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Abstract

The Remez algorithm is a beautiful algorithm that finds the best approxima-
tion to a function by finding points satisfying the alternation condition. In 1987
Ping Tang published his doctoral thesis detailing a version of the Remez algo-
rithm modified for functions of complex values with complex coefficients [1]. He
later followed the thesis with an article presenting an algorithm for finding the
coefficients of a complex valued function [2]. The Arnoldi approximation is a
well know iterative method for approximating the m eigenvalues of a matrix
by a smaller set of n eigenvalues. The accuracy of the Arnoldi approximation
is however dependent on an initial choice of a vector. The best choice of this
initial vector leads to the so called ideal Arnoldi approximation. In 1994 Anne
Greenbum and Lloyd Trefethen published an article [3] discussing the possibil-
ity of finding the ideal Arnoldi approximation using Chebyshev approximation.
The purpose of this thesis is to experiment with Ping Tangs algorithm to ap-
proximate the characteristic equation of a matrix on a circle set and compare
the results to that of the ideal Arnoldi approximation to see if the ideal Arnoldi
is a best approximation in a Chebyshev sense.

Populärvetenskaplig sammanfattning

Beräkningar med stora matriser är svåra och långsamma att utföra, även för
datorer. Med hjälp av en matrisens egenvärden kan man istället arbeta med
dess karaktäristiska polynom, där egenvärdena är nollställen. För mycket stora
matriser får detta polynom en hög grad och vi skulle vilja approximera det
med ett av lägre grad för att förenkla beräkningarna ytterligare. En populär
metod för att göra detta är den så kallade Arnoldimetoden som ger oss ett
set av färre egenvärden som approximerar de ursprungliga. Den metoden kan
dock ge olika resultat beroende på dess startparametrar. I detta arbete kommer
vi jämföra det bästa möjliga resultatet ifrån Arnoldimetoden, med optimala
startparametrar, med en annan metod presenterad av Ping Tang som approx-
imerar komplexvärda funktioner med polynom. Vi kommer att applicera Tangs
metod på den ursprungliga matrisens karaktäristiska polynom och se hur de
olika metodernas resultat skiljer sig åt.
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Chapter 1

Introduction

1.1 Theme

The goal of this thesis is to anchor aspects of approximation theory to the
realities of linear algebra. The idea originally stems from the bachelor thesis of
Kateryna Ufymtseva [4] where she examined the Arnoldi iteration, an algorithm
for finding the eigenvalues of a matrix. At the first step of the Arnoldi iteration
an arbitrary vector is used. However, the accuracy of the end result dependens
on that arbitrary vector. There is a best way to choose this vector and that
result is known as the ideal Arnoldi approximation. Finding a vector that
produces a ideal Arnoldi approximation would normally involve experimenting
with different vectors in order to find the one yielding the best result, which can
be very costly.

Since only two elements go into the Arnoldi approximation, the matrix A and
the arbitrary vector b, the behavior of the algorithm is solely dependant on these
two factors. In their article from 1994 Greenbaum and Trefethen hypothesize
that even though the special properties of the arbitrary vector b sometimes
impact the outcome, it is more common that the relevant features do not differ
between different choices of initial vector. Rather it is the properties of the
matrix A that decides the convergence of the iteration, therefor preconditioning
of the matrix A should be more beneficial than preconditioning of b [3, p. 362].
They further mention the algorithm presented by Tang in [2] as one possibility to
approximate the ideal Arnoldi approximation for normal matrices and say that
for non-normal A, however, they know of no simple algorithm that is guaranteed
to compute its ideal Arnoldi approximation [3, p. 365].

We would like to experiment with Tangs algorithm and see how close we
actually get to the ideal Arnoldi approximation when approximating non-normal
matrices on a naïve candidate for the domain.

Our plan is to generate a m×m matrix A and from this generate a suitable
domain. On this domain we will then approximate the characteristic polynomial
of A with a polynomial of degree n ≤ m using Tangs version of the Remez
algorithm. We will then compare the roots of the polynomial to the eigenvalues
of the ideal n-degree Arnoldi approximation to A.

This thesis has three main parts. The first part deals with the aspects of
Arnoldi iteration in Chapter 2 and will help us familiarize ourselves with the
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2 CHAPTER 1. INTRODUCTION

problem at hand.
The second part deals with the relevant aspects of approximation theory,

more specifically the idea of best approximation in Chapter 3, that of Haar
spaces in Chapter 4, the Remez algorithm in Chapter 5 and the algorithm
proposed by Tang in Chapter 6.

As a third part we present the main idea of the thesis in Chapter 7 followed
by our experiment and its results in discussion in Chapters 8 and 9 respectively.

1.2 Preliminaries
In this paper we will make use of two different spaces of polynomial functions.
One of ordinary polynomials and one of monic polynomials. They are defined
as follows:

Definition 1.2.1. For a non-negative integer n, the space of polynomial func-
tions Pn over the domain Ω is defined as

Pn(Ω) :=

{
p(ω) =

n∑
k=0

ckω
k, ω ∈ Ω, ck ∈ R

}
.

Note that dim(Pn) = n+ 1.

Definition 1.2.2. For a non-negative integer n, the space of monic polynomial
functions of degree n, Pn(Ω), over the domain Ω is defined as

Pn(Ω) :=

{
p(ω) =

n−1∑
k=0

ckω
k + ωn, ω ∈ Ω, ck ∈ R

}
.

Note that dim(Pn) = n+ 1.



Chapter 2

The Arnoldi Method

Arnoldi approximation is an iterative method for finding the eigenvalues of a
matrix A ∈ Rm×m. Arnoldi approximates the eigenvalues by way of finding the
eigenvalues of the matrix H ∈ Rn×n, with n < m.

The way that Arnoldi iterations works is that for the m ×m matrix A, we
define the upper Hessenberg matrix Hn as

Hn = QT
nAQn,

where Qn is a matrix of n orthonormal vectors of length m as columns. Then
we solve

AQn = Qn+1H̃n,

where H̃n is a n+ 1× n with the first n rows making up Hn.
By letting Q0 =

[
q0
]
, an arbitrary m × 1 matrix, we define subsequent

iterations Qk =
[
q0 Aq0 · · · Akq0

]
, we say that the columns of Qn are the

basis of a Krylov subspace.

From [3] we have that the Arnoldi approximation problem is finding the
minimal polynomial p∗b ∈ Pn, where Pn is the space of monic polynomials of
degree n, such that

p∗b = argmin
p∈P∗

∥p(A)b∥2 ,

and the ideal Arnoldi approximation, independent of the vector b is defined as

q = argmin
p∈P∗

∥p(A)∥2 .

By the definition of the 2-norm we have that ∥Ax∥2

∥x∥b
≤ ∥A∥2 which gives us the

inequality
∥qb(A)b∥2
∥b∥2

≤ ∥q(A)∥2 ≤ ∥qb(A)∥2

In the specific case where the matrix A is normal we have by the diag-
onalizability of A that for any polynomial p that p(A) = p(Q−1Λ(A)Q) =
Q−1p(Λ(A))Q for some orthogonal matrix Q. Since ∥Q∥2 = 1 we then have
that

∥p(A)∥2 = ∥p(Λ(A))∥2 = max
λ∈Λ(A)

|p(λ)|

3



4 CHAPTER 2. THE ARNOLDI METHOD

Therefore, for a normal matrix A we have that

q = argmin
p∈P∗

max
λ∈Λ(A)

|p(λ)| ,

which could also be written as

q = argmin
p∈P∗

∥p∥∞,Λ(A) .

In order to create a new set to experiment with for non-normal matrices we
need a different set. As stated in [3] this set is not known, but we will use the
smallest circle centered at 0 that encompasses all eigenvalues.

By the maximum principle we know that out of the extreme points of
|f(z)|, z ∈ Ω at least one occurs at the border of Ω, thus we choose the cir-
cle with radius r = maxλ∈Λ(A) |λ| as our naïve domain for our approximations.



Chapter 3

Best approximation

Basically, to approximate the function f ∈ F on a closed interval [a, b] we take
a set of simpler, more tangible functions, S. In most cases this tangible set
would be the set of polynomials of degree n, S = Pn. The function s in the set
S that is closest to f over the interval is called the best. Generally, the best
approximation is denoted as s∗.

A central part of approximation theory is the notion of best approximation.
To determine which of the approximations in a certain set is the most accurate
we make use of norms, and for any given norm we define the best approximation.

