters is prehistoric settlement data from the Swedish national heritage board, 

“Riksantikvarieämbetet”. In recent years the organisation has digitised registered archaeological data 

along with the geographical position of the finds, making it accessible for downloading and 

processing in a geodata-format.  

The category of sites which will be used are sites which have been explicitly defined as settlements. 

Due to the difficulty in dating the settlements, with no written record of this matter in the material 

for a distinction to be possible, there will be a low temporal resolution with all time periods 

represented in a single sample.  

4.3. Lantmäteriet/Land Survey Institution of Sweden 

 

The land survey institution of Sweden has a database containing geographically referenced 

information ranging from satellite photographs to features such as rivers and land use. This will be 

the source from which the environmental parameters are created. All of the collecting and processing 

is done by the Land survey institution, who are the owners of all data which will be used to create 

the parameters in this study. The Swedish university of agricultural sciences is the controller of the 

data, from whom it is downloaded. Some of the data is the result of instrument measurements, such 

as aerial laser scanners, while others are drawn features in a digital environment, such as rivers and 

lakes. Thus, the accuracy can vary depending on how the data has been collected or processed.  

4.4. The environmental parameters 

As has been demonstrated through the previous studies presented in this paper, the most common 

method of choosing which variables to test for predictive power in any given area is to examine what 

has been done previously in the study area regarding this very topic. This also includes variables 

which has worked in study areas of similar characteristics, whether it’s geographical proximity or 

physical similarity of the landscape. As I have mentioned earlier, to my knowledge, an 

archaeological predictive model over Scania hasn’t been done, which leaves the second option the 

only one available.  

 

The following variables have been included in the 6 studies which has been done in regions close to 

Scania: 

 

Soil type: 6 

Distance to water bodies: 4 

Distance to coast: 1  

Presence of wetlands: 1 

Elevation: 2 

Slope: 3 

Aspect: 2 

Geomorphological type: 1 

Density of sites/proximity to other settlements: 2 

Historical maps of land use: 1  



32 
 

 

Three of these case studies are Swedish, while one is Dutch, one is German, and one is Danish. It’s 

interesting to note that very few of the variables that have been included in said studies have differed 

significantly from the others. The reason for this could be that all authors have based their choices on 

early academic works by other authors such as Kvamme. It could also mean that they have identified 

the same variables as the most appropriate ones for their particular study areas independently from 

each other, due to the common geographical characteristics that their study areas have. 

 

The successful use of these variables as basis for their predictive models leads to the conclusion that 

they would be appropriate to use as predictive parameters for a model created for a Scanian setting. 

The implementation and testing of this will be the objective for the rest of this paper. 

 

The following variables have been selected from the sample mentioned above: 

4.4.1. Soil type 

The only type of variable that was present in all 6 case studies seems to be the most common 

variable in archeological predictive modelling in general. The only exception is when the studied 

material is from cultures which relied heavily on hunting and gathering or if the terrain is unable to 

host agriculture, such as in the Piñon project in Colorado (Kvamme 1992).  

 

The temporal resolution of this study is low, which means that the material is from time periods 

where agriculture wasn’t present along with material which was. With that said, soil type as a 

predictive variable is a reliable choice for a building block when constructing a predictive model 

over Scania, due to the long history of agriculture, spanning many time-periods. 

 

The types of soil that will be tested are rock, glaciofluvial soil, silt clay, moraine, moraine clay, 

postglacial sand and peat. The spatial resolution is 1: 1 000 000. This is a rather low resolution, but it 

was the only one available that covers this region of Sweden to my knowledge. The problem with 

low resolution will be a matter of further discussion later. 

4.4.2. Distance to water sources 

As has been observed in the previously mentioned studies, a close distance to sources of freshwater 

is important for predicting the presence of prehistoric sites. The reasons for this could be that there is 

a constant demand for it both as drinking water and for agricultural purposes. This is a variable that 

has been significant regardless of time-period, which makes it especially appropriate for a study with 

low temporal resolution. The distances that will be tested are based on what previous studies have 

shown are successful, but there will be a test for the optimal distance based on the empirical 

evidence at hand.  

 

Due to the changing agricultural landscape of the region, it can be advantageous to use historical 

maps as complementary information for mapping the waterways, whose appearance and extension 

has changed significantly over the years. Between the years of 1805 and 1914, the total amount of 

arable land in Scania increased from 13 to 54%, this increase came as a result of the drainage of 

waterways and lakes during this time (Blomberg & Helgesson 1996. p.52). 
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In this study, a historical map from 1911, created by the General staff of Sweden was used to 

identify the major waterways which have been drained during the last century. The map is 

georeferenced based on common features with the current study area, primarily using peninsulas and 

distinctive coastline features. It would have been preferable to use an older map, due to the extensive 

drainage prior to its creation, but it should fulfil its purpose adequately in this study. The map covers 

most of the study area and has many clearly distinguishable rivers, which cannot be seen in modern 

maps.  

 

The appearance of many of the currently existing waterways are different from those seen in the map 

as well, which was considered when recreating the waterways in the GIS. In the cases where rivers 

were not distinguishable from roads (due to sharing the same colour), they were not included in the 

construction of the dataset.  

 

After the lakes and rivers were manually drawn and the variable was created, the dataset was ready 

to be subjected to the analysis. 5 different buffer zones were then created around all water bodies: 

100, 200, 300, 400 and 500 metres from the variable were the distances selected.  

 

A 500-metre distance has been considered sufficient according to previous experimentation in a 

study area like the one in this study (Ducke 2004, p.2), which will be considered and be tested to 

verify if this indeed is the case in this study area. 

