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Abstract 

This thesis aims to investigate the accuracy of Value-at-Risk and Expected Shortfall forecasts of 

various GARCH-type models based on five currency exchange rate pairs. The GARCH models are 

employed under different conditional distributional assumptions, and extended using the two-stage 

Extreme Value Theory (EVT) approach of McNeil and Frey (2000). The forecasts are evaluated 

through simulation using the backtesting methodologies of Christoffersen (1998) and Acerbi & 

Szekely (2014). We find that forecasts of models assuming a skewed t-distribution are rejected the 

least number of times. Furthermore, the usefulness of the EVT approach of McNeil and Frey (2000) 

appears to be dependent on the distributional assumption as well as the choice of quintile. No 

conditional volatility model is consistently found to be superior to the others. 

Keywords: GARCH, Extreme Value Theory, Value-at-Risk, Expected Shortfall, Exchange Rate 
Volatility 
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1. Introduction 

This chapter aims to provide a background to the research topic of this thesis. The first section defines 

the concepts of risk management and risk measures, and provides a short description of Value-at-Risk 

and Expected Shortfall. This section also outlines the current and upcoming regulatory standards for 

market risk exposures. The following section highlights a few stylized facts of financial time series 

data, and the subsequent section presents the purpose of the thesis. The last section mentions financial 

literature of relevance and shortly discusses previous findings. This section also mentions the 

contribution of this paper to the existing literature. 

1.1 Regulation, Risk Management and Risk Measures 

Events such as the global financial crisis of 2007–08 and, more recently, the COVID-19 pandemic 

have shed a light on the need for effective and robust risk management practices. In essence, risk 

management is the process of identifying and measuring risks in order to ensure resilience to uncertain 

future events (McNeil et al., 2015, p. 7). There are various types of risks that financial institutions 

have to manage, including operational risk, credit risk, and market risk. The regulatory agreements 

regarding the latter are issued by the Basel Committee on Banking Supervision (BCBS). As a response 

to the flaws in the prior market risk framework that came to light during the global financial crisis, 

BCBS issued a consultative document, The Fundamental Review of the Trading Book (FRTB), in 

which the international regulatory standards for banking institutions were revised and new capital 

requirements for market risk exposures were proposed (BIS, 2013). As such, one of the key revisions 

of the document is that Value-at-Risk (VaR), which has been widely used in the last decades and 

currently is the required risk measure according to the Basel framework, is to be replaced with 

Expected Shortfall (ES). This reform is expected to be implemented in January 2023 under the Basel 

Accord (BIS, 2020). 

Risk measures, in broad terms, determine the “riskiness” of a financial position by linking it to a 

quantifiable potential loss (McNeil et al., 2015, p. 61). They are used for a number of purposes, such 

as determining the capital and margin requirements for financial institutions and investors to buffer 

against unexpected losses and limit the amount of risk. Both Value-at-Risk and Expected Shortfall are 

distributional risk measures, i.e., they are statistical quantities that are derived from a loss distribution. 

Value-at-Risk corresponds to a given quantile of the loss distribution. It demonstrates the maximum 

loss that is expected given a pre-determined confidence level. For example, if an asset has a daily 

VaR(0.95) of 10%, then there is a 95% probability that the loss will not exceed 10% in one day. 

Although this measure has some intuitively appealing properties, such as its straightforward 

interpretation and robust backtesting capabilities, it does have some potential drawbacks. Besides that 

it lacks the desired property of subadditivity1, which Artzner et al. (1999) were among the first to point 

out, it also is unable to capture “tail risk”, as pointed out in FRTB (BIS, 2013). That is, Value-at-Risk 

does not say anything about the magnitude of the loss when the given quantile is exceeded. Expected 

Shortfall, on the other hand, represents the expected loss beyond a given quantile of the loss 

distribution. It thus provides information on both the probability of a large loss occurring and the 

expected magnitude of the loss when it occurs. In addition, this risk measure fulfills the property of 

subadditivity, thereby circumventing the main shortcomings of Value-at-Risk. There are, however, 

some potential disadvantages to Expected Shortfall as well, mainly in regard to its backtesting 

capabilities. Backtesting Expected Shortfall is more difficult than Value-at-Risk and requires a larger 

sample size to attain similar precision, see e.g., Yamai & Yoshiba (2005). 

 
1 Subadditivity is a risk aggregation property that satisfies 𝑅(𝐿1 + 𝐿2)  ≤  𝑅(𝐿1) + 𝑅(𝐿2) for a risk measure 𝑅. 

The rationale behind this property is that the risk of a merged portfolio cannot exceed the risk of the two 

individual portfolios due to diversification effects (Artzner et al., 1999). 
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A variety of methods utilize historical data to predict VaR and ES. In particular, these methods are 

mostly centered around modelling the conditional variance, which in turn can be used to obtain 

estimates of VaR and ES. In the field of financial statistics, one of the most popular volatility 

forecasting models is the generalized autoregressive conditional heteroskedasticity (GARCH) model, 

introduced by Bollerslev (1986). The popularity of the model can largely be ascribed to its ability to 

capture the volatility clustering phenomenon that is one of the so-called “stylized facts” of financial 

time series. A number of extensions of the original GARCH model has since been introduced in order 

to, for example, make use of high frequency data and to incorporate additional stylized facts of 

financial data.  

1.2 Stylized facts of financial time series 

Empirical observations from a wide range of price series, across different assets, markets and time 

periods, suggest that they all have similar properties from a statistical point of view; they exhibit so-

called stylized facts of financial time series. As previously mentioned, one observed phenomenon of 

financial time series is that volatility tends to cluster, i.e., large price changes, regardless of sign, tend 

to be followed by additional large price changes, and vice versa (Cont, 2001). This means that there 

usually are calm periods of low volatility, which then are followed by more turbulent periods, and so 

on. Time series data that exhibits these properties are known to be conditionally heteroskedastic, i.e., 

the conditional variance2 varies over time. Another characteristic of financial time series is that returns 

tend to exhibit heavy tails. This has raised questions whether it is appropriate to model return series 

using the otherwise popular normal distribution, as it may lead to underestimation of risks. However, 

assessing the exact form of the tails of financial returns is often a difficult task, see Cont (2001). A 

third stylized fact of financial time series is the phenomenon called the leverage effect, first noted by 

Black (1976). This effect refers to the observation that past negative shocks tend to affect current 

volatility to a greater extent than equally large positive shocks do. This means that more turbulent 

periods can generally be expected in the aftermath of losses in comparison to gains of similar 

magnitude. A final empirical finding to mention is the “gain/loss asymmetry” in returns, as Cont 

(2001, p. 224) describes it. Returns, particularly from aggregated stock markets, tend to exhibit 

negative skewness. That is, there is an increased probability of negative returns than what is implied 

by a symmetric distribution. There are additional stylized facts of financial data, however, the ones 

highlighted above will be of focus as they form the basis of the modelling choices of this paper. 

1.3 Purpose 

The purpose of this thesis is to investigate the forecasting performance of different variations of 

GARCH models. The models will be applied to produce one day ahead predictions of Value-at-Risk 

and Expected Shortfall for five major foreign exchange rate pairs. The forecasting accuracy of each 

model will then be evaluated through backtesting. Different GARCH-type models will be employed in 

order to assess if more complex extensions of the original GARCH model, i.e., models that 

incorporate additional stylized facts and make use of high frequency data, yield more precise 

predictions. The conditional variance models that will be utilized in this study are 

1. GARCH (1,1) 

2. IGARCH (1,1)  

3. GJR-GARCH (1,1) 

4. EGARCH (1,1) 

5. Realized GARCH (1,1) 

 

Models 1 and 2 have a similar structure that enables them to capture the volatility clustering 

phenomenon. These models are symmetrical in the sense that both positive and negative shocks are 

 
2 That is, conditional on past information. 
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assumed to have the same effect on the volatility process. Models 3 and 4 extend the previous models 

by also allowing for an asymmetric response in volatility to shocks, thereby incorporating the leverage 

effect. Model 5 goes one step further by utilizing a realized measure of volatility derived from intraday 

data in its structure, while also accounting for the previous effects. 

Moreover, as empirical observations suggest that the distribution of financial returns exhibits some 

specific characteristics, the models will be employed under different conditional distributional 

assumptions. In particular, the distribution of the standardized residuals will be modelled using the 

normal distribution, the student’s t-distribution and the skewed student’s t-distribution; the former to 

examine whether it indeed leads to an underestimation of risk, and the latter to examine if distributions 

that feature heavy tails and skewness yield more accurate estimates. Furthermore, given the uncertain 

nature of the tail properties, each variation of the models will be combined with Extreme Value 

Theory (EVT), following the two-stage approach of McNeil & Frey (2000). This approach provides an 

alternative way of obtaining estimates of VaR and ES under heavy tails by utilizing a parametric 

method for the tail of a distribution.  

1.4 Previous research 

Concepts related to risk measures and EVT are covered extensively in the financial literature. In 

particular, we find the book of McNeil et al. (2015) to be very useful for both theoretical and practical 

purposes. This book covers many of the concepts related to time series modelling and forecasting, and 

provides a useful introduction to GARCH models and their application in finance. It also presents 

useful diagnostic tools for model checking, many of which have been applied in this thesis. To 

navigate through the universe of GARCH related models, we recommend the paper of Bollerslev 

(2008). This paper lists most GARCH-type models used in the literature.  

Several studies in the field of forecasting suggest that models implementing EVT yield more accurate 

estimates of VaR than stand-alone GARCH models, which is the main motivation for its 

implementation in this thesis (see e.g., Gençay et al. (2003); Ho et al. (2000)). McNeil & Frey (2000) 

proposed a two-stage method for which the EVT approach could be applied within the GARCH 

modelling framework. Applying EVT under a GARCH structure is intuitively appealing as one 

fundamental notion of EVT is that the observations (returns) are independent and identically 

distributed (i.i.d.). It is widely recognized that returns often exhibit higher order dependency, i.e., that 

they are not i.i.d., which may adversely affect the accuracy of quintile estimates, see e.g., Wagner & 

Marsh (2005). The approach of McNeil & Frey (2000) provides a remedy to this issue by first fitting a 

GARCH model to the return series, clearing the series of higher order dependency, and then applying 

EVT to the standardized residuals of the GARCH model, which should be approximately i.i.d. A 

number of follow-up studies suggest that the two-stage approach of McNeil & Frey (2000) yield more 

accurate forecasts of VaR than other conventional models do, see e.g., Byström (2004); Fernandez 

(2005). 

It should be mentioned that numerous studies have been conducted to investigate the forecasting 

performance of various volatility models. We will not go into any detail of these studies as this field is 

too large to cover. Instead, we refer the reader to the paper of Poon & Granger (2003). This extensive 

survey reviews the findings of several papers related to this topic. Their review covers a wide range of 

time series models, including historical volatility models, GARCH-type models and stochastic 

volatility models.  

This thesis contributes to the existing literature by providing information on the forecasting 

capabilities of specific GARCH models for exchange rates. To the best of my knowledge, no previous 

study has investigated the accuracy of both VaR and ES predictions of the more novel Realized 

GARCH model in regard to this asset class. Similarly, the existing literature on the accuracy of both 

VaR and ES predictions of GARCH-EVT models is quite limited, particularly for exchanges rates. 



 

4 
 

2. Data 

This chapter briefly outlines some facts about the foreign exchange market and presents the data sets 

that are implemented in this study. It is organized as follows. The first section provides a short 

description of the foreign exchange rate market and the currency pairs of interest. The following 

section explains the data gathering process and the procedure of transforming the raw data into return 

series. The last part presents summary statistics and visualizations of these series to highlight some 

stylized facts of financial data. Note that the full data sets are analyzed in this section, however, the 

specifications of the models are determined beforehand, thus avoiding any potential look-ahead bias. 

Also note that this chapter does not cover any of the theory – that is done in the following chapter. 

2.1 The foreign exchange market 

According to the most recent triennial survey of Bank of International Settlements (BIS, 2019), the 

average trading volume on the FOREX market amounts to $6.6 trillion per day, making it the most 

liquid market in the world. FOREX derivatives trading account for the majority of the daily turnover, 

while spot trades make up approximately thirty percent ($2 trillion) of the volume. The spot market is 

heavily dominated by financial institutions, accounting for almost 95% of all over-the counter (OTC) 

transactions. 

Although the FOREX market consists of numerous currencies, the survey finds that only a few of the 

leading exchange rate pairs comprise the majority of OTC daily turnover on a global scale. Depicted in 

table 1 below, the five most traded currency pairs account for roughly 57 percent of the OTC turnover, 

where the USD/EUR exchange rate is, by a considerable margin, the most traded currency pair with an 

average daily volume of $1,584 billion. In table 1 it is also evident that the US Dollar is part of each of 

the most traded currency pairs. In fact, the survey finds that 88 percent of worldwide FOREX 

transactions feature the USD as one of the currencies, demonstrating the key influence of the currency 

in international FOREX trading. 

Currency pairs Amount (in millions of USD) Proportion of total turnover (%) 

USD / EUR 1,584,000 24.0 

USD / JPY 871,000 13.2 

USD / GBP 630,000 9.6 

USD / AUD 358,000 5.4 

USD / CAD 287,000 4.4 
Table 1: Most traded currency pairs according to the Bank of International Settlements (BIS) Triennial Central Bank Survey 

2019. The amount corresponds to the average daily OTC turnover. 

The currency pairs depicted in table 1 comprise the data sets that will be employed in this paper. The 

main rationale behind this choice is that they cover the majority of the total turnover which in turn 

ensures excellent liquidity. Utilizing highly liquid assets is often beneficial in the study of volatility as 

it tends to mitigate market microstructure impacts such as the bid-ask bounce (Demsetz, 1968). 

Moreover, the frequent use of these currency pairs makes them attractive to analyze from a relevance 

point of view.  

2.2 Data description  

The raw FOREX (FX) data for the currency pairs depicted in table 1 is retrieved from Histdata3. 

Histdata is a website that provides financial data at high frequencies for several asset classes. 

Exchange rate data from Histdata has been used in a number of studies, see e.g., Islam & Hossain 

(2021); Yong et al. (2018); Gbatu et al. (2017). The frequency of the FX data that was obtained from 

this website is of the highest resolution available, i.e., tick data consisting of bid and ask quotes. This 

 
3 Available at https://www.histdata.com/download-free-forex-data/ 



 

5 
 

(1) 

frequency allows us to utilize as much information as possible for the realized kernel estimator, which 

is the realized measure of volatility that will be utilized for the Realized GARCH model of Hansen et 

al. (2011). A more detailed explanation of the realized kernel estimator and its implementation is 

presented in section 3.4.  

The return series of each currency pair is created using the last observed mid-quote price of each day. 

The timelines of the data sets cover the beginning of the century4 until the end of 2021. Such lengthy 

timelines allow for a rigorous examination of the capabilities of each model as periods of different 

volatility regimes are covered. The data sets encompass times of global financial turbulence such as 

the dot-com bubble, the global financial crisis, the covid-19 pandemic but also calmer periods in 

between these events. Another benefit of using such extensive data sets is that it makes backtesting 

possible for extreme quintiles of the loss series distribution. 

2.3 Summary statistics and data visualization 

The return series, 𝑟𝑡, are defined by  

𝑟𝑡 = log (
𝐹𝑋𝑡
𝐹𝑋𝑡−1

) = log(𝐹𝑋𝑡) − log (𝐹𝑋𝑡−1)  

where 𝐹𝑋𝑡 is the last observed mid-quote price of the exchange rate series for day t. The return series 

of the full data sets are plotted in figure 1, and the summary statistics are presented in table 2. 