Definition 3.0.1. [5, p. 61] Let F be a linear space with the norm ∥·∥ and let
S ⊂ F be a non-empty subset of F . For f ∈ F , an element s∗ ∈ S is said to be
a best approximation to f in S if

∥s∗ − f∥ = inf
s∈S
∥s− f∥ .

Moreover,
η ≡ η(f,S) = inf

s∈S
∥s− f∥

is called the minimal distance between f and S.

In this paper we are interested in finding monic polynomial approximations.
A monic polynomial is a polynomial that has leading coefficient 1. We note:

Theorem 3.0.2. If q∗ ∈ Pn is the best monic approximation to f ∈ F on Ω
then p∗(ω) = q∗(ω)−ωn ∈ Pn−1 is the best approximation to g(ω) = f(ω)−ωn.

Proof. Let q∗ ∈ Pn(Ω) be the best nth degree monic polynomial approximation
to f . We have then that

∥q∗ − f∥ = inf
q∈Pn(Ω)

∥q − f∥ .

A monic polynomial q(ω) in Pn(Ω) can be written as q(ω) = ωn + p(ω), where

5



6 CHAPTER 3. BEST APPROXIMATION

p(ω) ∈ Pn−1(Ω) and thus

∥q∗ − f∥ = inf
p∈Pn−1(Ω)

∥ωn + p− f∥

= inf
p∈Pn−1(Ω)

∥p− (f − ωn)∥

= ∥p∗ − (f − ωn)∥

Thus the problem of finding a nth degree monic approximation can be solved
by finding a n− 1 non-monic approximation to a slightly modified function.

Throughout this paper we will sometimes make use of the general norm ∥·∥
but mostly we will be using the so called Chebyshev norm, also referred to as
the max- or infinity norm, notated as ∥·∥∞.

Definition 3.0.3. [5, p. 139] Let Ω be a compact domain and C(Ω) a linear
space of all continuous functions on Ω then the maximum norm is defined as

∥u∥∞,Ω := max
ω∈Ω
|u(ω)| for all u ∈ C(Ω).

When the set Ω is explicitly stated, we will simply use the notation ∥·∥∞
instead.

Note that in some publications, [5] for example, the difference between an
approximation and the function it approximates, (s − f)(ω), is referred to as
“the error function”. As it is not strictly speaking an error, we will refrain from
using this term an instead strive to refer to it as “the difference function” where
applicable.

Throughout the following sections we will be referring to the set of extremal
points several times. We define this set here:

Definition 3.0.4. Let Ω be a compact domain with ∥·∥∞ and u ∈ C(Ω) a
continuous functions on Ω then the set of extremal points is defined as

Eu := {ω ∈ Ω : |u(ω)| = ∥u∥∞} .



Chapter 4

Haar spaces

A simple way to tell if a space contains a best approximation is through the
definition of Haar spaces. In this chapter we will present some definitions and
theorems regarding Haar spaces.

A Haar space is defined as follows.

Definition 4.0.1. [5, p. 158] A linear space S ⊂ C(Ω) with dim(S) = n < ∞
is called a Haar space of dimension n ∈ N on Ω, if any s ∈ S\{0} has at most
n− 1 zeros on Ω.

Haar spaces have the following properties.

Theorem 4.0.2. [5, p. 159] Let S ⊂ C(Ω) be a linear space of dimension
n ∈ N and X = {x1, . . . , xn} ⊂ Ω a set of n pairwise distinct points. Then the
following statements are equivalent.

1. Any s ∈ S\{0} has at most n− 1 zeros on X.

2. For s ∈ S, the implication

sX = 0 =⇒ s ≡ 0 on Ω

holds.

3. For any fX ∈ Rn, there is a unique s ∈ S satisfying sX = fX .

4. For any basis H = (s1, . . . , sn) ∈ Sn of S, the Vandermonde matrix

VH,X =

s1(x1) · · · s1(xn)
...

. . .
...

sn(x1) · · · sn(xn)

 ∈ Rn×n

is regular.

We also have the alternation theorem.

7



8 CHAPTER 4. HAAR SPACES

Theorem 4.0.3. [5, p.165] Let S ⊂ C(Ω) be a n dimensional Haar space of
n ∈ N on an interval Ω ⊂ R and let I ⊂ Ω be a compact subset with at least
n+1 elements. Then, for any f ∈ C(I) there exists a best approximation s∗ ∈ S
to f with respect to ∥·∥∞,I . This best approximation s∗ is characterized by the
existence of an alternation set of n+ 1 elements X ∈ Es∗−f ⊂ I.

We now define the space of complex trigonometric polynomials with complex
coefficients.

Definition 4.0.4. [5, p. 47] For any non-negative integer n we define the space
of all complex trigonometric polynomials of degree n or less by

T C
n = {T |T (x) =

n∑
k=0

ck e
ikx, ck ∈ C}.

From Iske we have that the space of complex trigonometric polynomials is a
Haar space.

Theorem 4.0.5. [5, p. 162] For any non-negative integer n, T C
n is a Haar

space of dimension n+ 1 over C.



Chapter 5

The Remez algorithm

In its classic form the Remez algorithm is an algorithm for finding the best
approximation s∗ ∈ S to f from a Haar space S on the interval [a, b] such that

s∗ = argmin
s∈S

∥f − s∥∞,[a,b]

In any of its iterations, the Remez algorithm computes for a ordered set
X = (x1, . . . , xn+1) ∈ [a, b]

n+1 the corresponding best approximation s∗X to f
with respect to ∥s− f∥∞,X so that

s∗X = argmin
s∈S

∥f − s∥∞,X

We fix an ordered basis H = (s1, . . . , sn) of the Haar space S so that s∗X can
be represented as

s∗X =

n∑
k=1

α∗
ksk ∈ S

with α∗ = (α∗
1, . . . , α

∗
n)

T ∈ Rn. According to Theorem 4.0.3 s∗X satisfies

(s∗X − f)(xk) = (−1)k−1σ ∥s∗X − f∥∞,X for k = 1, . . . , n+ 1

for some σ ∈ ±1. Therefore, ηX and α∗ are the solution to the system
−1 s1(x1) · · · sn(x1)
1 s1(x2) · · · sn(x2)
...

...
. . .

...
(−1)n+1 s1(xn+1) · · · sn(xn+1)



ηX
α∗
1
...
α∗
n

 =


f(x1)
f(x2)

...
f(xn+1)


Since we have that

∥f − s∗∥∞,Ω ≥ ∥f − s∗∥∞,X

9



10 CHAPTER 5. THE REMEZ ALGORITHM

for all sets X ∈ [a, b]
n+1, we know that if for some X∗ ∈ [a, b]

n+1 we have
equality, s∗X ≡ s∗. If on the other hand we do not have equality that means that
there exist an element x̂ ∈ [a, b], x̂ ̸∈ X such that |(f − s∗X)(x̂)| ≥ ∥f − s∗∥∞,X .
In each iteration of the Remez algorithm, if such x̂ exist, we replace a suitable
element in X. Thus for each step X → X∗ which implies that s∗X → s∗.

We present here the code structure for S = Pn−1.

Algorithm 1 The Remez algorithm

1: procedure RemezAlg(n, f(x), [a, b])
2: X ← {x0, . . . , xn}, xk ∈ [a, b]
3: repeat
4: Y ← {f(x0), . . . , f(xn)}

5: V ←

x
n−1
0 · · · x0

0 (−1)0
...

...
...

xn−1
n · · · x0

n (−1)n


6: {cn−1, . . . , c0, η} ← V −1Y
7: p(x)← c0 + c1x+ · · ·+ cn−1x

n−1

8: xnew ← argmax
x
|f(x)− p(x)| for x ∈ [a, b]

9: X ← PlaceNewPoint(X,Y, p(x), xnew)
10: until η optimal
11: return p(x)

12: procedure PlaceNewPoint(X,Y, p(x), xnew)
13: if xnew ≤ x0 then
14: if (f(x0)− p(x0)) · (f(xnew)− p(xnew)) ≥ 0 then
15: x0 ← xnew

16: else
17: xn+1 ← xnew

18: else if xnew ≥ xn+1 then
19: if (f(xn+1)− p(xn+1)) · (f(xnew)− p(xnew)) ≥ 0 then
20: xn+1 ← xnew

21: else
22: x0 ← xnew

23: else
24: for k in [1, n] do
25: if xk ≥ xnew then
26: if (f(xk)− p(xk)) · (f(xnew)− p(xnew)) ≥ 0 then
27: xk ← xnew

28: else
29: xk−1 ← xnew

30: break
31: sort X
32: return X



Chapter 6

Tangs method

In 1988 Ping Tang defined an algorithm based on the Remez algorithm but
for the purpose of approximating complex valued functions with complex co-
efficients. In the article he assumes a periodic function on the domain [0, 1].
Since the algorithm works also for non-polynomial basis functions, he formu-
lates the problem for approximations on a general basis [2, p. 722]. He defines
the problem as finding the n real parameters λ∗

1, . . . , λ
∗
n such that

max
t∈[0,1]

∣∣∣∣∣f(t)−
n∑

k=1

λ∗
kφk(t)

∣∣∣∣∣ ≤ max
t∈[0,1]

∣∣∣∣∣f(t)−
n∑

k=1

λkφk(t)

∣∣∣∣∣ (6.1)

for all λ = [λ1, . . . , λn]
T ∈ Rn.

