
Radar Detection Using
Deep Learning

Leonardo Carrera, Ziliang Xiong
Master’s thesis
2022:E65

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

T
RU

M
SC

IEN
T

IA
RU

M
M

AT
H

EM
AT

IC
A

RU
M



Master’s Programme in Machine Learning, Systems and Control

Radar Detection Using Deep Learning

Radardetektering med djup maskininlärning

by

Leonardo David Carrera le7763ca-s@student.lu.se

Ziliang Xiong zi8602xi-s@student.lu.se

Abstract This thesis aims to reproduce and improve a paper about dynamic road
user detection on 2D bird’s-eye-view radar point cloud in the context of autonomous
driving. We choose RadarScenes, a recent large public dataset, to train and test deep
neural networks. We adopt the two best approaches, the image-based object detec-
tor with grid mappings approach and the semantic segmentation-based clustering
approach. YOLO v3 and Pointnet++ are the deep networks for the two approaches,
respectively. We implement an radar-based version of DBSCAN to extract instance
clusters (objects). For both approaches, various preprocessing techniques are im-
plemented, such as velocity skew function, upsampling and data augmentations,
including rotation and flipping. We also adapt the evaluation metrics, IOU, mAP,
and F1-score for point clusters so that both approaches’ output can be comparable.
The reproduction of both approaches achieved comparable performance as in the
original paper, which indicates the image-based detector overwhelmed the semantic
segmentation-based clustering approach. We also managed to improve the metrics
by adapting clever variations in the DBSCAN pipeline. Besides, we implemented
the ablation study for the YOLO approach and found horizontal flipping the point
cloud as the optimal data augmentation operation. We implemented the ablation
study for the PointNet/DBSCAN pipeline as well and found that randomly jitter-
ing the points considering the radial velocity of the radar reflections output the best
model, and in under specific cases, it improved it. We also investigated the effect of
time accumulation on APs of all the classes. We found that low AP of the pedes-
trian class is the performance bottleneck, and simply accumulating a longer period
cannot significantly improve it.

le7763ca-s@student.lu.se
zi8602xi-s@student.lu.se


FMAM02
Master’s Thesis (30 credits ECTS)
August, 2022
Supervisor: Mikael Nilsson
Examiner: Kalle Åström

2



Acknowledgements

Ziliang Xiong, I would like to express my deepest gratitude to my academic super-
visor, Mikael Nilsson, for his precious patience and feedback. He also participated
frequently in the supervision meeting, especially at the time when we were faced
with poor outcomes. His suggestion on visualization of ground truth bounding
boxes in grid mappings helped me embrace a breakthrough in the performance. I
also could not have undertaken the journey without the daily help from my indus-
trial supervisors, Maryam Fatemi and Erik Werner. Their debug sessions saved me
from struggles with massive codes and helped clear my mind. Additionally, I am
extremely grateful to my examiner, Kalle Astrom, with whom we put a satisfactory
end to this thesis. I would also thank Zenseact for funding this thesis.

Special thanks to my thesis teammate, Leonardo David, who shared half of my
pressure and helped me through hundreds of discussions. Thanks should also go to
Fabian Sörensson, Johannes Kübel, Julian Brandes. They were generous with their
time for helping me with tons of merge conflicts on Gerrit. I also enjoyed playing
ping pong on the second floor and fika on the balcony. I’m also grateful to Nicolas
Scheiner, the author of the paper we tried to reproduce. He patiently offered a lot
of insights into handling details.

Lastly, I’d like to acknowledge my parents for generously supporting me during
my master’s study. Especially my mother’s encouragement comforted me during
the hardest period. Her advice on getting along with colleagues was always wise.
I’d also like to recognize Jianan Liu. The discussion of model performance with him
was encouraging and inspiring. I would be remiss in not mentioning my ex-girlfriend,
who was my very reason to move to Gothenburg for this thesis. I’m sorry that it
didn’t work out in the end.

Leonardo Carrera, I wish to show my gratitude and appreciation to everyone
who was involved and helped in completing this master thesis and during my mas-
ter’s program journey. First, to my parents, Jorge and Yolanda, my sister Daniela,
and my girlfriend Lućıa, who gave me the strength, love, and wisdom to endure
and succeed in this challenge. To all my friends who made this journey easier with
their joy and advice. To my professors who guided and enlightened me with their
teachings.

Special thanks to Ziliang Xiong, Bo Bernhardsson, Mikael Nilsson, Kalle Åström,
Anders Robertsson, Myriam Fatemi, and many others not included here.

3



Contents

1 Introduction 11
1.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Frequency Modulated Continuous Wave (FMCW) radar . . . 14
1.2.3 Automotive Radar Properties . . . . . . . . . . . . . . . . . . 16
1.2.4 Radar Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Theory 20
2.1 Multilayer perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Convolutional Neural Networks (CNN) . . . . . . . . . . . . . 22
2.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Classical Detection and Instance Segmentation . . . . . . . . . . . . . 24
2.2.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Sliding Window Detection . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Semantic and Instance Segmentation . . . . . . . . . . . . . . 26

2.3 Clustering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 YOLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Deep Learning Segmentation and Clustering on Point Clouds . . . . . 29

2.5.1 PointNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 PointNet++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 DBSCAN Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . 32
2.7 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.1 Point-wise IOU . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.2 Average Precision per class (AP) and Mean Average Precision

(mAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.3 Harmonic Mean of Precision and Recall (F1 score) . . . . . . . 36

3 Dataset 37
3.1 A Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 RadarScenes Introduction . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Sensor Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Snippet Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Ego-motion Compensation . . . . . . . . . . . . . . . . . . . . 45

4



3.4.2 Train, Validation, Test Sets Split . . . . . . . . . . . . . . . . 46

4 Methods 47
4.1 Image Object Detection Network: YOLO with Grid Maps . . . . . . 47

4.1.1 Bounding Box Extraction . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Grid Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.3 Doppler Velocity Skew Function . . . . . . . . . . . . . . . . . 51
4.1.4 Blurry Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.5 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Instance Segmentation Approach: Semantic Segmentation Network
(PointNet++) and Radar Clustering (DBSCAN) . . . . . . . . . . . . 54
4.2.1 Radar Point Cloud Extraction . . . . . . . . . . . . . . . . . . 54
4.2.2 Upsampling and Clipping of Dataset . . . . . . . . . . . . . . 57
4.2.3 Point Cloud Preprocessing for Training the Semantic Network 58
4.2.4 PointNet++ Semantic Segmentation Architecture . . . . . . . 60
4.2.5 Point Cloud Filtering for Clustering . . . . . . . . . . . . . . . 61
4.2.6 Class-Sensitive Filtering and Clustering . . . . . . . . . . . . . 63

5 Results and Discussion 66
5.1 YOLO v3 Training and Evaluation . . . . . . . . . . . . . . . . . . . 66

5.1.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Semantic Segmentation Network (PointNet++) Training and Evalu-

ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Semantic Segmentation Network (PointNet++) Baseline Model 68
5.2.2 Inference and Clustering . . . . . . . . . . . . . . . . . . . . . 73

5.3 Comparison of Two Approaches . . . . . . . . . . . . . . . . . . . . . 73
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Weight Initialization . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 DBSCAN Settings . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusion and Future Research 79
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5



List of Figures

1.1 Simple diagram of the FMCW radar where the transmitter (TX) and
receiver (RX) antennas are shown. The chirp generator is shown
and connected to the transmitter antenna, and the Analog-to-Digital
Converter (ADC) processor is shown. . . . . . . . . . . . . . . . . . . 14

1.2 Both: Representations of the chirp. Left: Amplitude vs. time plot of
transmitted signal. Right: Frequency vs. time plot for both, trans-
mitted (red) and received (blue dashed) signal. Tc is the the time
of transmitted signal, τ is the difference between transmitted and
received signal, n is the number of chirp up to N (one scan). . . . . . 15

1.3 Position and orientation of the three coordinate systems. A black
dashed line describes the trajectory of the vehicle. a) gives an overview
of the three systems. b) The resulting vectors are formed considering
the yaw angle γ and the azimuth angle ϕsensor,1 of the first sensor. . . 17

1.4 Representation of a 2D radar point cloud with its extra features not
plotted. Labels per point included in this plot. . . . . . . . . . . . . . 17

2.1 An example of a simple feedforward neural network called a multilayer
perceptron. There are three fully connected layers and one ”hidden”
layer. The rightmost units could represent probabilities for two classes
or be real numbers regressing two quantitative outputs. . . . . . . . . 21

2.2 Typical convolutional neural network layer. Here, the convolutional
network is viewed as a small number of relatively complex layers, and
each layer is populated with many stages. In this terminology, there
is a one-to-one mapping between kernel tensors and network layers. . 22

2.3 Typical behavior in training and test data set loss errors, respectively.
It is seen that after the red line, the gap increases, indicating over-
fitting. The opposite is underfitting, and it is located before the red
line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 YOLO object detection example (Source: MTheiler). . . . . . . . . . 25

2.5 An example image from the Plant seedling dataset [15]. Red rectan-
gles are the sliding windows. . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Semantic segmentation and instance segmentation performed over
radar point clouds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 YOLO v3 architecture: Darknet 53 as the backbone feature extractor
and three prediction heads for various scales. . . . . . . . . . . . . . . 28

6



2.8 PointNet pipeline. The input and feature transformations are shown
as well as the max pooling operation for getting features. Two branches
are shown: segmentation and classification, being segmentation an
extension of the classification network. MLP are multi-layer percep-
trons and the numbers, their layer sizes. The image is taken from the
paper of Qi et al. [32]©IEEE 2018, Fig.2. . . . . . . . . . . . . . . . 30

2.9 Symmetric function of max pooling in PointNet. . . . . . . . . . . . . 31

2.10 Input transform in PointNet.From [32] ©IEEE 2017, Fig.2. . . . . . 31

2.11 (a) Multi-Scale Grouping (MSG), (b) Multi-resolution Grouping (MRG).
Image from paper of Qi et al. [33]IEEE 2018, Fig.3. . . . . . . . . . . 32

2.12 The PointNet++ hierarchical feature learning architecture descrip-
tion. Both applications (segmentation and classification) are shown
in the bifurcation. The example shown for 2D points. Image from
the paper of Qi et al. [33] ©IEEE 2018, Fig.2. . . . . . . . . . . . . . 33

2.13 Representation of a cluster formation using DBSCAN. Here,minPts =
3 with a certain ϵ. Red points are core points since they meet both
requisites. Yellow points only meet one of the criteria; therefore, they
are density-reachable points. The blue point does not meet any di-
rective, and it is considered an outlier or noise. The double direction
arrow indicates that the points share both conditions successfully,
while the one direction arrow shows that only one of the conditions
was met. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.14 Point-wise IoU visualization. It depicts a predicted bounding box to
illustrate the object cluster that is containing the predicted object. . 35

3.1 The car coordinate(cc) is marked orange. All the sensor measure-
ments are relative to it. Four radar sensors are mounted at the front
face close to the lights. The documentary camera is mounted be-
hind the windscreen(white). The FOV (±60◦)of each radar sensor is
marked in different colors. From [39]©IEEE, Fig.3. . . . . . . . . . . 39

3.2 Up Left : Urban driving; Up Middle: Cross section; Up Right: High-
way; Bottom Left:T section; Bottom Middle: Crowded area; Bottom
Right: Motorbike . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Histogram for the number labeled points in each frame. Most frames
contains less than 10 labelled points, which is quite sparse and re-
quires accumulation over time to improve the density. . . . . . . . . . 42

3.4 Histogram for the number of objects in each frame. Most frames
contains less than 3 objects. . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Left:Histogram for time intervals between two succession sensor scans.
The frequency decreases as the interval length increases, which shows
the fours sensors’ cycles are not synchronized. Right: Histogram for
time intervals between two succession sensor scans in sensor NO.3.
All the time interval locates in a narrow band, which verifies that the
working cycles lasts around 60 ms. . . . . . . . . . . . . . . . . . . . 43

3.6 Distribution of number of instances of each class . . . . . . . . . . . . 44

7



3.7 Snippet Extraction: 1. accumulate frames over time to reach 500
milliseconds; 2. Clip the snippet to remove outliers; 3. Check if there
is no target in the snippet. If so, go to the next snippet; 4. Remove
the clusters that has no volume, i.e., clusters contain only one or two
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Left: The class distribution on the test set; Right: The class distri-
bution on the combined set of the training set and test set. . . . . . . 46

4.1 Baseline pipelines for the two studied object detection models using
RadarScenes data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Sequence 109 start index 0 number of future frames 28; the left is the
whole snippet, the right one is enlarged axis aligned bounding boxes . 49

4.3 Oriented Bounding Boxes: The snippet from the first 28 frames in
sequence 137. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 An example for grid mapping: a snippet from sequence 109 frame
816 to frame 845. (a)reference image;(b)point cloud with oriented
bounding boxes. Three objects are visible;(c)Amplitude map. There
are three clusters marked as light yellow corresponding to three ob-
jects; (d) Maximum Doppler map, the correspondence is more obvi-
ous; (e)Minimum Doppler map, the correspondence is less obvious.
All three objects are moving away from the test vehicle, therefore
max Doppler map shows the clearest correspondences. . . . . . . . . . 52

4.5 Left: Histogram of the radial velocity distribution; Right: Fourth
order polynomial skew function. . . . . . . . . . . . . . . . . . . . . . 53

4.6 The propagation scheme for blurry filter from [8] IEEE, 2021, Fig. 6. 53
4.7 Pipeline for the object detection system using the algorithms of DB-

SCAN and PointNet++. . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 A snippet with the original number of points (b), after clipping (a),

and after random upsampling (c) procedures. Note that the clipping
is done over static class points in (a) preserving the non-static points.
Also, only for this example one can see that the length of the snippet
is not 4096 points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 A snippet with the original number of points (a) and after data aug-
mentation (b). Note the increasing number of points in dynamic
classes and reduced by the same number in the static class. Although
the jittering is not as visible as expected in the plots, the favorable
effects of the training are remarkable. . . . . . . . . . . . . . . . . . . 61

4.10 Structure of the semantic segmentation network. The segmented line
indicates skip connections from which extracted features from MSG
modules are passed to the FP modules. Improved from [36] and [37]. 62

4.11 Original snippet (a), pruned snippet after filtering (b). Notice the
number of static points dropped. In this example, ηvr = 0.0022. . . . 63

4.12 Original snippet with ground truth clusters (LEFT) and the same
snippet with predicted labels and clusters (RIGHT). In this case,
one car and two pedestrians clusters are shown along with the noise
(static) points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 YOLO approach’s performance on the validation set with various data
augmentation operation . . . . . . . . . . . . . . . . . . . . . . . . . 67

8



5.2 mAP and AP of each class on the test set changes over the accumu-
lation time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Visualization ground truth bounding boxes vs. detection bouding boxes 69
5.4 Confusion matrix (absolute) for the baseline model in the test data set 71
5.5 Confusion matrix (relative) for the baseline model in the test data set 72
5.6 Loss error in the unseen data for our semantic network baseline model. 72
5.7 IoU in the unseen data for our semantic network baseline model. . . . 72
5.8 Inference (predicted labels and clustering) results on two typical traf-

fic scenarios of two main approaches with ground truth clusters as the
references. Ground truth are in the left hand side (a and c) and the
corresponding predicted ones at the right hand side (b and d). The
top two are the same snippet (a and b) and the two in the bottom are
both the same (c and d). Note the effect of the filter in the predicted
ones, also notice the little differences from a to b where there are
more clusters than in the original plot. . . . . . . . . . . . . . . . . . 74

9



List of Tables

1.1 Example of 2D radar data points and features gathered from a small
number of frames and from the RadarScenes dataset . . . . . . . . . 18

3.1 Overview of popular public radar data sets . . . . . . . . . . . . . . . 38

4.1 Estimated number of points in percentages across the entire dataset
from RadarScenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Metrics of AP per class . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Result scores for all methods on the test set . . . . . . . . . . . . . . 77
5.3 Number of points in a cluster of each class . . . . . . . . . . . . . . . 78
5.4 RCS of points in a cluster of each class . . . . . . . . . . . . . . . . . 78

10



1

Introduction

Deep Learning technology has become more prevalent in recent years for diverse
tasks that require predictions, both in industry and at home. This technology has
had a such impact because of the capability of accurate and quick interpretations of
complex patterns over collected data sets. Thus, more and more successful design
implementations based on deep learning are emerging in new fields to address such
tasks.

The field of assisted/autonomous driving has been taking great advantage of deep
learning frameworks since they have solved critical challenges: To efficiently perceive
the road environment in which the car is located through sensor systems, make de-
cisions about the interpretations of the environment detection system, control the
mechanisms of the vehicle based on the findings as mentioned earlier with the aim of
safe and efficient navigation, and finally, feedback the detection and decision system
with new data from the environment.

More and more deep learning algorithms for object detection have been developed
and perfected with remarkable outcomes [45], [29]. Such performance has allowed
these models to be considered in detection tasks where real-time process, fine accu-
racy, and reliability are crucial.

