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Abstract

This thesis aims to investigate the accuracy of Value-at-Risk and Expected Shortfall forecasts of
various GARCH-type models based on five currency exchange rate pairs. The GARCH models are
employed under different conditional distributional assumptions, and extended using the two-stage
Extreme Value Theory (EVT) approach of McNeil and Frey (2000). The forecasts are evaluated
through simulation using the backtesting methodologies of Christoffersen (1998) and Acerbi &
Szekely (2014). We find that forecasts of models assuming a skewed t-distribution are rejected the
least number of times. Furthermore, the usefulness of the EVT approach of McNeil and Frey (2000)
appears to be dependent on the distributional assumption as well as the choice of quintile. No
conditional volatility model is consistently found to be superior to the others.

Keywords: GARCH, Extreme Value Theory, Value-at-Risk, Expected Shortfall, Exchange Rate
Volatility
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1. Introduction

This chapter aims to provide a background to the research topic of this thesis. The first section defines
the concepts of risk management and risk measures, and provides a short description of Value-at-Risk
and Expected Shortfall. This section also outlines the current and upcoming regulatory standards for
market risk exposures. The following section highlights a few stylized facts of financial time series
data, and the subsequent section presents the purpose of the thesis. The last section mentions financial
literature of relevance and shortly discusses previous findings. This section also mentions the
contribution of this paper to the existing literature.

1.1 Regulation, Risk Management and Risk Measures

Events such as the global financial crisis of 2007-08 and, more recently, the COVID-19 pandemic
have shed a light on the need for effective and robust risk management practices. In essence, risk
management is the process of identifying and measuring risks in order to ensure resilience to uncertain
future events (McNeil et al., 2015, p. 7). There are various types of risks that financial institutions
have to manage, including operational risk, credit risk, and market risk. The regulatory agreements
regarding the latter are issued by the Basel Committee on Banking Supervision (BCBS). As a response
to the flaws in the prior market risk framework that came to light during the global financial crisis,
BCBS issued a consultative document, The Fundamental Review of the Trading Book (FRTB), in
which the international regulatory standards for banking institutions were revised and new capital
requirements for market risk exposures were proposed (BIS, 2013). As such, one of the key revisions
of the document is that Value-at-Risk (VaR), which has been widely used in the last decades and
currently is the required risk measure according to the Basel framework, is to be replaced with
Expected Shortfall (ES). This reform is expected to be implemented in January 2023 under the Basel
Accord (BIS, 2020).

Risk measures, in broad terms, determine the “riskiness” of a financial position by linking it to a
guantifiable potential loss (McNeil et al., 2015, p. 61). They are used for a number of purposes, such
as determining the capital and margin requirements for financial institutions and investors to buffer
against unexpected losses and limit the amount of risk. Both Value-at-Risk and Expected Shortfall are
distributional risk measures, i.e., they are statistical quantities that are derived from a loss distribution.
Value-at-Risk corresponds to a given quantile of the loss distribution. It demonstrates the maximum
loss that is expected given a pre-determined confidence level. For example, if an asset has a daily
VaR(0.95) of 10%, then there is a 95% probability that the loss will not exceed 10% in one day.
Although this measure has some intuitively appealing properties, such as its straightforward
interpretation and robust backtesting capabilities, it does have some potential drawbacks. Besides that
it lacks the desired property of subadditivity®, which Artzner et al. (1999) were among the first to point
out, it also is unable to capture “tail risk”, as pointed out in FRTB (BIS, 2013). That is, Value-at-Risk
does not say anything about the magnitude of the loss when the given quantile is exceeded. Expected
Shortfall, on the other hand, represents the expected loss beyond a given quantile of the loss
distribution. It thus provides information on both the probability of a large loss occurring and the
expected magnitude of the loss when it occurs. In addition, this risk measure fulfills the property of
subadditivity, thereby circumventing the main shortcomings of Value-at-Risk. There are, however,
some potential disadvantages to Expected Shortfall as well, mainly in regard to its backtesting
capabilities. Backtesting Expected Shortfall is more difficult than Value-at-Risk and requires a larger
sample size to attain similar precision, see e.g., Yamai & Yoshiba (2005).

! Subadditivity is a risk aggregation property that satisfies R(L; + L,) < R(L;) + R(L,) for a risk measure R.
The rationale behind this property is that the risk of a merged portfolio cannot exceed the risk of the two
individual portfolios due to diversification effects (Artzner et al., 1999).
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A variety of methods utilize historical data to predict VaR and ES. In particular, these methods are
mostly centered around modelling the conditional variance, which in turn can be used to obtain
estimates of VaR and ES. In the field of financial statistics, one of the most popular volatility
forecasting models is the generalized autoregressive conditional heteroskedasticity (GARCH) model,
introduced by Bollerslev (1986). The popularity of the model can largely be ascribed to its ability to
capture the volatility clustering phenomenon that is one of the so-called “stylized facts” of financial
time series. A number of extensions of the original GARCH model has since been introduced in order
to, for example, make use of high frequency data and to incorporate additional stylized facts of
financial data.

1.2 Stylized facts of financial time series

Empirical observations from a wide range of price series, across different assets, markets and time
periods, suggest that they all have similar properties from a statistical point of view; they exhibit so-
called stylized facts of financial time series. As previously mentioned, one observed phenomenon of
financial time series is that volatility tends to cluster, i.e., large price changes, regardless of sign, tend
to be followed by additional large price changes, and vice versa (Cont, 2001). This means that there
usually are calm periods of low volatility, which then are followed by more turbulent periods, and so
on. Time series data that exhibits these properties are known to be conditionally heteroskedastic, i.e.,
the conditional variance? varies over time. Another characteristic of financial time series is that returns
tend to exhibit heavy tails. This has raised questions whether it is appropriate to model return series
using the otherwise popular normal distribution, as it may lead to underestimation of risks. However,
assessing the exact form of the tails of financial returns is often a difficult task, see Cont (2001). A
third stylized fact of financial time series is the phenomenon called the leverage effect, first noted by
Black (1976). This effect refers to the observation that past negative shocks tend to affect current
volatility to a greater extent than equally large positive shocks do. This means that more turbulent
periods can generally be expected in the aftermath of losses in comparison to gains of similar
magnitude. A final empirical finding to mention is the “gain/loss asymmetry” in returns, as Cont
(2001, p. 224) describes it. Returns, particularly from aggregated stock markets, tend to exhibit
negative skewness. That is, there is an increased probability of negative returns than what is implied
by a symmetric distribution. There are additional stylized facts of financial data, however, the ones
highlighted above will be of focus as they form the basis of the modelling choices of this paper.

1.3 Purpose

The purpose of this thesis is to investigate the forecasting performance of different variations of
GARCH models. The models will be applied to produce one day ahead predictions of Value-at-Risk
and Expected Shortfall for five major foreign exchange rate pairs. The forecasting accuracy of each
model will then be evaluated through backtesting. Different GARCH-type models will be employed in
order to assess if more complex extensions of the original GARCH model, i.e., models that
incorporate additional stylized facts and make use of high frequency data, yield more precise
predictions. The conditional variance models that will be utilized in this study are

1. GARCH (1,1)
IGARCH (1,1)
GJR-GARCH (1,1)
EGARCH (1,1)
Realized GARCH (1,1)

akrwd

Models 1 and 2 have a similar structure that enables them to capture the volatility clustering
phenomenon. These models are symmetrical in the sense that both positive and negative shocks are

2 That is, conditional on past information.



assumed to have the same effect on the volatility process. Models 3 and 4 extend the previous models
by also allowing for an asymmetric response in volatility to shocks, thereby incorporating the leverage
effect. Model 5 goes one step further by utilizing a realized measure of volatility derived from intraday
data in its structure, while also accounting for the previous effects.

Moreover, as empirical observations suggest that the distribution of financial returns exhibits some
specific characteristics, the models will be employed under different conditional distributional
assumptions. In particular, the distribution of the standardized residuals will be modelled using the
normal distribution, the student’s t-distribution and the skewed student’s t-distribution; the former to
examine whether it indeed leads to an underestimation of risk, and the latter to examine if distributions
that feature heavy tails and skewness yield more accurate estimates. Furthermore, given the uncertain
nature of the tail properties, each variation of the models will be combined with Extreme Value
Theory (EVT), following the two-stage approach of McNeil & Frey (2000). This approach provides an
alternative way of obtaining estimates of VaR and ES under heavy tails by utilizing a parametric
method for the tail of a distribution.

1.4 Previous research

Concepts related to risk measures and EVT are covered extensively in the financial literature. In
particular, we find the book of McNeil et al. (2015) to be very useful for both theoretical and practical
purposes. This book covers many of the concepts related to time series modelling and forecasting, and
provides a useful introduction to GARCH models and their application in finance. It also presents
useful diagnostic tools for model checking, many of which have been applied in this thesis. To
navigate through the universe of GARCH related models, we recommend the paper of Bollerslev
(2008). This paper lists most GARCH-type models used in the literature.

Several studies in the field of forecasting suggest that models implementing EVT yield more accurate
estimates of VaR than stand-alone GARCH models, which is the main motivation for its
implementation in this thesis (see e.g., Gencay et al. (2003); Ho et al. (2000)). McNeil & Frey (2000)
proposed a two-stage method for which the EVT approach could be applied within the GARCH
modelling framework. Applying EVT under a GARCH structure is intuitively appealing as one
fundamental notion of EVT is that the observations (returns) are independent and identically
distributed (i.i.d.). It is widely recognized that returns often exhibit higher order dependency, i.e., that
they are not i.i.d., which may adversely affect the accuracy of quintile estimates, see e.g., Wagner &
Marsh (2005). The approach of McNeil & Frey (2000) provides a remedy to this issue by first fitting a
GARCH model to the return series, clearing the series of higher order dependency, and then applying
EVT to the standardized residuals of the GARCH model, which should be approximately i.i.d. A
number of follow-up studies suggest that the two-stage approach of McNeil & Frey (2000) yield more
accurate forecasts of VaR than other conventional models do, see e.g., Bystrom (2004); Fernandez
(2005).

It should be mentioned that numerous studies have been conducted to investigate the forecasting
performance of various volatility models. We will not go into any detail of these studies as this field is
too large to cover. Instead, we refer the reader to the paper of Poon & Granger (2003). This extensive
survey reviews the findings of several papers related to this topic. Their review covers a wide range of
time series models, including historical volatility models, GARCH-type models and stochastic
volatility models.

This thesis contributes to the existing literature by providing information on the forecasting
capabilities of specific GARCH models for exchange rates. To the best of my knowledge, no previous
study has investigated the accuracy of both VVaR and ES predictions of the more novel Realized
GARCH model in regard to this asset class. Similarly, the existing literature on the accuracy of both
VaR and ES predictions of GARCH-EVT models is quite limited, particularly for exchanges rates.



2. Data

This chapter briefly outlines some facts about the foreign exchange market and presents the data sets
that are implemented in this study. It is organized as follows. The first section provides a short
description of the foreign exchange rate market and the currency pairs of interest. The following
section explains the data gathering process and the procedure of transforming the raw data into return
series. The last part presents summary statistics and visualizations of these series to highlight some
stylized facts of financial data. Note that the full data sets are analyzed in this section, however, the
specifications of the models are determined beforehand, thus avoiding any potential look-ahead bias.
Also note that this chapter does not cover any of the theory — that is done in the following chapter.

2.1 The foreign exchange market

According to the most recent triennial survey of Bank of International Settlements (BIS, 2019), the
average trading volume on the FOREX market amounts to $6.6 trillion per day, making it the most
liquid market in the world. FOREX derivatives trading account for the majority of the daily turnover,
while spot trades make up approximately thirty percent ($2 trillion) of the volume. The spot market is
heavily dominated by financial institutions, accounting for almost 95% of all over-the counter (OTC)
transactions.

Although the FOREX market consists of numerous currencies, the survey finds that only a few of the
leading exchange rate pairs comprise the majority of OTC daily turnover on a global scale. Depicted in
table 1 below, the five most traded currency pairs account for roughly 57 percent of the OTC turnover,
where the USD/EUR exchange rate is, by a considerable margin, the most traded currency pair with an
average daily volume of $1,584 billion. In table 1 it is also evident that the US Dollar is part of each of
the most traded currency pairs. In fact, the survey finds that 88 percent of worldwide FOREX
transactions feature the USD as one of the currencies, demonstrating the key influence of the currency
in international FOREX trading.

Currency pairs Amount (in millions of USD) Proportion of total turnover (%)
USD /EUR 1,584,000 24.0
UsD / JPY 871,000 13.2
USD / GBP 630,000 9.6
USD / AUD 358,000 5.4
USD / CAD 287,000 4.4

Table 1: Most traded currency pairs according to the Bank of International Settlements (BIS) Triennial Central Bank Survey
2019. The amount corresponds to the average daily OTC turnover.

The currency pairs depicted in table 1 comprise the data sets that will be employed in this paper. The
main rationale behind this choice is that they cover the majority of the total turnover which in turn
ensures excellent liquidity. Utilizing highly liquid assets is often beneficial in the study of volatility as
it tends to mitigate market microstructure impacts such as the bid-ask bounce (Demsetz, 1968).
Moreover, the frequent use of these currency pairs makes them attractive to analyze from a relevance
point of view.

2.2 Data description

The raw FOREX (FX) data for the currency pairs depicted in table 1 is retrieved from Histdata®.
Histdata is a website that provides financial data at high frequencies for several asset classes.
Exchange rate data from Histdata has been used in a number of studies, see e.g., Islam & Hossain
(2021); Yong et al. (2018); Gbatu et al. (2017). The frequency of the FX data that was obtained from
this website is of the highest resolution available, i.e., tick data consisting of bid and ask quotes. This

3 Available at https://www.histdata.com/download-free-forex-data/
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frequency allows us to utilize as much information as possible for the realized kernel estimator, which
is the realized measure of volatility that will be utilized for the Realized GARCH model of Hansen et
al. (2011). A more detailed explanation of the realized kernel estimator and its implementation is
presented in section 3.4.

