


Abstract

This thesis presents a numerical study of the emission of jets by a trapped Bose-Einstein
Condensate (BEC). The Gross-Pitaevskii equation is used for simulation of this phenomenon.
When the scattering length of a trapped BEC is periodically modulated it emits jets of matter.
We study how the pattern of these emitted jets changes when a BEC is trapped in a circular
trap, an equilateral triangular trap, a square trap and a rectangular trap. Furthermore, we
look for correlations between emitted jets and the build-up of waves in the BEC before the
emission of jets. The main results from the thesis are, for a BEC trapped in a circle there is
a correlation between emitted jets and the build-up of waves in the BEC before the emission
of jets. But this correlation does not hold for BECs in polygon-shaped traps.

i



Acknowledgements

I would like to thank my supervisors Stephanie Reimann and Philipp Stürmer, for their
continuous guidance and support during this Master’s thesis. I would also like to thank my
girlfriend Zhanna Kuhrij for her continuous emotional support, and my parents for giving me
the oppurtunity to study physics. I thank Mikael Nilsson Tengstrand for allowing me to use
his code. Furthermore, I would like to thank my friend Eimantas for all the great discussions
we have had over the past year and my girlfriend’s parents for always being accommodating
and helpful. For proof reading my thesis I thank Stephanie Reimann, Philipp Stürmer and
Koushik Mukherjee for their valuable suggestions.

ii



Acronyms

BEC Bose-Einstein Condensate

GPe Gross-Pitaevskii equation

iii



Contents

1 Introduction 1

2 Theory 4
2.1 Bose-Einstein Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Deriving the Modelling Equation . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Pseudo-Second Order Spectral Algorithm to Solve the GPe . . . . . . . . . . 7

2.3.1 Finding the Ground State . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 1D Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Algorithm for Rotating Anisotropic Harmonic Trap . . . . . . . . . . 9
2.3.4 Solving The Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . 10

2.4 Emission of Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Modelling the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Physical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Trap Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Parametric Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Results 16
3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Circle Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Density and Momentum Plots for Polygonal Traps . . . . . . . . . . . . . . . 23
3.4 Density Wave Amplitude for Polygonal Traps . . . . . . . . . . . . . . . . . 26
3.5 Structure Factor and Emitted Jet Population for Polygonal Traps . . . . . . 27
3.6 Emitted Jet Population at Different Times for Polygonal Traps . . . . . . . . 29
3.7 Asymmetry in Real and Momentum Space for Polygonal Traps . . . . . . . . 31

4 Conclusions 33

5 Outlook 35

A Functional Derivatives 39

B Parametric Resonance 42

C Making the GPe dimensionless 44

iv



Chapter 1

Introduction

In the last two decades, the field of ultra-cold gases has become a hot research topic. But its
inception can be traced back to almost a hundred years ago. In the early 1920s, S. N. Bose
derived a coefficient from Planck’s law-which was related to black body radiation-without any
assumptions from electrodynamics. Later on, he sent his work to A. Einstein in hopes that it
would be translated into German and published. A. Einstein agreed to translate and publish
his work [1]. Without knowing, S. N. Bose had used a radical idea that two photons with
the same energy were completely indistinguishable. This was a departure from the classical
picture that identical particles could be labelled and tracked. A. Einstein, later on, realized
this and published two papers to generalize S. N. Bose’s ideas and predicted the existence of
a Bose-Einstein Condensate (BEC) in 1924 and 1925 [2, 3].

As an ideal monoatomic gas is cooled to 0 K it undergoes Bose-Einstein condensation
which is characterized by all atoms being in the same quantum state [4]. When A. Einstein
had predicted the existence of BEC he had assumed that there was no interaction between
the particles. This often is not the case in reality as atoms usually interact with each other.

Following the initial theoretical prediction of BECs, a large amount of effort was placed
into furthering its theoretical description. During the 1960s, E. P. Gross and L. P. Pitaevskii
independently arrived at an equation that modelled the dynamics of a BEC when atoms were
weakly interacting with each other [5, 6]. The equation today is known as the Gross-Pitaevskii
equation (GPe). At that time, it was not known whether it gave realistic predictions since
no BECs had been experimentally found.

It was not until 1995 that BECs were experimentally realized [7, 8]. The reason it took
such a long time was that new trapping and cooling methods needed to be developed [9–11].
Since then the field of ultra-cold atomic gases has become a highly pursued research topic.
Following the experimental discovery, there have been many agreements between predictions
made by the GPe and experiments.

Let us recapitulate some of the interesting phenomena exhibited by BECs: When a large
amount of angular momentum is added to a BEC, a grid pattern of vortices may appear
[12]. This phenomenon has been extensively studied using the GPe [13–17]. Furthermore,
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the appearance of these vortices suggests links to superfluidity [18]. Another phenomenon
is that of superradiant Rayleigh scattering where pulses of light are sent into a BEC which
then absorbs the light and re-emits it along well-defined directions [19]. In 2015, what is now
called a dilute self-bound BEC was theoretically predicted by D. S. Petrov [20]. These dilute
self-bound BECs were later experimentally found [21–23]. The droplets densities are much
less than air yet liquid droplets still form. This goes against predictions of classical van der
Waals theory which predicts that liquid droplets cannot exist at such densities. In addition,
these dilute self-bound BECs are predicted to form vortices [24].

Finally, we arrive at the phenomenon that inspired this thesis. In 2017, researchers at
Chicago university discovered a new phenomenon exhibited by a BEC [25]. They had shaped
a BEC into a two-dimensional disk using lasers and then varied the scattering length between
the particles in a sinusoidal pattern. As a result, jets of matter were observed escaping from
the trap (like the one shown in figure 1.1). These jets formed an asymmetric pattern. A year
later, another group experimentally confirmed the results of [25] and showed phenomenologi-
cal agreement between the experiment and predictions made by the GPe [26]. One significant
result shown from their simulations was that momentum in the system was always conserved
and that there was a strong correlation between the direction of the waves that formed in
the BEC and the emitted jet pattern. After that, in 2020, theoretical and experimental work
was done on how these jets were affected when the BEC was trapped in a circular trap. They
showed that these jet patterns were dramatically altered compared to the non-rotating case.

To our best knowledge, no one has studied the emission of jets from polygon-shaped traps.
To this end, we are interested in replicating the simulations from [26] and testing how the
pattern of the jet changes for polygonal-shaped traps. Furthermore, we would like to see
whether the main conclusions from [26] hold for polygonal traps.

The structure of this thesis is as follows. Firstly, we will give a brief introduction to what
characterizes a BEC. Then, by using the characteristics of a BEC, the GPe equation will
be derived. After that, an in-depth explanation of the algorithm, which is used to get the
results, will be given. To better understand the algorithm, an example of a one-dimensional
harmonic oscillator will be used. Finally, the algorithm will be generalized to solve the GPe.
Then, the main problem of this thesis will be defined and a model for the physical problem
will be presented. In the final section of this chapter, by studying the model in a simplified
system, a relation for resonating waves will be derived.

The third chapter is dedicated to the results and discussion. The first section of the chap-
ter will replicate the results form [26]. For the remaining section, the results of the polygonal
traps will be presented and compared to each other.
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Figure 1.1: Shows the relative density distribution n(r⃗)/n0 of a BEC, where n0

is average density of the ground state. The plot has been simulated by the GPe
and shows the BEC after its scattering length has been periodically varied for 50
ms. Jets which form an asymmetric pattern can be seen escaping the trap. The
color bar has a max value of 0.1 because it makes the jets appear clearly.
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Chapter 2

Theory

We start this thesis by giving a brief overview of the physics of Bose-Einstein condensation.
After that, a Schrödinger-like equation called the Gross-Pitaevskii equation (GPe) will be
derived from first principles. The method of solving this equation numerically via imaginary
time propagation will be discussed before turning to the central problem for this thesis.

2.1 Bose-Einstein Condensation

To understand what a BEC is some basic results of quantum mechanics must be stated.
One result is that bounded systems exhibit discrete energy levels. This is true for N non-
interacting particles in a box.

A question to ask is whether all the non-interacting particles can occupy the same energy
level. The answer depends on the type of particle. According to QM, a particle can either
be a boson or fermion. The difference between the two is related to the spin of the particle:
bosons have integer spin and fermions have half-integer spin. In a many body system, bosons
with the same spin can occupy the same energy level, there is no restriction. However, for
fermions, only particles with different spins can occupy the same energy level. The other
fermions are forced to occupy different energy levels [27].

A BEC is a state of matter just like a solid, liquid or gas. To experimentally make a
BEC, monoatomic gases of specific atomic species are used [4]. When such a gas is cooled
to near 0 K it transitions into a BEC. The difference between a gas and BEC is that all the
atoms in a BEC can occupy the same quantum state which means a BEC is made of bosons.

In the next section we derive the Schrödinger-like equation that will help us model the
jet emissions due to changing the scattering length of the BEC.

2.2 Deriving the Modelling Equation

A single system may be described by multiple models. For example, Hook’s law models the
behaviour of how an elastic band stretches when a force is applied to it. However, Hook’s
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law breaks down when the elastic band is overstretched. This means that Hook’s law works
well for a certain regime. In this section, a model that describes the dynamics of a BEC
in a small regime is derived. Even though this is the case, a wealth of information can be
extracted about the system.

