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This thesis was dedicated to investigating the use of different parameter update schemes
for Hidden Markov models with time-varying parameters, with an emphasis on developing
alternatives to the quasi-Newton step. The focus was on applications to financial
returns, using data from the S&P-500 and the Nikkei index, and for comparison, a trial
using synthetic data was also performed. Different properties of the parameter update
schemes were explored, with Predictor-Corrector and Trust-Region based methods
showing promise in comparison to the quasi-Newton methods previously tried. The
Trust-Region method proved to be a more stable alternative, whereas the Predictor-
Corrector method showed a significant smoothing of parameter adaptation which was
not replicable by using the quasi-Newton method. Additionally, manipulating the
norm of the Trust-Region method proved to be a versatile tool for e.g. calibrating the
persistence of the hidden states without interfering with other parameter updates.
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1 Introduction

1.1 Hidden Markov Models for Financial Returns

There are several stylized facts about financial returns. These range from an absence
of autocorrelation and heavy tails to a slow decay in the autocorrelation of absolute
returns and the clustering of volatility. These facts can be observed in a wide range
of data and can be viewed as constraints to be put on models in order to reproduce
financial returns accurately (Cont, 2000).

On the other hand, one of the main driving forces behind volatility in the stock market
is the stage of the economic cycle. It has also been found that financial returns follow
a similar rhythm to economic cycles, with short periods of high volatility followed by
longer periods of low volatility (Hamilton, 1995).

The first published use of Hidden Markov models for modelling financial returns was
made 1989 (Hamilton, 1989). In it, the author attempted to model the different
economic regimes using a latent Markov chain. This was later expanded on by Rydén
(1998) who showed that a Hidden Markov model with zero mean normal distributions
could reproduce most of the stylized facts presented by Hamilton (1995). The one
stylized fact that could not be reproduced was the slow decay of the autocorrelation
function of absolute and squared returns.

Later on, Bulla (2011) showed that using conditional t-distributions showed some
improvements over conditional Gaussian distributions. The main results were that the
stylized facts presented by Hamilton (1995) were easier to recreate and the resulting
model was more resilient to outliers.

Bulla (2011) also pioneered the use of Hidden Markov models for dynamic asset
allocation purposes, using a two-state Hidden Markov model to decode the economic
regimes and basing a trading strategy around the results. Many authors have done
similar studies since, see e.g. Nystrup (2014) and Abrahamsen et al (2021).

1.2 Hidden Markov model with time-varying parameters

Holst, U. and Lindgren, G. (1991) were amongst the first to study recursive updating
schemes for the Hidden Markov model. The proposed algorithm was a combination of a
recursive maximum likelihood method used for independent data and the Expectation-
Maximization (EM) algorithm.

Rydén (1997) later introduced the concept of score driven parameter updates for
Hidden Markov models, using an algorithm with sequentially decaying update increments.
This method was then applied to synthetic data and showed great improvements in
asymptotic variance of the estimators when compared to the EM-style algorithm by
Holst and Lindgren (1991).
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The first recursively updated Hidden Markov model applied to financial data was
made by Nystrup et al. (2017), in which the information matrix was approximated
sequentially and a quasi-Newton optimization step was used in each update step and the
step size was not decreased over time. The model managed to successfully reproduce
the long memory of the squared daily returns, which is the stylized fact that has proven
most difficult to reproduce using Hidden Markov models (Rydén et al. 1998). They
also found that sequentially updating the parameters lead to a better density forecast
as opposed to using a static model.

1.3 Generalized Autoregressive Score (GAS) and Trust-Region
Optimization

Trust-region methods originate from work on numerical optimization for nonlinear
least squares methods in the middle of the twentieth century, see Levenberg (1944)
and Marquard (1963). Since then, Trust-region methods have become a staple in
unconstrained numerical optimization theory and are covered in many textbooks (Sun
W, Yuan Y. 2006).

The methods generally consist of restricting the step size of optimization algorithms
based on their local performance, with a subproblem solved in each iteration step.
There are numerous ways of solving the Trust-Region subproblem, ranging from the
simple Cauchy-point calculation to the more complex conjugate-gradient method (Sun
W, Yuan Y. 2006).

On the other hand, generalized autoregressive score (GAS) models were first defined by
Creal et al. (2008, 2013). The 2013 publication started a fervor, with over 250 papers
studying models that fall under the nowaday rather generous GAS classification to date.
The framework generalizes score-driven parameter update steps using a non-parametric
driving mechanism for scaling the score. They showed how a wide range of successful
financial models such as the generalized autoregressive conditional heteroskedasticity
(GARCH) models and the Beta-t-(E)GARCH can be found as special cases of the
GAS framework. Notably though, only one paper has touched on the use of the GAS
framework for Hidden Markov models (Nystrup et al, 2017).

1.4 Thesis Statement

Further building upon the foundation set by Nystrup et al. (2017), there is a case to
be made for using different optimization schemes for parameter updating. Specifically,
exploring more stable schemes could be very beneficial, since the simple quasi-newton
method is prone to abrupt updates when new data is introduced. Coupled with the
fact that the likelihood function generally has multiple local maxima, addressing this
instability could increase performance by preventing the algorithm from leaving the
global maximum through overshoot. Lastly, a scheme that is less sensitive to outliers
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could resolve some of the previously mentioned issues either through slower reacting
parameter updates or through a possible decrease in moving window length.

The purpose of this thesis is to develop and evaluate different Hessian-based and
Hessian-free numerical schemes as alternatives to quasi-Newton recursive estimators.
One aspect will be to draw inspiration from solvers for ordinary differential equations
such as linear multistep methods and use these methods as update mechanisms similar
to the GAS models. Another will be using algorithms for numerical optimization such
as trust region and line-search algorithms and apply them to sequentially update the
model parameters.

The models will be evaluated on both S&P 500 and Nikkei index data, as well as
on synthetic data. Using synthetic data allows models to be compared in different
scenarios, such as rapid vs. progressive parameter changes. It also allows for a deeper
understanding of how the algorithms behave when the underlying process is a true
Hidden Markov model.

Another focus of this thesis will be related to manipulating the persistence of the states
of the underlying Markov chain by using alternatives to the quasi-Newton method.
Since the persistence of the states is directly linked to the usefulness of the model for
e.g. state inference (Nystrup et al. 2020b), the ability to regulate it at no great cost
to model fit could in and of itself constitute an improvement over the quasi-Newton
method.
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2 Theory

2.1 Financial returns

Modelling financial returns presents many challenges. Amongst these is the fact that
the distribution of returns can usually be observed as having significantly greater tail
risk than e.g. a Gaussian distribution, as well as a somewhat skewed appearance. As
a result, a Gaussian model for financial returns is often a poor fit.

Figure 1: A histogram of the daily returns of the S&P 500 with an estimated Gaussian
fit overlaid.

Instead of using one Gaussian distribution to describe financial returns, a mixture of
Gaussian distributions can be used. Let e.g. p(Yt|Z = zi) ∼ N(µi, σi) with some
discrete distribution as a prior for Z be the conditional distribution for each financial
return Yt. In this case the financial returns are assumed to be Gaussian conditional
on some stochastic variable, but the unconditional distribution of Yt is typically not
Gaussian. For this reason, issues such as leptokurtosis and skewedness can be partially
solved by using Gaussian mixtures as opposed to a purely Gaussian model.

It is not necessary for Z in the above example to have identical distribution for each
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observation Yt. The model can be extended to allow for a Markov chain to determine
the conditional distribution for each Yt at different times t. The result is a discrete
time Hidden Markov model with Gaussian distributions conditional on the underlying
Markov chain.