We define the function p(t) =
∑n

k=1 λkφk(t) and rewrite the problem as
finding p∗(t) ∈ Pn such that

max
t∈[0,1]

|f(t)− p∗(t)| ≤ max
t∈[0,1]

|f(t)− p(t)| (6.2)

for all p ∈ Pn.

Tang notes that while the basis used is linearly independent on [0, 1] is only
assumed to satisfy uniqueness, since it does not satisfy the Haar condition.
With this reformulated problem we take a look at the Kolmogorov theorem as
presented by Tang.

Theorem 6.0.1. [1, p. 6] An approximant p∗ ∈ Pn is a best approximation of
f from Pn if and only if

max
tk∈Ef−p∗

Re((f − p∗)(tk)p(tk)) ≥ 0 for all p ∈ Pn. (6.3)

Proof. We assume that there exists a positive ϵ ∈ R and p ∈ Pn such that

max
tk∈Ef−p∗

Re((f − p∗)(tk)p(tk)) = −ϵ.

We shall see that there then exists a β > 0 that makes q∗ = p∗ + βp that
approximates f better than p∗. We separate [0, 1] into two subintervals I1 and

11



12 CHAPTER 6. TANGS METHOD

I2 where
I1 :=

{
t ∈ [0, 1] ; Re((f − p∗)(t)p(t)) < − ϵ

2

}
and

I2 := [0, 1] \I1.
We have then for any t ∈ I1 that

|(f − q∗)(t)|2 = |(f − p∗)(t) + βp(t)|2

= |(f − p∗)(t)|2 + β2|p(t)|2 + 2βRe((f − p∗)(t)p(t))

≤ |(f − p∗)(t)|2 + β2|p(t)|2 +−2β ϵ

2

≤ ∥f − p∗∥2∞ + β
(
β|p(t)|2 +−ϵ

)
Thus |(f − q∗)(t)| < ∥f − p∗∥∞ for all t ∈ I1 when 0 < β < ϵ

∥p∥2
∞
≤ ϵ

|p(t)|2 .
Since I1 contains all the extremal points of |(f − p∗)(t)| we know that

maxt∈I2 |(f − p∗)(t)| < ∥f − p∗∥∞. We define

δ := ∥f − p∗∥∞ −max
t∈I2
|(f − p∗)(t)|

then for t ∈ I2

|(f − q∗)(t)| = |(f − p∗)(t) + βp(t)|
≤ |(f − p∗)(t)|+ β |p(t)|
≤ ∥f − p∗∥ − δ + β |p(t)|

Thus |(f − q∗)(t)| < ∥f − p∗∥∞ for all t ∈ I2 when β < δ
∥p∥∞

≤ δ
|p(t)| .

From this we have that |(f − q∗)(t)| < ∥f − p∗∥∞ for all t ∈ [0, 1] for 0 <

β < min
{

ϵ
∥p∥2

∞
, δ
∥p∥∞

}
and thus q∗ is a better approximant to f .

Following are three remarks that are implications of Theorem 6.0.1. They
are not explicitly mentioned by Tang in [2] but in the interest of clarity we shall
state them here.

Remark 6.0.2. Inequality 6.3 in Theorem 6.0.1 can be rewritten as

max
tk∈Ef−p∗

Re(e−iαk(f − p)(tk)) ≥ ∥f − p∗∥∞ for all p ∈ Pn. (6.4)

for αk = Arg((f − p∗)(tk)).

Proof. We have from Theorem 6.0.1 that

max
tk∈Ef−p∗

Re((f − p∗)(tk)p(tk)) ≥ 0 for all p ∈ Pn.

Since Pn is a linear space we have that all elements therein can be written as a
combination of p∗ and another element in Pn. And thus

max
tk∈Ef−p∗

Re((f − p∗)(tk)(p
∗ − p)(tk)) ≥ 0 for all p ∈ Pn.
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We further rewrite the left hand side

Re((f − p∗)(tk)(p
∗ − p)(tk)) = Re((f − p∗)(tk)(p

∗ − f + f − p)(tk))

= Re((f − p∗)(tk)(f − p)(tk)) + Re((f − p∗)(tk)(p
∗ − f)(tk))

= Re((f − p∗)(tk)(f − p)(tk))− Re((f − p∗)(tk)(f − p∗)(tk))

= |(f − p∗)(tk)|Re(ei Arg((f−p∗)(tk))(f − p)(tk))− |(f − p∗)(tk)|2

= |(f − p∗)(tk)|Re(e−i Arg((f−p∗)(tk))(f − p)(tk))− |(f − p∗)(tk)|2

Getting thus that

max
tk∈Ef−p∗

|(f − p∗)(tk)|Re(e−i Arg((f−p∗)(tk))(f−p)(tk)) ≥ |(f − p∗)(tk)|2 for all p ∈ Pn,

or equivalently

max
tk∈Ef−p∗

Re(e−i Arg((f−p∗)(tk))(f − p)(tk)) ≥ ∥f − p∗∥∞ for all p ∈ Pn.

Remark 6.0.3. Inequality 6.4 in Remark 6.0.2 can be further rewritten as

max
tk∈Ef−p∗

Re(eiαk f(tk)) ≥ Re(eiαk p(tk)) + ∥f − p∗∥∞ for all p ∈ Pn (6.5)

for αk = Arg((f − p∗)(tk)).

Proof. We have from Remark 6.0.2 that

max
tk∈Ef−p∗

Re(e−iαk(f − p)(tk)) ≥ ∥f − p∗∥∞ for all p ∈ Pn.

We rewrite the left hand side

Re(e−iαk(f − p)(tk)) = Re(e−iαk f(tk))− Re(e−iαk p(tk)).

Thus we get

max
tk∈Ef−p∗

Re(e−iαk f(tk))− Re(e−iαk p(tk)) ≥ ∥f − p∗∥∞ for all p ∈ Pn.

or equivalently

max
tk∈Ef−p∗

Re(e−iαk f(tk)) ≥ Re(e−iαk p(tk)) + ∥f − p∗∥∞ for all p ∈ Pn.

Remark 6.0.4. Inequality 6.4 in Remark 6.0.2 can also be rewritten as

max
tk∈Ef−p∗

|(f−p)(tk)|·cos(Arg((f−p)(tk))−Arg((f−p∗)(tk))) ≥ ∥f − p∗∥∞ for all p ∈ Pn.

(6.6)
Furthermore, we have that

cos(Arg((f − p)(tk))−Arg((f − p∗)(tk))) ≥ 0,

which implies

|Arg((f − p)(tk))−Arg((f − p∗)(tk))| ≥
π

2
.
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Proof. We have from Remark 6.0.2 that

max
tk∈Ef−p∗

Re(e−i Arg((f−p∗)(tk))(f − p)(tk)) ≥ ∥f − p∗∥∞ for all p ∈ Pn.

We rewrite the left hand side

Re(e−i Arg((f−p∗)(tk))(f − p)(tk)) = |(f − p)(tk)|Re(e−i Arg((f−p∗)(tk)) e−i Arg((f−p)(tk)))

= |(f − p)(tk)|Re(ei(Arg((f−p)(tk))−Arg((f−p∗)(tk))))

= |(f − p)(tk)| cos(Arg((f − p)(tk))−Arg((f − p∗)(tk))).

Thus we arrive at

max
tk∈Ef−p∗

|(f − p)(tk)| cos(Arg((f−p)(tk))−Arg((f−p∗)(tk))) ≥ ∥f − p∗∥∞ for all p ∈ Pn.

(6.7)
Furthermore, as ∥f − p∗∥∞ ≥ 0 we have that for tk fulfilling Equation 6.7 that

cos(Arg((f − p)(tk))−Arg((f − p∗)(tk))) ≥ 0.