In the previous section it was stated that the transition to a BEC occurs at near 0 K.
At these temperatures, the atoms in the BEC have low energy. This is the first assumption
made for the model. The second assumption is that the atoms are weakly interacting to
the extent that all particles can occupy the lowest energy level. In some sense, this is not a
realistic approximation because there will always be some fluctuations of particles from the
ground state to higher energy levels.

Before starting the derivation, an approximation is found using the second assumption.
Consider a state ket |Ψ⟩ that represents a BEC with N particles. Suppose for the moment
that the particles in the BEC are non-interacting. Then |Ψ⟩ can be written as [4]

|Ψ⟩ = N |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ |ϕ3⟩ ⊗ ....⊗ |ϕN⟩ = N
N⊗
i=1

|ϕi⟩, (2.1)

where N is the number of particles, ⊗ is the tensor product and |ϕi⟩ for 1 ≤ i ≤ N are all the
same single particle wavefunction but attributed to each individual particle in the system.
Equation (2.1) is referred to as the Hartree or mean-field approach and is an exact relation
if the particles of the system are non-interacting. To see why this is true, imagine four non-
interacting particles trapped in a box. By using the Schrodinger equation the wavefunction
for each particle can be found. Since the particles are non-interacting the shape of the wave
function only depends on the box in which the particles are trapped. As a result all the
wavefunctions for all the particles are the same. However, in the case of a BEC the particles
weakly interact with each other. Therefore, eq (2.1) is an approximation and will repeatedly
be used in the derivation of the model.

The Hamiltonian of a many-body system will be the starting point of the derivation. The
exact Hamiltonian Ĥ of an N particle many-body system can be written as [28]

Ĥ =
N∑
i=1

p̂i
2

2m
+ V̂ext(r⃗) +

1

2

N∑
i=1

N∑
j ̸=i

V̂ (r⃗i − r⃗j), (2.2)

where p̂i is the momentum of the i-th particle, m is the mass of each particle (in this case
all the particles have the same mass), V̂ext is the external potential, V̂ (r⃗i − r⃗j) is the exact
interaction potential between the i-th and j–th particle. In principle, plugging the Hamilto-
nian (equation (2.2)) in the Schrödinger equation and numerically solving it is one way to
study the system. Unfortunately, this route would need unrealistic computing power, hence
approximations are needed. We start by considering the energy of the system. It is written
as [29]

E(Ψ) =
⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

, (2.3)
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where ⟨Ψ|Ψ⟩ is the norm and is equal to N . Since majority of the particles in the BEC are
in the lowest energy level this becomes a problem of finding the ground state. But to use
approximation (2.1) all the particles need to be in the ground state. In addition to that, the
state which is found needs to preserve number of particles. Lagrange multipliers can be used
to ensure that the |Ψ⟩ that is found preserves the number of particles ⟨Ψ|Ψ⟩ = N [4]. Notice
the energy E = E(Ψ) is a function that depends on another function Ψ. This means E is a
functional. Therefore, the problem is to find the minimum of the functional

F (Ψ) = E(Ψ)− µN(Ψ), (2.4)

where the constant µ is known as the chemical potential and is the Lagrange multiplier [4].
The functional derivative can be used to find the minimum of eq (2.4). The functional F (Ψ)
can be split into four different functional terms that correspond to the kinetic energy JKE(Ψ),
the external potential JExt(Ψ), the interaction potential JPE(Ψ) and a term that preserves
the norm Jnorm(Ψ). In an equation this would look like

F (Ψ) = JKE(Ψ) + JExt(Ψ) + JPE(Ψ) + JNorm(Ψ) (2.5)

Explicitly the kinetic energy term is

JKE(Ψ) = ⟨Ψ|
N∑
i=1

p̂i
2

2m
|Ψ⟩ ≈

N∑
i=1

h̄2

2m

∫
∇ψ∗(r⃗i)∇ψ(r⃗i)dr⃗i.

where the approximation (2.1) was used. The constant h̄ is Planck’s reduced constant. The
functions ψ(r⃗i) is the wavefunction for the i th particle. The external potential term is

JExt(Ψ) = ⟨Ψ|V̂ext(r⃗)|Ψ⟩ ≈
N∑
i=1

∫
ψ∗(r⃗i)Vext(r⃗)ψ(r⃗i)dr⃗i.

The interaction potential term is

JPE(Ψ) = ⟨Ψ|1
2

N∑
i=1

N∑
j ̸=i

V̂ (r⃗i − r⃗j)|Ψ⟩

≈ 1

2

N∑
i=1

N∑
j ̸=i

∫
dr⃗i

∫
dr⃗jψ

∗(r⃗i)ψ
∗(r⃗j)V (|r⃗i − r⃗j|)ψ(r⃗i)ψ(r⃗j).

Finally the norm term is

JNorm(Ψ) = −µ⟨Ψ|Ψ⟩ ≈ −µ
N∏
i=1

(∫
ψ∗(r⃗i)ψ(r⃗i)dr⃗i

)
.

If F (Ψ) takes the ground state of the system as input then it will be at its minimum. Thus,
taking functional derivative F (Ψ) equals zero. If we take the functional derivative of eq (2.5)
(see appendix A for the full procedure) we get the following equation
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− h̄2

2m
∇2ψ(r⃗) + Vext(r⃗)ψ(r⃗) + (N − 1)

∫
|ψ(r⃗′)|2V (|r⃗ − r⃗

′ |)dr⃗′ψ(r⃗) = µψ(r⃗). (2.6)

Two further approximation can be made to the integral term in eq (2.6). The term V (|r⃗− r⃗′|)
relates to the interaction potential between two particles. Since weak interactions between
particles are assumed, this would mean that particles only feel a force from each other
when they are almost touching. Therefore a contact potential can be used. As a result,
V = gδ(|r⃗ − r⃗′|) where g is known as the scattering potential and δ(|r⃗ − r⃗′|) the Dirac delta
function. The next quantity to consider is the (N − 1) outside the integral in equation (2.6).
If there are a large number of particles N − 1 ≈ N giving

− h̄2

2m
∇2ψ(r⃗) + Vext(r⃗)ψ(r⃗) +Ng|ψ(r⃗)|2ψ(r⃗) = µψ(r⃗). (2.7)

Eq (2.7) is known as the time independent Gross-Pitaevskii equation (GPe) and ψ(r⃗) is called
the wavefunction of the BEC. It describes the BEC with all its particles in the ground state.

To study the dynamics of a BEC the time-dependent GPe [4],

−ih̄∂Φ
∂t

= − h̄2

2m
∇2Φ + Vext(r⃗)Φ +Ng|Φ|2Φ, (2.8)

can be used.

2.3 Pseudo-Second Order Spectral Algorithm to Solve

the GPe

To study the dynamics of a BEC we must ensure that we have the correct ground state of
the system. To this end, we dedicate this section to explaining the main idea behind the
algorithm that solves the problem. First brief motivation behind how one could develop the
an algorithm to find the ground state of a quantum system. After that, the algorithm used
in this thesis will be discussed by looking at the 1D harmonic oscillator. Then, the algorithm
will be generalized to solving the GPe equation.

2.3.1 Finding the Ground State

In theory, if a guess of a state ket |ψ⟩ is made then by using the imaginary time evolution
operator the ground state of the system can be found [30]:

lim
τ→∞

exp(−τH
h̄
)|ψ⟩ ∝ |ϕ0⟩ (2.9)

where Ĥ is the Hamiltonian of the system and |ϕ0⟩ is the ground state ket. In practice,
Hamiltonians are complicated, therefore numerical methods are needed to solve such prob-
lems
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Suppose a Hamiltonian has form

H =
p2

2m
+ V (x).

where p is the momentum operator and V (x) is some potential. The method used in this
thesis decomposes the imaginary time evolution operator as

exp(−τH
h̄
) = A(x, τ)B(p, τ)C(x, τ) (2.10)

where A(x, τ) and C(x, τ) are operators that only depend on x meaning they can be rep-
resented by a diagonal matrix in position basis. Similarly, B(p, τ) is an operator that only
depends on momentum therefore it can be represented by a diagonal matrix in momentum
space. This is advantageous numerically since one could evolve a state ψ(x) in the following
procedure

1. Take ψ(x) and compute C(x, τ)ψ(x)

2. Take the new ψ(x) and Fourier transform to ψ(p) then compute B(p, τ)ψ(p)

3. Take ψ(p) and inverse Fourier transform back to ψ(x) then compute A(x, τ)ψ

2.3.2 1D Harmonic Oscillator

It is instructive to see how the algorithm works for simple problems such as the 1D harmonic
oscillator before looking at more complicated problems. The Hamiltonian of a 1D harmonic
oscillator is given by (mass m and h̄ have been set to 1).

