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Abstract 

The outbreak of COVID-19 plunged the world economy into a pandemic with severe 

consequences. However, the pandemic may very well have been a blessing in disguise for the 

mitigation of another killer: ambient air pollution. This study investigates how the COVID-19 

lockdown restrictions in India affected the ambient air pollution concentrations in a sample of 

Indian cities. Based on air pollution data from the World Air Quality Index, and within the 

framework of a sharp non-parametric regression discontinuity design, a treatment effect of the 

lockdown restrictions on the concentrations of PM2.5, PM10, and NO2 is estimated through local 

linear regressions. The results imply that the lockdown restrictions did not have a direct 

significant impact on air pollution levels in the full city sample. However, when accounting for 

heterogeneity in subsamples based on the presence of polluting industries and power stations, 

significant, negative reductions in PM2.5 concentrations of -29.40 and -11.97 µg/m3 are 

observed. The results from the local linear regressions on the full city sample are robust to 

changes in covariates at the cut-off where lockdown is initiated. They are not robust to a change 

of the interval around the cut-off and the use of a linear regression model, possibly due to the 

presence of a low number of mass points in the forcing variable.  

Key words: air pollution, COVID-19, lockdown, local linear regression, non-parametric 

regression discontinuity design 
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Introduction 

From the discovery of COVID-19 in December 2019 in Wuhan, China, up until August 15th, 

2022, more than 587 million confirmed cases have been reported from the pandemic worldwide 

and more than 6.4 million deaths (Centres for Disease Control and Prevention, 2021; WHO, 

2022). The disease has prompted urgent responses from governments to contain the disease, 

including measures such as stay-at-home restrictions, school – and workplace closures, 

cancelled public events, and public information campaigns (Ritchie et al., 2020). The impact 

on the global economy from the virus has been severe in its negative effect on sector gross 

domestic product (GDP) in various industries, its tole on household incomes, and the potential 

long-run downturns in asset returns based on historical evidence (World Development Report, 

2022; Dua, Mahajan, Oyer & Ramaswamy, 2020; Jordà, Singh & Taylor, 2020) In contrast to 

these negative issues stemming from the pandemic restrictions, there are studies which suggest 

that they have proven to be beneficial for another health concern: ambient air pollution (Dang 

& Trinh, 2020; Zhao, Cheng & Jian, 2021; Liu, Wang & Zheng, 2021). 

Ambient, or outdoor, air pollution is a phenomenon which claimed approximately 4.2 million 

people’s lives across the globe in 2016, based on estimates from the World Health Organization 

(WHO). According to the WHO, in 2016 the most common diseases related to air pollution 

deaths were cardiovascular or heart-related disease and strike (58 per cent), followed by lung-

related diseases such as chronic pulmonary disease and respiratory infections (18 per cent), and 

lung cancer (6 per cent) (WHO, 2021). In addition, there is a massive, disproportionate 

exposure to ambient air pollution in low- and middle-income countries. This is partly due to 

weak legislation, lower vehicle emission standards, and a stronger presence of coal power 

stations (UNEP, 2019). Of the 4.2 million premature deaths from ambient air pollution, 91 per 

cent of these take place in low – and middle–income countries, mainly those located in South-

East Asia and Western Pacific regions (WHO, 2021).  

One country which suffers from high ambient air pollution is India. In 2016, WHO reported an 

annual mean level of particulate matter of a diameter equal to or smaller than 2.5 µm (PM2.5) 

in Indian cities, weighted by population, at 68.76 micrograms per cubic meter (µ𝑔/𝑚3). This 

was the sixth poorest global ambient air quality level measured by particulate matter, the air 

pollutant which affects most people, and a common one used to indicate air pollution (WHO, 

2021).  
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Figure 1.1. In 2017, India was ranked as the country with the world’s fourth strongest total 

mean annual exposure of PM2.5 µg/m3. Source: Our World in Data (2017). 

Furthermore, by inspecting Table 1.1 one can observe that India’s ambient air pollution levels 

strongly exceed the WHO guidelines (WHO 2021; WHO 2021). In contrast to these guidelines, 

India is placed far above their thresholds, with regard to PM2.5, a common indicator of air 

pollution. Its annual mean pollution levels in urban areas exceed the recommended guidelines 

with more than six times as much in 2016, as presented in Table 1.2.  

Table 1.1. 2005 WHO Air Quality Guidelines. Source: WHO (2021). 

Air pollutant specie Time period (means)  2005 WHO Air Quality Guidelines 

PM2.5 Annual concentration 10 

 
Daily 24-hour concentration 25 

PM10 Annual concentration 20 

  Daily 24-hour concentration 50 

NO2 Annual concentration 40 

  Daily 24-hour concentration - 
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Top five most polluted countries measured by PM2.5 

exposure  

India PM2.5 air pollution, mean annual exposure (micrograms per cubic meter)

Nepal PM2.5 air pollution, mean annual exposure (micrograms per cubic meter)

Qatar PM2.5 air pollution, mean annual exposure (micrograms per cubic meter)

Saudi Arabia PM2.5 air pollution, mean annual exposure (micrograms per cubic meter)

Niger PM2.5 air pollution, mean annual exposure (micrograms per cubic meter)
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Table 1.2. India’s annual mean level, PM2.5, measured on urban level and in total (µg/m3). 

Source: WHO (2021). 

Year 

Residence area 

type 

Annual mean level 

(PM2.5) 

2016 Total 68.76 

2016 Urban 78.16 

2015 Total 67.22 

2015 Urban 75.92 

2014 Total 71.7 

2014 Urban 81.07 

2013 Total 65.93 

2013 Urban 74.19 

2012 Total 62.68 

2012 Urban 70.18 

2011 Total 58.26 

2011 Urban 65.11 

2010 Total 60.51 

2010 Urban 68.06 

 

In late January 2020, the first positive case of COVID-19 was reported in Kerala, India. The 

subsequent spread of the virus generated a response from prime minister Narendra Modi who 

announced a national lockdown for 21 days, between March 25th and April 15th, 2020, which 

consisted of strict social distancing for Indian citizens. This lockdown, with the objective to 

curb the national spread of COVID-19, was executed with restricted mobility and economic 

activity. The guidelines for the restrictions made exceptions regarding the closing of various 

entities, such as hospitals and medical establishments, manufacturing units of essential 

commodities, production units in need of continuous process, power generation units, and 

transportation of essential goods (Press Information Bureau, 2020; Gautam & Hens, 2020; 

Soni, 2021; Ministry of Home Affairs, 2020). 

On April 15th, the lockdown period was extended to May 3rd, with conditional relaxations 

allowed from April 20th and onwards for certain activities such as all goods traffic, mining 

activity, coal production, construction activities, and people’s movement for procuring 
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essential goods. This re-opening of the economy came with a condition that the concerned 

geographical area was designed as a non-hotspot in terms of the spread of COVID-19. If there 

was a significant spread of the virus within a geographical area, this area would be considered 

a hot spot, where the relaxation of the restrictions would not apply from April 20th (Ministry of 

Home Affairs, 2020; IMF, 2022).  

Overall, India’s poor record for ambient air pollution, and its national lockdown affecting 

mobility and economic activity initiated on March 25th, 2020, are factors which make it an 

interesting country to study regarding air pollution responses to lockdown restrictions. This 

relationship will therefore constitute the general topic of this thesis.  

Another issue in the relationship between lockdown restrictions and air pollution concerns the 

heterogeneity in air pollution responses to the lockdown: do the responses vary depending on 

the presence of air pollution sources in cities, including coal power stations, and the presence 

of heavy industries such as iron ore, cement, and steel (Gurjar, Ravindra & Nagpure, 2016; 

Gurjar, 2021)? Studying the heterogeneity of the air pollution responses is relevant to this study 

given that India occupied second place in the world in 2020 with regards to its share of domestic 

electricity production which stems from coal power (Ministry of Coal, 2022). It was also the 

country with the third largest capacity for coal power, measured in megawatts (MW), in 2019 

(Carbon Brief, 2020). Moreover, India was the world’s second-largest cement producer in 

2022, the fourth largest iron ore producer in 2022, and the second-largest crude steel producer 

in 2021 (IBEF, 2022; World Population Review, 2022; World Steel Association, 2022). India’s 

status as one of the world’s most polluted countries, its international ranking among polluting 

industries, and its national lockdown imposed on March 25th, 2020, jointly support a study with 

regards to heterogeneity in air pollution responses from lockdown restrictions in Indian cities.  

A third reason to study the relationship between lockdown restrictions and air pollution in India 

is the relevance of this relationship to policymakers. The findings on this topic may provide 

valuable information to policymakers in their efforts to limit air pollution through the lens of 

environmental governance. The findings are made even more relevant given claims for reform 

of India’s air quality legislation with regards to the Air Act (1981). The current criticism of the 

current policies intended to control air pollution and the demand for policy reform and the 

imposition of the lockdown restrictions to inhibit the spread of COVID-19 on March 25th 

consists of an opportunity for this study to inform Indian policymakers on how to meet these 

demands (Mathew & Uppal 2021; Abraham & Rosencrantz, 1986).  
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Based on the reasons above, the national lockdown restrictions imposed by the Indian 

government constitute a unique opportunity to study how, and in what variety, restrictions on 

mobility and economic activity affected air pollution concentration. Despite the relatively short 

time frame, this opportunity has been explored in the related literature to a considerable degree.   

India, followed by China, has been the country included in the largest share of studies on the 

effect of lockdown restrictions on air quality (Addas & Maghrabi, 2021).  

However, despite the relatively strong coverage of India regarding the lockdown restrictions’ 

impact on air pollution, this study is using an estimation strategy which, to this study’s 

knowledge, has not yet been deployed in a study of the impact of lockdown restrictions on air 

pollution in India in the existing literature. Therefore, the purpose of this study is to use a non-

parametric regression discontinuity design to study the relationship between COVID-19 

restrictions in India and air pollution in a sample of Indian cities (Angrist & Pischke, 2009). 

This estimation strategy provides the study with necessary scientific relevance for contributing 

to new findings in the expanding literature on the impact of lockdown restrictions on air 

pollution. Consequently, based on the purpose of this study, the main research question for this 

study can be formulated as:  

Research question: What impact did COVID-19 restrictions have on air pollution concentration 

in Indian cities during the national lockdown period between March 25th – April 20th, 2020? 

Moreover, the research question is broken into two research hypotheses which this study will 

test separately using a non-parametric regression discontinuity design. The two research 

hypotheses are formulated as follows:  

H1: The national lockdown period in India between March 25th – April 20th, 2020, had a 

significant negative impact on air pollution concentrations in Indian cities. 

H2: The national lockdown period in India between March 25th – April 20th, 2020, had a 

significant heterogeneous impact on air pollution concentration in Indian cities due to city 

characteristics such as polluting industries and the presence of energy plants. 

Note that the reason for limiting the study of the impact of lockdown on air pollution to March 

25th – April 20th, 2020, in the city sample is founded on the structure of the lockdown phases. 

The initiation of lockdown began on March 25th, and on April 20th, the restrictions received 

conditional relaxations. Including a longer time period may create omitted variable bias in the 

results if new potential sources of air pollution from the relaxed restrictions are not controlled 
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for (Angrist & Pischke, 2009). This is the reason for restricting the treatment period to March 

25th – April 20th, to obtain as similar observations near the threshold as possible.  

A common problem with testing these hypotheses is endogeneity in the relationship between 

air pollution and lockdown restrictions. This endogeneity may be present in underlying traits 

affecting the air pollution outcomes and the lockdown restrictions. For example, the lockdown 

restrictions and air pollution may have been affected simultaneously by some factors. Such 

traits may be unobserved and could contribute to endogeneity regarding the relationship 

between lockdown restrictions and air pollution (Dang & Trinh, 2020).  

The threat of endogeneity is a key reason why this study deploys a non-parametric estimation 

strategy. The non-parametric regression discontinuity design in this study consists of 

comparing the air pollution in a sample of 22 Indian cities within a limited neighbourhood of 

26 days before and 26 days after a certain cut-off, March 25th, 2020. The reason for choosing 

26 days before and after the cut-off is founded in that the lockdown period considered in this 

study lasted 26 days, from March 25th – April 20th, 2020, which means a symmetrical period 

before treatment should be consisting of 26 days. The cut-off is set on the first day of the 

lockdown restrictions, which function as a treatment for the cities. As the treatment is applied, 

a discontinuous “jump” in the air pollution outcomes explained by the time variable would be 

an indication of a treatment effect of the lockdown restrictions on air pollution (Angrist & 

Pischke, 2009). The simplest way to estimate the treatment effect is then to calculate the 

difference in the values of the regression function on each side of the cut-off (Lee & Lemieux, 

2010; Angrist & Pischke, 2009; Calonico, Cattaneo & Titiunik, 2014). The design deals with 

the endogeneity problem through the assumption that around the cut-off, i.e. the lockdown date, 

March 25th, 2020, the treatment assignment is randomized between the observations, similar to 

a randomized experiment. This requires that the observations are unable to manipulate and 

affect the variable assigning treatment (which in our case is the time variable) at the cut-off 

(March 25th). If the treatment assignment is randomized between the observations, then the 

unobserved traits which affect lockdown restrictions and air pollution simultaneously in each 

city should be kept constant around the cut-off (Lee & Lemieux, 2020).  