FX Pair Length Start date End date Mean St.dev Min. Max. Skewness Kurtosis JB-statistic 

EUR/USD 6626 2000-05-31 2021-12-31 0.003% 0.544% -3.346% 3.977% 0.011 5.936 2383 

USD/JPY 6633 2000-05-31 2021-12-31 0.001% 0.538% -3.736% 4.361% 0.046 8.096 7188 
GBP/USD 6617 2000-05-31 2021-12-31 -0.002% 0.540% -9.577% 3.509% -1.161 22.997 111826 

AUD/USD 6377 2001-04-27 2021-12-31 0.004% 0.715% -7.726% 6.783% -0.263 13.138 27408 

USD/CAD 6450 2001-01-03 2021-12-31 -0.003% 0.501% -6.406% 3.344% -0.143 10.233 14098 

Table 2: Summary statistics of the return series. JB denotes the Jarque-Bera test statistic. 

 

 

 

                     

Figure 1: A visual representation of the return series. The blue horizontal line is fixed at 0.  

 
4 The starting point of the data sets differ slightly due to data availability. 
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There are a few things to note from the summary statistics presented in table 2. First, we can see that 

the mean return is approximately zero for all FX pairs. The empirical distribution of most FX pairs 

exhibits negative skewness, demonstrating a frequently observed phenomenon of asset returns. 

Moreover, by examining the kurtosis5 of the FX pairs, it is evident that all distributions exhibit heavier 

tails than what would be implied by a normal distribution, demonstrating another key characteristic of 

financial returns. The null hypothesis of the Jarque-Bera test is rejected at a 0.01 significance level for 

all FX pairs, thus confirming that none of the empirical distributions are normally distributed. The 

specifications of the Jarque-Bera test can be found in section 6.4 in Appendix. 

Another briefly mentioned stylized fact of financial returns is that volatility tends to cluster. By 

inspecting the plots of figure 1, there appears to be long periods in which volatility of returns tends to 

be high and other periods in which the opposite is true, suggesting that returns are dependent on past 

observations. During periods of financial turbulence, we observe sequences in which extreme returns 

are followed by additional extreme returns, which is particularly evident during the financial crisis of 

08. We also observe periods in which small returns are followed by additional small returns. To get a 

clearer representation of this phenomenon, we will look at the realized kernel estimator in figure 2. 

Again, we will not present the theory behind this measure here - that is done in the subsequent chapter 

- for now it is sufficient to know that it represents a realized measure of volatility. 

 

                 

Figure 2: Realized kernel estimator for each FX pair. 

For the realized kernel estimator, depicted in figure 2, the clustering phenomenon of volatility is even 

more prevalent, indicating that the GARCH framework is appropriate for our modelling purposes. In 

the face of economic crises, such as the dot-com bubble, the financial crisis and the outbreak of the 

COVID-19 pandemic, all currency pairs underwent significant turmoil for extended periods. It is also 

evident that there have been calmer periods of low volatility for extended periods of time, e.g., prior to 

the financial crisis and the COVID-19 pandemic. Furthermore, we also observe occasional sharp 

spikes in volatility that are more isolated, for instance GBP/USD during Brexit in 2016. 

 
5 Kurtosis is a measure that relates to the heaviness or lightness in the tails of a distribution. A normal 

distribution has a kurtosis of three. A kurtosis in excess of three implies a leptokurtic distribution, i.e., it has 

heaver tails than that of a normal distribution. 
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To further quantify the dependence of the return series we will examine the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF) of the return series and their squared 

counterparts. Plotting these functions in so-called correlograms can be useful to detect if the 

observations are independent of each other or if there is any serial correlation and dependence in the 

series. See section 6.3 in Appendix for a formal definition of the autocorrelation function and section 

3.3 for a brief explanation of processes that can be identified using correlograms. The ACF and PACF 

of the returns and squared returns are plotted in figure 3 and figure 4, respectively. 

 

 

                                               

 

 

 

 

 

 

Figure 3: Autocorrelations(left) and partial autocorrelations(right) for the return series. The blue dashed line represents a 5% 

confidence level. 

 

 

   

                                               

 

 

 

 

 

 

Figure 4: Autocorrelations(left) and partial autocorrelations(right) for the squared return series. The blue dashed line 

represents a 5% confidence level. 
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Based on an ocular inspection of figure 3, we observe that most lags of the ACF:s tend to stay within 

the given bandwidth. Assuming that distant lags are potentially spurious, the ACF:s suggest a 

nonexistent MA order for most return series. The return series of GBP/USD do however exhibit a 

significant serial correlation at lag four, potentially indicating a low moving-average (MA) order. 

Likewise, the plots of the PACF:s indicate low autoregressive (AR) order for GBP/USD, and perhaps 

also for USD/CAD, AUD/USD and EUR/USD, again assuming that distant lags are potentially 

spurious. In general, the dependencies tend to be small for all data sets despite that we observe 

occasional minor lags of significance. However, for the squared returns, depicted in figure 4, the 

dependence of the returns is more evident. The ACF and the PACF are significant at most lags for all 

return series, suggesting a higher order dependency. This is the dependence that volatility models are 

designed to capture, again confirming that the GARCH framework is appropriate for our modelling 

purposes.  

Next, we examine the empirical distributions of the daily returns by analyzing Q-Q plots of different 

theoretical distributions. A Q-Q plot is a graphical tool that can be used to analyze the relationship 

between the empirical quantiles of the data and the theoretical quantiles of a probability distribution. If 

the two distributions are equivalent we would expect perfect linearity between the quintiles. In figure 

5, the empirical distributions of the FX pairs are compared to the best fitted normal distribution, 

represented by the black line. For a formal definition of this probability distribution, we refer the 

reader to section 6.1 in Appendix. 

 

                         

Figure 5: Q-Q plots of the empirical distribution of the returns. The black line represents the best fitted normal distribution. 

The lack of linearity of the Q-Q plots depicted in figure 5 demonstrates that the normal distribution 

does not provide a good fit for any of the currency pairs. This is expected as this was implied by the 

kurtosis and Jarque-Bera test statistic presented in table 2, suggesting that the empirical distributions 

have heaver tails than that of a normal distribution. To get a different representation of the fit of a 

normal distribution, we present histograms of the daily return series with a superimposed theoretical 

normal distribution in figure 6. 
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Figure 6: Histogram of daily returns with a superimposed normal density curve(blue). 

Clearly the normal distribution does not characterize the empirical distributions well, neither in the 

peaks of the distribution or in the tails, which is the part that we are interested in. This finding supports 

fitting a Generalized Pareto distribution (GPD) to the tails or utilizing a different distribution that 

features fat tails, such as the student’s t-distribution. In figure 7, the empirical distributions are 

compared to the best fitted student’s t-distribution, represented by the black line. To examine the 

density, we present histograms of the daily return series with a superimposed theoretical student’s t-

distribution in figure 8. The degrees of freedom of these distributions were estimated using maximum 

likelihood. See section 6.1 in Appendix for formal definition of this probability distribution. 

 

 

                                             

 

 

 

 

 

 

Figure 7: Q-Q plots of the empirical distribution of the returns. The black line represents the best fitted t-distribution. 
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Figure 8: Histogram of daily returns with a superimposed student’s t density curve(blue). 

The linearity of the Q-Q plots depicted in figure 7 indicates that the student’s t-distribution provides a 

significantly better fit for the tails of the empirical distributions than the normal distribution. By 

inspecting the superimposed student’s t density curves of figure 8, we see that it also does a better job 

at capturing the “peakedness” of the empirical distribution. However, there appears to be quite a few 

observations in the tails that still surpass the superimposed density curve which, again, supports fitting 

a GPD to the tails.  

To examine whether incorporating skewness improves the distributional fit, we present Q-Q plots and 

a superimposed density curve of the best fitted skewed student’s t-distribution in figure 9 and figure 

10, respectively. Again, the degrees of freedom and skewness parameter are estimated using the 

method of maximum likelihood. Based on an ocular inspection of these figures, it is not completely 

clear whether the skewed student’s t-distribution provides a better fit to the series than the symmetrical 

student’s t-distribution. They appear to be very similar for most return series, which is not too 

surprising given that the skewness coefficient was close to one for all currency pairs. Again, we refer 

the reader to section 6.1 in Appendix for more information on this distribution and the skewness 

coefficient. 
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Figure 9: Q-Q plots of the empirical distribution of the returns. The black line represents the best fitted skewed t-distribution. 

 

 

                                

Figure 10: Histogram of daily returns with a superimposed skewed student’s t density curve(blue). 
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3. Methodology and theoretical background 

In this chapter we present the methodology that will be used in this paper as well as the underlying 

theory behind our models and estimates. The first section presents the reasoning behind employing a 

rolling window approach for out-of-sample forecasting. Section 3.2 outlines the properties of the 

assumed loss process, and the subsequent section presents the criteria for which the specification of 

the conditional mean is determined. Section 3.4 examines the various GARCH-models of interest and 

their different properties, including the distributional assumptions. The realized kernel estimator and 

its implementation will also be discussed in this section. The subsequent section provides a formal 

definition of the risk measures and explains how they will be forecasted. Section 3.6 outlines the 

Extreme Value Theory and how it will be combined with the GARCH framework. Section 3.7 

examines the backtesting procedures that are employed to determine the accuracy of our forecasts. 

Finally, the last section shortly mentions the software that is used to carry out the calculations.  

3.1 Out-of-sample forecasting 

As mentioned in the introduction of this paper, this study aims to produce and evaluate 1-day ahead 

forecasts of VaR and ES. This method refers to so-called out-of-sample forecasting, meaning that we 

are using a different set of data for the fitting of the models than the data that is used for assessing the 

performance of the forecasts. In producing these forecasts, we will employ a rolling window approach. 

The basic structure is the following: let n denote the full sample size. The rolling window size, i.e., the 

number of observations that are used to fit the model, is fixed and denoted by w, which also is the 

initial forecast origin. The forecast horizon, h, represents the number of days to be forecasted into the 

future. It is fixed to one in this paper as we only wish to forecast volatility for 1-day ahead. The initial 

window, consisting of the first observation to observation w, will be used to calibrate the model and 

produce a one-step ahead forecast for day w+1. For the next forecast, the forecast origin is advanced 

by 1 and we now use the second observation to observation w+1 to fit the model and produce the 1-

day ahead forecast, thus keeping the window size constant. This process is repeated until the forecast 

origin is equal to n. We will then have a series of n - w forecasted values of VaR and ES, 

corresponding to the full out-of-sample period, which can be evaluated against the actual return series 

through backtesting. The rolling window approach of this paper is illustrated in figure 11 below.  

 

      

 

 

  

   

     

 

 

 

 

Figure 11: The rolling window approach. Note that w does not include the horizon size h using this definition. 
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(2) 

(5) 

(4) 

(3) 

(6) 

Employing a rolling window approach is useful if the statistical properties of the data change over 

time as the oldest observation is dropped in each new iteration. There is, however, a trade-off when 

choosing the size of the rolling window. On the one hand, longer window sizes utilize more 

information and yield smoother estimates than windows of shorter sizes do. On the other hand, if we 

include too many observations in our window there is a risk that the statistical properties of the data 

may have changed and that the initial observations of our window adversely affect the accuracy of the 

forecasts. This also implies that our models will be less responsive to new changes. The optimal 

window length is likely dependent on the specific dynamics of the data set being used and thus not 

easily generalized. Therefore, we will simply use the same length that was used by McNeil & Frey 

(2000), i.e., a window size of w = 1000, for all of our data sets.  

3.2 Basic structure  

In equation (1) we defined the return series 𝑟𝑡 as the log return based on the observed mid-quote 

prices. In the remainder of this paper, we will work with negated loss series, i.e., 𝑋𝑡 = − 𝑟𝑡. This is 

done for convenience as it is the usual practice in the literature on EVT to work with the upper tails of 

the distributions. This transformation has no impact on the results. 

We assume that the dynamics describing 𝑋𝑡 can be characterized by the stochastic process 

𝑋𝑡 = 𝜇𝑡 + 𝜀𝑡 

 𝜀𝑡 = √𝜎𝑡
2𝑧𝑡    𝑧𝑡  ~ 𝐹(0,1) 𝑖. 𝑖. 𝑑. 

where 𝑧𝑡, also called the innovations, are random variables generated from a strict white noise process6 

with a zero mean and a unit variance stemming from a marginal distribution F. We assume that both 

the conditional mean, 𝜇𝑡, and the conditional variance, 𝜎𝑡
2, are measurable with respect to the 

information about the loss process up to time t – 1, denoted by G, such that 

𝜇𝑡 = 𝐸(𝑋𝑡|𝐺𝑡−1) 

     𝜎𝑡
2 = 𝑉𝑎𝑟(𝑋𝑡|𝐺𝑡−1) = 𝑉𝑎𝑟(𝜀𝑡|𝐺𝑡−1)  

The general idea is to model this loss process as accurately as possible. The GARCH models presented 

in section 3.4 are concerned with 𝜎𝑡
2 and the fashion under which it evolves. However, the equation 

for the conditional mean should also be specified in order to accurately capture the loss process. In 

section 2.3 we examined the dependence in the return series and the findings suggested that the return 

series of some FX pairs might exhibit some minor lower order serial correlation. In fact, McNeil et al. 

(2015, p. 79) note that asset returns typically exhibit lower order serial correlation. Thus, to allow for 

potential serial correlation in the loss series we should specify a model for the conditional mean in 

which this is accounted for. Consequently, the GARCH models could then be estimated on the mean 

adjusted process 𝜀𝑡.  

3.3 Conditional mean and model selection 

If we assume that the conditional mean follows a stationary autoregressive-moving-average (ARMA), 

it is described by 

𝜇𝑡 = ∅0 + ∑∅𝑖𝑋𝑡−𝑖

𝑝

𝑖=1

+∑𝜃𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

 

 
6 A white noise process is covariance stationary and serially uncorrelated with a mean equal to zero and a finite 

and constant variance. Moreover, a strict white noise process requires that the process is independent and 

identically distributed (i.i.d.).  
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(8) 

(7) 

where p is the lag order of an AR process and q is the lag order of a MA process. This representation 

allows for forecasting of the conditional mean. The one step ahead forecast is obtained by 

𝜇𝑡+1 = ∅0 + ∑∅𝑖𝑋𝑡−𝑖+1

𝑝

𝑖=1

+∑𝜃𝑖𝜀𝑡−𝑖+1

𝑞

𝑖=1

 

Whether a process follows an AR and/or a MA process can be identified using correlograms. An AR 

process of order p displays a geometrically decaying ACF and p number of spikes in the PACF (Tsay, 

2010, p. 46). On the contrary, a MA process of order q is characterized by a geometrically decaying 

PACF with q number of spikes in the ACF (Tsay, 2010, p. 60). 

A common approach in the literature is to use the in-sample period, or the initial window to determine 

the appropriate model for the conditional mean. However, as the dynamics of the return series might 

change as we roll the window forward this approach might not be entirely satisfactory. As it is not 

feasible to make inference from ocular inspections of correlograms for every rolling window, we will 

instead employ an algorithm that chooses the appropriate ARMA model for the conditional mean for 

every window to capture any potential structural changes in the return series. More specifically, this is 

achieved by minimizing the Akaike information criterion. The Akaike information criterion for 

ARMA models is defined by Hyndman et al. (2008) as: 

𝐴𝐼𝐶 =  −2 ln(𝐿) + 2(𝑝 + 𝑞 + 1) 

where 𝐿 denotes the maximized likelihood value of the fitted model. We observe in equation (8) that 

the last term discourages overfitting of the model, which is a valuable property of this criterion. For 

more details on the Akaike criterion, see Akaike (1974).  

In order to achieve stability between the windows, the model will only be updated if there is sufficient 

evidence of a structural change. The rule of thumb outlined by Burnham & Anderson (2004) states 

that if the difference between one model’s AIC and the model with minimum AIC is less than 2, then 

there is still substantial support for the former model. If the difference is between 4-7, the support for 

the former is considerably reduced. If the difference is more than 10, then there is essentially no 

support for the model. Therefore, the model will only be updated if the minimized AIC of the 

identified model is at least 4 units lower than the AIC of the previously identified model (based on the 

data in same window). If the difference is less than 4, we will assume that both models are 

approximately equally good approximations of the mean process, thereby sticking with the former to 

achieve stability.  