2.2 Hidden Markov Models

2.2.1 The Markov chain

The Markov chain is the foundation upon which the Hidden Markov Model is built.
Suppose {X1, X2, ...} is a discrete time stochastic process. Then the process {Xt} is a
discrete-time Markov chain if and only if it satisfies the Markov Property

P (Xt = xt|Xt−1 = xt−1, Xt−2 = xt−2, ...) = P (Xt = xt|Xt−1 = xt−1). (1)

This definition implies that for each Xt, the distribution of Xt+1 depends only on the
value of Xt and t. Additionally, the Markov chain is said to be homogeneous if the
distribution is independent of t. The transition probabilities P (Xt = k|Xt−1 = j) = λtj,k
form a state transition matrix

Γt =


λt1,1 λt2,1 ... λts,1
λt1,2 ... ... λts,2
... ... ... ...
λt1,s λt2,s ... λts,s

 (2)

and a distribution δ is said to be stationary if δΓt = δ. Additionally, the Markov chain
is transient if

P (Xt+k ̸= i|Xt = i) > 0 (3)

for all k > 0 and is said to be recurrent otherwise. In practice, a recurrent Markov
chain regularly visits all states whereas the states of a transient Markov chain contains
a subset of states that, as t0 → ∞, will never be visited again for all t > t0 with
probability 1.

s1 s2
0.7
0.6

0.3 0.4

Figure 2: A 2-state homogeneous recurrent Markov chain with λ1,1 = 0.3, λ2,2 = 0.4
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For a homogeneous Markov chain, the sojourn times for staying in one state is geometrically
distributed with expected value

E[Ti] =
1

1− λi,i
(4)

where each Ti corresponds to the sojourn time of state i. For the inhomogeneous case,
the distributions of the sojourn times do not have a general form. Consequently, a
homogeneous Markov chain can be fully characterized by a state transition matrix Γ
and an initial distribution δ0 such that the ith element of δ0 corresponds to P (X0 =
xi), whereas the characterization for inhomogeneous Markov chains includes one state
transition matrix Γt for each t.

2.2.2 Hidden Markov Model

The discrete-time Hidden Markov model (HMM) is characterized by two main restrictions
to two discrete-time stochastic processes. Firstly, suppose there exists an observable
discrete-time stochastic process {Yt} and an unobservable discrete-time stochastic
process {Xt} taking values in {1, 2, ..., s} such that

P (Xt|Xt−1, Xt−2, ...) = P (Xt|Xt−1), (5)

that is, {Xt} is assumed to be a Markov chain. Then the conditional distribution of Yt
given Xt is assumed to be independent of all previous observations {Yt−1}. Explicitly,

P (Yt|Xt, Xt−1, ..., Yt−1, Yt−2, ...) = P (Yt|Xt). (6)

Since the process {Xt} is a (not necessarily homogeneous) Markov chain, it can be fully
described by an initial distribution δ and a transition matrix Γt for each t. Additionally,
due to (6) the distribution for each Yt is known conditional on the state of the Markov
chain. Hence Yt can be characterized by one density πt(j) for each time point t and
current state j. Summing up, an arbitrary discrete-time Hidden Markov model can be
completely characterized by:

1. An s by s state transition matrix for each time point t: Γt =

λt1,1 ... λt1,s
... ... ...
λts,1 ... λts,s


2. The collection of observational densities at each time step t, given Xt = j:
πt(j) = p(Yt|Xt = j)

3. An initial distribution of the hidden state. Explicitly, the probability that the
Markov chain initializes in state j: δ(j) = p(X1 = j)
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2.2.3 Example: The 2-state Gaussian HMM

A relevant example of an HMM of this kind is a 2-state model with 2 different Gaussian
conditional distributions,

Yt ∼

{
pN,µ1,σ1 , Xt = 1

pN,µ2,σ2 , Xt = 2
(7)

where the latent Markov chain Xt is homogeneous with state transition matrix

(
λ1,1 1− λ1,1

1− λ2,2 λ2,2

)
. (8)

with (λ1,1, λ2,2) ∈ [0, 1)2 as to avoid transience. In this case, the model is characterized
by only 8 parameters: Distribution and transition probabilities θ = (µ1, µ2, σ1, σ2, λ1, λ2)
and initial distribution δ0 = (δ10, δ

2
0). Additionally, if the Markov chain has initial

distribution δ0 = δ equal to the stationary distribution of the Markov chain, the first
two moments can be computed as

E[Yt] = δ1µ1 + δ2µ2

= δ1µ1 + (1− δ1)µ2

(9)

V [Yt] = δ1σ2
1 + δ2σ2

2 + δ1(1− δ1)(µ1 − µ2)
2. (10)

Since the underlying Markov chain is homogeneous, the moments do not depend on t
for the unconditional process. Conditional on the state of the Markov chain at different
time points, it is further possible to compute 1-step predictions for expectation and
variance of the observable process based on

E[Yt+1|Yt, Yt−1...] = P (Xt = 1)(λ1µ1+(1−λ1)µ2)+P (Xt = 2)(λ2µ2+(1−λ2)µ1) (11)

E[Y 2
t+1|Yt, Yt−1...] =P (Xt = 1)(λ1(σ

2
1 + µ2

1) + (1− λ1)(σ
2
2 + µ2

2))

+ P (Xt = 2)(λ2(σ
2
2 + µ2

2) + (1− λ2)(σ
2
1 + µ2

1)).
(12)

This follows from the fact that E[Z2] = µ2 + σ2 for Z ∼ N(µ, σ2).
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2.3 Maximum Likelihood Estimation

Maximum likelihood estimation consists of finding the set of parameters θ such that
the probability of obtaining the observed data given the parameters is maximized.
Explicitly,

θ̂ = argmaxθℓt(Y |θ). (13)

with

ℓt(Y, θ) = ln(P (Y1, Y2, ...Yt|θ)) (14)

is the log-likelihood of the data, given the model parameters θ. Thus, finding the
maximum likelihood estimate of the model parameters is equivalent to maximizing the
log-likelihood function with respect to these parameters.

When Y is the realization of a Hidden Markov model, this probability is not trivial
to compute since although the underlying process has the Markov Property (5), the
observable process Y typically does not. Instead, the distribution of Yt depends
on the entire history Yt−1, Yt−2, ... which means that ln(P (Y1, Y2, ...Yt|θ)) cannot be
deconstructed into transition probabilities between observations similar to a Markov
chain. Due to this fact, new observations cannot easily be added or removed without
the need to recalculate the log-likelihood.

2.4 The modified forward algorithm

There are two main methods for estimating the parameters of a Hidden Markov model.
The first is the expectation-maximization algorithm (EM), a robust algorithm that
aims to estimate the parameters by maximizing a pseudo log-likelihood function where
the true likelihood has been replaced with estimated expectations. The algorithm
alternates between an expectation estimation step, where the expectation of the log-
likelihood is computed and a maximization step, where the pseudo log-likelihood
function is maximized.

An alternative to the EM algorithm is direct maximization of the log-likelihood function
without the use of a pseudo log-likelihood function. Both the log-likelihood function,
the score function and the information matrix can be computed in tandem using
a modified forward algorithm similar to the one used in the EM algorithm. Once
computed, the log-likelihood can be maximized using any number of numerical optimization
algorithms.

Other less explored alternatives to the EM or direct maximization methods are primarily
Bayesian Markov chain Monte Carlo methods (Rydén, 2008) and JumpModels (Nystrup
et al., 2020a), although they will not be considered in this thesis.
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2.4.1 The log-likelihood

The modified forward algorithm presented by Lystig & Hughes (2002) is recursive in
nature, and is based on the traditional forward algorithm. In the forward algorithm,
the collection of probabilities αt(j) = p(Y1, Y2, ..., Yt, Xt = j) are computed sequentially
and summed over the possible states to acquire the log-likelihood. The issue with this
approach is that αt(j) → 0 exponentially, commonly causing numerical underflow
issues. The revised algorithm instead computes the conditional probabilities

ᾱt(j) = p(Yt, Xt = j|Y1, Y2, ..., Yt−1). (15)

Initializing ᾱ1(j) = p(Y1, X1 = j) = π1(j)δ(j), the conditional probabilities are
computed recursively via

ᾱt(j) =
s∑

i=1

ᾱt−1(i)πt(j)λ
t
i,j

s∑
k=1

ᾱt−1(k)
. (16)

The log-likelihood can then be computed as

lT =
T∑
t=1

Λt (17)

with Λt =
s∑

k=1

ᾱt(k).