Moreover, the city-level data in the study for air pollution species and meteorological control 

variables were imported from the World Air Quality Index Project (2022). Additional data for 

variables related to heterogeneity in the air pollution outcomes to lockdown restrictions such 

as industry structure and the presence of energy plants were imported from the Bureau of 
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Mines, the Government of India, and the Energy Map of India, respectively (World Air Quality 

Index Project, 2022; Bureau of Mines, 2021; 2022; Energy Map of India, 2022).  

For the main results obtained from the non-parametric regression discontinuity design, the 

testing of H1 suggests that there is not a significant decrease in air pollution due to the 

lockdown restrictions, based on the interpretation of the local linear regressions. There is a 

negative, insignificant treatment effect in the air pollutants around the cut-off point on March 

25th, for PM2.5 and PM10 and a positive, insignificant treatment effect for NO2. Graphically, it 

is possible to observe a negative discontinuity in the regression function for PM2.5 and a 

positive one for NO2. 

Furthermore, the testing of H2 yielded results suggesting significant negative air pollution 

changes in PM2.5 and PM10 from lockdown restrictions in cities located in states with iron ore 

industry. In addition, cities located in states with above-median cement production across all 

represented states in the sample showed a significant negative treatment effect in PM2.5. The 

graphical analysis for H2 suggests negative discontinuities for cities without iron ore industry 

in their state as well as for cities with below-median steel production. A positive discontinuity 

emerges for PM2.5 in cities located in states with above-median steel production, accompanied 

by a small positive discontinuity for cities in states with above-median cement production. The 

findings are robust to a test which regresses covariates on the forcing variable. They are not 

robust, however, to a test for H1 which included a decreased interval around the cut-off point 

and the use of a linear regression model to estimate the treatment effect of lockdown restrictions 

on air pollution outcomes.  
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2. Literature review 

The literature on the topic of COVID-19 lockdown restrictions and air pollution can be 

separated into two theoretical and empirical segments. This literature review starts by 

describing the former, and how it constitutes the theoretical background of this study. This is 

followed by an encompassing review of the empirical literature on the topic of COVID-19 

lockdown restrictions and air pollution.  

2.1. Theoretical literature 

The theoretical roots of the relationship between air pollution and lockdown restrictions can be 

traced to the literature covering the microeconomic theory about market failures. Externalities 

are the most relevant market failure in this setting and are defined as the indirect effects which 

stem from when the market produces more of a certain good than what is socially optimal due 

to private utility maximisation. Negative externalities are one form of externalities, and they 

are often represented by pollution which makes them the most relevant externalities category 

to discuss in the context of air pollution and lockdown restrictions. The pollution may stem 

from the activity of a producer, who optimises his/her behaviour with regard to direct costs and 

profits, ignoring the indirect costs which constitute the pollution. The firm may maximise its 

profits at the expense of generating pollution as indirect costs for society, which means that the 

social costs of production will exceed the private costs of production. The polluting firm does 

not consider the indirect costs of its production on society, since it does not bear these indirect 

costs and hence does not account for these when making their production decision based on 

the profits and costs of production. The result is pollution from the firm that inflicts a difference 

between the social costs and the firm’s private costs, where the former is larger, for example, 

due to larger health economic costs on a social level (Helbling, 2020).  

The difference in social and private costs from the negative externality in the form of pollution 

leads to ineffective market outcomes on a social level. This in turn motivates governmental 

intervention to rectify the negative externality to maximise utility on a social level. The 

intervention needs to ensure that all costs are internalised by all agents in the economy. One 

such governmental intervention is Pigouvian taxation which stems from the work of Arthur 

Pigou (1920), who argued for the government to set a tax equal to the social cost imposed by 

the externality, i.e., pollution. This tax would make the responsible firms internalise the 
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externality of pollution in their costs and hence lead to a market outcome where social costs 

equal private costs (Edenhofer, Franks & Kalkuhl, 2020; Helbling, 2020).  

However, Pigouvian taxes are subject to criticism with regard to their implementation, partly 

because it is very difficult to calculate the social costs for externalities to which they are to be 

calibrated. For instance, regarding the social cost of carbon (SCC), the social cost of an 

additional unit of carbon dioxide in the long-term, the IPCC does not include this cost measure 

in their report partly due to the large uncertainty from the range in its estimated values (EPA, 

2016; Edenhofer et al., 2020). In fact, estimates of the SSC lie within the interval of $7 to $100 

based on estimates from integrated assessment models (Waldhoff et al., 2011), dynamic 

integrated assessment models (DICE) (Nordhaus, 2017), and additional panel models and 

regressions (Kalkuhl & Wenz, 2020; Ricke et al., 2018). This contributes to the difficulty of 

successfully implementing Pigouvian taxes. Additional problems with Pigouvian taxes include 

distributional issues with the tax burden among heterogeneous households in the economy,  

political motives which may hamper commitments, and disharmonious pricing of emissions 

due to fragmented responsibilities among authorities (Edenhofer et al., 2020).  

One method in the theoretical economic literature used to address the issue of Pigouvian taxes 

to quantify the social cost of the externality is the bargaining among agents to internalise the 

externalities. This was a suggested way of handling the externalities problem suggested by 

Ronald Coase (1960) and is laid out through the Coase theorem which states that internalisation 

of the negative externalities through bargaining in a market setting, is possible given zero 

transaction costs, complete information among agents, and well-defined property rights 

(Zamagni, 2020 pp. 227-269; Helbling, 2020).  

Unfortunately, there are challenges with the Coase theorem as the establishment of property 

rights gets increasingly challenging when the externality takes the form of a public good. Public 

goods are goods which are non-excludable and non-rival, and a good example of such a good 

is clean air. Property rights for clean air are inherently not well-defined and hence this means 

the bargaining between agents to achieve a socially optimal amount of clean air is not feasible 

under the Coase theorem. This leads to an outcome with more air pollution than what would 

have been socially optimal since clean air has the properties of a public good (Helbling, 2020).  

2.2. Theoretical background 

Based on the above concepts in the theoretical literature, this may establish a theoretical 

background for its purpose to study how lockdown restrictions for slowing COVID-19 
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infection rates impacted air pollution across a sample of Indian cities in 2020. Although these 

restrictions were not intended to mitigate air pollution levels, by accounting for the disparity 

between social and private costs, they still consist of a governmental intervention which may 

have affected negative externalities in this setting, i.e. the air pollution species. Based on this 

theoretical background which puts lockdown restrictions as a governmental intervention to a 

negative externality, the lockdown restrictions and their effect on air pollution could prove 

informative for different types of interventions which are intended to address air pollution.  

Examples of such interventions include the Indian Air (Prevention and Control of Pollution) 

Act, 1981. It was the first step in combatting air pollution in India from a legislative standpoint. 

The act itself was equipped with the main objective to preserve the air quality and control air 

pollution, which gave the Central and State Boards an additional mandate to regulate air 

pollution (Mathew & Uppal, 2021; The Air Act, 1981). The Air Act has managed to achieve 

the imposition of a framework to regulate air pollution. It allows monitoring of air pollution, 

sets standards for emitters, as well as enforces legal measures such as empowering the State 

Governments with the authority to denote areas as “air pollution control areas”. These areas 

may be subject to certain standards for pollutants as well as regulating the use of different fuels. 

Finally, the Air Act was responsible for the development of India’s National Ambient Air 

Quality Standards for parameters including particulate matter (PM2.5, PM10) sulphur dioxide 

(SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) (Mathew & Uppal, 

2021; National Ambient Air Quality Standards, 2009).  

Today the Air Act is subject to criticism partly due to the lack of updates to its content, and its 

ineffective reliance on expensive prosecution with low conviction rates. Moreover, the lack of 

incorporation of developments in science, and the inability to account for certain health risks 

constitute additional flaws to this legislation. There are developments suggesting that future 

legislation is on the way, which would create a joint act for environmental management to 

replace the Air Act of 1981 (Mathew & Uppal, 2021; Abraham & Rosencrantz, 1986). In this 

light, there is an opportunity for this study to contribute to the shape and format of future 

legislation through its investigation of how lockdown measures, consisting of restrictions on 

mobility and economic activity, may impact air pollution. Its findings could present 

policymakers with valuable insight regarding the response of air pollutants to measures which 

restrict mobility and economic activity, which could be of value for the creation of legal 

measures, such as the designation of air pollution control areas.  
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Another example of a policy where the above theoretical background may also be informative 

is the National Air Monitoring Programme (NAMP), which was executed by the Central 

Pollution Control Board (CPCB) in 1984 (Centre for Science and Environment, 2018). The 

motivation behind this program is to observe the status of ambient air quality to identify 

violations of the set standards and to gain new insights regarding preventive work as well as 

the process in which air pollutants are dispersed naturally in the environment. There is weekly 

monitoring of particulate matter, both PM2.5 and PM10, oxides of nitrogen including NO2, and 

sulphur dioxide SO2 through approximately 800 stations in 344 cities (CPCB 2021). Since this 

study is monitoring the responses of several of these air pollutants (PM2.5, PM10, and NO2) to 

the lockdown restrictions and the heterogeneity in their responses, its findings would be of 

value both for the preventive work of NAMP as well as for the understanding for the dispersal 

of the air pollutants in the environment. This would, in turn, make the results of this work 

useful for the air quality management performed by the CPCB in India (CPCB, 2022). 

Based on these possibilities to enhance policies for the prevention and control of air pollution, 

the theoretical background of this study rests on the theory of externalities and the public goods 

problem. Viewing air pollution in India as a negative externality which is caused due to clean 

air being a public good provides a solid background for understanding the emergence of air 

pollution from a theoretical perspective. In addition, this theory also provides an understanding 

of how air pollution can be mitigated through governmental intervention, which in turn 

provides a better insight into the topic regarding the impact of lockdown restrictions on air 

pollution. Having established the theoretical background for the topic based on the relevant 

theoretical literature, the next section will explore empirical literature on the relationship 

between COVID-19 lockdown restrictions and air pollution.  

2.3. Empirical literature  

The empirical literature on the relationship between COVID-19 restrictions and air pollution 

is subject to a time constraint, given the relative proximity in time to the outbreak of the 

COVID-19 pandemic. Despite this, there have been several empirical studies estimating the 

impact of COVID-19 restrictions on air quality. One segment of the literature has studied the 

outcomes on a global basis, while another has used a country-by-country basis. In the latter 

segment, the results are relatively concordant: Dang & Trinh (2020) use a cross-national 

sample of 164 countries and daily satellite – and station data to study the impact of lockdown 

restrictions on air quality and find a 5.4 per cent decrease in NO2, in addition to a 3.1-3.9 per 
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cent decrease in PM2.5. Venter, Aunan, Chowdhury & Lelieveld (2020) observed a 60 per cent 

fall in ground-level NO2 levels, followed by a 31 per cent decrease in PM2.5 for a sample of 34 

countries which had been in lockdown for an average of 62 days. Lenzen et al. (2020) include 

38 regions and 26 economic sectors in their dataset from the Global Multi-Region Input-Output 

(MRIO) laboratory. Their findings suggest that global emissions of PM2.5, and additional air 

pollutants such as SO2 and NOX, decreased by 3.8 per cent and 2.9 per cent respectively. 

Although the results are uniform in the negative impact of lockdown restrictions on air 

pollution, there is a large interval in the magnitude of the impact of the restrictions on air 

pollution concentrations. 

Moreover, the country-based literature has been largely focused on Asian countries, where 

India and China consist of the two most studied countries in the literature (Addas & Maghrabi, 

2021). However, when it comes to India, the country of interest in this study, the usage of 

microeconometric methods such as the regression discontinuity design is scarce when studying 

this relationship. Instead, the methods deployed, such as the one of Sikarwar, Rani, and 

Chattopadhyay (2020), include an Inverse Distance Weighting model to generate spatial 

interpolation maps of  NO2, PM2.5, and PM10 pollutants. The authors study Delhi during the 

lockdown from March 25th and claim to have found a decrease in PM2.5, PM10, and NO2 of 93, 

83, and 70 per cent respectively (Sikarwar, Rani & Chattopadhyay 2020).  

Additional work from Panda, Satpathy, Das & Ramasamy (2021) provides an overview of the 

effect of the national lockdown on air pollution across several different Indian cities between 

different states. Their overall findings suggest air quality fell considerably across their sample 

of Indian cities for both PM10 and PM2.5. They also assert, with referral to Rathore et al. (2021) 

that the air quality index (AQI), which consists of eight pollutants (PM10, PM2.5, NO2, SO2, 

CO, NH3 and PB) improved significantly due to the lockdown across various cities. The 

observed maximum decline, - 52 per cent, was in Bengaluru and Lucknow (Panda, Satpathy, 

Das & Ramasay 2021; Rathore et al. 2021).  