To examine whether model selection by the minimization of the AIC generate adequate results for our 

GARCH modelling purposes, the Ljung-Box test7 was performed on the standardized residuals and the 

squared standardized residuals from all models based on the identified ARMA process of the initial 

window. These residuals should feature the properties of 𝑧𝑡 in equation (3), i.e., they should be 

independent of one another. The results are presented in table 10 in Appendix. The results suggest that 

both the standardized residuals and the squared standardized residuals of all models are free from any 

autocorrelation up to lag 10, implying that the conditional mean is correctly specified and that our 

models are suitable for the implementation of EVT.  

3.4 Conditional variance models 

In this section we present all GARCH-type models that will be employed in this thesis. The 

parameters will be estimated using the Maximum Likelihood method. This method aims to find the 

most probable parameter values given the data that is observed. See section 6.2 for further details.  

 
7 The Ljung-box test assesses whether there is an absence of serial correlation in the data up to lag k. See section 

6.4 in Appendix for more information on this test. 
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(9) 

(10) 

(11) 

Standard GARCH(1,1) 

The most popularized model to capture the higher order dependence of returns is the generalized 

autoregressive conditional heteroskedasticity (GARCH) model, introduced by Bollerslev (1986). The 

conditional variance of the GARCH (p, q) process is defined by 

𝜎𝑡
2 =  𝜔 + ∑𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

where 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, for i = 1,…,q and j =1 ,…,p, denoting the lagged values of the residuals 

and conditional variances, respectively. The first conditions are required to ensure a non-negative 

conditional variance, and the process is covariance-stationary since it is required that ∑ 𝛼𝑖 +
𝑞
𝑖=1

 ∑ 𝛽𝑖  < 1
𝑝
𝑖=1 . We can observe that the variance is defined as a weighted function of an intercept, the 

shocks from the previous periods and the conditional variances from the previous periods. The 

GARCH model thereby accounts for the phenomenon of volatility clustering by making the current 

period’s volatility dependent on the last period’s volatility. 𝛼 measures the extent to which a shock 

today feeds through into next period’s volatility, and 𝛽 measures the degree of persistence of past 

observations. Given a high value of 𝛽 relative to the value of 𝛼, large past conditional variances will in 

turn result in large values for 𝜎𝑡
2, and vice versa, thus creating a clustering effect. If the opposite is 

true, i.e., 𝛼 is large relative to 𝛽, then the conditional variance reacts more quickly to shocks, resulting 

in spikier volatility processes. 

For all GARCH models applied in this thesis, we will set the parameters for the lagged values of the 

residuals and conditional variances to be equal to 1, which is the most common modelling choice in 

the literature. The standard GARCH(1,1) model can be used to produce a forecast of the conditional 

variance one period ahead by utilizing the values of the residual and conditional variance at time t by 

𝜎𝑡+1
2 = 𝜔 + 𝛼𝜀𝑡

2 + 𝛽𝜎𝑡
2 

IGARCH(1,1) 

Similar to the original GARCH model, the IGARCH model of Engle & Bollerslev (1986) is 

symmetrical in the sense that both positive and negative shocks are assumed to have the same effect 

on the volatility process. However, contrary to the GARCH model, IGARCH is not defined to be a 

covariance-stationary process. It has the same representation as the GARCH model presented in 

equation (9), but instead satisfies the condition ∑ 𝛼𝑖 + ∑ 𝛽𝑖 = 1
𝑝
𝑖=1

𝑞
𝑖=1 . Shocks to the volatility process 

therefore persist, effectively giving the model infinite memory. It follows that the forecasting approach 

of the IGARCH model is the same as that of the standard GARCH model, given by equation (10). 

GJR-GARCH(1,1) 

As mentioned in the introduction of this paper, a common empirical observation among asset returns is 

that they exhibit the so-called leverage effect, referring to the fact that past negative shocks tend to 

affect current volatility to a greater extent than equally large positive shocks do. To incorporate this 

stylized fact into the GARCH modelling framework, Glosten et al. (1993) introduced the GJR-

GARCH (p, q) model. The model has the following representation for the conditional variance 

𝜎𝑡
2 =  𝜔 + ∑(𝛼𝑖 + 𝛾𝑖𝐼𝑡−𝑖)𝜀𝑡−𝑖

2

𝑞

𝑖=1

+∑𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

where 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, 𝛾𝑖 ≥ 0 for i = 1,…,q and j =1 ,…,p, denoting the lagged values of the 

residuals and conditional variances, respectively. The indicator 𝐼𝑡−𝑖 is a binary variable satisfying the 

condition  
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(12) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(13) 

𝐼𝑡−𝑖 = {
1 if 𝜀𝑡−𝑖 >  0 
0 if 𝜀𝑡−𝑖 ≤  0 

  

The indicator variable thus takes the value one if there is a positive (negative return) shock, enabling 

the model to distinguish between positive and negative shocks. 𝛾𝑖 measures the magnitude to which 

the leverage effect impacts the volatility process. Note that the conditions in (12) would be reversed if 

we were to be working with a series where losses are defined as negative numbers. 

For the GJR-GARCH(1,1) model, the one day ahead forecast of the conditional variance is given by 

𝜎𝑡+1
2 = 𝜔 + (𝛼 + 𝛾𝐼𝑡)𝜀𝑡

2 + 𝛽𝜎𝑡
2 

EGARCH(1,1) 

Another model that incorporates the leverage effect is the exponential GARCH, EGARCH (p, q), of 

Nelson (1991). It has a somewhat different representation than GJR-GARCH, given by 

log (𝜎𝑡
2) =  𝜔 +∑

𝛼𝑖𝜀𝑡−𝑖 + 𝛾𝑖|𝜀𝑡−𝑖|

𝜎𝑡−𝑖

𝑞

𝑖=1

+∑𝛽𝑗log (𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

 

Using the definition of the shock given in equation (3), the process can be rewritten as 

log (𝜎𝑡
2) =  𝜔 +∑(𝛼𝑖𝑧𝑡−𝑖 + 𝛾𝑖|𝑧𝑡−𝑖|)

𝑞

𝑖=1

+∑𝛽𝑗log (𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

 

where 𝛾𝑖 captures the leverage effect. The impact of a positive shock to the logarithm of the 

conditional variance is (𝛼𝑖 + 𝛾𝑖) while the impact of a negative shock is (𝛼𝑖 - 𝛾𝑖). As we are dealing 

with negated return series, we expect the term 𝛾𝑖 to be positive, i.e., we expect there to be a leverage 

effect in our series. Note that we do not need to impose any restrictions on 𝜔, 𝛼𝑖 and 𝛽𝑗 as we are 

modelling the logarithm of the conditional variance.  

The one day ahead forecast of the conditional variance of the EGARCH(1,1) model is given by  

log (𝜎𝑡+1
2 ) =  𝜔 + (𝛼𝑧𝑡 + 𝛾|𝑧𝑡|) + 𝛽log (𝜎𝑡

2) 

Realized GARCH(1,1) 

The Realized GARCH model, introduced by Hansen et al. (2011), provides a framework for which the 

returns and the realized measure of volatility could be jointly modelled. The realized measure is 

estimated using high frequency intraday return data. The authors argue that realized measures of 

volatility provide more information about the current level of volatility than squared returns do, which 

in turn can be useful for modelling and forecasting purposes. The structure of the Realized GARCH 

(p, q) is as follows 

log (𝜎𝑡
2) =  𝜔 +∑𝛼𝑖log (𝜁𝑡−𝑖)

𝑞

𝑖=1

+∑𝛽𝑗log (𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

 

log(𝜁𝑡) =   𝜉 + 𝜑 log(𝜎𝑡
2) + 𝜏(𝑧𝑡) + 𝑢𝑡 

𝜏(𝑧𝑡) = 𝜂1𝑧𝑡 + 𝜂2(𝑧𝑡
2 − 1) 

where 𝜁𝑡 is the realized measure of volatility and 𝑢𝑡 ~ 𝑁(0, 𝜎𝑢
2). Equation (18) provides a link 

between the observed realized measure to the latent volatility, and is called the measurement equation. 

The measurement equation can adjust the for bias caused by e.g., non-trading hours, as it is not 

required that 𝜁𝑡 is an unbiased measure of 𝜎𝑡
2. Furthermore, equation (19) is the leverage function of 
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(20) 

(21) 

(22) 

(23) 

(24) 

the model that enables an asymmetric response in volatility to shocks. As was the case for the 

EGARCH model, we do not need to impose any restrictions on the model as we are modelling the 

logarithm of the conditional variance.  

The one day ahead forecast of the conditional variance of the Realized GARCH(1,1) model is given by 

log (𝜎𝑡+1
2 ) =  𝜔 + 𝛼log (𝜁𝑡) + 𝛽log (𝜎𝑡

2) 

Realized measures of volatility  

To employ the Realized GARCH model we must specify the realized measure of volatility defined in 

equation (18). The most common measure of realized volatility is the realized variance, defined by 

𝑅𝑉𝑡 =∑𝑟𝑗,𝑡
2

𝑛

𝑗=1

 

where 𝑟𝑗,𝑡 is an intraday return vector with j = 1,…,n on the t-th day. However, as we wish to utilize all 

intraday information available in the form of tick data, this measure might not be suitable. Zhou 

(1996) was among the first to show that the realized variance tends to be a biased and inconsistent 

estimator of the quadratic variation at this frequency as it is susceptible to microstructure noise. To 

combat this issue, we will instead employ the realized kernel estimator of Barndorff-Nielsen et al. 

(2009). This measure combines the intraday volatility estimation with a kernel weighting function, 

making it robust to microstructure noise. The realized kernel estimator is defined as: 

𝐾(𝑋) = ∑ 𝑘(
ℎ

𝐻 + 1
)𝛾ℎ

𝐻

ℎ=−𝐻

 

𝛾ℎ = ∑ 𝑟𝑗,𝑡

𝑛

𝑗=|ℎ|+1

𝑟𝑗−|ℎ|,𝑡 

where 𝐾(𝑋) is a kernel weighting function and the intraday vector 𝑟𝑗,𝑡 consists of logarithmic returns 

calculated from mid-quote prices. We will employ the Parzen kernel function, given by 

𝑘(𝑥) {
1 − 6𝑥2 + 6𝑥3                     if 0 ≤ x ≤ 1/2

2(1 − 𝑥)3                              if 1/2 ≤ x ≤ 1
0                                              if 𝑥 >  1            

 

A desired property of this kernel is that it satisfies the smoothness condition 𝑘′(0) = 𝑘′(1) = 0 and is 

guaranteed to produce non-negative values. The authors note that it is necessary to increase the 

bandwidth H with the sample size in order to consistently estimate the quadratic variation. In this 

thesis, rather arbitrarily, we choose the bandwidth H = 100 for all t. Barndorff-Nielsen et al. (2009) 

provide a method for which one could estimate the optimal bandwidth, however, implementing this 

approach for all t is beyond the scope of this thesis.  

Prior to the estimation of the realized kernel, a cleaning algorithm is implemented to clear the data 

from spurious entries. Barndorff-Nielsen et al. (2009) argue that it is paramount to employ a cleaning 

approach when estimating volatility from tick data as a few spurious outliers can severely influence 

the realized kernel estimator. Specifically, the cleaning approach of this paper consists of removing 

every mid-quote price that deviates more than 10 mean absolute deviations from a rolling centered 

median of 50 observations. Furthermore, all entries for which the bid or ask quote is equal to zero are 

deleted. 
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(24) 

(25) 

(26) 

(27) 

Conditional distribution 

The last moment required to fully specify the GARCH models is to determine the distributional 

assumption of the standardized residual - the approximation of 𝑧𝑡 of equation (3). As mentioned 

previously in this section, the parameters of the GARCH models are estimated using maximum 

likelihood functions, however, the exact form of which depends on the parametric structure of the 

distribution of the innovations. We refer the reader to section 6.2 in Appendix for the structure of the 

different maximum likelihood functions. Thus, to accurately model the volatility process the 

distributional assumption is of importance. To identify the correct process for 𝑧𝑡 is rather difficult as it 

is an unobservable process of the return series, but the depictions of the unconditional series presented 

in section 2.3 should give a general idea about the distributional suitability.  

As mentioned in the introduction of this paper, we will consider three different distributions for the 

standardized residuals: the normal distribution, the student’s t-distribution and the skewed student’s t-

distribution. These will be applied to all models. The density functions of the assumed distributions 

are presented in section 6.1 in Appendix. Note that the distributions of the standardized residuals are 

scaled to have a mean equal to zero and unit variance to replicate the behavior of 𝑧𝑡. This implies, for 

example, that the standardized student’s t-distribution is scaled with √(𝑣 − 2) 𝑣⁄ , where v denotes the 

number of degrees of freedom.  

3.5 Risk measures 

For the explanations of the risk measures we follow the reasoning of McNeil et al. (2015, p. 64-72). 

The first risk measure that we will consider is Value-at-risk (VaR). 𝑉𝑎𝑅𝑞 refers to the q-quintile of the 

loss distribution. It is defined as the smallest loss 𝑥𝑞  such that the probability of observing a future loss 

𝑋𝑡+1 > 𝑥𝑞 is 1 – q: 

𝑉𝑎𝑅𝑞,𝑡 = inf{𝑥𝑞 ∈ ℝ ∶ 𝑃(𝑋𝑡+1 > 𝑥𝑞) ≤ 1 − 𝑞} 

Following the definition of equation (24), if a random variable X, with location 𝜇 and scale 𝜎, follows 

some continuous location-scale distribution F, then VaR of X is defined as: 

𝑉𝑎𝑅𝑞(𝑋) = 𝜇 + 𝜎𝐹
−1(𝑞) 

where 𝐹 refers to the standardized cumulative distribution that is scaled to have zero mean and unit 

variance. Assuming that the loss process 𝑋𝑡 is described by equation (2) and (3), i.e., 

𝑋𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡 

where the innovations are i.i.d. with zero mean and unit variance, the VaR of 𝑋 at time t can be 

defined as: 

𝑉𝑎𝑅𝑞,𝑡(𝑋𝑡) = 𝜇𝑡 + 𝜎𝑡𝑉𝑎𝑅𝑞(𝑧) 

Note that the quintile 𝑉𝑎𝑅𝑞(𝑧) is independent of t as we assume that the innovations are i.i.d., i.e., the 

probability distribution is the same for all 𝑧𝑡. 

The second risk measure of interest is Expected shortfall (ES). 𝐸𝑆𝑞 refers to the expected value of the 

loss X conditional on the loss surpassing 𝑉𝑎𝑅𝑞:  

𝐸𝑆𝑞(𝑋)  =  𝐸(𝑋|𝑋 > 𝑉𝑎𝑅𝑞) 

Again, if a random variable X, with location 𝜇 and scale 𝜎, follows some continuous location-scale 

distribution F, then ES of X is defined as: 
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(32) 

(28) 

(29) 

(31) 

(30) 

𝐸𝑆𝑞(𝑋) = 𝜇 + 𝜎
𝑓(𝐹−1(𝑞))

1 − 𝑞
 

where 𝑓 refers to the density and 𝐹 is the standardized cumulative distribution scaled to have zero 

mean and unit variance. This density can be estimated using integrals. Analogous to the VaR 

definition, for the loss process 𝑋𝑡 described by equation (2) and (3), the expected shortfall of 𝑋 at time 

t can be defined as: 

𝐸𝑆𝑞,𝑡(𝑋𝑡) = 𝜇𝑡 + 𝜎𝑡𝐸𝑆𝑞(𝑧) 

as the innovations are i.i.d. with zero mean and unit variance.  

Forecasting  

We try to capture the process described in equation (3) using variations of the ARMA-GARCH model. 

