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Abstract

This thesis covers the work of a numerical examination of the rotational properties of a two-

component Bose-Einstein condensate (BEC) utilizing the beyond mean-field extended Gross-

Pitaevskii equation for a specified set of parameters. These parameters are chosen to cancel

the strength of the mean-field interaction, which makes the system predominantly governed

by the next order beyond the mean-field Lee-Huang-Yang (LHY) term. This type of BEC,

referred to as an LHY-fluid, is what will be examined further in this work. The theoretical

part shows how this LHY-fluid is produced with the appropriate one and two-dimensional

models. These models are then utilized to quantitatively examine the rotational properties

of a two-dimensional LHY-fluid in harmonic confinement and an LHY-fluid confined on a

ring in one and two dimensions.
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1 Introduction

A Bose-einstein condensate (BEC) is a state of matter, typically formed when a dilute gas

of bosons reaches ultracold temperatures in the nK range (very close to absolute zero, which

is −273.15◦C or 0 K). In an ideal BEC created from a non-interacting bosonic gas, all the

bosons occupy the same quantum state, making them indistinguishable and behaving co-

herently. This comes from the property of the boson, which allows for multiple bosons to

occupy the same state (unlike fermions which are subject to the Pauli principle). The BEC

was first predicted in the 1920s by Bose and Einstein [1, 2]. It was not until 1995 that the

first BEC was experimentally observed [3]. This achievement was later awarded a Nobel

prize in physics in 2001.

It is always challenging to model many-body systems in physics due to the sheer number

of individual motions and interactions between all the constituents. This holds especially

true in the typical BEC, consisting of thousands to hundreds of thousands of particles. It

is, therefore, common to use approximation methods to model these systems. In the case of

the BEC, the system is assumed to be very dilute and weakly interacting. This enables a

mean-field (MF) description of the BEC, allowing a single common condensate wavefunction

to be used instead. The usual Schrödinger equation describes the propagation with the ad-

dition of a nonlinear MF term. The MF term is dependent on the mean scattering length,

which describes the interactions between the particles. This treatment of the BEC was first

introduced by Gross and Pitaevskii in the 1960s [4, 5], and the equation is thus called the

Gross-Pitaevskii equation (GPe).

A rotating BEC does display some exciting and non-intuitive phenomena, one of which is

its superfluid property. A superfluid is fluid with no internal resistance, i.e., no viscosity.

This means that after having induced a rotation in a BEC, it will (in the ideal case) keep

rotating indefinitely. The usual two primary ways of stirring a BEC are using magnetic fields

or rotating stirring potential (such as a laser beam). Superfluidity is also related to super-

conductivity, where, instead, it is an electrical current that flows without resistance. The

other fact is that the rotation is ”quantized”, meaning that it will only exist in certain ro-

tational quantum states. The rotation states are usually manifested as quantized vortices [6].

One should keep in mind that the GPe is an approximation of the BEC behavior. The next

order correction of this approximation is commonly known as the Lee-Huang-Yang (LHY)

correction, first calculated in 1957 by Lee, Huang and Yang [7]. The LHY correction is often

credited with including the effects of quantum fluctuations inside the BEC. This is because

it takes into account that all the collective modes are not entirely at rest (from Heisenberg’s

uncertainty principle), and instead undergo energy fluctuations, which are also referred to as
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quantum fluctuations [8]. One interesting property of the LHY-correction is that it depends

on the dimensionality of the system, unlike the MF-term.

The typical BEC containing a single species has repulsive short-range interactions and does

thus form a gas. This means that unless one uses an external trapping potential, these single-

species BEC are not stable and will expand over time. By using a two-species BEC, it is

possible to make it self-bound, effectively making it a liquid as proposed in 2015 by Petrov

[9]. This is possible by using inter-species and intra-species interactions with opposite signs.

This was later experimentally tested which indeed observed self-stabilized quantum droplets

[10, 11]. One should also note that the GPe cannot support droplet formation without in-

cluding higher-order corrections, such as the LHY term.