The return series of each currency pair is created using the last observed mid-quote price of each day.
The timelines of the data sets cover the beginning of the century* until the end of 2021. Such lengthy
timelines allow for a rigorous examination of the capabilities of each model as periods of different
volatility regimes are covered. The data sets encompass times of global financial turbulence such as
the dot-com bubble, the global financial crisis, the covid-19 pandemic but also calmer periods in
between these events. Another benefit of using such extensive data sets is that it makes backtesting
possible for extreme quintiles of the loss series distribution.

2.3 Summary statistics and data visualization
The return series, 1, are defined by

FX,

X )

re = l0g (o) = 10g(FX,) ~ log (FX,_,)

where FX; is the last observed mid-quote price of the exchange rate series for day t. The return series
of the full data sets are plotted in figure 1, and the summary statistics are presented in table 2.

FX Pair Length  Start date End date Mean St.dev Min. Max. Skewness  Kurtosis  JB-statistic
EUR/USD 6626 2000-05-31  2021-12-31  0.003%  0.544%  -3.346% 3.977% 0.011 5.936 2383
USD/JPY 6633 2000-05-31  2021-12-31  0.001%  0.538%  -3.736% 4.361%  0.046 8.096 7188
GBP/USD 6617 2000-05-31  2021-12-31 -0.002%  0.540% -9.577%  3.509% -1.161 22.997 111826
AUD/USD 6377 2001-04-27  2021-12-31  0.004%  0.715%  -7.726% 6.783%  -0.263 13.138 27408
USD/CAD _ 6450 2001-01-03  2021-12-31  -0.003% 0.501%  -6.406% 3.344%  -0.143 10.233 14098

Table 2: Summary statistics of the return series. JB denotes the Jarque-Bera test statistic.

EUR/USD USD/JPY
0.04- 0.04-
o 002 o 0.02-
£ £
% 0.00- £ 0.00-
o ['4
-0.02- -0.02-
! ! I I I -0.04- . ; ; ;
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Date Date
GBP/USD AUD/USD
0.04-
,» 0.00- "
c c
E 5 0.00-
®-0.05 &
-0.04-
-0.10- . ; : I I -0.08- ; : : ;
2000 2005 2010 2015 2020 2005 2010 2015 2020
Date Date
USD/CAD
0.02-
g 0.00-
£ -0.02-
(14
-0.04-
-0.06-

2000

2005

2010
Date

2015

2020

Figure 1: A visual representation of the return series. The blue horizontal line is fixed at 0.

4 The starting point of the data sets differ slightly due to data availability.
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There are a few things to note from the summary statistics presented in table 2. First, we can see that
the mean return is approximately zero for all FX pairs. The empirical distribution of most FX pairs
exhibits negative skewness, demonstrating a frequently observed phenomenon of asset returns.
Moreover, by examining the kurtosis® of the FX pairs, it is evident that all distributions exhibit heavier
tails than what would be implied by a normal distribution, demonstrating another key characteristic of
financial returns. The null hypothesis of the Jarque-Bera test is rejected at a 0.01 significance level for
all FX pairs, thus confirming that none of the empirical distributions are normally distributed. The
specifications of the Jarque-Bera test can be found in section 6.4 in Appendix.

Another briefly mentioned stylized fact of financial returns is that volatility tends to cluster. By
inspecting the plots of figure 1, there appears to be long periods in which volatility of returns tends to
be high and other periods in which the opposite is true, suggesting that returns are dependent on past
observations. During periods of financial turbulence, we observe sequences in which extreme returns
are followed by additional extreme returns, which is particularly evident during the financial crisis of
08. We also observe periods in which small returns are followed by additional small returns. To get a
clearer representation of this phenomenon, we will look at the realized kernel estimator in figure 2.
Again, we will not present the theory behind this measure here - that is done in the subsequent chapter
- for now it is sufficient to know that it represents a realized measure of volatility.

EUR/USD USD/PY

N B (2]
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¢ 0
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S w

Realized kernel
Realized kernel

0e+00- | y i y y Oe+00- | T T f T
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Date Date
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N X
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o [1'4
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' 0.00075-
@
X
5 0.00050-
(7]
N
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1
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Date

Figure 2: Realized kernel estimator for each FX pair.

For the realized kernel estimator, depicted in figure 2, the clustering phenomenon of volatility is even
more prevalent, indicating that the GARCH framework is appropriate for our modelling purposes. In
the face of economic crises, such as the dot-com bubble, the financial crisis and the outbreak of the
COVID-19 pandemic, all currency pairs underwent significant turmoil for extended periods. It is also
evident that there have been calmer periods of low volatility for extended periods of time, e.g., prior to
the financial crisis and the COVID-19 pandemic. Furthermore, we also observe occasional sharp
spikes in volatility that are more isolated, for instance GBP/USD during Brexit in 2016.

5 Kurtosis is a measure that relates to the heaviness or lightness in the tails of a distribution. A normal

distribution has a kurtosis of three. A kurtosis in excess of three implies a leptokurtic distribution, i.e., it has
heaver tails than that of a normal distribution.



To further quantify the dependence of the return series we will examine the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) of the return series and their squared
counterparts. Plotting these functions in so-called correlograms can be useful to detect if the
observations are independent of each other or if there is any serial correlation and dependence in the
series. See section 6.3 in Appendix for a formal definition of the autocorrelation function and section
3.3 for a brief explanation of processes that can be identified using correlograms. The ACF and PACF
of the returns and squared returns are plotted in figure 3 and figure 4, respectively.
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Figure 3: Autocorrelations(left) and partial autocorrelations(right) for the return series. The blue dashed line represents a 5%
confidence level.
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Figure 4: Autocorrelations(left) and partial autocorrelations(right) for the squared return series. The blue dashed line
represents a 5% confidence level.



Based on an ocular inspection of figure 3, we observe that most lags of the ACF:s tend to stay within
the given bandwidth. Assuming that distant lags are potentially spurious, the ACF:s suggest a
nonexistent MA order for most return series. The return series of GBP/USD do however exhibit a
significant serial correlation at lag four, potentially indicating a low moving-average (MA) order.
Likewise, the plots of the PACF:s indicate low autoregressive (AR) order for GBP/USD, and perhaps
also for USD/CAD, AUD/USD and EUR/USD, again assuming that distant lags are potentially
spurious. In general, the dependencies tend to be small for all data sets despite that we observe
occasional minor lags of significance. However, for the squared returns, depicted in figure 4, the
dependence of the returns is more evident. The ACF and the PACF are significant at most lags for all
return series, suggesting a higher order dependency. This is the dependence that volatility models are
designed to capture, again confirming that the GARCH framework is appropriate for our modelling
purposes.

Next, we examine the empirical distributions of the daily returns by analyzing Q-Q plots of different
theoretical distributions. A Q-Q plot is a graphical tool that can be used to analyze the relationship
between the empirical quantiles of the data and the theoretical quantiles of a probability distribution. If
the two distributions are equivalent we would expect perfect linearity between the quintiles. In figure
5, the empirical distributions of the FX pairs are compared to the best fitted normal distribution,
represented by the black line. For a formal definition of this probability distribution, we refer the
reader to section 6.1 in Appendix.
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Figure 5: Q-Q plots of the empirical distribution of the returns. The black line represents the best fitted normal distribution.

The lack of linearity of the Q-Q plots depicted in figure 5 demonstrates that the normal distribution
does not provide a good fit for any of the currency pairs. This is expected as this was implied by the
kurtosis and Jarque-Bera test statistic presented in table 2, suggesting that the empirical distributions
have heaver tails than that of a normal distribution. To get a different representation of the fit of a
normal distribution, we present histograms of the daily return series with a superimposed theoretical
normal distribution in figure 6.
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Figure 6: Histogram of daily returns with a superimposed normal density curve(blue).

Clearly the normal distribution does not characterize the empirical distributions well, neither in the
peaks of the distribution or in the tails, which is the part that we are interested in. This finding supports
fitting a Generalized Pareto distribution (GPD) to the tails or utilizing a different distribution that
features fat tails, such as the student’s t-distribution. In figure 7, the empirical distributions are
compared to the best fitted student’s t-distribution, represented by the black line. To examine the
density, we present histograms of the daily return series with a superimposed theoretical student’s t-
distribution in figure 8. The degrees of freedom of these distributions were estimated using maximum
likelihood. See section 6.1 in Appendix for formal definition of this probability distribution.
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Figure 7: Q-Q plots of the empirical distribution of the returns. The black line represents the best fitted t-distribution.
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Figure 8: Histogram of daily returns with a superimposed student’s t density curve(blue).

The linearity of the Q-Q plots depicted in figure 7 indicates that the student’s t-distribution provides a
significantly better fit for the tails of the empirical distributions than the normal distribution. By
inspecting the superimposed student’s t density curves of figure 8, we see that it also does a better job
at capturing the “peakedness” of the empirical distribution. However, there appears to be quite a few
observations in the tails that still surpass the superimposed density curve which, again, supports fitting

a GPD to the tails.

To examine whether incorporating skewness improves the distributional fit, we present Q-Q plots and
a superimposed density curve of the best fitted skewed student’s t-distribution in figure 9 and figure
10, respectively. Again, the degrees of freedom and skewness parameter are estimated using the
method of maximum likelihood. Based on an ocular inspection of these figures, it is not completely
clear whether the skewed student’s t-distribution provides a better fit to the series than the symmetrical
student’s t-distribution. They appear to be very similar for most return series, which is not too
surprising given that the skewness coefficient was close to one for all currency pairs. Again, we refer
the reader to section 6.1 in Appendix for more information on this distribution and the skewness

coefficient.
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Figure 9: Q-Q plots of the empirical distribution of the returns. The black line represents the best fitted skewed t-distribution.
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3. Methodology and theoretical background

In this chapter we present the methodology that will be used in this paper as well as the underlying
theory behind our models and estimates. The first section presents the reasoning behind employing a
rolling window approach for out-of-sample forecasting. Section 3.2 outlines the properties of the
assumed loss process, and the subsequent section presents the criteria for which the specification of
the conditional mean is determined. Section 3.4 examines the various GARCH-models of interest and
their different properties, including the distributional assumptions. The realized kernel estimator and
its implementation will also be discussed in this section. The subsequent section provides a formal
definition of the risk measures and explains how they will be forecasted. Section 3.6 outlines the
Extreme Value Theory and how it will be combined with the GARCH framework. Section 3.7
examines the backtesting procedures that are employed to determine the accuracy of our forecasts.
Finally, the last section shortly mentions the software that is used to carry out the calculations.

3.1 Out-of-sample forecasting

As mentioned in the introduction of this paper, this study aims to produce and evaluate 1-day ahead
forecasts of VaR and ES. This method refers to so-called out-of-sample forecasting, meaning that we
are using a different set of data for the fitting of the models than the data that is used for assessing the
performance of the forecasts. In producing these forecasts, we will employ a rolling window approach.
The basic structure is the following: let n denote the full sample size. The rolling window size, i.e., the
number of observations that are used to fit the model, is fixed and denoted by w, which also is the
initial forecast origin. The forecast horizon, h, represents the number of days to be forecasted into the
future. It is fixed to one in this paper as we only wish to forecast volatility for 1-day ahead. The initial
window, consisting of the first observation to observation w, will be used to calibrate the model and
produce a one-step ahead forecast for day w+1. For the next forecast, the forecast origin is advanced
by 1 and we now use the second observation to observation w+1 to fit the model and produce the 1-
day ahead forecast, thus keeping the window size constant. This process is repeated until the forecast
origin is equal to n. We will then have a series of n - w forecasted values of VaR and ES,
corresponding to the full out-of-sample period, which can be evaluated against the actual return series
through backtesting. The rolling window approach of this paper is illustrated in figure 11 below.

1 n
1 ] Rolling window 1
1 w
- —~ — h'
w
——+——+—+—+—+—+—+—+ Rolling window 2
2\ w+1
— /\_Y_l
w h
| | [ | | | | | | | : :
| 1 1 1 | | | | | i Rolling window n - w
N )
— /\_Y_l
W h
|—| Rolling window | -------------- | Forecast horizon ~w =Window size  h = Horizonsize n = Sample size

Figure 11: The rolling window approach. Note that w does not include the horizon size h using this definition.
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Employing a rolling window approach is useful if the statistical properties of the data change over
time as the oldest observation is dropped in each new iteration. There is, however, a trade-off when
choosing the size of the rolling window. On the one hand, longer window sizes utilize more
information and yield smoother estimates than windows of shorter sizes do. On the other hand, if we
include too many observations in our window there is a risk that the statistical properties of the data
may have changed and that the initial observations of our window adversely affect the accuracy of the
forecasts. This also implies that our models will be less responsive to new changes. The optimal
window length is likely dependent on the specific dynamics of the data set being used and thus not
easily generalized. Therefore, we will simply use the same length that was used by McNeil & Frey
(2000), i.e., a window size of w = 1000, for all of our data sets.

3.2 Basic structure

In equation (1) we defined the return series r; as the log return based on the observed mid-quote
prices. In the remainder of this paper, we will work with negated loss series, i.e., X; = — 1. Thisis
done for convenience as it is the usual practice in the literature on EVT to work with the upper tails of
the distributions. This transformation has no impact on the results.

We assume that the dynamics describing X; can be characterized by the stochastic process
Xe =t + & 2
& = O'tZZt Zy ~ F(O,l) i.1. d (3)

where z, also called the innovations, are random variables generated from a strict white noise process®
with a zero mean and a unit variance stemming from a marginal distribution F. We assume that both
the conditional mean, y,, and the conditional variance, o, are measurable with respect to the
information about the loss process up to time t — 1, denoted by G, such that

te = E(X¢|Ge_q) (4)
of =Var(X|Ge—1) = Var(e|Ge_q) (%)

The general idea is to model this loss process as accurately as possible. The GARCH models presented
in section 3.4 are concerned with ¢ and the fashion under which it evolves. However, the equation
for the conditional mean should also be specified in order to accurately capture the loss process. In
section 2.3 we examined the dependence in the return series and the findings suggested that the return
series of some FX pairs might exhibit some minor lower order serial correlation. In fact, McNeil et al.
(2015, p. 79) note that asset returns typically exhibit lower order serial correlation. Thus, to allow for
potential serial correlation in the loss series we should specify a model for the conditional mean in
which this is accounted for. Consequently, the GARCH models could then be estimated on the mean
adjusted process &;.