4.4.3. Distance to coast 

Distance to coast is an important variable from a transportation viewpoint. The sea connected areas 

and communities rather than separated them, thus it is an appropriate variable to take into 

consideration. This variable hasn’t been explicitly mentioned in the case studies often, but rather has 

been used interchangeably with distance to water bodies, which is understandable due to the ability 

to transport through rivers and waterways to the coasts.  

 

As mentioned previously, the settlements that are studied in this paper are from a wide variety of 

time periods, during which the coastline has been constantly changing. This has two main causes: 

local crustal depression or uplift and global eustatic sea level lowering or rise. The complex 

relationship between these two variables makes it difficult to give an exact estimate for any single 

location in the Fennoscandian geological region at a given time (Påsse & Daniels 2015 p.6).  

 

The Baltic Sea has gone through several different periods of damming and flooding between 13,500 

and 8900 years before present which made the region oscillate between being a lake and a sea 

connected to the Atlantic Ocean. This was until an outlet was formed where the modern Danish 

Straits are, and the modern Baltic Sea started to take shape (Påsse & Daniels 2015 p.13). 

4.4.4. Slope and aspect 

Despite Scania being characterised by a rather flat landscape, slope could be an important factor if 

the resolution of the elevation data is high enough. In this study, a DEM with a surface containing 

squares with the dimensions of two-by-two metres, representing a generalised elevation value for the 

entire area covered by each square is used.  
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The slope is then calculated within the GIS software by estimating the necessary slope between each 

square by interpolation, for explaining the observed difference in elevation values. The accuracy of 

the result is highly dependent on the spatial resolution of the dataset. Although high resolution is 

important to yield accurate results, the larger the study area and the higher the resolution, the greater 

the required hardware processing power is (Chapman 2006 p. 77). This will be a topic of further 

examination in the discussion chapter. 

 

After creating the slope parameter, the aspect of each surface component can be determined, which 

refers to the direction of which the slope is facing. A common hypothesis is that it would be 

preferable to settle in a location where there is a maximal amount of sunlight exposure for 

agricultural efficiency. One example of a study where this parameter was taken into account is in 

north-eastern Romania, where the researchers studied Neolithic settlement locations with respect to, 

among other parameters, the slope aspect of the landscape (Nicu et al 2019).  

Southwest facing slopes were considered to have a high value of probability of containing sites, with 

northeast facing sites were considered to have a low probability. This is called the “heat load index”, 

with the areas with most exposure to sunlight being the areas which have the most heat load, being 

the most preferable regions for agriculture (Nicu et al 2019 p.4).   

4.4.5. Proximity to known settlements 

This variable is different from the others, it isn’t grounded in the hypothesis of spatial 

autocorrelation, but rather a tendency for human settlement patterns to be continuous in a single area 

over a long duration of time. While proximity to already known settlements might be a self-fulfilling 

prophecy, due to the possibility of their discovery being a result of surveying areas around 

settlements known before them, it may be necessary to take regional-settlement continuity into 

consideration when attempting to predict where unknown sites might be.  

 

This parameter will be constructed in the following way: A random selection using the “random” 

module in the programming language Python is done, where a series of 5 random numbers between 

1 and 87 (the number of settlement features) are selected. The corresponding settlement index with a 

randomly generated number is selected and circular buffer zones are created around them set at 

different distance intervals. As described in the “Parameter construction” chapter, these zones are 

then joined with the settlement features, from which point we can analyse the relationship between 

the spatial extent of the buffer zones and the number of settlements contained within them.  

 

This procedure is done five times to create a set of 25 randomly selected settlement features, whose 

performance to predict the presence of other settlements will be tested, in this test, the settlement 

from where the buffer zone is created, will not be counted. The Kvamme’s gain values and d-statistic 

will be calculated from the average performance between all five iterations and be the basis for the 

result and performance evaluation of this parameter. 
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5. Analysis  
In this chapter the methods mentioned previously, are applied to the material. Starting with 

measuring the degree of clustering, then moving into testing the created parameters. Finally, the 

result is presented. 
 

The analysis is performed with the following hypotheses: 

- The settlement distribution shows a clustered pattern 

- The parameters tested in this chapter contains an overrepresented number of settlements 

compared to their areal extent 

- Areas where there is an overlap between one or several parameters contain a larger 

overrepresentation of settlements than any of the overlapping parameters individually 

5.1. The degree of settlement clustering 

Before analysing the significance of the parameters, spatial autocorrelation is measured in order to 

determine whether there are existing settlement patterns which could imply a correlation with 

environmental parameters. There are a few disclaimers to be addressed before presenting the results 

of the Moran’s I test applied to the material within the study area: 

 

- The cell size of the grid is arbitrarily chosen as a compromise between maximising the 

number of cells displaying settlement presence and keeping visual clarity when presenting 

the result. 

 

- There are several settlements remains within a few of the cells, this is not considered in the 

analysis, due to the following reasons: The Moran’s I test is testing for proximity of similar 

values, which would entail that a cell containing exactly one settlement is as dissimilar to a 

cell containing two settlements as a cell containing 0. Because we want to measure the 

clustering of the settlement distribution, it’s more appropriate to have a Boolean system of 

either presence or absence.  

 

- Proximity in this case is determined by immediate neighbours within 500 metres (a single 

cell width and height). The higher probability of any given cell on the grid having the same 

value as its neighbours, the more clustered the settlement pattern is calculated to be, while 

the opposite is true if there is a low probability of having the same value as its neighbours. 

 

- The more evenly the study area has been surveyed, the more accurate this assessment of 

spatial distribution is. The analysis assumes that the cells without sites don’t contain sites, 

rather than being unsurveyed. 
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Figure 4: A grid covering the study area with a cell size of 500x500 metres. The yellow areas are 

cells where the presence of settlements isn’t known. The red areas are cells where there is at least 

one settlement present. 
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Figure 5: The result of the Global Moran’s I test, including the degree of clustering of the 

settlements, as well as the statistical significance of the result. 