This tells us that in Tangs version of Remez algorithm we have that the
argument of two neighboring points cannot be within π

2 of each other. This
implies the characterization theorem of the original Remez algorithm D.0.5,
where the error alternates between points on the positive and negative part of
the real axis and thus the argument of the error has a difference of π.

Like in Chapter 5 our problem is to find in each iteration, for a ordered set
X = {t0, . . . , tn} ∈ [0, 2π]n+1 the corresponding best approximation p∗X to f
with respect to ∥p− f∥∞,X so that

p∗X = argmin
p∈Pn

with the characterization clarified in Remark 6.0.3
1 Re(φ0(t0) · e−iα0) · · · Re(φn−1(t0) · e−iα0)
1 Re(φ0(t1) · e−iα1) · · · Re(φn−1(t1) · e−iα1)
...

...
. . .

...
1 Re(φ0(tn) · e−iαn) · · · Re(φn−1(tn) · e−iαn)



∥f − p∥∞

λ∗
0
...

λ∗
2n+1

 ≤

Re(f(t0) · e−iα0)
Re(f(t1) · e−iα1)

...
Re(f(tn) · e−iαn)

 .

We call this relation Ax ≤ c. We further define b as the unit vector of the
same size as x,

b =


1
0
...
0

 ,

and our problem becomes to maximize ∥f − p∥∞ = bTx subject to

Ax ≤ c.
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In contrast to the classic Remez algorithm, Tangs method instead involves
solving the problems dual which is to minimize h = cTy subject to

ATy = b

with the constraint that y ≥ 0.

We present Tangs algorithm with the following pseudocode:

Algorithm 2 Tangs implementation of the Remez algorithm

1: procedure RemezAlg(n, f(t), {φ0(t), . . . , φn−1(t)}, [a, b])
2: p(t), T, A, h← FirstStep(n, f(t), {φ0(t), . . . , φn−1(t)}, [a, b])
3: while h not optimal do
4: p(t), T, A, h←RemezStep(p(t), f(t), {φ0(t), . . . , φn−1(t)}, T, A, [a, b])
5: return p(t)
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Algorithm 3 Tangs implementation of the Remez algorithm, continued

6: procedure FirstStep(n, f(t), {φ0(t), . . . , φn−1(t)}, [a, b])
7: repeat
8: T ← {t0, . . . , tn}, tk ∈ [a, b]
9: A← {α0, . . . , αn}, αk ∈ [0, 2π]

10: V ←


1 · · · 1

Re(φ0(t0) · e−iα0) · · · Re(φ0(tn) · e−iαn)
...

...
Re(φn−1(t0) · e−iα0) · · · Re(φn−1(tn) · e−iαn)


11: Y ← {Re(f(t0) ∗ e−iα0), . . . ,Re(f(tn) ∗ e−iαn)}
12: until V is non-singular and LinProg(V, Y ) solvable
13: h← LinProg(V,Y)
14: {η, λ0, . . . , λn−1} ← (V T)−1Y
15: p(t)← λ0φ0(t) + . . .+ λn−1φn−1(t)
16: return p(t), T, A, h

17: procedure LinProg(V, Y )
18: h = minr Y

Tr subject to V r = [1, 0, . . . , 0] and 0 ≤ rk ≤ 1
19: return h

20: procedure RemezStep(p(t), f(t), {φ0(t), . . . , φn−1(t)}, T, A, [a, b])
21: tnew ← argmax

t
|(f − p)(t)| for t ∈ [a, b]

22: αnew ← Arg((f − p)(tnew))
23: for k in [0, n] do
24: ttemp, αtemp ← tk, αk

25: tk, αk ← tnew, αnew

26: V ←


1 · · · 1

Re(φ0(t0) · e−iα0) · · · Re(φ0(tn) · e−iαn)
...

...
Re(φn−1(t0) · e−iα0) · · · Re(φn−1(tn) · e−iαn)


27: Y ← {Re(f(t0) ∗ e−iα0), . . . ,Re(f(tn) ∗ e−iαn)}
28: if V non-singular and LinProg(V, Y ) solvable then
29: h← LinProg(V,Y)
30: {η, λ0, . . . , λn−1} ← (V T)−1Y
31: p(t)← λ0φ0(t) + . . .+ λn−1φn−1(t)
32: return p(t), T, A, h
33: else
34: tk, αk ← ttemp, αtemp



Chapter 7

The problem

In order to create a new set to experiment with for non-normal matrices we
need a different set. As stated in [3] this set is not known, but we will use the
smallest circle centered at 0 that encompasses all eigenvalues.

We assume that the eigenvalues are known and that

p∗ = argmin
p∈Pn

∥χA − p∥∞,Λ(A)

holds for non-normal matrices.
We define r := minλ∈Λ(A) |λ| to be the radius of the disc with the largest

eigenvalue on the border. We have then that for the circle

Ω = {z ∈ C; |z| ≤ r}

that
∥χA − p∗∥∞,Ω ≥ ∥χA − p∗∥∞,Λ(A) .

We have by the maximum principle that the modulus of any analytic function
|f(z)| obtains its maximum on the boundary.

Theorem 7.0.1. [6, p. 92] Let f be an analytic function on the connected
domain Ω ⊂ R and ω0 ∈ Ω a point in Ω. If |f(ω0)| > |f(ω)| for all ω ∈ Ω, then
ω0 is on the boundary of Ω.

Therefore with the border of Ω denoted as δΩ we have that

∥χA − p∗∥∞,δΩ = ∥χA − p∗∥∞,Ω ≥ ∥χA − p∗∥∞,Λ(A) .

A polynomial of degree n defined on δΩ can be written as

P (z) =

n∑
k=0

ckz
k z ∈ δΩ, ck ∈ C.

We rewrite this in polar form as

p(t) =

n∑
k=0

ckr e
i2πkt t ∈ [0, 1], ck ∈ C.

17
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We further define ak + ibk := ckr and get

p(t) =

n∑
k=0

(ak + ibk) e
i2πkt t ∈ [0, 1] , ak, bk ∈ R. (7.1)

Now we define

φk(t) :=

{
ei2πkt for 0 ≤ k ≤ n

i ei2πkt for n+ 1 ≤ k ≤ 2n+ 1

and

λk :=

{
ak for 0 ≤ k ≤ n

bk for n+ 1 ≤ k ≤ 2n+ 1

which gives us

p(t) =

n∑
k=0

λkφk(t) +

2n+1∑
k=n+1

λkφk(t)

=

2n+1∑
k=0

λkφk(t)

for t ∈ [0, 1], λk ∈ R.
This we recognize as being of the form used in the problem as presented by

Tang in Equation 6.1 and thus his algorithm will be applicable.

Remark 7.0.2. It should be noted that despite Tang not fully making use of
Haar spaces, the polynomial in Equation 7.1 evaluated on a circle is a complex
trigonometric polynomial, which is in fact a Haar space and thus has a best
approximation.

7.1 Approximating the characteristic polynomial
with Tangs algorithm.

In order to approximate a function χ of the m×m matrix A with a polynomial
p∗ ∈ Pn using Tangs algorithm we follow the three steps as outlined in [2,
p. 725].

Step 0 Initialize the system by generating 2n+ 3 points (tk, αk) ∈ [0, 1]× [0, 2π]
with k = 0, . . . 2n+ 2 and set up the Vandermonde matrix A such that

AT = A(t, α)
T
=


1 · · · 1

Re(φ0(t0) e
−iα0) · · · Re(φ0(t2n+2) e

−iα2n+2)
...

...
Re(φ2n+1(t0) e

−iα0) · · · Re(φ2n+1(t2n+2) e
−iα2n+2)

 ,

and the vector

c = c(t, α) =

 Re(χA(t0) e
−iα0)

...
Re(χA(t2n+2) e

−iα2n+2)
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We then minimize h = cTr subject to the constraints

r := A−1


1
0
...
0

 ≥ 0,

i.e. rk ∈ [0, 1] for k = 0, . . . , 2n+ 2.

Step 1 We find a updating element (t̂, α̂) ∈ [0, 1]× [0, 2π] such that(
χA(t̂)−

2n+1∑
k=0

λkφk(t̂)

)
e−iα̂ =

∥∥∥∥∥χA −
2n+1∑
k=0

λkφk

∥∥∥∥∥
∞

.

If
∥∥∥χA −

∑2n+1
k=0 λkφk

∥∥∥
∞
− h ≤ hϵ for some tolerance ϵ we terminate the

algorithm.