An important tool in manipulating the log-likelihood function is the score, defined as
the gradient of the log-likelihood function with respect to the parameters θ:

∇l(θ) = (
∂l

∂θ1
,
∂l

∂θ2
, ...,

∂l

∂θs
). (18)

In the modified forward algorithm, the score can be computed parallel to the log-
likelihood function using a similar approach as for the log-likelihood. For each time
point t and parameter θk indexed from 1 to s, let

ψt(j, θk) =
∂

∂θk
p(Y1, Y2, ..., Yt−1, Yt, Xt = j)

p(Y1, Y2, ..., Yt−1)
(19)

with initialization at time t = 0
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ψ1(j, θk) =
∂

∂θk
p(Y1, X1 = j) = [

∂

∂θk
π1(j)]δ(j) + π1(j)[

∂

∂θk
δ(j)] (20)

The components ψt(j, θ) can then be updated recursively alongside the ᾱt(j) counterparts
using the relation

ψt(j, θk) =
s∑

i=1

(ψt−1(i, θk)πt(j)λ
t
i,j + ᾱt−1(i)[

∂

∂θk
πt(j)]λ

t
i,j

+ ᾱt−1(i)πt(j)[
∂

∂θk
λti,j])/(Λt−1)

(21)

with Λt−1 as before. The derivation of the algorithm is essentially a repeated use of the
chain rule. After all Ψ have been computed, the components of the score are computed
from

∂

∂θk
lT (θ) =

s∑
i=1

ψT (i, θk)

ΛT

. (22)

The main drawback of using this algorithm for computing the score is that parameter
transformations require analytical calculations of the derivatives with respect to the
transition probabilities and conditional densities. This is especially true if different
transformations are to be tried or different data sets are used which require multiple
sets of parameter transformations. For this reason, a finite difference approach may be
used as a practical alternative.

The last part of the modified forward algorithm consists of computing the information
matrix:

I(θ) = −E
(
∂2

∂θ2
l(θ)

)
(23)

Since this thesis is dedicated to methods where the Hessian is approximated rather
than analytically computed, this is not used in any of the models presented and will
not be explored further. The interested reader can find the explicit calculations in the
works of Lystig & Hughes (2002).

2.4.2 Sequential updating of parameters

Since the dynamics of the economy evolves over time, it is unlikely that a model with
fixed parameters is able to accurately describe an index stretching several decades.
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Therefore, methods for sequentially updating the parameters of the Hidden Markov
model when new data is introduced could be an improvement over e.g. updating
parameters after a set amount of time.

One method is to use a rolling window where each data point contributes equally to
the log-likelihood and new data replaces old data over time. Although this method
has some artificial properties caused by not weighting the datapoints, it has some
advantages in ease of implementation since the log-likelihood does not need to be
weighted.

Another method is to use an exponential weighting, where the most recent data is
assigned a higher weight than older data. One of the advantages is that using an
exponential weighting allows for a longer window length while still being able to quickly
adapt to new data points. On the other hand, quick adaptation based on a few data
points is a double edged sword in that it makes the model more vulnerable to outliers.
Nevertheless there is some evidence to support that an exponential weighting is superior
to a rolling window in some circumstances (Nystrup et al., 2017).

As for methods used in updating the parameters for each time step, there is no
consensus on the best way to go about. The only numerical scheme that has been
tried is a Quasi-Newton method with approximated information matrix (Nystrup et
al., 2017) and while the results are encouraging, there is possibly room for improvement.

2.5 Hessian based numerical optimization

The school of numerical analysis has a plethora of algorithms for maximizing functions.
One of the simplest and most well known such algorithm is the Newton-Rhapson
method, which utilizes both the gradient and hessian matrix of the target function.

Suppose ∇f(x) and H(x) the gradient and hessian of a twice differentiable function
f : Rn → R and suppose one is interested in finding the global minima of the target
function f(x). One way of accomplishing this is finding x such that ∇f(x) = 0, which
reduces the problem to finding roots for the gradient of f(x).

Let x0 be an initial guess at a minima for f(x). Then, by Taylor

f(x0 + h) ≈ f(x0) +∇f(x0)h+
1

2
hTH(x0)h (24)

for a small increment h. Differentiation with respect to h then yields

∇f(x0 + h) = ∇f(x0) +Hh. (25)

Then, setting ∇f(x0 + h) = 0 and solving for h yields the optimal improvement
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h0 = −H−1∇f(x0). (26)

The Newton-Rhapson algorithm iterates this method for t → t + 1 by xt+1 = xt + ht.
The algorithm achieves quadratic convergence, but is unable to differentiate between
local and global extremes. In addition, the algorithm is not guaranteed to converge if
the initial guess is too far from the global minima.

One of the great drawbacks of Newton-Rhapson is that it requires the Hessian to be
explicitly computed in each step of the iteration process. Since the Hessian is often
difficult to compute analytically, an approximation is often used instead of the true
Hessian. Methods using Hessian approximations rather than true Hessians are called
Quasi-Newton methods. Although it is convenient not to have to compute the Hessian,
the approximation often comes at the cost of quadratic convergence.

There are a few different methods for approximating and sequentially updating the
Hessian during optimization. The one approach that will be covered in this thesis is
the symmetric rank-1 (SR(1)) method (See e.g. Sun W, Yuan Y. (2006)). The idea is
to additively update the Hessian by some symmetric rank-1 matrix E = uvT , where u
and v are 2 column vectors. Let yt = ∇f(xt+1)−∇f(x), ht = xt+1 − xt and Bt = H−1

t

be the inverse Hessian. Then define

Bt+1 = Bt + uvT . (27)

Using result (25), it follows that

ht = (Bt + uvT )yt (28)

and consequently

vTytu = ht −Btyt. (29)

If Bt does not satisfy ht = Btyt, (27) can be rewritten to

Bt+1 = Bt + (vTyt)
−1(ht −Btyt)v

T . (30)

Further, setting v = ht−Btyt ensures symmetry of the inverse Hessian which is required,
and the resulting expression is

Bt+1 = Bt +
(ht −Btyt)(ht −Btyt)

T

(ht −Btyt)Tyt
(31)

15



which is the formula for the Symmetric Rank-1 update. An important note is that while
the update preserves symmetry, it does not guarantee that the resulting approximation
is positive definite.

2.5.1 Stability issues

Whilst the Hidden Markov model is a very powerful tool, it has some limitations
especially when considering parameter estimation. When the parameters are assumed
to be static these limitations are not too bothersome but when the parameters are
sequentially updated, especially based on data which heavily deviates from the previous
observations, issues can arise.

The first issue is that the log-likelihood generally has several local maxima, which means
that each parameter update runs the risk of moving away from the global maxima
towards a local one. This is especially true when considering the impact outliers can
have on financial data, causing amongst other things large overshoots in parameter
updates using a simple quasi-newton update (Nystrup et al 2017).

The second issue is that constrained parameters may require transformation as to
avoid issues with convergence. For a Hidden Markov model with conditional normal
distributions, this issue arises for both the variances and transition probabilities of the
states. The result is that the choice of transformation heavily impacts the behavior of
the algorithm. This is both a blessing and a curse, seeing as there is both an addition
of freedom and a difficulty in direct model comparison since there are more factors to
consider for each model.

It should also be noted that even with appropriate transformations (e.g. a probit
transform for the transition probabilities), severe problems can still arise if e.g. one
transition probability is set very close to 1 or 0 in some time step since this effectively
makes the underlying Markov chain transient.

2.6 Possible improvements over conventional quasi-newton correction

2.7 Trust Region Methods

One of the aims of this paper is to explore possible improvements to the quasi-
newton step, especially when sequentially updating model parameters in dynamic
systems where the parameters may be time-varying. This could lead to time points
where the quadratic approximation used in the quasi-newton method is rather poor.
Since the traditional quasi-newton method does not evaluate the fit of the quadratic
approximation, one possible improvement is the implementation of a Trust-Region
method.