 

The result of the Global Moran’s I test shows that the settlement distribution is clustered (figure 5), 

although not by a large margin, given an Index score of approximately 0,12 on a scale from -

1(perfectly dispersed), 0 (perfectly random distribution) and 1 (perfectly clustered). The probability 

of the settlement distribution to be attributed to random chance is presented as 0%, stated by the p-

value of 0,000000, which probably should be interpreted as an approximation rather than an 

expression of exact truth.  

The extremely high z-value of 11,2 also points in this direction, i.e., the probability that this 

distribution is randomly generated is extremely low, less than 1 % chance.  

 

The pattern of settlement distribution which we can observe from the result of the analysis is with a 

very high likelihood implying that there are one or more dependent variables affecting it. To 

emphasise the significance of this result, a randomised version of the distribution map is created to 

compare the results of both the map generated by the empirical data and the random point 

distribution.  
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This is done by generating points with random locations distributed within the study area, which are 

overlaid by a grid with the same size as in the empirical test. The same procedure is then carried out 

as previously, generating a map over randomly distributed settlement locations in the study area 

(figure 6). After running the Global Moran’s I test on this distribution, the result (figure 7) validates 

the legitimacy of the result from the empirical test, showing the difference between what a surface 

containing randomly generated data and the same surface containing the actual data. 

 

The comparison between the results of the Moran’s I test applied on the empirical and the random 

distribution maps shows that the probability of the empirical data to be the result of random chance 

is extremely low, and thus the null hypothesis of a random distribution with no influence from 

external dependent variables can be rejected. To further validate the significance of this result, there 

should be dozens of randomised distribution maps generated, but due to a lack of time and the 

convincing nature of the comparison between the results that has been presented here, no further 

validation will proceed at this time. 

 

 
Figure 6: A grid covering the study area with the cell dimensions of 500x500 metres, where a set of 

77 random points have been generated. The red cells contain the randomly generated points, and the 

yellow cells represent areas without points. 
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Figure 7: The result from the Global Moran’s I test when applied to the randomly generated dataset. 

No clustering is observed, and the points are randomly distributed over the area, thus no traces of 

interference by independent environmental variables on the spatial distribution is implied. 

5.2. Testing the parameters 

As mentioned previously in the parameter performance assessment chapter, the variables will be 

tested by their internal performance to predict site locations among their subdivisions. This is done 

to assess whether the variable at any point during its continuity exceeds the expected value indicated 

by the null hypothesis to a degree where statistical significance can be asserted. 

 

To illustrate this, I will give an example: 

We have an imaginary continuous variable X with five different subdivisions: X1, X2, X3, X4 and 

X5. 
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X1 covers 10% of the study area, X2 covers 15%, X3 covers 20%, X4 covers 25% and X5 covers 

30%. 

X1 contains 15% of all settlements of the study area, X2 contains 15%, X3 contains 40%, X4 

contains 10% and X5 contains 20%. 

 

Our null hypothesis is that all subdivisions ranging from X1 to X5 contain as many sites as the 

percentage they cover of the entire study area. We want to know if this is false and, in that case, how 

false it is. This is where the d-value comes in, which states the difference between the empirically 

observed result and what we would expect by the null hypothesis. 

 

X1: d = 0,15 - 0,10 (0,05) 

X2: d = 0,15 - 0,15 (0,05) 

X3: d = 0,40 - 0,20 (0,20) 

X4: d = 0,10 - 0,25 (- 0,15) 

X5: d = 0,20 - 0,30 (- 0,10)  
 

The expected frequency corresponds to the percentage of area the variable covers if the null-

hypothesis is correct, and the cumulative frequency corresponds to the actual percentage of 

settlements covered by the different subdivisions of the variable. 
 

Assuming there are 100 data points (N), the Kolmogorov-Smirnov D-value which would be defined 

as the threshold for significance is 0,136 (1.358 / √N). As we can see from the example, only the 

difference between the cumulative and expected frequency in X3 exceeds the assigned threshold 

value of 0,136, which is enough for us to call the correlation between the whole variable X and 

settlement presence statistically significant and therefore reject the null hypothesis. 

 

 
Figure 8: The chart displays the difference between the expected and cumulative frequencies of 

variable X. if the vertical distance between both plots at any point exceeds 13,6 percentage points, 

variable X can be considered as having a significant correlation with settlement presence. 
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In this study, the sample size is 87, thus all calculated d-values of the subdivisions of the variables 

will be compared to the referent D-value of 0,146. 

5.2.1. Postglacial sand 

The different soil types which are subjected to the analysis are: rock, glaciofluvial soil, clay-silt, 

moraine, moraine-clay, postglacial sand and peat. The only category which performed above the D 

statistic threshold of 0,146 is postglacial sand, which scored a result of d = 0,199. The category 

covers 18,1 % of the study land area (excluding major rivers and lakes), while containing 37,9 % of 

the settlements, scoring a Kvamme’s gain of 0,52. The reason behind the significance of this 

subdivision is unclear, although the geological layer seems to be a result of withdrawal by an ancient 

shoreline according to the Geological survey of Sweden (URL: https://www.sgu.se/om-

geologi/jord/fran-istid-till-nutid/landhojning-fran-havsbotten-till-lerslatt/postglacial-sand-och-grus/). 

 

It is worth emphasising that the dataset which was used is in the scale of 1: 1 000 000 applied on a 

study area smaller than the dataset is intended to, which might affect the result. Nevertheless, the 

category of post-glacial sand-gravel will be included in the final analysis and the potential use of this 

variable for further creation and validation of predictive models in this area will be discussed in the 

discussion chapter. 