Furthermore, Gautam et al. (2021) compare the differences in the AQI between February 17th 

– May 4th, 2020 and conclude that the air quality in the regions Delhi, Uttar Pradesh, and 

Haryana improved during the lockdown period with regards to falls in PM2.5, PM10, NO2, NH3, 

and CO. After the conditional relaxation of the restrictions was introduced, the concentration 

of these air pollutants rose again. The sharp decrease in particulate matter was attributed to 

lower vehicle activity on the roads and lower industrial activity (Gautam et al., 2021).   
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Additional studies have been investigating China, with varying results in terms of which air 

pollutants are significantly affected by the lockdown policy. Zhang, Cheng and Jian (2021) use 

a fixed-effects model and a regression discontinuity design and find generally positive impacts 

of the restrictions on air quality indicators, excluding O3 (Zhang, Cheng & Jian, 2021). 

Furthermore, additional work has made use of the difference-in-differences model to construct 

a counterfactual for the trend in air quality emissions, without the effects of restrictions due to 

the pandemic (Ming, Zhou, Ai, Bi & Zhong, 2020; He, Pan & Tanaka, 2020). Ming et al. (2020) 

discover that PM2.5 decreased by -7 µg/m3. He et al. (2020) estimate that cities which carried 

out lockdown policies experienced a decrease of -14.07 µg/m3. These findings also suggest that 

COVID-19 restrictions and air pollutants maintain a negative relationship. 

Further work has been conducted on the relationship between pandemic restrictions such as a 

national lockdown and air quality in Vietnam by Dang and Trinh (2020). They use a regression 

discontinuity design to obtain their results in both studies. Their results imply that cross-

nationally, NO2 and PM2.5 concentrations both significantly decrease because of COVID-19 

lockdowns. Similar results appear for the study of the impact on NO2 levels in Vietnam. They 

estimate a reduction in NO2 by 24 per cent from the lockdown over a bandwidth which stretches 

from two weeks before and after lockdown. Increasing the bandwidth to four and eight weeks 

before and after lockdown leads to a lower reduction of 18 per cent (Dang & Trinh, 2020).  

In general, the findings in the empirical literature suggest that the impact of restrictions 

intended to mitigate the spread of COVID-19 was negative for air pollution levels. There are 

some contrasting findings for countries that did not implement a strict national lockdown 

policy, such as Taiwan, where increasing air pollution during the pandemic was reported. 

Chang, Meyerhoefer, and Yang (2020) argue that this result may be due to the decision of many 

people to shift their preferences to use public transport to personal means of transportation 

(Chang, Meyerhoefer, and Yang, 2020). On the contrary, Lee & Finerman (2021) present 

evidence from South Korea suggesting that in the absence of a national lockdown, air pollution 

fell due to lower commuting flows during the COVID-19 outbreak (Lee & Finerman, 2021).  

Several studies also suggest that the impact of lockdowns on air pollution may be heterogenous 

according to certain country characteristics. Examples of these include work on measuring 

heterogeneity from the impact of lockdown on a global scale, such as another work of Dang & 

Trinh (2020). The authors assemble a cross-country database on air quality before and after the 

national lockdowns for 178 countries. Their findings here suggest that there were some 
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heterogeneous impacts across countries with respect to their characteristics regarding shares of 

trade and manufacturing, initial levels of air pollution and geographical distance to the equator. 

In the end, the impacts of COVID-19 lockdowns remained negative on air pollution (Dang & 

Trinh, 2020). Liu et al. (2021) find significant heterogeneity in their difference-in-differences 

estimates for the lockdown effect in their global city sample. The authors discover that less 

developed cities (measured by GDP per capita) received a -17.3 unit decrease in PM2.5 versus 

a -4 unit decrease in more developed cities. In addition, cities with larger shares of industries 

experienced a -11.2 unit decrease in PM2.5 versus a -5.6 unit decrease in cities with smaller 

shares of industries (Liu et al., 2021).  

Furthermore, studies based in a country setting have also explored the heterogeneity in air 

pollution changes from COVID-19 lockdowns. Kumar & Managi (2020) provide a comparison 

in average levels of PM2.5 (µg/m3) between Indian cities during different phases of lockdown. 

The city with the highest average level of PM2.5, Jodhpur, saw a decrease from 76.66 µg/m3 to 

48.12 µg/m3 when judging pre-lockdown levels from March 1st – March 24th, 2020, against the 

level during the first phase of lockdown measured in the paper as from March 25th – April 14th, 

2020 (Kumar & Managi, 2020). Ming et al. (2020) test for heterogeneity among Chinese cities 

due to delayed output from industries due to COVID-19 restrictions by dividing their sample 

of cities into two categories: larger cities (1) based on whether they cities designated in state 

plans, capital cities, or municipalities; and ordinary cities (0). Their estimates suggest that there 

was a significantly larger improvement in PM2.5 in the larger cities compared to the ordinary 

cities. The authors claim that stronger governance, as well as higher production and operation 

intensity in larger cities, contribute to this finding (Ming et al., 2020).  

2.4. Economic motivation from the empirical literature 

This study’s choice to investigate the relationship between COVID-19 lockdown restrictions 

and air pollution is based on the economic issues tied to air pollution found in the empirical 

literature. More exactly, previous empirical work on the relationship between pandemic 

restrictions and air pollution has been vocal about their contribution to environmental 

governance and policies regarding air quality, in addition to health outcomes. For example, 

Dang & Trinh (2020) present their findings for improved air pollution from mobility 

restrictions as relevant for environmental regulation as well as presenting a back-of-the-

envelope cost-benefit analysis of saved health care costs from the dampened air pollution from 

pandemic restrictions in Vietnam in 2020. Kumar & Managi (2020) suggest their findings on 
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how lockdown restrictions have improved air quality will prove beneficial for Indian policies 

for hampering the impact of air pollution (Kumar & Managi, 2020). Finally, Liu et al. (2021) 

argue that their work may contribute to policy interventions, environmental regulations, and 

the literature on health benefits (Liu et al., 2021). 

Overall, environmental and health outcomes appear as the foremost economic issues tied to a 

study of the relationship between COVID-19 restrictions and air pollution. In this study, the 

main economic motivation is to contribute to an environmental policy intended to manage air 

pollution levels. This contribution is made through the testing of hypotheses H1 and H2, which 

test the effect of lockdown restrictions on air pollution and the heterogeneity of the effect 

through economic channels such as industries, and through the activity of a segment of the 

energy sector. Given this study’s focus on how restrictions to mobility and economic activity 

impacted the three air pollutants PM2.5, PM10, and NO2, its findings will be most important for 

the formation of policies related to mitigating air pollution outcomes. The presentation of how 

the economic motivation of this study is reflected in the empirical literature ends the chapter 

of the literature review. The next chapter will present a thorough description of the data sets 

used to test H1 and H2, in addition to the selection procedure of the estimation samples from 

the raw data sets.   
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3. Data 

Initially, this chapter will carefully describe the data sources and variables. In addition, 

motivations behind the use of the selected variables will also be presented. This is followed by 

a thorough explanation of the formatting of the data into panel data and the selection of the 

samples used in the estimation.  

3.1. Air pollutants 

In the research hypothesis H1, this study has set its dependent variable to be represented by 

three species of air pollutants, particulate matter of a diameter equal to or smaller than 2.5. and 

10 µm (PM2.5 and PM10), and nitrogen dioxide (NO2). These air pollutants are imported from 

the World Air Quality Index Project (2022) as daily data and formatted in terms of their 

medians and in accordance with the U.S. Environmental Protection Agency’s (EPA) standards 

(World Air Quality Index Project, 2022; EPA, 2022). This study understands there is a 

difference in the air quality index which is used by the EPA versus India’s National Air Quality 

Index Standard (NAQI) which was adopted by The Central Pollution Control Board in India in 

April 2015. NAQI differs from the EPA:s index in the sense that it gives higher weight to air 

pollutants such as particulate matter (PM2.5 and PM10) than the U.S. index. This is to account 

for the prevalence of particulate matter which is the most severe Indian air pollutant. (World 

Air Quality Index, 2015). However, the NAQI has also been subject to serious criticism 

regarding its lack of coverage in terms of monitoring stations across Indian cities (Greenpeace, 

2015).  

Moreover, the selection of these three air pollutants is founded on the fact that PM2.5 constitutes 

an air pollutant for which India occupies one of the top spots globally regarding its 

concentration. Adding PM10 should also yield a rougher estimate of particulate matter 

concentration to complement the finer measure of PM2.5. Another reason for including 

particulate matter is its contribution to serious health risks, such as heart and lung diseases as 

well as cancer (PM2.5), and respiratory diseases such as asthma and chronic obstructive 

pulmonary disease (UNEP, 2019; California Air Resources Board, 2022). The strong 

concentration of PM2.5 in India and the health risks from PM2.5 and PM10 indicate the 

importance of studying how these air pollutant species react to lockdown restrictions. 

Furthermore, the reasons for studying NO2 as an outcome variable partly consist of its role as 

a precursor to the formation of another dangerous air pollutant, ground-level ozone (O3). NO2 



22 

 

responses could therefore be relevant to investigate given that they partly determine the 

formation of O3. In addition, NO2 causes health problems related to the hearts and lungs 

(UNEP, 2021; Climate & Clean Air Coalition, 2022). Overall, the prevalence of these air 

pollutant species in India as well as their health implications makes them highly relevant to use 

when estimating the air pollution responses to the lockdown restrictions on March 25th, 2020.  

3.2. Control variables 

The dataset imported from the World Air Quality Index Project (2022) also includes daily data 

for two meteorological control variables: wind speed and temperature medians. These control 

variables are used extensively in the related literature to control for their respective influences 

on air pollutants. For example, Dang & Trinh (2020) use temperature alongside precipitation 

as control variables in their parametric regression discontinuity design (Dang & Trinh, 2020). 

Zhao, Cheng & Jian (2020) include both daily minimum and daily maximum temperatures as 

well as windy weather dummies (coded as 1 for the existence of wind on a concerned day and 

0 otherwise) in their fixed-effects model and regression discontinuity design for air quality 

explained by provincial shut-down periods in Chinese provinces (Zhao, Cheng & Jian, 2020) 

Moreover, Liu, Wang & Zheng (2021) control for humidity, temperature, and wind speed in 

their fixed-effects OLS estimation and difference-in-differences design of air quality regressed 

on lockdown measures (Liu, Wang & Zheng, 2021). These control variables will be used in 

testing both H1 and H2. 

3.3. Heterogeneity variables 

For the testing of H2, and thus the heterogeneity in the air pollution outcomes to lockdown 

restrictions, it is important to consider the sources of the three air pollutant species representing 

the outcome variables in this study (PM2.5, PM10, and NO2). These sources will constitute the 

foundation of the city characteristics selected to study the heterogeneity in the outcomes of air 

pollution to lockdown restrictions. According to the Central Pollution Control Board (CPCB) 

in India, sources of PM2.5 and PM10 include vehicle emissions, industrial combustion plants, 

and residential and commercial combustion. Oxides of nitrogen, (NOX) include the burning of 

fossil fuels, biomass, and fossil-fuelled power stations (CPCB, 2019). These sources imply that 

the datasets used for testing the heterogeneity of the impact of national lockdown restrictions 

on air pollution should be based on city characteristics which correspond to these air pollutant 

sources. These are presented below in subsections 3.3.1 and 3.3.2.  
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3.3.1. Industry structure 

Based on the sources of the air pollutants, the first set of variables for the heterogeneity analysis 

consists of the industrial structure measured by the presence of iron ore, steel, and cement 

industry. The data for the industry structure was collected from the Indian Minerals Yearbook 

provided by the Bureau of Mines (Bureau of Mines, 2020). The variables are measured in 

annual production as well as the number of production units per year. The data for these 

variables will not be included in the estimation of the non-parametric regression discontinuity 

design but will rather be categorizing cities into different samples for the heterogeneity 

analysis. This will be explained in more detail in the next section. 

Firstly, each city’s industrial structure is important to account for in a heterogeneity analysis, 

not least due to its influence on the level of particulate matter (PM2.5 and PM10) at the city level. 

The selection of industries is based on a classification from the CPCB, where seven industries 

are listed as critical for the emission of suspended particulate matter (which encompasses PM2.5 

and PM10) and NOX (Gurjar, 2021; Gurjar, Ravindra & Nagpure, 2016; European Environment 

Agency, 2020). These critical industries are constituted by iron and steel, sugar, paper, cement, 

fertiliser, copper, and aluminium. These findings are supported by Wheeler (1999), stating that 

iron, steel, and non-metallic products represent particularly polluting industries (Wheeler, 

1999). Provided that PM2.5 represents the most important air pollutant specie in India, these 

seven critical industries will constitute the base sample of industries for the test for 

heterogeneity. Moreover, this study will focus on the iron, steel, and cement industry branches, 

partly because of their strong contributions to particulate matter emissions. In addition, India 

is the world’s second-largest producer of cement in 2022, the world’s second-largest producer 

of crude steel in 2021, and the fourth largest producer of iron ore in 2022. The sheer magnitude 

of these industries in India along with their particulate matter pollution makes them particularly 

relevant to include in the testing of heterogeneity in air pollution outcomes from lockdown 

(IBEF, 2022; World Population Review, 2022).  