3.3 Conditional mean and model selection

If we assume that the conditional mean follows a stationary autoregressive-moving-average (ARMA),

it is described by
P q
fe = Do + Z DX + Z & (6)
i=1 i=1

5 A white noise process is covariance stationary and serially uncorrelated with a mean equal to zero and a finite
and constant variance. Moreover, a strict white noise process requires that the process is independent and
identically distributed (i.i.d.).
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where p is the lag order of an AR process and q is the lag order of a MA process. This representation
allows for forecasting of the conditional mean. The one step ahead forecast is obtained by

P q
Utr = Do + Z O Xeiv1 + Z 0i€t—iv1 )
i=1 i=1

Whether a process follows an AR and/or a MA process can be identified using correlograms. An AR
process of order p displays a geometrically decaying ACF and p number of spikes in the PACF (Tsay,
2010, p. 46). On the contrary, a MA process of order g is characterized by a geometrically decaying
PACF with g number of spikes in the ACF (Tsay, 2010, p. 60).

A common approach in the literature is to use the in-sample period, or the initial window to determine
the appropriate model for the conditional mean. However, as the dynamics of the return series might
change as we roll the window forward this approach might not be entirely satisfactory. As it is not
feasible to make inference from ocular inspections of correlograms for every rolling window, we will
instead employ an algorithm that chooses the appropriate ARMA model for the conditional mean for
every window to capture any potential structural changes in the return series. More specifically, this is
achieved by minimizing the Akaike information criterion. The Akaike information criterion for
ARMA models is defined by Hyndman et al. (2008) as:

AIC= —2In(L) +2(p + q + 1) (8)

where L denotes the maximized likelihood value of the fitted model. We observe in equation (8) that
the last term discourages overfitting of the model, which is a valuable property of this criterion. For
more details on the Akaike criterion, see Akaike (1974).

In order to achieve stability between the windows, the model will only be updated if there is sufficient
evidence of a structural change. The rule of thumb outlined by Burnham & Anderson (2004) states
that if the difference between one model’s AIC and the model with minimum AIC is less than 2, then
there is still substantial support for the former model. If the difference is between 4-7, the support for
the former is considerably reduced. If the difference is more than 10, then there is essentially no
support for the model. Therefore, the model will only be updated if the minimized AIC of the
identified model is at least 4 units lower than the AIC of the previously identified model (based on the
data in same window). If the difference is less than 4, we will assume that both models are
approximately equally good approximations of the mean process, thereby sticking with the former to
achieve stability.

To examine whether model selection by the minimization of the AIC generate adequate results for our
GARCH modelling purposes, the Ljung-Box test” was performed on the standardized residuals and the
squared standardized residuals from all models based on the identified ARMA process of the initial
window. These residuals should feature the properties of z; in equation (3), i.e., they should be
independent of one another. The results are presented in table 10 in Appendix. The results suggest that
both the standardized residuals and the squared standardized residuals of all models are free from any
autocorrelation up to lag 10, implying that the conditional mean is correctly specified and that our
models are suitable for the implementation of EVT.

3.4 Conditional variance models

In this section we present all GARCH-type models that will be employed in this thesis. The
parameters will be estimated using the Maximum Likelihood method. This method aims to find the
most probable parameter values given the data that is observed. See section 6.2 for further details.

7 The Ljung-box test assesses whether there is an absence of serial correlation in the data up to lag k. See section
6.4 in Appendix for more information on this test.
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Standard GARCH(1,1)

The most popularized model to capture the higher order dependence of returns is the generalized
autoregressive conditional heteroskedasticity (GARCH) model, introduced by Bollerslev (1986). The
conditional variance of the GARCH (p, q) process is deflned by

ot = w+ Zaletl+2ﬁjat] (9)

where w >0, a; >0, 8; >0, fori=1,....,qgand j =1,...,p, denoting the lagged values of the residuals
and conditional variances, respectively. The first conditions are required to ensure a non-negative
conditional variance, and the process is covariance-stationary since it is required that ¥.7_, a; +

Zle B; < 1. We can observe that the variance is defined as a weighted function of an intercept, the
shocks from the previous periods and the conditional variances from the previous periods. The
GARCH model thereby accounts for the phenomenon of volatility clustering by making the current
period’s volatility dependent on the last period’s volatility. @ measures the extent to which a shock
today feeds through into next period’s volatility, and 8 measures the degree of persistence of past
observations. Given a high value of g relative to the value of «, large past conditional variances will in
turn result in large values for o7, and vice versa, thus creating a clustering effect. If the opposite is
true, i.e., a is large relative to S, then the conditional variance reacts more quickly to shocks, resulting
in spikier volatility processes.

For all GARCH models applied in this thesis, we will set the parameters for the lagged values of the
residuals and conditional variances to be equal to 1, which is the most common modelling choice in
the literature. The standard GARCH(1,1) model can be used to produce a forecast of the conditional
variance one period ahead by utilizing the values of the residual and conditional variance at time t by

0f1 = w + agf + Pof (10)
IGARCH(1,1)

Similar to the original GARCH model, the IGARCH model of Engle & Bollerslev (1986) is
symmetrical in the sense that both positive and negative shocks are assumed to have the same effect
on the volatility process. However, contrary to the GARCH model, IGARCH is not defined to be a
covariance-stationary process. It has the same representation as the GARCH model presented in
equation (9), but instead satisfies the condition Y.7_, a; + X7_, B; = 1. Shocks to the volatility process
therefore persist, effectively giving the model infinite memory. It follows that the forecasting approach
of the IGARCH model is the same as that of the standard GARCH model, given by equation (10).

GJR-GARCH(1,1)

As mentioned in the introduction of this paper, a common empirical observation among asset returns is
that they exhibit the so-called leverage effect, referring to the fact that past negative shocks tend to
affect current volatility to a greater extent than equally large positive shocks do. To incorporate this
stylized fact into the GARCH modelling framework, Glosten et al. (1993) introduced the GJR-
GARCH (p, q) model. The model has the following representation for the conditional variance

q p
of = w+ Z(“i +yide-)et_; + Zﬂjfftz—j (11)
i=1 =1

where w >0, a; >0, ;>20,y; =0fori=1,....,qgandj =1,...,p, denoting the lagged values of the
residuals and conditional variances, respectively. The indicator I;_; is a binary variable satisfying the
condition
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_ 1if€t—i >0 12
It‘i_{Oifst_iS 0 (12)

The indicator variable thus takes the value one if there is a positive (negative return) shock, enabling
the model to distinguish between positive and negative shocks. y; measures the magnitude to which
the leverage effect impacts the volatility process. Note that the conditions in (12) would be reversed if
we were to be working with a series where losses are defined as negative numbers.

For the GJIR-GARCH(1,1) model, the one day ahead forecast of the conditional variance is given by
0t = 0+ (a +yl)et + fof (13)
EGARCH(1,1)

Another model that incorporates the leverage effect is the exponential GARCH, EGARCH (p, q), of
Nelson (1991). It has a somewhat different representation than GJR-GARCH, given by

q 14
Ai&_i T Vil&—i
log (7) = w+ ) == M N Btog (o) 1)
i=1 -t =1

L

Using the definition of the shock given in equation (3), the process can be rewritten as

q p
log (67) = @+ ) (@ize—i +¥ilzeil) + ) fjlog (o2.)) )
i=1 =1

where y; captures the leverage effect. The impact of a positive shock to the logarithm of the
conditional variance is (a; + y;) while the impact of a negative shock is («; - y;). As we are dealing
with negated return series, we expect the term y; to be positive, i.e., we expect there to be a leverage
effect in our series. Note that we do not need to impose any restrictions on w, a; and §; as we are
modelling the logarithm of the conditional variance.

The one day ahead forecast of the conditional variance of the EGARCH(1,1) model is given by

log (6/41) = @+ (az; +vlz) + Blog (f) (16)
Realized GARCH(1,1)

The Realized GARCH model, introduced by Hansen et al. (2011), provides a framework for which the
returns and the realized measure of volatility could be jointly modelled. The realized measure is
estimated using high frequency intraday return data. The authors argue that realized measures of
volatility provide more information about the current level of volatility than squared returns do, which
in turn can be useful for modelling and forecasting purposes. The structure of the Realized GARCH
(p, q) is as follows

q p
log (o7) = @+ ) ailog Ge-) + ) Bylog (o)) a7
i=1 =1
log(¢e) = &+ @log(of) +1(ze) +uy (18)
T(2) = Mz +12(28 — 1) (19)

where {, is the realized measure of volatility and u, ~ N (0, 52). Equation (18) provides a link
between the observed realized measure to the latent volatility, and is called the measurement equation.
The measurement equation can adjust the for bias caused by e.g., non-trading hours, as it is not
required that ¢, is an unbiased measure of o2. Furthermore, equation (19) is the leverage function of
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the model that enables an asymmetric response in volatility to shocks. As was the case for the
EGARCH model, we do not need to impose any restrictions on the model as we are modelling the
logarithm of the conditional variance.

The one day ahead forecast of the conditional variance of the Realized GARCH(1,1) model is given by

log (041) = w + alog (,) + Blog (s2) (20)
Realized measures of volatility

To employ the Realized GARCH model we must specify the realized measure of volatility defined in
equation (18). The most common measure of realized volatility is the realized variance, defined by

n

RV, = Y 17, (21)

=1

where 7; ;. is an intraday return vector with j = 1,...,n on the t-th day. However, as we wish to utilize all
intraday information available in the form of tick data, this measure might not be suitable. Zhou
(1996) was among the first to show that the realized variance tends to be a biased and inconsistent
estimator of the quadratic variation at this frequency as it is susceptible to microstructure noise. To
combat this issue, we will instead employ the realized kernel estimator of Barndorff-Nielsen et al.
(2009). This measure combines the intraday volatility estimation with a kernel weighting function,
making it robust to microstructure noise. The realized kernel estimator is defined as:

H
h
K(X) = Z k(=) 7 (22)
n
Yh = Z Tt Tj—|nlt (23)
j=TRT+1

where K (X) is a kernel weighting function and the intraday vector 7; . consists of logarithmic returns
calculated from mid-quote prices. We will employ the Parzen kernel function, given by

1—6x2 + 6x3 if0<x <1/2
k(x)12(1 - x)3 if1/2<x <1 (24)
0 ifx > 1

A desired property of this kernel is that it satisfies the smoothness condition k'(0) = k'(1) = 0 and is
guaranteed to produce non-negative values. The authors note that it is necessary to increase the
bandwidth H with the sample size in order to consistently estimate the quadratic variation. In this
thesis, rather arbitrarily, we choose the bandwidth H = 100 for all t. Barndorff-Nielsen et al. (2009)
provide a method for which one could estimate the optimal bandwidth, however, implementing this
approach for all t is beyond the scope of this thesis.

Prior to the estimation of the realized kernel, a cleaning algorithm is implemented to clear the data
from spurious entries. Barndorff-Nielsen et al. (2009) argue that it is paramount to employ a cleaning
approach when estimating volatility from tick data as a few spurious outliers can severely influence
the realized kernel estimator. Specifically, the cleaning approach of this paper consists of removing
every mid-quote price that deviates more than 10 mean absolute deviations from a rolling centered
median of 50 observations. Furthermore, all entries for which the bid or ask quote is equal to zero are
deleted.
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Conditional distribution

The last moment required to fully specify the GARCH models is to determine the distributional
assumption of the standardized residual - the approximation of z, of equation (3). As mentioned
previously in this section, the parameters of the GARCH models are estimated using maximum
likelihood functions, however, the exact form of which depends on the parametric structure of the
distribution of the innovations. We refer the reader to section 6.2 in Appendix for the structure of the
different maximum likelihood functions. Thus, to accurately model the volatility process the
distributional assumption is of importance. To identify the correct process for z; is rather difficult as it
is an unobservable process of the return series, but the depictions of the unconditional series presented
in section 2.3 should give a general idea about the distributional suitability.

As mentioned in the introduction of this paper, we will consider three different distributions for the
standardized residuals: the normal distribution, the student’s t-distribution and the skewed student’s t-
distribution. These will be applied to all models. The density functions of the assumed distributions
are presented in section 6.1 in Appendix. Note that the distributions of the standardized residuals are
scaled to have a mean equal to zero and unit variance to replicate the behavior of z;. This implies, for

example, that the standardized student’s t-distribution is scaled with /(v — 2) /v, where v denotes the
number of degrees of freedom.

3.5 Risk measures

For the explanations of the risk measures we follow the reasoning of McNeil et al. (2015, p. 64-72).
The first risk measure that we will consider is Value-at-risk (VaR). VaR, refers to the g-quintile of the

loss distribution. It is defined as the smallest loss x,, such that the probability of observing a future loss
Xey1 > xg081 -0

VaR,, = inf{x, € R: P(Xp1q > x4) < 1—q} (24)

Following the definition of equation (24), if a random variable X, with location u and scale o, follows
some continuous location-scale distribution F, then VVaR of X is defined as:

VaR,(X) = p+ oF~1(q) (25)

where F refers to the standardized cumulative distribution that is scaled to have zero mean and unit
variance. Assuming that the loss process X; is described by equation (2) and (3), i.e.,

Xt = U + 024

where the innovations are i.i.d. with zero mean and unit variance, the VaR of X at time t can be
defined as:

VaRg ((Xy) = pe + oVaR,(2) (26)

Note that the quintile VaR, (z) is independent of t as we assume that the innovations are i.i.d., i.e., the
probability distribution is the same for all z;.