The idea behind a trust-region method is simple: When the quadratic approximation
f(x+h) ≈ f(x)+h∇f(x)+hH(x)hT is good for a certain stepsize ||h|| and time step t,
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this can be exploited by increasing the allowed step size for the next time step, allowing
for the possibility of a larger improvement. On the other hand, if the approximation
is poor, the allowed stepsize ||h|| can be decreased in order to better the predictability
of the optimization since the smaller the stepsize, the more accurate the quadratic
approximation is. This evaluation is usually done by comparing the improvement
in function value to the expected improvement, using the quadratic approximation.
Explicitly, a trust region subproblem with given maximum allowed stepsize ∆ at time
t can be expressed as

minmt(h) = min
h
f(xt) +∇f(xt)h+

1

2
hTH(xt)h (32)

subject to ||h|| ≤ ∆. After this subproblem is solved, the fit of the quadratic approximation
can be evaluated using the quotient

ρt =
f(xt + h)− f(xt)

mt(h)−mt(0)
(33)

The measurement ρt is then compared to several thresholds and the size of the trust
region is adjusted accordingly. An example of how such an algorithm can be constructed
is the following: Select starting value x0 for t = 0, multipliers k1 = 0.25, k2 = 2.0 and
thresholds η1 = 0.1, η2 = 0.25, η3 = 0.75. Additionally, select some initial trust region
∆0 and a maximal allowed trust region ∆M . Then iterate using the following scheme
for each time step t:
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for t = t0, t0 + 1, t0 + 2... do
Solve the trust region subproblem.
Obtain and evaluate ht and ρt
if ρt > η3 and ||h|| ≈ ∆t then

The quadratic approximation is good and the size of the trust region
can be increased:
∆t+1 = k2∆t and xt+1 = xt + ht.

else
if ρ > η2 then

The quadratic approximation is reasonable, but not stellar. the size
of the trust region is not increased or decreased:
xt+1 = xt + h.

else
if ρ > η1 then

The quadratic approximation is poor and the size of the trust
region should be reduced:
∆t+1 = k1∆t and xt+1 = xt + ht.

else
if ρ < η1 then

The quadratic approximation is too poor for a parameter
update to be performed. The size of the trust region should
be reduced:
∆t+1 = t1∆t.

else

end

end

end

end

end

2.7.1 Solving the Trust-Region Subproblem. Steihaugh CG.

There are several ways to go about in solving the trust-region subproblem. In this
thesis, the focus will be on one of the most commonly used: The Steihaug-Taut
Conjugate-Gradient method. The method aims to solve the trust-region subproblem
(25) using an iterated Hessian-free approach, but utilizing both the gradient and
approximated Hessian of the previous time point. For a general reference to Steihaug-
Taut and general CG-methods, see e.g. Sun W, Yuan Y (2006).

The method divides the subproblem into three distinct cases. Let d = −f be the
negative gradient of f and H be the current hessian approximation. If dTHd > 0, the
solution is found using the direction of steepest descent and is put on the boundary
if the solution lays outside the trust region. If instead dTHd ≤ 0, the direction has a
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negative curvature and the solution is taken as the point on the boundary obtained by
following the direction of d.

Put into an algorithm, the method finds a solution s to the subproblem in the following
way:

Initialization:
A tolerance ϵ > 0 is selected as well as an r0 = f(xt) and d0 = −r0 and h0 = 0.
if ||r0|| < ϵ then

The algorithm is terminated and the solution is taken as s = h0 = 0.
else

Begin iterating to find a good solution:
while ||hj+1|| > ∆ do

if dTHd ≤ 0 then
A τ > 0 is found such that h = h0 + τ.j is on the boundary of the
trust region, i.e. ||h|| = ∆.
The algorithm is terminated with s = h.

else

Set hj+1 = hj +
rTj rj

dTj Hdj
dj.

if ||hj+1|| ≥ ∆ then
Transform hj+1 back onto the border of the trust region in the
negative gradient direction:
Set s = hj+1 − τdj such that ||s|| = ∆.
Terminate the algorithm.

else

Set rj+1 =
rTj rj

dTj Hdj
Hdj.

if ||rj+1|| < ϵ then
Set s = hj+1.
Terminate the algorithm.

else

Update dj by dj+1 = −rj+1
rTj+1rj+1

rTj rj
dj.

end

end

end

end

end

An important thing to note is that if a Hessian approximation which lacks positive
definiteness is used, Steihaugs CG method still works. For this reason, a SR(1) update
can be used without fear of the algorithm breaking due to this issue.
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2.8 Generalized Autoregressive Score Models (GAS)

2.8.1 Definitions

An alternative to using a Hessian approximation is to simply not use a Hessian at
all, and instead let the model parameters be updated by functions of the likelihood
and score. This is essentially what the broad class of models called Generalized
Autoregressive Score (GAS) models attempt to do, although some Hessian based
models also fall under this umbrella term. In fact, many models from different areas
of optimization theory and especially in econometrics can be found as special cases of
the GAS framework.

Suppose p(Yt, Yt−1, ...|θt) is the probability of the observations Yt, Yt−1, ... given the
parameters θt at time t. Then the GAS(p, q) model is characterized by the relation

θt+1 = ω +

q∑
j=1

βjθt+1−j +

p∑
i=1

αst−i+1 (34)

with ω, αi and βj as dimension appropriate vector and matrices respectively. Additionally
the ”driving mechanism” st is updated according to

st = St∇̇l(θt) (35)

with St as some matrix function of the time varying parameters θ and all available
information at time t S(t, θt, Ft).

It can be noted that there are some similarities between this method and the previously
discussed quasi-Newton methods. In fact, Newton’s method can be found as a special
case of the GAS(1,1) model with St = −Ht, as can many other popular parameter
update schemes. Due to the flexibility in selecting st, orders p, q and coefficient
matrices, there are numerous schemes with the potential to outperform the quasi-
Newton method.

2.8.2 Parallel between ODE-solvers and optimization

Methods for solving ordinary differential equations numerically and numerical optimization
are closely related concepts. For this reason, methods used in one setting can have
applications in the other.

Suppose that the dy
dt

= f(y, t) of y is some function of y and t can be evaluated and
suppose that some initial value y0 = y(t0) is given. The value y(t) of some arbitrary t
can then be approximated using numerical integration by discretizing the interval (t0, t)
and using numerical integration methods in each discretized time step. In numerical
analysis, this kind of initial value problem is greatly important (see e.g. Griffiths,
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Higham 2010 as a general reference for numerical integration methods) and as a result,
numerous numerical schemes exist and can be used to find an approximation of y(t).

It is clear that there are parallels between this numerical integration problem and GAS
models. In fact, so long as q ≥ 1 and β1 = 1 in (34), approximations of y(t + 1) with
t0 = t can be interpreted as a parameter update step in the GAS model if the time
descritization is one whole time step.

Take e.g. θt+1 = y(t + 1), t0 = t. A numerical solution to the initial value problem
then finds an approximation of θt+1 given θt and the relation

∂θ

∂t
= f(θ, t). (36)

If e.g. the numerical method taken is Euler’s method

θt+1 = θt + f(θt, t), (37)

and f(θ, t) = −H(θt)
−1ℓ(θt), the resulting model is identical to the previously covered

Newton-Rhapson method for updating parameters. In fact, substituting θt+1 in the
GAS equation and setting f(θ, t) = θt+1 − θt yields

f(θ, t) = θt+1 − θt

= ω +

q∑
j=2

βjθt+1−j +

p∑
i=1

αst−i+1
(38)

and using Euler’s method recreates the corresponding GAS method as the solution to
the initial value problem. Thus, substituting Euler’s method for an alternative opens
up the door to potential improvements over the conventional GAS models in the update
step.

It should be noted that there is a key difference between traditional ODE-solvers and
numerical optimization. Specifically, in the traditional initial value problem, the target
function can only be computed in the initial value whereas in optimization it can be
computed for any value. In practice this means that progress can be monitored by
evaluating the target function, ensuring that each step brings an increase in function
value. For this reason, some ODE-algorithm which do not utilize this resource when
performing optimization will be suboptimal when compared to corresponding modified
versions.

It should also be noted that for some models, the log-likelihood is computed parallel
to the score and hence there is no computational cost associated with the evaluation.
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Since this is the case for the modified forward algorithm, this method can be favorably
implemented for the Hidden Markov model.

2.8.3 Linear multistep methods

Linear multistep methods is a class of numerical schemes for use in solving ordinary
differential equations. As opposed to one-step methods where previous evaluations of
the gradient and target function are discarded, this class of methods aims to increase
performance by storing and utilizing the previous evaluations. Linear multistep methods
impose a linear restriction to the update, resulting in schemes of the form

yt =

p∑
i=1

αiyt−i +

q∑
j=0

βjf(yt−j, t− j) (39)

with f(t, yt) =
dy
dt

as before.