Ĥ = T̂ + V̂ =
1

2
p̂2 +

1

2
ω2x̂2. (2.11)

The imaginary time evolution operator can be exactly rewritten in the case of the one-
dimensional harmonic oscillator as [31]

e−τ Ĥ
h̄ = e−τ(T̂+V̂ ) = e−τCV V̂ e−τCT T̂ e−τCV V̂ , (2.12)

where CV and CT are functions of imaginary time τ . Notice how similar eqs (2.10) and (2.12)
are in their dependence on position x and momentum p. Explicitly CV and CT are [31]

CV =
cosh(ωτ)− 1

ωτ sinh(ωτ)
, CT =

sinh(ωτ)

ωτ
. (2.13)

At this point the algorithm described in the previous section can be used to compute the
ground state. However, in general, exact decompositions of the imaginary time evolution
operator cannot be found. In these cases 2nd, 4th or higher order approximate decomposition
of the imaginary time evolution operator are used. Therefore, it is necessary to use a small
time step. It is possible to see how this works with the 1D harmonic oscillator case. Taking
the limit of τ → 0 the functions in equation (2.13) can be Taylor expanded as [31]
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CV =
1

2
− 1

24
ω2τ 2 +

1

240
ω4τ 4 + .... (2.14)

CT = 1− 1

6
ω2τ 2 +

1

120
ω4τ 4 + .... (2.15)

if only the first terms from both the expansions are kept, a second order algorithm is obtained
[31]. Replacing CV and CT by the first term in their expansion makes the imaginary time
evolution operator look like

e−τCV V̂ e−τCT T̂ e−τCV V̂ ≈ e−τ 1
2
V̂ e−τT̂ e−τ 1

2
V̂ . (2.16)

Since T̂ and V̂ do not commute due to fact that p̂ and x̂ do not commute in quantum me-
chanics, the identity eT̂ eV̂ = eT̂+V̂ is not true.

Using eq (2.16) one can find the ground state by iterating over the following equation

|ψ(τ +∆τ)⟩ ≈ e−∆τ 1
2
V̂ e−∆τT̂ e−∆τ 1

2
V̂ |ψ(τ)⟩ (2.17)

where |ψ(τ)⟩ is a discretized wave function at time τ (i.e. initialized on a grid of points) and
the imaginary time evolution operator is approximated by equation (2.16). The algorithm
for each iteration would then work as follows

1. Take state ψ(τ, x) and then multiply ψ(τ, x) by e−
∆τ
2

V .

2. Compute ψ(τ, p) from ψ(τ, x) using fast Fourier transforms. Then multiply ψ(τ, p) by
e−∆τT .

3. Compute ψ(τ, x) from ψ(τ, p) using fast Fourier transforms. Then multiply ψ(τ, x) by

e−
∆τ
2

V .

The three steps combined results in finding the state at time Ψ(τ +∆τ, x). To reach to some
time τ1 multiple iterations would be needed.

2.3.3 Algorithm for Rotating Anisotropic Harmonic Trap

In the previous section the algorithm used for finding the ground state was described in
terms of a 1D harmonic potential. In this section a rotating anisotropic harmonic oscillator
is studied. This is now a 2D problem therefore the algorithm needs to be stated for this case.
Once this is done, the exact same algorithm with some changes to the rotating anisotropic
harmonic Hamiltonian can be used to solve the GPe in 2D. For the Hamiltonian of the ro-
tating anisotropic harmonic trap, work done in [31] shows that the imaginary time evolution
operator can be decomposed exactly. But this involves a lot of algebra that takes focus away
from the algorithm. Therefore, only the main points how to proceed is stated.
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The rotating anisotropic harmonic Hamiltonian can be written as [31]

H =
1

2
(p2x + p2y) +

1

2
ω̃2
xx

2 +
1

2
ω̃2
yy

2 − Ω̃(xpy − ypx)

1
=

1

2
(p2x + p2y) +

1

2
ω2
0(1 + δ)2x2 +

1

2
ω2
0(1− δ)2y2 − Ω̃(xpy − ypx)

2
= T1(px, y) + T2(x, py) + V1(x, py) + V2(px, y)

(2.18)

where ω̃x, ω̃y are the frequencies along the x and y direction respectively, Ω̃ is the rate of

rotation of the trap. The equality
1
= shows a second way to write the Hamiltonian in terms of

a deformation parameter δ. The equality
2
= shows that the Hamiltonian can be broken into

terms that depend px, y or x, py. This is useful because the state ψ in a px, y representation
makes T1 and V2 diagonal. The applies for T2 and V1 in a x, py representation. [31] has
shown that the imaginary time evolution operator can be exactly decomposed as

e−τ(T1+T2+V1+V2) = e−τCV (1)T1−τCV (2)V2e−τCT (1)V1−τCT (2)T2e−τCV (1)T1−τCV (2)V2 . (2.19)

The exact forms of CV (1), CV (2), CT (1) and CT (2) are given in [31]. The following algorithm
can be used to compute the ground state of the system [31]

• Make an initial guess of discretized wave function ψ(x, y)

• Compute ψ(px, y) from ψ(x, y) using fast Fourier transforms. Then multiply ψ(px, y) by
e−τCV (1)T1−τCV (2)V2 .

• Compute ψ(x, py) from ψ(px, y). Then multiply ψ(x, py) by e
−τCT (1)V1−τCT (2)T2

• Compute ψ(px, y) from ψ(x, py). Then multiply ψ(px, y) by e
−τCV (1)T1−τCV (2)V2

• Finally, compute ψ(x, y) from ψ(px, y)

These four steps consist of one iteration. The next iteration starts with final wavefunction
computed from the previous iteration.

2.3.4 Solving The Gross-Pitaevskii Equation

The algorithm for finding the ground state of a rotating anisotropic harmonic oscillator was
described in the previous section. With some redefinitons of terms from the previous section
the same algorithm can be used to solve the time-indepenent GPe. Start by assuming a BEC
is in a rotating anisotropic harmonic oscillator and define T = T1 + V1 + T2 + V2 from the
previous section. Then the time independent 2D GPe is

(T + g|ψ|2)ψ(x, y) = µψ(x, y). (2.20)

Using the imaginary time evolution operator, the ground state of the system can be found.
By setting V (τ) = g|ψ(τ)|2 the second order algorithm iteration step becomes [31]

ψ(∆τ) = e−(1/2)∆τV (∆τ)e−∆τT e−(1/2)∆τV (0)ψ(0). (2.21)
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Using the algorithm stated in the previous subsection one can solve for the ground state of
the system. It is important to note that the algorithm has been used to solve a rotating
harmonic oscillator potential. If a more general trap potential Vext is needed. Then redefine
V (τ) = g|ψ(τ)|2 as follows [31]

V (τ) = g|ψ(τ)|2 − UHO(x)− UHO(y) + Vext(x, y), (2.22)

where UHO(x) is the harmonic oscillator potential along x direction and UHO(y) is the har-
monic oscillator potential along the y direction. The reason for the minus signs is to remove
to the harmonic potential from the Hamiltonian. Therefore, iteration equation (2.21) can
still be used to find the ground state of the wavefunction.

The code used in this thesis was borrowed from [32]. Now that the algorithm that solves
the GPe equation has been introduced. We are ready to define the main problem of the
thesis.

2.4 Emission of Jets

This section is dedicated to introducing the phenomenon that will be studied and what
aspects this thesis will focus on. The first subsection will talk about how the phenomenon
occurs and what makes it interesting. The second subsection is dedicated to making the GPe
equation model the problem. In the third subsection, the physical parameters of the problem
are defined. Finally the different trap shapes that were used will be illustrated and their
physical parameters defined.

2.4.1 The Problem

Figure 2.1: Experimental setup in a top view and side view. The light grey color
indicates the shape of the trapped BEC and two types of lasers labelled laser 1
(green) and laser 2 (red). Laser 1 acts as a finite well potential that shapes the
BEC into a cylinder and laser 2 acts as a harmonic potential that squashes the
cylinder into a disk making a 2D system.
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In 2017, the researchers at Chicago university had discovered a new phenomenon related to
the BEC [25]. In their experiment they trapped a BEC using two lasers. One of the lasers
was used to shape the BEC into a cylinder while the other was used to squash the BEC into
a 2D disk. Figure 2.1 shows the experimental setup. The BEC itself was made up of cesium
atoms and by using Feshbach resonance the group were able to change the scattering lengths
between the atoms in a sinusoidal pattern. As a consequence, they observed jets escaping the
trap along the circumference of the disk. It was noted that these jets formed an asymmetric
pattern i.e. the number of particles emitted along one direction was more than the opposite
direction.

2.4.2 Modelling the Problem

Since the system is constantly being driven it reasonable to use the time-dependent GPe

ih̄
∂Φ

∂t
= − h̄2

2m
∇2Φ + Vext(r⃗)Φ +Ng|Φ|2Φ.

for modelling the problem. We can start by defining the external potential. We use

Vext(r⃗) =


0, for |r⃗| ≤ Rin

V0, for Rin ≤ |r⃗| ≤ Rout

0, for Rout ≤ |r⃗|


where Rin < Rout. The external potential has a finite width instead of a single line to prevent
any leaks in the simulation. The next effect to take care of is the periodically modulating
scattering length. In the GPe the scattering potential g is responsible for controlling the
scattering lengths. For our purposes g(t) should depend on time. In the experiment described
in the previous section the scattering lengths were modulated according as [25]

a(t) = adc + aac sin(ωt) (2.23)

where adc is a small positive constant scattering length, aac is the modulated scattering length
and ω is the modulation frequency. This suggests that the scattering potential have form

g(t) = gdc + gac sin(ωt). (2.24)

Since this is a two dimensional problem 2D scattering potentials are used. Therefore [33]

gdc =
√
8π
h̄2

m

adc
az
. gac =

√
8π
h̄2

m

aac
az
, where az =

√
h̄

mωz

.

where ωz is the angular frequency of the harmonic potential used to squash the BEC. Plugging
equation (2.24) into the GPe gives

ih̄
∂Φ

∂t
=

[
− h̄2

2m
∇2 + Vext(r⃗) +N(gdc + gac sin(ωt))|Φ|2 − gdcn0

]
Φ. (2.25)

where we have subtracted by gdcn0, where n0 is the average density of the ground state. Since
this new term is a constant it can be absorbed into the external potential. If we were to
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find the ground state of the system and then study the behaviour of the BEC by modulating
its scattering length, we would see circular ripples of matter escaping the trap similar to
the ripples formed when a stone is dropped in water. This behaviour was not observed in
the experiment. An additional step is needed to resolve this. One way to make the GPe
have good phenomenological agreement is by taking the ground state then adding random
fluctuations to the wavefunction.This additional step is justified because in an experiment
a BEC can never be cooled to 0 K, which means that there will be some thermal noise in
the system. Once this step is added, then propagating the ground state through real-time
predicts asymmetric jets like observed in the experiment.