According to the best of our knowledge, autonomous driving and Advanced Driver
Assistance Systems (ADAS) are the most well-known and proficient fields where
deep learning has had a tremendous impact. Numerous representative works com-
bine automotive sensory systems with deep learning techniques [1]. i.e., combined
perception-and-detection tasks of road elements have been successfully explored and
implemented using automotive sensory hardware. These works have allowed an evo-
lution in the deep learning algorithms oriented to autonomous driving. We are
encouraged then to challenge the latest deep learning models with one type of sen-
sor: the automotive radar.

It is worth mentioning that there are extensive and well-documented works on de-
tection systems. Most of them have combined video cameras, LIDAR sensors, and
radar sensors to record and interpret a vehicle’s navigation environment with great
accuracy and robustness [4], [9], [25]. Moreover, there are works where radar is
considered a key element but not essential [43]. Instead, it has been used to pro-

11



vide robustness and redundancy to object detection systems based on cameras and
LIDAR sensors. This lack of interest is primarily due to the radar’s challenge in
gathering and decoding its information and the clear advantage the data retrieved
from video cameras or LIDAR sensors have over the radar. Thus, radar object de-
tection remains a niche with unexplored challenging potential.

At the time this work is being deployed, there are no thoroughly investigated stand-
alone deep learning models for moving object detection tasks that rely exclusively
on radar data. Considering that the radar is a commonly adopted sensor in the au-
tomotive industry and its information has not been fully exploited by machine/deep
learning techniques, investigating methods for performing radar detection with deep
learning seems like a promising research direction.

In this work, we explore deep learning methods applied solely to radar data; thus,
we intend to offer insights and solid foundations to the state-of-the-art radar object
detection field. We are formally focusing on studying two prolific sets of models
based on deep learning frameworks for later evaluation on radar processed radar
data sets.

1.1 Research Problem

Radar sensors have become standard equipment in almost every motor vehicle for
their unique performance and reasonable costs. They are mainly used in assisted
driving and safety awareness on roads, i.e., non-categorical detections and distance
ranging tasks [7]. These tasks include road-lane keeping, braking/parking assis-
tance, and cruiser assistance. Radar sensor systems have also been used in cars as
side components to add robustness to other sensory mechanisms. Radar readings
gather unique, relevant information about the environment when appropriate pre-
processing techniques are used.

The radar can detect the relative position of objects and infer properties from such
objects located around the sensor. The radar can gather such properties from the
surroundings due to its ability to measure radial distances, relative angles with
respect to some radar’s north (azimuth), radial velocities, and RCS (Radar Cross-
Section) values [40]. The spectrum of properties and the robustness against adverse
weather conditions constitute an advantage over other sensors [36]. Also, in [38],
it is explained how Doppler signatures in radar data are used to filter out moving
objects from the static ones, alleviating the inherent data sparsity of moving (dy-
namic) objects. Radar data (static and dynamic) is cumulative over frames, and
moving objects (dynamic) require shorter time frames to be reflected and gathered,
typically in the order of a few hundred milliseconds [36]. This property gives solid
measurements so the detection algorithms can take advantage of it. Thus, all these
properties make the radar a good candidate to be considered as input in driverless
tasks powered by machine learning algorithms.

In contrast, radar has been less studied and developed along with detection al-
gorithms. The lack of related works is because the processing of raw data is slightly
more difficult to interpret and decode than in other sensory systems, i.e., angular

12



sparsity and lack of altitude information.

However, radar systems can be complemented with deep learning algorithms with
good enough results, as in [36] and complete the current radar system features (basic
pure detection and ranging) semantic-environment-understanding systems.

Our research problem is unraveled in a structured, measurable, and more under-
standable manner as follows,

• As for many automated driving functions nowadays, a highly accurate percep-
tion of the vehicle environment is crucial. Therefore, a robust object detection
framework is the goal.

• The study is limited to the usage of conventional automotive radar sensors, i.e.,
high-resolution radars with advanced features like elevation or polarimetric
information are not considered. Moreover, non-specialized computers have
been considered, i.e., the study needs to be capable of being conducted and
implemented by making use of standard personal computer capabilities.

• Then, the majority of automobile radar research has focused only on cate-
gorization or instance detection. For multi-class object recognition tasks on
dynamic road users, there are fewer research documents accessible.

• The problem is considered a 2D bird-eye-view point cloud only, with the sole
input of raw radar data through the algorithms.

• Finally, this work’s focus is entirely aimed at object detections, i.e., the lo-
calization and classification of moving road users (MRU) and vulnerable road
users (VRU) such as pedestrians.

1.2 Background

1.2.1 Radar

Radar is a common type of detection device, the history of which dates back to
the early twentieth century [11]. An emitter actively emits electromagnetic waves,
and a receptor collects the waves that have bounced back from surfaces in form of
reflections. If these electromagnetic waves are well decoded, they can determine the
range, angle, and velocity of objects by analyzing the reflected signals. A typical
radar system usually contains a transmitter, a transmitting antenna, a receiving
antenna, a receiver, and a processor, as is shown in Figure 1.1.

The radar systems offer attractive advantages compared to other similar sensors.
They include robustness to adverse weather, like snow and heavy fog, fully func-
tioning in darkness, and the ability to cover long-distance ranges. It might be the
only sensor that can detect occluded objects and provide speed information. These
features are complementary to the weakness of the camera and Lidar, which makes
it an arguably necessary sensor for AVs. On the other hand, it also has disadvan-
tages due to hardware limitations. It suffers from multi-path reflections, low angular

13



Figure 1.1: Simple diagram of the FMCW radar where the transmitter (TX)
and receiver (RX) antennas are shown. The chirp generator is shown and
connected to the transmitter antenna, and the Analog-to-Digital Converter

(ADC) processor is shown.

resolution, and a lack of height information (except for 4D imaging radars where
this information is available with high quality) [7].

1.2.2 Frequency Modulated ContinuousWave (FMCW) radar

The working frequency and emission patterns of a radar vary from device to device.
In 2015, the World Radio communication Conference decided on a bandwidth of
77.5-78.0GHz in radio localization applications [21]. Therefore, the most widely used
vehicle radar transmits millimeter waves (MMW). MMW technology has narrower
wave beams than a microwave, which makes its high resolution on small objects.
Furthermore, the hardware is also smaller and more portable. Such radar is called
MMW radar directly.

MMW radars have been widely used in ADAS systems. One popular emission
pattern is frequency modulated continuous wave (FMCW). As the name suggests,
FMCW radar transmits MMW with linearly increasing frequency that lasts for a
particular duration [22]. Such a signal is called a chirp, as is seen in Figure 1.2. A
certain number of chirps that are transmitted evenly spaced in the time domain are
a chirp frame. The range of the detected object is determined by the time delay
between the Tx chirp and the Rx chirp.

Range, azimuth, and radial velocity are restored by three independent fast Fourier
transforms. They are all in the polar coordinate with the radar as the origin. In
addition to the motion states, FMCW radar also measures the radar cross-section
(RCS) of the object (measured in m2 and often reported in a logarithmic scale as
dBsm). RCS shows how strong the reflection of an object is, which is determined by
several factors: the material of the target, the size of the target, incident angle and
the reflection angle, and some other properties of the material. The RCS property
does not depend on the distance or strength of the emitter. Thus, one can use the
RCS as the electromagnetic signature of the object. Such property is resourceful
in a classification algorithm; for instance, in the current project, pedestrians and
vehicles class labels have different surface materials and, therefore, different RCS

14



Figure 1.2: Both: Representations of the chirp. Left: Amplitude vs. time plot
of transmitted signal. Right: Frequency vs. time plot for both, transmitted
(red) and received (blue dashed) signal. Tc is the the time of transmitted
signal, τ is the difference between transmitted and received signal, n is the

number of chirp up to N (one scan).

signatures. The neural network will extract features depending on the RCS value
the object has.

• Radar Signal Processing. The FMCW technique measures range, az-
imuth angle and radial velocity simultaneously on a phase level. The
radar itself gathers these radar features through chirps. Formally, let a chirp
n be the reflection which includes: the frequency f of the reflection, the time
of transmitted signal Tc, and the difference in time τ between the transmitted
signal and the received one, as shown in Figure 1.2. A number N of chirps
makes one scan. Acknowledge that a scan is defined as one complete mea-
sured cycle where the three properties as mentioned earlier are measured for
the objects within the field of view of the sensor.

• Range and Doppler Estimation. A matrix of M ×N is considered, where
M represents all the measurements in time positions of a sampled chirp in
a certain time frame t, and N the number of chirps able to be created from
the radar reflections. Then, through Fast Fourier Transforms (FFT), the
same matrix becomes the readings of range (in M rows) and Doppler (in N
columns).

• Azimuth Angle Estimation. The feature that fully defines the direction of
the Doppler velocity is the azimuth angle, which is estimated using rotating
antennas (or arrays of antennas in vehicles instead). This angle is relative to
the sensor’s coordinate system. The phase differences at multiple Rx signals
are used to restore the azimuth.

• Target Extraction. There are algorithms such as the Constant False Alarm
Rate (CFAR) (and its derivations) that are used to identify peaks in the signal
that truly belong to objects. Often, an actual measurement of a peak could
represent either noise or an actual moving object, and that is the reason why
the false alarm term is taken for describing it. This algorithm and variations
in the automotive field usually extract targets with the following information:

1. range r (in m)

2. azimuth angle ϕ (in rad)

3. Doppler velocity vr (in m/s)

4. RCS (radar cross section) value σ (id dBsm)

15



1.2.3 Automotive Radar Properties

There are conventions on the automotive radar data adapted to the studied deep
learning algorithms along this work. They are not studied in detail in the Theory
chapter since they are not within the scope of this thesis, but a general introduction
of such conventions is necessary to understand the terminology and the effect they
have on the implemented algorithms. Here, only the relevant ones reappear in this
work and are described briefly. Further applicability and usage of these definitions
and features are described in Dataset and Methods chapters also.

• Coordinate Systems. The coordinate system used for this project is Carte-
sian (following the ISO 8855 standard). It is important to remember, though,
that the data from each sensor is reported according to each sensor’s polar co-
ordinate system. Furthermore, appropriate translation and rotation matrices
are applied to the already transformed polar magnitudes (using range r and
azimuth angle ϕ) into Cartesian. After the corresponding transformations,
the position of the vehicle and radar with respect to the space’s objects is
finally given by 3 Cartesian coordinate systems as shown in Figure 1.3. The
ones used in this thesis are the vehicle-fixed car coordinate system (cc) and
the sensor coordinate system (sc); the global coordinate system (gc) is not
considered since only the relative positions with respect to the car and sensor
were needed.

• Ego-motion Compensation. As mentioned before, the Doppler effect is
used to estimate the radial velocity of the objects with respect to the sensor.
In this case, the vehicle is not stationary with respect to the surroundings of
the object (and therefore, neither is the attached sensor). Thus, the Doppler
value has to be compensated for the ego-motion. The Doppler over ground
(or ego-motion compensated Doppler velocity) v̂r is calculated subtracting the
radial velocity of static objects vstaticr from the measured Doppler velocity vr.
Thus, v̂r = vr − vstaticr .

• Clutter This term is used to describe measurements with undesired infor-
mation that could lead to false positives or overlay. The objects themselves
produce the clutter as the radar collects the waves. There are three categories
for which a reflection is cataloged as clutter.

1. Mirrored Objects. They correspond to the objects that bounce back
electromagnetic waves due to they act as electromagnetic mirrors. Ob-
jects like metallic fences or doors can show a different range or angles in
the radar point cloud.

2. Ambiguities. The radars are susceptible to ambiguities such as output
wrong values of azimuth angle ϕ resulting in wrong positioning of the
points later.

3. Noise. As with any other electronic sensor, the radar measurements
contain false detections or noise. The data is filtered and processed to
characterize the noise and generate reliable datasets without this noise.
This characterization is particularly crucial for the radar since the read-
ings are noisier and appear more frequently than in cameras or Lidars.

16



Figure 1.3: Position and orientation of the three coordinate systems. A black
dashed line describes the trajectory of the vehicle. a) gives an overview of the
three systems. b) The resulting vectors are formed considering the yaw angle

γ and the azimuth angle ϕsensor,1 of the first sensor.

These terms can be deepened in [40] for better understanding and for the curious
reader.

1.2.4 Radar Point Clouds

In the broadest sense, a point cloud is a set of points with n dimensions distributed
in a settled format. Usually, 2D and 3D point cloud representations are plotted and
the rest of dimensions are usable as extra features. The point cloud is the basic unit
used for the two object detection models studied in this work.

Figure 1.4: Representation of a 2D radar point cloud with its extra features
not plotted. Labels per point included in this plot.

Thus, as in a point cloud, the radar point cloud is simply an adaptation of the
format where each point is encoded with the radar features (mentioned in 1.2.2)
across space and time. i.e., a selected time frame will populate a radar point cloud
from a particular dataset. An example of a couple of frames gathered from a radar

17



dataset is shown in Table 1.1 and the whole 2D representation of one entire point
cloud in Figure 1.4.

Naturally, there are differences between how the studied models will process the
enclosed information available from the given multi-dimensional points in the point
cloud, but, in the end, this will be the format from which each model will gather its
input needs.

Table 1.1: Example of 2D radar data points and features gathered from a small number of
frames and from the RadarScenes dataset

Frame x [m] y [m] v̂r [m/s] RCS [dBsm] r [m]

0 0.7247 -2.9067 -7.3799 5.5794 3.5734
1 0.6688 -3.7162 -6.4936 -7.4465 4.1290
2 3.7217 -14.3565 0.0421 -19.5192 13.4836
3 3.6685 -17.8650 0.0602 -14.5649 16.9920
4 6.3278 -11.3200 0.0228 0.2069 10.7815
5 6.3725 -13.6340 -0.02237 3.1928 13.0454

1.3 Outline of the Thesis

This section displays an overview of the entire report structure and how it is out-
lined. It also shows how to move across the chapters.

Chapter 2 describes a detailed theory and key concepts about the pre-requisites
that support the two different models and their corresponding methods. It also in-
troduces theory about the evaluation metrics supported and shared for both studied
models.

Chapter 3 starts by comparing different initially considered datasets and their prop-
erties. Next, an analysis of radar properties and the data structure and annotations
are made. Finally, it explains how the data is formatted and will be transferred to
each model in the form of snippets.

Chapter 4 is where the methods are assembled for the corresponding models and
the followed methodology used for each. It contains their pipelines sustained by
mathematical principles and references from the Theory chapter. It also describes
the specific filters and adaptations for correctly managing the data across the models.

Chapter 5 presents the results from each model in given conditions. The sets of
experiments and their results are described chiefly in tables and analyzed according
to the appropriate metrics.

Lastly, chapter 6 is a summary of the insights gathered from the results in chapter

18



5. The initial conclusions, practical implications of this work on the real world, and
how these implications can be advantageous for future works.

19



2

Theory

In this chapter, we first introduce some basic concepts in deep learning as a necessary
prerequisite for the subsequent sections. Then we describe the algorithms’ theoreti-
cal foundations, i.e., YOLO v3, PointNet (and PointNet++), and DBSCAN, that we
will implement. Finally, we will introduce the evaluation metrics that measure the
performance of our deep neural networks on point clouds, namely pointwise-IOU,
mAP and F1 score.

2.1 Multilayer perceptrons

As one of the Deep feedforward networks, multilayer perceptrons (MLPs) are the
foundations of deep learning models. The purpose of a feedforward network is to
approximate the outcome to a desired function f ∗, [18].

To understand the feedforward network, let f ∗ be a classifier function such that
y = f ∗(x) maps an input x to a category y. Then, a feedforward network will
define a mapping such that y = f(x;θ), where θ are the learned parameters which
result in the best approximation of f ∗.

The term feedforward is named after the sequential flow the input information is
exposed to. i.e., the input information x goes through the intermediate computa-
tions that approximate f to the output y, which is the approximated (predicted)
value(s). The term feedforward indicates that there are no feedback connections
among the layers of the network. Otherwise, the term would be recurrent neural
network, which exists but it is out of the scope of this thesis.

The term network is given to feedforward networks because they are represented
as interconnected connections of many different functions. The common represen-
tation is a directed acyclic graph with defined interconnections between functions.
A simple example to illustrate a network is f(x) = f (3)(f (2)(f (1)(x))), which is a
chain structure. Thus, f (1) is the first layer, f (2) is the second layer, f (3) is the third
layer, and so on if there are more terms. Additionally, the term deep is defined by
the depth or the number of layers the network has. This depth will define (among
other parameters) how good the function approximation of the original function will
be. The model’s parameters are referred to as weights and biases, where the biases
are intercept terms that add constant values to each unit for each connection, and

20



the weights indicate the degree to which the value of a specific unit influences the
values of related units.