3.3.2. Coal power stations 

The second set of data for the heterogeneity analysis consisted of the presence of coal power 

stations. The data for this variable was imported from the Energy Map of India (2021) which 

is provided by the NITI Aayog and Indian Space Research Organisation (ISRO) (Energy Map 

of India, 2021).  
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Coal power stations are the most important supplier of electricity to the grid in India, providing 

75 per cent of total power generation in the country. They are also an important source of fine 

particulate matter and NOX emissions. In fact, the share of population-weighted ambient PM2.5 

in India from the coal power stations active in 2018, and including future planned stations, is 

estimated to be 13 per cent (Cropper, Cui, Guttikunda & Song, 2021; Ministry of Coal, 2022). 

In 2021, it is reported that 20 per cent of particulate matter emissions in India are explained by 

coal power stations, accompanied by an explained 30 per cent share of NOx emissions 

(International Centre for Sustainable Carbon, 2021). Provided the important role of coal power 

stations in India’s domestic energy production and their contribution to the air pollutant species 

investigated in this study, they constitute a necessary part of the energy sector to account for in 

the heterogeneity analysis.  

3.4. Selection of estimation samples 

In the study’s pursuit to test hypotheses H1 and H2, the air pollution dataset and its controls 

were formatted as panel data using the assignment of identities for each city, air pollutant, and 

control. Given the nature of the non-parametric regression discontinuity design, the data was 

then cut down into samples which are recentred around the lockdown date, March 25th, i.e. the 

threshold of the model. The result is a pre-lockdown period and a post-lockdown period 

numbered from [-26, 26] when the treatment of lockdown restrictions has been conducted. The 

reason for choosing 26 days is founded in that the lockdown period selected in this study lasted 

from March 25th to April 20th. This implies that the data should be recentred 26 days before the 

lockdown, i.e. February 28th – March 24th, and 26 days after the lockdown, i.e. March 26th – 

April 20th, to yield symmetrical windows around the cut-off point of March 25th.  

After the data was recentered around the cut-off, the forcing variable of the non-parametric 

regression discontinuity design could be constructed as the recentred values ranging from [-26, 

26]. In this closed interval, the threshold is represented at 0. Once this procedure had been 

conducted, the recentred air pollution data was cut down into different intervals, or ‘bins’, 

based on the forcing variable, i.e., the recentred variable around the interval [-26, 26]. These 

bins contain the sample means of the air pollution variables within each interval and will be 

explained in more detail in the next chapter. This data enabled the graphical analysis from the 

non-parametric regression discontinuity design.  

In addition to the data for the graphical analysis, the panel datasets intended for the local linear 

regressions were set as the same ones used in the graphical analysis. The exceptions are that 
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no bins are generated, and they also include data for the control variables for wind speed and 

temperature. Here, these air pollutants and controls, together with the dummy variable 

assigning treatment, constitute the data for the local linear regressions which will be generated 

to estimate the impact of the lockdown on each air pollutant.  

The steps above were the necessary segments for organizing the data to test H1. Moreover, to 

test H2, additional data to the one above had to be collected for relevant variables concerning 

heterogeneity. It is important to explain that the data for these variables were neither included 

directly in the graphical analysis nor in the local linear regressions but were used to categorize 

cities into different samples for testing H2. For example, the city sample was divided into two 

samples for each industry to enable comparisons between samples characterized by a stronger 

presence of industry versus samples less characterized by industry. For the iron ore industry, 

this division into two city samples was based on whether there was actual iron industry 

production located in the state of each city or not. If the iron ore industry was present in the 

state, the concerned city within that state was assigned to the iron ore industry sample, and if 

there was no iron ore industry present in the state, the concerned city was assigned to a non-

iron industry sample.  

The categorization for the steel and cement industries used a different rule for assigning the 

cities to different samples. If the steel – and cement production at the state level was above the 

median of the state-level steel – and cement production adhering to all the states represented 

by the cities in the full sample, then cities in such states with above-median production would 

be assigned to the above-median steel – and cement production sample. If the opposite was 

true, i.e., cities were located in states with below-median steel – and cement production at the 

state level based on all the states represented by the cities in the full sample, then the concerned 

cities would be located in a below-median steel – and cement production sample.  

To clarify the reasons for these categorizations it is vital to understand that iron ore production 

was not present in some of the states represented in the city sample, while steel and cement 

production were present in all states represented in the city sample (with the exclusion of Delhi 

and Punjab).1 This meant that the categorization based on state-level iron ore production simply 

could rely on dividing the cities into non-iron ore and iron – ore sample. Since steel and cement 

 
1 The cities in the sample which are located in the states of Delhi and Punjab are New Delhi and Chandigarh. 

There was no cement production recorded in either Delhi or Punjab, which in turn means that New Delhi and 

Chandigarh will not be included in the categorization of city samples based on the presence of cement production 

at the state level. 
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production was found in almost all states, the categorizations of the city samples according to 

cement and steel production used a different rule, in this case, the median for state-level 

production.  

Proceeding to the division into coal power stations, the cities were also categorized into two 

samples. This categorization was based on the rule of whether a coal power station was located 

in the same city district or in a neighbouring city district or not. More exactly, the categorization 

of the two city samples was carried out by using a dummy variable, which was labelled 1 if a 

coal power station was indeed located in the city district or in a neighbouring city district, and 

0 otherwise. Practically, this categorization was made using the containing tracking features 

for specific coal power stations from the  Energy Map of India (Energy Map of India, 2022).  

Through the selections of these estimation samples, the methodology used in this study to test 

H1 and H2 is provided with the data necessary for its analysis. The estimation samples will be 

useful for graphical analysis which provides a compelling illustration of the impact of 

lockdown restrictions on air pollution. They will also be important for the local linear 

regressions generated in accordance with the non-parametric regression discontinuity design 

used in this study. Both these two parts of the methodology will now be introduced and 

explained in detail.  
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4. Methodology 

In this chapter, the non-parametric regression discontinuity design will be presented in detail 

with regard to its idea along with the methods used to estimate it. Firstly, the identifying 

assumption, intuition, and motivation behind the use of this design are presented. This is 

followed by a detailed description of the graphical analysis used in this design, alongside 

various threats against the non-parametric regression discontinuity design. The last part of the 

chapter introduces the main estimation equations used to test the research hypotheses H1 and 

H2 and describes them closely.   

4.1. The non-parametric regression discontinuity design  

This study employs a non-parametric regression discontinuity design as the main model to test 

hypotheses H1 and H2, i.e., whether the lockdown restrictions had a significant negative impact 

on air pollution in the sample of Indian cities (H1), and if the impact was significantly 

heterogeneous depending on city characteristics (H2).  

The regression discontinuity design was implemented originally by Thistlethwaite and 

Campbell (1960) in an article on educational psychology, which studied the effect of treatment 

from public recognition on near winners in a national competition for scholarships. Some near 

winners received more public recognition than others which in turn influenced the likelihood 

of receiving scholarships from other actors (Thistlethwaithe & Campbell, 1960).  

The regression discontinuity design may be divided into two categories: sharp and fuzzy. This 

study relies on a sharp design. The idea behind this design is that treatment is assigned to the 

observations based on whether they are above or below a certain cut-off. The observations 

below the cut-off act as a control group and the ones above the cut-off act as a treatment group. 

The assignment of their position around the cut-off is based on their scores from an assignment 

or forcing variable. The conditional probability of receiving treatment in sharp regression 

discontinuity design changes discontinuously at the cut-off, where the conditional probability 

goes from zero to one. Any “jumps” in the relationship between the outcome variable and the 

forcing variable at the cut-off are taken as evidence of a treatment effect. The treatment effect 

is captured by measuring the average outcomes of the treated observations above the cut-off 

against the non-treated observations below the cut-off (Angrist & Pischke, 2009; Cattaneo, 

Idrobo & Titiunik, 2019).   
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Moreover, assuming that the observations were unable to manipulate their placement around 

the cut-off, this in turn should ensure that the variation in receiving treatment or not receiving 

treatment around the cut-off is randomized. This will in turn mitigate endogeneity by ensuring 

that unobservable and observable traits around the cut-off are kept constant. The only 

difference on both sides of the cut-off is that some observations are treated while others are not 

(Angrist & Pischke, 2009; Cattaneo, Idrobo & Titiunik, 2019). When measured towards 

experiments, regression discontinuity designs have indeed proven in several cases to be robust 

in generating results similar to those of experiments (Cook & Wong, 2008). 

This paper is relying on the sharp design, where the treatment assignment is made by a forcing 

variable representing the days recentred around the cut-off, which in turn represents the date 

of lockdown, March 25th, 2020. The forcing variable assigns the treatment of lockdown 

restrictions on March 25th, 2020, and this treatment is considered to remain in place until April 

20th, 2020. During the period before lockdown, February 28th – March 24th, no treatment is 

assigned, which is reasonable since the lockdown restrictions had not been imposed by then. 

In the context of this study, evidence of a treatment effect is achieved by comparing the average 

outcomes, i.e., air pollutants PM2.5, PM10, and NO2 in the city sample, on both sides of the cut-

off constituted by the lockdown restrictions on March 25th. Just as stated above, assuming that 

the cities are unable to affect their placement around the cut-off, the treatment variation should 

be randomized, which means that hard-measured, unobserved factors influencing air pollution 

and lockdown restrictions simultaneously in a city can be assumed to be constant around the 

cut-off, i.e. before and after lockdown. The only difference will be that some cities are treated 

with lockdown while others are not (Lee & Lemieux 2010; Angrist & Pischke, 2009).  

Furthermore, this study uses a non-parametric sharp regression discontinuity design in contrast 

to a parametric design. The parametric regression discontinuity design requires a correct 

specification of the forcing variable function, which decides when treatment is assigned. If the 

forcing variable function is not modelled correctly, any discontinuity in the outcomes may be 

due to non-linearity in the forcing variable function. To avoid this issue with the 

misspecification of the forcing variable in the parametric regression discontinuity design, it is 

possible to use a non-parametric regression discontinuity design. This design focuses on the 

observations in a small neighbourhood around the cut-off, and it has the benefit that it is not 

necessary to model the forcing variable function correctly to get the treatment effect of 

lockdown restrictions on air pollution outcomes (Angrist & Pischke, 2009).  
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A natural transition from the presentation of the non-parametric regression discontinuity design 

is to delve into the graphical analysis and regression methods of this design. Thus, the next 

upcoming section consists of the important graphical analysis, a natural choice for any study 

using regression discontinuity designs (Lee & Lemieux, 2010). It is followed by the 

formulation of the estimation equations for the regressions used in the study’s non-parametric 

regression discontinuity design. 

4.2. Graphical analysis 

The non-parametric regression discontinuity design in this paper to test H1 and H2 is partly 

based on graphical analysis. To conduct this analysis, several bins (or intervals) were 

constructed based on the forcing variable, i.e., time formatted as a recentred variable. These 

bins are then augmented with the average of the outcome variable, air pollution, within each of 

them, and presented as a scatterplot, with the average outcomes of the air pollution in the city 

sample explained by the forcing variable. Furthermore, this study also uses two different bin 

sizes to display the results graphically: one small bin size and one large bin size. The small bin 

size is set as an interval of three days in the neighbourhood around the threshold, while the 

large bin size is set to an interval of seven days (Lee & Lemieux, 2010). 

In these graphs, outcomes are explained by the forcing variable, without any control variables 

or covariates. It will however be important for assessing the credibility of the nonparametric 

regression discontinuity design to conduct graphical analysis where the covariates are 

explained by the forcing variable. If there are discontinuities in the covariates at the cut-off, 

then the identification of this nonparametric regression discontinuity design may be invalid 

(Imbens & Lemieux, 2008). 

Another potential threat to the non-parametric RD design is the low number of observations 

around the selected neighbourhood around the threshold. This could mean that the bandwidth 

of the neighbourhood needs to be extended to improve efficiency. However, this can lead to 

more biased estimates (Lee & Lemieux, 2010). The non-parametric model in this study is 

subject to the time constraint imposed by the lockdown period by the Indian government from 

March 25th – April 20th. Extending the dataset to a longer period may introduce bias as 

lockdown restrictions are conditionally relaxed from April 20th. Based on this trade-off 

between bias and efficiency the study will not extend the bandwidth.  

A final note on the graphical analysis is that the bins will be augmented with a local polynomial 

regression line. Note that this regression is using a local polynomial regression line of order 4, 
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which will differ from the polynomial order in the local linear regressions outlined in the next 

section. This local polynomial regression line of a higher order provides a good fit to the 

function of the air pollution outcomes regressed on the forcing variable. It is also more 

important to have a local linear regression of order 1 when generating the actual local linear 

regression estimates. The reason behind the latter will now be explained, as the local linear 

regressions will be introduced in the next section. 