Applying the definitions described above into our modelling framework, we can predict VaR and ES 

by: 

𝑉𝑎𝑅𝑞,𝑡(𝑋𝑡+1) = �̂�𝑡+1 + �̂�𝑡+1𝑉𝑎𝑅𝑞(�̂�) 

𝐸𝑆𝑞,𝑡(𝑋𝑡+1) = �̂�𝑡+1 + �̂�𝑡+1𝐸𝑆𝑞(�̂�) 

where �̂� represents the standardized residuals - the sample counterparts of the innovations – following 

the standardized version of either the normal distribution, student's t-distribution or skewed student's t-

distribution. �̂�𝑡+1 is the prediction of the conditional mean using the ARMA structure described in 

equation (7), and �̂�𝑡+1 is the predicted conditional volatility of the different GARCH models, given by 

equation (10), (13), (16) and (20). Note that refitting the model every window implies that the 

parametric structure of the assumed distribution will be re-approximated as well. As the normal 

distribution is only characterized by the mean and standard deviation, the quintiles and tail densities of 

the standard normal distribution will be the same for all t. For the two other distributions, however, the 

exact form is determined by the parametric structure of the standardized residuals of each window, 

dictated by the degrees of freedom and skewness parameter.  

We will consider five different quintiles for our forecasts of VaR and ES in this thesis: q ∈ {0.95, 

0.975, 0.99, 0.995, 0.999}  

3.6 Extreme Value Theory 

The primary concern of this thesis is the events that are observed very rarely, i.e., extreme losses far 

out in the tail of the loss distribution. Whereas traditional parametric methods are often inadequate in 

capturing events of such nature, one method that has been developed specifically to model these 

extreme events is Extreme Value Theory (EVT). EVT only focuses on the tail of the distribution by 

relying on a subsample of large losses for its modelling purposes, which stands in contrast to 

traditional modelling approaches that focuses on the conditional moments of the entire distribution. As 

the tail of the empirical distribution generally differs from the tail imposed by the parametric 

distribution, modelling the tail separately may accommodate us in capturing the tail behavior more 

accurately. In order to identify the large past losses, two methods are usually applied - the block 

maxima approach and peak-over-threshold (POT) approach. We will focus on the latter. Following the 

reasoning McNeil et al. (2015, p. 146-154), large losses are defined as all observations that exceed a 

certain threshold, u. If we let X ={x1, x2, . . ., xT} denote a series of i.i.d. losses that follows the 

distribution F and define y as the magnitude of the losses that exceed the chosen threshold u, the 

conditional cumulative probability function Fu is defined as: 

𝐹𝑢(𝑦) = Pr(𝑋 ≤ 𝑢 + 𝑦|𝑋 > 𝑢) =
𝐹(𝑢 + 𝑦) − 𝐹(𝑢)

1 − 𝐹(𝑢)
=
𝐹(𝑥) − 𝐹(𝑢)

1 − 𝐹(𝑢)
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(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

where x = y + u with y > 0. The theorem by Balkema & De Haan (1974) state that, if u is sufficiently 

high, 𝐹𝑢(𝑦) will converge to the generalized Pareto distribution (GPD), i.e., 𝐹𝑢(𝑦) ≈ 𝐺𝜉,𝛽(𝑦). The 

GPD is defined as: 

𝐺𝜉,𝛽(𝑦) =

{
 

 
1 − (1 +

𝜉𝑦

𝛽
)
−
1
𝜉
, if 𝜉 ≠ 0

1 − 𝑒
−
𝑦
𝛽,                       if 𝜉 = 0

 

where 𝜉 and 𝛽 denote the shape parameter and scale parameter, respectively. A positive value of the 

shape parameter indicates heavy tails while a negative value indicates a short-tailed distribution. 

Furthermore, combining (32) and (33) yields: 

𝐹(𝑥) = (1 − 𝐹(𝑢))𝐺𝜉,𝛽(𝑦) + 𝐹(𝑢) 

        ≈ 1 −
𝑘

𝑇
(1 +

𝜉(𝑥 − 𝑢)

𝛽
)
−
1
𝜉
 

where 𝑘 is the number of exceedances over the threshold and T is the sample size. The q-quantile of 

𝐹(𝑥), or 𝑉𝑎𝑅𝑞
𝐸𝑉𝑇, can then be estimated by: 

𝑉𝑎𝑅𝑞
𝐸𝑉𝑇 = 𝑥𝑞 = 𝑢 +

𝛽

𝜉
[(
𝑇(1 − 𝑞)

𝑘
)
−𝜉

− 1] 

Following the definition of ES given in equation (27), the 𝐸𝑆𝑞 of X is estimated as: 

𝐸𝑆𝑞
𝐸𝑉𝑇 =  𝐸(𝑋|𝑋 > 𝑥𝑞) =

𝑥𝑞
1 − 𝜉

+
𝛽 − 𝜉𝑢

1 − 𝜉
 

There are many suggestions in the literature on how to find the optimal threshold choice. A common 

approach is to use the mean excess plot. For our purposes, however, this method is not feasible as it 

would require ocular inspections of our estimates of every rolling window. McNeil & Frey (2000) 

keep the number of exceedances over the threshold fixed, which implies that a threshold at the           

(k + 1)th order statistic is used for all windows. They suggest that k = 100, corresponding to the 90th 

percentile of the distribution, provides a reasonable choice after assessing the bias and MSE for 

different values of k through simulation. Likewise, DuMouchel (1983) suggests that the 90th percentile 

provides a balanced trade-off between having a sufficient number of observations to reliably estimate 

𝜉 and the theoretical need to describe the behavior of 𝐹(𝑥). We will follow these recommendations 

and use k = 100. 

The two-stage approach of McNeil & Frey (2000) that is applied to combine EVT with the GARCH 

framework is as follows: For each window, we fit the GARCH models of section 3.4 along with an 

ARMA structure for the conditional mean described in sections 3.3. We then extract the standardized 

residuals of each model and, using a threshold corresponding to the (k + 1)th order statistic, fit a GPD 

to the k exceedances using the method of maximum likelihood. The parameters of the GPD will then 

be utilized to estimate VaR and ES according to equation (35) and (36), respectively. The one step 

ahead forecasts is finally obtained by utilizing the forecast of the conditional mean from the ARMA 

structure described in equation (7), and the predicted volatility of the different GARCH models, given 

by equation (10), (13), (16) and (20), such that: 

𝑉𝑎𝑅𝑞,𝑡(𝑋𝑡+1) = �̂�𝑡+1 + �̂�𝑡+1𝑉𝑎𝑅𝑞
𝐸𝑉𝑇 

𝐸𝑆𝑞,𝑡(𝑋𝑡+1) = �̂�𝑡+1 + �̂�𝑡+1𝐸𝑆𝑞
𝐸𝑉𝑇 
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(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

3.7 Backtesting  

The objective of backtesting is to evaluate the forecasting performance of our models. To backtest 

VaR we will perform the three coverage tests of Christoffersen (1998). These tests allows us to assess 

both the frequency and independence of VaR violations. To backtest ES, we will perform two tests 

proposed by Acerbi & Szekely (2014) which aims to evaluate whether the right tail of the loss 

distribution is accurately estimated. 

Backtesting Value-at-Risk 

In this section we will follow the reasoning and notation of Christoffersen (2011, p. 301-306). If our 

model is accurately capturing the loss process, the probability of seeing an exceedance of VaR would 

be (1 - q)·100% at each point in time. The exceedances would be unpredictable and occur 

independently over time. We can define an indicator variable that takes the value 1 if there is an 

exceedance and 0 otherwise as:  

𝐼𝑡+1 = {
1 if 𝑋𝑡+1 > 𝑉𝑎𝑅𝑞

𝑡  (𝑋𝑡+1) 

0 if 𝑋𝑡+1 ≤ 𝑉𝑎𝑅𝑞
𝑡  (𝑋𝑡+1)  

  

The general null hypothesis of the tests is that 𝐼𝑡+1 are i.i.d. Bernoulli variables. A Bernoulli variable 

that takes the value 1 with probability p and the value 0 with probability (1 – p) could be written as: 

𝑓(𝐼𝑡+1; 𝑝) = (1 − 𝑝)
1−𝐼𝑡+1𝑝𝐼𝑡+1 

The first test of Christoffersen (2011, p. 302-304), called the unconditional coverage test, assesses 

whether the observed number of exceedances of VaR is in accordance with the expected number of 

exceedances given the choice of quintile q. If we let 𝑝 denote the fraction (1 - q), and 𝜋 denote the 

fraction of exceedances of our risk models, the null hypothesis of this test is 𝐻0: 𝑝 = 𝜋. If we further 

let 𝑇 denote the full out-of-sample size, 𝑇1 the number of exceedances and 𝑇0 the number of 

observations below VaR, the likelihood function under the null could be written as: 

𝐿(𝑝) =∏(1 − 𝑝)1−𝐼𝑡+1𝑝𝐼𝑡+1 = (1 − 𝑝)𝑇0𝑝𝑇1

𝑇

𝑡=1

 

The maximum likelihood estimate of the sample counterpart of 𝜋, estimated as �̂� =
𝑇1

𝑇
, is given by: 

𝐿(�̂�) = (1 −
𝑇1
𝑇
)
𝑇0

(
𝑇1
𝑇
)
𝑇1

 

The null hypothesis can be assessed using a likelihood ratio test: 

𝐿𝑅𝑢𝑐 = −2ln [𝐿(𝑝)/𝐿(�̂�)] 

which is asymptotically chi-squared distributed with one degree of freedom. 

The second test of Christoffersen (2011, p. 304-306) is called the independence test. The idea is to 

assess whether the exceedances are independent of each other, which is crucial for risk management 

purposes as multiple violations in a short period of time could imply an increased risk of insolvency. 

We assume that there is a dependency and that the conditional probabilities of transitions from one 

state to another can be described in the following Markov sequence: 

Π1 = [
𝜋00 𝜋01
𝜋10 𝜋11

] = [
Pr(𝐼𝑡+1 = 0|𝐼𝑡 = 0) Pr(𝐼𝑡+1 = 1|𝐼𝑡 = 0)

Pr(𝐼𝑡+1 = 0|𝐼𝑡 = 1) Pr(𝐼𝑡+1 = 1|𝐼𝑡 = 1)
] 
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(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

where the first term in the subscript denotes the current state and the latter denotes the upcoming state, 

e.g., 𝜋01 refers to the probability of an exceedance tomorrow conditional on no exceedance today. The 

likelihood function of the Markov process can be defined as: 

𝐿(Π1) = (1 − 𝜋01)
𝑇00𝜋01

𝑇01(1 − 𝜋11)
𝑇10𝜋11

𝑇11 

𝑇𝑖𝑗, i,j = 0,1 denotes the number of observations in the out-of-sample where a j is preceded by an i. 

The maximum likelihood estimates are defined as: 

�̂�01 =
𝑇01

𝑇00 + 𝑇01
 

�̂�11 =
𝑇11

𝑇10 + 𝑇11
 

where �̂�00 = 1 − �̂�01 and �̂�10 = 1 − �̂�11 as the probabilities have to sum to 1. The matrix of 

conditional probabilities of transitions can thus be described as: 

Π̂1 ≡ [
�̂�00 �̂�01
�̂�10 �̂�11

] = [
1 − �̂�01 �̂�01
1 − �̂�11 �̂�11

] =

[
 
 
 

𝑇00
𝑇00 + 𝑇01

𝑇01
𝑇00 + 𝑇01

𝑇10
𝑇10 + 𝑇11

𝑇11
𝑇10 + 𝑇11]

 
 
 

 

If there is a dependence we would expect a difference between the conditional state probabilities 𝜋01 

and 𝜋11, i.e., the probability of observing a violation tomorrow differs depending on whether we 

observe an exceedance today or not. In contrast, if the violations are independent, these conditional 

probabilities are expected to be the same. Therefore, the transition matrix under independence is: 

Π̂ = [
1 − �̂� �̂�
1 − �̂� �̂�

] 

The null hypothesis 𝐻0: 𝜋01 = 𝜋11 can be tested using the likelihood ratio test: 

𝐿𝑅𝑖𝑛𝑑 = −2ln [𝐿(�̂�)/𝐿(Π̂1)] 

where 𝐿(�̂�) is the likelihood function from the unconditional coverage test. Again, this test statistic is 

asymptotically chi-squared distributed with one degree of freedom. 

The third and last test that will be performed to assess the performance of our VaR forecasts is the 

conditional coverage test. It is a joint test of the unconditional coverage test and the independence test. 

It is defined as: 

𝐿𝑅𝑐𝑐 = −2ln [𝐿(𝑝)/𝐿(Π̂1)] 

which is asymptotically chi-squared distributed with two degrees of freedom. 

Following the recommendations of Christoffersen (2011, p. 303), we will perform Monte-Carlo 

simulations to obtain the p-values for all of the backtests of VaR. The rationale behind this 

recommendation is that testing under the chi-squared distribution may give unreliable results if the 

number of exceedances is not sufficiently large. The simulation is performed by generating 999 

samples of i.i.d. Bernoulli(p) variables, where each sample size corresponds to the out-of-sample size 

of our currency pairs. We then estimate the simulated test statistic of the samples, denoted by 

{𝐿�̃�(𝑖)}
𝑖=1

999
. Lastly, the p-values are obtained by:  

p =
1

1000
[1 +∑𝟙{𝐿�̃�(𝑖)>𝐿𝑅}

999

𝑖=1

] 
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(53) 

(54) 

where 𝟙 denotes an indicator variable that takes the value 1 if the simulated test statistic exceeds the 

test statistic obtained from the actual data, and 0 otherwise. 

Backtesting Expected Shortfall 

In contrast to VaR, backtesting ES requires an evaluation of the whole right tail of the loss 

distribution. The general idea when backtesting ES is to examine the difference between the realized 

losses that exceeded the quintile of interest, or 𝑉𝑎𝑅𝑞
𝑡 , with our forecasts of ES. As ES is defined as the 

expected loss conditional on the loss surpassing VaR, the difference between these losses and our 

estimates of ES should preferably be small in the aggregate.  

We will consider the first two of the three tests proposed by Acerbi & Szekely (2014) for the 

backtesting of ES. Some of the advantages of these tests are that they do not impose any distributional 

assumptions for the returns and can be directly evaluated through simulation. The structure of the tests 

is as follows: We assume that the losses 𝑋𝑡 follow an unknown distribution 𝐹𝑡, which is forecasted 

using the predictive conditional distribution 𝑃𝑡. 𝑉𝑎𝑅𝑡
𝐹 and 𝐸𝑆𝑡

𝐹 denotes the true measures, whereas 

𝑉𝑎𝑅𝑡
𝑃 and 𝐸𝑆𝑡

𝑃 denotes the estimated risk measures. The null hypothesis of the two tests is the same, 

defined as: 

𝐻0: 𝑃𝑡 = 𝐹𝑡 for all t 

The test statistic, 𝑍1, of the first test is defined as: 

𝑍1 = −
1

𝑁𝑇
∑

𝐼𝑡𝑋𝑡

𝐸𝑆𝑞,𝑡
𝑃

𝑇

𝑡=1

+ 1 

where 𝑁𝑇 = ∑ 𝐼𝑡 > 1
𝑇
𝑡=1  with 𝐼𝑡 = 𝟙{𝑋𝑡>𝑉𝑎𝑅𝑞}, i.e., an indicator of VaR exceedances, and T 

corresponds to the length of the out-of-sample period. The alternative hypothesis of the test is: 

   𝐻1: 𝐸𝑆𝑡
𝑃 ≤ 𝐸𝑆𝑡

𝐹 for all t and < for some t 

  𝑉𝑎𝑅𝑡
𝑃 = 𝑉𝑎𝑅𝑡

𝐹 for all t 

We can observe that the alternative hypothesis is a one-sided test for underestimation of ES. Acerbi & 

Szekely (2014) note that this is in line with the Basel framework for VaR as it is only excesses of VaR 

exceptions that signal a problem. This further implies that models that overestimate ES are favored 

using this backtesting methodology. Furthermore, it can be seen that the test statistic is the average of 

the VaR exceedances over the exceedances themselves, making the test insensitive to excessive 

numbers of VaR violations. Furthermore, the expected value of 𝑍1 under 𝐻0 is zero and negative under 

the 𝐻1, implying that negative values indicate an underestimation of ES. 