The second risk measure of interest is Expected shortfall (ES). ES, refers to the expected value of the
loss X conditional on the loss surpassing VaR,:

ES,(X) = E(X|X > VaR,) (27)

Again, if a random variable X, with location u and scale o, follows some continuous location-scale
distribution F, then ES of X is defined as:
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-1

ES,(X)=p+ JM (28)
—q

where f refers to the density and F is the standardized cumulative distribution scaled to have zero

mean and unit variance. This density can be estimated using integrals. Analogous to the VaR

definition, for the loss process X; described by equation (2) and (3), the expected shortfall of X at time

t can be defined as:

ESq,t(Xt) = Ut + aES, (2) (29)
as the innovations are i.i.d. with zero mean and unit variance.
Forecasting

We try to capture the process described in equation (3) using variations of the ARMA-GARCH model.
Applying the definitions described above into our modelling framework, we can predict VaR and ES

by:
VaRg(Xe41) = fgp1 + 6e11VaRy(2) (30)
ESqt(Xe41) = ferr + 6e41ES(2) (31)

where Z represents the standardized residuals - the sample counterparts of the innovations — following
the standardized version of either the normal distribution, student's t-distribution or skewed student's t-
distribution. fi;, is the prediction of the conditional mean using the ARMA structure described in
equation (7), and G, is the predicted conditional volatility of the different GARCH models, given by
equation (10), (13), (16) and (20). Note that refitting the model every window implies that the
parametric structure of the assumed distribution will be re-approximated as well. As the normal
distribution is only characterized by the mean and standard deviation, the quintiles and tail densities of
the standard normal distribution will be the same for all t. For the two other distributions, however, the
exact form is determined by the parametric structure of the standardized residuals of each window,
dictated by the degrees of freedom and skewness parameter.

We will consider five different quintiles for our forecasts of VaR and ES in this thesis: g € {0.95,
0.975, 0.99, 0.995, 0.999}

3.6 Extreme Value Theory

The primary concern of this thesis is the events that are observed very rarely, i.e., extreme losses far
out in the tail of the loss distribution. Whereas traditional parametric methods are often inadequate in
capturing events of such nature, one method that has been developed specifically to model these
extreme events is Extreme Value Theory (EVT). EVT only focuses on the tail of the distribution by
relying on a subsample of large losses for its modelling purposes, which stands in contrast to
traditional modelling approaches that focuses on the conditional moments of the entire distribution. As
the tail of the empirical distribution generally differs from the tail imposed by the parametric
distribution, modelling the tail separately may accommodate us in capturing the tail behavior more
accurately. In order to identify the large past losses, two methods are usually applied - the block
maxima approach and peak-over-threshold (POT) approach. We will focus on the latter. Following the
reasoning McNeil et al. (2015, p. 146-154), large losses are defined as all observations that exceed a
certain threshold, u. If we let X ={x4, X2, . . ., Xt} denote a series of i.i.d. losses that follows the
distribution F and define y as the magnitude of the losses that exceed the chosen threshold u, the
conditional cumulative probability function F, is defined as:

Flu+y)—Fu) F()—Fu)
1-Fu) 1-F@)

E)=PriX<u+ylX>u)= (32)
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where x =y + u with y > 0. The theorem by Balkema & De Haan (1974) state that, if u is sufficiently
high, F,(y) will converge to the generalized Pareto distribution (GPD), i.e., F,(y) = G¢ g(y). The

GPD is defined as:

1
$y\ ¢ .
e s ) = 1_(1+F> . ifE#£0

_y
1—e B, ifé=0

(33)

where & and B denote the shape parameter and scale parameter, respectively. A positive value of the
shape parameter indicates heavy tails while a negative value indicates a short-tailed distribution.
Furthermore, combining (32) and (33) yields:

F(x)=(1-FW)Gep(y) + F(w)
1
k E(x—u)\ ¢
zl_f(lJ’T) (34)

where k is the number of exceedances over the threshold and T is the sample size. The g-quantile of
F(x), or VaR§"", can then be estimated by:

T(1—q)\ ¢
VaREVT = x;g =u + 4 (—( q)) -1 (35)
¢ k
Following the definition of ES given in equation (27), the ES,, of X is estimated as:
EVT _ _ Xq  B—Su 36
ESE —E(X|X>xq)—1_f+1_f (36)

There are many suggestions in the literature on how to find the optimal threshold choice. A common
approach is to use the mean excess plot. For our purposes, however, this method is not feasible as it
would require ocular inspections of our estimates of every rolling window. McNeil & Frey (2000)
keep the number of exceedances over the threshold fixed, which implies that a threshold at the

(k + 1)th order statistic is used for all windows. They suggest that k = 100, corresponding to the 90"
percentile of the distribution, provides a reasonable choice after assessing the bias and MSE for
different values of k through simulation. Likewise, DuMouchel (1983) suggests that the 90" percentile
provides a balanced trade-off between having a sufficient number of observations to reliably estimate
& and the theoretical need to describe the behavior of F(x). We will follow these recommendations
and use k = 100.

The two-stage approach of McNeil & Frey (2000) that is applied to combine EVT with the GARCH
framework is as follows: For each window, we fit the GARCH models of section 3.4 along with an
ARMA structure for the conditional mean described in sections 3.3. We then extract the standardized
residuals of each model and, using a threshold corresponding to the (k + 1)th order statistic, fit a GPD
to the k exceedances using the method of maximum likelihood. The parameters of the GPD will then
be utilized to estimate VaR and ES according to equation (35) and (36), respectively. The one step
ahead forecasts is finally obtained by utilizing the forecast of the conditional mean from the ARMA
structure described in equation (7), and the predicted volatility of the different GARCH models, given
by equation (10), (13), (16) and (20), such that:

VaRg:(Xer1) = fesr + GeprVaRg"" (37)

ESqe(Xtr1) = fg4r + 5t+1E55VT (38)
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3.7 Backtesting

The objective of backtesting is to evaluate the forecasting performance of our models. To backtest
VaR we will perform the three coverage tests of Christoffersen (1998). These tests allows us to assess
both the frequency and independence of VaR violations. To backtest ES, we will perform two tests
proposed by Acerbi & Szekely (2014) which aims to evaluate whether the right tail of the loss
distribution is accurately estimated.

Backtesting Value-at-Risk

In this section we will follow the reasoning and notation of Christoffersen (2011, p. 301-306). If our
model is accurately capturing the loss process, the probability of seeing an exceedance of VaR would
be (1 - q)-100% at each point in time. The exceedances would be unpredictable and occur
independently over time. We can define an indicator variable that takes the value 1 if there is an
exceedance and 0 otherwise as:

_ 1if X;1q > VaRg (Xe41) (39)
108 Xppq < VaRl (Xpyq)

The general null hypothesis of the tests is that I, ; are i.i.d. Bernoulli variables. A Bernoulli variable
that takes the value 1 with probability p and the value 0 with probability (1 — p) could be written as:

fUe1;p) = (1 = p)tfenaplen (40)

The first test of Christoffersen (2011, p. 302-304), called the unconditional coverage test, assesses
whether the observed number of exceedances of VaR is in accordance with the expected number of
exceedances given the choice of quintile g. If we let p denote the fraction (1 - g), and  denote the
fraction of exceedances of our risk models, the null hypothesis of this test is Hy: p = m. If we further
let T denote the full out-of-sample size, T; the number of exceedances and T, the number of
observations below VaR, the likelihood function under the null could be written as:

T
L(p) = 1_[(1 —p)t fenplen = (1 — p)lop™ (41)

t=1

The maximum likelihood estimate of the sample counterpart of r, estimated as 7 = % is given by:

i -(1-7)

To T

7 @

The null hypothesis can be assessed using a likelihood ratio test:
LRy, = —2In [L(p)/L(7)] (43)
which is asymptotically chi-squared distributed with one degree of freedom.

The second test of Christoffersen (2011, p. 304-306) is called the independence test. The idea is to
assess whether the exceedances are independent of each other, which is crucial for risk management
purposes as multiple violations in a short period of time could imply an increased risk of insolvency.
We assume that there is a dependency and that the conditional probabilities of transitions from one
state to another can be described in the following Markov sequence:

H]_:

[”00 ”01] (44)

[Pr(lt+1 =0[l; =0) Pr(lg4, =1l =0)
Ti0 ™11

Pr(ley; =0l =1) Pr(lyy; =1l =1)
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where the first term in the subscript denotes the current state and the latter denotes the upcoming state,
e.g., my, refers to the probability of an exceedance tomorrow conditional on no exceedance today. The
likelihood function of the Markov process can be defined as:

L(I1y) = (1 — mpy)Toomyy o1 (1 — 141 a0y, T (45)

T;;, 1,j = 0,1 denotes the number of observations in the out-of-sample where a j is preceded by an i.
The maximum likelihood estimates are defined as:

T01
g = ———— 46
o7 Too + Tox (40
T11
i1 = o 47
e (47)
where g = 1 — 7y1 and ;o = 1 — 771, as the probabilities have to sum to 1. The matrix of
conditional probabilities of transitions can thus be described as:
TOO TOl
= _ [foo To1 1—-1o o1 Too +Tor  Too + Tos
el -l B)-
! Mo T11 1-my 7iq T1o T4 (48)

Tio+Ti1 Tio+Tia

If there is a dependence we would expect a difference between the conditional state probabilities my,
and i, 4, i.e., the probability of observing a violation tomorrow differs depending on whether we
observe an exceedance today or not. In contrast, if the violations are independent, these conditional
probabilities are expected to be the same. Therefore, the transition matrix under independence is:

i=[12% i “9)

The null hypothesis Hy: my; = 114 can be tested using the likelihood ratio test:
LRipg = —2In [L(R)/L(T1)] (50)

where L(7) is the likelihood function from the unconditional coverage test. Again, this test statistic is
asymptotically chi-squared distributed with one degree of freedom.

The third and last test that will be performed to assess the performance of our VaR forecasts is the
conditional coverage test. It is a joint test of the unconditional coverage test and the independence test.
It is defined as:

LR = —2In [L(p)/L(1,)] (51)
which is asymptotically chi-squared distributed with two degrees of freedom.

Following the recommendations of Christoffersen (2011, p. 303), we will perform Monte-Carlo
simulations to obtain the p-values for all of the backtests of VVaR. The rationale behind this
recommendation is that testing under the chi-squared distribution may give unreliable results if the
number of exceedances is not sufficiently large. The simulation is performed by generating 999
samples of i.i.d. Bernoulli(p) variables, where each sample size corresponds to the out-of-sample size
of our currency pairs. We then estimate the simulated test statistic of the samples, denoted by

{LR (i)}?:i. Lastly, the p-values are obtained by:

p

999
= 1000 1+ Z ﬂ{ﬁa(i)>m}] (52)
1=
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where 1 denotes an indicator variable that takes the value 1 if the simulated test statistic exceeds the
test statistic obtained from the actual data, and O otherwise.

Backtesting Expected Shortfall

In contrast to VaR, backtesting ES requires an evaluation of the whole right tail of the loss
distribution. The general idea when backtesting ES is to examine the difference between the realized
losses that exceeded the quintile of interest, or VaR(, with our forecasts of ES. As ES is defined as the
expected loss conditional on the loss surpassing VaR, the difference between these losses and our
estimates of ES should preferably be small in the aggregate.

We will consider the first two of the three tests proposed by Acerbi & Szekely (2014) for the
backtesting of ES. Some of the advantages of these tests are that they do not impose any distributional
assumptions for the returns and can be directly evaluated through simulation. The structure of the tests
is as follows: We assume that the losses X; follow an unknown distribution F;, which is forecasted
using the predictive conditional distribution P,. VaRf and ESF denotes the true measures, whereas
VaRF and ESF denotes the estimated risk measures. The null hypothesis of the two tests is the same,
defined as:

Hy: P, = F, forall t

The test statistic, Z;, of the first test is defined as:

T
1 LX,

Zy=—53") TP
Nr LJES,

+1 (53)

where Np = ¥1_, I, > 1 with [, = ﬂ{xtwaRq}, i.e., an indicator of VaR exceedances, and T
corresponds to the length of the out-of-sample period. The alternative hypothesis of the test is:

Hy: ESF < ESf for all t and < for some t
VaRP = VaRf forall t

We can observe that the alternative hypothesis is a one-sided test for underestimation of ES. Acerbi &
Szekely (2014) note that this is in line with the Basel framework for VaR as it is only excesses of VaR
exceptions that signal a problem. This further implies that models that overestimate ES are favored
using this backtesting methodology. Furthermore, it can be seen that the test statistic is the average of
the VaR exceedances over the exceedances themselves, making the test insensitive to excessive
numbers of VaR violations. Furthermore, the expected value of Z; under H, is zero and negative under
the Hy, implying that negative values indicate an underestimation of ES.

The second test of Acerbi & Szekely (2014) is, in contrast to the former, also sensitive to the expected
number of VaR violations. This means that it also requires the quintile, VaR,, to be correctly

estimated. The test jointly evaluates both the frequency and size of the VaR exceedances, and is
defined as:

T
1 I.X,

Z, = —
*T T - q) LESE,

+1 (54)

The alternative hypothesis of the test is:
Hy: ESE < ESF for all t and < for some t

VaRf < VaRf forall t
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Again, the expected value of Z; under H, is zero and negative under the H,. The difference between
Z; and Z, can be found in the denominator: Ny of the former test is replaced with T(1 — q) in the
latter. T(1 — q) corresponds to the expected number of VaR violations given the quintile g, thus
making the test sensitive to both magnitude and frequency of VaR violations.

As the distributions of the test statistics are unknown, we will perform Monte-Carlo simulations to
obtain the p-values for our models. Using a similar simulation methodology to that of Acerbi &
Szekely (2014), which also bears some resemblance to the simulation approach of Christoffersen
(2011, p. 303), the p-values of the tests will be obtained as follows:

1. Simulate M number of losses {Xﬁ}il foreacht=1,...,T, using the same predictive
conditional distribution P, that was used to forecast VaR and ES.

2. Estimate Z¢ and Z& using {)?;}szl foreachi=1,...,M.

TiLy Uzt <z,) TiLs I

M

z4<2,}

3. Estimate the p-values: p;, = M

and pz, =

where 1 denotes an indicator variable that takes the value 1 if the test statistic obtained from the actual
data exceeds the simulated test statistic, and 0 otherwise. We will use M = 20,000 when we simulate
the losses for each t in the out-of-sample.