4.3. Local linear regression model  

Moreover, in addition to the graphical analysis, local linear regressions are also performed for 

this study’s non-parametric regression discontinuity design. The local linear regressions 

estimate the regression functions above and below the cut-off point by using means of weighted 

polynomial regressions of order 1. They use a triangular kernel function which generates the 

weights for each observation based on its distance from the cut-off point. The intuition behind 

the local linear regression is to concentrate on units within a certain bandwidth on either side 

of the cut-off (lockdown), discarding the units which fall outside this bandwidth. Then linear 

regressions are estimated of polynomial order 1 for the remaining units, and an average 

treatment effect is calculated for the average air pollution outcomes on either side of the cut-

off. This treatment effect from the local linear regressions states how much the various air 

pollutants are affected by the national lockdown in India from March 25th – April 20th, 2020 

(Calonico, Cattaneo & Titiunik, 2014; Gelman & Imbens, 2019; Imbens & Lemieux, 2008; 

Cattaneo, Titiunik & Vazquez-Bare, 2020). 

There are several reasons to motivate the usage of local linear regressions in the non-parametric 

regression discontinuity design. Firstly, Gelman & Imbens (2019) draw out three key 

arguments for why local linear and quadratic polynomial estimators should be preferred to 

higher-order polynomial estimators should not be used in regression discontinuity design. 

Firstly, higher-order polynomial estimators are susceptible to assigning excessive weights to 

observations with extreme values in the forcing variable and far away from the cut-off. In 

contrast, local linear estimators are more likely to assign higher weights to observations closer 

to the cut-off, while assigning zero weight for observations outside the bandwidth. This 

excessive assignment of weights will lead to estimates which in turn may lead to noisy 

estimates (Gelman & Imbens, 2019). 

Secondly, the estimates of the discontinuity are more sensitive to higher-order polynomial 

regressions, compared to local linear and local quadratic regression estimates. This is illustrated 
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by a larger difference between the discontinuity estimates from different higher-order 

polynomials in relation to the difference between local linear and local quadratic estimates, 

whose difference is much less pronounced (Gelman & Imbens, 2019). 

Thirdly, the confidence intervals for the higher-order polynomials have a lower nominal 

coverage compared to local linear and local quadratic ones. Gelman & Imbens (2019) conduct 

a test of repeatedly picking a pseudo, or fake, threshold in a pretended regression discontinuity 

design and then estimating the average treatment effect. Then, for the estimates for the 

treatment effects from the higher-order polynomial regression discontinuity designs, the 95-

per cent confidence intervals include zero for less than 95-per cent of the estimations, which 

means that they do not cover their assigned nominal coverage. Conversely, the confidence 

intervals for the local linear and the local quadratic regression discontinuity designs are close 

to the nominal coverage of 95 per cent. This implies that higher-order polynomial regression 

discontinuity designs are more susceptible to incorrect inference than their local linear and 

local quadratic counterparts (Gelman & Imbens, 2019). 

Fourthly, another study by Imbens & Kalyanaraman (2009) presents findings suggesting that 

local linear estimates have attractive bias properties. They assert that the local linear estimator 

is more likely to have the attractive asymptotic feature of an optimal convergence rate for the 

estimation of regression discontinuity treatment effect. This property of the local linear 

estimator is found in the work of Porter (2003) who derive the optimal convergence rate of the 

estimation of the regression discontinuity treatment effect using local polynomial and partially 

linear estimators (Imbens & Kalyanaraman, 2009; Porter, 2003).  

Provided these attractive properties of the local linear regression model for the non-parametric 

regression discontinuity design, the next phase is to present the estimation equations for both 

research hypotheses of the study, H1 and H2. As a reminder, H1 tests whether the national 

lockdown restrictions imposed on March 25th, 2020, had a significant negative effect on air 

pollution in the Indian city sample. H2 tests whether there was a significant heterogeneous 

impact from lockdown on air pollution in the city sample due to city characteristics such as 

polluting industries and the presence of energy plants. The local linear regression model run in 

this non-parametric regression discontinuity design will be applicable for both hypotheses 

since the only differences between the estimations in H1 and H2 are the included cities in the 

estimation samples. The applied local linear regression model is denoted by the following 

equation: 
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𝑦𝑡𝑐  =  𝛽₀ +  𝛽₁𝐷𝑡  +  𝛽₂𝐷𝑡𝑓(𝑥𝑡) + 𝛽₃𝑓(𝑥𝑡) + 𝜃𝐶𝑐 + 𝜀𝑡𝑐   (1) 

Here, 𝑦𝑡𝑐 is the outcome variable, 𝛽₀ is an intercept, and 𝑓(𝑥𝑡) is the function of the forcing 

variable. 𝐷𝑡 is the treatment indicator which is a discontinuous function of the continuous 

forcing variable 𝑥𝑡. 𝐷𝑡 adheres to the following treatment rule: 

 𝐷𝑡 = {
0, 𝑖𝑓  𝑥𝑡 <  𝐿0

1, 𝑖𝑓 𝑥𝑡  ≥  𝐿0
 

This treatment rule, 𝐿0, refers to the threshold, i.e., the lockdown date.  𝐶𝑐 is a set of control 

variables which are included to account for factors which may influence air pollutants such as 

temperature and wind speed, and has its coefficient measured by θ. The error term is denoted 

by 𝜀𝑡𝑐. Finally, the estimate of the treatment effect is measured by β₁. This is the estimate of 

the change in air pollutants due to the lockdown.   

To explain the estimate of the treatment effect in more detail, it is important to explain that in 

the non-parametric regression discontinuity design, only data in a limited neighbourhood, 𝜂, 

around the discontinuity at the threshold, 𝐿0 will be studied: 

[𝐿0 −  𝜂,  𝐿0 +  𝜂 ] 

From this limited neighbourhood, 𝜂, the average outcomes on each side of the threshold are 

estimated as: 

𝐸[𝑦𝑡𝑐 ∣ 𝐿0 − 𝜂 < 𝑥𝑡 < 𝐿0] ≅ 𝐸[ 𝑦0𝑡𝑐 ∣∣ 𝑥𝑡 =  𝐿0 ]  

𝐸[𝑦𝑡𝑐 ∣ 𝐿0 ≤ 𝑥𝑡 < 𝐿0 + 𝜂] ≅ 𝐸[ 𝑦1𝑡𝑐 ∣∣ 𝑥𝑡 =  𝐿0 ]  

The final non-parametric RD estimate can be written as these average outcomes of the air 

pollution outcomes in the limited neighbourhood, 𝜂, to the left and right of the threshold 𝐿0: 

lim
𝜂→0

 𝐸[ 𝑦𝑡𝑐 ∣∣ 𝐿0 < 𝑥𝑡 < 𝐿0 + 𝜂 ] − 𝐸[ 𝑦𝑡𝑐 ∣∣ 𝐿0 − 𝜂 < 𝑥𝑡 < 𝐿0 ] = 𝐸[ 𝑦1𝑡𝑐 − 𝑦0𝑡𝑐 ∣∣ 𝑥𝑡 =  𝐿0 ] 

This estimate will give us the average treatment effect of the lockdown restrictions imposed on 

March 25th, 2020, on the different air pollutants (Angrist & Pischke, 2009). Again, the average 

outcomes of air pollution in the limited neighbourhood between February 28th – April 20th are 

studied, accounting for the control period (February 28th – March 24th) and the treatment period 

(March 25th – April 20th). The next step will be to test H1 and H2 by generating the average 

treatment effect from this model. This is executed in the next chapter.  
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5. Results 
 

In this chapter, the main results from the non-parametric regression discontinuity design are 

based on the testing of hypotheses H1 and H2. The results for H1 and H2 are reported 

graphically in Figures 5.1-3 and in Figures 5.4-23, respectively. In addition to the graphical 

figures, the results from the local linear regressions when testing H1 and H2 are presented in 

Tables 5.1 and Tables 5.2-13, respectively.  

5.1. H1: Air pollution responses to national lockdown 

The testing of H1 provides a compelling, graphical view when observing the outcomes of 

PM2.5. It is possible to see a clear discontinuity on each side of the cut-off point. When 

comparing the graphical outcomes to PM10, it appears as if PM2.5 has a sharper discontinuity at 

the cut-off compared to the one for PM10. Regarding the findings for the outcomes of PM10 and 

NO2, the discontinuity at the cut-off is pronounced as a positive rise in PM10 and NO2 

concentrations. 

 

  

Figure 5.1. PM2.5 regression discontinuity design plot using small bins (left) and large bins 

(right). 
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Figure 5.2. PM10 regression discontinuity design plot, using small bins (left) and large bins 

(right). 

 

   

Figure 5.3. NO2 regression discontinuity design plot, using small bins (left) and large bins 

(right). 

 

Furthermore, Table 5.1 presents the results for the local linear regressions for each air pollutant 

specie. There is not a statistically significant treatment effect of the national lockdown when 

including and excluding the covariates of temperature and wind speed. Moreover, the economic 

impact of one day of national lockdown on the air pollutant species, when including covariates, 

is equivalent to a daily decrease of -11.574 µ𝑔/𝑚3 in PM2.5, -4.047 µ𝑔/𝑚3in PM10, and a daily 

increase of 1.333 ppb (parts per billion) in NO2. The comparison of the local linear regressions 

with and without covariates in Table 5.1 suggests that the economic impact remains highly 

similar in the comparisons, both from a statistical and economic point of view. The exception 

is PM10 which experiences an approximate 27 per cent reduction in the absolute value of its 

treatment effect when including covariates. This also yields an initial sensitivity check 

regarding possible endogeneity, where for PM2.5 and NO2, controlling for wind speed and 
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temperature appears to have a generally minor influence on the treatment effect (Lynch & 

Brown, 2011). 

Table 5.1. PM2.5 regression discontinuity estimates with and without covariates. Covariates 

include accounting for wind speeds and temperature medians.  

 (1) (2) (3) (4) (5) (6) 

VARIABLES PM2.5 

median 

PM2.5 

median 

PM10 

median 

PM10 

median 

NO2 

median 

NO2 

median 

       

RD Estimate -12.159 -11.574 -5.526 -4.047 1.165 1.333 

 (10.065) (9.950) (5.750) (5.073) (1.747) (1.721) 

 

Covariates 

 

Mean of 

dependent 

variable  

 

 

No 

 

98.448 

 

Yes 

 

98.448 

 

No 

 

60.520 

 

Yes 

 

60.520 

 

No 

 

8.476 

 

Yes 

 

8.476 

Observations 1,158 1,158 1,040 1,040 1,106 1,106 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
 

5.2. H2: Testing for heterogeneity in air pollution responses to national lockdown  

Proceeding to test H2, graphical analysis based on the non-parametric regression discontinuity 

design for the city samples located in states with and without iron, steel, and cement industries 

are provided in Figures 5.4-21 below. Local linear regressions for the industrial and non-

industrial city samples are in turn presented in Tables 5.2-12. The industrial section is then 

followed by a graphical analysis for city samples with and without coal power stations present 

in the concerned or a neighbouring city district, presented in Figure 5.22-27, alongside local 

linear regressions in Table 5.13.2  

5.2.1. Iron ore industry 

The results from Figure 5.4 give a compelling impression that the magnitude of the 

discontinuity for PM2.5 at the cut-off is considerably larger for cities without iron ore industry 

compared to cities located in states with iron ore industry.   

 
2 The graphical analysis and local linear regressions for PM10 and NO2 when testing H2 are located in the 

Appendix. 
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Figure 5.4. PM2.5 regression discontinuity design plot for the iron ore industry sample (left 

panel) versus the non-iron ore industry sample (right panel), using small bins. 

The results from the local linear regressions in Table 5.2 suggest a significant negative 

treatment effect from lockdown restrictions for the samples with iron industry compared to the 

ones without iron industry. The city sample located in states with iron ore industry experienced 

a  -29.40  µ𝑔/𝑚3 decrease in PM2.5 when including wind speed and temperature covariates. In 

contrast, cities located in states without iron industry experienced a non-significant treatment 

effect of -7.290 µ𝑔/𝑚3. This finding is to be expected as it was concluded in Chapter 3 that 

iron ore industry constitutes a chief contributor to particulate matter emissions in India and 

globally.  

Thus, the marginal effect of the lockdown which began on March 25th should be larger in the 

city sample where iron ore industry was present in the states where the cities were located. This 

is due to the strictly limited mobility of Indian citizens and the shutdown of several industries 

(Soni, 2021; Government of India, 2020). 