Approximate the outcome to a desired function f ∗ implies that the input x must
produce a value close to y. Thus, the behavior of the output y and the input data
x are given, i.e., that f ∗ is not given, but y and x are. However, this does not
specify the behavior of what the intermediate layers (functions) should do. Instead,
the learning algorithm decides the operation of each intermediate layer in order to
achieve the approximation stated. Then, the definition of hidden layers goes to
every intermediate layer that is not specified by the input x nor output y.

Each hidden layer necessitates the selection of an activation function to compute
each n hidden layer values functions f (n). Thus, a hidden unit in the hidden layer
will contain an activation function that will dictate how well the data approximates
the mapping from the input to the output. The role of each unit in the hidden layer
resembles a neuron because each one of them will use data to learn from the data
provided through the activation function. The term neural is also acknowledged
because these units are fully connected between layers and hidden layers and can be
seen in Figure 2.1.

In the present work context, both studied models have in their most basic structures
one or several feedforward networks. The way each model decides to interconnect
its neurons is described and analyzed later in the Methods chapter. The interest in
this chapter is that both perform a multi-classification task.

Figure 2.1: An example of a simple feedforward neural network called a
multilayer perceptron. There are three fully connected layers and one

”hidden” layer. The rightmost units could represent probabilities for two
classes or be real numbers regressing two quantitative outputs.

21



2.1.1 Convolutional Neural Networks (CNN)

The convolutional neural networks (CNNs) are one specialized kind of neural net-
work for processing data with a known topology that resembles a grid. An example
is the image data, which can be thought of as a 2D grid of pixels, [18].

The term convolutional is given since the network employs a mathematical oper-
ation called convolution. Goodfellow et al. [18], state: Convolution networks are
neural networks that use the convolution operation, i.e., the integral of the product
of two functions (one is reversed and shifted). The convolution is extrapolated for
matrices in at least one of their layers.

The convolution in neural networks has three important advantages that improve
a Machine learning model. These are sparse interactions, parameter sharing, and
equivariant representations. The convolution can work with inputs of any variable
size. One can deepen on these terms in [18].

There are three stages in a typical layer of a convolutional network; see Figure
2.2. In the first stage, several convolutions are performed in parallel in the layer to
produce a set of linear activation functions. In the second stage, each linear activa-
tion is run through a nonlinear activation function. This stage is sometimes called
the detector stage. In the third stage, a pooling function modifies the output of the
layer further.

Figure 2.2: Typical convolutional neural network layer. Here, the
convolutional network is viewed as a small number of relatively complex
layers, and each layer is populated with many stages. In this terminology,
there is a one-to-one mapping between kernel tensors and network layers.

22



A pooling function replaces the network’s output at a certain layer location with
a statistic compilation of the nearby outputs. E.g., the max pooling operation re-
ports the maximum output within a neighborhood. In all cases, pooling helps make
the representation approximately invariant to small input translations. The term
invariance to translation means that if a translation in the input by a small amount
will not change the values of most of the pooled outputs.

2.1.2 Training

The training goal of the learning algorithms is that from a given data set containing
features associated with labels (targets), such algorithms can learn the approximated
function from that data set. Furthermore, the challenge is extended by evaluating
the trained network model on new unseen input data. This ability is called gener-
alization.

Since typically the training data set is accessible, the output can be compared against
that training data and generate an error measurement. This error is called training
error, and now, part of the performance can be measured. Then, a second error is
calculated, called generalization error or test error where the performance is better
measured.

Normally, the whole data set for a specific problem is given. In order to gener-
ate the test (not seen by the algorithm) set and training (used by the algorithm
to learn) set to calculate the errors mentioned above, a data-generating process is
needed. Here, independent and identically distributed (i.i.d.) assumptions are taken.
These assumptions state that the samples from both data sets are independent (not
correlated) from each other and that both should be identically distributed. In
real life, achieving such assumptions is difficult; however, they do not necessarily
need to meet these conditions to their fullest. A general knowledge of the shape of
the data set, followed by a splitting taking into account these criteria, is just enough.

Thus, the two factors that determine how well a machine learning algorithm per-
forms are:

• Reduce the training error as much as possible.

• Reduce the gap between the training and test set errors.

The consequence of poor performance is not getting enough low loss error on the
training data. This is called underfitting. The opposite case occurs when the gap
between the training and test errors is too large. This is called overfitting. The
ability to modify the model behavior in the underfit/overfit spectrum is called ca-
pacity. Thus, models with low capacity will have issues fitting the training data set.
Models with high capacity can memorize the training data set properties, which are
not really when used in the test data set. All these concepts can be seen in Figure
2.3.

23



Figure 2.3: Typical behavior in training and test data set loss errors,
respectively. It is seen that after the red line, the gap increases, indicating
overfitting. The opposite is underfitting, and it is located before the red line.

2.2 Classical Detection and Instance Segmenta-

tion

Instance segmentation and object detection refer to the task of segregating objects
out of visual environments and is an important area of computer vision and machine
learning research.

The next subsections contain descriptions of the ways the detection/segmentation
tasks are pursued by each network architecture and what are the bases upon which
these were devised, sustained, and built.

Here, only the neural network approaches are defined. Cluster formation (and more
specifically, the DBSCAN algorithm [10]) is, in some sense, an instance segmenta-
tion task. Nevertheless, since it is not a trainable neural network but an algorithm,
its foundations do not fit into the following definitions and are described later in this
chapter. It is mentioned to avoid confusion because it complements and enhances
the output of the semantic segmentation network in this project.

2.2.1 Object Detection

Object detection is a computer vision technology that attempts to localize objects
of a specific class, making use of the inherent features of the objects, e.g., the task
of face identification, where facial features are sought (distance between eyes, eyes’
color, etc.) in images. Usually, localization means finding the bounding boxes of
the target objects. Specifically, in this work (first model, YOLO), the object de-
tection task is accomplished by a neural network that retrieves localized bounding
boxes and associated class probabilities per object found within the search space
(image), see Figure 2.4.

24



Figure 2.4: YOLO object detection example (Source: MTheiler).

Figure 2.5: An example image from the Plant seedling dataset [15]. Red rectangles are the
sliding windows.

2.2.2 Sliding Window Detection

Given an image classifier, e.g., a CNN model in 2.1, a natural question is what we
should do to localize interesting objects in the image. Sliding window, in a straight-
forward way, played an important role in object detection. In a computer vision
context, a sliding window is a rectangle region with a fixed size that slides across an
image. We apply the image classifier to each such region to tell if there are interest-
ing objects. Figure 2.5 illustrates such a process. Combined with image pyramids,
i.e., shrinking the image into a sequence of scales, we can detect objects in images
at various scales and locations.

On the other hand, the disadvantages of sliding window detection are also obvious:
the image classifier has to infer the same number of times as the number of sliding
windows. The quantity of windows proliferates when there are objects on differ-
ent scales. Thus, the time complexity becomes unacceptable. The recently-merged
algorithms mentioned in 2.4 offer a decent way to reduce the time complexity.

25



2.2.3 Semantic and Instance Segmentation

Segmentation of image points is splitting a set of points into multiple image segments
of the same category, also known as regions or objects (in digital image processing
and computer vision, this corresponds to splitting into sets of pixels). Segmentation
aims to make a picture more intelligible and more straightforward to examine by
simplifying and changing its representation. Segmentation is often used to locate
objects and boundaries from points within the space the process is acting on, [42].

This process is usually divided into semantic segmentation (Figure 2.6 (a)) and
instance segmentation (Figure 2.6 (b)), where semantic segmentation is the technol-
ogy which detects for each point, the object category (label) it belongs to, and all
the object categories must be known to the model. In contrast, instance segmenta-
tion performs a deeper characterization than semantic segmentation by partitioning
two objects (instances) with the same label; this means that the algorithm computes
certain surrounding correlations between objects and differentiates them. Thus, se-
mantic segmentation does not distinguish different instances of the same category,
while instance segmentation can identify them individually.

Since there are many methods for performing instance segmentation over data, a
simple approach turned out to be efficient enough to segregate the different instances
of objects in this work (second model, PointNet++ + DBSCAN). Thereby,
a semantic segmentation (based on neural networks) followed by a clustering al-
gorithm will be the followed path in order to sort out instances of objects in this
project.

2.3 Clustering Analysis

The term clustering includes all the tasks of grouping a set of objects with similar
properties or ruled by some criteria. Thus, each group of objects found in a search
space by some cluster analysis is defined as a cluster of objects. In this search space,
there can be several clusters or none depending on the criteria selected, i.e., small
distances within cluster members, dense areas of the data space, intervals, or par-
ticular statistical distributions.

It belongs not to one type of algorithm but to a general task to be solved. More-
over, it can be achieved by different algorithms that can understand the concept of
clustering differently and the way they group the data into clusters. In section 2.6
a popular algorithm for clustering (and the one used in this thesis) is defined and
described.

2.4 YOLO

As a state-of-the-art representative in a one-stage detector, YOLO [34] is famous
for its end-to-end architecture and short inference time. Unlike two-stage detectors
that rely on region proposals, YOLO treats the detection as a regression prob-
lem and solves localization and classification problems simultaneously. It dexter-
ously utilizes the nature of convolution layers to divide the image into S × S

26



(a) Semantic Segmentation

(b) Instance Segmentation

Figure 2.6: Semantic segmentation and instance segmentation performed over radar point
clouds.

27



Figure 2.7: YOLO v3 architecture: Darknet 53 as the backbone feature extractor and three
prediction heads for various scales.

grid and regress on each grid cell. The output is B bounding boxes, confidence
for those boxes, and C class probabilities. Each bounding box is in the format
of ⟨x, y, width, height, class, confidence⟩, where x, y define the center of the box,
width, height are the size of the box, class shows the category and confidence shows
the percentage confidence that there is an object in the predicted bounding box.

Figure 2.7 illustrates the architecture of YOLO v3. YOLO v3 utilizes Darknet-
53 as the backbone feature extractor. Darknet-53 is a convolution network with 53
layers and residual connections, which resemble ResNet [20] structure. The input
images’ size has to be an integer multiple of 32. To handle multi-scale detection, the
input image is down-sampled 8, 16, and 32 times to generate features at three differ-
ent scales. Each scale corresponds to a prediction head that outputs bounding boxes.

YOLO v3 uses anchors to help the computation in the prediction heads, i.e., the
boxes are output as the offset from the anchor box sizes. There are three anchors in
each regression head, thus nine in total, which are pre-defined by K-means clustering
on all the bounding boxes in the training set.

To train YOLO v3, the loss function contains three components, namely an ob-
ject loss, a classification loss and a localization loss. Ci is the ground truth class in
cell i and Ĉi is the predicted class labels. The loss is formally expressed as

λcoord

S2∑
i=0

B∑
j=0

Iobjij

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

(2.1)

+λcoord

S2∑
i=0

B∑
j=0

Iobjij

[
(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2

]
(2.2)

+
S2∑
i=0

B∑
j=0

Iobjij (Ci − Ĉi)
2 (2.3)

+λnoobj

S2∑
i=0

B∑
j=0

Inobjij (Ci − Ĉi)
2 (2.4)

+
S2∑
i=0

Iobji

∑
c∈classes

(pi(c)− p̂i(c))
2, (2.5)

28



Where 2.1 and combined are the localization loss; 2.3 and 2.4 combined are the
classification loss; 2.5 is the object loss. The loss is a weighted sum of sum-squared
errors. λcoord = 5 and λnoobj = .5 are weights that force the network to prioritize
localization loss and also avoid 2.4 overpowering the gradient because most of the
grid cells do not contain any objects. Iobji denotes if object appears in cell i and Iobjij

denotes that the jth bounding box predictor in cell i is in charge for that prediction.
Inobjij denotes that the jth bounding box predictor in cell i is not in charge for that
prediction, i.e., the jth bounding box predictor does not have the biggest IOU with
the ground truth. The indicator functions intend to only punish classification error if
there is an object in the grid cell and punish only bounding box error if the predictor
is responsible for the ground truth box, i.e., has the highest IOU with the ground
truth among all B predictions.

2.5 Deep Learning Segmentation and Clustering

on Point Clouds

In order to understand the fundamentals of instance segmentation using semantic
segmentation and a clustering algorithm, three algorithms are studied: PointNet,
PointNet++, and DBSCAN.

With the neural networks named PointNet [32] and PointNet++ [33], Qi et al.
introduced novel architectures capable of operating on raw point clouds. In this
project, the semantic segmentation network presented in PointNet++ (and there-
fore, also PointNet) is used.

The cluster formation algorithm proposed by M. Ester et al. [10] called DBSCAN
is selected since it performs over any set of points in a defined space (in this case, a
point cloud set) given. The result is clusters defined in such a set of points.

2.5.1 PointNet

The point cloud format tends to be difficult to process for neural networks because
they usually only accept structured and even data formats, e.g., in YOLO, the for-
mat unit is an image with even pixels. Thereby, a neural network capable of dealing
with this raw format is advantageous. Thus, PointNet tackles the problem by con-
suming unordered point sets as inputs directly into the architecture and producing
outcomes regarding recognition tasks, including object classification, part segmen-
tation, and semantic segmentation, i.e., either classification scores or categorical
classification.

Formally, PointNet is a unified neural feedforward network architecture that ac-
cepts point clouds as input and produces class labels for the full input or per point
segment/part labels for each point in the input. The network learns a set of op-
timization functions/criteria from areas in the point cloud and encodes them into
features. The network’s last fully connected layers combine these optimum learned
values into a global descriptor (max pooling) [32] for either classification or segmen-
tation. This pipeline is shown in Figure 2.8.

29



Figure 2.8: PointNet pipeline. The input and feature transformations are shown as well
as the max pooling operation for getting features. Two branches are shown:

segmentation and classification, being segmentation an extension of the classification
network. MLP are multi-layer perceptrons and the numbers, their layer sizes. The

image is taken from the paper of Qi et al. [32]©IEEE 2018, Fig.2.

There are three key elements that for which PointNet is able to perform:

1. Point clouds have an unstructured format, and any neural network that is fed
with N point sets needs to be invariant to N ! permutations on the input set
feeding order.

• This is achieved by using symmetric functions (specifically, max pooling,
Figure 2.9). Such symmetry for a value given dependent on n input
arguments, is the same regardless of the order of the arguments, e.g.,
f(x1, x2) = f(x2, x1). Consequently, a global feature vector is produced,
which can capture an aggregate signature of the n input points. The
procedure works by stacking feature vectors to form a matrix; with the
rows as the feature vectors and the columns as their values, a picking-
out action is performed to retrieve the maximum value of each column.
Thus, a vector with the maximum values is generated, which supposedly
contains all the information about the point cloud, i.e., an n ×m input
matrix is reduced to a vector of length m after max pooling (Equation
2.6).

2. Points in a points cloud belong to a space with distance metrics, i.e., they are
not isolated, and neighbors groups meaningful subsets. This model has this
behavior because it works by capturing local structures from neighbor points
interactions. The aforementioned learned global descriptor (vector) (learned
in 1.) is produced without errors if the point set does not contain isolated
elements.

3. The learned representation of the point set should be invariant to certain
geometric transformations, i.e., the global point cloud category should not be
modified by rotations/translations of any kind.

• PointNet solves the invariance by applying an affine transformation to the
input coordinates. The output is a transformation matrix dependent on

30



Figure 2.9: Symmetric function of max pooling in PointNet.

Figure 2.10: Input transform in PointNet.From [32] ©IEEE 2017,
Fig.2.

the input. This small transformation network (often called T-net) works
in the same way as PointNet (with point independent feature transfor-
mation, max pooling for feature aggregation, and finally fully connected
layers) by getting an independent feature transformation matrix of 3×3.
The matrix size comes after a computation on each of the n input points
that are represented as a vector; these input points are mapped to the
embedding spaces independently. Applying a geometric transformation
amounts to a matrix multiplying each point with a transformation ma-
trix, see Figure 2.10.

Feature vector = max
i

(X = (xij) ∈ Rn×m) , Feature vector ∈ Rm. (2.6)

2.5.2 PointNet++

PointNet++ uses the same principle of max pooling for extracting features as in
PointNet. However, it differs in the sense that PointNet++ provides the ability to
capture local features at different scales. This feature is achieved by applying a max
pooling function to the data in a hierarchical fashion and in a number of sets of
abstractions. Thus, the network can extract finer details in densely sampled data
regions.

31



Figure 2.11: (a) Multi-Scale Grouping (MSG), (b) Multi-resolution
Grouping (MRG). Image from paper of Qi et al. [33]IEEE 2018, Fig.3.

For each set of abstraction layer, three tasks are performed:

• Sampling: Selects a subset of centroids using a iterative farthest point sampling
(FPS) technique. Another less efficient method is random sampling.

• Grouping: Selects a group of points for each centroid (KNN or ball-query
methods applied here). Since the points are sampled from a metric space in
the previous step, the neighborhood of a point will be defined by a metric
distance.

• PointNet: Run PointNet (feature extraction) on each group found.