3.8 Implementation

All estimations were performed using the language R. The rugarch package of Ghalanos (2022) was
used to fit the GARCH models and produce one day ahead forecasts. The package forecast of
Hyndman et al. (2022) was used for the ARMA selection of the conditional mean. The package tea
of Ossherger (2020) was used to fit a GPD to the standardized residuals and obtain the relevant
parameters for the estimation of VaR;""and ESEVT. The realized kernel estimator was computed

using the highfrequency package of Boudt et al. (2022). Lastly, all plots presented throughout this
thesis were produced using ggplot2 of Wickham et al. (2022).

24



4. Results

As each of the five GARCH models presented in section 3.4 will be employed under three different
distributional assumptions, where we fit a GPD to the standardized residuals of each variation, we will
have a total of 30 models under evaluation. For dispositional purposes, we will use acronyms to
describe these models. The upper-case letter denotes the GARCH model, and the subscript denotes the
assumed distribution of the innovations. The superscript “EVT” indicates that the Extreme Value
Theory of section 3.6 have been applied to the model. The acronyms can be found in table 3 below.

Acronym Model description

Sh Standard GARCH(1,1) with normally distributed standardized residuals

SEVT Standard GARCH(1,1) where EVT is applied to normally distributed standardized residuals
St Standard GARCH(1,1) with t-distributed standardized residuals

SEVT Standard GARCH(1,1) where EVT is applied to t-distributed standardized residuals
Sst Standard GARCH(1,1) with skewed t-distributed standardized residuals

SEVT Standard GARCH(1,1) where EVT is applied to skewed t-distributed standardized
I, IGARCH(1,1) with normally distributed standardized residuals

[EVT IGARCH(1,1) where EVT is applied to normally distributed standardized residuals
I; IGARCH(1,1) with t-distributed standardized residuals

IEVT IGARCH(1,1) where EVT is applied to t-distributed standardized residuals
| IGARCH(1,1) with skewed t-distributed standardized residuals

IEVT IGARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals
Gp GJR-GARCH(1,1) with normally distributed standardized residuals

GEVT GJR-GARCH(1,1) where EVT is applied to normally distributed standardized residuals
Gt GJR-GARCH (1,1) with t-distributed standardized residuals

GEVT GJR-GARCHY(1,1) where EVT is applied to t-distributed standardized residuals

Gst GJR-GARCH (1,1) with skewed t-distributed standardized residuals

GEVT GJR-GARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals
E, EGARCH(1,1) with normally distributed standardized residuals

EEVT EGARCH(1,1) where EVT is applied to normally distributed standardized residuals
E; EGARCH (1,1) with t-distributed standardized residuals

EEVT EGARCH(1,1) where EVT is applied to t-distributed standardized residuals
Egt EGARCH (1,1) with skewed t-distributed standardized residuals

EEVT EGARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals
R, Realized GARCH(1,1) with normally distributed standardized residuals

REVT Realized GARCH(1,1) where EVT is applied to normally distributed standardized residuals
R; Realized GARCH (1,1) with t-distributed standardized residuals

REVT Realized GARCH(1,1) where EVT is applied to t-distributed standardized residuals

Rt Realized GARCH (1,1) with skewed t-distributed standardized residuals

REVT Realized GARCH(1,1) where EVT is applied to skewed t-distributed standardized residuals

Table 3: The acronyms of each model.

Recall that each of these models are fitted with an ARMA structure for the conditional mean following
the algorithm described in section 3.3. This algorithm detected 24 structural changes in the mean
process for EUR/USD, 63 for USD/JPY, 52 for GBP/USD, 23 for AUD/USD and 47 for USD/CAD.

To start off our analysis, we will look at the results of the VVaR backtesting procedures. Table 4 reveals
the number of Value-At-Risk exceedances of each model for each quintile and currency pair, which
can be compared to the expected number of exceedances. In table 4 we observe that it is mainly the
distributional assumption of the innovation process that differentiates the models from one another.
For g = 0.95, we observe that the number of VVaR violations of models assuming a normal
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FXPar  Bxp S, SE 5, S Su BT I I I IV I 18T Gy G G GE Gy GR By ER B P By ER R, RET R, KPRy RAT
q=0095

EUR/USD 281 291 284 316 286 310 285 280 293 306 296 306 291 284 283 307 287 301 287 264 270 291 280 289 277 277 277 291 278 290 278
USD/IIPY 282 300 297 319 295 315 292 286 301 314 294 302 294 316 309 335 307 328 306 319 314 327 296 315 295 286 283 319 286 302 286
GPB/USD 281 281 283 292 271 295 269 267 280 284 273 293 276 279 285 295 278 298 276 284 292 302 284 301 290 325 340 306 295 310 301
AUD/USD 269 302 278 322 285 296 284 295 280 315 285 286 286 303 278 320 280 293 279 296 273 313 282 287 280 291 275 307 261 269 258
USD/CAD 273 268 269 294 272 299 266 260 272 289 272 291 271 261 268 294 267 303 270 263 266 288 271 292 274 278 278 293 275 298 277
q=0.975

EUR/USD 141 160 133 151 139 149 140 150 142 144 146 142 148 156 137 156 138 151 140 154 134 154 143 147 140 161 132 148 129 153 132
USD/IPY 141 177 142 164 145 154 145 173 149 156 149 153 150 198 154 181 155 164 149 190 149 172 142 157 139 175 148 165 151 159 154
GPB/USD 140 173 153 156 139 154 138 167 149 150 144 149 143 171 146 158 135 156 137 179 157 158 146 158 153 206 187 147 145 149 145
AUD/USD 134 169 129 154 129 138 131 162 127 149 132 131 131 169 139 165 136 147 138 178 139 162 136 146 138 185 141 173 135 141 136
USD/CAD 136 155 128 143 135 150 130 151 137 140 140 149 141 161 133 152 135 151 131 161 133 146 137 151 136 164 143 153 141 157 145
q=0.99

EUR/USD 56 72 53 55 53 55 52 70 58 52 59 53 59 76 52 57 53 54 52 76 49 51 48 51 48 67 46 49 46 47 46

USD/IPY 56 98 53 54 50 50 51 100 57 52 49 44 51 113 66 62 57 52 57 107 61 66 60 54 57 112 68 7 62 64 61

GPB/USD 56 98 62 63 63 67 62 92 63 57 60 60 61 94 66 68 62 66 62 98 62 66 67 68 68 111 78 64 66 63 63

AUD/USD 54 91 54 73 53 55 54 88 57 64 55 58 56 95 57 70 56 59 56 102 60 73 55 60 55 98 59 69 53 60 55

USD/CAD 55 87 57 54 55 55 55 79 60 52 57 53 58 85 59 57 58 58 58 91 62 55 55 57 59 92 58 49 53 56 54

q=0.995

EUR/USD 28 51 28 27 29 29 30 48 29 26 30 24 31 49 31 29 32 29 31 45 31 29 31 28 32 41 26 28 26 29 27

USD/PY 28 63 29 28 28 26 27 59 31 24 29 23 30 68 34 34 31 31 31 70 36 30 31 29 30 83 35 33 37 30 37

GPB/USD 28 62 36 33 32 31 33 62 37 31 32 34 33 65 35 32 33 29 32 61 32 31 29 32 30 76 41 36 34 33 34

AUD/USD 27 59 25 39 26 30 28 62 30 32 30 24 30 63 28 36 26 27 26 64 28 37 27 25 26 63 27 33 24 26 25

USD/CAD 27 56 28 20 26 27 26 54 30 19 29 20 28 55 33 25 34 27 32 59 36 30 37 29 38 53 33 23 28 25 29

q=0.999

EUR/USD 6 20 11 9 10 8 10 21 12 8 11 8 11 20 10 7 11 7 11 19 10 5 10 5 10 15 10 6 11 6 11

USD/IPY 6 29 14 11 13 6 12 27 13 9 12 5 12 32 13 13 14 8 14 34 14 11 11 6 11 34 10 9 10 6 10

GPB/USD 6 35 15 9 16 9 15 36 14 8 14 9 13 33 14 8 14 9 13 31 16 9 16 10 16 41 8 5 8 5 8

AUD/USD 5 25 7 8 8 6 8 21 8 6 7 6 7 22 9 7 9 6 9 21 9 7 9 8 9 26 6 6 6 6 6

USD/CAD 5 20 8 3 8 2 8 20 8 1 8 1 8 21 8 2 7 2 7 24 9 3 9 5 9 21 12 4 13 6 14

Table 4: The number of Value-At-Risk exceedances of each model. The column “Exp” denotes the expected number of exceedances.

distribution tend to be somewhat closer to the expected number of exceedances than models assuming a t-distribution or a skewed t-distribution. Models assuming the latter

distributions tend to underestimate VaR at this quintile to a higher extent, as they consistently produce an excessive number of VaR violations. On the other hand, when EVT
is applied to these models, the numbers appear to be much closer to those that are expected.

Moving further out to higher quintiles of the loss distribution, there appears to be a growing divergence between models assuming a normal distribution and models assuming

heavy tailed distributions. Models assuming a normal distribution appear to vastly underestimate VaR for higher quintiles, more so the further out in the loss distribution we
get. Applying EVT to these models seem to appropriately adjust VaR upwards, resulting in numbers closer to those that are expected. Models assuming a t-distribution or a
skewed t-distribution seem to fare better further out in the loss distribution as the violations are more in line with the expected numbers. For g <0.99, the EVT augmentation

tends to slightly modify VVaR upwards for these models, often resulting in numbers closer to those that are expected. This is most apparent for the lower quintiles. For the
highest quintiles, however, the opposite appears to be true as the EVT augmentations produces more violations than the parent distributions. We observe that the violations of

models assuming either a t-distribution or a skewed t-distribution tend to be quite similar for most data sets, although the latter produces slightly fewer in general. It is,
however, not clear whether any GARCH-type model alone is yielding more accurate numbers than the others. To quantify whether the VaR violations of the models are in
accordance with the expected number of exceedances, we will examine the results of the unconditional coverage test in table 5 below.
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FXPair S, SEVT S SPT S, SET I, [T I 1P Iy 1B Gy, GE G GPY' Gy G E, EE' B EP' Ey EET R, ROV R, RET Ry RE!
q=0.95

EUR/USD 553 855 .037 .737 .086 .795 .931 504 131 .344 152 531 864 .890 .129 711 227 705 .286 510 555 913 615 .754 783 .787 533 825 595 .825
USD/IPY 249 328 021 415 038 509 .774 240 035 452 199 471 .033 .087 .002 .122 .006 .119 .021 .041 .009 377 .035 411 767 909 .029 .792 181 .793
GPB/USD  .950 .866 .480 .554 .360 465 371 959 .825 610 416 .761 .897 799 369 .859 295 744 829 482 202 837 .216 570 .010 .003 .111 403 076 .222
AUD/USD .042 545 001 311 .115 .343 100 .476 .005 .318 274 244 039 554 003 455 124 548 096 .782 .008 .375 .273 475 171 669 .017 .632 .978 .504
USD/CAD .769 .831 .166 .949 110 .673 424 952 309 950 .233 917 445 754 171 707 064 864 531 669 334 896 222 930 .731 .739 .198 874 112 .762
Rejections 1 0 3 0 1 0 0 0 2 0 0 0 2 0 2 0 1 0 1 1 2 0 1 0 1 1 2 0 0 0
q=0.975

EUR/USD 114 490 358 871 444 934 433 883 .758 637 903 539 204 725 .188 .808 375 931 228 532 256 .850 .589 .939 .088 .464 522 .284 287 479
USD/IPY .004 911 .060 .714 283 .705 .006 481 214 474 299 422 001 224 .004 222 .046 472 001 448 .005 .922 .169 872 .003 532 .047 375 .123 .239
GPB/USD  .012 .284 .189 .893 .240 .838 .030 442 415 714 474 801 012 605 .121 644 190 .769 .004 .151 131 615 127 273 .001 .001 536 .645 479 .652
AUD/USD .005 .625 .095 .613 .732 .760 .018 513 227 822 .736 .766 .006 .687 .007 .863 .281 .717 .001 .670 .020 .862 .339 .732 .001 533 .003 .932 540 .849
USD/CAD 105 487 556 897 241 582 209 933 727 739 254 677 036 .757 181 901 229 626 .037 .771 376 936 .221 972 .013 530 .144 638 .093 441
Rejections 3 0 0 0 0 0 3 0 0 0 0 0 4 0 2 0 1 0 4 0 2 0 0 0 4 1 2 0 0 0
q=0.99

EUR/USD .039 639 .839 .638 .830 .549 .061 .758 533 .671 .631 .681 .012 552 .893 630 .747 544 011 335 453 265 457 256 .159 .135 .321 .125 193 149
USD/IIPY .001 .640 .758 391 378 470 .001 .893 554 327 076 469 .001 .184 405 .891 533 901 .001 505 .217 621 .754 .891 .001 .129 .004 423 .274 .503
GPB/USD .001 425 353 358 123 424 001 360 .900 595 582 511 .001 .173 117 443 180 426 .001 423 201 .138 .114 135 .001 .009 .299 .180 .353 .354
AUD/USD .001 947 .013 892 .850 .930 .001 639 .174 839 528 .718 .001 .651 .032 .722 482 725 001 .375 .014 847 371 845 .001 463 .040 .884 .367 .851
USD/CAD  .001 .698 .894 940 .894 902 .002 457 677 743 785 622 .001 533 .737 661 .614 654 001 .288 938 945 739 537 .001 .631 409 .796 .830  .890
Rejections 5 0 1 0 0 0 4 0 0 0 0 0 5 0 0 0 0 0 5 0 1 0 0 0 4 1 2 0 0 0
q=0.995