 

 
Figure 9: The extent of postglacial sand in the study area, displayed in transparent blue colour. The 

location of the settlement locations are represented by points. Sources: Lantmäteriet, 

Riksantikvarieämbetet 

https://www.sgu.se/om-geologi/jord/fran-istid-till-nutid/landhojning-fran-havsbotten-till-lerslatt/postglacial-sand-och-grus/
https://www.sgu.se/om-geologi/jord/fran-istid-till-nutid/landhojning-fran-havsbotten-till-lerslatt/postglacial-sand-och-grus/
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5.2.2. Distance to the coast 

The buffer zones for the distance to coast variable are larger than the other variables tested in this 

study, due to the low temporal resolution which means that the settlements could be from many 

different time periods and the coastline could have been at many different levels. 

Five different distances were subjected to the analysis: 500, 1000, 1500, 2000 and 2500 metres. All 

distances were calculated from the modern coastline without considering different conditions during 

prehistoric times. The implications of this will be part of the discussion chapter. 

The distances were mapped by creating multiple buffer zones into the study area from the coastline, 

then the buffer zones were spatially joined with the locational markers of the settlements, which 

formed the foundation of the analysis. 

Due to the variable being continuous, each distance interval is tested for their d-value and Kvamme’s 

gain. 

 

All distances performed very well in relation to the D statistic of 0,146. The analysis yielded the 

following d-values: 

- 500 metres: The buffer zone covers 5,3 % of the study area and includes     24,1 % of the 

settlements. Gain = 0,78, d = 0,188 

- 1000 metres: The buffer zone covers 10,2 % of the study area and includes 34,5 % of the 

settlements. Gain = 0,7, d = 0,243 

- 1500 metres: The buffer zone covers 15,0 % of the study area and includes 43,7 % of the 

settlements. Gain = 0,66, d = 0,287 

- 2000 metres: The buffer zone covers 19,5 % of the study area and includes 47,1 % of the 

settlements. Gain = 0,59, d = 0,273 

- 2500 metres: The buffer zone covers 23,9 % of the study area and includes 49,4 % of the 

settlements. Gain = 0,52, d = 0,252 
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Figure 10: The extent of the 1500 metre buffer zone from the coast in the study area, 

displayed in transparent blue colour. The location of the settlements is represented by points. 

Sources: Lantmäteriet, Riksantikvarieämbetet 

 
Figure 11: The chart displays the difference between the number of settlements covered depending 

on the size of the buffer zones. The blue line represents what we would expect to see according to the 

null hypothesis of the percentage of area covered directly corresponding to the percentage of 

settlements contained. The orange line shows the observed values of the percentage of settlements 

within the set distances. 



44 
 

 

 

All subdivisions of the distance to coast variable performed above the threshold. The distance of 

1500 metres is the subdivision which deviated the most from the expected level according to the null 

hypothesis. While the buffer distance of 500 metres performed better than all the other distances in 

Kvamme’s Gain, it might be advantageous to use a parameter that covers a larger area, a subject 

which I will discuss further later. 

5.2.3. Distance to lakes and major rivers: 

Akin to the distance to coast variable, all buffer distances performed well above the D-statistic 

threshold:  

- 100 metres: d = 0,213. The buffer zone covers 6,3% of the study area and includes 27,6 % of 

the settlements. Gain = 0,77 

- 200 metres: d = 0,237. The buffer zone covers 10,8% of the study area and includes 34,5 % 

of the settlements. Gain = 0,68 

- 300 metres: d = 0,240. The buffer zone covers 15,1% of the study area and includes 39,1 % 

of the settlements. Gain = 0,61 

- 400 metres: d = 0,243. The buffer zone covers 19,4% of the study area and includes 43,7% of 

the settlements. Gain = 0,56 

- 500 metres: d = 0,247. The buffer zone covers 23,6% of the study area and includes 48,3% of 

the settlements.  Gain = 0,51 

As mentioned in the Material and methods chapter, the 500-metre buffer distance suggested by 

Ducke (Ducke 2010 p.2) proved sufficient for predicting settlement presence, yielding a Kvamme’s 

gain of above 0,5 and a d-statistic well above the threshold of 0,146. 
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Figure 12: The chart displays the difference between the number of settlements covered depending 

on the size of the buffer zones. The blue line represents what we would expect to see according to the 

null hypothesis of the percentage of area covered directly corresponding to the percentage of 

settlements contained. The orange line shows the observed values of the percentage of settlements 

within the set distances. 

 

 
Figure 13: The extent of the 500-metre buffer zone around the major lakes and rivers in the study 

area, displayed in transparent blue colour. The location of the settlements are represented by points. 

5.2.4. Distance to settlements 

Judging from the high Kvamme’s gain values, this parameter performed extraordinarily well, 

containing a very high percentage of settlements within it at any given distance interval, especially 

within the 500 to 1000 metre distances, where they display values way over many predictive models. 

At all set distances, the variable also greatly exceeded the D-statistic threshold of 0,146. However, 

this parameter has a few major shortcomings, which I will describe below: 

 

It is possible that the settlements who are parts of different clusters have been discovered as a result 

of surveying these general areas at a higher degree than other areas. This makes the use of this 

parameter as a tool for predicting site presence a self-fulfilling prophecy, where areas displaying a 

high degree of settlement clustering being given more extensive surveying, which further enforces 

the notion that these are richer in site density than other areas. 