Step 2 Swap an appropriate element (tk, αk) with the new (t̂, α̂) and then go back
to step 1.
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Chapter 8

Experiment

The matrices to be approximated were constructed as companion matrices to
characteristic equations of the desired eigenvalues. Although, in the case of
purely real eigenvalues, a diagonal matrix of the eigenvalues was instead used.

In order to find the new candidate in Step 2 of Tangs algorithm we generated
a set of 512 possible candidates T , selecting t̂ = maxt∈T |(χA − p)(t)|. The
corresponding α̂ was taken as α̂ = Arg((χA − p)(t̂)).

The Tang algorithm was repeated until the change in
(∥χA − p∥∞ − h)/h between iterations was below a tolerance of 10−8. The
algorithm was also aborted if the optimal point to swap in was already used, if
no feasible swap was possible or if the number of iterations performed passed
100× deg(p).

After the algorithm finished the roots were calculated as the eigenvalues of
the companion matrix or as the zeros of the polynomial using the roots function
found in the python package numpy.

The optimal Arnoldi q was constructed by using a minimizing function found
in the python package scipy in order to find the vector b maximizing ∥p(A)b∥2.

Then the results from Tangs algorithm and the eigenvalues of the optimal
Arnoldi matrix were plotted together with the true eigenvalues of the original
matrix.

The experiment was repeated with both monic and non-monic approxima-
tions.

All the code used in the experiment can be requested from the department
of numerical analysis at Lund University.

21
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Chapter 9

Results and Discussion

We note that the approximations of the same degree as the characteristic poly-
nomials all converge to the correct eigenvalues, thereby we can confidently state
that the algorithm works.

When we look at how the methods perform compared to each other it is
not always clear from the images which is best. In majority of the cases with
eigenvalues on the unit circle however the Arnoldi method produce a closer
approximation than Tangs method.

The first set of plots, found in Appendix A, were generated for six different
10 × 10 matrices. The different matrices had the real part of the eigenvalues
either evenly spaced or in clusters. Further they were either all real, had a
complex part chosen as to put them on a circle or had their complex part
evenly spaced between 0 and ±1, per cluster if applicable. All different types
of matrices were approximated with a monic and a non-monic approximand
and the ideal Arnoldi approximation done with scipy.fsolve. Both the Tang
algorithm and fsolve had 10−8 as a tolerance.

The second set of plots, found in Appendix B were generated in the same
way but using 11× 11 matrices.

Some interesting things to note here is that for the non-monic approxima-
tions, the Tang algorithms performance was very bad for most odd degree ap-
proximations of the 10× 10 matrix and the even approximations of the 11× 11
matrix. Indicating an issue dealing with odd approximands to even functions
and vice versa. For both 10× 10 and 11× 11 the non-monic performed best for
the matrices with clustered eigenvalues situated on a circle.

The monic approximations performed much more evenly, however not always
better.

For the matrices with purely real eigenvalues the Arnoldi approximation
works very well, which the Tang algorithm does not. It is important to note
here that for these normal matrices we did not use the Λ(A) set detailed in
Chapter 2 but rather the same naïve set as for the non-normal matrices. The
reason for this seems to be that the Arnoldi method yields eigenvalues without
a imaginary part, while the Tang method still produces complex roots.

In Appendix C we see the result of an experiment where the eigenvalues

23
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of a matrix were placed in clusters with the complex part of th eigenvalues
chosen in such a way as to place them on a circle. The experiment was repeated
with circles of different radii. Here we can note something interesting. Our
approximation has five eigenvalues clustered around the true ones that are the
same from radius 2 and onward, only scaled differently. The same is true for the
three centered eigenvalues of Arnoldi. But if we look at the average of modulus
the eigenvalues of our approximation, we can see that between radius 13 and
14 in increases by about 10, from 14 to 15 by about 11, then 12, 12, 13. No
huge steps. While for the Arnoldi approximation we see that for the same steps
we have increments of 90, -206, 2588, -1311, 1672. Both larger increments, and
also alternating between increasing and decreasing.

On the machine used for these approximation the Arnoldi approximations
of this degree all finished in around one second, while Tangs method finished in
between about 8 and 12 seconds.

While at lower degrees both methods finish after a similar time, at higher
degrees the time it takes for Tangs algorithm to run increases significantly. In
particular, it is finding appropriate initial points that takes time. On the com-
puter the simulations were done, finding initial points for a degree 15 approxi-
mation of a 20× 20 matrix with eigenvalues with real part on [−1, 1] takes over
10 minutes, comparatively the approximations of a 10×10 matrix with eigenval-
ues with real part on [−1, 1] takes less than a minute. Experiments point to the
range in which the α values of Tangs algorithm are generated to be a deciding
factor. Higher degree approximations seem to be faster for a narrower range,
while lower degrees fare better with a wide range. This could be a subject for
further study, one interesting experiment would be to set up a range of Cheby-
shev points, picking the the first range between the two outermost points, and
for every increase of degree use a range closer to the middle of the Chebyshev
points.

As it works now, the implementation randomizes one alpha on [0, 2π] and
then the subsequent ones are generated in such a way that the algorithm is
sure that they have the properties we desire. In the version presented in [2],
the suggested method is to generate a set of α in [0, 2π] and then change the
individual points from αk to α′

k ∈ {αk, αk + π} until such a time as that the
Vandermonde matrix is not singular, but the time complexity using this method
was way too high to comfortably use.

Since we are working with a larger than optimal set of points for the Tang
algorithm we will always be overshooting, getting a larger value for ∥f − s∗∥∞,Ω

then we would for a better set. In the few cases where the Tang method out-
performed the Arnoldi method, this can probably be explained by the property
of Arnoldi to instead of always minimizing the difference to the function to be
approximated, instead minimizes the difference to the next step of the iterative
algorithm.



Chapter 10

Future work

At the moment the initiation of the algorithm is the slowest part, in particu-
lar choosing the initial alpha-values. Some experiments indicate that a higher
degrees of approximation are faster with a narrower interval in which the al-
phas are generated from. However, the speed of lower degrees of approximation
seem to be negatively effected by this. Experiments with a varying range for
the alphas would be interesting, perhaps a interval of twice as many Chebyshev
points as alphas centered around a point opposite the previous alpha. For the
first the degree of approximation the two points furthest away from the center
would span the interval and for each degree higher, a step inwards would reduce
the size of the interval.

Tangs algorithm does not force the coefficients to be real. The solution
just converges to the solution that has real coefficients. If we instead of using
linear programming to find the solution were to use constrained least squares
we could perhaps minimize the number of iterations necessary to arrive at a
correct solution.

25
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Appendix A

Approximations of 10× 10
matrices

This appendix contains the figures of eigenvalues for different 10× 10 matrices
and approximations thereof, coupled with a table of relevant values. The true
eigenvalues of the original matrix are represented by orange circles, the eigenval-
ues of the Arnoldi approximation as red crosses and our approximations using
Tangs method are shown as blue plusses. In the case of monic polynomials,
they are the eigenvalues of the companion matrix to the polynomial. For the
non-monic polynomials they are values returned by numpy.roots.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.375 0.375 0.375 0.143 0.143 0.143
2 0.163 1.33 0.746 0.522 0.522 0.522
3 0.581 1.195 0.99 0.179 0.774 0.575
4 0.772 1.367 1.034 0.371 0.991 0.726
5 0.097 0.953 0.78 0.309 0.978 0.641
6 0.503 1.283 0.836 0.77 1.014 0.924
7 0.309 1.384 0.798 0.345 1.031 0.825
8 0.542 1.225 0.837 0.525 1.008 0.81
9 0.542 1.461 0.872 0.362 1.197 0.908
10 0.542 1.1 0.868 0.542 1.1 0.868

Figure A.1: Plot and table for different degrees of monic approximations of a
10× 10 matrix with eigenvalues having their real parts situated in clusters and
their imaginary parts equidistantly placed on [−1, 1] per cluster.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 2.468 2.468 2.468 0.001 0.001 0.001
2 1.43 1.43 1.43 0.977 0.977 0.977
3 0.451 2.883 1.261 0.055 1.137 0.776
4 0.4 1.748 1.074 0.045 1.246 0.648
5 0.474 1.463 1.05 0.01 1.273 0.613
6 0.674 1.402 1.023 0.635 1.101 0.929
7 0.724 1.774 1.084 0.252 1.11 0.863
8 0.8 1.429 1.035 0.803 1.118 1.013
9 0.822 2.617 1.083 0.155 1.122 0.914
10 1.0 1.0 1.0 1.0 1.0 1.0