In this thesis the random fluctuations used are [26]

ψf = ϵ1 + iϵ2 (2.26)

where ϵ1 and ϵ2 are real Gaussian distributed random numbers with mean equal 0 and variance
equals 0.1|ψ0| where ψ0 is the ground state. The choice of 0.1|ψ0| gives jets with widths that
are similar to the physical case. With the model ready in the next subsection the physical
parameters of the system with a circular trap are defined.

2.4.3 Physical Parameters

The physical parameters used in this thesis are directly taken from the experiment conducted
in [26]. They are as follows: number of particles N = 40,000, the mass of each particle
m = 132.905 a.m.u, the height of the potential V0 = h × 200 J, the harmonic potential
frequency that squashes the BEC ωz = 220 Hz, the constant scattering length adc = 4a0 and
the modulating scattering length aac = 40a0 (where a0 is the Bhor radius), the modulation
frequency ω = 620π Hz and the trap radius Rin = 13 µm. The outer trap radius for the
algorithm is taken as Rout = 1.5Rin.

2.4.4 Trap Geometries

Figure 2.2: Four different traps for which the firework patterns are studied in this
thesis. The first one is the circular trap, the second position shows an equilateral
triangle, the third position shows a square and last position shows a rectangle.
The grey boundaries for all the traps have V = 200 × h̄ J. The white region for
all the traps have V = 0. The x and y directions are indicated on the axis of the
first trap.
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In this thesis other than replicating the results of the circular trap from [26], three additional
trap geometries are studied. Namely, an equilateral triangle, a square and a rectangle. The
shapes of the traps can be seen in figure 2.2. For the all the traps the area within the
boundary is set to A = πR2

in = π × 132 µm2. This chosen so that initial density of BEC for
all cases are the same.

2.5 Parametric Resonance

For the jets to be emitted the scattering length of the BEC needs to be periodically modu-
lated. Suggesting that the system undergoes parametric resonance. It would be interesting
to see the relation between the resonating wavenumbers and physical parameters. To this
end, we study the behaviour of the system at small length and time scales. In this regime
the wave function can be linearized as [26],

ψ = ψ0[1 + ν(r⃗, t)], (2.27)

where ψ0 =
√

(n0) exp(iU1n0 cos(ωt)/ωh̄) and |ν(r⃗, t)| << 1. ν(v⃗, t) can be viewed as a
variation over the uniform BEC therefore it can be written as

ν(r⃗, t) = (ξ(t) + iζ(t)) cos(k⃗ · r⃗ + ϕ), (2.28)

where ϕ is a phase term and k⃗ is the wave number. Inserting equation equation (2.27) into the
time dependent GPe equation and ignoring trap effects gives the following set of differential
equations,

d2ξ

dt2
+ Ω2[1 + α sin(ωt)]ξ = 0, (2.29)

d2ζ

dt2
− αω cos(ωt)

dζ

dt
+ Ω2[1 + α sin(ωt)]ζ = 0, (2.30)

where Ω2 = h̄2k4/(4m2) + gdcn0k
2/m, α = gacn0k

2m/Ω2, k is the wavenumber and ω is the
modulation frequency. The full derivation can be found in appendix B. Equations (2.29)
and (2.30) are known as the Mathieu equations and are used to model systems that have
parameters periodically changing [34]. The solutions for equations (2.29) and (2.30) are [26]

ξ(t) ≈ A+ cos(ωt/2 + θ+) exp(λ+t) + A− sin(ωt/2 + θ−) exp(λ−t), (2.31)

ζ(t) ≈ −A+ sin(ωt/2) exp(λ+t) + A− cos(ωt/2) exp(λ−t), (2.32)

where,

λ± = ±
√
α2Ω2

16
− (Ω− ω

2
)2. (2.33)

The solutions are a linear combination of an exponential growth and exponential decay term.
Since we expect the resonating waves to grow we look at when λ+ is at its maximum. This
is only the case when Ω− ω/2 = 0. Assuming gdc ≈ 0 the equation

Ω− ω

2
=
h̄k2

2m
− ω

2
= 0,
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if

k =

√
ωm

h̄
. (2.34)

The resonating wavenumber is called kf henceforth. As we can see the resonating wavenum-
ber solely depends on the mass of the individuals atoms in the BEC and the modulation
frequency.

To summarize this section. The system we studied has its scattering length periodically
modulated. By looking at small length and time scales we assumed that the BEC would be
mostly uniform with some infinitesimal variations. By ignoring trap effects it was possible
to derive the Mathieu equations. The solution to these equations allowed us to find what
wavenumbers would resonate.
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Chapter 3

Results

In this chapter we will present the results and discussion. The structure of this chapter is
as follows: Firstly, parameters used for all the results will be defined. After that, the main
results for circular case will be given and discussed. Finally, the results and discussion for
the polygon traps will be given.

3.1 Parameters

The following parameters were used in all the simulations: The number of particles N =
40,000, the mass of each particle m = 132.905 a.m.u, the height of the potential V0 = h×200
J, the harmonic potential frequency that squashes the BEC ωz = 220 Hz, the constant
scattering length adc = 4a0 and the modulating scattering length aac = 40a0 (where a0 is the
Bhor radius), the modulation frequency ω = 620π Hz and the trap radius Rin = 13 µm. The
outer trap radius for the algorithm is taken as Rout = 1.5Rin. These parameters are taken
from [26]. For the remaining polygonal traps we set the length of the sides such that the area
in the trap was A = πR2

in = π. The BEC and traps were initalized in a 520× 520 µm2 box.
Each dimension of the box had 1024 points, giving a total of 1024×1024 points in the whole
box.
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3.2 Circle Trap

Figure 3.1: Shows the evolution of a BEC in a ciruclar trap when its scattering length
is periodically changed. In the top row and bottom row its relative density distribution
n(r)/n0 and relative momentum density distribution n(k)/n0 can be seen respectively,
where n0 is the average density of the initial BEC. The relative density distribution
shows the progression of the jets. In the relative momentum distribution plots, a
white circle of radius kf is drawn, where kf is the predicted magnitude of resonating
wavenumbers. The plots show the appearance of the resonating wavenumbers near the
circle.

This section is dedicated to replicating the results from [26]. In order to do this, we will de-
fine several observables which will help with understanding how the formation of jets emerges
from the BEC.

To replicate the results we used the time-dependent GPe and numerically solved it. An
additional step of adding noise to the wavefunction before real-time propagation is needed.
Without the noise the jets observed in the top row of figure 3.1 would not occur. Instead,
circular ripples of matter moving outwards would be seen. One physical reason for adding
the noise would be that in an experiment a BEC is never cooled to 0 K. Therefore there will
always be some thermal noise in the system.

Figure 3.1 shows the density plots of a BEC in a circular trap. The top row shows the
evolution of the relative density distribution n(r)/n0 (where n0 is the initial density of the
BEC) at times 0, 30 and 70 ms. All the plots in the top row share the same colour bar
that has a max value of 0.1, so densities of 0.1 or higher will all appear white. The value of
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0.1 allows us to see the jets. We note that the maximum relative density of ground state is
approximately 1.7. The bottom row shows the evolution of the relative momentum density
at times 0, 30 and 70 ms. In each plot, a white circle is drawn. This circle has a radius of kf
which signifies where the resonating wavenumbers should form. All the plots in the bottom
row share the same colour bar that has a max value of 100. The value of 100 allows us to
see the resonating wavenumbers.

We start by looking at the top row. At 0 ms, we see the ground state of the system. At
30 ms, a few jets have appeared. The tips of the jets have escaped the trap, but there are
still portions under the influence of the trap. This is because the trap has a finite width. At
70 ms, these jets have had time to evolve. At the base of these jets, we can see a highlighted
circular region. This region is the finite width of the trap.

In the bottom row, at 0 ms, we see the ground state of the system in momentum space.
At 30 ms, the resonating wavenumbers near the white circle have appeared. At 70 ms, the
resonating wavenumbers can still be seen near the white circle, but their amplitude is not as
high as before.

We derived the resonating wavenumber kf =
√
ωm/h̄ by ignoring trap effects and as-

suming that the centre of the BEC was uniform at small time and length scales. This means
the resonating wavenumbers that appear in the figure should not depend on trap the shape.
Note that the jet pattern is dependent on the initial seed of random numbers that is added
to the ground state of the BEC, before periodically modulating its scattering length. The
density plots in figure 3.1 show one possible jet pattern.