 

The small extent of the buffer zones and the small number of settlements contained within these, 

makes it unreliable for use in conjunction with other variables for excluding   
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The variable is rather unsuitable to use in an overlay analysis. The reason for this is that we either 

must randomly select a set of settlements around which we wish to draw the buffer zones or include 

all of them simultaneously in the overlay. The first option will make the performance of the model 

unreliable, due to the dependence of a successful random outcome. The second option is more 

feasible, but if the settlement distribution is too clustered, the result will be skewed due to the buffer 

zones containing each other’s settlements. This would mean that a rather large surface of the study 

area would be covered by a parameter displaying a result derived from self-reinforcement. 

 

In areas where there hasn't been an extensive amount of surveying, the implementation of this 

parameter would not be possible in the construction of a predictive model over said area, which 

makes it unusable. 
 

 

 

 

 

 

 
Figure 14: The table displays the Kvamme’s gain, and d-statistic values associated with the different 

levels of distance intervals. The green hue represents values which perform well either in predictive 

power or level of statistical significance, Dark hue represents distance intervals exceeding in either 

predictive power or statistical significance, while light hue represents lower, but still acceptable 

values in this regard.  

5.2.5. Slope and aspect: 

The aspect variable was divided into two different categories: areas with south-, southwest- or 

southeast-facing slopes in one category and slopes facing the other directions in another. The 

category representing southward facing slopes scored a d-value of 0,118, which is slightly below the 

threshold and is therefore excluded from the analysis.  

 

The reason for dividing the aspect-zones in broad and general categories is the necessity of 

generating analysis surfaces that can contain enough settlements and area cover. This means that in a 

study which covers the entirety of Scania, it may be possible to divide the entire surface in respect to 

each aspect category, while still maintaining the statistical significance of the result. This topic will 

be further examined later in this chapter, where the performance of the overlay is presented. 

 

Neither slope nor aspect displayed any statistically significant relationship with settlement presence. 

The highest performance regarding the slope-variable is areas with slope gradients between 2 and 5 
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degrees, scoring a d-value of 0,040, which is below the threshold of 0,146 and is therefore excluded 

from the analysis.  

5.3. Result 

In this chapter I will go over the results from the analysis and answer the research questions based on 

the findings discovered there.  

 

Research question 1: “Can a clustered pattern be observed, which would indicate the 

existence of influence from one or more environmental parameters?” 

 

Yes, the settlement distribution displays a clear pattern of clustering, which according to the Global 

Moran’s I test of spatial autocorrelation is, with extremely high likelihood, not the result of random 

chance (figure 5). While the high degree of spatial autocorrelation doesn’t explain the reasons 

behind the congregation of the features, it tells us one of two things: 

 

- Either the surveying done in the area has been done almost exclusively around already 

known settlement sites, which results in a potentially misguided overview of settlement 

distribution  

- Or there are indeed one or many environmental variables which are behind the clustered 

settlement pattern, resulting in the settlements grouping together. 

 

It is much more likely that the second option is correct in this case. If the first option was correct, 

then the proximity to known settlements parameter would have outperformed any other parameter by 

a rather wide margin, including their overlay. As we will explore further down this chapter, this was 

not the case. 

 

 Research question 2: “Based on the accessible data, Which variables are the most important 

for predicting the presence of prehistoric settlements in Scania? What are their relative levels of 

importance according to observed results and their performance together with each other?” 

 

The variables, which performs the best in a Scanian environment for archaeological predictive 

modelling purposes, with previous research in similar study areas in mind and through empirical 

testing are distance to modern coastline, distance to major lakes and rivers and on postglacial sand 

soil. 

 

Their relative level of importance is (taking all buffer distances into account):  

- 1. Distance to coast. This variable yielded an extremely high Kvamme’s Gain value of 0,78 

at a distance of 500 metres, with settlements being located very close to the modern 

shoreline. 

- 2. Distance to major lakes and rivers. This variable yielded an extraordinarily high Gain 

value of 0,77 at the set distance of 100 metres. 

- 3. Postglacial sand. Among the variables, which were able to display a statistically significant 

relationship with settlement presence, yielding a respectable Kvamme’s Gain of 0,57. 
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Although both the distance to coast and lakes/rivers performed the best at the lowest set distances, 

the area covered by these are too small when overlaying them to judge the performance of the 

intersections between them, which is why other distances are used in this study. If a higher 

settlement distribution density was observed or the spatial scale was increased, then it would be 

possible to narrow down the size of the parameter cover areas, while still maintaining an acceptable 

level of statistical significance. At the chosen distances of 500 metres for major lakes and water 

bodies and 1500 metres for distance from coastline, the variables yielded the Kvamme’s gain values 

of 0,54 and 0,66 respectively. 

 

When spatially overlaid, the parameters perform extraordinarily well, yielding a Kvamme’s Gain of 

0,89. This further supports the validity of the suggested parameters to predict prehistoric settlement 

locations in the area. However, as I mentioned previously in this chapter, the smaller area a 

parameter covers and the smaller the sample, the more convincing proof we need to reject the null 

hypothesis of no correlation between the parameter and settlement presence. While the overlay of 

the parameters performs well in predicting settlement location with the area covering 1,45 % and 

containing 12,60% of all settlements within the study area, for this result to be statistically 

significant, a sample size of 87 is too small.  

 

Following the formula of calculating the sample D-statistic for a sample size of 87 data entries 

(0,146 = 1.358 / √87), the difference between the percentage of contained settlements (12,60%) and 

the expected percentage (1,45%) does not exceed the calculated D-value, in which case we cannot 

assert statistical significance. For a parameter covering this percentage of area and containing this 

number of settlements, a sample size of at least 149 would be needed: 

 

- Parameter d-value = 0,126 - 0,0045 (12,60% - 0,45%) = 0,1115 

- We assign the result as the critical D, to get X, which is the lowest sample size required to 

exceed this value:  

- 0,1115 = 1.358 / √X 

- √X * 0,1115 = 1.358       | Multiplying both sides of the equation with √X 

- √X = 1,358/0,1115          | Dividing both sides with 0,1115 

- X = (1,358/0,1115)²        | Exponentiating both sides to the power of 2 

- X = 148,6                        | Presenting the result, which is the lowest required sample size 

 

Based on this result, the conclusion can be made that if we want to narrow down areas of interest 

through the overlay-method when constructing predictive models, it would be desirable to have 

either a high settlement distribution density or a large sample, which could also mean larger study 

areas than the one presented here.  