Figure A.2: Plot and table for different degrees of monic approximations of a
10× 10 matrix with eigenvalues having their real parts situated in clusters and
their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.013 0.013 0.013 0.001 0.001 0.001
2 0.831 0.831 0.831 0.722 0.722 0.722
3 0.197 0.867 0.643 0.0 0.867 0.578
4 0.728 0.982 0.855 0.344 0.962 0.653
5 0.139 1.002 0.701 0.0 0.988 0.55
6 0.501 0.61 0.537 0.254 0.998 0.561
7 0.301 1.067 0.67 0.091 1.0 0.491
8 0.463 1.142 0.671 0.23 1.0 0.505
9 0.314 1.15 0.581 0.0 1.0 0.453
10 0.208 1.0 0.467 0.208 1.0 0.467

Figure A.3: Plot and table for different degrees of monic approximations of a
10× 10 matrix with purely real eigenvalues in clusters.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 1.682 1.682 1.682 0.351 0.351 0.351
2 0.036 1.72 0.878 0.044 0.562 0.303
3 0.762 1.789 1.104 0.47 0.954 0.792
4 0.856 1.703 1.28 0.133 0.991 0.681
5 0.601 1.935 1.243 0.268 1.2 0.758
6 0.192 1.811 1.012 0.406 1.19 0.782
7 0.042 1.6 0.791 0.606 1.209 0.812
8 0.511 2.386 0.859 0.676 1.243 0.875
9 0.515 1.187 0.811 0.613 1.262 0.843
10 0.512 1.267 0.842 0.512 1.267 0.842

Figure A.4: Plot and table for different degrees of monic approximations of a
10×10 matrix with eigenvalues having their real parts equidistantly distributed
on [−1, 1] and their imaginary parts equidistantly placed on [−1, 1].
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 3.024 3.024 3.024 0.094 0.094 0.094
2 0.094 3.516 1.805 0.628 0.628 0.628
3 0.329 3.598 1.419 0.044 0.984 0.671
4 0.584 2.276 1.243 0.523 0.754 0.639
5 0.684 1.641 1.098 0.464 0.96 0.784
6 0.743 2.296 1.118 0.661 0.942 0.87
7 0.754 2.197 1.069 0.728 1.021 0.967
8 0.86 1.897 1.037 0.807 0.978 0.91
9 0.927 1.14 1.003 0.227 1.137 0.952
10 1.0 1.0 1.0 1.0 1.0 1.0

Figure A.5: Plot and table for different degrees of monic approximations of a
10×10 matrix with eigenvalues having their real parts equidistantly distributed
on [−1, 1] and their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.187 0.187 0.187 0.012 0.012 0.012
2 0.581 0.581 0.581 0.711 0.711 0.711
3 0.563 0.813 0.73 0.0 0.868 0.579
4 0.72 1.303 1.011 0.387 0.929 0.658
5 0.249 1.1 0.734 0.001 0.952 0.615
6 0.558 1.225 0.78 0.265 0.975 0.642
7 0.098 1.394 0.696 0.001 0.987 0.613
8 0.352 1.511 0.715 0.204 0.993 0.608
9 0.218 1.433 0.635 0.004 1.0 0.568
10 0.111 1.0 0.556 0.111 1.0 0.556

Figure A.6: Plot and table for different degrees of monic approximations of a
10× 10 matrix with purely real eigenvalues equidistantly distributed on [−1, 1].
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.265 0.265 0.265 0.152 0.152 0.152
2 0.576 1.274 0.925 0.652 0.652 0.652
3 0.496 2.29 1.29 0.105 0.733 0.523
4 0.305 1.805 1.148 0.39 0.979 0.715
5 0.499 1.912 0.893 0.416 1.008 0.711
6 0.546 1.652 0.969 0.77 1.023 0.897
7 0.568 1.802 1.068 0.383 1.004 0.834
8 0.542 1.231 0.839 0.648 1.099 0.89
9 0.542 1547860568.436 171984508.35 0.477 1.141 0.894
10 0.542 1.1 0.868 0.542 1.1 0.868

Figure A.7: Plot and table for different degrees of non-monic approximations
of a 10× 10 matrix with eigenvalues having their real parts situated in clusters
and their imaginary parts equidistantly placed on [−1, 1] per cluster.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 236549767.175 236549767.175 236549767.175 0.0 0.0 0.0
2 0.627 0.627 0.627 0.873 0.873 0.873
3 0.627 2531432556.841 843810852.698 0.055 1.137 0.776
4 0.523 3.069 1.796 0.147 1.269 0.722
5 0.523 34129268.512 6825855.139 0.173 1.176 0.668
6 0.762 1.256 0.927 0.628 1.134 0.953
7 0.762 5665689970.352 809384282.273 0.34 1.153 0.89
8 0.865 1.055 0.921 0.765 1.153 1.033
9 0.865 6819969392.713 757774377.787 0.193 1.169 0.981
10 1.0 1.0 1.0 1.0 1.0 1.0

Figure A.8: Plot and table for different degrees of non-monic approximations
of a 10× 10 matrix with eigenvalues having their real parts situated in clusters
and their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 229967918.604 229967918.604 229967918.604 0.0 0.0 0.0
2 0.684 0.684 0.684 0.722 0.722 0.722
3 0.684 181576739.542 60525580.304 0.016 0.877 0.587
4 0.634 0.634 0.634 0.344 0.962 0.653
5 0.634 504397864.285 100879573.364 0.0 0.988 0.55
6 0.484 0.582 0.549 0.254 0.998 0.561
7 0.484 668563223.641 95509032.42 0.0 0.999 0.489
8 0.209 0.387 0.314 0.23 1.0 0.505
9 0.209 1970511555.87 218945728.709 0.001 1.0 0.453
10 0.208 1.0 0.467 0.208 1.0 0.467

Figure A.9: Plot and table for different degrees of non-monic approximations of
a 10× 10 matrix with purely real eigenvalues in clusters.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 3.283 3.283 3.283 0.311 0.311 0.311
2 0.897 0.897 0.897 0.25 0.319 0.285
3 0.041 0.817 0.558 0.715 1.076 0.956
4 0.035 605.405 151.769 0.125 1.134 0.797
5 0.075 2.011 0.817 0.18 1.14 0.686
6 0.554 0.917 0.695 0.392 1.192 0.753
7 0.319 5.538 1.285 0.653 1.167 0.854
8 0.483 2.375 0.832 0.657 1.247 0.93
9 0.512 1.393 0.844 0.803 1.227 0.938
10 0.512 1.267 0.842 0.512 1.267 0.842

Figure A.10: Plot and table for different degrees of non-monic approximations of
a 10×10 matrix with eigenvalues having their real parts equidistantly distributed
on [−1, 1] and their imaginary parts equidistantly placed on [−1, 1].
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.0 0.0 0.0 0.113 0.113 0.113
2 0.547 0.547 0.547 0.876 0.876 0.876
3 0.497 5.853 2.282 0.25 0.86 0.657
4 0.63 2.061 1.031 0.278 0.97 0.624
5 0.737 1.507 0.914 0.717 1.108 0.918
6 0.718 1.266 0.869 0.492 0.924 0.8
7 0.786 1.148 0.904 0.783 1.155 0.933
8 0.871 1.074 0.925 0.509 0.969 0.854
9 0.934 1.167 1.017 0.748 1.076 0.949
10 1.0 1.0 1.0 1.0 1.0 1.0

Figure A.11: Plot and table for different degrees of non-monic approximations of
a 10×10 matrix with eigenvalues having their real parts equidistantly distributed
on [−1, 1] and their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 15890155.095 15890155.095 15890155.095 0.08 0.08 0.08
2 0.662 0.662 0.662 0.711 0.711 0.711
3 0.661 65452925.424 21817642.249 0.006 0.864 0.577
4 0.592 0.592 0.592 0.385 0.928 0.657
5 0.592 627031074.959 125406215.465 0.0 0.952 0.615
6 0.396 0.546 0.496 0.211 0.978 0.638
7 0.396 28391814393.806 4055973485.255 0.006 0.988 0.613
8 0.111 0.553 0.387 0.203 0.995 0.608
9 0.111 3008226366.875 334247374.441 0.0 0.998 0.567
10 0.111 1.0 0.556 0.111 1.0 0.556

Figure A.12: Plot and table for different degrees of non-monic approximations
of a 10 × 10 matrix with purely real eigenvalues equidistantly distributed on
[−1, 1].
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Appendix B