The local patterns extraction at multiple scales (according to local point densities)
in each set of abstraction is achieved by any of the two types of the proposed density
adaptive layers: Multi-Scale Grouping (MSG) (Figure 2.11a) and Multi-resolution
Grouping (MRG) (Figure 2.11b). In MSG, a PointNet feature extraction layer is
applied to each scale selected, then these features (at different scales) are concate-
nated to form a single multi-scale feature. In MRG, the PointNet feature extraction
layer is applied first to all the points in the lowest region (right concat vector in
Figure 2.11b) and then to the features in the subsequent sub-regions (left concat
vector in Figure 2.11b).

The complete process for two sets of abstractions is depicted in Figure 2.12. The
pipeline followed for the current project is segmentation. After interpolating the
feature vectors obtained from the sets of abstractions, the outcome is the predicted
class label for each point fed into the network. The interpolation is achieved by
a Feature Propagation layer where a particular feature f(x) in a layer corresponds
to the inverse distance weighted average of the k nearest neighbors’ features in the
previous layers. Next, the interpolated features are skip-link concatenated to the
respective set abstraction feature.

2.6 DBSCAN Clustering Algorithm

The general clustering algorithm DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) proposed by Ester et al. [10] is a density-based clustering
non-parametric algorithm, i.e., In a point cloud P ∈ Rn, the algorithm can group

32



Figure 2.12: The PointNet++ hierarchical feature learning architecture description.
Both applications (segmentation and classification) are shown in the bifurcation. The
example shown for 2D points. Image from the paper of Qi et al. [33] ©IEEE 2018,

Fig.2.

the points in regions where they are densely near to each other and let outliers lie
alone in regions where the density is low, as shown in Figure 2.13.

The parameters that govern the algorithm are the minimum number of pointsminPts
and the neighborhood radius for each point ϵ. Each point is classified as: core point,
density-reachable point, or outlier (noise). The algorithm decides the outcome for
each point and cluster them according to these guidelines:

• A point p is a core point if a minimum of points defined by minPts are within
the radial distance ϵ, including itself.

• A point 1 is density-reacheable from core point p if q is within radial distance
ϵ.

• The points that are not reachable within the distance ϵ from other points are
cataloged as outliers or noise. They are also cataloged as the same if they
do not meet the condition of minPts. Note that it does not suffice to share
radius ϵ between points but to contain the point within this radius.

The algorithm executes these computations for the entire set of points one by one
until every point is classified and, therefore, clustered. Each cluster meets the fol-
lowing two properties:

• All the points in the cluster are density connected among them.

• A point is part of the cluster when is density-reachable without being a core
point.

2.7 Evaluation Metrics

For evaluating both models, the selected common metrics are defined in the next
sections: Point-wise IoU, Average Precision (AP), Mean Average Precision (mAP),
and the harmonic mean of precision and recall better known as F1 score.

33



Figure 2.13: Representation of a cluster formation using DBSCAN. Here,
minPts = 3 with a certain ϵ. Red points are core points since they meet both
requisites. Yellow points only meet one of the criteria; therefore, they are

density-reachable points. The blue point does not meet any directive, and it is
considered an outlier or noise. The double direction arrow indicates that the points
share both conditions successfully, while the one direction arrow shows that only

one of the conditions was met.

2.7.1 Point-wise IOU

The point-wise IoU metric is defined by the area ratio formed by the intersecting
points over the union points of two clusters [46]; these clusters are the predicted
cluster and the ground truth cluster, respectively, (Equation 2.7), i.e., true positives
points over the sum of true positives points, ground truth points, and false positive
points, visualized in Figure 2.14. Thus, it measures the performance of the model
by comparing the output of the model against the corresponding known target. One
should not confuse the semantic segmentation IoU metric since the one used here
takes into consideration the instance metric of each object (cluster or bounding box)
and not only the labels per point.

IoU =
|predicted points ∩ true points|
|predicted points ∪ true points|

. (2.7)

An object instance is defined as matched if a prediction has an IOU greater or equal
than some threshold.

2.7.2 Average Precision per class (AP) and Mean Average
Precision (mAP)

The mean average precision (mAP) and Average Precision (AP) per class are popu-
lar metrics used to measure the performance of models doing object detection tasks.
The first task prior calculating AP or mAP is to compute the precision and the
recall metrics.

34



Figure 2.14: Point-wise IoU visualization. It depicts a predicted
bounding box to illustrate the object cluster that is containing the

predicted object.

Precision (Equation 2.8) measures how accurate the predictions are. i.e., the per-
centage of the correct predictions. For points, it is the ratio of true positive points
(TP) and the total number of predicted positives (true positives and false positives).

Precision =
TP

TP + FP
. (2.8)

Then, there is recall (Equation 2.9), which measures how well the model found all
the positives. For points it is defined as the ratio of true positives (TP) and the
total of ground truth points.

Recall =
TP

TP + FN
. (2.9)

Note that FP , in Equation 2.8, stands for False Positives (Points wrongly predicted
as part of the object), and FN , in Equation 2.9, stands for False Negatives (Points
that failed to be predicted as part of the object).

The AP is then able to be calculated by taking the area under the curve formed
by the precision and the recall. Usually, the recall values are segmented into eleven
parts: Recalls = r = [0, 0.1, 0.2, . . . , 0.9, 1] and shown in Equation 2.10. Then, the
maximum value of the precision is taken. The precision value is an interpolated
precision that takes the maximum precision over all recalls greater than r.

AP =
1

6

∑
r∈{0,0.1,...,1}

max
Recall(c)≥r

Precision(c). (2.10)

After obtaining the AP metric, the mAP is available for being obtained as well. In
Equation 2.11, the AP scores are macro averaged, i.e., the AP score is calculated for
each object class, and once they are all computed, the mAP is calculated by taking
the mean from all of them.

mAP =
1

K̃

∑
K̃

AP (2.11)

where, K̃ = K − 1 is the number of object classes

35



2.7.3 Harmonic Mean of Precision and Recall (F1 score)

The F1 score is the metric that allow us to know how balanced are the False Posi-
tives (FP) against the False Negatives (FN) measurements of the model’s predictions
and the corresponding ground truth values. The Precision (Equation 2.8) which is
related to the FPs, and the Recall (Equation 2.9) which is related to FNs are com-
puted using the harmonic mean of them two. Thus, we can know the performance
of the model when both, Precision and Recall, are performing at their best.

Formally, for a class k, we get the F1 score (Equation 2.12) using Equation 2.8
and Equation 2.9 to get the maximum F1 score at that class.

F1k = max
c

2
1

Pr(c)
+ 1

Re(c)

. (2.12)

36



3

Dataset

In this chapter, we give an introduction to the dataset that each model is trained on.
First, popular public datasets are compared to find the most suitable one. Second,
details about the chosen dataset, RadarScenes [39], are listed. Lastly, we introduce
the preprocessing for generating training samples.

3.1 A Comparison

With the rapid development of autonomous vehicle industry, famous automotive
data sets such as KITTI [13] and Cityscapes [6] contains camera and some lidar
data. A few new data sets that includes radar data are published recently, e.g.,
nuScenes [3], RadarScenes [39], CARRADA [30], and CRUW [44]. Although the
number is still increasing, most of them are only applicable to the tasks of camera-
radar fusion instead of our task, which is radar-only object detection.

The nuScenes data set is the first dataset that cotains the full autonomous vehi-
cle sensor suite. It provides 3D bounding boxes as annotations and also 2D radar
point clouds. However, it is not suitable for our task due to the sparsity of radar
points. In [8], the author discusses that 72% of ground truth objects contain min-
imum two radar points in nuScenes, whereas only 43% of ground truth objects
contain minimum four radar points. Compared with RadarScenes, it provides much
denser 2D radar point cloud. RadarScenes is a newly published large data set that
uses traditional automotive radar settings. It covers most of common traffic scenes,
such as urban driving, commercial areas, country road and high ways. It comprises
over 4 hours and 100 km of driving.

Other than point cloud dataset, spectral datasets are also taken into considera-
tion. As described in [30], Range-Doppler-Azimuth data cube is the raw data before
filtered by CFAR algorithm to get point cloud. Compressing the data cube along
each dimension, we can respectively attain range-Doppler spectrum, range-azimuth
spectrum and Doppler-azimuth spectrum. These spectra that contain positional and
motion information could be the training samples for deep neural networks. CAR-
RADA [30] and CRUW [44] are also recorded by conventional automotive radar
systems. CARRADA contains small amount of data because it is recorded on a test
track to reduce noise. Therefore, it could not cover various traffic scenarios. On
the contrary, CRUW is a large dataset that covers multiple road types. However, it

37



only contains range-azimuth spectral without Doppler information, which is usually
vital for automotive applications.

See Table 3.1 for the comparison of four datasets. Except for the four dataset

Table 3.1: Overview of popular public radar data sets

nuScenes RadarScenes CARRADA CRUW

Sensor settings
Low Res Automotive Automotive Automotive

Automotive
FOV 360◦ 290◦ 180◦

Range 250m 100m 50m
Range Resolution 0.15m 0.2m 0.23m
Doppler Resolution 0.1 km/h 0.1 km/h 1.5km/h
Azimuth Resolution 0.5◦ − 2◦ 0.7◦

Total Length 1500h 4h 21.2min 3.5h
Numseq 1000 158 30 464

Sequence length 20s 13s-240s
Traffic scenes ++ ++ - ++
Class Number 23 11/5 3 3
Data Type Point Cloud Point Cloud R-D, R-A spectra R-A spectra

Annotation
3D bounding point-wise spectral spectral boxes

box labels annotations (19%)
Sparsity ++ + None None

1 ’None’ means the relevant information is not available.
2 FOV: field of view, R-A: range-azimuth, R-D: range-Doppler, Numseq: number of sequences

listed, the Oxford Radar Robot-Car data set [2] is also considered. It also carries
the full sensor suite and consists of data from a total amount of 280 km of urban
driving. However, the FMCW radar it used works in a nontraditional way, which is
being mounted on the top of the vehicle and rotates 360◦.

As the result of the above analysis, we decided to use RadarScenes given the follow-
ing merits:

1. It provides relatively dense radar point cloud and the automotive radars are
mounted in a traditional way as in ADAS;

2. It covers various scenarios and road types, e.g. urban driving, commercial
areas, country road, high ways and etc., and has large amount of data;

3. It offers point-wise annotations that allows the training of both semantic in-
stance segmentation and object detection models;

4. It contains 11 fine categories and remapped 5 coarse categories that are more
balanced.

38



3.2 RadarScenes Introduction

3.2.1 Sensor Settings

RadarScenes is a large multi-class data set with bird’s eye view point clouds and some
reference images. Measurements is collected by an experimental vehicle equipped
with four 77 GHz automotive radar sensors on the front bumper. The range of each
one is up to 100 meters and the field of view(FOV) covers ±60◦. See Fig 3.1 for
the sensor settings. The sensors’ range resolution and radial velocity resolution are
specified by the manufacturer to be ∆r = 0.15m and ∆v = 0.1km/h respectively.
Similar to the other automotive radars, the angular resolution drops when the dis-
tance to the sensor’s boresight increases. It drops from ∆ϕ(ϕ = ±0◦) = 0.5◦ to
∆ϕ(ϕ = ±60◦) = 2◦.The sensor cycle is 60ms and four sensors working cycles are
interleaved.

Figure 3.1: The car coordinate(cc) is marked orange. All the sensor measurements are
relative to it. Four radar sensors are mounted at the front face close to the lights. The
documentary camera is mounted behind the windscreen(white). The FOV (±60◦)of each
radar sensor is marked in different colors. From [39]©IEEE, Fig.3.

Furthermore, there is a documentary camera mounted behind the windscreen and
facing the direction of traffic. The ego-vehicle’s motion information is also recorded,
e.g., position, direction, velocity and yaw rate. Using this data, the radar measure-
ments can be compensated for ego-motion and transformed into a global coordinate
system. See details in Section 3.4.1.

39



3.2.2 Data Structure

RadarScenes data set consists of 158 sequences, each of which corresponds to a
recording cycle of the sensor suite. They covers different traffic scenarios and last
from 13s to 4 minute. Each sequence contains a hdf5 file that stores ”radar data”.
With open-source tools in [39], it can be loaded as a numpy structured array, the
structure of which is like a table with each row corresponds to a unique radar
reflection point. A reflection point has the following attributes, each being a column
of the table:

• timestamp: in micro seconds relative to some arbitrary origin

• sensor id: 1, 2, 3, 4, id of the sensor that recorded the point

• range sc: in meters, radial distance to the reflection

• azimuth sc: in radians, azimuth angle to the reflection

• rcs: in dBsm,radar cross section of the reflection

• vr: radial velocity relative to the ego-vehicle

• x cc and y cc: in meters, position of the reflection in ego-vehicle coordinate

• x seq and y seq in meters, position of the reflection in the global coordinate
with an arbitrary start point

• uuid: unique tag for the point

• track id: id of the dynamic object this points belongs to. Empty, if it belong
to ”static” class

• label id: class id, a integer from 0 to 11

3.2.3 Annotations

The label id specifies the semantic class with an integer, whereas the track id iden-
tifies unique real-world objects over the entire data collection period, i.e., all the
reflection points belonging to the same objects in a sequence share the same track
id. Besides, all the points belonging to the same object also share the same label id.
Since all the points belong to the same object can be visualized as a cluster of points,
”cluster” and ”object” are interchangeable in this report. With these two labels,
points in the same cluster can be extracted with its class information, which forms

40



the basis of the ground truth samples. This feature is vital for semantic instance
segmentation models.

RadarScenes focuses on dynamic road users, therefore, all the objects are categorized

Figure 3.2: Up Left : Urban driving; Up Middle: Cross section; Up Right: Highway;
Bottom Left:T section; Bottom Middle: Crowded area; Bottom Right: Motorbike

into eleven classes, namely: car, large vehicle, truck, bus, train, bicycle, mo-
torized two-wheeler, pedestrian, pedestrian group, animal and other. The
other class contains various types of dynamic road users that cannot be categorized
into all the other classes, such as skaters. The pedestrian group contains objects
in which individual pedestrians cannot be separable. What is more, huge amount of
reflection points belong to static objects that are not road users, thus static label is
assigned to them. On top of regular classes, there is a mapping function provided in
[39] that maps the eleven classes into five more coarse classes, including car,large
vehicle,two-wheeler,pedestrian,and pedestrian group. The alternative
class system leads to a more balanced sample distribution, which is desirable for the
tasks of object detection.

In order to comply with GDPR, other road users are anonymized by repainting.
This feature is unfavorable for sensor fusion task, but has no impact on our task.

41



3.3 Dataset Analysis

All sequences amount to a total of 4.3 hours driving. There are 118.9 million reflec-
tion radar points in RadarScenes, more than 90% of which are static points. There
are only 832822 points that belongs to dynamic objects. There are 1260280 dynamic
objects in all the frames, however, there are only 7516 unique dynamic objects in
the whole data set.

Figure 3.5 illustrates the distribution of time intervals between two succession frames.
The maximum time interval is 1799404 microsecond; the minimum time interval 1
microsecond; the median time interval is 15358 microsecond; the most frequent time
interval is 1 microsecond. The numbers indicate that four radar sensors’ working
cycles are not synchronized. In Section 3.7, 500 milliseconds snippets are extracted
from various sequences. Consequently, the number of frames in a 500 milliseconds
snippet also varies. The maximum number of frames is 55, the minimum number of
frames is 21, the median number of frames is 27 and the most frequent number of
frames is 27. Thus, the conclusion is that a snippet consist of roughly 27 frames.

Figure 3.3: Histogram for the number labeled points in each frame. Most frames contains
less than 10 labelled points, which is quite sparse and requires accumulation over time to
improve the density.

3.4 Snippet Extraction

To begin with, let us define terminologies:

• Frame: The set of points that share the same time stamp. Its data is from a
single sensor scan;

• Snippet: The temporal sequence of frames for a specific time length. This
length is chosen as 500 ms in this thesis. It is a training and test sample;

• Sequence: A temporal sequence is collected during a working cycle of the
sensor suite. Usually they corresponds to various traffic scenes in the real
world. There are 158 sequences in RadarScenes, the length of which varies.

42



Figure 3.4: Histogram for the number of objects in each frame. Most frames contains less
than 3 objects.

Figure 3.5: Left:Histogram for time intervals between two succession sensor scans. The
frequency decreases as the interval length increases, which shows the fours sensors’ cycles
are not synchronized. Right: Histogram for time intervals between two succession sensor
scans in sensor NO.3. All the time interval locates in a narrow band, which verifies that
the working cycles lasts around 60 ms.