The second test of Acerbi & Szekely (2014) is, in contrast to the former, also sensitive to the expected 

number of VaR violations. This means that it also requires the quintile, 𝑉𝑎𝑅𝑞, to be correctly 

estimated. The test jointly evaluates both the frequency and size of the VaR exceedances, and is 

defined as: 

𝑍2 = −
1

𝑇(1 − 𝑞)
∑

𝐼𝑡𝑋𝑡

𝐸𝑆𝑞,𝑡
𝑃

𝑇

𝑡=1

+ 1 

The alternative hypothesis of the test is: 

𝐻1: 𝐸𝑆𝑡
𝑃 ≤ 𝐸𝑆𝑡

𝐹 for all t and < for some t 

  𝑉𝑎𝑅𝑡
𝑃 ≤ 𝑉𝑎𝑅𝑡

𝐹 for all t 
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Again, the expected value of 𝑍1 under 𝐻0 is zero and negative under the 𝐻1. The difference between 

𝑍1 and 𝑍2 can be found in the denominator: 𝑁𝑇  of the former test is replaced with 𝑇(1 − 𝑞) in the 

latter. 𝑇(1 − 𝑞) corresponds to the expected number of VaR violations given the quintile q, thus 

making the test sensitive to both magnitude and frequency of VaR violations.  

As the distributions of the test statistics are unknown, we will perform Monte-Carlo simulations to 

obtain the p-values for our models. Using a similar simulation methodology to that of Acerbi & 

Szekely (2014), which also bears some resemblance to the simulation approach of Christoffersen 

(2011, p. 303), the p-values of the tests will be obtained as follows: 

1. Simulate M number of losses {�̃�𝑡
𝑖}
𝑖=1

𝑀
 for each t = 1,…,T, using the same predictive 

conditional distribution 𝑃𝑡 that was used to forecast VaR and ES. 

 

2. Estimate 𝑍1
𝑖  and 𝑍2

𝑖  using {�̃�𝑡
𝑖}
𝑖=1

𝑇
 for each 𝑖 = 1,…,M. 

 

3. Estimate the p-values: p𝑍1 =
∑ 𝟙

{𝑍1
𝑖 <𝑍1}

𝑀
𝑖=1

𝑀
 and p𝑍2 =

∑ 𝟙
{𝑍2
𝑖 <𝑍2}

𝑀
𝑖=1

𝑀
 

where 𝟙 denotes an indicator variable that takes the value 1 if the test statistic obtained from the actual 

data exceeds the simulated test statistic, and 0 otherwise. We will use M = 20,000 when we simulate 

the losses for each t in the out-of-sample.  

3.8 Implementation 

All estimations were performed using the language R. The rugarch package of Ghalanos (2022) was 

used to fit the GARCH models and produce one day ahead forecasts. The package forecast of 

Hyndman et al. (2022) was used for the ARMA selection of the conditional mean. The package tea 

of Ossberger (2020) was used to fit a GPD to the standardized residuals and obtain the relevant 

parameters for the estimation of 𝑉𝑎𝑅𝑞
𝐸𝑉𝑇and 𝐸𝑆𝑞

𝐸𝑉𝑇. The realized kernel estimator was computed 

using the highfrequency package of Boudt et al. (2022). Lastly, all plots presented throughout this 

thesis were produced using ggplot2 of Wickham et al. (2022).  
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4. Results 

As each of the five GARCH models presented in section 3.4 will be employed under three different 

distributional assumptions, where we fit a GPD to the standardized residuals of each variation, we will 

have a total of 30 models under evaluation. For dispositional purposes, we will use acronyms to 

describe these models. The upper-case letter denotes the GARCH model, and the subscript denotes the 

assumed distribution of the innovations. The superscript “EVT” indicates that the Extreme Value 

Theory of section 3.6 have been applied to the model. The acronyms can be found in table 3 below. 

Acronym Model description 

Sn Standard GARCH(1,1) with normally distributed standardized residuals 

Sn
EVT Standard GARCH(1,1) where EVT is applied to normally distributed standardized residuals 

St Standard GARCH(1,1) with t-distributed standardized residuals 

St
EVT Standard GARCH(1,1) where EVT is applied to t-distributed standardized residuals 

Sst Standard GARCH(1,1) with skewed t-distributed standardized residuals 

Sst
EVT Standard GARCH(1,1) where EVT is applied to skewed t-distributed standardized 

In IGARCH(1,1) with normally distributed standardized residuals 

In
EVT IGARCH(1,1) where EVT is applied to normally distributed standardized residuals 

It IGARCH(1,1) with t-distributed standardized residuals 

It
EVT IGARCH(1,1) where EVT is applied to t-distributed standardized residuals 

Ist IGARCH(1,1) with skewed t-distributed standardized residuals 

Ist
EVT IGARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals 

Gn GJR-GARCH(1,1) with normally distributed standardized residuals 

Gn
EVT GJR-GARCH(1,1) where EVT is applied to normally distributed standardized residuals 

Gt GJR-GARCH (1,1) with t-distributed standardized residuals 

Gt
EVT GJR-GARCH(1,1) where EVT is applied to t-distributed standardized residuals 

Gst GJR-GARCH (1,1) with skewed t-distributed standardized residuals 

Gst
EVT GJR-GARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals 

En EGARCH(1,1) with normally distributed standardized residuals 

En
EVT EGARCH(1,1) where EVT is applied to normally distributed standardized residuals 

Et EGARCH (1,1) with t-distributed standardized residuals 

Et
EVT EGARCH(1,1) where EVT is applied to t-distributed standardized residuals 

Est EGARCH (1,1) with skewed t-distributed standardized residuals 

Est
EVT EGARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals 

Rn Realized GARCH(1,1) with normally distributed standardized residuals 

Rn
EVT Realized GARCH(1,1) where EVT is applied to normally distributed standardized residuals 

Rt Realized GARCH (1,1) with t-distributed standardized residuals 

Rt
EVT Realized GARCH(1,1) where EVT is applied to t-distributed standardized residuals 

Rst Realized GARCH (1,1) with skewed t-distributed standardized residuals 

Rst
EVT Realized GARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals 

Table 3: The acronyms of each model. 

Recall that each of these models are fitted with an ARMA structure for the conditional mean following 

the algorithm described in section 3.3. This algorithm detected 24 structural changes in the mean 

process for EUR/USD, 63 for USD/JPY, 52 for GBP/USD, 23 for AUD/USD and 47 for USD/CAD. 

To start off our analysis, we will look at the results of the VaR backtesting procedures. Table 4 reveals 

the number of Value-At-Risk exceedances of each model for each quintile and currency pair, which 

can be compared to the expected number of exceedances. In table 4 we observe that it is mainly the 

distributional assumption of the innovation process that differentiates the models from one another. 

For q = 0.95, we observe that the number of VaR violations of models assuming a normal 
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Table 4: The number of Value-At-Risk exceedances of each model. The column “Exp” denotes the expected number of exceedances. 

distribution tend to be somewhat closer to the expected number of exceedances than models assuming a t-distribution or a skewed t-distribution. Models assuming the latter 

distributions tend to underestimate VaR at this quintile to a higher extent, as they consistently produce an excessive number of VaR violations. On the other hand, when EVT 

is applied to these models, the numbers appear to be much closer to those that are expected.  

Moving further out to higher quintiles of the loss distribution, there appears to be a growing divergence between models assuming a normal distribution and models assuming 

heavy tailed distributions. Models assuming a normal distribution appear to vastly underestimate VaR for higher quintiles, more so the further out in the loss distribution we 

get. Applying EVT to these models seem to appropriately adjust VaR upwards, resulting in numbers closer to those that are expected. Models assuming a t-distribution or a 

skewed t-distribution seem to fare better further out in the loss distribution as the violations are more in line with the expected numbers. For q ≤ 0.99, the EVT augmentation 

tends to slightly modify VaR upwards for these models, often resulting in numbers closer to those that are expected. This is most apparent for the lower quintiles. For the 

highest quintiles, however, the opposite appears to be true as the EVT augmentations produces more violations than the parent distributions. We observe that the violations of 

models assuming either a t-distribution or a skewed t-distribution tend to be quite similar for most data sets, although the latter produces slightly fewer in general. It is, 

however, not clear whether any GARCH-type model alone is yielding more accurate numbers than the others. To quantify whether the VaR violations of the models are in 

accordance with the expected number of exceedances, we will examine the results of the unconditional coverage test in table 5 below. 

FX Pair Exp Sn Sn
EVT St St

EVT Sst Sst
EVT In In

EVT It It
EVT Ist Ist

EVT Gn Gn
EVT Gt Gt

EVT Gst Gst
EVT En En

EVT Et Et
EVT Est Est

EVT Rn Rn
EVT Rt Rt

EVT Rst Rst
EVT 

q = 0.95                                

EUR/USD 281 291 284 316 286 310 285 280 293 306 296 306 291 284 283 307 287 301 287 264 270 291 280 289 277 277 277 291 278 290 278 

USD/JPY 282 300 297 319 295 315 292 286 301 314 294 302 294 316 309 335 307 328 306 319 314 327 296 315 295 286 283 319 286 302 286 

GPB/USD 281 281 283 292 271 295 269 267 280 284 273 293 276 279 285 295 278 298 276 284 292 302 284 301 290 325 340 306 295 310 301 

AUD/USD 269 302 278 322 285 296 284 295 280 315 285 286 286 303 278 320 280 293 279 296 273 313 282 287 280 291 275 307 261 269 258 
USD/CAD 273 268 269 294 272 299 266 260 272 289 272 291 271 261 268 294 267 303 270 263 266 288 271 292 274 278 278 293 275 298 277 

                                

q = 0.975                                
EUR/USD 141 160 133 151 139 149 140 150 142 144 146 142 148 156 137 156 138 151 140 154 134 154 143 147 140 161 132 148 129 153 132 

USD/JPY 141 177 142 164 145 154 145 173 149 156 149 153 150 198 154 181 155 164 149 190 149 172 142 157 139 175 148 165 151 159 154 

GPB/USD 140 173 153 156 139 154 138 167 149 150 144 149 143 171 146 158 135 156 137 179 157 158 146 158 153 206 187 147 145 149 145 
AUD/USD 134 169 129 154 129 138 131 162 127 149 132 131 131 169 139 165 136 147 138 178 139 162 136 146 138 185 141 173 135 141 136 

USD/CAD 136 155 128 143 135 150 130 151 137 140 140 149 141 161 133 152 135 151 131 161 133 146 137 151 136 164 143 153 141 157 145 

                                

q = 0.99                                

EUR/USD 56 72 53 55 53 55 52 70 58 52 59 53 59 76 52 57 53 54 52 76 49 51 48 51 48 67 46 49 46 47 46 

USD/JPY 56 98 53 54 50 50 51 100 57 52 49 44 51 113 66 62 57 52 57 107 61 66 60 54 57 112 68 77 62 64 61 
GPB/USD 56 98 62 63 63 67 62 92 63 57 60 60 61 94 66 68 62 66 62 98 62 66 67 68 68 111 78 64 66 63 63 

AUD/USD 54 91 54 73 53 55 54 88 57 64 55 58 56 95 57 70 56 59 56 102 60 73 55 60 55 98 59 69 53 60 55 

USD/CAD 55 87 57 54 55 55 55 79 60 52 57 53 58 85 59 57 58 58 58 91 62 55 55 57 59 92 58 49 53 56 54 
                                

q = 0.995                                

EUR/USD 28 51 28 27 29 29 30 48 29 26 30 24 31 49 31 29 32 29 31 45 31 29 31 28 32 41 26 28 26 29 27 
USD/JPY 28 63 29 28 28 26 27 59 31 24 29 23 30 68 34 34 31 31 31 70 36 30 31 29 30 83 35 33 37 30 37 

GPB/USD 28 62 36 33 32 31 33 62 37 31 32 34 33 65 35 32 33 29 32 61 32 31 29 32 30 76 41 36 34 33 34 

AUD/USD 27 59 25 39 26 30 28 62 30 32 30 24 30 63 28 36 26 27 26 64 28 37 27 25 26 63 27 33 24 26 25 

USD/CAD 27 56 28 20 26 27 26 54 30 19 29 20 28 55 33 25 34 27 32 59 36 30 37 29 38 53 33 23 28 25 29 

                                

q = 0.999                                
EUR/USD 6 20 11 9 10 8 10 21 12 8 11 8 11 20 10 7 11 7 11 19 10 5 10 5 10 15 10 6 11 6 11 

USD/JPY 6 29 14 11 13 6 12 27 13 9 12 5 12 32 13 13 14 8 14 34 14 11 11 6 11 34 10 9 10 6 10 

GPB/USD 6 35 15 9 16 9 15 36 14 8 14 9 13 33 14 8 14 9 13 31 16 9 16 10 16 41 8 5 8 5 8 
AUD/USD 5 25 7 8 8 6 8 21 8 6 7 6 7 22 9 7 9 6 9 21 9 7 9 8 9 26 6 6 6 6 6 

USD/CAD 5 20 8 3 8 2 8 20 8 1 8 1 8 21 8 2 7 2 7 24 9 3 9 5 9 21 12 4 13 6 14 
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Table 5: The p-values of each model from the unconditional coverage test. The model is rejected if the p-value is less than 0.05. 

In table 5 we can confirm many of the tendencies observed in table 4. Based on the p-values at q = 0.95, we see that models assuming a normal distribution tend to fare 

slightly better than those assuming a t-distribution or a skewed t-distribution. The difference is however quite marginal as seen by the numbers of rejections. At higher 

quintiles, we observe that practically all models assuming a normal distribution were rejected for most data sets. Conversely, models assuming either the t-distribution or the 

skewed counterpart performed well for all higher quintiles. Overall, the EVT extension seems to be beneficial for all quintiles for models assuming a normal distribution. For 

models already assuming a heavy tailed distribution for the innovation, the EVT extension seems to be helpful in adjusting VaR upwards for q ≤ 0.99, oftentimes generating 

higher p-values and fewer numbers of rejections. This is particularly evident for q = 0.95. For the highest quintile, however, we observe that the EVT extension adversely 

affected the models assuming heavy tailed distributions. Overall, models with t-skewed residuals were rejected on fewer occasions than those assuming a t-distribution. 

In general, all models assuming either a t-distribution or a skewed t-distribution and/or were augmented with EVT produced accurate results for the unconditional coverage 

test. It is not clear whether any GARCH-type model is to be preferred over the other, or if there is a general trend amongst these models. Nonetheless, it should be noted that 

the Realized GARCH(1,1) model with t-skewed innovations is the only model that was not rejected for any of the data sets for any quintile. 

Next, we examine the models’ capacities in producing independent VaR violations. The independence test of Christofferson (1998) is presented in table 6 below. 