Approximations of 11× 11
matrices

This appendix contains the figures of eigenvalues for different 11× 11 matrices
and approximations thereof, coupled with a table of relevant values. The true
eigenvalues of the original matrix are represented by orange circles, the eigenval-
ues of the Arnoldi approximation as red crosses and our approximations using
Tangs method are shown as blue plusses. In the case of monic polynomials,
they are the eigenvalues of the companion matrix to the polynomial. For the
non-monic polynomials they are values returned by numpy.roots.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.787 0.787 0.787 0.151 0.151 0.151
2 0.7 0.833 0.767 0.517 0.517 0.517
3 0.822 0.903 0.876 0.227 0.809 0.615
4 0.057 1.189 0.77 0.329 0.978 0.703
5 0.048 1.356 0.834 0.381 0.999 0.679
6 0.442 1.155 0.897 0.762 1.048 0.891
7 0.683 1.392 0.852 0.199 0.993 0.806
8 0.523 1.401 0.876 0.266 1.036 0.753
9 0.0 1.225 0.744 0.295 1.015 0.771
10 0.038 1.462 0.784 0.534 1.077 0.846
11 0.0 1.1 0.789 0.0 1.1 0.789

Figure B.1: Plot and table for different degrees of monic approximations of an
11× 11 matrix with eigenvalues having their real parts situated in clusters and
their imaginary parts equidistantly placed on [−1, 1] per cluster.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.0 0.0 0.0 0.059 0.059 0.059
2 0.119 2.258 1.189 0.87 0.87 0.87
3 0.0 1.43 0.953 0.118 0.918 0.651
4 0.332 2.873 1.103 0.121 1.269 0.695
5 0.0 1.748 0.86 0.002 0.936 0.639
6 0.095 1.485 0.912 0.671 1.098 0.956
7 0.0 1.402 0.877 0.017 1.111 0.818
8 0.026 1.78 0.948 0.809 1.079 0.994
9 0.0 1.429 0.92 0.0 1.03 0.843
10 0.002 2.618 0.974 0.845 1.072 0.976
11 0.0 1.0 0.909 0.0 1.0 0.909

Figure B.2: Plot and table for different degrees of monic approximations of an
11× 11 matrix with eigenvalues having their real parts situated in clusters and
their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.109 0.109 0.109 0.105 0.105 0.105
2 0.944 0.944 0.944 0.713 0.72 0.716
3 0.223 0.864 0.65 0.0 0.867 0.577
4 0.704 0.842 0.773 0.344 0.962 0.653
5 0.202 1.067 0.762 0.0 0.988 0.55
6 0.435 1.062 0.725 0.25 1.0 0.56
7 0.444 0.877 0.659 0.016 1.0 0.491
8 0.52 1.116 0.697 0.225 1.0 0.505
9 0.167 1.202 0.623 0.005 1.0 0.455
10 0.33 1.22 0.566 0.192 1.0 0.464
11 0.208 1.0 0.455 0.208 1.0 0.455

Figure B.3: Plot and table for different degrees of monic approximations of an
11× 11 matrix with purely real eigenvalues in clusters.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.939 0.939 0.939 0.311 0.311 0.311
2 1.466 1.466 1.466 0.043 0.564 0.303
3 0.767 2.333 1.289 0.516 0.862 0.747
4 0.881 3.494 1.582 0.052 0.976 0.647
5 0.875 2.032 1.166 0.041 1.145 0.65
6 0.048 1.94 1.05 0.465 1.161 0.751
7 0.372 1.808 0.962 0.432 1.255 0.845
8 0.81 1.688 1.038 0.671 1.216 0.863
9 0.031 2.386 0.766 0.708 1.238 0.87
10 0.226 1.187 0.73 0.621 1.246 0.867
11 0.0 1.267 0.765 0.0 1.267 0.765

Figure B.4: Plot and table for different degrees of monic approximations of an
11×11 matrix with eigenvalues having their real parts equidistantly distributed
on [−1, 1] and their imaginary parts equidistantly placed on [−1, 1].
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 1.896 1.896 1.896 0.039 0.039 0.039
2 0.369 3.705 2.037 0.612 0.612 0.612
3 0.415 3.664 1.563 0.243 0.885 0.671
4 0.111 3.67 1.157 0.633 0.777 0.705
5 0.369 2.263 0.952 0.1 0.975 0.632
6 0.148 1.973 0.93 0.773 0.931 0.88
7 0.051 2.234 0.979 0.639 1.035 0.825
8 0.056 2.311 0.933 0.51 0.887 0.781
9 0.004 1.886 0.92 0.398 1.005 0.871
10 0.001 1.14 0.903 0.767 1.029 0.974
11 0.0 1.0 0.909 0.0 1.0 0.909

Figure B.5: Plot and table for different degrees of monic approximations of an
11×11 matrix with eigenvalues having their real parts equidistantly distributed
on [−1, 1] and their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.0 0.0 0.0 0.003 0.003 0.003
2 0.939 0.939 0.939 0.707 0.707 0.707
3 0.0 0.479 0.32 0.0 0.872 0.581
4 0.702 1.196 0.949 0.364 0.931 0.648
5 0.0 1.412 0.841 0.009 0.953 0.624
6 0.533 1.357 0.811 0.237 0.971 0.636
7 0.0 1.374 0.709 0.021 0.982 0.616
8 0.448 1.536 0.77 0.164 0.993 0.61
9 0.0 1.629 0.651 0.0 0.997 0.585
10 0.252 1.512 0.642 0.117 0.999 0.568
11 0.0 1.0 0.545 0.0 1.0 0.545

Figure B.6: Plot and table for different degrees of monic approximations of an
11× 11 matrix with purely real eigenvalues equidistantly distributed on [−1, 1].
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.794 0.794 0.794 0.151 0.151 0.151
2 0.722 0.882 0.802 0.526 0.526 0.526
3 0.419 0.66 0.561 0.177 0.78 0.579
4 0.082 2.296 0.986 0.325 0.984 0.701
5 0.347 1.887 1.075 0.041 0.991 0.661
6 0.26 1.886 0.768 0.805 1.104 0.919
7 0.066 1.596 0.825 0.335 0.989 0.815
8 0.0 1.802 0.935 0.001 1.009 0.748
9 0.0 1.231 0.746 0.532 1.038 0.826
10 0.0 1472960635.155 147296064.187 0.454 1.081 0.818
11 0.0 1.1 0.789 0.0 1.1 0.789

Figure B.7: Plot and table for different degrees of non-monic approximations of
an 11 × 11 matrix with eigenvalues having their real parts situated in clusters
and their imaginary parts equidistantly placed on [−1, 1] per cluster.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 11073242.352 5536621.176 0.872 0.872 0.872
3 0.0 0.627 0.418 0.07 1.28 0.877
4 0.0 13132.05 3283.326 0.132 1.256 0.694
5 0.0 3.069 1.437 0.41 1.28 0.759
6 0.0 3494312.085 582386.545 0.621 1.097 0.932
7 0.0 1.256 0.794 0.009 1.053 0.789
8 0.0 60601.567 7575.891 0.836 1.028 0.952
9 0.0 1.055 0.819 0.191 1.054 0.875
10 0.0 3425675726.624 342567573.399 0.409 1.062 0.89
11 0.0 1.0 0.909 0.0 1.0 0.909

Figure B.8: Plot and table for different degrees of non-monic approximations of
an 11 × 11 matrix with eigenvalues having their real parts situated in clusters
and their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 4.057 4.057 4.057 0.0 0.0 0.0
2 0.713 0.713 0.713 0.722 0.722 0.722
3 0.721 2.997 1.479 0.0 0.867 0.578
4 0.671 0.679 0.675 0.333 0.963 0.65
5 0.669 2.281 0.992 0.023 0.993 0.546
6 0.074 1.603 0.683 0.228 0.998 0.557
7 0.547 1.667 0.751 0.064 1.0 0.502
8 0.07 2.685 0.749 0.206 1.0 0.501
9 0.375 1.135 0.527 0.015 1.0 0.457
10 0.207 4.678 0.752 0.192 1.0 0.464
11 0.208 1.0 0.455 0.208 1.0 0.455

Figure B.9: Plot and table for different degrees of non-monic approximations of
an 11× 11 matrix with purely real eigenvalues in clusters.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.35 0.35 0.35 0.306 0.306 0.306
2 0.904 0.904 0.904 0.023 0.759 0.391
3 0.769 1.378 0.972 0.553 0.965 0.827
4 0.241 0.788 0.515 0.045 1.141 0.755
5 0.59 16.331 3.829 0.268 1.098 0.75
6 0.728 2.157 1.03 0.63 1.211 0.865
7 0.671 1.036 0.761 0.405 1.261 0.847
8 0.492 5.608 1.256 0.664 1.247 0.869
9 0.493 2.369 0.789 0.705 1.242 0.873
10 0.0 1.393 0.76 0.633 1.243 0.839
11 0.0 1.267 0.765 0.0 1.267 0.765

Figure B.10: Plot and table for different degrees of non-monic approximations
of an 11× 11 matrix with eigenvalues having their real parts equidistantly dis-
tributed on [−1, 1] and their imaginary parts equidistantly placed on [−1, 1].