We can study the build-up of these resonating wavemodes by finding the total amplitude
in the circular resonating region. We introduce a quantity called the density wave amplitude
Ak to do this. It is defined as

Ak =
1

n0

∫ (kf+5)

−(kf+5)

∫ √
(kf+5)2−k2x

−
√

(kf+5)2−k2x

|ñ(k⃗)|dkydkx−
1

n0

∫ kf−5

−(kf−5)

∫ √
(kf−5)2−k2x

−
√

(kf−5)2−k2x

|ñ(k⃗)|dkydkx. (3.1)

where n0 is the initial density of the BEC and ñ(k⃗) is the Fourier transform of the BEC den-
sity distribution n(r⃗). The integration boundaries are chosen to solely include the resonating
region which appearsbetween circles of radii kf ± 5.
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Figure 3.2: The density wave amplitude Ak vs time for the circle. Ak is computed
according to eq (3.1). There are four lines in the figure. The three grey lines show
how Ak progresses in time for three different initial seeds. The blue dots show the
average Ak over five different initial seeds and the blue line just connects the blue
dots. The interval between each data point is 1 ms and there are a total of 100
data points.

Figure 3.2 shows the density wave amplitude Ak vs time. The blue dots show the average
data points where the average is taken over five different seeds. Furthermore, the three grey
lines show Ak for three different initial seeds. There is an oscillatory pattern in the figure.
This is a direct consequence of periodically changing the scattering length of the BEC. In
addition, the figure can be broken into the following intervals: From 0 to 20 ms, there is a
rise in Ak. From 20 to 40 ms, Ak continues to grow until reaching a plateau. Finally, from
40 to 99 ms, there is a decrease in Ak.

The rapid growth in Ak is connected to the amplitude of the resonating waves increasing
before the jets are released from the trap. The subsequent drop in Ak is connected to the
jets being released. This is evident from the density plots shown in figure 3.1. At 30 ms, jets
can be seen. But, a portion of them is still under the influence of the trap. Therefore, at 30
ms the jets have not been fully released from the trap.

Looking back at figure 3.1, the resonating wavenumbers at 30 ms do not have a homo-
geneous distribution. Furthermore, the emitted jet population at 70 ms is also not homoge-
neous. To study these distributions, we can define two observables called the structure factor
S(kf , ϕ) and emitted jet population N(ϕ)where ϕ is the polar angle. These observables can
be used to see if there is any correlation between the resonating wavenumbers and emitted
jet population distributions. The structure factor is defined as

S(kf , ϕ) =
1

N0

∫ kf+5

kf−5

|ñ(k⃗)|2kdk (3.2)
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where N0 is the initial number of particles in the BEC. While the emitted jet population is
defined as

N(ϕ) =

∫ (|r⃗|=Lx)

r0

rn(r⃗)dr (3.3)

where n(r⃗) = |Ψ(r⃗)|2 is the density distribution, Lx is the length of the square box in which
the trap and BEC are initialized, and r0 is the position vector that points to the outer bound-
ary of the trap.

Figure 3.3: The structure factor S(kf , ϕ) vs angle distribution and emitted jet
population N(ϕ)/N0 (N0 is the initial number of particles) vs angle from the
circle trap. Each row corresponds to a different initial seed. The solid colored
lines show the structure factor S(kf , ϕ) of the BEC at different times and the
dashed black lines corresponds to the emitted jet population N(ϕ). The times for
each line is indicated in the legend at the bottom.

When comparing the distributions of the solid lines in the three subplots in figure 3.3,
notice how they differ from each other. This suggests, that different initial seeds give different
S(kf , ϕ). Looking at the solid lines in each subplot, the amplitude of the peaks grows but the
distributions do not change. This implies that once the S(kf , ϕ) is chosen at an early time it
does not change. Furthermore, there is a correlation between the structure factor before the
emission of jets and the emitted jet population at a later time [26].

To understand what the results from figure 3.3 signify, suppose the scattering length of
the BEC is periodically modulated. Then the particles in the BEC start forming resonating
waves of matter. Let one of these waves of matter move along direction k⃗ where |⃗k| ≈ kf .
Then this wave of matter will continue to build up in amplitude because S(kf , ϕ) stays con-
stant and only changes in amplitude. Since there is a correlation between N(ϕ) and S(kf , ϕ),
we expect that when the wave of matter leaks out of the trap as a jet, its direction is still
along k⃗ [26].
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Since we expect a jet to originate from a resonating wave of matter, we may expect that
there is always a correlation between S(kf , ϕ) and N(ϕ). To test this, we can see how the
emitted jet population looks like at an early time and a later time. Figure 3.4 shows the emit-
ted jet population N(ϕ)/N0 vs angle ϕ at different times. The figure has three rows which
correspond to different initial seeds and two columns which correspond to times 40 and 70 ms.

Figure 3.4: The emitted population N(ϕ)/N0 vs angle ϕ for the circle trap, where
N0 is the initial number of particles. Each column has a given time labelled on
top. Each row has a different seed labelled on the left. The figure shows how
N(ϕ) at 40 and 70 ms look different from each other.

When looking at each row of the figure 3.4, we see that N(ϕ) at 40 ms and N(ϕ) at 70
ms are different. This is due to the interference between the different jets that are leaving
the trap [26]. From the results, we can conclude that there is no correlation between S(kf , ϕ)
and N(ϕ) at early times.

To summarize the results from figures 3.3 and 3.4. In figure 3.3 we see that there is a
correlation between the N(ϕ) and S(kf , ϕ) at 70 ms. But figure 3.4 there is no correlation
between N(ϕ) at 40 ms and 70 ms. As a result there is no correlation between N(ϕ) and
S(kf , ϕ) at 40 ms.

Since we have shown that N(ϕ) changes as time progresses, we can track how its asym-
metry changes with time. We define the asymmetry in coordinate space as [26]

ηr =
⟨[N(ϕ)−N(ϕ+ π)]2⟩

⟨N(ϕ)⟩2
, (3.4)

where ηr is the average number of particles emitted at angles ϕ and ϕ + π for ϕ ∈ [0, π].
Therefore, ηr = 0 would imply that a jet pattern is perfectly symmetric but need not be
uniform. Furthermore, the asymmetry in momentum space can be defined as [26]

ηk =
⟨[Ñ(ϕ)− Ñ(ϕ+ π)]2⟩

⟨Ñ(ϕ)⟩2
, (3.5)
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where Ñ(ϕ) is the Fourier transform of N(ϕ).

Figure 3.5: The asymmetry of emitted jets ηr vs time and the asymmetry in
momentum space ηk vs time for the circular trap case. The blue and pink dots
show the average ηr and ηk, where the average is taken over five different initial
seeds. The grey lines show the asymmetry in coordinate space for three different
seeds. The figure shows that the total asymmetry in momentum space ηk is 0.0 for
all time implying that momentum is conserved. It also shows that the asymmetry
of the emitted jets changes ηr with time.

By looking at the asymmetry of the resonating wavenumbers, the conservation of mo-
mentum can be checked. Figure 3.5 shows the average asymmetry of the distribution in real
space ηr and the distribution in momentum space ηk. The pink line that is flat shows ηk = 0.0
all time, which means the Fourier transform of the density distribution n(r⃗) is symmetric.
As a consequence momentum is conserved in the system [26].

Since the conservation of momentum holds, for any resonating wave travelling in the k⃗1
direction, we should expect another wave travelling in the −k⃗1 direction with equal ampli-
tude. But suppose, there is another wave that travels along k⃗2. Let the angle between k⃗1
and k⃗2 be δθ which is small. Such waves exists in the system because S(kf , ϕ) in figure

3.3 has broad peaks. Then as jets are emitted along k⃗1 and k⃗2 they interfere with each
other. Due to momentum conservation, jets would also be emitted along −k⃗1 and −k⃗2 and
interfere with each other. If the jets along k⃗1 and −k⃗1 are correlated and the same is true
for jets along k⃗2 and −k⃗2, the interference pattern would be the same on both sides. If the
previous assumption were true for all jets then we would see a symmetric emitted jet pattern.

The blue line in figure 3.5 shows the ηr. It starts with a non zero value and increases for
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a short interval. Then starts decreasing in value until hitting a minimum. After that, the
asymmetry increases again.

The fact that ηr starts with a non zero value suggests that jets being emitted on opposing
sides are not correlated to one another. The initial increase in asymmetry can be explained
by interference between the jets as they just leave the trap. The gradual decrease in asym-
metry corresponds to the jets spreading out which reduces the interference between close-by
jets. The lack of interference makes the jet pattern more symmetric [26]. The general ex-
pectation would be that the asymmetry continues to reduce and stabilise close to zero as the
jets spread out. But, the asymmetry starts increasing after hitting the minimum. There is
no evidence of a secondary build up and release from Ak. This eliminates the possibility of
a secondary release of jets. Assuming that the predictions of the GPe are still accurate in
this regime, the only explanation is interference. We note when looking at the density plots
in real space, as the jets continue to spread out, new jets that were hidden appear after 70
ms. This suggests that we may not have evolved the system for a long enough time. With
the current parameters used to obtain these results, doing a longer real-time evolution would
allow the jets to reach the boundaries.