A linear multistep method can be either explicit or implicit. An explicit method utilizes
only computations up to t − 1 in the computation of yt whereas an implicit method
can use computations up to and including time t. Hence the method is called explicit
if β0 = 0 and implicit otherwise. For the implicit case, methods must be employed
to solve the equation for yt since it then appears in both the right hand side and the
left hand side. Because f(yt, t) seldom is a simple function, this is often done using
numerical approximation.

For the purpose of maximizing the log-likelihood, there are advantages to employing
implicit methods over explicit ones. Since stability issues have been observed in the
past when employing explicit methods it is possible that an implicit scheme could
improve stability in the same way as implicit numerical schemes have been used to
solve stiff differential equations in the past, where alternative methods have proven to
be too unstable (Nystrup et al., 2017).

2.8.4 Predictor-Corrector Scheme

One way to extend the family of linear multistep methods is to include functions of
predicted values yt+1 in an additional step of computations. One such method is Heun’s
method which contains two steps:

(1) : ỹt+1 = yt + f(yt, t)

(2) : yt+1 = yt +
1

2
(f(yt, t) + f(ỹt+1, t+ 1))

(40)

This corresponds to the special case of the linear multistep family for which β0 = β1 =
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1/2 and α1 = 1, where the value of yt+1 on the right hand side has been approximated
using an Euler step.

One interesting aspect of the predictor-corrector scheme is that if the approximation
yt+1 is found to be inaccurate, the approximation can be improved by iterating the
correction step of the algorithm. This is especially useful in an optimization setting
where the target function can be monitored since this gives a gauge of the accuracy of
the estimation.

2.9 A brief mention: Line-search algorithms

A third approach to the optimization problem is the use of a line-search algorithm,
see e.g. Sun and Yuan, (2006) as a general reference. In contrast to a trust-region
approach where the objective function is optimized over a domain centered around the
current parameter estimates in each time step, the family of line-search algorithms first
selects an improvement direction pt, and then attempts to find an optimal step size α
for which f(θt + αpt) is maximized.

One of the advantages of this kind of algorithm is that it only requires the one initial
computation of the score (and if required, Hessian), after which only the log-likelihood
needs to be computed in each time step. This contrasts to the Predictor-Corrector
scheme, where each correction step requires an additional computation of the score.

Additionally, the algorithm can be used in any case where the step size is not restricted.
This can be very beneficial when e.g. stability is an issue and large steps can cause a
great decrease in log-likelihood.

With dt = −∇f(xt), one simple implementation is the backtracking line-search. The
method is based on the fact that, for each β ∈ (0, 1), ρ ∈ (0, 1/2), τ > 0 and dt =
−∇f(xt), there exists at least one integer m > 0 such that

f(xt)− f(xt + βmτdt) ≥ ρβmτ ||dt||2. (41)

Using this relation, the following algorithm can be implemented in just a few steps:

Set α0 = 1 and w ∈ (0, 1).
for t = t0, t0 + 1, t0 + 2... do

Compute f(xt + αtdt).
if f(xt + αtdt) ≤ f(xt)− ραdTt dt then

Set h = αdt.
Terminate the algorithm.

else
Set αt+1 = wαt.

end

end
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3 Data Selection

3.1 Synthetic Data

In the evaluation of different models it is important to use synthetic data as well as
real data. A few of the more interesting aspects that need to be evaluated are how
well the model adapts to sudden as well as progressive changes, especially when it
comes to changes in volatility. For this reason, the synthetic data was generated using
a homogeneous Markov chain of 9000 data points and with time varying parameters
µ2 and σ2.
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Figure 3: Parameters of the synthetic data used, generated from 9000 data points.

Here, a sudden change in µ2 is seen at t = 2500 going from µ2 = −3 to µ2 = −7, after
which it returns to the initial value at t = 4000. Simultaneously, the σ2 parameter is
adjusted from σ2 = 5 to σ2 = 9 and back in a similar fashion. After an additional 1500
datapoints, σ2 follows a gradual adjustment according to a sinusoidal function, with
maximum and minimum values obtained as σmax

2 = 8 and σmin
2 = 2.
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3.2 Real Index data

3.2.1 S&P-500

The first data set chosen consists of daily close data from the S&P 500 taken from its
1978 until 2022 representing 11138 trading days was selected. There are several reasons
for including this particular data set. Importantly it is one of the most well studied
indices in the world, containing stocks from the 500 largest companies listed on the US
stock exchange. The fact that this index is so well studied gives context to acquired
results. Secondly, the data set includes the infamous date Black Monday (october 19,
1987) which caused issues in previous similar models. How the models presented above
perform when encountering such an event is of great interest, and so an index which
contains several years of data both before and after 1987 is a desirable inclusion.

Figure 4: The S&P 500 Index

3.2.2 Japanese Nikkei

In order to contrast the previously mentioned S&P-500 data set, the japanese Nikkei
225 index is taken from the beginning of 1970 until 2022. The importance of including
this data set is mainly related to the difference in behavior between it and the S&P-500,
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with the chief differences being the increased variance of the Nikkei data set as well as
the fact that the japanese crisis in 1991 has resulted in a price high which the index
has not reached again to date. This is clearly different from the S&P 500 index, and
so it is interesting to see whether there is a difference in model performance between
the two data sets or not.

Figure 5: The Nikkei Index
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4 Method

4.1 Models

The main objective of this paper is to explore the application of different numerical
schemes to the sequential updating of model parameters, given new data. In order to
do this, 4 main models were identified as potential candidates:

• Trust-Region method based on allowing the step length to be increased and
decreased depending on how well the trust-region subproblem is solved.

• Predictor-Corrector method based on iterating correction steps until the taken
step increases the likelihood function. This is a Hessian-free approach.

• Backtracking line-search algorithm based on the quasi-Newton method.

• Score driven backtracking line-search algorithm.

4.1.1 The Trust Region Model

There are a few important reasons for choosing a trust-region method for updating the
model parameters when modelling financial data. Firstly, the quadratic approximation
that the Newton-Rhapson uses could become poor when extreme points are included
into the moving window, which could lead to problems such as overshoots in parameter
updates and similar issues. Using a trust-region could mitigate this issue by shrinking
the allowed step size when the accuracy of the quadratic approximation becomes poor.
Secondly, since some parameters are easier to estimate than others in financial time
series, it is interesting to see whether the trust-region method will adapt to this by
prioritizing updates in e.g. volatility over mean. Thirdly, the Trust-Region method for
optimization is practical for reducing the sensitivity of certain parameters.

Given these motivations, the first model presented in this thesis is a trust-region model
with an SR(1) update for the Hessian and using Steihaug CG for solving the trust-
region subproblem.

Given a moving window length N and a maximum step size ∆, the algorithm proceeds
as follows:

27



Select initial parameters θ0 using an iterated solver to maximize the
log-likelihood function provided by the modified forward algorithm, using the
first N data points. For this thesis, a Nelder-Mead algorithm was used for
this purpose.
Initialize the hessian using a finite-difference approach to obtain an initial
estimate of H0. Set an initial trust region size ∆0.
for t = t0, t0 + 1, t0 + 2, ... do

Update the parameters θt → θt+1 by solving the Trust-Region subproblem
by applying the Steihaug CG method, taking into account the last N data
points.
Update Ht → Ht+1 using the SR(1) method and allowed step size
∆t → ∆t+1 according the trust-region method, with parameters
η1 = 0.1, η2 = 0.25, η3 = 0.75.

end

As for the norm used, the regular L2 norm was used in addition to different norms
constructed by

||θ||z = ||ANθ||2, (42)

with AN = A
|A|1/6 as a diagonal matrix with weights wi = Ai,i corresponding to the

parameters θ = (µ1, µ2, σ1, σ2, λ1, λ2) and |AN | = 1 by design:

A =


w1 0 0 0 0 0
0 w2 0 0 0 0
0 0 w3 0 0 0
0 0 0 w4 0 0
0 0 0 0 w5 0
0 0 0 0 0 w6

 (43)

.

By adjusting the different weights wi, the model can allowed to vary some parameters
more than others. This could potentially be beneficial when e.g. restricting the
transition probabilities λ1, λ2 or variance parameters, since these have been shown
to vary quite a lot throughout the sample (Nystrup et. al, 2017).