 

Although the correlation between the area overlaid by all parameters and settlement presence could 

not be claimed as statistically significant in this study, this should not be taken as a dismissal of the 

predictive capabilities of the parameters and their overlapping areas.  

 

This only serves as a reminder that it would be preferable to have a larger sample to be certain that 

there is indeed a below 5% probability of the presented correlation being that of random chance, if 

we choose the standard threshold of p = 0,05 (D = 0,1358) as the uppermost value of the null 

hypothesis. 
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In summary, the parameters performed better in pairs than they did individually, which confirms the 

hypothesis that the overlay method yields greater results than only analysing the correlation between 

a single parameter and settlement presence. Interestingly, the intersections between two different 

parameters always performed significantly better than the combined surface of the two, with the 

intersection of all three performing the best (see figure 15). 

 

 

 
Figure 15: The table displays the performance of all parameters in pairs and all combined. 

“Overlay” refers to the areas where the paired parameters overlap. The performance is measured in 

Kvamme’s gain, which tells us the degree of over- or underrepresentation of settlements that there 

is, given the extent of the area that is covered,  
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Figure 16: The map is displaying the extent of all individual parameters along with the areas where 

they intersect. The areas that are 1500 metres from the coastline are displayed in red, postglacial 

sand is displayed in green and the 500-metre buffer zone around major lakes and rivers is blue. The 

intersecting areas are displayed by a combination of the colours of the overlapping parameters. The 

areas where all parameters are intersecting is displayed in white.  

 

Research question 3: Is it possible to extract fundamental principles and notions from this 

conclusion, which might aid the development of predictive models in other regions? 

 

Except for the affirmation of the expected performance of the tested variables for predicting 

settlement presence, the most interesting result from this study regarding archaeological predictive 

modelling is the relationship between parameter zone area, the percentage of settlements covered 

and the sample size. The major flaw in exclusively using the Kvamme’s Gain value as the sole 

performance measurement is that it doesn’t consider the size of the sample, which the Kolmogorov-

Smirnov d-statistic covers up.  

The relationship between the Gain and d-statistic values will be further explored in the discussion 

section below. 
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6. Discussion 
In this chapter, I will reconnect with the different chapters of the paper to discuss the potential 

inferences and interpretations that can be made, as well as highlighting the shortcomings and 

limitations of the study and what role this paper has in the development of archaeological predictive 

modelling. This is proceeded by addressing the dynamic relationship between statistical significance 

and predictive power in the parameter performance evaluation. The chapter is concluded by 

suggesting improvements for future research and production of predictive models for archaeological 

use. 

6.1. Reconnecting to the chapters 

To summarise: In this study, an attempt has been made to evaluate the ability of a few chosen 

variables to predict prehistoric settlement locations in a Scanian environment, by examining a 

subsection of this region and testing the correlation between these variables and known settlement 

presence. To explain and warrant the methods used, a background of spatial analysis, the software 

environment and statistical techniques are given.  

 

To get a starting point, which is grounded in previous research, variables that have been used 

successfully in similar areas are tested. This has the secondary effect of further increasing the 

confidence of using these variables in this or in similar environments, which enhances the suitability 

of using these variables for a predictive model covering other parts of, or the entirety of Scania. 

 

The theory chapter covers multiple different necessary contexts. First, the place that predictive 

modelling has in modern archaeological theory is proposed through Kristiansen’s “New paradigm”. 

The second part covering the quantification of human spatial experience and resulting behaviour. 

The third part explains the theoretical framework behind spatial autocorrelation with the final part 

discussing the two different approaches to predictive modelling based on either data-driven 

induction or theory-driven deduction. This functions as a backdrop of what is presented in the 

methodology chapter, as well as illuminating the problems and potential in creating measurable 

parameters from the abilities of human senses. 

 

To increase the applicability of these methods for other environments or future studies in the same 

region, the methodology chapter goes through the steps of evaluating the study area by first 

assessing the settlement distribution pattern and then the creation and testing of the parameters based 

on the variables. This is necessary to replicate and further test the methods for testing their scientific 

reliability and reproducibility. 

 

In the materials and methods chapter, the features and data which will be subjected to the analysis is 

presented, with the parameter creation processing methods included. The parameters are created on a 

subjective basis and not observed features. For this reason, the process which has created them and 

the resulting objects are presented in the same section. 

 

The analysis chapter goes through the implementation of the methods applied to the presented 

material, by analysing the correlation between settlement presence, the different parameters and the 
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intersections between them. After the performance of the parameters have been tested, the result is 

presented, which concludes the study. 

6.2. Variable disclaimers 

There are a few caveats regarding the result of this study, which will be discussed below. 

While the result presented in this paper shows a very high degree of settlement overrepresentation 

within the parameters and their overlapping areas, it also exposes some limitations. 

 

The variable “Distance to major lakes and rivers” is highly dependent on landscape reconstruction. 

As mentioned previously, the Scanian agricultural landscape has gone through significant changes 

throughout the 19th and 20th centuries, which has drained the rivers and marshlands. Thus, it is in 

many cases necessary to rely on historical maps or geographical features to recreate the prehistoric 

environment as closely as possible. The map used in this study from 1911, is certainly a better 

representation than what is visible on modern maps, but the settlements are in many cases from a 

period over 1000 years prior to the making of the map in question, during which period we can 

assume that the landscape has changed significantly. 