For the remaining results, we will answer whether all the conclusions in this section hold
for the polygon traps. In the next section we will only look at the density plots for the
different traps.

3.3 Density and Momentum Plots for Polygonal Traps

Since we have expressed the main ideas of analyzing the structure of the jets in the circular
trap case, the current and next sections will only look at one result at a time for all the
polygonal traps. For example, this section compares the density plots, while the next section
looks at the density wave amplitude Ak.

In this section, figures 3.6, 3.7 and 3.8 show the density distributions of the BEC in the
equilateral triangle, square and rectangle traps respectively. In each figure, there are two
rows and three columns. Each row has a unique colour bar; the max value of the color bars
in the top and bottom row are chosen to make the jets and resonating wavenumbers appear
clearly. The top row shows the relative density distribution n(r⃗)/n0 in real space and the

bottom row shows the relative momentum distribution n(k⃗)/n0. A white circle with a radius
of the predicted resonating wavenumber kf is drawn in each plot on the bottom row. Each
column from left to right shows the distributions at 0, 30 and 70 ms.

The square and the equilateral triangle traps emit the majority of the jets from their
sides. Yet, we can see differences at the vertices between the two traps. The square trap
emits more particles along its vertices than the triangle trap. Furthermore, at 70 ms, the
emitted jets from the equilateral triangle trap spread out. This is not true for the emitted
jets from the square, they move straight.
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Figure 3.6: Same as figure 3.1 but for the equilateral triangle trap.

Figure 3.7: Same as figure 3.1 but for the square trap.

A large emission of jets from the sides of the triangle and square could be due to there
being more particles at the sides. Furthermore, we noticed more jets come out of vertices of
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the square than the equilateral triangle, this could be due to the edge of the square being
wider than the equilateral triangle. The next observation was that the jets from the equilat-
eral triangle spread out more than in the square case.

In the relative momentum distirbutions n(k⃗)/n0 for the equilateral triangle and square,
the resonating wavenumbers appear at radius kf . At 70 ms, the occupied wavenumbers have
circular distribution for the equilateral triangle. While for the square, the wavenumbers have
a square distribution.

The resonating wavenumbers still appear at kf for both cases. This means that, the
assumption for ignoring the trap shape for the derivation of kf still holds. The circular and
square distribution of wavenumbers that we see in the triangle and square case reflect on the
observation that jets spread out from the triangle. While jets move straight away from the
square.

Finally, three observations can be made for the rectangle case. Firstly, it emits the ma-
jority of particles from its widths (shorter side). Secondly, the resonating wavenumbers still
appear at kf , but the wavenumbers at 2kf are also resonating. Finally, the distribution of
the wavenumbers is affected by its shape.

We expected to see the resonating wavenumbers at kf , because it does not depend on the
shape of the trap. But now, wavenumbers at 2kf are resonating. Since these wavenumbers
were not resonating for the circle, triangle or square traps, it has to do with shape of the rect-
angle. Furthermore, the rectangle forces resonating wavenumbers to point along its length.
It could be that the lengths are close to the centre of the BEC which affects the build up
of waves that point towards to lengths. This could be tested by looking at rectangles with
different length to width ratios.
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Figure 3.8: Same as figure 3.1 but for the rectangle trap.

3.4 Density Wave Amplitude for Polygonal Traps

Since the resonating wavenumbers still appear at a circle of radius kf for all polygonal traps,
we can study their total amplitude by using Ak (defined in eq 3.1).

Figure 3.9 shows the density wave amplitude Ak vs time for circular, equilateral triangle,
square and rectangular traps. Each subplot in the figure can be broken into the following
intervals: From 0 to 20 ms Ak increases in value. From 20 to 40 ms Ak continues to increase
and then hits a plateau. From 40 to 99 ms Ak reduces in value. With the exception for the
square case where the Ak shows an increase in after 80 ms.

In the circular trap case, we connected the sharp increase in Ak to the build-up of resonat-
ing wavemodes in the BEC before the emission of jets, and the following reduction of Ak to
the jets escaping the traps. These conclusions hold true for all the polygon traps. The shape
of Ak before 30 ms for all the subplots in figure 3.9 look similar. From a physical standpoint,
Ak depends on the total number of particles that form resonating waves of matter. If there
are more particles then Ak is large. The results shows that the process by which these waves
grow is not affected by the trap shapes. There is another aspect that all the redsubplots
share, it is that the peaks and troughs for Ak align in all cases. For example, if Ak is at a
peak at time t for the circle, then Ak is also at a peak at time t for all the polygon traps.
The same is true for the troughs. This is because the same modulation pattern is used for
all the trap cases.
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Figure 3.9: The density wave amplitude Ak vs time for the circular, equilateral
triangle, square and rectangular traps. Each subplot consists of blue dots which
is the average Ak computed from five different initial seeds and three grey lines
corresponding to Ak for three different initial seeds.

3.5 Structure Factor and Emitted Jet Population for

Polygonal Traps

In this section, the structure factor S(kf , ϕ) and emitted jet population N(ϕ) for the different
polygonal traps are compared. We want to see if there is a correlation between the two like
in the circle case.

Figures 3.10, 3.11 and 3.12, show the structure factor S(kf , ϕ) vs angle and emitted jet
population N(ϕ) vs angle for the equilateral triangle, square and rectangle respectively. In
each figure, there are three rows which correspond to different initial seeds. In each row,
there exists a blue, pink and green line which corresponds to S(kf , ϕ) at times 18 ms, 21 ms
and 26 ms respectively; a dashed black line that corresponds to the emitted jet population
at 70 ms and vertical black lines that indicate the position of the polygon vertices.

To understand what figures 3.10 and 3.11 signify, suppose the scattering length of a BEC
is periodically modulated. Then, the particles in the BEC start forming resonating waves of
matter. Let one of these waves of matter move along direction k⃗ where |⃗k| ≈ kf . Then this
wave of matter will continue to build up in amplitude because S(kf , ϕ) stays constant and
only changes in amplitude. As the wave of matter escapes the trap as a jet, we can no longer
expect the jet and the wave of matter to point in the same direction. Because there is no
correlation between S(kf , ϕ) and N(ϕ). The shape of the trap has affected the direction of
the emitted jet.
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Figure 3.10: Same as figure 3.3 but for the equilateral triangle trap. The black
vertical lines indicates the position of the vertices of the equilateral triangle trap

For different seeds in the rectangle trap, S(kf , ϕ) only has peaks between the black ver-
tical lines. This means that, in all three cases, the widths of the rectangle emit the jets. We
see that there is no correlation between S(kf , ϕ) and N(ϕ)

When comparing these results to the circular trap case we see that the correlation between
the N(ϕ) and S(kf , ϕ) has been lost for the polygonal traps.

Figure 3.11: Same as figure 3.3 but for the equilateral triangle trap. The black
vertical lines indicates the position of the vertices of the square trap
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Figure 3.12: Same as figure 3.3 but for the equilateral triangle trap. The black
vertical lines indicates the position of the vertices of the rectangle trap

3.6 Emitted Jet Population at Different Times for Polyg-

onal Traps

In this section we will study the N(ϕ) for the three polygonal traps at 40 and 70 ms, to see
whether there is a change between the jet patterns.

Figure 3.13: Same as figure 3.4. The vertical black lines indicate the position of
the vertices of the equilateral triangle trap.

Figures 3.13, 3.14 and 3.15, show the emitted jet population N(ϕ) vs angle at different
times for the equilateral triangle, square and rectangle traps respectively. In each figure there
are three rows which correspond to different initial seeds, two columns which correspond to
times 40 and 70 ms; and vertical black lines which indicate the position of the polygon vertices.
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The time 40 ms is chosen because the jets right after emission would have time to spread out.

In all the figures, N(ϕ) at times 40 and 70 ms look different, for a given seed. This is also
the case for the circle. The explanation for the circle is that jets were interfering with each
other. This reason should also hold true for the polygon traps, since each side of a polygon
emits multiple jets in close proximity.

We now turn to a comparison between the equilateral triangle and square case. For all the
seeds, the sides of the traps emit the majority of the particles. This could be because there are
more particles near the sides. Furthermore, the square always emitted more particles from its
vertices than the triangle. This could be due to the square vertices being wider than the tri-
angle vertices. As a result, the particles have an easier time escaping from the square vertices.

For the rectangle trap, all particles are emitted from its widths. This is in line with the
observation that the rectangle forces waves to travel along its length.

Finally, the distribution for the polygons has narrow peaks which make serrated patterns.
This is because the sides of the polygon emit the jet in a straight line.

Figure 3.14: Same as figure 3.4. The vertical black lines indicate the position of
the vertices of the square trap.
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Figure 3.15: Same as figure 3.4. The vertical black lines indicate the position of
the vertices of the rectangle trap.

3.7 Asymmetry in Real and Momentum Space for Polyg-

onal Traps

Figure 3.16: The asymmetry of emitted jets ηr vs time and the asymmetry in
momentum space ηk vs time for the circular, equilateral, square and rectangular
traps. Each subplot consists of blue dots, pink dots and grey lines. The blue dots
show the average ηr, the pink dots show the average ηk and the grey lines show
ηr for different initial seeds.
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In this section, we will see whether the conservation of momentum holds and study the asym-
metry of the jets for the polygonal traps.