For a specific condition of the interaction parameters, it is possible to completely cancel the

MF interaction term in a two-component BEC, meaning that the condensate (apart from

the kinetic energy) is mainly governed by the LHY-interaction term [12]. Such a condensate

was successfully observed in 2021 [13]. This type of fluid is what is referred to as a LHY-fluid.

In this thesis, the rotational properties of such a LHY-fluid are investigated. This is done by

analysing the ground state solutions. The analysis is done numerically using a second-order

algorithm to solve the GPe under imaginary-time propagation. The algorithm used is the

Fast Fourier transform, which is both accurate and converges fast. The main motivation for

this thesis is to, for the first time look at the behaviour and properties of rotating LHY-fluid.

In the literature, the LHY-fluid has not been investigated much further beyond the general

theory and formation of it. As we will see later, the LHY-fluid does prove to have properties

which are unique, compared to other types of BEC.

The following chapters of this thesis will follow the topics of the introduction. This thesis

will be mainly concerned with the simulation of a pure LHY-fluid in two dimensions, but

will also look at the one-dimensional case for comparison. The second chapter will introduce

the main concepts of a BEC, including the LHY correction and rotational properties. The

third chapter introduces the theory behind the LHY-fluid. The fourth chapter explains the

method of imaginary time propagation for finding the ground states of the LHY-fluid, and

lastly, chapter five and six is where the results, discussion, and conclusions of this thesis are

presented.
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2 General Theory of Bose-Einstein Con-

densation (BEC)

2.1 Bose-Einstein condensation

Simply put, a BEC is a state of matter formed by a gas of bosons at very low temperatures

and densities. Two main principles allow a Bose gas to transition into this state of matter.

The first is that bosons do not obey the Pauli exclusion principle, meaning that there is no

restriction to the number of non-interacting bosons that can occupy the same quantum state

at any time. More and more bosons will start to occupy the lowest ground state by cooling a

Bose gas to temperatures close to zero. Typically, when a critical ratio of all the number of

bosons is in the ground state, the gas transitions into a BEC. Secondly, when neutral gases

(containing neutral atoms) are cooled, they tend to form liquids due to the van der Waals

forces. To be able to observe quantum effects, the liquid state has to be avoided, which

requires gases with very low densities, i.e., being extremely dilute. This is to keep the range

between the bosons much larger than the range of the attractive forces between them. Also,

the interparticle distance needs to be much larger than the thermal de Broglie wavelength

[14, 15].

Unlike fermions, a boson is a particle with an integer spin. Any two identical bosons are sym-

metric under particle exchange, while fermions are antisymmetric under particle exchange.

This is the characteristic trait that allows bosons to occupy the same quantum state, as we

will see. The wavefunction of two bosons, one in position x1 and the other in position x2 as

stated earlier are symmetric under position exchange, which can be expressed as

Ψ(x1, x2) = Ψ(x2, x1). (2.1)

Any two body wavefunction involving two bosons with states i, j, can be constructed as

Ψ(x1, x2) =
1√
2
[ψi(x1)ψj(x2) + ψj(x1)ψi(x2)]. (2.2)

Any system of N -bosons, each with their own wavefunction and assuming all are occupying

the same state ψi, their combined wavefunction can be constructed according to

Ψ(x1, ...xN) =
√
N

N∏
n=1

ψi(xn). (2.3)

In the case of fermions such a composite wavefunction with particles in the same state cannot

be formed and is thus unique for bosons. The mean expected occupation state ⟨ni⟩ for a

bosonic system in thermal equlibrium can be written as [16]
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⟨ni⟩ =
1

exp
(

ϵi−µ
kBT

)
− 1

(2.4)

where ϵi is the energy level of the state i, µ is the chemical potential, kB is the Boltzmann

constant and T is the temperature of the system. As T → 0, the mean expected occupation

state ⟨ni⟩ → ⟨n0⟩, which is the ground state of the system. For a BEC one can use a common

condensate wavefunction Ψ(r) to represent the whole system where all N -number of particles

are in the ground state ψ0,

Ψ(r) =
√
Nψ0(r). (2.5)

The normalization of the condensate can then be defined as

N =

∫ ∞

−∞
|Ψ(r⃗)|2dr⃗. (2.6)

Another useful quantity is the density of the condensate, which is defined as

n(r⃗) = |Ψ(r⃗)|2. (2.7)

2.2 The Gross-Pitaevskii equation (GPe)

For a system of interacting particles, deriving an exact solution becomes increasingly difficult

and almost impossible for a large particle number N . Instead of finding the exact solution,

approximations are due. One such approximation is the so-called MF approximation used in

the GPe.