54 APPENDIX B. APPROXIMATIONS OF 11× 11 MATRICES

Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.451 0.451 0.451 0.045 0.045 0.045
2 0.383 0.442 0.413 0.357 0.357 0.357
3 0.361 2.052 0.925 0.036 0.895 0.609
4 0.387 5.414 1.693 0.737 0.996 0.867
5 0.4 2.031 0.786 0.201 0.858 0.714
6 0.137 1.493 0.73 0.51 0.941 0.833
7 0.017 1.266 0.753 0.112 1.024 0.681
8 0.002 1.148 0.792 0.816 0.984 0.918
9 0.002 1.074 0.822 0.459 0.934 0.813
10 0.0 1.167 0.915 0.747 1.048 0.884
11 0.0 1.0 0.909 0.0 1.0 0.909

Figure B.11: Plot and table for different degrees of non-monic approximations
of an 11× 11 matrix with eigenvalues having their real parts equidistantly dis-
tributed on [−1, 1] and their imaginary parts chosen as to place them on a circle.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Degree Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 16993916.707 8496958.354 0.707 0.707 0.707
3 0.0 0.641 0.427 0.0 0.872 0.581
4 0.001 1931.318 483.15 0.364 0.931 0.648
5 0.0 0.575 0.46 0.0 0.952 0.621
6 0.0 21723250.102 3620542.067 0.239 0.972 0.638
7 0.0 0.546 0.411 0.0 0.984 0.61
8 0.0 1009561.622 126195.563 0.174 0.992 0.61
9 0.0 0.577 0.387 0.033 1.0 0.6
10 0.0 8189895218.472 818989522.196 0.118 0.999 0.568
11 0.0 1.0 0.545 0.0 1.0 0.545

Figure B.12: Plot and table for different degrees of non-monic approximations
of an 11 × 11 matrix with purely real eigenvalues equidistantly distributed on
[−1, 1].
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Appendix C

Comparison with different
radii

This appendix contains the figures of eigenvalues of monic approximations made
of matrices with eigenvalues with real parts clustered on [−k, k] with k =
1, . . . , 20, the complex parts were chosen as to put them on a circle. The true
eigenvalues of the original matrix are represented by orange circles, the eigenval-
ues of the Arnoldi approximation as red crosses and our approximations using
Tangs method are shown as blue plusses.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Radius Iterations Least eig Greatest eig Average eig Least eig Greatest eig Average eig
1 92 0.8 1.429 1.035 0.803 1.118 1.013
2 127 1.54 5.716 2.799 1.782 2.253 2.028
3 101 2.297 12.699 5.244 2.602 3.424 3.022
4 120 3.057 22.442 8.378 3.588 4.558 4.221
5 115 3.818 34.959 12.205 5.506 7.139 6.446
6 125 4.579 50.254 16.725 6.119 8.333 7.522
7 107 5.341 68.327 21.94 6.675 11.115 8.872
8 113 6.102 89.18 27.849 2.649 29.825 17.341
9 116 6.864 112.813 34.453 0.857 76.939 44.747
10 110 7.626 139.226 41.752 0.562 356.097 177.693

Figure C.1: Monic approximations of degree 8, approximating 10× 10 matrices
with clustered eigenvalues with complex part chosen as to situate them on a
circles with different radii.
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Eigenvalue sizes, Tangs Method Eigenvalue sizes, The Arnoldi Method
Radius Iterations Least eig Greatest eig Average eig Least eig Greatest eig Average eig
11 114 8.388 168.42 49.746 0.623 167.644 97.325
12 105 9.151 200.393 58.435 0.258 464.326 205.724
13 141 9.913 235.146 67.819 0.347 997.56 402.421
14 129 10.675 272.68 77.897 0.703 901.48 443.722
15 100 11.437 312.993 88.671 0.453 293.976 147.031
16 140 12.199 356.087 100.14 0.64 7848.051 3924.562
17 110 12.962 401.962 112.304 0.139 3625.865 1828.428
18 101 13.724 450.616 125.163 0.484 14050.797 5265.764
19 153 14.486 502.051 138.717 0.583 8126.497 3401.653
20 99 15.248 556.266 152.966 0.485 26020.661 9792.868

Figure C.2: Monic approximations of degree 8, approximating 10× 10 matrices
with clustered eigenvalues with complex part chosen as to situate them on a
circles with different radii.
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Appendix D

Original characterization
theorem

In order to make this paper self contained we include the characterization the-
orem for approximations of real valued functions. Since the algorithm is well
established, the theorems and proofs can be found in many different publica-
tions. In this paper we will refer to [5].

In order to prove the characterization theorem we will need the so called
Kolmogorov criterion which is a corollary to the following theorem. It will show
that if we have a minimum for a functional then the Gâteaux derivative, see
Definition D.0.2, from that point in any direction will be positive.

Theorem D.0.1. [5, p. 90] Let φ : F → R be a convex functional. Let the sub-
set K ⊂ F be convex and u0 ∈ K. Then the following statements are equivalent.

1. φ(u0) = infu∈K φ(u).

2. φ′
+(u0, u− u0) ≥ 0 for all u ∈ K

φ′
+ is the Gâteaux derivative.

Definition D.0.2. [5, p. 87] For a functional φ : F → R,

φ′
+(u, v) := lim

h→0+

1

h
(φ(u+ hv)− φ(u)) for u, v ∈ F

is said to be the Gâteaux derivative of φ at u in direction v, provided that the
limit on the right hand side in the equation exists.

The Kolmogorov criterion show us that for the Gâteaux derivative, see Defi-
nition D.0.2, of a norm is always positive when going from the difference function
s∗ − f in the direction of another element s− s∗ ∈ S.

Corollary D.0.3 (Kolmogorov criterion). [5, p. 92] For f ∈ F and s∗ ∈ S,
S ⊂ F convex, the following statements are equivalent.

1. s∗ is a best approximation to f .
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2. ∥·∥′+ (s∗ − f, s− s∗) ≥ 0 for all s ∈ S

Looking now specifically at the Chebyshev norm 3.0.3, we will in the follow-
ing theorem show that the Gâteaux derivative, see Definition D.0.2, from u to v
will attain the greatest value of v(x) with the sign of u(x) at the extreme points
of |u(x)|.

Theorem D.0.4. [5, p. 95] Let Ω ⊂ Rd be compact. Then, for the Gâteaux
derivative of the maximum norm ∥·∥ = ∥·∥∞ on C(Ω), we have

∥·∥′+ (u, v) = max
x∈Ω

|u(x)|=∥u∥∞

v(x) sgn(u(x))

for any u, v ∈ C(Ω), u ̸≡ 0

Using the previous theorem in conjecture with the Kolmogorov criterion we
now arrive at the characterization theorem.

Theorem D.0.5. [5, p. 140] Let S ⊂ C(Ω) be a linear subspace of C(Ω) and
suppose f ∈ C(Ω). Then s∗ ∈ S is a best approximation to f with respect to
∥·∥∞, if and only if

max
x∈Ω

|(s∗−f)(x)|=∥s∗−f∥∞

(s− s∗)(x) · sgn((s∗ − f)(x)) ≥ 0, ∀s ∈ S.

As a consequence of Theorem D.0.5 we get the following Corollary. Note
that at this point we take the step from the general best approximation s∗ ∈ S
to the best polynomial polynomial approximation p∗ ∈ Pn−1. The reason for
this is that we are using the knot polynomial ωX∗(x) in the proof.

Corollary D.0.6 (Alternation condition). [5, p. 142] Let [a, b] be a compact
subset to R and f ∈ C. Then with n ∈ N there exists a unique best approxima-
tion, p∗ ∈ Pn−1, to f with respect to the norm ∥·∥∞. Also, there are at least
n+1 ordered extremal points to (p∗−f)(x) denoted {x0, . . . , xn} ⊂ Ep∗−f , with
the relation a ≤ x0 < · · · < xn ≤ b, that are satisfying the alternation condition

(p∗ − f)(xk) = (−1)kσ ∥p∗ − f∥∞ for k = 0, . . . , n

for σ ∈ {−1, 1}.
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