 

 

 

 

 

 

 



37 

 

Table 5.2. PM2.5 regression discontinuity estimates with and without covariates in the samples 

with iron ore industry and without iron ore industry. Covariates include accounting for wind 

speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES PM2.5 median PM2.5 median PM2.5 median PM2.5 median 

     

RD Estimate -27.252*** -29.402*** -7.716 -7.290 

 

 

Covariates 

 

Iron ore industry 

 

Mean of dependent 

variable in sample 

(8.250) 

 

No 

 

Yes 

 

86.430 

(7.244) 

 

Yes 

 

Yes 

 

86.430 

 

 

(14.50) 

 

No 

 

No 

 

103.980 

(14.32) 

 

Yes 

 

No 

 

103.980 

     

Observations 365 365 793 793 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

5.2.2. Steel industry 

In Figure 5.5. the graphical representation of the non-parametric regression discontinuity 

design shows a considerable difference in PM2.5 responses between the city sample located in 

a state with steel production below the median steel production versus the city sample located 

in a state with steel production above the median. It appears as if there is a positive discontinuity 

for the cities in states with above-median steel production, while a negative discontinuity is 

observed for the cities located in states with below-median steel production. 
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Figure 5.5. PM2.5 regression discontinuity design plot for the above-median steel production 

sample versus below-median steel production sample, using small bins. 

Furthermore, the local linear regressions in Table 5.3 below suggest that the treatment effects 

of the lockdown restrictions on PM2.5 were non-significant in both city samples above and 

below the steel production median. Including versus excluding covariates show a limited 

change in the treatment effects, suggesting that endogeneity between the forcing variable and 

the error term is likely not a problem.  

Table 5.3. PM2.5 regression discontinuity estimates with and without covariates in the city 

samples located in regions with steel production above and below the steel production median. 

Covariates include accounting for wind speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES PM2.5 median PM2.5 median PM2.5 median PM2.5 median 

     

RD Estimate -5.294 -4.121 -14.877 -13.833 

 

 

Covariates 

 

 

Median steel industry 

production 

 

 

Mean of dependent 

variable in sample 

(7.463) 

 

No 

 

 

Above 

 

 

 

87.391 

 

(6.723) 

 

Yes 

 

 

Above 

 

 

 

87.391 

 

(15.19) 

 

No 

 

 

Below 

 

 

 

106.029 

(15.04) 

 

Yes 

 

 

Below 

 

 

 

106.029 

     

Observations 471 471 687 687 

     

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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5.2.3. Cement industry 

In Figure 5.6 the discontinuity of the PM2.5 response to the lockdown is visualized in two city 

samples whose cities were divided based on whether they were located in states with above-

median or below-median cement production. Cities which are situated in states with below-

median cement production showed a slightly positive discontinuity while their opposites in the 

above-median cement production sample experienced no clear discontinuity at all.  

  

Figure 5.6. PM2.5 regression discontinuity design plot for the above-median cement production 

sample versus below-median cement production sample, using small bins. 

Table 5.10 illustrates a significant treatment effect of -11.970  µ𝑔/𝑚3 on PM2.5 in the cities 

located within states with above-median cement production. For the below-median sample, the 

treatment effect amounted to an insignificant -3.965 µ𝑔/𝑚3. Once again, including covariates 

has a minor impact on the treatment effects’ magnitudes. 
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Table 5.4. PM2.5 regression discontinuity estimates with and without covariates in the city 

samples located in regions with cement production above and below the steel production 

median. Covariates include accounting for wind speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES PM2.5 median PM2.5 median PM2.5 median PM2.5 median 

     

RD Estimate -13.055** -11.970** 0.836 -3.965 

 

 

Covariates 

 

 

Median cement 

industry production  

 

 

Mean of dependent 

variable in sample 

(5.540) 

 

No 

 

 

Above 

 

 

87.002 

(5.211) 

 

Yes 

 

 

Above 

 

 

87.002 

 

 

(19.022) 

 

No 

 

 

Below 

 

 

109.135 

(19.354) 

 

Yes 

 

 

Below 

 

 

109.135 

     

Observations 524 524 476 476 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

5.2.4. Coal power stations 

In Figure 5.7, the PM2.5 responses for cities characterized and not coal power vs non-coal 

power are introduced. Sharp discontinuities are present in both samples, with the non-coal 

power sample showing a slightly sharper discontinuity.  

  

Figure 5.7. PM2.5 regression discontinuity design plot for the coal power sample versus non-

coal power sample, using small bins. 
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In Table 5.5 the local linear estimates suggest that the treatment effects on PM2.5 were neither 

significant in cities characterized by coal power stations nor in cities not characterized by coal 

power stations. The negative estimates are relatively similar in magnitude between both 

samples when excluding covariates. However, the difference increases when controlling for 

covariates, suggesting that there may be some endogeneity between the meteorological 

covariates and the treatment effect on PM2.5 from lockdown in the coal – and non-coal power 

station samples.   

Table 5.5. PM2.5 regression discontinuity estimates with and without covariates in the coal 

power sample and non-coal power sample. Covariates include accounting for wind speeds and 

temperature medians. 

 (1) (2) (3)  (4)  

VARIABLES PM2.5 median PM2.5 median PM2.5 median  PM2.5 median  

       

RD Estimate -12.96 -10.54 -12.40  -14.80  

 

 

Covariates 

 

Coal power  

 

Mean of dependent 

variable in sample 

(12.59) 

 

No 

 

Yes 

 

103.218 

(11.51) 

 

Yes 

 

Yes 

 

103.218 

(13.05) 

 

No 

 

No 

 

92.758 

 (12.98) 

 

Yes 

 

No 

 

92.758 

 

 

 

Observations 630 630 528  528  

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 



42 

 

6. Robustness tests 

Albeit a powerful tool to study air pollution responses around a national lockdown threshold, 

the non-parametric regression discontinuity design deployed in this paper faces several threats, 

where some were outlined in Chapter 4. These threats require robustness tests to be conducted 

to observe whether they might make the non-parametric regression discontinuity design in this 

paper invalid. In particular, the estimated treatment effects from the local linear regressions 

will be subject to scrutiny by applying a linear estimator over two shorter intervals around the 

cut-off. Each threat and its assigned robustness test are presented with a short description and 

motivation, followed by the results from the tests. 

6.1. Changing the interval and applying a linear regression model 

This study performs a robustness test to address the issue of mass points in the forcing variable 

of the local linear regression estimation above. Mass points denote distinct values shared by 

many observations. For example, in the non-parametric regression discontinuity design of this 

study, the forcing variable is discrete by nature and only takes integer values. In the setting of 

this study, the observations of air pollutants measured in the cities will therefore be sharing 

many values i.e. there will be mass points. If this number of mass points is very limited, then 

the local linear regression method above is not applicable. The reason is that the local linear 

method uses each mass point as a single observation. This would be the equivalent of having 

the observations aggregated by the values of the forcing variable and then the average outcomes 

are calculated for all the observations at each value. The effective, total number of observations 

used will be consisting of these mass points in the forcing variable (Cattaneo, Idrobo & 

Titiunik, 2018).  

This robustness test will investigate whether the main results above from testing H1 through 

the local linear regression are robust by using an alternative linear estimator in a smaller 

interval closer to the cut-off, more specifically [-5, 5] and [-10, 10] days before and after 

lockdown. The linear estimator used here is not specified as the local linear estimator, where 

the latter would count the mass points as the effective observations. The smaller interval should 

make the number of polynomial terms needed to model the forcing variable function decrease, 

based on the logic from the nonparametric regression discontinuity designs explained earlier 

in the text. The decision to apply this robustness test to just H1 and not H2 is founded on the 

limited data for the divided samples based on industrial production at the state level and the 
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presence of coal power stations needed for H2. In addition, if the number of mass points is 

relatively low, then the extrapolation from a linear regression globally would be possible to 

estimate the treatment effect of the regression discontinuity design. Based on these factors, in 

the smaller intervals, the usage of the linear estimator globally (not locally as with the local 

linear estimator) should be suitable for estimating the treatment effect of lockdown restrictions 

on air pollution (Cattaneo, Idrobo & Titinuik, 2018; Cattaneo, Titiunik & Vasquez-Bare, 2020). 

Based on the reasons above, cutting down the interval and deploying a linear regression 

estimator should therefore provide a useful robustness test for the main results which were 

obtained by the local linear estimator. The results are presented graphically in Figures 6.1-3 

and the linear regression estimates are placed in Tables 6.1-3. 

  

Figure 6.1. Interval of [-10, 10], small bins to the left, and interval of [-5, 5], large bins, to the 

right.  
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Table 6.1. Interval changes for PM2.5.  

 (1) (2) (3) (4) 

VARIABLES PM25 median PM25 median PM25 median PM25 median 

     

National lockdown -26.930*** 

(3.009) 

-25.732*** 

(3.046) 

-27.368***  

(4.398) 

-25.853*** 

(4.340) 

     

Wind speed median - -2.679 

(2.063) 

- -4.931*  

(2.781) 

     

Temperature median - -0.640 

(0.415) 

- -0.638  

(0.574) 

 

Constant 

 

110.496*** 

(2.500) 

 

130.655*** 

(11.726) 

 

107.482***  

(3.762) 

 

130.182*** 

(16.569) 

 

Interval 

 

[-10, 10] 

 

[-10, 10] 

 

[-5, 5] 

 

[-5, 5] 

     

Observations 462 462 242 242 

R-squared 0.152 0.159 0.148 0.161 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

  

 

Figure 6.2. Interval of [-10, 10] for PM10, small bins to the left, interval [-5, 5] for PM10, large 

bins, to the right.  
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Table 6.2. Interval changes for PM10. 

 (1) (2) (3) (4) 

VARIABLES PM10 median PM10 median PM10 median PM10 median 

     

National lockdown -13.497*** 

(2.323) 

-12.805*** 

(2.343) 

-14.178*** 

(3.162) 

-12.933*** 

(3.008) 

 

Wind speed median 

 

 

Temperature median 

 

 

- 

 

 

- 

 

-8.032***  

(1.871) 

 

0.443* 

(0.250) 

 

- 

 

 

- 

 

 

-9.655*** 

(2.642) 

 

0.813** 

(0.351) 

     

Constant 

 

 

 

Interval 

64.270*** 

(1.761) 

 

 

[-10, 10] 

61.542*** 

(7.474) 

 

 

[-10, 10] 

61.720*** 

(2.601) 

 

 

[-5, 5] 

50.318*** 

(10.736) 

 

 

[-5, 5] 

     

     

Observations 420 420 220 220 

R-squared 0.075 0.140 0.088 0.187 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

  

Figure 6.3. Interval [-10, 10] for NO2, small bins to the left, interval [-5, 5] for NO, large, bins 

to the right.  
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Table 6.3. Interval changes for NO2. 

 (1)  (2) (3) (4) 

VARIABLES NO2 median  NO2 median NO2 median NO2 median 

      

National lockdown -4.572***  -4.584*** -2.917*** -2.737*** 

 

 

(0.490)  (0.528) (0.652) (0.699) 

Wind speed median -  -0.855*** - -1.175*** 

 

 

  (0.318)  (0.425) 

Temperature median -  0.118 - 0.0746 

 

 

  (0.0739)  (0.0899) 

Constant 10.273***  8.062*** 8.698*** 7.941*** 

 

 

Interval 

(0.410) 

 

[-10, 10] 

 (2.005) 

 

[-10, 10] 

(0.492) 

 

[-5, 5] 

(2.471) 

 

[-5, 5] 

      

Observations 441  441 231 231 

R-squared 0.170  0.188 0.081 0.110 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

The results in Figures 6.1-3 suggest strongly pronounced discontinuities for the new intervals 

of [-10, 10] and [-5, 5] days. The discontinuities are generally sharper and larger in magnitude 

for the [-10, 10] interval. For PM2.5, the linear estimator has a better fit to the data when using 

the [-5, 5] interval based on pure visual inspection. Yet, by comparing the R-squared across the 

different intervals, it does not differ very much, which implies they have a similar fit to the 

data. The exceptions are the intervals for NO2 where the [-10, 10] interval has a better fit than 

the [-5, 5] interval both with and without covariates. Interestingly, based on Figure 6.3, the [-

5, 5] interval suggests a positive discontinuity for NO2 due to lockdown, whereas the [-10, 10] 

interval suggests a negative discontinuity from lockdown.  

The linear regressions presented in Tables 6.1-3 support the graphical analysis. The treatment 

effect of the lockdown restrictions is in almost all cases negative and exclusively statistically 

significant. For the [-10, 10] interval, the treatment effect of lockdown consists of a daily 

decrease in PM2.5 by -25.732  µ𝑔/𝑚3 when including covariates for temperature and wind 

speed. This is accompanied by a daily decrease of -14.178 µ𝑔/𝑚3 in PM10 and a fall by -4.584 

ppb in NO2, again including covariates. The linear regressions for the [-5, 5] interval also assert 

a significant decrease in all three air pollutants. They also indicate approximately similar 
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magnitudes for all air pollutants as for the [-10, 10] intervals, except for NO2 where there was 

a 36-40 per cent decrease in the absolute value of the treatment effect when using the [-5, 5] 

interval compared to [-10, 10] interval.  

6.2. Covariates by forcing variable  

Another potential threat against the non-parametric regression discontinuity design in this 

study is if there is a shift in the covariates wind speed and temperature medians at the cut-off. 