To derive the GPe, it is assumed that the space between particles is greater than their

scattering length a, in the so-called dilute limit. We also need to assume that the system has

very low energy, i.e that all bosons occupy the ground state, occurring at zero temperature.

This allows for the replacement of the two body potential Vat(r− r′) with a pseudo-potential

contact interaction using the Dirac delta function V0δ(r−r′) [8]. This is because the distance
of the atomic potential becomes very small in comparison to the wavefunction of the bosons.

Since the pseudo potential has zero range and can thus be considered a constant, V0 is

replaced with the coupling constant g which is related to the three-dimensional scattering

constant a according to

g =
4πh̄2a

m
. (2.8)

The effective Hamiltonian for a bosonic system of N-particles, including the zero-range con-

tact interaction, can be written as

H =
N∑
i=1

(
− h̄2

2m

∂2

∂r⃗2i
+ V (r⃗i)

)
+ g

∑
i<j

δ(r⃗i − r⃗j) (2.9)
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where m is the mass of the particles and V (r⃗n) is an external confinement potential. The use

of the Dirac-delta function makes the whole calculation much simpler. The energy functional

of the system, using the condensate wavefunction Ψ becomes [15]

E[Ψ] =

∫
dr⃗

(
− h̄2

2m
|∇Ψ(r⃗)|2 + V (r⃗)|Ψ(r⃗)|2 + 1

2
g|Ψ(r⃗)|4

)
. (2.10)

The GPe can be derived using the variational approach by taking the derivative of the energy

with respect to the complex wavefunction [17],

ih̄
∂Ψ

∂t
=

dE

dΨ∗ . (2.11)

Inserting Eq. (2.10) into Eq. (2.11), the time dependent GPe becomes

ih̄
∂

∂t
Ψ(r⃗, t) =

(
− h̄2

2m
∇2 + V (r⃗, t) + g|Ψ(r⃗, t)|2

)
Ψ(r⃗, t). (2.12)

The GPe is a nonlinear Schrödinger equation where all interactions between particles are

treated according to the mean-field approximation. It is important to remember one of the

assumptions we made: that all particles occupy the ground state. In reality, interacting

condensates are constantly depleted, meaning there will always be particles within the con-

densate that does not occupy the ground state. If we want to account for small amounts of

depletion, then Bogoliubov theory can be used to derive a more accurate equation. In that

sense, the GPe can be seen as the lowest order approximation. The next order approximation,

otherwise known as the LHY-correction, is what will be discussed in section 2.4.

2.3 Two-component BEC

A two-component BEC contains two different types of bosonic species instead of one. When

describing such a system, the inter-species interaction between the two different species also

has to be considered. Each species is described with its own condensate wavefunction Ψi,

with i ∈ {1, 2}. Both species have their own mass mi, density ni, coupling constant gii
and particle number/normalization constant Ni such that Ni =

∫
|Ψi|2dr⃗ . The inter-species

coupling constant is symmetric, meaning that each species affects the other just as much

g12 = g21. The total energy of such a system is [12]

E[Ψ] =

∫
dr⃗

(∑
i

− h̄2

2mi

|∇Ψi|2 +
∑
i

Vini +
1

2

∑
ij

gijninj

)
(2.13)

where Vi is the external potential which is usually symmetric, such that V = V1 = V2. Using

the same method as in the previous section, by inserting the energy into Eq. (2.11), the GPe

can be obtained. The Gross-Pitaevskii equations for each species in a two-component BEC

become [18]
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i
∂

∂t
Ψ1 =

(
h̄2

2m1

∇2 + V + g12|Ψ2|2
)
|Ψ1|+ g11|Ψ1|2Ψ1

i
∂

∂t
Ψ2 =

(
h̄2

2m2

∇2 + V + g12|Ψ1|2
)
|Ψ2|+ g22|Ψ2|2Ψ2.