4.1.2 The Predictor-Corrector Model

Another objective of this thesis is to explore Hessian-free numerical schemes for the
purpose of updating the parameters of the Hidden Markov model. The reason for this
is largely inspired by the success of the GAS models and an interest in whether an
application to Hidden Markov models is possible.
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For this reason, the second model presented in this thesis is inspired by the traditional
Predictor-Corrector scheme. The hope is that a model based on Predictor-Corrector
could reduce the overfitting issues, and increase stability without sudden jumps and
larger than reasonable variance predictions.

Let ℓ(θ) be shorthand notation for ℓ(Yt, Yt−1, ...|θ). Then the algorithm uses 1 Euler step
for predicting ˜θt+1 = hℓ(θt, t) using constant step size h and then iterates correction
steps until the log-likelihood has increased by evaluating ℓ( ˜θt+1) for each iteration.
If the algorithm fails to find a positive increase, the parameter is not updated and
θt+1 = θt:

Set step size h based on the data provided.
for t = t0, t0 + 1, t0 + 2, ... do

Compute θ̃t+1 = θt +∇ℓ(θt).
Compute θ̂t+1 = θt +

1
2

(
∇ℓ(θt) +∇ℓ(θ̃t+1)

)
while ℓ(θ̂t+1) < ℓ(θt) do

Compute a new θ̂newt+1 = θt +
1
2

(
∇ℓ(θt) +∇ℓ(θ̂t+1)

)
end

Return θt+1 = θ̂t+1.
end

One drawback of this type of algorithm can be that the step size h may need to be
exceedingly small, since the explicit Euler step can yield a hefty decrease in the log-
likelihood which may not always be corrected enough in the correction step. However,
since one central aim of this model is to decrease sensitivity it could be that a small
step size is appropriate regardless.

4.1.3 Backtracking line-search: A brief mention

As previously mentioned, one issue with the Predictor-Corrector approach is that it
significantly restricts the step size used. Additionally, for even moderate step sizes the
number of correction steps required to acquire an increase in the log-likelihood may be
excessive.

If this becomes too burdensome, an alternative score-driven approach is to use a
backtracking line-search, starting with a large step size in the direction of the negative
gradient and scaling it back until an improvement in the log-likelihood is observed.

The backtracking line-search algorithm used in this thesis follows precisely the steps
detailed in ”A brief mention: Line-search algorithms”:
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Set α0 = 1 and ρ = 0.499 and w = 0.7.
for t = t0, t0 + 1, t0 + 2... do

Compute ℓ(θt + αi∇ℓ(θt)).
for i = 1, 2, ..., imax do

if ℓ(θt + αi∇ℓ(θt)) ≤ ℓ(θt)− ρα∇ℓ(θt)T∇ℓ(θt) then
Set αi+1 = wαi.

else
Set θt+1 = θt + αi∇ℓ(θt).

end

end

end

Additionally, a line-search for Newton’s method was also implemented. This line
search algorithm however was only applied when the initial step resulted in a negative
contribution to the log-likelihood. Hence the only difference between this method
and the regular quasi-Newton presented by Nystrup et al (2017) is that the model
temporarily reduces step size if there is no improvement in log-likelihood:

Set α0 = 1 and ρ = 0.499 and w = 0.7.
for t = t0, t0 + 1, t0 + 2... do

Compute ℓ(θt + αi∇ℓ(θt)).
for i = 1, 2, ..., imax do

if ℓ(θt + αi∇ℓ(θt)) ≤ ℓ(θt)− ρα∇ℓ(θt)T∇ℓ(θt) then
Set αi+1 = wαi.

else
Set θt+1 = θt + αi∇ℓ(θt).

end

end

end

The reason for including such a model is that the quasi-Newton easily gets stuck in local
extreme points, and this simple improvement immediately makes the algorithm more
robust. It is also interesting to see whether this simple fix makes a lot of difference, or
if more advanced methods are required.

4.2 Performance metrics

One of the most commonly modelled aspects of financial returns is the volatility
component. Although the actual returns of financial data is very difficult to forecast,
forecasting the squared return is comparatively easier. For this reason, one interesting
use of the Hidden Markov Model is volatility forecasting. This prediction is easily
performed using the posterior probabilities calculated in the first part of the forward
algorithm, which can be derived from equation (15). This can serve as an important
metric when validating the model fit and a mean squared error (MSE) can be calculated
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and compared to e.g. a naive model that assumes constant variance. Suppose Yt is the
tth observation and Ŷt is the prediction of Yt at time t. Then the MSE is defined as

MSE =
1

n

n∑
t=1

(Yt − Ŷt)
2. (44)

Since the volatility is the predicted component here, Yt = R2
t is used with Ŷt derived

from the forward algorithm. The result can then be compared to the sample variance
of the entire sample Ŷt =

1
n−1

∑n
t=1(Yt − Ȳt)

2.

Another important metric to compare between models is the predictive log-likelihood.
This metric measures the likelihood of the data given the 1-step density forecasts of
the models. For this reason, it is only really reliable for comparisons of models where
the same data and same window length has been used. The theoretical predictive
log-likelihood is defined as

ℓp(θ) =

∫
log pθ(x)pθ0(x)dx

≈
∑
i

log pθ(xi),
(45)

The predictive log-likelihood can be computed in a similar fashion to the conditional
expectations and variances computed in (11) and (12), applied to the Gaussian conditional
distributions. Given data until time t and corresponding parameter estimate θt and
probabilities P (Xt = 1) and P (Xt = 2) and transition probabilities estimated by the
modified forward algorithm, the density function for the next observation is

fYt+1(x) =P (Xt = 1)(λt1fNt
1
(x) + (1− λt1)fNt

2
(x))

+ P (Xt = 2)(λt2fNt
2
(x) + (1− λt2)fNt

1
(x)),

(46)

where λt1, λ
t
2 are the estimated transition probabilities. The predictive log-likelihood

can then be defined as

PLL =
∑
t

ln(fYt+1(yt+1)). (47)

and can be used as a metric for how well the model predicts data. This metric contrasts
greatly to the MSE used in that the MSE measures how well the model predicts the
squared returns, whereas the predictive log-likelihood measures how well the returns
themselves are predicted.

31



5 Results

5.1 Synthetic Data

Method Variance MSE Predictive Log-Likelihood
Trust Region 2.20 ·103 -2.22 ·104
Quasi-Newton 2.19 ·103 -2.21 ·104

Quasi-Newton Line-Search 2.19 ·103 -2.23 ·104
Predictor-Corrector 2.21 ·103 -2.22 ·104

Line-Search 2.20 ·103 -2.22 ·104

Table 1: MSE and Predictive Log-Likelihood for the synthetic data, using a window
length of 450.

Figure 6: Parameter estimates for the Line Search model applied on synthetic data,
using a window length of 450.

Parameter estimation was performed for all 4 models, using appropriate parameter
transforms for the window length of 450. No real stability issues arose for any of the
models, and so the parameter transforms did not need to be especially restrictive.
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Figure 7: Parameter estimates for the regular quasi-Newton model applied on synthetic
data, using a window length of 450.

One of the things that immediately stand out is that the predicted state transition
probabilities vary heavily throughout the sample for all models, but especially for the
Trust-Region and Quasi-Newton models. This speaks to the fact that although the
underlying process might follow a homogeneous Markov chain, the Hidden Markov
model can locally vary quite a lot.

Since the transition probabilities were λ1 = 0.95 and λ2 = 0.8, the corresponding
sojourn times are T1 = 20 and T2 = 5 respectively. Consequently, on average, the
Markov chain can be expected to switch states from state 1 every 20 steps and from
state 2 every 5 steps. This means that the window length of the rolling window is
rather large compared to the sojourn times, which gives the process plenty of switches
in each window. Since this should in theory lead to a more accurate estimation of
parameters, it is especially interesting to see the parameters vary so much throughout
the sample.
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Figure 8: Parameter estimates for the Line Search quasi-Newton model applied on
synthetic data, using a window length of 450.

5.1.1 Differences in parameter estimation between models

One of the primary features that stand out is the inability for the Line-Search and
Predictor-Corrector models to react to a change in µ2. This may be related to the
fact that these are the only 2 score-driven models, which means that the additional
complexity of the Hessian could be the deciding factor. The difference is much more
extreme for the Predictor-Corrector model than for the Line-Search model though, see
figure 6.