EUR/USD .001 921 .783 867 .829 .722 .001 .862 .633 .717 .407 564 .001 566 .845 473 846 563 .003 521 .865 .596 .922 500 .020 591 936 .645 .830 .772
USD/IPY .001 .844 918 929 633 .802 .001 561 .386 .843 .305 .698 .001 .254 258 597 572 598 .001 .117 .713 586 .844 .697 .001 .184 .347 115 715 135
GPB/USD  .001 .141 .362 .443 581 .341 .001 .099 545 465 255 342 001 .193 476 356 .880 .429 .001 465 585 .856 .456 .695 .001 .023 .124 245 366 .268
AUD/USD .001 .702 .032 .843 483 764 .001 494 343 488 554 507 .001 .762 .079 855 928 .863 .001 .782 .054 925 695 .861 .001 928 264 566 .853 .677
USD/CAD  .001 862 120 .780 .925 .787 .001 554 .083 .691 .131 .834 .001 .260 .626 .246 .926 .341 .001 .107 550 .077 710 .058 .001 .239 .382 .832 .658 .691
Rejections 5 0 1 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 5 1 0 0 0 0
q=0.999

EUR/USD .001 .028 .126 .115 286 .110 .001 .038 .319 .036 .298 .034 .001 .097 .52 .035 571 .043 .001 .109 669 .105 .681 .112 .003 .113 .859 .043 .837 .035
USD/IPY .001 .008 .035 .006 .845 .028 .001 .008 .125 .033 .662 .033 .001 .006 .008 .006 .334 .004 .001 .008 .033 .052 .819 .041 .001 .109 .162 .102 .833 .102
GPB/USD  .001 .002 .137 .001 .148 .002 .001 .007 .306 .007 .134 .005 .001 .007 .300 .002 .156 .005 .001 .001 .145 .001 .106 .001 .001 .304 .710 .310 .689 .332
AUD/USD .001 405 .322 269 662 .291 .001 .308 .669 .372 .678 .391 .001 .146 400 .157 688 .132 .001 .153 410 .164 316 .160 .001 .699 694 670 .667 .673
USD/CAD  .001 310 .214 317 082 .298 .001 .287 .015 .326 .013 314 001 .322 .073 560 .079 548 .001 .147 204 131 .826 .138 .001 .011 .393 .006 .654 .004
Rejections 5 3 1 2 0 2 5 3 1 3 1 3 5 2 1 3 0 3 5 2 1 1 0 2 5 1 0 2 0 2
Total 19 3 6 2 1 2 17 3 3 3 1 3 21 2 5 3 2 3 20 3 6 1 1 2 20 5 6 2 0 2
Rejections

Table 5: The p-values of each model from the unconditional coverage test. The model is rejected if the p-value is less than 0.05.

In table 5 we can confirm many of the tendencies observed in table 4. Based on the p-values at g = 0.95, we see that models assuming a normal distribution tend to fare
slightly better than those assuming a t-distribution or a skewed t-distribution. The difference is however quite marginal as seen by the numbers of rejections. At higher
quintiles, we observe that practically all models assuming a normal distribution were rejected for most data sets. Conversely, models assuming either the t-distribution or the
skewed counterpart performed well for all higher quintiles. Overall, the EVT extension seems to be beneficial for all quintiles for models assuming a normal distribution. For
models already assuming a heavy tailed distribution for the innovation, the EVT extension seems to be helpful in adjusting VaR upwards for g < 0.99, oftentimes generating

higher p-values and fewer numbers of rejections. This is particularly evident for g = 0.95. For the highest quintile, however, we observe that the EVT extension adversely

affected the models assuming heavy tailed distributions. Overall, models with t-skewed residuals were rejected on fewer occasions than those assuming a t-distribution.

In general, all models assuming either a t-distribution or a skewed t-distribution and/or were augmented with EVT produced accurate results for the unconditional coverage
test. It is not clear whether any GARCH-type model is to be preferred over the other, or if there is a general trend amongst these models. Nonetheless, it should be noted that

the Realized GARCH(1,1) model with t-skewed innovations is the only model that was not rejected for any of the data sets for any quintile.

Next, we examine the models’ capacities in producing independent VaR violations. The independence test of Christofferson (1998) is presented in table 6 below.
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FXPair S, SET S, SEVT Sy SEU 1, 12 I I Iy I G, GE' G GPY Gy GE B, EE B EPV By EEV R, RO R, R Ry RGT
q=0.95

EUR/USD .105 .111 .123 .152 .135 .133 .234 377 .158 .408 .194 263 .187 .138 .312 150 .245 290 .164 .134 216 .213 .309 .274 .065 .095 .148 147 .076 .216
uUsD/JPY  .009 .070 .040 .017 .074 .015 .011 .074 .043 .072 .068 .072 .183 263 .075 .175 .106 .088 .096 .168 .020 .019 .071 .027 .001 .008 .003 .053 .011 .055
GPB/USD  .303 .247 .090 .159 .160 .202 .143 311 .090 .131 .076 .128 .217 .145 157 122 .234 268 .353 .348 499 357 497 455 078 .008 .076 .113 .064 .096
AUD/USD .026 .008 .006 .003 .002 .002 .014 .008 .021 .001 .001 .004 .065 .077 .008 .059 .054 .051 .014 .004 .009 .004 .014 .020 .001 .001 .003 .006 .001 .001
USD/CAD 973 832 843 909 409 .769 .711 893 750 512 533 693 .663 .808 .817 982 831 876 .939 .777 790 .687 909 .556 .580 .957 458 .766 .670 .789
Rejections 2 1 2 2 1 2 2 1 2 1 1 1 0 0 1 0 0 0 1 1 2 2 1 2 2 3 2 1 2 1

q=0.975

EUR/USD .304 331 .358 435 .072 .239 .368 .282 531 .170 .143 .095 .130 425 .130 .239 .090 .254 119 072 .139 .078 .062 .073 560 .631 .164 .298 .377 .329
USD/IPY 222 .067 .188 .139 .067 .048 .106 .094 144 089 230 .036 .060 .107 .070 .136 .207 .095 .075 .071 .045 .072 .071 .067 .074 .008 .043 .012 .036 .016
GPB/USD .165 .217 .127 .126 .129 111 121 .086 .112 .085 .184 .080 .270 .324 154 .097 .057 .067 .369 .474 .081 .184 .156 .211 .244 100 .342 303 .204 .309
AUD/USD .002 .025 .005 .022 .003 .005 .001 .012 .001 .025 .003 .024 .035 .053 .068 .044 068 .055 .039 .053 .016 .004 .006 .007 .001 .002 .001 .001 .002 .002
USD/CAD 285 608 535 722 391 .632 .683 .741 735 .828 .378 523 .893 .717 691 863 922 957 564 358 .348 .741 401 731 667 .703 545 757 .813 .658
Rejections 1 1 1 1 1 2 1 1 1 1 1 2 1 0 0 1 0 0 1 0 2 1 1 1 1 2 2 2 2 2

q=0.99

EUR/USD 476 .047 810 .036 .807 .053 .377 .065 .753 .078 .785 .071 .043 .012 .084 .012 .053 .019 .014 .023 .040 .013 .041 .014 229 643 .708 .654 683 .642
USD/JPY 971 795 .060 .037 .034 .040 975 .055 .051 .043 .026 .048 .049 .014 .076 .007 .047 .008 .144 011 .204 .006 .009 .006 .001 .009 .014 .002 .027 .018
GPB/USD .030 .923 .927 .115 974 925 .045 927 843 839 878 .905 .392 .960 .263 .108 .204 .090 .587 915 .026 .026 .029 .025 .033 .015 .010 .034 .018 .036
AUD/USD .008 .052 .010 .051 .013 .020 .035 .076 .173 .072 .018 .016 .015 .062 .018 .020 .025 .020 .017 .109 .016 .018 .011 .022 .001 .002 .001 .001 .001 .001
USD/CAD .861 273 386 .334 .322 319 .070 .199 430 .278 373 243 844 204 265 251 260 .260 .893 175 843 316 .858 .233 .860 .255 .534 408 .324 .366
Rejections 2 1 1 2 2 2 2 0 0 1 2 2 3 2 1 3 2 3 2 2 3 4 4 4 3 3 3 3 3 3

q=0.995

EUR/USD .034 518 570 .449 438 .398 .134 428 645 409 .748 344 021 355 446 .098 443 081 .021 .107 .068 .081 .050 .103 .126 .028 .058 .030 .060 .052
USD/JPY 977 .082 504 540 .645 588 .087 .096 .785 441 829 .061 .138 .108 .228 .348 .346 .361 .129 .116 415 .072 .057 .079 .018 .219 257 .161 422 .163
GPB/USD 930 .116 .101 .096 .095 .099 .929 129 .073 .090 .106 .117 .994 112 079 .101 .059 .109 .891 .083 .076 .077 .009 .011 .014 .111 115 133 .098 .119
AUD/USD .101 .044 012 .046 .086 .074 .112 .009 .009 .013 .012 .008 .126 .047 .015 .045 .012 .052 .124 .009 .116 .064 .007 .011 .001 .010 .004 .008 .007 .004
USD/CAD 127 447 906 .588 515 587 147 371 950 .392 915 460 .136 .199 678 .217 532 261 .086 .160 .326 .159 .391 146 .125 .210 .756 .482 .640 .405
Rejections 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 2 2 3 2 1 2 1 1

q=10.999

EUR/USD .007 .015 .062 .049 .114 .039 .003 .018 .123 .016 .117 .015 .009 .030 .209 .019 .229 .017 .008 .027 .476 .036 .489 .039 .009 .035 .325 .031 .321 .013
uUsSD/JPY  .005 .010 .019 .007 .350 .013 .009 .009 .066 .014 496 .012 .008 .006 .008 .013 .140 .004 .010 .012 .017 .025 .324 .025 .006 .026 .081 .031 .352 .039
GPB/USD .012 .004 .050 .005 .060 .011 .007 .007 .136 .010 .056 .010 .013 .008 .102 .008 .008 .004 .007 .007 .005 .005 .004 .010 .007 .114 477 120 .494 .140
AUD/USD .010 .178 .003 .004 .288 .006 .006 .094 .295 .183 .301 .189 .007 .062 .177 .049 .300 .052 .002 .052 .197 .068 .120 .058 .002 .322 .307 .306 .299 .304
USD/CAD .010 .096 .766 .099 919 .087 .006 .091 964 .109 .981 .119 .007 .118 904 196 912 192 012 055 .794 .055 .486 .056 .006 .009 .637 .009 .308 .007
Rejections 5 3 2 4 0 4 5 3 0 3 0 3 5 3 1 4 1 3 5 3 2 3 1 3 5 3 0 3 0 3

Total 11 7 7 10 4 10 10 6 4 6 5 9 10 6 4 9 4 6 9 7 9 10 9 12 14 13 8 11 8 10

Rejections

Table 6: The p-values of each model from the independence test. The model is rejected if the p-value is less than 0.05.

Based on the results presented in table 6, it not clear whether any of the distributional assumptions or GARCH-type models are to be preferred over the other. In general, most
models obtained quite few rejections up until g = 0.999. For this quintile, the null hypothesis that the violations are independent was rejected for the majority of the models for
most data sets. Furthermore, it should be noted that there appears to be a disproportionate number of rejections for the AUD/USD currency pair due to a large number of
consecutive violations during the financial crisis of 08.

Next we examine the results of the joint test of the two previous tests, namely the conditional coverage test. The results are presented in table 7 below.
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FXPair S, SEVT S SPT S, SET I, [T I 1P Iy 1B Gy, GE G GPY' Gy G E, EE' B EP' Ey EET R, ROV R, RET Ry RE!
q=0.95

EUR/USD 162 242 .049 278 102 257 449 544 120 449 166 424 348 261 206 .289 .262 508 .203 .248 404 418 524 466 111 181 230 .289 .116 .391
USD/IPY .010 .085 .007 .032 .020 .030 .026 .080 .010 .106 .062 .109 .062 .155 .002 .146 .003 .067 .018 .088 .002 .033 .015 .040 .004 .024 .002 .094 .016 .099
GPB/USD 569 477 157 264 224 311 199 597 174 224 108 253 422 270 214 259 285 493 613 528 374 648 387 .653 .005 .002 .064 .170 .026 .110
AUD/USD .008 .017 .001 .006 .003 .004 .009 .014 .002 .006 .001 .006 .013 .115 .002 .082 .024 .088 .012 .008 .004 .009 .020 .042 .001 .001 .001 .010 .004 .002
USD/CAD 971 956 424 994 240 .864 .706 .988 597 763 450 918 .708 922 440 949 218 972 839 .897 .627 909 509 .830 .838 .958 .365 .947 294 948
Rejections 2 1 2 2 2 2 2 1 2 1 1 1 1 0 2 0 2 0 2 1 2 2 2 2 3 3 2 1 3 2
q=0.975

EUR/USD 181 510 453 746 144 461 479 490 767 343 296 .184 142 666 .138 441 157 503 .143 109 .180 .161 .094 130 .211 .692 .309 .373 408 .478
USD/IPY 015 149 095 323 .093 .080 .013 .165 .153 .166 .283 .047 .001 .140 .002 .146 .096 .166 .001 .103 .003 .132 .084 .127 .001 .018 .010 .022 .014 .018
GPB/USD  .019 .256 .134 261 163 .240 .052 163 .189 .160 .320 .165 .053 518 .118 .184 .042 109 .010 .332 .080 .328 .147 231 .001 .002 511 524 318 .518
AUD/USD .001 .047 .006 .038 .007 .019 .001 .036 .001 .044 .008 .045 .002 .109 .006 .086 .094 .101 .001 .092 .009 .013 .011 .041 .001 .002 .001 .001 .006 .007
USD/CAD 168 662 .683 917 384 799 430 933 834 895 .381 .765 147 873 396 1.00 507 .871 123 603 449 939 351 926 .084 .812 342 864 .251 .658
Rejections 3 1 1 1 1 1 2 1 1 1 1 2 2 0 2 0 1 0 3 0 2 1 1 1 3 3 2 2 2 2
q=0.99