The identification of the regression discontinuity design should not be affected by the presence 

of covariates, but if a shift in covariates is present at the cut-off, then the assumptions for the 

regression discontinuity design may be possible to question. If there are other changes which 

occur at the cut-off, such as changes in the meteorological covariates wind speed and 

temperature, then they may be influencing the air pollution outcomes and hence included in 

the treatment effect (Imbens & Lemieux, 2008).  

Therefore, to test whether these covariates shift at the threshold, a robustness test recommended 

by Imbens & Lemieux (2008) which involves graphical analysis, is regressing the covariates 

on the forcing variable. The test uses bins and the average of the covariates within these bins 

and measures them on each side of the threshold. The only difference here to the previous 

graphical analysis in the study is that the outcome variables used will consist of the covariates, 

i.e. wind speed and temperature (Imbens & Lemieux, 2008). 

In Figures 6.7-8 below, both wind speed and temperature medians are used as the outcome 

variables, plotted against the forcing variable which again is time recentred around the 

threshold, 25th of March. The graphs showing wind speed suggest no shift at the threshold. For 

temperature, no clear discontinuity emerges either in the positive trend of the covariate. The 

positive trend could be due to temperatures in India rising during the period from February 28th 

– April 20th. 
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Figure 6.7. Wind speed, small bins (left) and large bins (right). 

 

  

Figure 6.8. Temperature, small bins (left) and large bins (right). 
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7. Discussion 

Based on the results from testing the two research hypotheses H1 and H2, there are several 

points which are open to discussion regarding their relation to the previous literature and the 

economic debate. Firstly, it is important to discuss the robustness test with the smaller intervals 

and its results from using a linear estimator to test H1. These results were jointly statistically 

significant, in contrast to the results for H1 obtained with the local linear estimator. This 

provides room for an initial, interesting, discussion about the choice of estimator in this study.  

The main differences between the local linear estimator and the linear estimator used in this 

study are clear in their definitions. The local linear estimator uses weighted polynomial 

regression of order 1 to estimate regression functions to the left and right of the cut-off. A 

triangular kernel function assigns more weight to observations closer to the cut-off. The local 

linear estimator focuses on the observations within a specific bandwidth around the cut-off, 

and observations outside this bandwidth are discarded. This bandwidth to the left and right of 

the cut-off selected from the local linear estimator in the testing of H1 ranged from 5.60 – 6.51. 

When testing H2, the selected bandwidth ranged from 4.03 – 7.55. An average treatment effect 

is finally calculated from the average outcomes on each side of the cut-off (Imbens & Lemieux, 

2008; Calonico, Cattaneo & Titiunik, 2014; Gelman & Imbens, 2019; Cattaneo, Titiunik & 

Vazquez-Bare, 2020).  

Conversely, the linear estimator simply fits an ordinary least-squares (OLS) linear regression 

to the data. The selected windows around the cut-off consisted of intervals set to [-10, 10] and 

[-5, 5]. The reason to move closer to the cut-off was to avoid the issues of misspecifications of 

the forcing variable. In addition, if the number of mass points is low, then extrapolation from 

a global linear estimator should be used to estimate the treatment effect.  

In the context of the choice of estimator, the local linear estimator is not an applicable estimator 

when the forcing variable is characterized by a small number of mass points. When there is a 

small number of mass points in the forcing variable, it is more feasible to use linear estimators 

globally to estimate the treatment effect. (Catteneo, Idrobo & Titiunik, 2018). The large 

differences in results when performing the robustness test with changed intervals and the linear 

model to test H1, compared to the main results from the local linear estimator, suggest that the 

main results are not robust.  
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The reason this study decided to use the local linear estimator as the model to obtain the main 

results of this study is based on its positive reputation in the literature. The local linear estimator 

has the asymptotic property of an optimal convergence rate to the regression discontinuity 

treatment effect (Imbens & Kalyanraman, 2009). The local linear model also performs better 

in terms of inference regarding the nominal coverage of confidence intervals compared to 

higher-order global polynomials. Compared to the global higher-order polynomials, local 

linear and local quadratic models are also more likely to assign more weights for individuals 

with values closer to the threshold. Again, this is the context where the average treatment effect 

estimates are calculated as the difference in weighted averages between treated and controls. 

In contrast, the weights are sensitive to higher-order polynomials, who may give excessive 

weights observations far away from the threshold. Finally, the local linear model and the local 

quadratic model generate less different estimates of discontinuities in regression discontinuity 

designs compared to global higher-order polynomial models (Gelman & Imbens, 2019). 

Despite these good characteristics of the local linear model, the results from it are not robust to 

a change in the interval around the cut-off and the application of the linear estimator. This may 

suggest that the local linear estimator is indeed suffering from the presence of mass points in 

the forcing variable, as the effective number of observations equals the number of mass points.  

However, if the number of mass points is sufficiently large, the application of the local linear 

model is reasonable. If a sufficiently large number of mass points are present, then this makes 

it possible to use the local linear model in a similar vein to the non-parametric regression 

discontinuity design used in this study (Cattaneo, Idrobo & Titiunik, 2018).  

Unfortunately, it is difficult to conclude whether the local linear model is a poor choice 

compared to the linear model provided the data for this study. When generating the local linear 

regressions mass points are detected in the forcing variable of the local linear model when 

attempting to estimate the treatment effect of lockdown restrictions on air pollutants. Whether 

the number of mass points is too small for the data in this study is difficult to answer. If there 

was a longer period, it may have been possible to have had a more successful estimation with 

the local linear model as this possibly could have meant more effective observations due to 

more mass points. However, while extending the period studied may have improved the 

efficiency it may have led to more biased estimates, for example, due to new, outside factors 

arising from changes in the lockdown restrictions during the different phases of lockdown in 

India in 2020 (Lee & Lemieux, 2010). 
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Proceeding to discuss the main results from testing H1 in relation to the related literature and 

economic debate, the findings from the local linear model do not find strong support in the 

previous literature. The results suggest insignificant treatment effects from lockdown 

restrictions on both PM2.5, PM10, and NO2 air pollutants. In addition, although the graphical 

analysis asserted that there were positive discontinuities for both PM2.5 and PM10 these were 

modest. Conversely, there was a sharp, positive discontinuity for NO2 which goes against the 

formulation of H1.  

In contrast to this study’s result when testing H1, Dang & Trinh (2020), Zhao et al. (2021), and 

Liu et al. (2021) find clear evidence of a decline in the air pollutants NO2, PM2.5, and PM10. 

Dang & Trinh (2020 report a 24-per cent decrease in NO2 due to lockdown restrictions, using 

controls for temperature and precipitation, and a bandwidth of two weeks. Zhao et al (2021) 

report decreases of 17.8, 3.9, and 10.3 per cent of NO2, PM2.5, and PM10, respectively. Finally, 

Liu et al. (2021) discover a 23-37 per cent decrease in NO2, a 14-20 per cent decrease in PM10, 

and a 7-16 percent decrease in PM2.5 (Dang & Trinh, 2020; Zhao et al., 2021; Liu et al., 2021).  

Moreover, the economic debate surrounding the impact of COVID-19 on air pollution has been 

reported in a relatively homogeneous manner: the pandemic led to restrictions from 

governments which in turn proved to reduce air pollution on both the national level and city 

level. This indication is consistent and appears to be present on a global scale, which is 

presented through the work of Addas & Maghrabi (2021). Their findings of significant 

improvements in air quality from lockdowns are supported by Dang & Trinh (2020), Liu et al 

(2021), and Lenzen et al. (2020).  

Furthermore, the main results from the local linear model are interesting to evaluate based on 

the theoretical background established in Chapter 2, The background was constructed on the 

notion that the lockdown restrictions would act as a form of governmental intervention, albeit 

with a different purpose than addressing air pollution. However, as the lockdown restrictions 

were introduced with mobility and restrictions to economic activity, it could be argued that the 

individual citizens would have to bear the costs of pollution by being forced to isolate 

themselves. This could, theoretically, be an alleviating factor to air pollution as an externality 

caused by private decision-making which does not bear the costs of pollution. The main 

findings in the study suggest that this intervention in the shape of lockdown was generally not 

successful at mitigating air pollution outcomes when reasoning about the roots of air pollution 

as an externality, based on the theoretical literature. On the other hand, various interventions 
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suggested in the theoretical literature, such as Pigouvian taxes and bargaining according to the 

Coase theorem also have issues with being successful in mitigating an externality such as air 

pollution. In addition, from the robustness tests, it appears as if the lockdown restrictions may 

have had a significant impact on air pollution outcomes. The findings should also be relevant 

for Indian policymakers concerning the implementation of environmental policies intended to 

manage air pollution, especially since an overhaul to the existing Air Act is potentially on the 

way.  

Overall, the main results of this study suggest that H1 cannot be accepted. There was no 

significant impact from lockdown restrictions on PM2.5, PM10, and NO2 concentrations in a 

sample of twenty-two Indian cities. The related empirical and theoretical literature, and the 

economic debate disagree on this insignificant treatment effect of lockdown restrictions on the 

air pollutants PM2.5, PM10, and NO2.  

Moreover, regarding the second work hypothesis, H2, it is interesting to begin the discussion 

with the discontinuity estimates in graphical analysis. The main results from the graphical 

analysis when testing H1 suggested graphical discontinuities in the air pollution outcomes 

around the cut-off point. The discontinuities were pronounced for PM2.5, PM10, and NO2, where 

the former two showed negative discontinuities around the cut-off while the latter had a 

positive discontinuity. When testing H2, negative discontinuities emerged for PM2.5 responses 

in both the iron ore and non-iron ore industry samples. In the different city samples based on 

the state-level production of steel and cement, the results were less uniform. In the city sample 

with above-median state-level steel production, there was a positive discontinuity for PM2.5 

while there was a negative one for the sample with below-median state-level steel production. 

For the cement industry samples, there was a slightly positive discontinuity for the cities 

located in states with above-median cement production. There was no clear discontinuity for 

cities in states with below-median cement production.  

As presented above, the graphical discontinuities for PM2.5 for the cement industries were very 

mild and could prove to be less sensitive to the lockdown restrictions in terms of PM2.5 air 

pollution responses. The steel industry’s ambiguous positive and negative discontinuities 

suggest that the direction of the effect of the lockdown restrictions remains unclear. 

Conversely, the city samples with and without iron industry both showed a negative 

discontinuity. A possible, contributing factor to the small and ambiguous discontinuities for 

the steel and cement industry samples could be that they were selected in a similar way by 
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using the median of state-level production to divide the cities into different samples. On the 

contrary, the selection of the city samples of the iron ore industry was simply based on whether 

the cities were located in states with or without iron ore industry. A more detailed selection of 

the samples for the steel and cement industry made at the city level instead of the state level 

could potentially have produced different, more clear graphical discontinuities. However, the 

widespread proliferation of steel and cement industries across India made a more delicate 

selection of the sample complicated.  

An example where the selection indeed was more delicate was the one for the city samples 

characterized with or without coal power stations in their own district or in a neighbouring 

district. The graphical discontinuity for the city sample characterized by coal power stations 

was mild and without any sharp shift in outcomes. The city sample not characterized by coal 

power stations had a sharper, negative discontinuity.  

In general, for PM2.5 responses, the city samples which were not characterized by coal power 

stations, iron ore industry, and below-median steel production, proved to have the stronger, 

negative discontinuities graphically. This may suggest that there is a heterogeneous response 

of PM2.5 pollutants to the lockdown restrictions based on the presence of polluting industries 

and power stations, which takes the form of less sensitivity to lockdown restrictions in cities 

with relatively more polluting industries and power stations. 

The above results of the graphical analysis are consistent with the findings of Dang & Trinh 

(2020) who discover that locations without coal power stations indeed experience larger 

reductions in NO2. This is consistent with this study’s graphical analysis of NO2 responses in 

Figure 5.26 in the Appendix. As opposed to this work’s graphical analysis, Liu et al. (2021) 

present findings which suggest that cities with more industrial activity experienced larger 

reductions in PM2.5. A more global perspective from Lenzen et al. (2020) suggests that PM2.5 

emissions were reduced during the pandemic partly due to lower power output in Asia. Based 

on this finding, one could argue that coal power activity in Indian cities would inhibit their 

capacity to limit air pollution in the form of PM2.5. This would be in favour of the above results 

from testing H2.  

For the results from the local linear regressions when testing H2, the local linear results suggest 

that PM2.5 experienced a significant reduction in cities located in states with iron ore industry. 

There was also a negative significant treatment effect for PM2.5 in cities located in states with 

above-median cement production. For cities located in states with above-median steel 



54 

 

production, there was no significant response in PM2.5 to the lockdown restrictions. No 

significant PM2.5 responses were generated for cities with a coal power station in their own or 

in a neighbouring district.  