(2.14)

For a two-component BEC, the scattering length aij for the inter- and intra-species interaction

is related to the coupling constants gij according to the following relation

gij =
2πh̄2aij(mi +mj)

mimj

. (2.15)

2.4 The Lee-Huang-Yang-correction (LHY)

In the limit of weak interactions, it is often sufficient to use the regular GPe. In the other

case, when the interactions are stronger and in the pursuit of a better understanding of

the dynamics of a BEC, the LHY-correction is used. As previously mentioned, the LHY-

correction is the first order correction to the GPe, and is often credited to describe quantum

fluctuations within the condensate. This is because it takes into account the fact that at the

ground state, the condensate still undergoes zero-point energy fluctuations due to Heisen-

berg’s uncertainty principle [8]. The GPe including the LHY-correction is what is commonly

referred to as the extended GPe. For a two-component BEC, the Hamiltonian for such a

system is shown below in Eq. (2.16) [14, 19]. For simplicity, it is assumed that the mass of

the two bosonic species are equal (m = m1 = m2).

Ĥ =
∑
i,k

h̄2k2

2m
â†i,kâi,k +

1

2V
∑

i,k1,k2,q

giiâ
†
i,k1
â†i,k2+qâi,k1 âi,k2+q +

g12
V

∑
k1,k2,q

â†1,k1 â
†
2,k2+qâ1,k1+qâ2,k2 .

(2.16)

Here, V stands for the volume of the system and â, â† are the bosonic creation and annihilation

operators. The interaction potential gij is assumed to be constant for both inter-species and

intra-species interactions. The ground state of the system can be obtained by diagonalizing

the Hamiltonian, which can be done by using the standard Bogoliubov theory. Replacing

the creation and annihilation operators for the total number of atoms in each component

and doing the appropriate canonical transformations [19, 20], the energy density functional

E = E/V becomes [14]

E =
1

2

∑
ij

gijninj +
1

2

∑
±

∑
k

(E±(k)−
h̄2

m
k2 −mc2±), (2.17)

where the first term is the MF term and the second is the LHY term. For E±(k) and c
2
±,

E±(k) =

√
h̄2

2m2
c2±k

2 + h̄2k4/4 (2.18)
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c2± =
1

2m

[
g1n1 + g2n2 ±

√
(g1n1 − g2n2)2 + 4g212n1n2

]
(2.19)

where c± are the sound velocities, according to the Bogoliubov theory. To get the final energy

correction, Eq. (2.17) is integrated over momentum space for the number of dimensions of

the system. It is also worth mentioning that the MF term is not dependent on the number

of dimensions of the systems unlike the LHY term, which will be shown in section 3.

2.5 Droplet formation and the three dimen-

sional GPe including the LHY corrention

When the LHY-correction is taken into account, it becomes possible for the BEC to form a

self-bound liquid droplet. This is only possible if certain requirements are met [9]. For a typi-

cal one-component BEC gas, the condensate tends to disperse rapidly if there are no external

potentials containing it (see the left panel in Fig. 2.1). However, using a two-component BEC

which fulfills the requirements mentioned before, it is possible to create a local minimum that

enables a self-bound droplet to form (see the right panel in Fig. 2.1) [8].

The energy density of a single-component BEC in its ground state is [7]

E/V =
g

2
n2 +

128a3/2

15
n3/2, (2.20)

where the first term is the MF term and the second is the energy contribution from the LHY

correction. For a two-component system, the equation can be derived from Eq. (2.17) [19].

Assuming that the two-component system is symmetric, meaning that n1 = n2 = n, and

g1 = g2 = g. The energy density then becomes

ELHY

V
=

1

2
δgn2 +

256
√
π

15
(n|a12|)5/2, (2.21)

where δg = g12 + g. As can be seen, it is possible to have a negative MF term and a positive

LHY term by letting δg < 0. This is attained when the intra-species interactions g and the

inter-species interaction g12 have opposite signs, while in the case of the single-component

BEC, Eq. (2.20), both the MF and the LHY term has to be either positive or negative. For

most single-component BEC the interaction term is positive, meaning that it has repulsive

interactions.
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Figure 2.1: Energy vs density schematic. The blue dashed line is the energy contribution from the MF, the

orange dashed line is the energy contribution from the LHY energy and the green line is the total energy. Left

panel: Diagram for a typical single species BEC gas. A single species BEC is not stable and will eventually

disperse. Right panel: Diagram for a two-component BEC with a repulsive MF term and an attractive LHY-

correction term. The energy has a minimum for a certain density, which is created when certain conditions

are met. This allows for self-bound liquid BEC droplets to from.