FX Pair Sn Sn
EVT St St

EVT Sst Sst
EVT In In

EVT It It
EVT Ist Ist

EVT Gn Gn
EVT Gt Gt

EVT Gst Gst
EVT En En

EVT Et Et
EVT Est Est

EVT Rn Rn
EVT Rt Rt

EVT Rst Rst
EVT 

q = 0.95                               
EUR/USD .553 .855 .037 .737 .086 .795 .931 .504 .131 .344 .152 .531 .864 .890 .129 .711 .227 .705 .286 .510 .555 .913 .615 .754 .783 .787 .533 .825 .595 .825 

USD/JPY .249 .328 .021 .415 .038 .509 .774 .240 .035 .452 .199 .471 .033 .087 .002 .122 .006 .119 .021 .041 .009 .377 .035 .411 .767 .909 .029 .792 .181 .793 

GPB/USD .950 .866 .480 .554 .360 .465 .371 .959 .825 .610 .416 .761 .897 .799 .369 .859 .295 .744 .829 .482 .202 .837 .216 .570 .010 .003 .111 .403 .076 .222 
AUD/USD .042 .545 .001 .311 .115 .343 .100 .476 .005 .318 .274 .244 .039 .554 .003 .455 .124 .548 .096 .782 .008 .375 .273 .475 .171 .669 .017 .632 .978 .504 

USD/CAD .769 .831 .166 .949 .110 .673 .424 .952 .309 .950 .233 .917 .445 .754 .171 .707 .064 .864 .531 .669 .334 .896 .222 .930 .731 .739 .198 .874 .112 .762 

Rejections 1 0 3 0 1 0 0 0 2 0 0 0 2 0 2 0 1 0 1 1 2 0 1 0 1 1 2 0 0 0 
q = 0.975                               

EUR/USD .114 .490 .358 .871 .444 .934 .433 .883 .758 .637 .903 .539 .204 .725 .188 .808 .375 .931 .228 .532 .256 .850 .589 .939 .088 .464 .522 .284 .287 .479 

USD/JPY .004 .911 .060 .714 .283 .705 .006 .481 .214 .474 .299 .422 .001 .224 .004 .222 .046 .472 .001 .448 .005 .922 .169 .872 .003 .532 .047 .375 .123 .239 
GPB/USD .012 .284 .189 .893 .240 .838 .030 .442 .415 .714 .474 .801 .012 .605 .121 .644 .190 .769 .004 .151 .131 .615 .127 .273 .001 .001 .536 .645 .479 .652 

AUD/USD .005 .625 .095 .613 .732 .760 .018 .513 .227 .822 .736 .766 .006 .687 .007 .863 .281 .717 .001 .670 .020 .862 .339 .732 .001 .533 .003 .932 .540 .849 

USD/CAD .105 .487 .556 .897 .241 .582 .209 .933 .727 .739 .254 .677 .036 .757 .181 .901 .229 .626 .037 .771 .376 .936 .221 .972 .013 .530 .144 .638 .093 .441 

Rejections 3 0 0 0 0 0 3 0 0 0 0 0 4 0 2 0 1 0 4 0 2 0 0 0 4 1 2 0 0 0 

q = 0.99                               

EUR/USD .039 .639 .839 .638 .830 .549 .061 .758 .533 .671 .631 .681 .012 .552 .893 .630 .747 .544 .011 .335 .453 .265 .457 .256 .159 .135 .321 .125 .193 .149 

USD/JPY .001 .640 .758 .391 .378 .470 .001 .893 .554 .327 .076 .469 .001 .184 .405 .891 .533 .901 .001 .505 .217 .621 .754 .891 .001 .129 .004 .423 .274 .503 
GPB/USD .001 .425 .353 .358 .123 .424 .001 .360 .900 .595 .582 .511 .001 .173 .117 .443 .180 .426 .001 .423 .201 .138 .114 .135 .001 .009 .299 .180 .353 .354 

AUD/USD .001 .947 .013 .892 .850 .930 .001 .639 .174 .839 .528 .718 .001 .651 .032 .722 .482 .725 .001 .375 .014 .847 .371 .845 .001 .463 .040 .884 .367 .851 

USD/CAD .001 .698 .894 .940 .894 .902 .002 .457 .677 .743 .785 .622 .001 .533 .737 .661 .614 .654 .001 .288 .938 .945 .739 .537 .001 .631 .409 .796 .830 .890 

Rejections 5 0 1 0 0 0 4 0 0 0 0 0 5 0 0 0 0 0 5 0 1 0 0 0 4 1 2 0 0 0 

q = 0.995                               

EUR/USD .001 .921 .783 .867 .829 .722 .001 .862 .633 .717 .407 .564 .001 .566 .845 .473 .846 .563 .003 .521 .865 .596 .922 .500 .020 .591 .936 .645 .830 .772 
USD/JPY .001 .844 .918 .929 .633 .802 .001 .561 .386 .843 .305 .698 .001 .254 .258 .597 .572 .598 .001 .117 .713 .586 .844 .697 .001 .184 .347 .115 .715 .135 

GPB/USD .001 .141 .362 .443 .581 .341 .001 .099 .545 .465 .255 .342 .001 .193 .476 .356 .880 .429 .001 .465 .585 .856 .456 .695 .001 .023 .124 .245 .366 .268 

AUD/USD .001 .702 .032 .843 .483 .764 .001 .494 .343 .488 .554 .507 .001 .762 .079 .855 .928 .863 .001 .782 .054 .925 .695 .861 .001 .928 .264 .566 .853 .677 

USD/CAD .001 .862 .120 .780 .925 .787 .001 .554 .083 .691 .131 .834 .001 .260 .626 .246 .926 .341 .001 .107 .550 .077 .710 .058 .001 .239 .382 .832 .658 .691 

Rejections 5 0 1 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 1 0 0 0 0 

q = 0.999                               
EUR/USD .001 .028 .126 .115 .286 .110 .001 .038 .319 .036 .298 .034 .001 .097 .552 .035 .571 .043 .001 .109 .669 .105 .681 .112 .003 .113 .859 .043 .837 .035 

USD/JPY .001 .008 .035 .006 .845 .028 .001 .008 .125 .033 .662 .033 .001 .006 .008 .006 .334 .004 .001 .008 .033 .052 .819 .041 .001 .109 .162 .102 .833 .102 

GPB/USD .001 .002 .137 .001 .148 .002 .001 .007 .306 .007 .134 .005 .001 .007 .300 .002 .156 .005 .001 .001 .145 .001 .106 .001 .001 .304 .710 .310 .689 .332 
AUD/USD .001 .405 .322 .269 .662 .291 .001 .308 .669 .372 .678 .391 .001 .146 .400 .157 .688 .132 .001 .153 .410 .164 .316 .160 .001 .699 .694 .670 .667 .673 

USD/CAD .001 .310 .214 .317 .082 .298 .001 .287 .015 .326 .013 .314 .001 .322 .073 .560 .079 .548 .001 .147 .204 .131 .826 .138 .001 .011 .393 .006 .654 .004 

Rejections 5 3 1 2 0 2 5 3 1 3 1 3 5 2 1 3 0 3 5 2 1 1 0 2 5 1 0 2 0 2 

Total 

Rejections 

19 3 6 2 1 2 17 3 3 3 1 3 21 2 5 3 2 3 20 3 6 1 1 2 20 5 6 2 0 2 
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Table 6: The p-values of each model from the independence test. The model is rejected if the p-value is less than 0.05.

Based on the results presented in table 6, it not clear whether any of the distributional assumptions or GARCH-type models are to be preferred over the other. In general, most 

models obtained quite few rejections up until q = 0.999. For this quintile, the null hypothesis that the violations are independent was rejected for the majority of the models for 

most data sets. Furthermore, it should be noted that there appears to be a disproportionate number of rejections for the AUD/USD currency pair due to a large number of 

consecutive violations during the financial crisis of 08.

Next we examine the results of the joint test of the two previous tests, namely the conditional coverage test. The results are presented in table 7 below.

FX Pair Sn Sn
EVT

 St St
EVT

 Sst Sst
EVT

 In In
EVT

 It It
EVT

 Ist Ist
EVT

 Gn Gn
EVT

 Gt Gt
EVT

 Gst Gst
EVT

 En En
EVT

 Et Et
EVT

 Est Est
EVT

 Rn Rn
EVT

 Rt Rt
EVT

 Rst Rst
EVT

 

q = 0.95                               

EUR/USD .105 .111 .123 .152 .135 .133 .234 .377 .158 .408 .194 .263 .187 .138 .312 .150 .245 .290 .164 .134 .216 .213 .309 .274 .065 .095 .148 .147 .076 .216 

USD/JPY .009 .070 .040 .017 .074 .015 .011 .074 .043 .072 .068 .072 .183 .263 .075 .175 .106 .088 .096 .168 .020 .019 .071 .027 .001 .008 .003 .053 .011 .055 

GPB/USD .303 .247 .090 .159 .160 .202 .143 .311 .090 .131 .076 .128 .217 .145 .157 .122 .234 .268 .353 .348 .499 .357 .497 .455 .078 .008 .076 .113 .064 .096 
AUD/USD .026 .008 .006 .003 .002 .002 .014 .008 .021 .001 .001 .004 .065 .077 .008 .059 .054 .051 .014 .004 .009 .004 .014 .020 .001 .001 .003 .006 .001 .001 

USD/CAD .973 .832 .843 .909 .409 .769 .711 .893 .750 .512 .533 .693 .663 .808 .817 .982 .831 .876 .939 .777 .790 .687 .909 .556 .580 .957 .458 .766 .670 .789 

Rejections 2 1 2 2 1 2 2 1 2 1 1 1 0 0 1 0 0 0 1 1 2 2 1 2 2 3 2 1 2 1 
q = 0.975                               

EUR/USD .304 .331 .358 .435 .072 .239 .368 .282 .531 .170 .143 .095 .130 .425 .130 .239 .090 .254 .119 .072 .139 .078 .062 .073 .560 .631 .164 .298 .377 .329 

USD/JPY .222 .067 .188 .139 .067 .048 .106 .094 .144 .089 .230 .036 .060 .107 .070 .136 .207 .095 .075 .071 .045 .072 .071 .067 .074 .008 .043 .012 .036 .016 
GPB/USD .165 .217 .127 .126 .129 .111 .121 .086 .112 .085 .184 .080 .270 .324 .154 .097 .057 .067 .369 .474 .081 .184 .156 .211 .244 .100 .342 .303 .204 .309 

AUD/USD .002 .025 .005 .022 .003 .005 .001 .012 .001 .025 .003 .024 .035 .053 .068 .044 .068 .055 .039 .053 .016 .004 .006 .007 .001 .002 .001 .001 .002 .002 

USD/CAD .285 .608 .535 .722 .391 .632 .683 .741 .735 .828 .378 .523 .893 .717 .691 .863 .922 .957 .564 .358 .348 .741 .401 .731 .667 .703 .545 .757 .813 .658 

Rejections 1 1 1 1 1 2 1 1 1 1 1 2 1 0 0 1 0 0 1 0 2 1 1 1 1 2 2 2 2 2 
q = 0.99                               

EUR/USD .476 .047 .810 .036 .807 .053 .377 .065 .753 .078 .785 .071 .043 .012 .084 .012 .053 .019 .014 .023 .040 .013 .041 .014 .229 .643 .708 .654 .683 .642 

USD/JPY .971 .795 .060 .037 .034 .040 .975 .055 .051 .043 .026 .048 .049 .014 .076 .007 .047 .008 .144 .011 .204 .006 .009 .006 .001 .009 .014 .002 .027 .018 
GPB/USD .030 .923 .927 .115 .974 .925 .045 .927 .843 .889 .878 .905 .392 .960 .263 .108 .204 .090 .587 .915 .026 .026 .029 .025 .033 .015 .010 .034 .018 .036 

AUD/USD .008 .052 .010 .051 .013 .020 .035 .076 .173 .072 .018 .016 .015 .062 .018 .020 .025 .020 .017 .109 .016 .018 .011 .022 .001 .002 .001 .001 .001 .001 

USD/CAD .861 .273 .386 .334 .322 .319 .070 .199 .430 .278 .373 .243 .844 .204 .265 .251 .260 .260 .893 .175 .843 .316 .858 .233 .860 .255 .534 .408 .324 .366 

Rejections 2 1 1 2 2 2 2 0 0 1 2 2 3 2 1 3 2 3 2 2 3 4 4 4 3 3 3 3 3 3 

q = 0.995                               

EUR/USD .034 .518 .570 .449 .438 .398 .134 .428 .645 .409 .748 .344 .021 .355 .446 .098 .443 .081 .021 .107 .068 .081 .050 .103 .126 .028 .058 .030 .060 .052 
USD/JPY .977 .082 .504 .540 .645 .588 .087 .096 .785 .441 .829 .061 .138 .108 .228 .348 .346 .361 .129 .116 .415 .072 .057 .079 .018 .219 .257 .161 .422 .163 

GPB/USD .930 .116 .101 .096 .095 .099 .929 .129 .073 .090 .106 .117 .994 .112 .079 .101 .059 .109 .891 .083 .076 .077 .009 .011 .014 .111 .115 .133 .098 .119 

AUD/USD .101 .044 .012 .046 .086 .074 .112 .009 .009 .013 .012 .008 .126 .047 .015 .045 .012 .052 .124 .009 .116 .064 .007 .011 .001 .010 .004 .008 .007 .004 
USD/CAD .127 .447 .906 .588 .515 .587 .147 .371 .950 .392 .915 .460 .136 .199 .678 .217 .532 .261 .086 .160 .326 .159 .391 .146 .125 .210 .756 .482 .640 .405 

Rejections 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 2 2 3 2 1 2 1 1 

q = 0.999                               
EUR/USD .007 .015 .062 .049 .114 .039 .003 .018 .123 .016 .117 .015 .009 .030 .209 .019 .229 .017 .008 .027 .476 .036 .489 .039 .009 .035 .325 .031 .321 .013 

USD/JPY .005 .010 .019 .007 .350 .013 .009 .009 .066 .014 .496 .012 .008 .006 .008 .013 .140 .004 .010 .012 .017 .025 .324 .025 .006 .026 .081 .031 .352 .039 

GPB/USD .012 .004 .050 .005 .060 .011 .007 .007 .136 .010 .056 .010 .013 .008 .102 .008 .008 .004 .007 .007 .005 .005 .004 .010 .007 .114 .477 .120 .494 .140 
AUD/USD .010 .178 .003 .004 .288 .006 .006 .094 .295 .183 .301 .189 .007 .062 .177 .049 .300 .052 .002 .052 .197 .068 .120 .058 .002 .322 .307 .306 .299 .304 

USD/CAD .010 .096 .766 .099 .919 .087 .006 .091 .964 .109 .981 .119 .007 .118 .904 .196 .912 .192 .012 .055 .794 .055 .486 .056 .006 .009 .637 .009 .308 .007 

Rejections 5 3 2 4 0 4 5 3 0 3 0 3 5 3 1 4 1 3 5 3 2 3 1 3 5 3 0 3 0 3 

Total 

Rejections 

11 7 7 10 4 10 10 6 4 6 5 9 10 6 4 9 4 6 9 7 9 10 9 12 14 13 8 11 8 10 
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Table 7: The p-values of each model from the conditional coverage test. The model is rejected if the p-value is less than 0.05. 

In general, the results of the conditional coverage test display similar tendencies to those of the unconditional coverage test. The models with normally distributed 

standardized residuals are rejected for most currency pairs at quintiles higher than q = 0.95. It is clear that applying EVT to these models improves the accuracy of the VaR 

forecasts. It is not as clear whether applying EVT to models already assuming heavy tailed distributions yield more accurate results, particularly for the higher quintiles. For q 

≤ 0.99, however, several models seem to benefit from the augmentation with EVT. Nonetheless, most models assuming either a t-distribution or a skewed t-distribution and/or 

were augmented with EVT produced accurate results for the conditional coverage test. In this test, the standard GARCH(1,1) with skewed t-distributed innovations produced 

the least number of rejections. 