The results from the local regressions for testing H2 were partly consistent with the related 

literature. Liu et al. (2021) assert that cities reliant on industrial activity, measured by the share 

of secondary production and CO2 emissions, experienced a stronger lockdown effect. This 

finding was consistent in this study for cities located in states with iron ore industry, as this 

city sample showed a stronger response in PM2.5 emissions due to lockdown restrictions. In 

addition, the city sample located in states with above-median cement production experienced 

a statistically significant reduction in PM2.5 outcomes from the lockdown. However, the PM2.5 

responses were not significant in the city sample in states with above-median steel production 

or in the city sample where coal power stations were based in the same city district or in a 

neighbouring district. Contrary to the findings of the local linear regressions, Dang & Trinh 

(2020) present findings which indicate a stronger lockdown effect on NO2 for cities with less 

industrial production. Their results are not consistent with this study’s results for the NO2 

responses of any of the industrial samples or coal power samples, which are located in the 

Appendix.  

The relation of these local linear regression results for testing H2 to the economic debate imply 

new insights regarding heterogeneous air pollution responses to lockdown restrictions. The 

heterogeneity in the air pollution responses based on the presence of certain industries suggests 

that is important to consider such factors when investigating the impact of lockdown 

restrictions on air pollution. As has been previously explained, industrial activity related to 

steel, cement, and iron ore is reported as a serious culprit in the pollution of particulate matter. 

However, given that the presence of iron ore industries and the below-median cement 

production led to significant reductions in PM2.5, one could argue that these industries do not 

necessarily hamper potential reduction in air pollution from policies such as the lockdown 

restrictions. Moreover, the lower impact of the lockdown restrictions in cities located in states 

without iron production and below-median output of cement suggests that less industrial 

activity measures do not necessarily mean that interventions similar to lockdown restrictions 

will significantly reduce air pollution. This would suggest that control over air pollution in 

India is a challenge which cannot necessarily be overcome through policy adhering to one 

particular source of pollution, in this case, industrial activity. Thus, a future challenge for 

Indian and other policymakers will be to extend their scope when identifying possible sources 
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of air pollution. Future policy needs to include a larger spectrum of sources contributing to air 

pollution. 

Generally, based on the generated results from the local linear regressions and graphical 

analysis suggest that H2 can be accepted. There appears to be a significant heterogeneous 

impact of the lockdown restrictions from March 25th – April 20th, 2020, where cities 

characterized by state-level industrial activity within the iron ore industry and above-median 

cement output at the state level experienced significant reductions in PM2.5 levels from the 

lockdown restrictions. Cities with no iron ore industry present at the state level and below-

median cement output at the state level did not experience a significant reduction in PM2.5. The 

latter also holds for cities characterized by both above-median and below-median steel output 

at the state level, and by the presence and absence of coal-power stations in their own or in a 

neighbouring district. 

Finally, it is also important to consider that to this study’s knowledge, there has been no 

previous work using a non-parametric regression discontinuity to estimate the impact of 

COVID-19 lockdown restrictions on air pollution in India. This provides the study with good 

scientific relevance to explore this relationship. It also makes it important to consider the 

context of the lockdown policies and their enforcement in India compared to other countries. 

Based on the COVID-19 stringency index from Blavatnik School of Government at the 

University of Oxford, which is developed based on response indicators such as school closures, 

workplace closures, and travel bans, India scored higher than Italy, the United States, Germany, 

Canada, France, and the United Kingdom between March 25th – April 20th, 2020 (Our World 

in Data, 2020). The stringency of India’s lockdown was unsurpassed in August 2020 according 

to Ray & Subramanian (2020) who also suggested that India’s lockdown was relatively 

successful with regard to the enforcement of the lockdown. The authors compare India’s 

lockdown policy model with other developed countries in Europe and North America, 

suggesting that this model is a good representative of the global restrictions (Ray & 

Subramanian, 2020). The high stringency of the lockdown restrictions imposed by the Indian 

government on March 25th, 2020, and this study’s findings of their heterogeneous impact on 

air pollution, are indications of the complexity of the problem of air pollution. Even the 

strongest of governmental interventions may not achieve the general, uniform results that they 

set out to obtain. Thus, for Indian policymakers, and policymakers in general, the formulation 

of policies to control air pollution cannot be formulated according to the doctrine of ‘one-size 
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fits all’. It will be crucial to formulate adaptable, flexible future policies for controlling air 

pollution to cater for the heterogeneous nature of air pollution responses to interventions.  
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Conclusion 

This study investigates the air pollution outcomes in a sample of Indian cities before and after 

the introduction of COVID-19 lockdown restrictions on March 25th, 2020. Two research 

hypotheses were formulated, H1 and H2: H1 implied that the lockdown would cause a 

significant negative response of air pollution concentrations in the city sample; H2 asserted 

that there would be a significant heterogeneous impact from the lockdown restrictions on air 

pollution concentration in the city sample due to the presence of polluting industries and energy 

stations. The results from local linear regressions within the frames of a non-parametric 

regression discontinuity design suggest that H1 could not be accepted. There was a statistically 

insignificant impact of the COVID-19 lockdown restrictions imposed on March 25th on the air 

pollution species PM2.5, PM10, and NO2. The results suggest that H2 can be accepted. The cities 

characterized by the presence of iron ore industry at the state level as well as above-median 

cement production at the state level experienced a significant, negative, reduction in PM2.5 

median concentration levels. There was no significant impact on air pollution in cities with 

above – and below median steel output at the state level, nor in cities with coal power stations 

in their own or in a neighbouring district. The main results are robust to changes in the 

covariates at the cut-off point. However, they are not robust to a change to smaller intervals 

surrounding the cut-off and the alternative use of a linear regression model to test H1. This 

finding may be due to the presence of a small number of mass points in the forcing variable.  

The findings of this study suggest that pollution for mitigating air pollution need to be aware 

of the complexity and the extent of the problem. Certain industries may cause heterogeneous 

outcomes in air pollution concentrations when restrictions on economic activity and mobility 

are enforced. Future environmental regulations need to be flexible to effectively mitigate air 

pollution. Moreover, future research should explore the limits of the applicability of local linear 

models in regression discontinuity designs when using a discrete forcing variable. In addition, 

future attempts to use non-parametric regression discontinuity designs to analyse the outcomes 

of broad governmental interventions over a limited period are welcome. 
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Appendix 

 

Iron ore industry 

 

Figure 5.8. PM10 regression discontinuity design plot for the iron ore industry sample versus 

the non-iron ore industry sample, using small bins. 
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Table 5.6. PM10 regression discontinuity estimates with and without covariates in the samples 

with iron ore industry and without iron ore industry. Covariates include accounting for wind 

speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES PM10 median PM10 median PM10 median PM10 median 

     

RD Estimate -16.99*** -14.33*** -0.992 -0.809 

 

 

Covariates 

 

 

Iron ore industry 

 

 

Mean of dependent 

variable in sample 

 

(6.404) 

 

No 

 

 

Yes 

 

 

55.318 

(5.115) 

 

Yes 

 

 

Yes 

 

 

55.318 

(10.22) 

 

No 

 

 

No 

 

 

63.440 

(8.356) 

 

Yes 

 

 

No 

 

 

63.440 

     

Observations 365 365 675 675 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure 5.9. NO2 regression discontinuity design plot for the iron ore industry sample versus 

the non-iron ore industry sample, using small bins. 

 

Table 5.7. NO2 regression discontinuity estimates with and without covariates in the samples 

with iron ore industry and without iron ore industry. Covariates include accounting for wind 

speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES NO2 median NO2 median NO2 median NO2 median 

     

RD Estimate 3.550 3.728 0.0692 0.190 

 

 

Covariates 

 

Iron ore industry 

 

Mean of dependent 

variable in sample 

(3.800) 

 

No 

 

Yes 

 

9.755 

 

 

(3.815) 

 

Yes 

 

Yes 

 

9.755 

 

(1.300) 

 

No 

 

No 

 

7.846 

 

(1.122) 

 

Yes 

 

No 

 

7.846 

     

Observations 365 365 741 741 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Steel industry 

 

 

Figure 5.10. PM10 regression discontinuity design plot for the above-median steel production 

sample versus below-median steel production sample, using small bins. 
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Table 5.8. PM10 regression discontinuity estimates with and without covariates in the city 

samples located in regions with steel production above and below the steel production median. 

Covariates include accounting for wind speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES PM10 median PM10 median PM10 median PM10 median 

     

RD Estimate -3.807 -2.875 -5.803 -6.452 

 

 

Covariates 

 

Median steel industry 

production   

 

 

Mean of dependent 

variable in sample 

(7.893) 

 

No 

 

Above 

 

 

 

52.810 

(6.067) 

 

Yes 

 

Above 

 

 

 

52.810 

(8.601) 

 

No 

 

Below 

 

 

 

69.535 

 

(8.684) 

 

Yes 

 

Below 

 

 

 

69.535 

     

Observations 458 458 582 582 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Figure 5.11. NO2 regression discontinuity design plot for the above-median steel production 

sample versus below-median steel production sample, using small bins. 
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Table 5.9. NO2 regression discontinuity estimates with and without covariates in the city 

samples located in regions with steel production above and below the steel production median. 

Covariates include accounting for wind speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES NO2 median NO2 median NO2 median NO2 median 

     

RD Estimate 3.113 3.454 -0.0833 0.0353 

 

 

Covariates 

 

 

Median steel industry 

production 

 

 

Mean of dependent 

variable in sample 

(3.214) 

 

No 

 

 

Above 

 

 

8.985 

(3.110) 

 

Yes 

 

 

Above 

 

 

8.985 

(1.382) 

 

No 

 

 

Below 

 

 

9.395 

(1.318) 

 

Yes 

 

 

Below 

 

 

9.395 

     

Observations 471 471 635 635 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Cement industry 

 

  

Figure 5.12. PM10 regression discontinuity design plot for the above-median cement 

production sample versus below-median cement production sample, using small bins. 
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Table 5.10. PM10 regression discontinuity estimates with and without covariates in the city 

samples located in regions with cement production above and below the cement production 

median. Covariates include accounting for wind speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES PM10 median PM10 median PM10 median PM10 median 

     

RD Estimate -10.47 -6.071 -0.701 -3.528 

 

 

Covariates 

 

Median cement 

industry production 

 

 

Mean of dependent 

variable in sample 

(7.894) 

 

No 

 

Above 

 

 

 

 

(5.184) 

 

Yes 

 

Above 

(10.815) 

 

No 

 

Below 

(10.817) 

 

Yes 

 

Below 

     

Observations 511 511 423 423 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

Figure 5.13. NO2 regression discontinuity design plot for the above-median cement production 

sample versus below-median cement production sample, using small bins. 
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Table 5.11. NO2 regression discontinuity estimates with and without covariates in the city 

samples located in regions with cement production above and below the cement production 

median. Covariates include accounting for wind speeds and temperature medians. 

 (1) (2) (3) (4) 

VARIABLES NO2 median NO2 median NO2 median NO2 median 

     

RD Estimate 2.773 2.983 -0.007 -0.468 

 

 

Covariates 

 

 

Median cement industry 

production 

 

 

Mean of dependent 

variable in sample 

(2.980) 

 

No 

 

 

Above 

(2.916) 

 

Yes 

 

 

Above 

(1.555) 

 

No 

 

 

Below 

(1.383) 

 

Yes 

 

 

Below 

     

Observations 524 524 476 476 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Coal power stations 

 

  

Figure 5.14. PM10 regression discontinuity design plot for the coal power sample versus non-

coal power sample, using small bins. 

 

Table 5.12. PM10 regression discontinuity estimates with and without covariates in the coal 

power sample and non-coal power sample. Covariates include accounting for wind speeds and 

temperature medians. 

 (1)   (2)                            (3) (4) 

VARIABLES PM10 median PM10 median PM10 median PM10 median 

     

RD Estimate -3.646 -1.539 -5.905 -6.420 

 

 

Covariates 

 

Coal power 

 

Mean of dependent 

variable in sample 

(9.421) 

 

No 

 

Yes 

 

62.684 

(7.494) 

 

Yes 

 

Yes 

 

62.684 

(6.763) 

 

No 

 

No 

 

58.107 

(6.983) 

 

Yes 

 

No 

 

58.107 

     

Observations 564 564 476 476 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Figure 5.15. NO2 regression discontinuity design plot for the coal power sample versus non-

coal power sample, using small bins. 

 

Table 5.13. NO2 regression discontinuity estimates with and without covariates in the coal 

power sample and non-coal power sample. Covariates include accounting for wind speeds and 

temperature medians. 

 (1) (2) (3) (4) 

VARIABLES NO2 median NO2 median NO2 median NO2 median 

     

RD Estimate 2.329 2.580 -0.361 -0.227 

 

 

Covariates 

 

Coal power 

 

Mean of dependent 

variable in sample 

(2.687) 

 

No 

 

Yes 

 

10.396 

(2.649) 

 

Yes 

 

Yes 

 

10.396 

(0.906) 

 

No 

 

No 

 

5.936 

(0.786) 

 

Yes 

 

No 

 

5.936 

     

Observations 630 630 476 476 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 