43



Figure 3.6: Distribution of number of instances of each class

One frame is an overly sparse sample to train a deep neural network on. Accumu-
lation over time is a natural way to increase the reflection points’ density. In this
paper, we follow [8] and extract 500-milliseconds snippets, which can be preprocessed
(for example grid mapping) or directly used as input for deep neural networks. The
extraction procedure is described in Figure 3.7. Firstly, we iterate over all frames
fi, i = 0, 1, ..., n in a sequence and count the time interval between two frames ∆tj.
Time intervals are different because four sensors are not synchronized. The iteration
does not end until the accumulation of interval reaches 500 milliseconds, which can
be expressed as

argmin
n

(|
n∑
0

∆tj − 500ms|). (3.1)

Second, the snippet is clipped to remove outliers that are not located in the range
−50m ≤ ycc ≤ 50m, 0m ≤ xcc ≤ 100m.Third, we check if there are labelled targets
in the snippet because clipping will lead to the loss of some target clusters and there
are some snippets that even does not contain any targets before clipping. Finally,
we iterate over all the target clusters and remove the clusters without volume, i.e.,
target clusters that contains only one point or two points. This can ease the task
of image-based detector by removing the bounding boxes whose widths or heights
are zero. Note that this step is not mandatory for the training of point cloud-based
detectors, however, it is still implemented for the benefit of comparison between
different detectors.

44



Figure 3.7: Snippet Extraction: 1. accumulate frames over time to reach 500 milliseconds;
2. Clip the snippet to remove outliers; 3. Check if there is no target in the snippet. If so,
go to the next snippet; 4. Remove the clusters that has no volume, i.e., clusters contain
only one or two points.

3.4.1 Ego-motion Compensation

All the reflection points are in the ego-vehicle coordinate, i.e., their range and az-
imuth are relative to the center center of the rear axle of the ego vehicle as depicted
in figure 3.1. Simply stacking all the points in the same coordinate will cause mis-
takes because the vehicle itself keep moving, i.e., the origin of ego-vehicle coordinate
keeps moving. Therefore, before treating the snippet as a training sample, coordi-
nate transfer is mandatory. It transfer all the points in different frames into the
coordinate of the first frame in the snippet. Theoretically such a transform requires
a rotation matrix Rij and a translation vector tij. i, j means transform frame fj to
the coordinate of fi. To construct Rij, tij, we need to know the odometry informa-
tion of the sequence, such as how far the vehicle has moved forward and how much
the yaw angle of the ego vehicle has changed. The compensated frame f comp

j is given
by

fj =


xj1 yj1
xj2 yj2
...

...
xjn yjn

 ,

f comp
j = Rijfj + tij. (3.2)

After the transformation, f comp
j and fi can be stacked together as one snippet. For

this task we directly used the transform tool provided by [39].

What is more, the Doppler radial velocity also needs compensation. The car is
moving at varying speed. Therefore, the measured Doppler velocity is the radial
relative velocity, which will inevitably be affected by ego-motion. Take the signed

45



Figure 3.8: Left: The class distribution on the test set; Right: The class distribution on
the combined set of the training set and test set.

absolute velocity, vego and the yaw rate of the ego-vehicle from the center of the rear
axle, Φ̇ego into consideration. Given Doppler velocity vr and its azimuth angle Φ,
the compensated Doppler velocity ṽr is given by

ṽr = vr −
[
vego +myΦ̇ego

mxΦ̇ego

]T [
cos (Φ +mΦ)
sin (Φ +mΦ)

]
, (3.3)

where mx,my are the mounting position of the radar sensor, mΦ is the rotation from
the middle axis of the car. The first term represents the absolute velocity at the
sensor, whereas the second term extracts the radial components along the direction
Φ.

3.4.2 Train, Validation, Test Sets Split

There are 27595 snippets in total extracted from 158 sequences. As in [8] 158 se-
quences are split in to the training set, the validation set, and the test set by the
ratio 64 : 16 : 20. The data set splitting is done with respect to each sequence, i.e.,
all the snippets in one sequence stays in the same split. This is because targets may
resemble each other between different samples of the same sequence.

In [8], a brute force was applied to decide the best split. In this thesis, we study
class distributions in both the training set and the test set and ensure that they
have roughly the same distribution by manual inspection. Figure 3.8 presents the
distributions. Compared to Figure 3.6, we can observe that the general distribution
is maintained.

46



4

Methods

Two Deep Learning approaches were studied in this project. The first studied model
is the image-based object detector combined with grid mapping. In this section, the
aforementioned approach and the instance segmentation model: PointNet++ se-
mantic segmentation network and radar Grid DBSCAN clustering, are addressed
and explained.

Both approaches have, according to [36], good results in detecting dynamic road
users from radar data points. There are some other methods which have been not
considered because their efficiency are considerably low compared to these two meth-
ods. This is the case of PointPillars [24] applied to radar point clouds [36].

The baseline pipelines for both models is described thoroughly in a diagram in
Figure 4.1.

4.1 Image Object Detection Network: YOLO with

Grid Maps

Image-based 2D object detection is a well-developed field for years, whose main-
stream approaches can be divided to one-stage detector, represented by YOLO [35],
FPN [27], and two-stage detector, represented by Fast RCNN [14]. Both approaches
basically detect 2D objects on an image with axis-aligned bounding boxes (AABB)
and reached breaking performances on large-scale open datasets.

Inspired by recent advances in image-based detection, it is natural to preprocess
point clouds into image-like datatype and utilize image-based object detector to
process it. For static objects, point clouds can be accumulated over time to get
occupancy grids.The same preprocessing can be used in dynamic object detection,
however, on the contrast, the time length of accumulation should be limited to avoid
object smearing.

Any object detection model, regardless of one-stage or two-stage, theoretically works
fine on handling grid maps. Here YOLO v3 is adopted as in [8] because of its end-
to-end architecture and real-time inference capability. To get the training inputs
and targets, some preprocessing steps needs to be applied on the raw data from

47



Figure 4.1: Baseline pipelines for the two studied object detection
models using RadarScenes data set.

RadarScenes, including bounding box extraction, coordinate transfer, grid mapping,
Doppler velocity skew, blurry filter and data augmentation. Figure 4.1 illustrates
the pipeline.

4.1.1 Bounding Box Extraction

Radarscenes does not provide 2D bounding boxes as a type of annotations, instead
it provides point-wise class labels and track IDs. All the points with the same track
ID in a frame belong to the same instance, thus semantic instance segmentation is
possible combined with class labels. As Figure 4.2 shows, an instance is represented
as a cluster of points, the bounding boxes of which can be extracted as the exterior
rectangle. Both axis-aligned bounding boxes (AABB) and oriented bounding boxes
(OBB) are generated. Besides, RadarScenes does not contain ground truth bound-
ing boxes, thus the generated boxes may be different from the contour of the object.
For example, most of the reflection points may be located in the side of the objects
that is close to the radar. Furthermore, accumulation over time also elongate the
shape of the cluster. This is probably a reason why bounding box detection is rarely
adopted in handling dynamic radar point cloud.

An AABB is defined by four parameters: (x, y, w, h), where x, y are the coordinates
of the box center and w, h are the width and height of the bounding box, whereas
an OBB has an extra element as the yaw angle θ. AABB is the relatively easy
one to extract: Firstly, given a cluster of points, take the minimum and maximum
horizontal coordinates and vertical coordinates (x1, y1, x2, y2). Second, calculate pa-
rameters in (x, y, w, h). See 4.2 for an example.

An OBB takes an extra parameter, the yaw angle, to define the orientation. In

48



Figure 4.2: Sequence 109 start index 0 number of future frames 28; the left is the whole
snippet, the right one is enlarged axis aligned bounding boxes

other words, it is defined by (x, y, w, h, θ). The aim is to find the minimum exte-
rior bounding rectangle given a cluster of points. See Figure 4.3 for an example.
Among several ways to reach this goal, here principal component analysis (PCA) is
adopted. Firstly, the (self)covariance matrix of all the points is constructed. This
can be expressed as

X =

 x1 y1
x2 y2
...

...

 , X ∈ RN×2,

C = cov(X) = E[(X −X)T (X −X)], (4.1)

where N is the number of points in the cluster, x, y are the coordinates for a point
and X is the stacked matrix of mean coordinates. Since cov(X) is a real symmet-
ric matrix, it always has two real eigenvalues λ1, λ2 ∈ R and their corresponding
eigenvectors v1, v2 ∈ R2×1, which suggests the first and second principal directions of
variances. We can stack the eigenvectors as a rotation matrix. This can be written
as in

Cv1 = λ1v1,

Cv2 = λ2v2, (4.2)

R = [v1, v2]
−1 = [v1, v2]

T .

With R, we can rotate the cluster to an orthogonal basis as in

X ′ = RX, (4.3)

i.e., the two main variation directions are horizontal and vertical after the rotation,
and then find the AABB, X

′
AABB, in the new coordinate as described above. Finally

we rotate the AABB back to the original coordinate as

XOBB = RTX
′

AABB,

XOBB, X
′

AABB ∈ R4×2. (4.4)

49



Here XAABB, X
′
AABB are the stacked coordinates of four corners in the original co-

ordinate and transformed one respectively. With the positions of four corners, it is
easy to determine parameters in < x, y, w, h, θ >.

Coordinate Transfer

Both types of bounding boxes are generated in the ego-vehicle coordinate. However,
as an image-based object detector, YOLO requires that the annotations should be
in pixel coordinate. Figure 4.4 (c) illustrates that the origin of the pixel coordinate
is at the up left corner, the vertical axis yp is larger at the bottom of the picture
and the horizontal axis is larger at the right of the picture. This is different from
the car coordinate. xcc, ycc is the position in the car coordinate, whereas wcc, hcc are
the width and height in the car coordinate respectively. The transformation from
the ego-vehicle coordinate to the pixel coordinate can be formulated as


xp = −ycc

L
+ 1

2

yp = 1− xcc

L

wp = hcc

L

hp = wcc

L

, (4.5)

where L = 100m is the size of the scene, i.e., the radar range, xp, yp, wp, hp ∈ [0, 1]
are relative values in the pixel coordinate, i.e., absolute pixel coordinates can be
restored by multiplying with the length of grid maps. In a similar fashion, the output
of YOLO is in the same format as the annotations, i.e., in the pixel coordinate.
Therefore, a reverse transformation is applied to visualize the result.

Figure 4.3: Oriented Bounding Boxes: The snippet from the first 28 frames in sequence
137.

50



4.1.2 Grid Mapping

In the beginning, we followed the approach in [36], where the number of grid cells
are empirically set as 608. As YOLO requires, the input length and width should be
a multiple of 32. Considering that the range of a snippet is 100m × 100m and the
length of a normal passenger vehicle is around 4 meters, 608× 608 grids means that
each grid cell corresponds to 0.16m and a passenger vehicle takes 25 cells. As in [36],
three grid maps are extracted from each snippet, namely, maximum amplitude map
and maximum Doppler map, minimum Doppler map. See Figure 4.4 for an example.
For the first map, the value of each grid cell is the maximum amplitude value (RCS)
among all the points that falls in the grid cell. For the second, the value of each
grid cell is the maximum Doppler velocity among all the points that falls in the
grid cell. The third one takes the the minimum Doppler velocity instead. This is
because the Doppler radial velocity is singed, the positive value means a road user
that is moving away from the radar and the negative value means a road user that
is moving towards the radar. Therefore, two Doppler maps can reflect the velocity
distribution in each cell.

4.1.3 Doppler Velocity Skew Function

The left of Figure 4.5 illustrates the distribution of absolute value of Doppler radial
velocity. It is heavy-sided towards zero because most of the background points
are static. In [36], a monotone forth polynomial is applied to skew the Doppler
distribution. See the right of Figure 4.5 for the skew function. It is defined by
interpolation of supporting points (0, 0), (10, 0.7), (20, 0.9), (27.5, 0.95), (40, 1).

4.1.4 Blurry Filter

The information about how many points falls in a grid cell cannot be preserved in
grid maps. It is intuitive to create a forth map in which the value of each grid cell
corresponds to the number of radar points that are inside the cell. However, in [36],
a blurry filter is applied on the first three maps with the help of the forth quantity
map. The blurry filter propagates the values of non-empty cells in the first three
maps to their empty neighbours if the corresponding values in the quantity map
exceeds an empirical threshold. Figure 4.6 illustrates the propagation scheme. This
filter is nonlinear and has to implement as a set of rules:

• Only propagate to empty cells;

• If propagation zones of two origins overlaps, fill in the empty cell with the
value of closer origin.

• If distance is the same, fill in the empty cell with the value of origin which
contains more points.

4.1.5 Data Augmentation

We apply the data augmentation (DA) directly on snippets before grid mapping and
bounding boxes extraction. In [8], DA is randomly rotating grid maps by multiples
of 30◦. Since rotation may lead to loss of target objects after clipping. We don’t

51



(a)

(b) (c)

(d) (e)

Figure 4.4: An example for grid mapping: a snippet from sequence 109 frame 816 to
frame 845. (a)reference image;(b)point cloud with oriented bounding boxes. Three ob-
jects are visible;(c)Amplitude map. There are three clusters marked as light yellow corre-
sponding to three objects; (d) Maximum Doppler map, the correspondence is more obvious;
(e)Minimum Doppler map, the correspondence is less obvious. All three objects are moving
away from the test vehicle, therefore max Doppler map shows the clearest correspondences.

52



Figure 4.5: Left: Histogram of the radial velocity distribution; Right: Fourth order poly-
nomial skew function.

Figure 4.6: The propagation scheme for blurry filter from [8] IEEE, 2021, Fig. 6.

53



rotate the grid maps instead of snippets for the convenience of implementation. DA
consists of random rotations, transitions and moreover, flipping, the first of which
are similar to (3.2). A rotation matrix is constructed as

θi = 30◦ × ni

Ri =

[
cos θi − sin θi
sin θi cos θi

]
. (4.6)

Where i denotes the DA in the ith iteration and ni ∈ {0, 1, 2, · · · , 11} is a random
integer. The transition moves the snippet along the horizontal axis by a random
number in the region of [−25, 25] m. Lastly, we randomly flip the snippet horizon-
tally. Only horizontal transforms are applied is because we want to preserve the
feature that the point cloud becomes sparser as the range increases.

4.2 Instance Segmentation Approach: Semantic

Segmentation Network (PointNet++) and Radar

Clustering (DBSCAN)

Now, we will dive into the second studied object detection model. According to
[36], one of the most effective ways to execute perception in road environments us-
ing radar datasets is through clustering with adapted deep learning models. We
selected two known effective frameworks: PointNet++ [33] as the semantic segmen-
tation network (deep learning model) and the Density-based spatial clustering of
applications with noise (DBSCAN) [10] as the clustering algorithm. The objective
of the whole process is to find instance segments (objects) by performing two tasks.
First, the semantic segmentation network predicts point-wise class labels from a
point cloud P (snippet taken from RadarScenes), and then, the modified clustering
algorithm groups these labeled points into clusters of the same type. Figure 4.7
shows how the data is processed at the different stages of the pipeline.

The clusters are formed following the guidelines:

• Each cluster unit will contain only one type of predicted class label for all the
points within the such cluster. The same criteria are applied to all the clusters
found in the snippet.

• The clusters are formed following a custom distance metric and a minimum
neighbor points criteria specially designed for radars. See section 4.2.6.

• The points are filtered before training the network and the clustering stage
(after having a trained model). Thus, the semantic network and the clustering
algorithm will increase the efficiency of the labels and clusters, respectively.
The filters and how they work are described in detail in the subsection 4.2.5.

4.2.1 Radar Point Cloud Extraction

As described in subsection 3.4, the input unit is the snippet taken from the sequences
of radar data given in the RadarScenes data set, which are collected and formatted

54



Figure 4.7: Pipeline for the object detection system using the
algorithms of DBSCAN and PointNet++.

as stated in section 3.4. Note that the number of points in each snippet is not fixed,
and it is only populated by the number of reflections present at that time. The time
length was tested successfully in [37], and that is the reason why we adopted this as
a baseline model (Analysis of these results in section 5.2).

The resulting snippet of such formatting will be the unit input to the PointNet++
pipeline. In the current model, each of these snippets will represent a point cloud
P element in Rd. Each point cloud P is defined as a set of N ∈ N individual points
pi ∈ Rd with no relevance in the order. Thus, pi constitutes a multi-dimensional
point in Rd where its dimension d is given by a) the number of features retrieved
from the dataset and b) the algorithm the point is passing through. i.e., the in-
formation extracted from the dataset (stated in 3.2.2, data structure) is selected
depending on the features the segmentation network (PointNet++) or the cluster-
ing algorithm (radar DBSCAN) require, respectively. Therefore, d will contain the
number of corresponding radar features as follows:

• In the semantic segmentation network, each feature point in the snippet will
contain two spatial coordinates x and y, and the ego-motion compensated
Doppler velocity v̂r and the radar cross section (RCS) σ. Hence, d = 4. The
class labels label id per point vector are also included in the training preserving
the same indices as the feature points array.