 

The variable “Postglacial sand” is a rather specific kind of geographical feature, which is not 

common in all of Scania (see Helgesson 2002 p.7). In this particular case, this type performed the 

best among the soil types, but this may not be the case in areas where it is rarer. Due to the 

possibility of this soil type being evidence of past shorelines, it would make this variable the same as 

distance to coast at certain periods of time, which might explain its predictive power.  

 

Which kinds of soil types are the most important for predicting settlement locations seems to depend 

on where the study area is located and whether the settlements are remnants of an agrarian society. 

Knowing these two factors, it is possible to form a reliable hypothesis of which kinds of soil types 

are potentially the best performing for predicting the location of ancient settlements. The variable of 

soil type seems to be reliable but choosing which kind of soil type to study seems to be highly 

varying from case to case. 

 

The distance to coast parameter assumes that the coastline has been the same throughout the 

continuity of human habitation of the region. While this is not true, it is not possible to recreate a 

common shoreline for materials that are from entirely different time periods. Thus, this variable is 

highly dependent on high temporal resolution for recreating the conditions which were present at 

that moment. In areas where the shore is often several metres above sea level, generalising in this 

way is more acceptable. In the Scanian case, this may be an issue depending on how much the 

landscape has changed under the duration of the period studied. It is important to note that other 

regions are very reliant on high temporal resolution, such as the Netherlands, here it is much more 

necessary to be specific which time period is studied, because of the ever-changing shoreline. The 

issue of temporal resolution will be explored further down this chapter. 

 

Another important aspect to consider is which kinds of variables are used in the construction of the 

predictive model. This varies to a high degree and could be described as a function of the region, 

what geographical features characterise the region and what culture that the material is remnants 

from. 
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To demonstrate this, I will give two examples of predictive models that were constructed at roughly 

the same time in widely different environments: 

In cases where the topographical variance is high and the landscape is more arid, the relevance of 

variables such as soil type diminishes and slope gradient and aspect increases. One such example is 

the Piñon archaeological project in Colorado, USA. These variables are described as the most 

important environmental factors for predictability in the project (Kvamme 1992. pp. 25-28): 

- Slope: too steep slopes interfere with human activity (negative correlation) 

- Aspect: south-facing aspect yields greater warmth (positive correlation) 

- Local Relief: high discrepancy in elevation between features close in proximity suggest 

rugged terrain (negative correlation) 

- View Data: Locations that enables good visibility of the surroundings improves surveillance 

for the hunter gatherers (positive correlation) 

-  Shelter Index: a geometrical evaluation of how exposed the given location is to its 

surroundings (negative correlation) 

- Distances to water sources: The constant need of water makes proximity to water sources a 

reliable predictor of human activity. In this example, horizontal as well as vertical proximity 

was taken into consideration due to the extreme terrain (negative correlation) 

On the other hand, the researchers Roel Brandt, Kenneth Kvamme and Bert Groenewoudt conducted 

a research project in 1992, where the goal was to create a predictive model in the Regge valley of the 

eastern Netherlands akin to the models that were created in the United States at that point in time. 

The region where the study area is located, the topographical elevation variance is very low. This 

makes the importance of factors such as visibility from high altitudes and slope gradients deemed 

unusable by the group of researchers (Brandt et al 1992. p. 3). It is worth noting that this study was 

carried out without the access to LIDAR data, which could provide a more detailed DEM for basing 

the slope variable on. 

The variables studied in the Regge valley project are proximity to water sources, geomorphological 

type, soil type/texture. The researchers mean that it would have been appropriate to include socio-

cultural factors in this case, like proximity to roads and other settlements, although these were not 

included due to the scarce amount of available data (Brandt et al 1992. pp. 5-6). 

The Regge-valley project is a good example of a predictive model constructed for a flat landscape, 

where topographical variance is low and a long history of continuous settlement of agricultural 

societies exist. The researchers acknowledged the fact that their model would have to be based on 

very different environmental variables than what has been chosen in the models created in the 

western parts of the United States previously. 

This illustrates that a single model consisting of a certain set of parameters cannot be assumed to be 

applicable in all environments, despite how well it performs in one or more particular environments. 

For this reason, I do not suggest that using the result from this study as the sole basis for the 

construction of a predictive model over the region of Scania is to be done. Instead, it is an attempt to 

test the variables, which could potentially be included in the model. To be able to validate this result, 
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a more consistent framework where the parameters are created would be needed. This applies mainly 

to the variable of “major lakes and rivers”, which are drawn in the ArcGIS Pro software based on a 

map from 1911 and therefore is very specific for this particular study area. 

6.3. Temporal resolution 

Temporal resolution is an issue which affects both scientific validity and predictive power of a 

model. The range of potentially different time periods that the studied settlement material might be 

from would ideally be narrow, although this comes with a few problems: 
- It may limit the knowledge we can gain about the ancient world:  

If the resolution is too low (no separation between time periods or few defined chronological 

categories), then we cannot be sure how settlement distribution varies depending on the time-

period. 

- It may limit the possibility of conducting a statistical analysis: 

If the resolution is too high (many chronologically separated categories), the sample might 

contain too few data points per category, and we are as a result unable to claim statistical 

significance to the results we acquire.  

 

As the study done by Bo Ejstrud shows (Ejstrud 2003), a predictive model created by analysing 

material with clearly defined time periods associated with them can enlighten us about the settlement 

distribution specifically for these time periods, which makes the model a great tool for understanding 

the social landscape of the ancient world and its evolution, not only for assessing the probability of 

encountering archaeological material in an area.  