Figure 3.16 shows the asymmetry of emitted jets ηr vs time and asymmetry of momentum
ηk vs time for the equilateral triangle, square and rectangle respectively.In all the subplots
other than the subplot for the rectangular trap, three grey lines representing nr have been
plotted. In the rectangular case, five grey lines have been plotted to show the large variation
in nr between different initial seeds.

We start by looking at whether the conservation of momentum holds for all the polygon
traps. Looking at the figures we see that ηk = 0.0 for all cases. This confirms that the
conservation of momentum holds for all cases. Since the asymmetry in real space for each
polygon shows a unique pattern we study them case by case.

Looking at the equilateral triangle case, we see that it starts out with nonzero ηr and
then reduces. After hitting a minimum, the ηr starts to rise until hitting a maximum. The
initial decrease in ηr is not expected as the equilateral triangle is inherently an asymmetric
shape; because all its sides are always opposite to a vertex. We know that majority of the
jets escape from the sides of a triangle and little to no jets escape from the vertex. This gives
the expectation that the ηr for the equilateral triangle should only rise. However, figure 3.16
shows otherwise. The expected rise only occurs after reaching the minimum. To explain this
initial decrease in asymmetry, we look back to figure 3.6 which shows the density plot of the
equilateral triangle. Looking at the density plot for 70 ms we see regions along the vertices
that do not have jets. However, this effect cannot be seen in the 30 ms plot, because the jets
have not had time to spread. Therefore, at earlier times, the lack of jets emitted from the
vertices does not contribute significantly to the ηr. The rise in asymmetry should start when
the jets have spread out.

Focusing on the square case, ηr reduces until hitting a minimum. After that, it starts
starts to rise. We saw in figure 3.7, that the square emits jets in straight lines. Therefore,
there is constant interference between the different jets that are emitted from the same side.
This means the process by which the asymmetry is reduced for the square case is not the
same as in the circle case.

Looking at the rectangular case, it starts out with the lowest ηr out of all the cases. There
is no clear pattern to the average ηr as it changes between having a positive gradient and a
negative gradient multiple times. Furthermore, all five seeds that were used to calculate the
average are plotted in the figure. We see that there can be large variations between different
seeds. However, all the seeds consistently start with low asymmetries. To understand why
this is the case look back to figure 3.8. There is a large region where no jets exist, which
contributes nothing to the ηr. The only region that contribute to the asymmetry is near the
widths which are small.
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Chapter 4

Conclusions

In conclusion, we numerically simulate the jets released by a BEC trapped in different po-
tentials. In all cases the entire system is not depleted of particles. Instead the BEC is placed
in a box big enough to ensure that the emitted jets do not reach the edges of the box and
invoke periodic boundary conditions.

When the BEC is in a circular trap, the emitted jets correlate to the directions of the
resonating waves before emission. But the correlation is only there when the jets have had
enough time to spread out. This is because of strong interference between the jets when
they just leave the trap. Furthermore, ηk in momentum space is always equal to zero. This
means that conservation of momentum holds. Next, ηr increases, hits a maximum and then
gradually decreases until reaching a minimum and increasing again. The initial increase is
linked to interference between the jets. The gradual decrease is explained by the jets spread-
ing out and interfering less with each other. The following increase can only be explained by
interference.

For the BECs in an equilateral triangle and square trap, they emit the majority of jets
from their sides. This is due to more particles being near the sides. Furthermore, the square
consistently emitted more jets along its vertices than the triangle. We believe this is due to
the vertices of the square being wider than the vertices of the equilateral triangle. The BEC
in a rectangle trap only emitted jets from its widths (shorter sides).

For all three polygonal traps, the resonating wavenumbers are found at a circle of radius
kf . We expected this due to the way we derived kf . But for the rectangle trap forces the
resonating wavenumbers to point along its length. Furthermore, the wavenumbers at a circle
of radius 2kf are also resonating. We believe this is due to the length of the rectangle being
close to the centre of the BEC.

We see that there is a correlation between the emitted jets and the resonating waves for
the circular trap case. However, in the polygonal trap cases, the correlation is lost. This is
attributed to the trap shapes.

In all the cases conservation of momentum holds. Since the asymmetry of the jets are
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unique for each polygon trap, we study them case by case. For the equilateral triangle, the
expectation is a continual increase in asymmetry because all its sides are opposite a vertex.
But there is an initial decrease in ηr. We attribute this to the jets not having enough time
to spread out.

For the square case there was a gradual decrease in ηr. We believe that this gradual
decrease is not due to jets interfering less with each other, because the square emits jets in
a straight line from its sides. We cannot explain this decrease in asymmetry.

For the rectangle case, it starts out with a low ηr. But there is no consistent pattern for the
ηr between different seeds. The only agreement is at 30 ms, where the asymmetry starts close
to zero. This is because only the widths emit the jets, which makes a large region have no jets.
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Chapter 5

Outlook

This sub-field of ultracold gases is rather new and can be traced back to the experiment done
in 2017 [25], where after periodically modulating the scattering length of a BEC, it emitted
jets. About a year later, the GPe was found to give good phenomenological agreement be-
tween the theoretical predictions and experiments [26]. In 2020, experimental and theoretical
work was done on how these jet pattern were affected when the BEC was placed in a circular
trap and rotated [35].

There are many avenues that can be explored from this thesis. We noted during our results
that the BEC in a square trap emitted more jets from its vertices than one in an equilateral
triangle trap. We gave the reason that the vertex of a square is larger than an equilateral
triangle. This could be tested by trapping a BEC in a polygon with more than four sides.
The expectation is that more jets would be emitted from the vertices. Furthermore, taking
inspiration from [35], these polygons could be rotated and the scattering length changed.
Looking at the results from [35], there would be a definite effect on the emitted jet pattern.
After that, jets being emitted from an ellipse could be studied. The expectation is that, as
the ratio between the major and minor axis increases, the resonating wavenumbers would be
forced to point along the major axis.
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Appendix A

Functional Derivatives

A functional derivative of a functional F (f1), where f1 is a function, is defined to be

lim
ϵ→0

F [f1 + ϵη]− F [f1]

ϵ
=

[
d

dϵ
F [f1 + ϵη]

]
ϵ=0

where η is an arbitrary function and ϵ is a parameter. Using the definition above, the
functional derivatives of equation (2.5) can be taken.

The term

JKE(ψ, ψ
∗) ≈

N∑
i=1

h̄2

2m

∫
∇ψ∗(r⃗i)∇ψ(r⃗i)dr⃗i = N

h̄2

2m

∫
∇ψ∗(r⃗)∇ψ(r⃗)dr⃗.

This is true because all the wavefunctions for the individual particles are the same. Fur-
thermore, the integration range is all of space. Using Green’s identity the JKE(ψ, ψ

∗) can be
rewritten as

JKE(ψ, ψ
∗) = −N h̄2

2m

∫
ψ∗(r⃗)∇2ψ(r⃗)dr⃗.

The functions ψ and ψ∗ in the arguments of JKE can be treated as independent variables [4].
Then taking the functional derivative of JKE(ψ, ψ

∗) w.r.t ψ∗ gives

d

dϵ
[JKE(ψ, ψ

∗ + ϵη)]ϵ=0 =
d

dϵ

[
−N h̄2

2m

∫
(ψ∗(r⃗) + ϵη(r⃗))∇2ψ(r⃗)dr⃗

]
ϵ=0

= −N h̄2

2m

∫
η(r⃗)∇2ψ(r⃗)dr⃗.

The next term is the external potential term. After using the Hartree approximation it
becomes

JExt(ψ, ψ
∗) ≈

N∑
i=1

∫
ψ∗(r⃗i)Vextψ(r⃗i)dr⃗i = N

∫
ψ∗(r⃗)Vextψ(r⃗)dr⃗.
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Taking the functional derivative of JExt(ψ, ψ
∗) w.r.t ψ∗ gives

d

dϵ
[JExt(ψ, ψ

∗ + ϵη)]ϵ=0 =
d

dϵ

[
N

∫
(ψ∗(r⃗) + ϵη(r⃗))Vextψ(r⃗)dr⃗

]
ϵ=0

= N

∫
η(r⃗)Vextψ(r⃗)dr⃗.

After that, the JPE(ψ, ψ
∗) can be written as

JPE(ψ, ψ
∗) ≈ 1

2

N∑
i=1

N∑
j ̸=i

∫
dr⃗i

∫
dr⃗jψ

∗(r⃗i)ψ
∗(r⃗j)V (|r⃗i − r⃗j|)ψ(r⃗i)ψ(r⃗j)

=
N(N − 1)

2

∫
dr⃗

∫
dr⃗

′
ψ∗(r⃗)ψ∗(r⃗

′
)V (|r⃗ − r⃗

′ |)ψ(r⃗)ψ(r⃗′).