The next part of our analysis will examine the results from the backtesting of Expected shortfall. The result from the first test of Acerbi & Szekely (2014) is presented in table 

8 below.
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q = 0.95                               
EUR/USD .162 .242 .049 .278 .102 .257 .449 .544 .120 .449 .166 .424 .348 .261 .206 .289 .262 .508 .203 .248 .404 .418 .524 .466 .111 .181 .230 .289 .116 .391 

USD/JPY .010 .085 .007 .032 .020 .030 .026 .080 .010 .106 .062 .109 .062 .155 .002 .146 .003 .067 .018 .088 .002 .033 .015 .040 .004 .024 .002 .094 .016 .099 

GPB/USD .569 .477 .157 .264 .224 .311 .199 .597 .174 .224 .108 .253 .422 .270 .214 .259 .285 .493 .613 .528 .374 .648 .387 .653 .005 .002 .064 .170 .026 .110 
AUD/USD .008 .017 .001 .006 .003 .004 .009 .014 .002 .006 .001 .006 .013 .115 .002 .082 .024 .088 .012 .008 .004 .009 .020 .042 .001 .001 .001 .010 .004 .002 

USD/CAD .971 .956 .424 .994 .240 .864 .706 .988 .597 .763 .450 .918 .708 .922 .440 .949 .218 .972 .839 .897 .627 .909 .509 .830 .838 .958 .365 .947 .294 .948 

Rejections 2 1 2 2 2 2 2 1 2 1 1 1 1 0 2 0 2 0 2 1 2 2 2 2 3 3 2 1 3 2 
q = 0.975                               

EUR/USD .181 .510 .453 .746 .144 .461 .479 .490 .767 .343 .296 .184 .142 .666 .138 .441 .157 .503 .143 .109 .180 .161 .094 .130 .211 .692 .309 .373 .408 .478 

USD/JPY .015 .149 .095 .323 .093 .080 .013 .165 .153 .166 .283 .047 .001 .140 .002 .146 .096 .166 .001 .103 .003 .132 .084 .127 .001 .018 .010 .022 .014 .018 
GPB/USD .019 .256 .134 .261 .163 .240 .052 .163 .189 .160 .320 .165 .053 .518 .118 .184 .042 .109 .010 .332 .080 .328 .147 .231 .001 .002 .511 .524 .318 .518 

AUD/USD .001 .047 .006 .038 .007 .019 .001 .036 .001 .044 .008 .045 .002 .109 .006 .086 .094 .101 .001 .092 .009 .013 .011 .041 .001 .002 .001 .001 .006 .007 

USD/CAD .168 .662 .683 .917 .384 .799 .430 .933 .884 .895 .381 .765 .147 .873 .396 1.00 .507 .871 .123 .603 .449 .939 .351 .926 .084 .812 .342 .864 .251 .658 

Rejections 3 1 1 1 1 1 2 1 1 1 1 2 2 0 2 0 1 0 3 0 2 1 1 1 3 3 2 2 2 2 

q = 0.99                               

EUR/USD .063 .212 .915 .219 .922 .180 .094 .324 .831 .355 .882 .348 .016 .034 .358 .037 .233 .037 .005 .034 .137 .021 .146 .025 .169 .224 .461 .223 .306 .229 

USD/JPY .001 .862 .240 .130 .108 .150 .001 .300 .202 .126 .029 .148 .001 .021 .300 .017 .177 .016 .001 .017 .199 .014 .013 .013 .001 .015 .002 .003 .079 .023 
GPB/USD .001 .833 .819 .266 .356 .838 .001 .804 .986 .899 .905 .875 .001 .431 .119 .299 .195 .275 .001 .855 .064 .045 .037 .040 .001 .004 .014 .056 .030 .085 

AUD/USD .001 .246 .001 .260 .065 .049 .001 .319 .164 .306 .056 .068 .001 .326 .007 .058 .074 .061 .001 .263 .005 .060 .018 .058 .001 .002 .001 .001 .001 .001 

USD/CAD .001 .576 .761 .685 .679 .652 .003 .397 .696 .563 .795 .470 .003 .445 .545 .489 .479 .510 .001 .260 .986 .651 .939 .447 .001 .480 .529 .803 .602 .768 

Rejections 4 0 1 0 0 1 4 0 0 0 1 0 5 2 1 2 0 2 5 2 1 3 3 3 4 3 3 2 2 2 

q = 0.995                               

EUR/USD .002 .931 .875 .823 .791 .704 .002 .813 .748 .694 .518 .572 .001 .567 .794 .227 .793 .245 .005 .216 .266 .250 .233 .244 .034 .143 .213 .174 .250 .215 
USD/JPY .001 .255 .926 .942 .733 .887 .001 .239 .511 .792 .404 .283 .001 .160 .372 .588 .559 .586 .001 .120 .694 .229 .263 .291 .001 .302 .444 .142 .708 .145 

GPB/USD .001 .099 .187 .209 .262 .180 .001 .077 .220 .213 .147 .195 .001 .130 .222 .186 .265 .217 .001 .222 .210 .267 .030 .021 .001 .033 .091 .142 .192 .157 

AUD/USD .001 .161 .009 .225 .221 .266 .001 .025 .025 .034 .016 .026 .001 .220 .021 .223 .023 .207 .001 .023 .054 .228 .014 .020 .001 .024 .005 .018 .014 .008 

USD/CAD .001 .810 .222 .871 .934 .868 .001 .615 .140 .727 .250 .779 .001 .348 .679 .308 .936 .435 .001 .132 .610 .098 .753 .080 .001 .341 .467 .797 .697 .744 

Rejections 5 0 1 0 0 0 5 1 1 1 1 1 5 0 1 0 1 0 5 1 0 0 2 2 5 2 1 1 1 1 

q = 0.999                               
EUR/USD .001 .033 .136 .123 .291 .115 .001 .049 .322 .040 .306 .041 .001 .101 .554 .042 .573 .046 .001 .113 .672 .107 .683 .120 .006 .120 .861 .051 .837 .040 

USD/JPY .001 .012 .043 .010 .845 .037 .001 .013 .130 .040 .663 .037 .001 .009 .013 .006 .337 .005 .001 .013 .037 .058 .819 .048 .001 .110 .167 .110 .834 .108 

GPB/USD .001 .001 .141 .001 .153 .001 .001 .003 .311 .001 .140 .002 .001 .004 .305 .002 .012 .001 .001 .001 .007 .001 .008 .001 .001 .309 .712 .312 .690 .335 
AUD/USD .001 .410 .010 .012 .663 .010 .001 .311 .671 .374 .684 .394 .001 .151 .401 .160 .689 .139 .001 .157 .411 .167 .317 .168 .001 .701 .697 .670 .667 .676 

USD/CAD .001 .312 .216 .319 .089 .305 .001 .288 .024 .333 .020 .318 .001 .324 .077 .563 .083 .548 .001 .152 .208 .141 .828 .140 .001 .015 .394 .014 .656 .005 

Rejections 5 3 2 3 0 3 5 3 1 3 1 3 5 2 1 3 1 3 5 2 2 1 1 2 5 1 0 1 0 2 

Total 

Rejections 

19 5 7 6 3 7 18 6 5 6 5 7 18 4 7 5 5 5 20 6 7 7 9 10 20 12 8 7 8 9 
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Table 8: The p-values of each model from the Z1 test. The model is rejected if the p-value is less than 0.05. 

By inspecting the results of table 8, it is clear that models with normally distributed standardized residuals underestimate ES. The null hypothesis is rejected for virtually all 

quintiles and currency pairs. The augmentation with EVT provides somewhat of a remedy to these models, although it is to a comparatively small extent. In contrast, models 

in which the innovations are assumed to follow either a t-distribution or skewed t-distribution appear to generate fewer rejections in general. It is not obvious whether any of 

these distributions is superior to the other. It appears that these models do not gain from the EVT approach as this procedure results in more rejections overall. 

Similar to what was observed for the backtesting results of VaR, it is not clear whether any particular GARCH-type model alone stands out when forecasting ES. In this test, 

the symmetrical IGARCH model with t-distributed innovations produced the least number of rejections. 

As was noted earlier, this test is not sensitive to excessive numbers of VaR violations. Therefore, it has to be looked at in conjunction with the tests for VaR presented above. 

Alternatively, one can turn to the second test of Acerbi & Szekely (2014), in which this is accounted for. The result of this test is depicted in table 9 below. 

FX Pair Sn Sn
EVT

 St St
EVT

 Sst Sst
EVT

 In In
EVT

 It It
EVT

 Ist Ist
EVT

 Gn Gn
EVT

 Gt Gt
EVT

 Gst Gst
EVT

 En En
EVT

 Et Et
EVT

 Est Est
EVT

 Rn Rn
EVT

 Rt Rt
EVT

 Rst Rst
EVT

 

q = 0.95                               
EUR/USD .000 .427 .753 .431 .729 .407 .000 .333 .820 .403 .845 .276 .000 .237 .412 .300 .396 .288 .000 .193 .346 .179 .347 .117 .000 .460 .553 .478 .554 .429 

USD/JPY .000 .460 .609 .695 .903 .652 .000 .386 .926 .522 .972 .510 .000 .294 .330 .288 .709 .385 .000 .259 .401 .436 .709 .430 .000 .014 .226 .061 .467 .059 

GPB/USD .000 .012 .056 .036 .067 .026 .000 .003 .161 .028 .227 .034 .000 .011 .053 .051 .065 .048 .000 .014 .075 .022 .036 .030 .000 .022 .396 .188 .396 .259 
AUD/USD .000 .390 .098 .564 .381 .522 .000 .304 .309 .394 .605 .395 .000 .217 .081 .379 .370 .370 .000 .048 .038 .381 .239 .296 .000 .185 .054 .182 .074 .104 

USD/CAD .000 .395 .947 .391 .924 .266 .000 .316 .987 .291 .972 .306 .000 .230 .877 .172 .901 .275 .000 .045 .807 .082 .736 .111 .000 .181 .933 .280 .811 .236 

Rejections 5 1 0 1 0 1 5 1 0 1 0 1 5 1 0 0 0 1 5 3 1 1 1 1 5 2 0 0 0 0 
q = 0.975                               

EUR/USD .000 .074 .434 .190 .427 .205 .000 .136 .552 .203 .509 .242 .000 .039 .356 .059 .290 .071 .000 .034 .539 .090 .291 .046 .000 .162 .625 .085 .744 .132 

USD/JPY .000 .110 .727 .397 .894 .417 .000 .239 .934 .480 .992 .497 .000 .104 .621 .114 .778 .121 .000 .017 .560 .115 .773 .100 .000 .003 .269 .031 .666 .058 
GPB/USD .000 .024 .082 .024 .052 .016 .000 .006 .180 .040 .116 .034 .000 .005 .083 .011 .051 .014 .000 .015 .077 .009 .036 .019 .000 .125 .141 .044 .128 .048 

AUD/USD .000 .043 .015 .032 .063 .046 .000 .014 .075 .031 .141 .023 .000 .113 .086 .166 .260 .223 .000 .032 .045 .143 .187 .162 .000 .167 .236 .276 .147 .256 

USD/CAD .000 .122 .955 .252 .972 .135 .000 .256 .992 .385 .995 .413 .000 .061 .964 .098 .941 .060 .000 .006 .907 .030 .915 .024 .000 .136 .986 .244 .953 .277 

Rejections 5 2 1 2 0 2 5 2 0 2 0 2 5 2 0 1 0 1 5 5 1 2 1 3 5 1 0 2 0 1 

q = 0.99                               

EUR/USD .000 .017 .124 .025 .165 .020 .000 .040 .244 .074 .304 .075 .000 .004 .082 .010 .048 .006 .000 .001 .066 .002 .042 .001 .000 .003 .065 .004 .043 .004 

USD/JPY .000 .002 .137 .003 .331 .005 .000 .014 .489 .004 .549 .006 .000 .041 .143 .001 .245 .006 .000 .001 .302 .081 .375 .039 .000 .012 .642 .009 .709 .006 
GPB/USD .000 .002 .049 .021 .066 .014 .000 .001 .058 .014 .060 .017 .000 .002 .094 .011 .037 .011 .000 .000 .053 .006 .038 .008 .000 .042 .272 .065 .196 .030 

AUD/USD .000 .012 .105 .006 .030 .009 .000 .016 .100 .007 .233 .008 .000 .026 .097 .060 .152 .058 .000 .008 .110 .016 .120 .014 .000 .084 .116 .093 .205 .080 

USD/CAD .001 .271 .951 .116 .920 .117 .000 .247 .989 .219 .973 .250 .000 .092 .912 .064 .888 .077 .000 .054 .824 .005 .782 .021 .000 .057 .810 .032 .775 .027 

Rejections 5 4 1 4 1 4 5 4 0 3 0 3 5 4 0 3 2 3 5 4 0 4 2 5 5 3 0 3 1 4 

q = 0.995                               

EUR/USD .000 .013 .110 .024 .196 .034 .000 .015 .229 .030 .136 .036 .000 .007 .053 .018 .061 .013 .000 .005 .167 .007 .085 .008 .000 .004 .199 .005 .237 .006 
USD/JPY .000 .001 .145 .002 .359 .001 .000 .005 .237 .004 .538 .007 .000 .009 .197 .001 .492 .007 .000 .001 .145 .025 .492 .017 .000 .005 .256 .032 .551 .036 

GPB/USD .000 .002 .042 .008 .018 .007 .000 .003 .063 .009 .089 .011 .000 .001 .021 .006 .007 .005 .000 .000 .014 .001 .011 .001 .000 .021 .417 .027 .227 .024 

AUD/USD .000 .001 .093 .001 .045 .002 .000 .004 .059 .004 .020 .004 .000 .006 .078 .003 .032 .003 .000 .000 .064 .002 .008 .001 .000 .005 .051 .005 .022 .003 

USD/CAD .006 .179 .900 .032 .966 .040 .007 .150 .955 .164 .921 .110 .001 .126 .954 .221 .930 .144 .000 .115 .951 .174 .897 .214 .000 .076 .671 .015 .517 .016 

Rejections 5 4 1 5 2 5 5 4 0 4 1 4 5 4 1 4 2 4 5 4 1 4 2 4 5 4 0 5 1 5 

q = 0.999                               
EUR/USD .000 .064 .519 .052 .483 .050 .001 .085 .699 .086 .694 .081 .000 .020 .106 .041 .121 .039 .000 .010 .109 .015 .066 .011 .000 .032 .271 .040 .329 .042 

USD/JPY .001 .161 .567 .169 .719 .134 .001 .140 .740 .127 .811 .122 .003 .089 .553 .047 .763 .126 .001 .024 .527 .127 .632 .123 .001 .012 .262 .030 .384 .031 

GPB/USD .000 .013 .099 .035 .065 .026 .000 .011 .088 .024 .091 .019 .000 .005 .034 .017 .036 .014 .000 .005 .058 .014 .033 .014 .000 .005 .039 .009 .026 .008 
AUD/USD .003 .001 .014 .002 .006 .002 .001 .002 .011 .001 .017 .001 .001 .003 .017 .005 .013 .005 .000 .002 .011 .003 .034 .003 .004 .001 .014 .003 .011 .001 

USD/CAD .094 .125 .894 .082 .801 .091 .116 .141 .702 .147 .678 .131 .038 .054 .871 .046 .692 .037 .038 .037 .911 .064 .945 .065 .033 .160 .684 .201 .668 .242 

Rejections 4 2 1 2 1 2 4 2 1 2 1 2 5 3 2 5 2 4 5 5 1 3 2 3 5 4 2 4 2 4 

Total 

Rejections 
24 13 4 14 4 14 24 13 1 12 2 12 25 14 3 13 6 13 25 21 4 14 8 16 25 14 2 14 4 14 
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Table 9: The p-values of each model from the Z2 test. The model is rejected if the p-value is less than 0.05. 

When also considering the expected number of violations for each quintile, we see that the models that were augmented with EVT do comparatively better. In the first test of 

Acerbi & Szekely (2014), where excessive numbers of violations were not considered, the EVT-models tended to underestimate the density of the loss distribution to a 

comparatively high extent in comparison to models assuming a t-distribution or skewed t-distribution. However, as was evident in table 4 and table 5, the EVT-models often 

generated higher quintile forecasts for q ≤ 0.99 than those only assuming heavy tailed distributions for the innovation, resulting in more accurate estimates of VaR. The 

combination of these factors reflect the results of the second test of Acerbi & Szekely (2014). 

Again, we observe that models in which the innovations are assumed to follow a skewed t-distribution were rejected on fewer occasions than those assuming a t-distribution. 

These models were generally improved by the EVT approach for q ≤ 0.99, whereas it had an opposite effect for higher quintiles. For models assuming a normal distribution 

for the innovation, the EVT approach seems to be beneficial for all quintiles.  