For the parameters σ1, σ2, λ1, λ2, there is clearly a larger degree of variation in the
parameter estimates for the Quasi-Newton and Trust-Region models than for the score-
driven models.

It should be noted however that whereas the line-search method adjusts much slower
than the Predictor-Corrector method does for µ, the adjustment is virtually identical
for σ2.

It is not clear whether or not it is a problem from a practical standpoint that the
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Figure 9: Parameter estimates for the Predictor-Corrector model applied on synthetic
data, using a window length of 450.

Predictor-Corrector method does not react well to sudden changes in mean. In fact,
this could be an advantage when it comes to real returns since extreme events could
otherwise highly impact the mean as it does to the Hessian based models.

The non-reaction is also interesting considering that in terms of MSE and PLL the
Predictor-Corrector and Line-search algorithms are not at a disadvantage compared to
the other models. This may partly be because the inaccuracy in the parameter switch
regions are compensated for by the relatively constant parameter estimates in the other
regions and especially the Predictor-Corrector algorithm has a very low rate of change
in general.
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Figure 10: Parameter estimates for the Trust-Region model applied on synthetic data,
using a window length of 450.

5.2 Real Returns

Method Variance MSE Predictive Likelihood
Trust Region 4.38 ·10−7 3.36 ·104
Quasi-Newton 4.42 ·10−7 3.42 ·104

Quasi-Newton Line-Search 4.36 ·10−7 3.37 ·104
Predictor-Corrector 4.42 ·10−7 3.41 ·104

Line-Search 4.44 ·10−7 3.38 ·104

Table 2: Results for 450 trading days window length, S&P 500 index.

The results for Real financial returns were split into 2 different sections with different
methodology as to both compare the performance between different model types, but
also to study how the Trust-Region model performs more in depth.

For the first section, all models were fitted for both window length 450 and 1700 for the
S&P 500 index and for length 450 for the Nikkei index. For all 3 cases, a line-search
quasi-Newton model was included for comparison due to the instability of regular quasi-
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Method Variance MSE Predictive Likelihood
Trust Region 5.00 · 10−7 2.94 · 104
Quasi-Newton* 4.93 · 10−7 2.91 · 104

Quasi-Newton Line-Search 4.98 · 10−7 2.91 · 104
Predictor-Corrector 4.98 · 10−7 2.94 · 104

Line-Search 4.97 · 10−7 2.93 · 104

Table 3: Results for 1700 trading days window length, S&P 500 index. Note the high
reduction in MSE for the Quasi-Newton method compared to the other methods.

Method Variance MSE Predictive Likelihood
Trust Region 2.80 · 10−7 3.95 · 104
Quasi-Newton 2.90 · 10−7 3.92 · 104

Line-Search Newton 2.87 · 10−7 3.99 · 104
Predictor-Corrector 2.83 · 10−7 4.00 · 104

Line-Search 2.84 · 10−7 3.96 · 104

Table 4: Results for 450 trading days window length, Nikkei index.
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Figure 11: Parameter estimates for the Line Search model applied on the S&P-500,
using a window length of 450. Note the spike in σ2 volatility around the 2000th trading
day (Black Monday).
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Figure 12: Parameter estimates for the regular quasi-Newton model applied on the
S&P-500, using a window length of 450. Note the spike in σ2 volatility around the
2000th trading day (Black Monday), accompanied by sharp dips in λ1, λ2.

Newton. The performance metrics were compiled into tables 2, 3 and 4. All parameter
estimates for the 450 window length S&P-500 can be found in figures 11-15, as well as
parameter estimates for the regular quasi-Newton model and the Trust-Region model
for the 1700 window length S&P-500 index. The parameter estimates for the Nikkei
index and the remaining models for the 1700 window length S&P-500 index can be
found in the appendix.

For the second section, the Trust Region model was fitted to the S&P 500 index using
a window length of 450, but with constant maximum step length and different norms
as to study the behavior of the model when the variance is allowed to vary more than
the transitional probabilities and vice versa. For this section, certainty measurements
in the form of bootstrapped confidence intervals were also simulated and presented in
table 5. Parameter estimates for the different norms can be found in figures 18-20.

5.2.1 Overall Performance

All in all, the tests were inconclusive in determining which model performs the best
purely based on the performance metrics. There does not seem to be much correlation
between the MSE and predictive log-likelihood measurements of the different models,

38



0 2000 4000 6000 8000 10000

Trading Days

0

10

20
10-4 1

0 2000 4000 6000 8000 10000

Trading Days

-5

0

5

10-3 2

0 2000 4000 6000 8000 10000

Trading Days

5

10

10-3 1

0 2000 4000 6000 8000 10000

Trading Days

0.02

0.03

0.04

2

0 2000 4000 6000 8000 10000

Trading Days

0.99

0.991

1

0 2000 4000 6000 8000 10000

Trading Days

0.9

0.95
2

Figure 13: Parameter estimates for the Predictor-Corrector model applied on the S&P-
500, using a window length of 450. Note the spike in σ2 volatility around the 2000th
trading day (Black Monday).

and the performance varies wildly between different data sets and window lengths.

A clear illustration of the irregular results of model performance is for the S&P-500
index with window length 450, where both the highest predictive log-likelihood and
the lowest MSE were obtained by the regular and line-search quasi-Newton models
respectively (see table 2). This is contrasted with the Nikkei index performance, where
the Trust-Region and Predictor-Corrector models obtained the lowest MSE and highest
predictive log-likelihood respectively. For the 1700 window length S&P-500 index,
the greatest predictive log-likelihood was again obtained by the Trust-Region and
Predictor-Corrector models whereas the lowest MSE was obtained by the regular quasi-
Newton method. It should however be noted that the quasi-Newton model displayed
irregular behavior (see figure 16) and as such, the result should be viewed with caution.

Nystrup et al. (2017) were able to read the window length from the parameter estimates
due to the extreme nature in which the outliers (particularly the Black Monday date)
impacted estimates. The same behavior can be seen in the estimates presented here,
but with varying degrees between the different models. The quasi-Newton methods and
Trust-Region methods were clearly able to reproduce this result, whereas the smoothing
effects of the Predictor-Corrector scheme makes for a less abrupt transition (see e.g.
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Figure 14: Parameter estimates for the Line Search model applied on the S&P-500,
using a window length of 450. Note the spike in σ2 volatility around the 2000th trading
day (Black Monday), accompanied by a sharp dip in λ2.

Figure 12, where the λ1, λ2 parameter estimates dip for exactly the window length 450
before returning close to the original estimates).

Further comparing the results of the 450 window length to the 1700 window length,
there are great differences between how the transition probabilities λ1, λ2 vary throughout
the sample. While the results of Nystrup et al. (2017) had the transition probability of
the high-volatility state drop to roughly 0.6 around the Black Monday date (observed
around the 2000th trading day) using a window length of 1700, the corresponding drop
for the window length 450 was 0.4 for the quasi-Newton method and close to 0 for the
Trust-Region model using a regular L2 norm. As for the 1700 window length, none of
the models covered achieved dips in the λ parameters close to the ones obtained by
Nystrup et al. (2017) with the most prevalent dip observed by the Trust-Region model
(see figure 19). This discrepancy can however be attributed to differences in parameter
transformations and step sizes used by Nystrup et al..

In practice, these large dips in transition probabilities may be detrimental to model
performance in e.g. state inference and when applied to trading strategies, since it
increases the number of regime switches and consequently increasing transactional costs
(Nystrup et al., 2020b). Since the Predictor-Corrector model succeeded in smoothing
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Figure 15: Parameter estimates for the Line Search quasi-Newton model applied on
the S&P-500, using a window length of 450. Note the spike in σ2 volatility around the
2000th trading day (Black Monday), accompanied by sharp dips in λ1, λ2.

out the impulses for λ1, λ2, this could constitute a practical improvement over the
quasi-Newton method in state persistence. It should be noted that attempts to reproduce
the results of the Predictor-Corrector using a smaller step size for the quasi-Newton
methods failed, resulting in substantially worse performance.