EUR/USD .063 212 915 219 922 .180 .094 324 831 .355 .882 .348 .016 .034 .358 .037 .233 .037 .005 .034 .137 .021 .146 .025 .169 .224 461 223 306 .229
USD/IIPY .001 .862 .240 130 .108 .150 .001 .300 .202 .126 .029 .148 .001 .021 .300 .017 .177 .016 .001 .017 .199 .014 013 .013 .001 .015 .002 .003 .079 .023
GPB/USD .001 .833 .819 .266 .356 .838 .001 .804 .986 .899 .905 .875 .001 431 119 299 195 275 .001 .855 .064 .045 .037 .040 .001 .004 .014 .056 .030 .085
AUD/USD .001 .246 .001 .260 .065 .049 .001 .319 .164 306 .056 .068 .001 .326 .007 .058 .074 .061 .001 .263 .005 .060 .018 .058 .001 .002 .001 .001 .001 .001
USD/CAD .001 576 .761 .685 679 .652 .003 .397 696 .563 .795 470 .003 445 545 489 479 510 .001 .260 .986 .651 .939 447 001 .480 529 .803 .602 .768
Rejections 4 0 1 0 0 1 4 0 0 0 1 0 5 2 1 2 0 2 5 2 1 3 3 3 4 3 3 2 2 2
q=0.995

EUR/USD .002 931 875 823 791 .704 .002 .813 .748 .694 518 572 .001 567 .794 227 793 245 005 .216 .266 .250 .233 .244 034 .143 213 174 250 .215
USD/IPY .001 255 926 942 733 887 .001 .239 511 .792 404 283 .001 .160 .372 588 559 586 .001 .120 .694 229 .263 .291 .001 .302 444 142 708 .145
GPB/USD .001 .099 .187 .209 .262 .180 .001 .077 .220 .213 .147 195 001 .130 .222 186 .265 .217 .001 .222 210 .267 .030 .021 .001 .033 .091 .142 192 .157
AUD/USD .001 .161 .009 .225 221 266 .001 .025 .025 .034 .016 .026 .001 220 .021 .223 .023 .207 .001 .023 .054 .228 .014 .020 .001 .024 .005 .018 .014 .008
USD/CAD  .001 .810 .222 871 934 868 .001 615 .140 .727 250 .779 .001 348 679 308 936 435 .001 .132 610 .098 .753 .080 .001 .341 467 797 697 .744
Rejections 5 0 1 0 0 0 5 1 1 1 1 1 5 0 1 0 1 0 5 1 0 0 2 2 5 2 1 1 1 1
q=0.999

EUR/USD .001 .033 136 123 291 115 .001 .049 322 .040 .306 .041 .001 .101 554 .042 573 .046 .001 .113 672 .107 .683 .120 .006 .120 .861 .051 .837 .040
USD/IPY .001 .012 .043 010 .845 .037 .001 .013 .130 .040 .663 .037 .001 .009 .013 .006 .337 .005 .001 .013 .037 .058 .819 .048 .001 .110 .167 .110 .834 .108
GPB/USD .001 .001 .141 .001 .153 .001 .001 .003 .311 .001 .140 .002 .001 .004 305 .002 .012 .001 .001 .001 .007 .001 .008 .001 .001 .309 .712 312 .690 .335
AUD/USD 001 410 .010 .012 663 .010 .001 311 671 374 684 394 001 .151 401 .160 689 .139 .001 .157 411 167 317 .168 .001 .701 .697 .670 .667 .676
USD/CAD  .001 312 216 319 .089 .305 .001 .288 .024 .333 .020 .318 .001 .324 .077 563 .083 548 .001 .152 .208 .141 .828 .140 .001 .015 .394 .014 .656 .005
Rejections 5 3 2 3 0 3 5 3 1 3 1 3 5 2 1 3 1 3 5 2 2 1 1 2 5 1 0 1 0 2
Total 19 5 7 6 3 7 18 6 5 6 5 7 18 4 7 5 5 5 20 6 7 7 9 10 20 12 8 7 8 9
Rejections

Table 7: The p-values of each model from the conditional coverage test. The model is rejected if the p-value is less than 0.05.

In general, the results of the conditional coverage test display similar tendencies to those of the unconditional coverage test. The models with normally distributed

standardized residuals are rejected for most currency pairs at quintiles higher than g = 0.95. It is clear that applying EVT to these models improves the accuracy of the VaR

forecasts. It is not as clear whether applying EVT to models already assuming heavy tailed distributions yield more accurate results, particularly for the higher quintiles. For g
<0.99, however, several models seem to benefit from the augmentation with EVT. Nonetheless, most models assuming either a t-distribution or a skewed t-distribution and/or

were augmented with EVT produced accurate results for the conditional coverage test. In this test, the standard GARCH(1,1) with skewed t-distributed innovations produced

the least number of rejections.

The next part of our analysis will examine the results from the backtesting of Expected shortfall. The result from the first test of Acerbi & Szekely (2014) is presented in table

8 below.
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FXPair S, SR S, SPVT Sy SR 1, I I, VT Iy 18T Gy, GE' G GE' Gy GR' B, ER B, EP By ERT Ry, R R, RV Ry RET
q=0.95

EUR/USD .000 427 753 431 729 407 .000 .333 820 .403 845 276 .000 .237 412 300 .396 .288 .000 .193 346 .179 .347 117 000 .460 553 478 554 429
USD/IIPY .000 460 609 695 903 .652 .000 .386 .926 .522 972 510 .000 .294 330 .288 .709 .385 .000 .259 401 436 .709 430 .000 .014 226 .061 .467 .059
GPB/USD  .000 .012 .056 .036 .067 .026 .000 .003 .161 .028 .227 .034 000 .011 053 .051 .065 .048 000 .014 075 .022 .036 .030 .000 .022 .396 .188 .396 .259
AUD/USD .000 .390 .098 564 .381 522 .000 .304 .309 .394 605 .395 .000 .217 .081 379 370 .370 .000 .048 .038 .381 239 296 .000 .185 .054 182 .074 .104
USD/CAD  .000 .395 947 391 924 266 .000 .316 987 291 972 306 .000 .230 .877 .172 901 275 .000 .045 807 .082 .736 .111 .000 .181 .933 .280 .811 .236
Rejections 5 1 0 1 0 1 5 1 0 1 0 1 5 1 0 0 0 1 5 3 1 1 1 1 5 2 0 0 0 0

q=0.975

EUR/USD .000 .074 434 190 427 205 .000 .136 .552 .203 509 .242 000 .039 .356 .059 .290 .071 .000 .034 539 .090 .291 .046 .000 .162 .625 .085 .744 132
USD/IPY .000 .110 .727 397 .894 417 .000 .239 934 480 992 497 000 .104 621 .114 778 121 .000 .017 560 .115 .773 .100 .000 .003 .269 .031 .666 .058
GPB/USD  .000 .024 .082 .024 .052 .016 .000 .006 .180 .040 .116 .034 000 .005 .083 .011 .051 .014 000 .015 .077 .009 .036 .019 .000 .125 141 044 128 .048
AUD/USD .000 .043 015 .032 .063 .046 .000 .014 .075 .031 .141 .023 .000 .113 .086 .166 .260 .223 .000 .032 .045 .143 187 .162 .000 .167 .236 .276 .147 .256
USD/CAD  .000 122 955 252 972 135 000 .256 .992 385 995 413 000 .061 964 .098 941 .060 .000 .006 .907 .030 915 .024 000 .136 .986 .244 953 277
Rejections 5 2 1 2 0 2 5 2 0 2 0 2 5 2 0 1 0 1 5 5 1 2 1 3 5 1 0 2 0 1

q=0.99

EUR/USD .000 .017 124 025 .165 .020 .000 .040 .244 .074 304 .075 .000 .004 .082 .010 .048 .006 .000 .001 .066 .002 .042 .001 .000 .003 .065 .004 .043 .004
USD/PY .000 .002 .137 .003 331 .005 .000 .014 489 .004 549 006 .000 .041 .143 001 245 006 .000 .001 .302 .081 .375 .039 .000 .012 .642 .009 .709 .006
GPB/USD  .000 .002 .049 .021 .066 .014 .000 .001 .058 .014 .060 .017 .000 .002 .094 .011 .037 .011 .000 .000 .053 .006 .038 .008 .000 .042 272 .065 .196 .030
AUD/USD .000 .012 .105 .006 .030 .009 .000 .016 .100 .007 .233 .008 .000 .026 .097 .060 .152 .058 .000 .008 .110 .016 .120 .014 .000 .084 .116 .093 .205 .080
USD/CAD .001 271 951 116 .920 .117 .000 .247 989 219 973 250 .000 .092 912 .064 .888 .077 .000 .054 .824 .005 .782 .021 .000 .057 .810 .032 .775 .027
Rejections 5 4 1 4 1 4 5 4 0 3 0 3 5 4 0 3 2 3 5 4 0 4 2 5 5 3 0 3 1 4

q=0.995

EUR/USD .000 .013 110 .024 .196 .034 .000 .015 .229 .030 .136 .036 .000 .007 .053 .018 .061 .013 .000 .005 .167 .007 .085 .008 .000 .004 .199 .005 .237 .006
USD/PY .000 .001 .145 002 359 .001 .000 .005 237 .004 538 .007 .000 .009 .197 .001 492 .007 .000 .001 .145 025 492 .017 .000 .005 .256 .032 .551 .036
GPB/USD  .000 .002 .042 .008 .018 .007 .000 .003 .063 .009 .089 .011 .000 .001 .021 .006 .007 .005 .000 .000 .014 .001 .011 .001 .000 .021 417 .027 .227 .024
AUD/USD .000 .001 .093 .001 .045 .002 .000 .004 .059 .004 .020 .004 .000 .006 .078 .003 .032 .003 .000 .000 .064 .002 .008 .001 .000 .005 .051 .005 .022 .003
USD/CAD  .006 179 900 .032 966 .040 .007 .150 955 .164 .921 .110 .001 .126 .954 221 930 .144 .000 .115 951 174 897 214 .000 .076 .671 .015 517 .016
Rejections 5 4 1 5 2 5 5 4 0 4 1 4 5 4 1 4 2 4 5 4 1 4 2 4 5 4 0 5 1 5

q=0.999

EUR/USD .000 .064 519 .052 483 .050 .001 .085 .699 .086 .694 .081 .000 .020 .106 .041 .121 .039 .000 .010 .109 .015 .066 .011 .000 .032 .271 .040 .329 .042
USD/IPY .001 .161 567 .169 .719 .134 .001 .140 .740 127 811 .122 .003 .089 553 .047 .763 .126 .001 .024 527 .127 .632 .123 .001 .012 .262 .030 .384 .031
GPB/USD  .000 .013 .099 .035 .065 .026 .000 .011 .088 .024 .091 .019 .000 .005 .034 .017 .036 .014 .000 .005 .058 .014 .033 .014 .000 .005 .039 .009 .026 .008
AUD/USD .003 .001 .014 .002 .006 .002 .001 .002 .011 .001 .017 .001 .001 .003 .017 .005 .013 .005 .000 .002 .011 .003 .034 .003 .004 .001 .014 .003 .011 .001
USD/CAD .094 125 894 082 .801 .091 116 141 702 147 678 131 038 .054 871 .046 692 .037 .038 .037 911 .064 945 .065 .033 .160 .684 .201 .668 .242
Rejections 4 2 1 2 1 2 4 2 1 2 1 2 5 3 2 5 2 4 5 5 1 3 2 3 5 4 2 4 2 4

Tof[al . 24 13 4 14 4 14 24 13 1 12 2 12 25 14 3 13 6 13 25 21 4 14 8 16 25 14 2 14 4 14

Rejections

Table 8: The p-values of each model from the Z1 test. The model is rejected if the p-value is less than 0.05.

By inspecting the results of table 8, it is clear that models with normally distributed standardized residuals underestimate ES. The null hypothesis is rejected for virtually all
quintiles and currency pairs. The augmentation with EVT provides somewhat of a remedy to these models, although it is to a comparatively small extent. In contrast, models
in which the innovations are assumed to follow either a t-distribution or skewed t-distribution appear to generate fewer rejections in general. It is not obvious whether any of

these distributions is superior to the other. It appears that these models do not gain from the EVT approach as this procedure results in more rejections overall.

Similar to what was observed for the backtesting results of VaR, it is not clear whether any particular GARCH-type model alone stands out when forecasting ES. In this test,

the symmetrical IGARCH model with t-distributed innovations produced the least number of rejections.

As was noted earlier, this test is not sensitive to excessive numbers of VaR violations. Therefore, it has to be looked at in conjunction with the tests for VaR presented above.
Alternatively, one can turn to the second test of Acerbi & Szekely (2014), in which this is accounted for. The result of this test is depicted in table 9 below.