2.6 Quantized currents

Two main phenomena enable quantized currents (i.e. circulation states) to exist. The first

is that the currents are persistent, which comes from the fact that BEC has superfluid prop-

erties and can thus remain in circulation states without experiencing any energy loss (ideal

case). Such phenomena have been observed before in superfluid helium, where the currents

lasted for a relatively long time [21, 22]. The other phenomenon is that these rotation states

can only exist for certain energy levels. This comes from the constraint that the phase must

be continuous, as will be shown later.

The dynamics of rotating BEC has been studied before [6, 23, 24, 25, 18, 26]. Generally, by

inducing more and more angular momentum into the system, vortices tend to form within

the condensate. It increases in number as the angular momentum increases, until a critical

angular momentum is reached. Then, depending on what parameters are used the BEC

tends to create one giant vortex or a large rotating ring (depending on how you look at it)

[26]. This is assuming that there is some trapping potential that prevents the BEC from

escaping. Vortices can also be induced in BEC droplets using the extended GPe, where

the self-stabilization of the condensate prevents it from dispersing [27]. The size of the vor-

tices is dependent on the interaction strength and the density/local density of the condensate.
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Proceeding with introducing the theory, first taking a look at the theory behind quantized

currents and then taking a look at the energy of such a system. Starting with the time-

dependent wavefunction Ψ(r, t), a typical condensate wavefunction can always be written as

[28, 18]

Ψ(r, t) =
√
n(r, t) exp

(
iS(r, t)

h̄

)
, (2.22)

where S is the phase. Deriving from the concepts of ordinary fluid mechanics and using

current density defined from quantum mechanics, one can define the superfluid velocity vs as

vs =
h̄

m
∇S. (2.23)

The fact that the velocity depends on the phase is the reason that the current becomes

quantized. The integral of the phase along a closed contour in space must be an integer

multiple of 2π. Where nw is an integer number called the winding number.

∆S =

∮
∇S · dl = 2πnw (2.24)

As one can see, since the phase S has to be continuous, any circulation around an axis must

therefore be quantized. This means that the velocity can only exist in specific quantized

circulation states,

vs =
2πh̄

m
nw. (2.25)

These quantized circulation states are obviously not the ground state of the system. If there

exist stable circulation states, then they must correspond to some metastable configuration

with a local energy minimum [29]. The dispersion relation offers insight into how such local

energy minima are formed. The energy of a 1D single-component rotating BEC in a ring

under the constraint of fixed angular momentum is shown in Fig. 2.2 [18]. This type of

behaviour has been demonstrated before in various BEC in 1D, 2D and 3D [18, 27, 29, 30].

The 1D dispersion relation can be understood by analysing the energy functional. Some of

the general features of the 1D dispersion relation was proved by Bloch [31]. The energy E(L),

as shown below, contains two parts, one envelope part which is proportional to L2 and one

periodic part e(L). The periodic part e(L) has the periodic property e(L+Nh̄) = e(L) and

is symmetric around L = 0 such that e(−L) = e(L).

E(L) =
L2

2Nm
+ e(L) (2.26)
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Figure 2.2: The figure shows the theoretical dispersion relation (using the regular GPe, Eq. (2.12) ) for a

1D one-component BEC in a ring for fixed values of angular momentum. The total energy is a combination of

one parabolic part proportional to L2 (dashed) and one periodic part (dotted). The number of local minima

that exists depends on the relative size of the two terms.