5.2.2 Stability issues and transformations

There were great stability issues relating to the quasi-Newton method particularly
for shorter window lengths, when fitting these models. In order to ensure stability,
the parameters had to be transformed and bounded into specific intervals and slight
changes to the nature of the transforms had a profound impact on the performance of
the models.

These issues make it very difficult to outright compare the different models, since
the effect of the transforms have to be taken into account. This makes it difficult to
motivate that e.g. the Predictor-Corrector method might have an edge over the quasi-
Newton method since it could help prevent overfitting based on outliers, when a similar
effect could be produced by simply changing the parameter transforms for the quasi-
Newton model. Although the behavior of the Predictor-Corrector model could not be
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Figure 16: Parameter estimates for the regular quasi-Newton model applied on the
S&P-500, using a window length of 1700. Note the spike in σ2 volatility around the
700 trading day (Black Monday).

reproduced with the quasi-Newton model, it is not impossible that a similar result could
have been obtained by using very specific parameter transformations. Hence, although
the Predictor-Corrector model could constitute an improvement over the quasi-Newton
method in the sense that controlling the persistence of the states can improve model
performance, it may simply be because the quasi-Newton method with corresponding
parameter transformations is not specified appropriately.

Nevertheless, some qualitative observation can be made in regards to stability. Whereas
the quasi-Newton required very specific parameter transforms tailored to specific data
sets to ensure stability, the Trust-Region model presented was able to run without any
transforms and only occasionally ran into boundary issues. The same was true for the
line-search algorithms, for which the backtracking line-search method is a very practical
tool for avoiding boundary conditions.

All in all it is clear that in terms of ease of use and restrictiveness, the quasi-Newton
model performs poorly when compared to both the score-driven and trust-region alternatives,
but in overall performance it is very difficult to definitively say which class of models
performs the best.
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Figure 17: Parameter estimates for the Trust-Region model applied on the S&P-500,
using a window length of 1700. Note the spike in σ2 volatility around the 700 trading
day (Black Monday).

5.2.3 Thoughts on sojourn time distribution

Nystrup et al. (2017) came to the conclusion that some of the performance issues of
Hidden Markov models could be attributed to the fact that sojourn times are generally
implicitly assumed to be geometrically distributed. This is partly motivated by the
fact that when the transition probabilities are allowed to vary with time, they often
vary quite a lot between different parts of the sampled data.

Based on this general observation, it is interesting to study the behavior of the parameter
estimates of the model when applied to synthetic data, since the results of this paper
shows that even when the underlying process is a homogeneous Markov chain, the
transition probability estimates based on a moving window can vary greatly from the
true values over time but it seems to do so in a recurring pattern with no apparent
disruptions when other parameters change either abruptly or gradually.

This is not exactly the case for the financial data studied, where e.g. the Black Monday
event of 1987 causes a substantial dip in the transition probabilities of the S&P 500
index as previously mentioned, especially for the window length 450. This is most
extreme for the Trust-Region model, where the transition probability of the high-
volatility state drops close to 0.
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It is clear that this behavior is not consistent with the results obtained for synthetic
data. However, at least part of the variation can be attributed to the outliers contained
in the data, since a single extreme data point could, if permitted, be put into its
own high volatility state. Consequently, this would cause the corresponding transition
probability to drop considerably since the observed state sequence becomes a single
point in the high volatility state followed by and preceded by low volatility states. The
clearest example of this is the Black-Monday date previously discussed.

5.3 Trust Region Model Norm comparisons for Real Returns

Diagonal elements of A Variance MSE Predictive Likelihood
(1, 1, 5, 5, 0.5, 0.5) 4.38 (1.35, 9.92) ·10−7 3.36 (3.33, 3.38) ·104
(1, 1, 1, 1, 1, 1) 4.38 (1.35, 9.82) ·10−7 3.36 (3.33, 3.39) ·104

(1, 1, 0.1, 0.1, 10, 10) 4.36 (1.33, 9.87) ·10−7 3.37 (3.35, 3.40) ·104
(1, 1, 0.05, 0.05, 50, 50) 4.43 (1.43, 10.02) ·10−7 3.37 (3.35, 3.40) ·104
(1, 1, 0.01, 0.01, 100, 100) 4.46 (1.43, 10.01) ·10−7 3.36 (3.34, 3.39) ·104

Table 5: Results for 450 trading days window length, S&P 500 index, using different
norms for the Trust Region Model. Parenthesis contain bootstrapped 95% confidence
intervals for the metrics.

Table 5 shows the mean squared error of the variance predictions and the predictive
log-likelihood with corresponding bootstrapped two-sided 95% confidence intervals.
Although these intervals are broad and all metrics for all models are contained in all
confidence intervals, these intervals are likely inflated due to the effect of outliers (that
is, a large portion of predictive log-likelihood and particularly the MSE is contributed
from a few extreme observations).

As was intended, the transition probabilities λ1, λ2 were progressively less volatile with
an increase in corresponding A5,5, A6,6 weights. Meanwhile, the parameters σ1, σ2 did
not experience an increased variability despite the corresponding A3,3, A4,4 weights
being progressively decreased. This may be due to the volatility parameters already
reaching their global optimum, and that further availability is thus not reflected in the
parameter estimation graphs.

Although the difference is small and well within these confidence intervals, the norms
seem to impact the predictive log-likelihood and MSE in a systematic pattern with the
higher MSE values acquired around the last 2 norms, and the lowest MSE at 4.36 ·10−7

acquired using diagonal elements (1, 1, 0.1, 0.1, 10, 10), in line with the Quasi-Newton
Line-Search model used in the previous section. This suggests that there may be
advantages to introducing a limitation to the way in which the transition probabilities
are allowed to vary. Therefore, the Trust-Region model with a norm other than L2

may constitute an improvement in a similar fashion to the Predictor-Corrector model
previously discussed, since the variation of the transition probabilities can be minimized
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Figure 18: Parameter estimates for the Trust-Region model applied on the S&P-500,
using a window length of 450. Note the spike in σ2 volatility around the 2000 trading
day (Black Monday). The diagonal elements of the norm was A = (1, 1, 5, 5, 0.5, 0.5).

without penalty to the performance metrics and without the accompanied smoothing
of the σ1, σ2 parameter estimates.
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Figure 19: Parameter estimates for the Trust-Region model applied on the S&P-500,
using a window length of 450. Note the spike in σ2 volatility around the 2000 trading
day (Black Monday). The diagonal elements of the norm was A = (1, 1, 0.1, 0.1, 10, 10).
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Figure 20: Parameter estimates for the Trust-Region model applied on the S&P-500,
using a window length of 450. Note the spike in σ2 volatility around the 2000 trading
day (Black Monday). The diagonal elements of the norm was A = (1, 1, 0.5, 0.5, 50, 50).
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6 Conclusion and Future Work

The results of this thesis illustrates that there are areas where the quasi-Newton can be
improved. Although it is difficult to compare model performance and thus definitively
find such an improvement due to the impact parameter transformations have on model
performance.

From a stability standpoint, the Trust-Region model was identified as a more robust
alternative to the quasi-Newton method, although the performance metrics were not
significantly different from the simpler model. Additionally, the Predictor-Corrector
model showed a much smoother parameter transition for both synthetic and real data
and although the performance metrics did not indicate an improvement, the persistence
of the parameter estimates, especially the transition probabilities, could in and of itself
constitute an improvement over the quasi-Newton model in practical applications.

Since the parameter transforms have such a profound effect on the performance of each
model, a better way of improving performance of e.g. the quasi-Newton model could
be to define parametric families of transformations and attempt to find transforms that
are in some sense optimal for a given model and data set. This could further aid in
developing and evaluating alternatives in a more definitive fashion.
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8 Appendix

Figure 21: Line Search Newton, Synthetic data
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Figure 22: Trust Region Method, Window length 450 from the Nikkei index.
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Figure 23: Newton Method, Window length 450 from the Nikkei index.
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Figure 24: Line-Search Newton Method, Window length 450 from the Nikkei index.
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Figure 25: Line-Search Method, Window length 450 from the Nikkei index.
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Figure 26: Predictor-Corrector Method, Window length 450 from the Nikkei index.
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Figure 27: Line-Search Newton Method, Window length 1700 from the S&P 500 index.
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Figure 28: Line-Search Method, Window length 1700 from the S&P 500 index.
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