• In the clustering algorithm, each reflection will contain two spatial coordinates
x and y, and the ego-motion compensated Doppler velocity v̂r and the range
r. Hence, d = 4. These will not contain the class labels label id as in training
but will contain a prediction label per each point computed on-the-fly at the
inference stage and before being passed to the clustering algorithm. Therefore,
the predicted label vector will have the same indices as the feature points array.

Thus, d = 4 for both processes. The usage of these features in each algorithm is
explained in the following sections.

Point Cloud in the Semantic Segmentation Network

Unlike the input of the first studied object detection model (YOLO), which uses
fixed pixels in a 2D bird-eye image regardless of the number of points, the input

55



size for this model is initially not fixed, as discussed earlier. Each raw point cloud
unit has a number of points that are not fixed up to a number, i.e., the sizes of the
point cloud set to feed the network are different in point lengths because the point
cloud is populated depending on the objects that were present at the moment of
extraction in the mentioned time length from section 4.2.1. The consequence is that
a typical convolutional neural network will have processing issues accepting each
point cloud (or rejecting the point cloud directly) because the mapping is performed
by a convolutional kernel that expects a constant even grid every time.

To overcome this problem, we have selected PointNet++ as our architecture be-
cause it does not necessarily deal with constrained point cloud formats. Thus, its
usage fits adequately for this dataset. As it is seen in section 2.5.1 from the article
[32], the unstructured format of PointNet++ does not affect the algorithm as long
as in each snippet: the points N are invariant to their N ! permutations, the points
are not isolated from one another, and they have the tolerance to geometric trans-
formations.

The only constraint for feeding this semantic framework is that it has to contain
a fixed number of points N per snippet. Hence, for any training/validation/test
snippet samples,

Samples = (P1, . . . , PM) , M → number of snippets

P = (p1, . . . , pN) , N → number of points
(4.7)

As we discussed in equation 4.7 the number of points, N is not fixed in the beginning
due to the random number of reflections accumulated over time for populating each
point cloud (snippet). As a result, random upsampling and clipping procedures are
implemented for each point cloud. These operations guarantee that the number of
points will be fixed up to a predefined and constant number for all the point clouds
intended to be fed (more of these procedures in subsection 4.2.2).

Point Cloud in the Clustering Algorithm

As is seen in Figure 4.1, each snippet in the test dataset is passed through the
semantic segmentation network (PointNet++) and the clustering algorithm (DB-
SCAN) section of the pipeline in the exact mentioned Figure.

After having a trained model, the inference stage of the semantic network will only
accept a constant number of points in each dataset snippet, as in the point clouds in
training mentioned in subsection 4.2.1. On the other hand, the clustering algorithm
is unaffected by the number of points in any snippet. Since the replicated points
from the random upsample or clipping procedures can bias the clustering after the
semantic inference, then they need to be returned to their original number of points,
preserving the integrity of the snippet. This is easily done by discarding the points
where the information is identical in all the features.

After recovering the original number of points for clustering, the point cloud needs
to be passed through a filtering process in order to refine the quality of points and
get rid of the noise as much as possible. The process of filtering is described in 4.2.5.

56



4.2.2 Upsampling and Clipping of Dataset

As it was stated in section 2.5.1, the semantic network PointNet++ accepts un-
ordered point clouds with any number of features with any number of points without
any problem as long as this number of points per snippet is constant during training
or inference, i.e., all the snippets in the training/testing data set must keep a con-
stant size before to be fed in batches to the network. This is due to each batch of
snippets passing through a series of feature transformations, layers of MLPs (Multi-
Layer Perceptrons), and max pooling operations (see more of these stages at [32],
and [33]). The parameters of these operations are configured considering a constant
number of points prior to the training/inference. Otherwise, the parameters, and
therefore, the network architecture, would have to change their parameters con-
stantly just for the non-constant number of points in each snippet, which is far from
practical.

The obvious solution for keeping a constant network architecture is to modify the
number of points in all the snippets by re-sampling them to a constant number. Re-
sizing the snippet by adjusting the accumulation time (defined to be at T = 500ms)
is an option. However, Scheiner et al. [37] recommend using fixed time slices and
then either performing a random upsample until the selected number of points in
the snippet is achieved or randomly clipping the points labeled as noise (static class)
down to the selected number.

Neither the clipping process nor the random upsampling process represents a change
in the outcome of the semantic segmentation network. The clipping is performed on
the static class points by removing a number of them and keeping the non-static class
ones, as shown in Figure 4.8 (a). The random upsampling method randomly repli-
cates points following the nearest neighbor interpolation criterion, which in essence
means that the algorithm calculates the number of missing points, then randomly
selects existing points up to that number, and replicates them identically one or
more times until that constant number of points is reached, Figure 4.8 (c). These
extra points do not affect the training at all since the max pooling layers (feature
mapping procedure, see more in [32]) map these identical points as if they were only
one, and therefore, they do not influence the training/inference.

Thus, the selected number of points is optimized to 4096 according to [36] in order
to apply the random upsample technique more times than the clipping technique, so
the integrity of the snippet prevails. Moreover, the clipping and upsampling process
follow corresponding guidelines,

• When clipping, reflections from the static (noise) class are removed. No non-
static class reflections are removed, since the dataset is highly imbalanced
towards static points (97 million static to 3 million non-static [37]). Such
non-static points removal would severely affect the performance of the train-
ing/inference if applied.

• When upsampling, random reflections are re-sampled the required amount of
times.

57



Figure 4.8: A snippet with the original number of points (b), after
clipping (a), and after random upsampling (c) procedures. Note that
the clipping is done over static class points in (a) preserving the
non-static points. Also, only for this example one can see that the

length of the snippet is not 4096 points

As a result of this process, each point cloud P (snippet) will have the shape,

P = [N points, n features] , N points = 4096, (4.8)

where n features represents any selected features from the data set. In this case,
recall 4.2.1, where we consider: x, y, vr,RCS. Thus, n features = 4.

4.2.3 Point Cloud Preprocessing for Training the Semantic
Network

We explored and implemented two data preprocess stages to improve the train-
ing/inference of our pipeline.

It is necessary to acknowledge that the number of non-static labeled points against
the static labeled ones is outstanding since we got a relation of 97 million static
points against 3 million non-statics points (31:1 overall ratio) after counting all the
points in the dataset. This causes a model acquires high accuracy in predicting the
majority class (static) and poor performance in the minority classes. In our case,
the minority classes possess more valuable knowledge than the static ones. For this
reason, a stage of weights biases at the cross-entropy loss function stage while train-
ing was implemented to mitigate this undesired effect successfully. [41].

Also, after an exhaustive visual inspection of the snippets, we realized that there are
sequences of snippets where points did not add much information from one snippet
to the next one. These cases occurred when the non-static objects were not mov-
ing much (for instance, cars at a T cross intersection waiting for the light of the
semaphore to change to green, or pedestrians standing for long periods). Therefore,
a data augmentation process (jittering) was performed to enhance the information
at each snippet. Hence, the shape and density of the non-static points change;
therefore, the snippet would be richer in information. Thus, the network can learn
even more from this synthetic data.

58



Weight Bias for the Loss Function

First, due to the mentioned imbalance in the dataset, initial weights were counted
and applied in such a way that while training, each static class point in the snippet
was penalized, and each non-static class point was rewarded at each update in the
loss function from epoch to epoch, i.e., from counting the ground truth labels, we
computed weights per class w. Then, these weights are inserted in the updates of
the loss Li resulting from the Categorical Cross-Entropy Loss cost function while
training, as is shown in Equation 4.9,

Li = −w × [y truei × log(y predi) + (1− y truei)× log(1− y predi)] (4.9)

where i refers to the class the cross-entropy is being calculated for (i = 0, 1, 2, 3, 4, 5
for cars, pedestrians, group of pedestrians, two wheeler, large vehicles, and static
classes, respectively), y true and y pred are the vectors containing the ground truth
values (annotations in dataset) for each point, and the predicted values in each point
while training respectively, and w are the weights that will bias the cross entropy
computations over the distributions (total number points in one-hot vector per class
y true or y pred in our case) according to our dataset statistic count.

Moreover, since each split of the training/validation/test dataset contains around
the same ratio of imbalanced data as in the entire data set, we can argue about
a constant behavior of the imbalanced data in any random split. However, before
training, we are calculating the actual initial weights per dataset. To depict the im-
balance in the RadarScenes dataset, we show this imbalance in percentages in Table
4.1. Here, we show to what extent the initial weights will influence the optimizer
after the cross entropy loss function in almost any training process.

Table 4.1: Estimated number of points in percentages
across the entire dataset from RadarScenes

car ped ped.group bike truck static

1.23% 0.31% 0.74% 0.11% 0.60% 97.01%

Even though we know these percentages, we calculated the actual initial weights
per training split, i.e., customized weights w(i) per class i for the split we are using.
To achieve this, we introduced inverse weights (on ground truth label per point) for
each count n as

nclass = [ncar nped ngrp ncyc ntrk nnoise],

w(i) =

1
nclass(i)∑N
j=1

1
nclass(j)

.
(4.10)

For instance, if we have nclass = [20 10 1000] (cars, pedestrians and noise) labels
then, the corresponding weights are: w1 = 0.3311, w2 = 0.6623 and w3 = 0.0066.

59



The actual weights computed for each class (car, pedestrians, group of pedestrians,
two wheeler, large vehicles, static) in the training data set are shown in relation
4.11,

w = [0.07841 0.19531 0.10594 0.46180 0.15459 0.00317]. (4.11)

Data Augmentation

Although the initial weight regularization mitigates most of the effects of having an
imbalanced data set, the data was still sparse and could be more representative. We
needed data augmentation techniques focused on enriching the non-static points in
the training data set to decrease the generalization gap formed by the training data
curve and the validation data curve, preventing overfitting. Therefore, we applied
two techniques from Schumann et al., [37], with different adaptations, as we will
show.

First, we applied random noise to each feature dimension, point by point in non-
static objects, so that each feature (x, y, vr,RCS) was randomly altered and copied
within a range of a standard deviation of σ = [0, 0.1] (up to 0.3 suggested in [37]).
We applied this method to each snippet because they are sampled from a time
sequence, and the snippets right behind and right ahead of that snippet are very
similar to each other, adding little new relevant information to the training and
making it susceptible to overfitting. Thus, after applying random noise, the result is
an augmented jittered version on the non-static points, which gives newly enhanced
information in shape and density, snippet by snippet of such points, and prevents
the network of training over similar features. Also, they are left out in the same
probability as σ.

Next, the same random noise was applied to static noise but without affecting the
radial velocity feature, but the other three left (x, y,RCS). Unlike the non-static
points, the random noise on static points is just for altering the points and not mak-
ing them grow in number. One snippet before and after the jitter data augmentation
process is shown in Figure 4.9.

4.2.4 PointNet++ Semantic Segmentation Architecture

This version for the semantic segmentation network has the architecture shown in
Figure 4.10. The selected architecture is an adaptation of the best candidate shown
in [36] and [37]. The network parameters contain: a number of MSG modules, a
number of samples Nsample per MSG module, the number of neighborhoods in each
MSG module, their radius r, the number of neighbor points Nneigh per point, and
the shape and number for the convolutional layers; these were selected according to
the specifications in [33] and [37], and tuned using random validation sets. This had
to be done this way since a complete sampling of the parameter space is not feasible.

The adaptations are located in the radii and number of neighbors in MSG mod-
ules MSG1 and MSG2 with r1 = 2[m], nneigh = 10, and r1 = 2.5[m], nneigh = 16,
respectively and shown in Figure 4.10. These values and those shown later were se-
lected after testing and learning how effective they were by looking at the accuracy,

60



Figure 4.9: A snippet with the original number of points (a) and after
data augmentation (b). Note the increasing number of points in

dynamic classes and reduced by the same number in the static class.
Although the jittering is not as visible as expected in the plots, the

favorable effects of the training are remarkable.

loss, and confusion matrix metrics. There are other configurations for Pointnet++
with radar points like the one presented by Liu et al. in [28]. Our modified version
adapted from [36] and [37] performed as efficiently as their baseline model.

Figure 4.10 shows the following architecture: three Multi-Scale Grouping (MSG)
modules from PointNet++, three Feature Propagation (FP) modules also from
PointNet++, three 1-dimension convolutional layers with two dropout regulariza-
tion methods in between of them, and a Softmax activation function for retrieving
the points’ classes.

As shown in 4.7, the purpose of the network is to identify each point with a class
label semantically; therefore, as the MSG modules are connected to the FP modules
as described in previous section 2.5.2 the network can propagate the classification
to each point.

Also, from Figure 4.10, the Multi-Layer Perceptrons (MLPs) kernel sizes in the
MSG modules are:

• MSG 1: [[32, 32, 64], [64, 64, 128]]

• MSG 2: [[32, 32, 64], [64, 64, 128]]

• MSG 3: [[64, 64, 128], [64, 64, 128]]

4.2.5 Point Cloud Filtering for Clustering

Prior to applying the radar clustering stage, a filtering process is applied to the data
in order to prune the noise and enhance the quality of the clusters. The selected fil-
tering process is chosen, so the DBSCAN algorithm can relax the hyper-parameters

61



Figure 4.10: Structure of the semantic segmentation network. The
segmented line indicates skip connections from which extracted features
from MSG modules are passed to the FP modules. Improved from [36]

and [37].

62



Figure 4.11: Original snippet (a), pruned snippet after filtering (b).
Notice the number of static points dropped. In this example,

ηvr = 0.0022.

(minimum number of neighbors and minimum radius) and allow them to have a
broader range of values.

The points that are below a certain radial velocity vr (Doppler) threshold and were
predicted with a static class label are deleted. Equation 4.12 defines this filter over
the point cloud P (snippet).

Pfiltered =

{
where |vrPoriginal

| < ηvr

where labelsPoriginal
= static class

, (4.12)

where ηvr is the velocity threshold and the rest of the equation is the segregation of
the points that belong to the static class too. The result is a pruned snippet with
less clutter, as is shown in Figure 4.11.

4.2.6 Class-Sensitive Filtering and Clustering

The selected algorithm is a modified version of the euclidean DBSCAN clustering
algorithm seen in [10]. Recall that the clusters are formed in the euclidean DBSCAN
by tuning the parameters Nmin and ϵ.

We decided to use a clustering method inspired by the DBSCAN clustering tech-
nique shown by Liu et al. in [28] and by Scheiner N, et al. in [36]. Liu and his team
decided to perform the clustering at each non-static class with no modifications in
the distance metric radius or the minimum points. This means that the algorithm
will perform clustering five times (one per non-static class: cars, pedestrians, group
of pedestrians, two-wheelers, and large vehicle) per snippet. It will add the clus-
ters found at each class clustering iteration to the snippet clusters with a default
DBSCAN algorithm. It is worth mentioning that before the clustering starts, all
the points will have the noise (static) label and will be changed as the DBSCAN

63



iterations are performed.

Then, we took a different approach from Liu and his team by adopting a radar
distance metric radius inspired by Nicholas and his research team, which consists
of a radar-based distance metric. In order to take advantage of the radar data,
we decided to use the e − region, which is a multi-dimensional neighborhood dis-
tance metric around each point that will be used to define a cluster in radar data.
Equation 4.13 defines the e− region as follows,{√

∆x2 +∆y2 + ϵ−2
vr ×∆v2r < ϵxyvr

∆t < ϵt
, (4.13)

where, ∆x and ∆y are the distance differences between two analyzed points, ∆vr
is the radial velocity difference between the same mentioned points, the number of
radar points collected during a time is ∆t, and finally ϵvr , ϵxyvr and ϵt are the thresh-
olds of radial velocity, e-region and time, respectively. The time threshold represents
the accumulation time of 500 ms described before in the Dataset chapter. Likewise
ϵ in the standard DBSCAN, the threshold ϵxyvr will dictate which points are treated
as core points, density reachable points, or noise points. The three thresholds ap-
plied at each iteration of non-static class allows the clustering algorithm to perform
finer tuning of its parameters and form a more accurate clusters. To implement
the e-region, we decided to modify the scikit DBSCAN platform implemented by
Pedregosa et al. [31].

Both approaches in one are described in the Algorithm 1 and the corresponding
outcome (using ground truth) of this process is shown in Figure 4.12.

Algorithm 1 Radar-based DBSCAN clustering

Require: X ▷ All the featured points in a snippet X
Require: ϵxyvr , ϵvr , min pts per class list ▷ DBSCAN parameters
Output: clusters in X
for class in classes do

min pts = min pts per class list(class)
for i in X do

e-region in points list ← e-region(xi, xi+1)
end for
clusters ← DBSCAN(e-region in points list ≤ ϵxyvr , min pts)

end for

The parameters are optimized by clustering over the ground truth labels obtained
from the RadarScenes original annotations before using any trained model from
PointNet++. These parameters are:

• ϵxyvr = 4.0

• ϵvr = 2.02

And for the number of neighbors per class, the values are,

64



Figure 4.12: Original snippet with ground truth clusters (LEFT) and
the same snippet with predicted labels and clusters (RIGHT). In this
case, one car and two pedestrians clusters are shown along with the

noise (static) points.