 

An important factor to keep in mind is the changing landscape over the millennia. If we have a large 

sample of archaeological material spanning a few thousand years, then we can expect to see a great 

difference in natural features such as shoreline and extent/shape of rivers and lakes depending on the 

time-period, as well as the expected importance of soil types, which is dependent on the prevalence 

of agricultural activity. 

 

It’s therefore important to at least consider the possibilities of distinguishing between material from 

different time periods if the sample size is adequate for creating a model with the material divided in 

different chronological categories. If this distinction is made, then it might be appropriate to also 

consider the changing landscape and the human interaction with it over the span of the collected 

material’s lifetime. 

6.4. The issue of data quality 

While the quality of the data presented as tested in this study has been high in general, there are 

some issues that needs to be addressed. 

The soil type layer used in this study, provided by the Geological Survey of Sweden (SGU), has a 

resolution of 1:000 000, which is appropriate for visualising the distribution of different soil types on 

national level, but it might not be appropriate for analyses on regional level or lower. This is 

explicitly stated in the shapefile documentation by SGU. Although using this variable showed 

promising results this time, as it has shown in previous studies, using a dataset with resolution this 
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low might diminish the predictive power of soil types covering small areas to the advantage of soil 

types covering large areas, due to excessive generalisation. 

 

Although very useful for these kinds of studies, the data containing the information of settlement 

locations provided by Riksantikvarieämbetet do not include distinction between time periods, nor a 

clear account of whether any two settlement location points that are close to each other, are separate 

entities or in fact the same settlement but at two different locations. This can be a major issue in 

archaeological predictive modelling, due to the importance of settlement density when assessing the 

performance of the parameters. The clearer temporal and spatial distinction made within the site-

dataset, the more accurate parameter performance assessment we can expect to make. 

 

One of the major issues encountered while conducting this study is the slow processing speed when 

attempting to create a digital elevation model based on LIDAR data points (1x1m). For large study 

areas at a Swedish sub-state/multiple county level, it might be advantageous to use either a lower 

spatial resolution on the LIDAR dataset or using hardware with great processing capabilities to 

create a detailed triangulated elevation surface. A surface displaying slope degrees in high detail 

may be critical to determine the importance of this variable in areas with low slope degree variance 

such as Scania. 

6.5. Predictive power and statistical significance 

What the result has shown is that including the Kolmogorov-Smirnov test could further enhance the 

evaluation of parameter performance. For the result of predictive models to be reliable, the variables 

of which it is based on, needs to have been tested with a sufficient sample size. This also means that 

the area, which a parameter covers, either should contain a high density of sites or cover a sufficient 

extent to contain a certain sample size of sites. Predictive power as a measurement derived from the 

gain value, does not discriminate between results from a small or large sample, nor does it if the 

model area cover is small or great.  

 

The dependency on large samples to yield statistically significant results, is a solid argument for why 

both parameter testing and predictive modelling may be preferrable to do on a large scale, 

alternatively on a small scale with high settlement density.  

 

In summary, the relationship between predictive power and significance is highly dependent on the 

sample size, with larger samples representing a more accurate picture of predictive power due to the 

lesser probability of the result being that of random chance. 

6.6. Suggestions on future research 

The result presented in this paper and what contribution it provides, is a small part of a long series of 

methodological validation regarding prehistoric settlement distribution with respect to geographical 

properties. Its role in archaeological predictive modelling is to further test the established methods 

and provide suggestions on further improvement. Continuously testing the methods applied to test 

the correlation between human settlement presence and environmental variables are essential for 

both developing these methods and enhancing our understanding of the past, by making more 
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accurate predictions than were previously possible. In this subchapter, several suggestions on future 

research will be presented to improve this process. 

 

- By utilising the possibilities of prehistoric landscape and ecology reconstruction, we could 

potentially recreate the settings which influenced the human spatial behaviour we are 

observing. If this process was to be carried out for an entire study area, it could greatly 

improve the ability to predict settlement presence. 

 

- Unbiased surveying, completely ignoring any environmental variables while identifying 

settlement locations in an area that has not yet been surveyed, could be very useful for model 

validation. This would preferably be done by dividing the area in regularly sized sections and 

randomly selecting a number of these for surveying. In this way, the results from the 

correlations tests would not be skewed by already taking the variables into account during the 

survey. 

 

- Compare the performance between different statistical techniques and observe the results. 

The technique which proves to be performing better than the others on a consistent basis 

could be the desirable option to use when a predictive model is created. 

 

- It could be useful to compare the spatial distribution of settlements and the distribution of the 

variables. The law of autocorrelation suggests that a naturally occurring observable feature 

should not be randomly distributed, but if exceptions to this rule were found, it could 

invalidate the testing of the degree of settlement clustering as a method for suggesting the 

presence of inferring external variables. 

 

- Explore the potential of AI and machine learning in identifying suitable conditions for 

settlement presence. By developing the methods and techniques which are used when 

constructing predictive models to a point where they are consistently performing well on a 

regular basis, they could be integrated into computer algorithms and the computer could do 

the analysis for us if it has access to the necessary material. This could have great potential 

for the creation and testing of models on many study areas, much more efficiently than what 

could be done by a human agent. This could for example be done in the programming 

language Python, which is integrated into the commonly used ESRI ArcGIS software. 

 

7. Conclusion 

Archaeological predictive models have many different facets, and therefore a great number of areas 

which can be developed and further improved upon. The progress which has been seen in prehistoric 

human spatial behaviour theory, as well as GIS technology, statistical techniques and even the 

potential of machine learning implementations in the last decades, are promising signs for this area 

within archaeology. 

 

The Scanian environment, with its relatively large quantity of registered settlement sites, is a great 

testing ground for the development of predictive models in the future, which this study is a 

steppingstone for. 
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