30



FXPair S, SEVT g SEVT S SEVT 1, IBVT 1. IEVT 1, IBYT G, GEVT G, GEVT Gy GEYT E, EEVT E, EEVT E,, EEYT R, REVT R, REVT R, REVT
q=0.95

EUR/USD .048 416 037 .371 .067 .387 .125 .196 .130 .176 .137 231 .053 .338 .063 .315 .105 .308 .374 670 .250 430 .281 474 235 589 295 575 313 .559
USD/JPY 001 .182 025 260 .081 .306 .018 .111 .111 238 336 238 .000 .037 .001 .051 .006 .043 .000 .020 .004 .188 .049 202 .003 247 .009 246 .120 .239
GPB/USD .009 .192 .114 464 093 501 061 202 .302 .385 .171 .329 .009 .164 .080 .337 .063 .383 .005 .089 .045 .198 .032 .119 .000 .000 .069 .135 .044 .088
AUD/USD .000 .263 .000 .176 .046 .183 .001 .209 .002 .148 .170 .137 .000 .223 .00l .226 .062 .240 .000 .242 .001 .192 .102 .210 .000 .253 .002 549 .336 .634
USD/ICAD 178 558 231 489 142 595 356 .465 .401 456 329 488 242 542 195 541 087 506 .170 500 .270 406 173 .351 .050 .288 .239 .383 .124 .330
Rejections 4 0 3 0 1 0 2 0 1 0 0 0 3 1 2 0 1 1 3 1 3 0 2 0 3 1 2 0 1 0
q=0.975

EUR/USD .004 .616 .188 .468 .235 .444 022 316 .404 259 452 216 .003 .383 .095 431 159 .377 .011 555 .144 300 .254 359 .008 .698 .294 750 .203 .685
USD/JPY 000 .349 054 .339 263 .346 .000 .199 244 244 425 223 000 .073 .001 .074 .037 .117 .000 .118 .008 .347 157 442 000 .104 018 .096 .093 .070
GPB/USD .000 .057 .044 274 049 288 000 074 .137 .177 130 .184 000 .112 .033 .352 .035 .312 .000 .023 .031 .110 .021 .045 .000 .000 .189 .189 .150 .196
AUD/USD .000 .530 .013 .516 .250 .462 .000 .560 .050 .415 504 .438 .000 .257 .002 .359 .104 311 .000 .211 .003 .352 .122 297 .000 .219 .000 .389 .205 .391
USD/ICAD .004 .692 460 .491 278 .630 .014 .429 634 .348 380 .321 .001 501 .219 446 211 568 .001 419 327 .328 207 .349 .001 214 .228 .294 116 .197
Rejections 5 0 2 0 1 0 5 0 0 0 0 0 5 0 3 0 2 0 5 1 3 0 1 1 5 1 2 0 0 0
q=0.99

EUR/USD 000 476 454 467 469 513 .001 .259 .649 242 615 239 .000 .402 .328 417 452 463 .000 598 623 .622 .605 .601 .008 .779 .737 .771 795 .768
USD/PY 000 .445 499 616 .753 572 .000 .304 .706 .683 954 591 .000 .042 .148 221 551 .189 .000 .094 .082 .220 580 .322 .000 .022 .009 .101 .210 .125
GPB/USD .000 .046 .085 .054 .031 .060 .000 .035 .254 .084 .148 .067 .000 .016 .033 .057 .032 .053 .000 .026 .038 .013 .020 .010 .000 .001 .124 .046 .131 .079
AUD/USD .000 .318 .003 .335 .274 .293 .000 .191 .046 .241 225 .207 .000 .200 .009 .263 .171 259 .000 .086 .003 .266 .137 .262 .000 .167 .007 .392 .156 .334
USD/CAD .000 .332 .664 .397 598 .399 .000 .198 .797 312 733 272 .000 .207 .489 .235 429 .239 .000 .102 557 .310 .445 171 .000 .225 .820 .458 .504 .398
Rejections 5 1 1 0 1 0 5 1 1 0 0 0 5 2 2 0 1 0 5 1 2 1 1 1 5 2 2 1 0 0
q=0.995

EUR/USD .000 .294 473 .246 .353 204 .000 .240 585 .202 .702 .160 .000 .119 290 .098 .299 .127 .000 .111 .350 .112 .380 .078 .001 .395 .440 .387 .379 .319
USD/PY 000 .207 .388 .286 .618 .349 .000 .142 .723 253 .840 .204 .000 .041 .099 112 246 .111 000 .016 .260 .179 .428 217 .000 .037 .145 .022 .379 .024
GPB/USD .000 .008 .073 .042 .101 .028 .000 .006 .141 .034 .065 .025 .000 .008 .081 .022 .134 .032 .000 .014 .094 054 .058 .038 .000 .002 .080 .052 .135 .048
AUD/USD .000 .367 .007 .287 .162 .187 .000 .116 .091 .110 .510 .112 .000 .219 .022 .324 .323 324 .000 .161 .013 .251 411 298 .000 .306 .044 467 .390 .444
USD/CAD .000 .387 .946 .487 .649 498 .000 250 .972 314 951 .369 .000 .106 .770 .086 .627 .144 000 .036 .434 .027 .477 019 .000 .096 .815 .305 .659 .242
Rejections 5 1 1 1 0 1 5 1 0 1 0 1 5 2 1 1 0 1 5 3 1 1 0 2 5 2 1 1 0 1
q=0.999

EUR/USD .000 .008 .099 .017 .169 .017 .000 .004 .209 .009 .204 .009 .000 .010 .189 .006 .194 .006 .000 .007 .494 006 .461 .006 .000 .015 .370 .006 .391 .006
USD/JPY 000 .000 .035 .002 .481 .005 .000 .002 .153 .005 .654 .005 .000 .002 .009 .000 .232 .001 .000 .000 .033 .012 461 .012 .000 .013 .077 .016 .401 .017
GPB/USD .000 .000 .040 .000 .032 .000 .000 .000 .077 .000 .036 .001 .000 .000 .050 .000 .023 .000 .000 .000 .026 .000 .008 .000 .000 .022 .369 .028 .326 .026
AUD/USD .000 .040 .043 .017 .42 .018 .000 .020 .153 .031 .180 .033 .000 .009 .097 .009 .186 .009 .000 .005 .073 .008 .053 .008 .000 .110 .090 .091 .173 .117
USD/ICAD .000 .108 .895 .104 .948 .104 .000 .110 .985 .109 .984 .107 .000 .107 .957 .190 .947 .185 .000 .045 .889 .049 .653 .050 .000 .005 .743 .002 .428 .001
Rejections 5 4 3 4 1 4 5 4 0 4 1 4 5 4 1 4 1 4 5 5 2 5 1 4 5 4 0 4 0 4
Total 24 6 10 5 4 5 22 6 2 5 1 5 23 9 9 5 5 6 23 11 11 7 5 8 2310 7 6 1 5
Rejections

Table 9: The p-values of each model from the Z2 test. The model is rejected if the p-value is less than 0.05.

When also considering the expected number of violations for each quintile, we see that the models that were augmented with EVT do comparatively better. In the first test of
Acerbi & Szekely (2014), where excessive numbers of violations were not considered, the EVT-models tended to underestimate the density of the loss distribution to a
comparatively high extent in comparison to models assuming a t-distribution or skewed t-distribution. However, as was evident in table 4 and table 5, the EVT-models often
generated higher quintile forecasts for q < 0.99 than those only assuming heavy tailed distributions for the innovation, resulting in more accurate estimates of VaR. The
combination of these factors reflect the results of the second test of Acerbi & Szekely (2014).

Again, we observe that models in which the innovations are assumed to follow a skewed t-distribution were rejected on fewer occasions than those assuming a t-distribution.
These models were generally improved by the EVT approach for q <0.99, whereas it had an opposite effect for higher quintiles. For models assuming a normal distribution
for the innovation, the EVT approach seems to be beneficial for all quintiles.

Similar to what has been observed for all backtests, it is not obvious whether any GARCH-type model is outperforming the others. In this test, the IGARCH(1,1) and Realized
GARCH(1,1) with t-skewed innovations produced the fewest number of rejections.
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5. Conclusion

The primary conclusion of this thesis is that the distributional assumption of the innovations is the
most important determinant in producing accurate one day ahead forecasts of VaR and ES. Models in
which the innovations were assumed to follow a normal distribution consistently underestimated both
VaR and ES. It is clear that the two-stage EVT approach of McNeil & Frey (2000) improved the
accuracy of the forecasts of these models, regardless of quintile. This approach does not, however,
appear to be as effective if the innovations are assumed to follow a heavy tailed distribution, such as
the t-distribution or the skewed t-distribution. Models in which the innovations were assumed to
follow any of these distributions generally produced accurate forecasts of VaR and ES, particularly for
higher quintiles. In applying the two-stage EVT approach to these models, the quintile forecasts for g
< 0.99 were in many instances improved. For higher quintiles, however, we found that this approach
tended to impair the forecasting accuracy of these models. Hence, the usefulness of the EVT approach
appears to be dependent on the distributional assumption as well as the choice of quintile. Overall,
models assuming a skewed t-distribution for the innovation process were found to produce the least
number of rejections.

We cannot conclude that more complex extensions of the standard GARCH(1,1) model yield more
accurate forecasts of VaR and ES, as no discernible trend amongst the conditional volatility models
was observed. As noted earlier, however, the bandwidth parameter of the realized kernel was not
chosen according to the recommendation of Barndorff-Nielsen et al. (2009). For further research it
may therefore be interesting to examine whether using the optimal bandwidth enhances the
performance of the Realized GARCH model of Hansen et al. (2011). Another area that may be of
interest is to examine how different choices of thresholds affect the forecasting performance of models
combined with EVT.
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6. Appendix

6.1 Density functions

Normal distribution
The density function of the normal distribution is:

1 _(z=m)?

202

f(2) =

e
ovV2m
Student’s t-distribution

The density function of the student’s t-distribution is:

PR
f(2) = —\/751" (%) <1 + ?)

where v denotes the degrees of freedom and I'"(-) is the Gamma function.
Skewed student’s t-distribution

According to Fernandez & Steel (1998), the density function of the skewed student’s t-distribution can
be defined as:

2 z
f(z) = —1{f (E) Iizs01 + f(fZ)I{Z<0}}}
$+e

where f(*) is the student’s t-distribution and ¢ is the skewness parameter. I, denotes an indicator
variable.

6.2 Maximum Likelihood estimation

The Maximum Likelihood approach estimates the parameters so that they maximize the likelihood that
the assumed model produced the observed data. This is done by maximizing the likelihood function
with respect to the unknown parameters @. This function can formally be defined as:

L©1Gn-) = | [oel6e)
t=1

where G denotes the information set and ¢ is the density function of the innovation process. The form
of the likelihood function depends on the assumed distribution of the innovations.

Normal distribution

If the innovations are assumed to follow a normal distribution, the log-likelihood function is:

L 2
n 1 ) &f

log[LL(61G,1)] = —3log(2m) =5 > [1og<at )+ —2]
t=1 K
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Student’s t-distribution

If the innovations are assumed to follow a t-distribution, the log-likelihood function is:

log[L(O]G,,_1)] = log [F (vziﬂ —log [F (g)] - %1og(n(v -2))

1% 2
_ E; [log(atz) +(1+ v)log<1 + —Jz(jt_ 2)>]

t
Skewed student’s t-distribution

If the innovations are assumed to follow a skewed t-distribution, the log-likelihood function is:

log[L(0]|G,,—1)] = log [F (v : 1)] — log [F (g)] - %log(n(v —2)) +log 52—1 + log (s)
+ —
3

1% S& m L
—Etzl [log(atz) + (1 + v)log (1 + ((&2(17 s + — 2>€ I >]

where

6.3 Functions

Autocorrelation function
The autocorrelation function of a covariance-stationary process X; is defined as:

p(h) = p(Xp, Xo) = y(W)/y(0)

where p(h) denotes the autocorrelation of lag h.

6.4 Tests
Jarque-Bera test
The Jarque-Bera test examines if the data have the kurtosis and skewness of a normal distribution. The

null hypothesis is that the data is generated from a normal distribution, while the alternative hypothesis
is that it is not. The test statistic is defined as:

n

JB 6<Sz+%(1(—3)2)

where n is the number of observations, S refers to the skewness, and K refers to the kurtosis.
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Ljung-box test

The Ljung-box test assesses whether there is absence of serial correlation in the data up to lag k. The
null hypothesis is that there is no serial correlation, while the alternative hypothesis states that the data
is dependent. The test statistic is defined as:

h o
Q=n(n+2) Z Pk
n—k
k=1
where n corresponds to the sample size, g, refers to the sample autocorrelation at lag k, h refers to the
number of lags to be tested. The test statistic is asymptotically chi-squared distributed with h degrees

of freedom. The Ljung-box test of standardized residuals and the squared standardized residuals of the
initial window is presented in table 10 below.

Model Ljung-Box  EUR/USD  JPY/USD GBP/USD AUD/USD CAD/USD
Sy Q(10) 4.64 9.97 753 7.76 6.86
Q2(10) 9.75 13.06 5.33 11.91 12.81
St Q(10) 4.57 10.13 7.55 8.23 6.08
Q2(10) 9.69 1351 5.6 12.38 13.37
Set Q(10) 458 10.04 7.55 9.55 6.15
Q2(10) 9.62 13.51 5.55 13.46 13.33
I, Q(10) 4.84 9.8 7.57 7.29 6.61
Q2(10) 8.63 13.69 5.61 11.03 13.7
I, Q(10) 4.82 9.98 76 7.7 6.38
Q2(10) 8.63 13.84 6.16 11.44 13.73
I Q(10) 4.76 9.96 7.58 8.59 6.42
Q2(10) 8.48 13.81 6.20 12.15 13.63
Gy, Q(10) 4.66 10 7.93 7.80 6.52
Q2(10) 10.19 12.55 5.97 12.79 12.33
Gy Q(10) 4.68 10.08 7.91 7.43 6.17
Q2(10) 10.24 13.28 6.77 13.32 12.52
Gt Q(10) 4.62 10.09 8.03 8.57 6.23
Q2(10) 10.11 13.12 7.38 18.07 12.5
E, Q(10) 5.01 9.93 7.58 7.35 6.48
Q2(10) 11.15 11.67 6.31 12.59 11.83
E, Q(10) 4.84 10.06 7.64 7.71 6.31
Q2(10) 10.8 11.81 4.73 13.28 11.8
Eq, Q(10) 4.82 10.03 7.64 8.5 6.31
Q2(10) 10.7 11.75 4.75 14.58 11.8
R, Q(10) 6.59 9.94 7.41 8.23 6.52
Q2(10) 8.69 12.99 4.03 15.76 13.88
R, Q(10) 8.08 10.37 7.40 8.42 6.76
Q2(10) 8.94 13.08 4.03 16.54 14.1
Ry Q(10) 6.56 10.36 7.42 9.41 14.09
Q2(10) 8.67 13.08 4.04 17.7 6.75
ARMA (p, q) ARMA (1,1) ARMA (1,00 ARMA (0,00 ARMA (1,0) ARMA (0,1)

Table 10: Ljung-box test of the standardized residuals and squared standardized residuals of the initial window.
Q(10) refers to the Ljung-box test of lag length 10 of the standardized residual while Q2(10) refers to the same
for the squared standardized residuals. The bottom row refers to the identified ARMA process of the initial
window using the algorithm described in section 3.3. The last 5 columns reports the test statistics of the test. *
and ** denote significance at the 5% and 1% levels, respectively. See Table 3 for a description of the acronyms.
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