Taking the functional derivative gives (denote d
dϵ
[JPE(ψ, ψ

∗ + ϵη)]ϵ=0 =
d
dϵ
JPE)

d

dϵ
JPE =

N(N − 1)

2

d

dϵ

[∫
dr⃗

∫
dr⃗

′
(ψ∗(r⃗) + ϵη(r⃗))(ψ∗(r⃗

′
) + ϵη(r⃗

′
))V (|r⃗ − r⃗

′|)ψ(r⃗)ψ(r⃗′)
]
ϵ=0

=
N(N − 1)

2

∫ (
η(r⃗)|ψ(r⃗′)|2V (|r⃗ − r⃗

′|)ψ(r⃗) + |ψ(r⃗)|2η(r⃗′)V (|r⃗ − r⃗
′|)ψ(r⃗′)

)
dr⃗dr⃗

′

= N(N − 1)

∫ (
|ψ(r⃗′)|2V (|r⃗ − r⃗

′ |)ψ(r⃗)η(r⃗)
)
dr⃗dr⃗

′
,

where the last equality is obtained by renaming the integration variables. Finally, after using
the Hartree approximation the JNorm(ψ, ψ

∗) can be written as

JNorm(ψ, ψ
∗) ≈ −µ

N∏
i=1

(∫
ψ∗(r⃗i)ψ(r⃗i)dr⃗i

)
= −µ

(∫
ψ∗(r⃗)ψ(r⃗)dr⃗

)N

.

Taking the functional derivative of JNorm(ψ, ψ
∗)w.r.tψ∗ gives

d

dϵ
[JNorm(ψ, ψ

∗ + ϵη)]ϵ=0 =
d

dϵ

[(∫
[ψ∗(r⃗) + ϵη(r⃗)]ψ(r⃗)dr⃗

)N
]
ϵ=0

= N

∫
η(r⃗)ψ(r⃗)dr⃗

(∫
ψ∗(r⃗)ψ(r⃗)dr⃗

)N−1

= N

∫
η(r⃗)ψ(r⃗)dr⃗,

where the last equality comes from
∫
ψ∗(r⃗)ψ(r⃗)dr⃗ = 1. To minimise the Functional F we set

d
dϵ
F (ψ, ψ∗ + ϵη)|ϵ=0 = 0. As a result, the final expression is

0 = N

∫ (
− h̄2

2m
∇2ψ(r⃗) + Vext(r⃗)ψ(r⃗) + (N − 1)

∫
|ψ(r⃗′)|2V (|r⃗ − r⃗

′|)dr⃗′ψ(r⃗)− µψ(r⃗)

)
η(r⃗)dr⃗.
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Since η is an arbitrary function the expression in the brackets must equal zero giving equation
(2.6)

− h̄2

2m
∇2ψ(r⃗) + Vext(r⃗)ψ(r⃗) + (N − 1)

∫
|ψ(r⃗′)|2V (|r⃗ − r⃗

′ |)dr⃗′ψ(r⃗) = µψ(r⃗).
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Appendix B

Parametric Resonance

The following GPe equation is used

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V (r⃗) + (U0 + U1 sin(ωt))|ψ|2 − U0n0

]
ψ. (B.1)

If the BEC is viewed at small time scales then the wave function can be linearized as

ψ = ψ0(t)(1 + ν(t, r⃗))

where ψ0 =
√
n0 exp(iU1n0 cos(ωt)/h̄ω) is the wavefunction of a uniform BEC and ν =

(ξ(t)+iζ(t)) cos(k⃗·r⃗+ϕ0). The uniform density assumption is true in the center of the trapped
BEC, therefore the trap effects may be ignored. Plugging in the linearized wavefunction into
equation (B.1) gives

ih̄
∂

∂t
ψ0(1 + ν) =

[
− h̄2

2m
∇2 + (U0 + U1 sin(ωt))|ψ0(1 + ν)|2 − U0n0

]
ψ0(1 + ν). (B.2)

The term on left hand side is

ih̄
∂

∂t
ψ0(1 + ν) = ih̄

∂ψ0

∂t
(1 + ν) + ih̄ψ0

∂(1 + ν)

∂t

= ih̄(
−iU1n0 sin(ωt)

h̄
)(1 + ν)ψ0 + ih̄

∂ν

∂t
ψ0

= n0U1 sin(ωt)(1 + ν)ψ0 + ih̄
∂ν

∂t
ψ0

(B.3)

The first term on the right hand side is

− h̄2

2m
ψ0∇2(1 + ν) =

h̄2k2

2m
νψ0 (B.4)

The second term on the right hand side is

= (U0 + U1 sin(ωt))|ψ0(1 + ν)|2ψ0(1 + ν)

= (U0 + U1 sin(ωt))ψ0ψ
∗
0(1 + ν)(1 + ν∗)ψ0(1 + ν)

= n0(U0 + U1 sin(ωt))(1 + ν)(1 + ν∗)(1 + ν)ψ0

= n0(U0 + U1 sin(ωt))(1 + ν∗ + 2ν + 2νν∗ + ν2 + ν2ν∗)ψ0

≈ n0(U0 + U1 sin(ωt))(1 + ν∗ + 2ν)ψ0

(B.5)
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where for the last approximation the fact that |ν|2 << 1. The third term on the right hand
side is

= U0n0ψ0(1 + ν) (B.6)

Combining the left hand side and the right hand side give

n0U1 sin(ωt)(1 + ν)ψ0 + ih̄
∂ν

∂t
ψ0 =

h̄2k2

2m
ψ0ν + n0(U0 + U1 sin(ωt))(1 + ν∗ + 2ν)ψ0 − U0n0ψ0(1 + ν)

=⇒ ih̄
∂ν

∂t
=
h̄2k2

2m
ν + n0(U0 + U1 sin(ωt))(ν

∗ + ν).

(B.7)
Since ν = (ξ + iζ) cos(k · r + ψ) we take the real and imaginary part of equation (B.7)

giving

ℜ : −h̄ζ̇ = h̄2k2

2m
ξ + 2n0(U0 + U1 sin(ωt))ξ. (B.8)

By introducing constants Ω2 = h2k4

4m2 + k2n0U0

m
and α = k2n0U1

mΩ2 equation (B.8) can be rewritten
as

ζ̇ = − 2m

h̄k2
Ω2 (1 + α sin(ωt)) ξ (B.9)

The imaginary part of equation (B.7) is

ℑ : h̄ξ̇ =
h̄2k2

2m
ζ (B.10)

Taking the time derivative of equation (B.10) gives

ξ̈ =
h̄k2

2m
ζ̇

1
= −Ω2 (1 + α sin(ωt)) ξ. (B.11)

which is equation (2.29). Taking the second time derivative of equation (B.8) gives

ζ̈ = −2n0U1

h̄
ω cos(ωt)ξ +

(
− h̄

2k2

2m
− 2n0(U0 + U1 sin(ωt))

)
ξ̇.

Substituting equations (B.8) and (B.10) into the above equation gives

ζ̈ =
αω cos(ωt)

1 + α sin(ωt)
ζ̇ − Ω2(1 + α sin(ωt))ζ. (B.12)

which is equation (2.30)
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Appendix C

Making the GPe dimensionless

Computers have a hard time dealing with small numbers such as h̄ and m. Therefore the
GPe equation (C.2) is made unitless. The following scheme is used in this thesis:

Ψ = Ψ0Ψ̃

r⃗ = x0 ˜⃗r

t = t0t̃

(C.1)

where Ψ0, x0 and t0 are constants with units 1/m, m and s respectively. The variables Ψ̃, ˜⃗r
and t̃ are unitless. To find the relations between Ψ0, x0 and t0 substitute equation (C.1) in
GPe equation (C.2) giving:

i
∂Ψ̃

∂t̃
=

[
− h̄

2m

t0
x20

∇2 +
t0
h̄
V (r⃗) +

t0
h̄

(
U0 + U1 sin(ωt0t̃)

)
|Ψ0Ψ̃|2 − t0

h̄
U0n0

]
Ψ̃ (C.2)

Since we have a finite well of inner radius 13 µm the constant x0 is set to x0 = 13 µm. Then
choosing

− h̄

2m

t0
x20

∇2 = −1

2
∇2 =⇒ t0 =

x20
h̄
.

There are several ways to choose Ψ0. The one used in this thesis starts by considering the
norm of Ψ which is

∫
dr|Ψ|2 = N . This means

N =

∫
dr|Ψ|2 = x20Ψ

2
0

∫
dr̃|Ψ̃|2

= x20Ψ
2
0Ñ .

In this thesis Ñ is set to equal one giving Ψ0 =
√
N/x0. Then the following GPe equation is

obtained

i
∂Ψ̃

∂t̃
=

[
−1

2
∇2 +

t0
h̄
V (r⃗) +

(
t0
h̄
Ψ2

0U0 +
t0
h̄
Ψ2

0U1 sin(ωt0t̃)

)
|Ψ̃|2 − t0

h̄
U0n0

]
Ψ̃. (C.3)

where the parameters can be redefined as Ṽ = t0/h̄V (r⃗), Ũ0 =
t0
h̄
Ψ2

0U0, Ũ1 =
t0
h̄
Ψ2

0U1, ω̃ = t0ω
and ñ = t0

h̄
U0n0. Equation (C.3) is exclusively used for numeric simulations in this thesis.
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The physical parameters of the problems were defined in section 2.4.3. Their unitless form
have the following values

Ñ = 1

R̃in = 1

R̃out = 1.5R̃in

Ṽ = 444.4394405

Ũ0 = 28.7915428

Ũ1 = 287.915428

ω̃ = 1377.7622648

ñ = 15.65038

(C.4)

for the case of the circle. For the other three trap shapes all the values, except for R̃in and
R̃out, in equation (C.4) remain the same. For R̃in the value is chosen such that all the areas
of the different trap geometries are A = π.
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