• Nmincar = 10

• Nminped = 7

• Nmingrp = 8

• Nminbike = 8

• Nmintruck = 14

65



5

Results and Discussion

In this chapter, we will first introduce the training and evaluation of two deep neural
networks frameworks (YOLO v3 and PointNet++ with DBSCAN Clustering). Both
frameworks are optimized with different loss functions and evaluated with their
original metrics, e.g., accuracy for PointNet++ and pixel-based mAP for YOLO
v3. Afterwards, a trained PointNet++ model needs to be inserted into the pipeline
described in Figure 4.7 so that we can compare two approaches with point-wise
metrics described in 2.7.2.

5.1 YOLO v3 Training and Evaluation

Our learning rate scheme is as follows:

• first 1000 iterations(the burn-in period): the learning rate gradually increases
from 1× 10−7 to 1× 10−3

• continue training with 1× 10−3 for 4× 105 iterations

• 1× 10−4 for 2× 105 iterations

• 1× 10−5 for 1× 105 iterations

Batch size is 32 and the optimizer is Adam.

5.1.1 Ablation Study

Models without data augmentation were trained at the first step. We study the
effect of blurry filters and velocity skew function separately. In 4.1.5, rotation and
flipping are introduced. Different combinations of data augmentation strategies are
tested. Random flipping consists of flipping horizontally, flipping vertically and the
mixture. Random rotation consists of rotation by multiples of 30◦ and random ro-
tation. Taken no flipping and no rotation into count, there are 12 combinations
of data augmentation. We chose the combination with the top performance on the
validation set and tested it with IOU = 0.3 because the elongated shape of bounding
boxes will easily be considered as false negative because of low IOU.

66



Figure 5.1: YOLO approach’s performance on the validation set with various data aug-
mentation operation

Table 5.1 presents the scores for DA strategies on the validation set. (Note: the
scores are low because 1. the relatively unbalanced class distributions in the vali-
dation set; 2. the score is pixel-based mAP instead of point-wise mAP). In general
flipping vertically can add 8-10 percent to mAP and the performance on the vali-
dation set is more stable. However, rotation will lead to an unstable score on the
validation set. The combination of rotation and flipping did not further increase the
scores, instead it destabilized the scores. Thus, we conclude that flipping horizon-
tally is the optimal data augmentation operation.

Frames accumulation time, as a important hyperparameter, plays a main role in
controlling the density of points in a snippet. Here we trained models with a series
of accumulation time (from 100 ms to 1 s) and evaluate them with snippets that
have the same length.Three models with the same hyper-parameters are trained on
the the training set consisting of snippets of each length. Afterwards, the saved
checkpoint at 70 epochs of each model is applied on the test set that has the same
length. Fig 5.2 presents the result. Note that for classes Car, Two Wheeler and
Pedestrian Group there is a clear improvement as accumulation time exceeds 600
ms. However, for class Truck and Pedestrian, the improvements are not significant.
Especially AP for Pedestrian class remains at a low level, which turns out to be the
bottleneck of the model.

5.2 Semantic Segmentation Network (PointNet++)

Training and Evaluation

Our learning rate scheme is driven by,

lr = lr0 ×
(
lrdecay
100

)( epoch
step )

, (5.1)

where lr is the computed learning rate, lr0 is the initial learning rate at the begin-
ning of the training. lrdecay is the learning rate decay which determines how much
the initial learning rate will decay over the training in percentage, step is the step
size which indicates for how many epochs the new computed learning rate will last
until the next step, and epoch corresponds to the current iteration of the training.

67



Figure 5.2: mAP and AP of each class on the test set changes over the accumulation time.

The training is conducted for 60 up to 70 epochs in around all trianings (base-
line and oriented) . This suggestion is supported by [33], [36], and based on our
own experience, i.e., the network starts to overfit in a baseline training after these
number of epochs. The same behavior is shown for the epochs when normalization,
regularization and data augmentation methods were applied.

The batch size at which the trainings performed was 64 because the GPU mem-
ory was larger enough to handle this size. The optimizer selected for any training
is Adam (introduced by Kingma D. and Ba J. in [23]) with default parameters
(α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 1× 10−8) is preferred over the Stochastic
Gradient Descent (SGD).

5.2.1 Semantic Segmentation Network (PointNet++) Base-
line Model

After several trainings for determining our most successful base model for the se-
mantic segmentation network, we narrowed down to a series of specific values of
parameters and hyper-parameters. The following results could not be surpassed due
to two reasons: the inherent nature of the data set and the performance capabilities
of the network itself. These parameters are,

• Initial learning rate: lr = 0.007 up to lr = 0.009. The learning rate could be
below 0.003 but it would be too slow for 30 to 40 epochs only and in some
cases got stuck. Above 0.009 the network became unstable, aggressive and
tended to converge too quickly to a suboptimal solution without recovering
from there, i.e., predicting wrong values in non-static classes.

• Step size for learning rate decays: range between 12 and 15 steps in 55 and 60

68



Figure 5.3: Visualization ground truth bounding boxes vs. detection bouding boxes

69



epochs, respectively. These values mean that the learning rate decays around
3 times during the whole training.

• Learning rate decay: 0.8, which means that the learning rate will decay 20%
after the step size is reached. Then it will decay another 20%, and so on.

• Weight decay: 0.0, since it is recommended in [37] to avoid weight decay for
the Adam optimizer in PointNet++.

• Data Augmentation (DA) techniques (random noise on features, and dynamic
points dropout, subsection 4.2.3) are applied in order to consider the baseline
model. The model is highly improved with these DA techniques against mod-
els without them, due to which these techniques are adapted to begin with.
Also in [36], the authors suggested the use of to use these data augmentation
techniques to enhance RadarScenes dataset in any training.

Our baseline model outputs the following confusion matrices in Figures 5.4 and 5.5.
The reason for having both matrices, the relative and absolute, is that the relative
does not highlight the many number of dynamic false positives (last row in Figure
5.4) predicted by the network. We can argue that these matrices are indicators of
a good model since: a) the diagonals are greater in number compared to the rest
of the matrix, indicating the good accuracy of the predictions performed by the
model, and b) it is more beneficial to have more false positives (wrong detections of
dynamic objects in original static ones, last row in the absolute confusion matrix)
rather than false negatives (wrong detections of static classes in actual dynamic
objects, last column in the absolute confusion matrix), i.e., larger dynamic objects
than in the annotations; in this type of applications, larger objects lead to more
sensitive and faster detections systems, however, this is also a drawback because the
model could detect objects where there are none and therefore, unwanted results in
an autonomous driver system, for instance.

Another metric that support the robustness of the model is the semantic Inter-
section over Union (IoU) on class label points (ground truth labels and predicted
labels), and the training accuracy. The IoU and accuracy that corroborate our
previous claim was performed on an unseen TEST DATASET. It is important to
acknowledge that these metrics have to be taken at the moment where the best
model was saved; to get such best model, the obtained IoU at each epoch iteration
was compared with the previous best IoU and updated if the labels were predicted
better than the previous versions using IoU. Thus, we ensured a model closer to
the ground truth if the epoch resulted in a better maxima. The iteration at where
the best model occurred was at iteration 59/60 but we took the one at 60 instead
(explanation elamborated in the next paragraph), and the corresponding metrics
were,

• Accuracy: 98.28%

• Loss: 59.02%

• Average IoU on each class: 59.66%

70



– CAR IoU: 58.4%

– PEDESTRIAN IoU: 27.1%

– GROUP OF PEDESTRIANS IoU: 60.7%

– TWO WHEELER IoU: 66.0%

– LARGE VEHICLE IoU: 47.2%

– STATIC IoU: 98.6%

Regardless of the great accuracy in the test dataset, one should pay close attention
to the mean loss. The value of 59.02% in mean loss error may be misleading since it
is not the lowest across all the epochs. One can wrongly select the epoch where the
loss is the lowest because the generalization gap would be the smallest against the
training loss. However, the loss serves as a secondary metric to add a better criteria
and support IoU which is our primary metric for model selection. Figure 5.6 shows
the mean loss in unseen data. One can see that at epoch 60 a lower loss is obtained
compared to epoch 59 but Figure 5.7 shows a little improvement in IoU at such
epoch 59. Then, since the IoU has not a relevant improvement, then we consider
epoch 60 for getting the best model because the loss decayed in greater number. In
both cases we should check the confusion matrix to pick between epochs because
we will see the actual points predicted right. Finally, we took this stand because
the data is imbalanced and the interpretation of values could be missed if just one
metric is considered.

Figure 5.4: Confusion matrix (absolute) for the baseline model in the test data set

71



Figure 5.5: Confusion matrix (relative) for the baseline model in the test data set

Figure 5.6: Loss error in the unseen data for our semantic network baseline model.

Figure 5.7: IoU in the unseen data for our semantic network baseline model.

72



5.2.2 Inference and Clustering

Table 5.1 shows the Average Precision (AP) scores for all the clusters found at each
class after the semantic segmentation inference and posterior clustering in the same
unseen data at point-wise IoU threshold of 0.3 (30%) and 0.5 (50%), respectively.
The mAP and F1 score are shown too. Also, in Figure 5.8, two examples are shown,

Table 5.1: Metrics of AP per class

AP (%)

IOU = 30% IOU = 50%

car 53.29% 45.91%
ped 26.30% 23.05%

ped.group 44.41% 30.12%
bike 68.24% 66.35%
truck 40.98% 37.35%

mAP 46.64% 40.55%
F1 66.47% 60.99%

5.3 Comparison of Two Approaches

Table 5.2 presents the test results of two approaches with point-wise mAP and F1
score.

5.4 Discussion

A longer length of time accumulation improves AP of each class while length is below
700 ms and then APs show the tendency to decrease when the length is above 900
ms. The improvements on various classes also differ: It shows a huge AP increase
for the class TWO WHEELER and PEDESTRIAN GROUP, whereas the increases
on the other three classes are not as significant. It reveals that simply increase the
accumulation time length will not significantly improve AP on the PEDESTRIAN
class.

For the pipeline of PointNet++ and radar DBSCAN clustering, unfortunately as
it is shown in Table 5.2, the model did not reach the mAP and F1 of 43.64% and
54.55%, respectively at IoU = 30%, neither the mAP and F1 with 40.03% and
54.37%, respectively at IoU = 50% (presented in [36]). Our values, as shown in the
same table, are at the half of the values of the mentioned values. We believe that
the model is corrupted in the training stage because the labels are predicted wrongly
and not as they are supposed to from the research document we cited before. From
our best knowledge we believe that the pipeline is corrupted at the time the data

73



Figure 5.8: Inference (predicted labels and clustering) results on two typical traffic scenar-
ios of two main approaches with ground truth clusters as the references. Ground truth are
in the left hand side (a and c) and the corresponding predicted ones at the right hand side
(b and d). The top two are the same snippet (a and b) and the two in the bottom are both
the same (c and d). Note the effect of the filter in the predicted ones, also notice the little
differences from a to b where there are more clusters than in the original plot.

is being handled and passed through the architecture. This is a totally solvable.
However, for time reasons, we can expect that further collaborations may correct
this error.

Small Object Detection

Table 5.2 shows that grid mapping and YOLO approach is good at detecting large
road user class, including CAR, CYCLIST, and TRUCK; however, its performance
on small road user class, including pedestrian and pedestrian group, is worse. We ar-
gue that this is because of the sparsity of the point cloud instead of the imbalanced
class distribution. In Figure 3.8, we find that the instance numbers of PEDES-
TRIAN and PEDESTRIAN GROUP are 3-4 multiples of TRUCK and CYCLIST,
however, the APs of PEDESTRIAN and PEDESTRIAN GROUP are roughly one
half of the APs of TRUCK and CYCLIST. Therefore, the class distribution is not

74



the main reason.

If we take a close look to the clusters, small road users clusters usually contains
way less points than the big road user clusters. The RCS is also positively related to
the size of the target according to [12]. Therefore, we calculate the statistics about
RCS and number of points in each cluster. The result are shown in Table 5.3 and 5.4.

To analyze the influence on mAP of three factors, number of instances, average
number of points in each instance, average RCS, we need to calculate the correlation
coefficients. We regard the mean values in Table 5.4 and Table 5.3, the APs of five
classes in 5.2 and number of instances in Figure 3.8 as random variables. Here is
the result:

• ρmAP,instance = −0.0408

• ρmAP,RCS = 0.2334

• ρmAP,points = 0.3302

It indicates that number of points in each cluster has the highest linear correlation
with AP and the average RCS are the second highest. The number of instances
weakly negatively correlates to AP. This can provide some insights about how to
improve AP on the pedestrian class. For example, interpolation of the points in
pedestrian clusters can increase the density without changing the contour. However,
the interpolation of position is relatively easy, the interpolation of RCS and Doppler
radial velocity need to be further explored.

5.4.1 Weight Initialization

The number of strategies that one can apply to the network in order to make it
better for predictions is large. However, these strategies can be reduced considering
the theory behind the logic of each model.

One of these cases in the semantic network PointNet++ was the weights initial-
ization in each layer (forward and backpropagation). According to [17] and [18], a
conventional deep neural network struggles to converge when the weights are initial-
ized using normal distributions with fixed standard deviations when the variance of
the weights obtained is not considered. This normal initialization outputs huge or
tiny activation values at the activation functions in every node, making them ex-
plode or vanish the gradient during backpropagation, i.e., the network goes unstable
with unreasonable weight updates (when exploding) or stalls at some small values
without updating the weights anymore (when vanishing). To tackle this problem,
there have been invented and crafted weight initialization strategies that diminish
these undesirables effects.

PointNet paper [32] does not specify a method for weight initialization by default.
We decided to experiment with Xavier weight initialization since it maintains the
variance at initializing the weights and it is one of the most used techniques in deep
learning [16]. However, we observed that the mAP did not surpass the band of
30% and the mAP achieved at IoU = 50% in [36] was at least 39%. We decided

75



then to use the Kaiming He weight initialization method [19] and the results were
outstanding, surpassing the band of 46% at IoU = 30%, and the band of 40% at
IoU = 50%. This is because the aforementioned method takes into account the ac-
tivation function used in PointNet which is ReLU, and Xavier initialization is more
suitable for sigmoid and tanh activation functions.

It is worth mentioning that the He initialization, along with the weight bias ini-
tialization from dataset seen in subsection 4.2.3 improved the speed of training and
made the network more robust and accurate. Moreover, the lack of one of these
strategies resulted in suboptimal values every time.

5.4.2 DBSCAN Settings

We improved in a band of 2% to 4% the results of [36] at mAP and a band of 6%
to 11% in F1 score in the same reference work. The improvement came thanks to
two strategies:

• We changed the e−region original formula showed in [36] by iterating at each
dynamic class our new formula described in subsection 4.2.6 and showed in
Equation (4.13). Thus, we could also avoid the range feature at each point
used for determining the minimum number of points per cluster, suggested in
[36].

• We decided to tune the filter showed in section 4.2.5 by using statistics in the
dataset. Recall that the filter drop static points using the radial velocity as the
threshold when a static point is predicted in PointNet++. We improved the
shape of the objects by determining the mean radial velocity of the static points
in order to drop a balanced number of static points and not all of them. This
strategy helps the DBSCAN algorithm to include certain misclassified points
as static by the network when in reality were dynamic class points. Thus, the
clustering algorithm can accept or reject these wrongly static classified points
into some cluster by looking to the radial velocity too.