Similar to what has been observed for all backtests, it is not obvious whether any GARCH-type model is outperforming the others. In this test, the IGARCH(1,1) and Realized 

GARCH(1,1) with t-skewed innovations produced the fewest number of rejections. 
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q = 0.95                               

EUR/USD .048 .416 .037 .371 .067 .387 .125 .196 .130 .176 .137 .231 .053 .338 .063 .315 .105 .308 .374 .670 .250 .430 .281 .474 .235 .589 .295 .575 .313 .559 

USD/JPY .001 .182 .025 .260 .081 .306 .018 .111 .111 .238 .336 .238 .000 .037 .001 .051 .006 .043 .000 .020 .004 .188 .049 .202 .003 .247 .009 .246 .120 .239 

GPB/USD .009 .192 .114 .464 .093 .501 .061 .202 .302 .385 .171 .329 .009 .164 .080 .337 .063 .383 .005 .089 .045 .198 .032 .119 .000 .000 .069 .135 .044 .088 
AUD/USD .000 .263 .000 .176 .046 .183 .001 .209 .002 .148 .170 .137 .000 .223 .001 .226 .062 .240 .000 .242 .001 .192 .102 .210 .000 .253 .002 .549 .336 .634 

USD/CAD .178 .558 .231 .489 .142 .595 .356 .465 .401 .456 .329 .488 .242 .542 .195 .541 .087 .506 .170 .500 .270 .406 .173 .351 .050 .288 .239 .383 .124 .330 

Rejections 4 0 3 0 1 0 2 0 1 0 0 0 3 1 2 0 1 1 3 1 3 0 2 0 3 1 2 0 1 0 

q = 0.975                               
EUR/USD .004 .616 .188 .468 .235 .444 .022 .316 .404 .259 .452 .216 .003 .383 .095 .431 .159 .377 .011 .555 .144 .300 .254 .359 .008 .698 .294 .750 .203 .685 

USD/JPY .000 .349 .054 .339 .263 .346 .000 .199 .244 .244 .425 .223 .000 .073 .001 .074 .037 .117 .000 .118 .008 .347 .157 .442 .000 .104 .018 .096 .093 .070 
GPB/USD .000 .057 .044 .274 .049 .288 .000 .074 .137 .177 .130 .184 .000 .112 .033 .352 .035 .312 .000 .023 .031 .110 .021 .045 .000 .000 .189 .189 .150 .196 

AUD/USD .000 .530 .013 .516 .250 .462 .000 .560 .050 .415 .504 .438 .000 .257 .002 .359 .104 .311 .000 .211 .003 .352 .122 .297 .000 .219 .000 .389 .205 .391 

USD/CAD .004 .692 .460 .491 .278 .630 .014 .429 .634 .348 .380 .321 .001 .501 .219 .446 .211 .568 .001 .419 .327 .328 .207 .349 .001 .214 .228 .294 .116 .197 

Rejections 5 0 2 0 1 0 5 0 0 0 0 0 5 0 3 0 2 0 5 1 3 0 1 1 5 1 2 0 0 0 
q = 0.99                               

EUR/USD .000 .476 .454 .467 .469 .513 .001 .259 .649 .242 .615 .239 .000 .402 .328 .417 .452 .463 .000 .598 .623 .622 .605 .601 .008 .779 .737 .771 .795 .768 

USD/JPY .000 .445 .499 .616 .753 .572 .000 .304 .706 .683 .954 .591 .000 .042 .148 .221 .551 .189 .000 .094 .082 .220 .580 .322 .000 .022 .009 .101 .210 .125 
GPB/USD .000 .046 .085 .054 .031 .060 .000 .035 .254 .084 .148 .067 .000 .016 .033 .057 .032 .053 .000 .026 .038 .013 .020 .010 .000 .001 .124 .046 .131 .079 

AUD/USD .000 .318 .003 .335 .274 .293 .000 .191 .046 .241 .225 .207 .000 .200 .009 .263 .171 .259 .000 .086 .003 .266 .137 .262 .000 .167 .007 .392 .156 .334 

USD/CAD .000 .332 .664 .397 .598 .399 .000 .198 .797 .312 .733 .272 .000 .207 .489 .235 .429 .239 .000 .102 .557 .310 .445 .171 .000 .225 .820 .458 .504 .398 

Rejections 5 1 1 0 1 0 5 1 1 0 0 0 5 2 2 0 1 0 5 1 2 1 1 1 5 2 2 1 0 0 

q = 0.995                               

EUR/USD .000 .294 .473 .246 .353 .204 .000 .240 .585 .202 .702 .160 .000 .119 .290 .098 .299 .127 .000 .111 .350 .112 .380 .078 .001 .395 .440 .387 .379 .319 
USD/JPY .000 .207 .388 .286 .618 .349 .000 .142 .723 .253 .840 .204 .000 .041 .099 .112 .246 .111 .000 .016 .260 .179 .428 .217 .000 .037 .145 .022 .379 .024 

GPB/USD .000 .008 .073 .042 .101 .028 .000 .006 .141 .034 .065 .025 .000 .008 .081 .022 .134 .032 .000 .014 .094 .054 .058 .038 .000 .002 .080 .052 .135 .048 

AUD/USD .000 .367 .007 .287 .162 .187 .000 .116 .091 .110 .510 .112 .000 .219 .022 .324 .323 .324 .000 .161 .013 .251 .411 .298 .000 .306 .044 .467 .390 .444 
USD/CAD .000 .387 .946 .487 .649 .498 .000 .250 .972 .314 .951 .369 .000 .106 .770 .086 .627 .144 .000 .036 .434 .027 .477 .019 .000 .096 .815 .305 .659 .242 

Rejections 5 1 1 1 0 1 5 1 0 1 0 1 5 2 1 1 0 1 5 3 1 1 0 2 5 2 1 1 0 1 

q = 0.999                               

EUR/USD .000 .008 .099 .017 .169 .017 .000 .004 .209 .009 .204 .009 .000 .010 .189 .006 .194 .006 .000 .007 .494 .006 .461 .006 .000 .015 .370 .006 .391 .006 
USD/JPY .000 .000 .035 .002 .481 .005 .000 .002 .153 .005 .654 .005 .000 .002 .009 .000 .232 .001 .000 .000 .033 .012 .461 .012 .000 .013 .077 .016 .401 .017 

GPB/USD .000 .000 .040 .000 .032 .000 .000 .000 .077 .000 .036 .001 .000 .000 .050 .000 .023 .000 .000 .000 .026 .000 .008 .000 .000 .022 .369 .028 .326 .026 

AUD/USD .000 .040 .043 .017 .142 .018 .000 .020 .153 .031 .180 .033 .000 .009 .097 .009 .186 .009 .000 .005 .073 .008 .053 .008 .000 .110 .090 .091 .173 .117 
USD/CAD .000 .108 .895 .104 .948 .104 .000 .110 .985 .109 .984 .107 .000 .107 .957 .190 .947 .185 .000 .045 .889 .049 .653 .050 .000 .005 .743 .002 .428 .001 

Rejections 5 4 3 4 1 4 5 4 0 4 1 4 5 4 1 4 1 4 5 5 2 5 1 4 5 4 0 4 0 4 

Total 

Rejections 
24 6 10 5 4 5 22 6 2 5 1 5 23 9 9 5 5 6 23 11 11 7 5 8 23 10 7 6 1 5 
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5. Conclusion 

The primary conclusion of this thesis is that the distributional assumption of the innovations is the 

most important determinant in producing accurate one day ahead forecasts of VaR and ES. Models in 

which the innovations were assumed to follow a normal distribution consistently underestimated both 

VaR and ES. It is clear that the two-stage EVT approach of McNeil & Frey (2000) improved the 

accuracy of the forecasts of these models, regardless of quintile. This approach does not, however, 

appear to be as effective if the innovations are assumed to follow a heavy tailed distribution, such as 

the t-distribution or the skewed t-distribution. Models in which the innovations were assumed to 

follow any of these distributions generally produced accurate forecasts of VaR and ES, particularly for 

higher quintiles. In applying the two-stage EVT approach to these models, the quintile forecasts for q 

≤ 0.99 were in many instances improved. For higher quintiles, however, we found that this approach 

tended to impair the forecasting accuracy of these models. Hence, the usefulness of the EVT approach 

appears to be dependent on the distributional assumption as well as the choice of quintile. Overall, 

models assuming a skewed t-distribution for the innovation process were found to produce the least 

number of rejections. 

We cannot conclude that more complex extensions of the standard GARCH(1,1) model yield more 

accurate forecasts of VaR and ES, as no discernible trend amongst the conditional volatility models 

was observed. As noted earlier, however, the bandwidth parameter of the realized kernel was not 

chosen according to the recommendation of Barndorff-Nielsen et al. (2009). For further research it 

may therefore be interesting to examine whether using the optimal bandwidth enhances the 

performance of the Realized GARCH model of Hansen et al. (2011). Another area that may be of 

interest is to examine how different choices of thresholds affect the forecasting performance of models 

combined with EVT.  
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6. Appendix 

6.1 Density functions 

Normal distribution 

The density function of the normal distribution is: 

𝑓(𝑧) =
1

𝜎√2𝜋
𝑒
−
(𝑧−𝜇)2

2𝜎2  

Student’s t-distribution 

The density function of the student’s t-distribution is: 

𝑓(𝑧) =
𝛤 (
𝑣 + 1
2

)

√𝜋𝑣𝛤 (
𝑣
2)
(1 +

𝑧2

𝑣
)

−(
𝑣+1
2
)

 

where 𝑣 denotes the degrees of freedom and 𝛤(∙) is the Gamma function. 

Skewed student’s t-distribution 

According to Fernandez & Steel (1998), the density function of the skewed student’s t-distribution can 

be defined as: 

𝑓(𝑧) =
2

𝜉 +
1
𝜉

{𝑓 (
𝑧

𝜉
) 𝐼{𝑧≥0} + 𝑓(𝜉𝑧)𝐼{𝑧<0}}} 

where 𝑓(∙) is the student’s t-distribution and 𝜉 is the skewness parameter. 𝐼{𝑧} denotes an indicator 

variable. 

6.2 Maximum Likelihood estimation 

The Maximum Likelihood approach estimates the parameters so that they maximize the likelihood that 

the assumed model produced the observed data. This is done by maximizing the likelihood function 

with respect to the unknown parameters 𝛩. This function can formally be defined as: 

𝐿(𝛩|𝐺𝑛−1) =∏𝜑(𝜀𝑡|𝐺𝑡−1)

𝑛

𝑡=1

 

where 𝐺 denotes the information set and 𝜑 is the density function of the innovation process. The form 

of the likelihood function depends on the assumed distribution of the innovations.  

Normal distribution 

If the innovations are assumed to follow a normal distribution, the log-likelihood function is: 

log[𝐿(𝛩|𝐺𝑛−1)] = −
𝑛

2
log(2𝜋) −

1

2
∑[log(𝜎𝑡

2) +
𝜀𝑡
2

𝜎𝑡
2]

𝑛

𝑡=1
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Student’s t-distribution 

If the innovations are assumed to follow a t-distribution, the log-likelihood function is: 

log[𝐿(𝛩|𝐺𝑛−1)] = log [Γ (
𝑣 + 1

2
)] − log [Γ (

𝑣

2
)] −

1

2
log(𝜋(𝑣 − 2))

−
1

2
∑[log(𝜎𝑡

2) + (1 + 𝑣)log (1 +
𝜀𝑡
2

𝜎𝑡
2(𝑣 − 2)

)]

𝑛

𝑡=1

 

Skewed student’s t-distribution 

If the innovations are assumed to follow a skewed t-distribution, the log-likelihood function is: 

log[𝐿(𝛩|𝐺𝑛−1)] = log [Γ (
𝑣 + 1

2
)] − log [Γ (

𝑣

2
)] −

1

2
log(𝜋(𝑣 − 2)) + log(

2

𝜉 +
1
𝜉

)+ log (𝑠)

−
1

2
∑[log(𝜎𝑡

2) + (1 + 𝑣)log (1 + (
𝑠𝜀𝑡

𝜎𝑡
2(𝑣 − 2)

+
𝑚

𝑣 − 2
)𝜉−𝐼𝑡)]

𝑛

𝑡=1

 

where  

𝑚 =
Γ(
𝑣 + 1
2 )√𝑣 − 2

√𝜋Γ(
𝑣
2)

(𝜉 −
1

𝜉
) 

𝑠 = √(𝜉2 +
1

𝜉2
− 1) −𝑚2 

6.3 Functions 

Autocorrelation function 

The autocorrelation function of a covariance-stationary process 𝑋𝑡 is defined as: 

𝜌(ℎ) = 𝑝(𝑋ℎ , 𝑋0) = 𝛾(ℎ)/𝛾(0) 

where 𝜌(ℎ) denotes the autocorrelation of lag ℎ. 

6.4 Tests 

Jarque-Bera test 

The Jarque-Bera test examines if the data have the kurtosis and skewness of a normal distribution. The 

null hypothesis is that the data is generated from a normal distribution, while the alternative hypothesis 

is that it is not. The test statistic is defined as: 

𝐽𝐵 =
𝑛

6
(𝑆2 +

1

4
(𝐾 − 3)2) 

where 𝑛 is the number of observations, 𝑆 refers to the skewness, and 𝐾 refers to the kurtosis. 
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Ljung-box test 

The Ljung-box test assesses whether there is absence of serial correlation in the data up to lag k. The 

null hypothesis is that there is no serial correlation, while the alternative hypothesis states that the data 

is dependent. The test statistic is defined as: 

𝑄 = 𝑛(𝑛 + 2)∑
�̂�𝑘
2

𝑛 − 𝑘

ℎ

𝑘=1

 

where 𝑛 corresponds to the sample size, �̂�𝑘 refers to the sample autocorrelation at lag 𝑘, ℎ refers to the 

number of lags to be tested. The test statistic is asymptotically chi-squared distributed with ℎ degrees 

of freedom. The Ljung-box test of standardized residuals and the squared standardized residuals of the 

initial window is presented in table 10 below. 

Model Ljung–Box EUR/USD JPY/USD GBP/USD AUD/USD CAD/USD 

Sn Q(10) 4.64 9.97 7.53 7.76 6.86 

 Q2(10) 9.75 13.06 5.33 11.91 12.81 

St Q(10) 4.57 10.13 7.55 8.23 6.08 

 Q2(10) 9.69 13.51 5.6 12.38 13.37 

Sst Q(10) 4.58 10.04 7.55 9.55 6.15 

 Q2(10) 9.62 13.51 5.55 13.46 13.33 

In Q(10) 4.84 9.8 7.57 7.29 6.61 

 Q2(10) 8.63 13.69 5.61 11.03 13.7 

It Q(10) 4.82 9.98 7.6 7.7 6.38 

 Q2(10) 8.63 13.84 6.16 11.44 13.73 

Ist Q(10) 4.76 9.96 7.58 8.59 6.42 

 Q2(10) 8.48 13.81 6.20 12.15 13.63 

Gn Q(10) 4.66 10 7.93 7.80 6.52 

 Q2(10) 10.19 12.55 5.97 12.79 12.33 

Gt Q(10) 4.68 10.08 7.91 7.43 6.17 

 Q2(10) 10.24 13.28 6.77 13.32 12.52 

Gst Q(10) 4.62 10.09 8.03 8.57 6.23 

 Q2(10) 10.11 13.12 7.38 18.07 12.5 

En Q(10) 5.01 9.93 7.58 7.35 6.48 

 Q2(10) 11.15 11.67 6.31 12.59 11.83 

Et Q(10) 4.84 10.06 7.64 7.71 6.31 

 Q2(10) 10.8 11.81 4.73 13.28 11.8 

Est Q(10) 4.82 10.03 7.64 8.5 6.31 

 Q2(10) 10.7 11.75 4.75 14.58 11.8 

Rn Q(10) 6.59 9.94 7.41 8.23 6.52 

 Q2(10) 8.69 12.99 4.03 15.76 13.88 

Rt Q(10) 8.08 10.37 7.40 8.42 6.76 

 Q2(10) 8.94 13.08 4.03 16.54 14.1 

Rst Q(10) 6.56 10.36 7.42 9.41 14.09 

 Q2(10) 8.67 13.08 4.04 17.7 6.75 

ARMA (p, q) ARMA (1,1) ARMA (1,0) ARMA (0,0) ARMA (1,0) ARMA (0,1) 
Table 10: Ljung-box test of the standardized residuals and squared standardized residuals of the initial window. 

Q(10) refers to the Ljung-box test of lag length 10 of the standardized residual while Q2(10) refers to the same 

for the squared standardized residuals. The bottom row refers to the identified ARMA process of the initial 

window using the algorithm described in section 3.3. The last 5 columns reports the test statistics of the test. * 

and ** denote significance at the 5% and 1% levels, respectively. See Table 3 for a description of the acronyms. 

 