As can be seen in Fig. 2.2, it is the periodic part that is responsible for creating a local

minimum and is minimized for integer values of L/Nh̄. The periodic part appears due to the

internal interactions of the condensate [18]. However, a local minimum is not always a given

and will only appear when the periodic energy contribution is sufficiently large compared to

the quadratic part.
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3 Lee-Huang-Yang (LHY) Fluid

3.1 Formation of a LHY-fluid

The definition of a LHY-fluid is that it is a liquid BEC that is mainly governed by the

LHY-correction term. This requires that the MF term becomes much weaker than the LHY-

correction term or that it is completely canceled. This can be done using a two-component

BEC. The requirement needed to cancel the MF term is that g12 = −√
g11g22 = −g or

a12 = −√
a11a22 [12]. Why this is the case is easy to see, the MF energy density is 1

2

∑
ij gijninj

[from Eq. (2.17)] and for the symmetric case (n = n1 = n2 and g = g11 = g22) it becomes

g12n + gn = δgn. The strength of δg is proportional to the MF potential and using the re-

quirement this term becomes zero, canceling the MF term. What is left is a pure LHY-fluid,

which is indeed also what has been observed in a recent experiment (2021) [13].

It is also worth noting that for the non-symmetric case, apart from the requirement men-

tioned previously, it is also necessary to choose atom numbers such that N2/N1 =
√
g11/g22.

The condensate wave function takes the form Ψ2 = Ψ1(g11/g22)
1/4, which for g11 = g22 are

equivalent Ψ = Ψ2 = Ψ1 [12]. For the rest of this thesis, only the symmetric case will be

considered and therefore only the first requirement has to be accounted for, which in this case

becomes g12 = −g. Also, all proceeding equations will use natural units such that h̄ = m = 1.

Inserting these conditions in Eq. (2.19), the sound velocities become

c2± = gn± gn =⇒ c2+ = 2gn and c2− = 0. (3.1)

Inserting into Eq. (2.17), the energy density functional for a LHY-fluid becomes (for simplicity

c+ = c)

E =
1

2

∑
k

(√
k4

4
+ k2c2 − k2

2
− c2

)
(3.2)

which will be used to derive the 1D and 2D energies for the LHY-correction term in the next

two chapters.

3.2 LHY-fluid in one dimension

Proceeding from the last section, the 1D energy density from the LHY-correction is calculated

by taking the 1D integral over momentum space. The 1D energy density from the LHY-

correction becomes, using Eqs. (3.2)-(3.1) [32]
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ELHY1D =
−4

√
2

3π
(gn)3/2. (3.3)

In the presence of a trapping potential V , Eq. 3.3 can be utilized using the local density

approximation, which allows n→ |Ψ(n)|2. The total energy is then

E[Ψ] =

∫
dx

(
−1

2

∂2

∂x2
|Ψ(x)|2 + V (x)|Ψ(x)|2 − 4

√
2

6π
g3/2|Ψ(x)|3

)
. (3.4)

The extended GPe for a 1D LHY-fluid can then be derived using Eq. (2.11),

i
∂

∂t
Ψ(x, t) =

(
−1

2

∂2

∂x2
+ V (x)−

√
2

π
g3/2|Ψ(x, t)|

)
Ψ(x, t). (3.5)

As seen in the equation above, the 1D potential from the LHY-correction is negative and

is thus an attractive potential, meaning that the condensate tends to increase in density.

However, a collapse is avoided by the zero point kinetic energy, which can stabilize the

system. It is also assumed that the particle count does not exceed a critical number or

the condensate is not a uniform gas where quantum pressure is absent, in which case the

condensate is otherwise unstable [17]. The concept of quantum pressure is somewhat similar

to that of classical pressure. When applying the quantum mechanical description to particles

constrained in a region of space, the kinetic energy tends to increase as the volume decreases.

3.3 LHY-fluid in two dimensions

Similar to the 1D case, the 2D energy density from the LHY-correction is calculated by

taking the 2D integral over momentum space. In two dimensions, this integral is divergent.