76



T
a
bl
e
5
.2
:
R
es
u
lt
sc
o
re
s
fo
r
a
ll
m
et
h
od
s
o
n
th
e
te
st

se
t

M
e
th

o
d

IO
U
=
0.
3

IO
U
=
0
.5

A
P
p
ed

A
P
g
r
p

A
P
cy

c
A
P
ca

r
A
P
tr
k

m
A
P

F
1
,p

t
A
P
p
ed

A
P
g
r
p

A
P
cy

c
A
P
ca

r
A
P
tr
k

m
A
P

F
1
,p
t

P
o
in
tN

et
+
+
/D

B
S
C
A
N

26
.3
0

44
.4
1

68
.2
4

53
.2
9

40
.9
8

4
6
.6
4

6
6
.4
7

30
.4
4

35
.6
1

6
2.
2
7

46
.6
3

2
6.
1
7

4
0
.2
3

6
0
.7
0

Y
O
L
O
v
3/

G
ri
d
m
ap

p
in
g
s

51
.6
2

1
5.
32

42
.9
8

67
.3
6

58
.2
8

5
1
.6
2

5
0
.5
9

13
.3
79

37
.6
6

6
5.
9
3

71
.7
7

5
6.
9
4

4
9
.1
7

4
2
.8
3

P
oi
n
tN

et
+
+
/
D
B
S
C
A
N

3
29

.4
2

53
.0
6

56
.3
7

53
.1
5

26
.1
9

43
.6
4

54
.5
5

27
.4
7

4
7.
5
6

54
.8
5

4
9.
1
6

21
.1
0

4
0.
0
3

5
4.
3
7

Y
O
L
O
v
3/
G
ri
d
m
a
p
p
in
g
s3

2
8
.2
8

57
.5
1

6
4.
8
7

75
.5
4

62
.1
8

57
.6
7

53
.0
4

26
.9
6

5
4.
8
8

63
.6
8

6
7.
9
9

56
.3
1

5
3.
9
6

5
2.
8
6

1
IO

U
is

p
oi
n
t-
w
is
e,

m
A
P

an
d
F
1
ss
co
re

ar
e
b
ot
h
b
as
ed

on
it
.
S
ee

d
efi
n
it
io
n
in

2
.7
.1

2
F
O
V
:
fi
el
d
of

v
ie
w
,
R
-A

:
ra
n
ge
-a
zi
m
u
th
,
R
-D

:
ra
n
ge
-D

op
p
le
r,

N
u
m

s
e
q
:
n
u
m
b
er

o
f
se
q
u
en
ce
s

3
R
es
u
lt
fr
om

[8
]

77



Table 5.3: Number of points in a cluster of each class

Pedestrian PedGrp Cyclist Car Truck

max 75 213 117 295 680
min1 3 3 3 3 3
mean 16 30 28 38 97
std2 9 23 16 33 88

1 Minimum amount of points is 3 because in Fig3.7 all the
clusters without points have been removed

2 Standard deviation

Table 5.4: RCS of points in a cluster of each class

Pedestrian PedGrp Cyclist Car Truck

max 28.6 36.0 37.7 44.6 50.0
min -30.6 -30.6 -30.6 -30.6 -30.6
mean -8.4 -7.1 -10.3 -3.9 0.1
std2 6.8 6.7 7.2 11.3 10.5

1 Unit:dBsm
2 Standard deviation

78



6

Conclusion and Future Research

In this chapter, we will summarize all the work with a conclusion and give several
perspectives about the future improvement.

6.1 Conclusion

In this thesis, we performed an object detection task on BEV radar point cloud fo-
cusing on dynamic road users by reproducing two of the methods that achieved the
top results described in [8]. To this end, we examined two different approaches of
existing deep neural networks on a large-scale real-world dataset. The first approach
is an image-based object detector (YOLO v3) with grid mappings, where the point
cloud will be first transformed to grid maps and then sent to train the model. The
second approach is a semantic segmentation network (Poitnet++) combined with
a traditional clustering algorithm (DBSCAN), where each point is assigned seman-
tic class labels first and then grouped as instance clusters. We adapted the metric
for point clusters to compare two approaches, including IOU, mAP, and F1 score.
The reproduction of both approaches achieved a comparable result as in [8], among
which the image-based object detector outperformed the other one. Therefore, we
adopted the image-based object detector approach to investigate the effect of time
accumulation on APs of all the classes. We found that low AP of the pedestrian class
is the performance bottleneck, and accumulating a more prolonged period cannot
significantly improve it.

The second approach, PointNet++ and radar DBSCAN clustering, was developed
successfully with a few variants and with a little improvement, from the original work
[36], in the metrics of mAP and F1. We could adapt a deep neural network with a
clustering algorithm with success, which is also modular for other implementations
and robust.

79



6.2 Future Research

New public dataset

Unlike large image datasets for the detection task, e.g., COCO [26], and other radar
datasets mentioned in 3.1 , bounding boxes are not included as an annotation in [8]
and thus have to be generated by the preprocessing as described in 4.1.1. This lead
to several disadvantages for automotive applications: 1. The extracted bounding
box dimension is time-dependent, i.e., the shape of bounding boxes will elongate
if the accumulation time increases; 2. An exterior bounding box of a point cluster
cannot authentically represent the real-world contour of a target object because
the reflection points are denser on the side of the target near the ego-vehicle and
sparser on the far side, 3. It introduces extra steps to the pipeline, i.e., bounding
box extraction and box-cluster transform, thus increasing the computation burden.
In summary, the lack of bounding box annotation in RadarScenes is a significant
obstacle to applying image-based object detectors. We look forward to new public
datasets with such an annotation.

Time Fusion

In 3.4, we describe the procedure to extract a 500-ms snippet as a training sample.
The time length for frame accumulation, 500ms, is set empirically. Snippets are
extracted sequentially from all the sequences, which will lead to different densities
of target clusters in a snippet. A series of different values for frame accumulation
has been tested as an ablation study. Furthermore, we could realize self-adaptable
accumulation by the self-attention mechanism. [5] introduces the dynamic convo-
lution operation by adding input-dependent weights to each convolution kernel as
a lightweight self-attention operation. It boosted the representation power at little
computation cost and could easily replace the standard convolution layer. Most
importantly, the self-attention mechanism would allow the model to learn to assign
a higher weight to keyframes and a lower weight to the frame where a new ob-
ject emerges in the snippet. In other words, the model will learn a self-adaptable
accumulation.

Visual Layer Perceptron and Long Short-Term Memory in the second
approach (PointNet++/DBSCAN)

From [28], a way to enhance the accuracy of the semantic neural network Point-
Net++ is through visual-layer perceptrons. According to Liu, et al, one can modify
the output of pointnet and adapt an extra layer capable of Center Shift Vectors
and condense the points with the same predicted label closer to each other. This
has advantages when it comes to using DBSCAN later because the clusters would
be easier to generate with less errors. The work from [36] using Long Short-Term
Memory (LSTM) cells in the PointNet++ architecture (to produce a recurrent neu-
ral network) is successful and it could be implemented along with the visual-layer
perceptron work to enhance greatly the precision of the pipeline. The two of them
work over the same foundations of this project. This means that our software could
be used as a container for incorporating two new ideas mentioned.

80



Bibliography

[1] F. J. Abdu, Y. Zhang, M. Fu, Y. Li, and Z. Deng. Application of deep learning
on millimeter-wave radar signals: A review. Sensors, 21(6), 2021. ISSN 1424-
8220. doi: 10.3390/s21061951. URL https://www.mdpi.com/1424-8220/21/

6/1951.

[2] D. Barnes, M. Gadd, P. Murcutt, P. Newman, and I. Posner. The oxford radar
robotcar dataset: A radar extension to the oxford robotcar dataset. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages
6433–6438. IEEE, 2020.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,
Y. Pan, G. Baldan, and O. Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 11621–11631, 2020.

[4] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection
network for autonomous driving. CoRR, abs/1611.07759, 2016. URL http:

//arxiv.org/abs/1611.07759.

[5] Y. Chen, X. Dai, M. Liu, D. Chen, L. Yuan, and Z. Liu. Dynamic convo-
lution: Attention over convolution kernels. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 11030–11039,
2020.

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3213–3223, 2016.

[7] J. Dickmann, J. Lombacher, O. Schumann, N. Scheiner, S. Dehkordi, T. Giese,
and B. Duraisamy. Radar for Autonomous Driving – Paradigm Shift from
Mere Detection to Semantic Environment Understanding: Von der Assis-
tenz zum automatisierten Fahren 4. Internationale ATZ-Fachtagung Automa-
tisiertes Fahren, pages 1–17. 01 2019. ISBN 978-3-658-23750-9. doi: 10.1007/
978-3-658-23751-6 1.

[8] M. Dreher, E. Erçelik, T. Bänziger, and A. Knol. Radar-based 2d car detection
using deep neural networks. In 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), pages 1–8. IEEE, 2020.

81

https://www.mdpi.com/1424-8220/21/6/1951
https://www.mdpi.com/1424-8220/21/6/1951
http://arxiv.org/abs/1611.07759
http://arxiv.org/abs/1611.07759


[9] X. Du, M. H. A. Jr., S. Karaman, and D. Rus. A general pipeline for 3d
detection of vehicles. CoRR, abs/1803.00387, 2018. URL http://arxiv.org/

abs/1803.00387.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proc. of 2nd
International Conference on Knowledge Discovery and, pages 226–231, 1996.

[11] Estimation lemma. Estimation lemma — Wikipedia, the free encyclopedia,
2010. URL https://en.wikipedia.org/wiki/Radar.

[12] Estimation lemma. Estimation lemma — Wikipedia, the free encyclopedia,
2022. URL http://en.wikipedia.org/w/index.php?title=Estimation_

lemma&oldid=375747928. [Online; accessed 29-September-2012].

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the
kitti vision benchmark suite. In 2012 IEEE conference on computer vision and
pattern recognition, pages 3354–3361. IEEE, 2012.

[14] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[15] T. M. Giselsson, R. N. Jørgensen, P. K. Jensen, M. Dyrmann, and H. S. Midtiby.
A public image database for benchmark of plant seedling classification algo-
rithms. arXiv preprint arXiv:1711.05458, 2017.

[16] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Y. W. Teh and M. Titterington, editors, Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL
https://proceedings.mlr.press/v9/glorot10a.html.

[17] S. Goel. Medium kaiming he initialization. https://medium.com/

@shauryagoel/kaiming-he-initialization-a8d9ed0b5899. Accessed:
2019-07-14.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852,
2015. URL http://arxiv.org/abs/1502.01852.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[21] Y. Henri. Itu world radiocommunication conference (wrc-15) allocates spectrum
for future innovation. Air & Space L., 41:119, 2016.

[22] C. Iovescu and S. Rao. The fundamentals of millimeter wave sensors. Texas
Instruments, pages 1–8, 2017.

82

http://arxiv.org/abs/1803.00387
http://arxiv.org/abs/1803.00387
https://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/w/index.php?title=Estimation_lemma&oldid=375747928
http://en.wikipedia.org/w/index.php?title=Estimation_lemma&oldid=375747928
https://proceedings.mlr.press/v9/glorot10a.html
https://medium.com/@shauryagoel/kaiming-he-initialization-a8d9ed0b5899
https://medium.com/@shauryagoel/kaiming-he-initialization-a8d9ed0b5899
http://www.deeplearningbook.org
http://arxiv.org/abs/1502.01852


[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

[24] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars:
Fast encoders for object detection from point clouds. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 12689–
12697, 2019. doi: 10.1109/CVPR.2019.01298.

[25] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep continuous fusion for
multi-sensor 3d object detection. CoRR, abs/2012.10992, 2020. URL https:

//arxiv.org/abs/2012.10992.

[26] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[27] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2117–2125, 2017.

[28] J. Liu, W. Xiong, L. Bai, Y. Xia, and B. Zhu. Deep instance segmentation
with high-resolution automotive radar. CoRR, abs/2110.01775, 2021. URL
https://arxiv.org/abs/2110.01775.

[29] M. Noman, V. Stankovic, and A. Tawfik. Object detection techniques:
Overview and performance comparison. In 2019 IEEE International Sympo-
sium on Signal Processing and Information Technology (ISSPIT), pages 1–5,
2019. doi: 10.1109/ISSPIT47144.2019.9001879.

[30] A. Ouaknine, A. Newson, J. Rebut, F. Tupin, and P. Perez. Carrada dataset:
Camera and automotive radar with range-angle-doppler annotations. In 2020
25th International Conference on Pattern Recognition (ICPR), pages 5068–
5075. IEEE, 2021.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

[32] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660, 2017.

[33] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in neural information
processing systems, 30, 2017.

[34] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

83

http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2012.10992
https://arxiv.org/abs/2012.10992
https://arxiv.org/abs/2110.01775


[35] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[36] N. Scheiner, F. Kraus, N. Appenrodt, J. Dickmann, and B. Sick. Object de-
tection for automotive radar point clouds–a comparison. AI Perspectives, 3(1):
1–23, 2021.

[37] O. Schumann, M. Hahn, J. Dickmann, and C. Wöhler. Semantic segmentation
on radar point clouds. In 2018 21st International Conference on Information
Fusion (FUSION), pages 2179–2186, 2018. doi: 10.23919/ICIF.2018.8455344.

[38] O. Schumann, J. Lombacher, M. Hahn, C. Wöhler, and J. Dickmann. Scene un-
derstanding with automotive radar. IEEE Transactions on Intelligent Vehicles,
5(2):188–203, 2020. doi: 10.1109/TIV.2019.2955853.

[39] O. Schumann, M. Hahn, N. Scheiner, F. Weishaupt, J. F. Tilly, J. Dickmann,
and C. Wöhler. Radarscenes: A real-world radar point cloud data set for
automotive applications. In 2021 IEEE 24th International Conference on In-
formation Fusion (FUSION), pages 1–8. IEEE, 2021.

[40] O. Schumann, C. Wöhler, and K. Dietmayer. Machine Learning Applied to
Radar Data: Classification and Semantic Instance Segmentation of Moving
Road Users. Universitätsbibliothek Dortmund, 2021. URL https://books.

google.se/books?id=DI93zgEACAAJ.

[41] J. Tanha, Y. Abdi, N. Samadi, N. Razzaghi, and M. Asadpour. Boosting
methods for multi-class imbalanced data classification: an experimental review.
Journal of Big Data, 7(1):1–47, 2020.

[42] D. Tian, Y. Han, B. Wang, T. Guan, H. Gu, and W. Wei. Review of object
instance segmentation based on deep learning. Journal of Electronic Imaging,
31(4):1 – 18, 2021. doi: 10.1117/1.JEI.31.4.041205. URL https://doi.org/

10.1117/1.JEI.31.4.041205.

[43] K. Wang, R. Cheng, K. Yang, J. Bai, and N. Long. Fusion of millimeter wave
radar and rgb-depth sensors for assisted navigation of the visually impaired.
page 5, 10 2018. doi: 10.1117/12.2324626.

[44] Y. Wang, G. Wang, H.-M. Hsu, H. Liu, and J.-N. Hwang. Rethinking of radar’s
role: A camera-radar dataset and systematic annotator via coordinate align-
ment. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2815–2824, 2021.

[45] X. Wu, D. Sahoo, and S. C. Hoi. Recent advances in deep learning for object
detection. Neurocomputing, 396:39–64, 2020. ISSN 0925-2312. doi: https:
//doi.org/10.1016/j.neucom.2020.01.085. URL https://www.sciencedirect.

com/science/article/pii/S0925231220301430.

[46] D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai, and R. Yang. Iou loss for
2d/3d object detection. CoRR, abs/1908.03851, 2019. URL http://arxiv.

org/abs/1908.03851.

84

https://books.google.se/books?id=DI93zgEACAAJ
https://books.google.se/books?id=DI93zgEACAAJ
https://doi.org/10.1117/1.JEI.31.4.041205
https://doi.org/10.1117/1.JEI.31.4.041205
https://www.sciencedirect.com/science/article/pii/S0925231220301430
https://www.sciencedirect.com/science/article/pii/S0925231220301430
http://arxiv.org/abs/1908.03851
http://arxiv.org/abs/1908.03851


Master’s Theses in Mathematical Sciences 2022:E65
ISSN 1404-6342

LUTFMA-3488-2022
Mathematics

Centre for Mathematical Sciences
Lund University

Box 118, SE-221 00 Lund, Sweden
http://www.maths.lth.se/


	Introduction
	Research Problem
	Background
	Radar
	Frequency Modulated Continuous Wave (FMCW) radar
	Automotive Radar Properties
	Radar Point Clouds

	Outline of the Thesis

	Theory
	Multilayer perceptrons
	Convolutional Neural Networks (CNN)
	Training

	Classical Detection and Instance Segmentation
	Object Detection
	Sliding Window Detection
	Semantic and Instance Segmentation

	Clustering Analysis
	YOLO
	Deep Learning Segmentation and Clustering on Point Clouds
	PointNet
	PointNet++

	DBSCAN Clustering Algorithm
	Evaluation Metrics
	Point-wise IOU
	Average Precision per class (AP) and Mean Average Precision (mAP)
	Harmonic Mean of Precision and Recall (F1 score)


	Dataset
	A Comparison
	RadarScenes Introduction
	Sensor Settings
	Data Structure
	Annotations

	Dataset Analysis
	Snippet Extraction
	Ego-motion Compensation
	Train, Validation, Test Sets Split


	Methods
	Image Object Detection Network: YOLO with Grid Maps
	Bounding Box Extraction
	Grid Mapping
	Doppler Velocity Skew Function
	Blurry Filter
	Data Augmentation

	Instance Segmentation Approach: Semantic Segmentation Network (PointNet++) and Radar Clustering (DBSCAN)
	Radar Point Cloud Extraction
	Upsampling and Clipping of Dataset
	Point Cloud Preprocessing for Training the Semantic Network
	PointNet++ Semantic Segmentation Architecture
	Point Cloud Filtering for Clustering
	Class-Sensitive Filtering and Clustering


	Results and Discussion
	YOLO v3 Training and Evaluation
	Ablation Study

	Semantic Segmentation Network (PointNet++) Training and Evaluation
	Semantic Segmentation Network (PointNet++) Baseline Model
	Inference and Clustering

	Comparison of Two Approaches
	Discussion
	Weight Initialization
	DBSCAN Settings


	Conclusion and Future Research
	Conclusion
	Future Research