To avoid this problem, a cutoff κ is introduced [14]. Using Eqs. (3.1)-(3.2), the energy density

becomes (see appendix for the derivation)

ELHY2D =
g2

2π
n2 ln (

2g
√
e

κ2
n). (3.6)

The coupling constant g is related to the two-dimensional scattering length a2D by

g =
4π

ln (ϵ/κ2)
, (3.7)

where ϵ = 4e−2γ/a22D, and γ is Euler’s constant. By introducing a new auxiliary energy

parameter ∆ it is possible to define a new coupling constant g̃ such that g̃ = 4π
ln (ϵ/∆)

. The

coupling constant g is related to g̃ according to

g = g̃ +
g̃2

4π
ln

(
κ2

∆

)
+O(g̃3). (3.8)

12



Substituting g for g̃ in Eq. 3.6, the new expression for the energy density becomes

ELHY2D =
g̃2

2π
n2 ln (

2g̃
√
e

∆
n), (3.9)

which is no longer dependent on the cutoff κ. Making sure that κ2/∆ is not exponentially

large, the two coupling constants g and g̃ are approximately equivalent g ≈ g̃, which allows

the two coupling constants to be used interchangeably [14, 29]. The energy can be calculated

by taking the integral over the 2D space, which becomes

E[Ψ] =

∫
d2r

[
−1

2
|∇Ψ(r)|2 + V |Ψ(r)|2 + g2

2π
|Ψ(r)|4 ln

(
2g
√
e

∆
|Ψ(r)|2

)]
. (3.10)

The extended Gpe for a 2D LHY-fluid can then by derived, similarly as in the last section

i
∂

∂t
Ψ =

[
−1

2
∇2 + V +

g2

π
|Ψ|2 ln

(
2ge

∆
|Ψ|2

)]
Ψ. (3.11)

Analyzing the shape of the 2D energy contribution from the LHY-correction, one can see

that it does form a local minimum, which allows for self-bound droplets to form. However,

this only occurs for low densities, at high densities the 2D LHY-fluid behaves like a regular

repulsive gas.

Density0

En
er

gy

1D

Density0

Local
min

En
er

gy

2D

Figure 3.1: Comparison between the 1D and 2D LHY energy contribution terms, from Eqs. (3.4)-(3.10).

Compared to the 1D LHY energy contribution, the 2D LHY energy contribution does from a local minimal

which allows for self-bound droplets to form. This is similar to the graph in Fig. 2.1 (right graph), but here

the 2D droplet is stabilized by the LHY-correction only. Also worth noting that, this minimum only occurs

for low densities, but for higher densities the 2D LHY term is positive (which is usually the case in potential

confinements with a high particle count).
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4 Numerical Solution of the GPe

4.1 Trapping confinement in a rotating frame

For the numerical work of this thesis, we will look at a BEC in four different types of con-

finements. For the two-dimensional case, we will use a harmonic trap and a ring confinement

consisting of a harmonic trap with a central Gaussian, see Fig. 4.1. In two dimensions, the

dimensionless form of the extended GPe for a LHY-fluid, Eq. (3.11), will be used. Adding

the trapping potential, the full equation for a LHY-fluid in a rotating frame with angular

frequency Ω becomes

i
∂

∂t
Ψ =

[
−1

2
∇2 +

1

2
(ω2

xx
2 + ω2

yy
2) + V0e

−(x2/µ2
x+y2/µ2

y) + |Ψ|2 ln (|Ψ|2)− ΩL

]
Ψ, (4.1)

For symmetrical traps, as will be used in section 5.1 and section 5.2, ω = ωx = ωy and

µ = µx = µy. The Gaussian trap strength V0 is chosen according to V0 = 0.2µ3/2, using µ

as a parameter. In the case of the elliptic ring confinement, ω = ωx ω/2 = ωy, µ = µx and

µ/2 = µy.

60 40 20 0 20 40 60
x

0

5

10

15

20

V

HO+Gaussian
HO

Figure 4.1: Two different confinement potentials. The dark blue line shows a harmonic potential while the

light blue is a harmonic potential with the addition of a central Gaussian potential, from Eq. (4.1).

In one dimension, a ring trap can effectively be made by having periodic boundary conditions

in the system. The dimensionless form of extended GPe for a 1D LHY-fluid, from Eq. (3.5)

is

i
∂

∂t
Ψ =

[
−1

2
∇2 − β|Ψ|

]
Ψ (4.2)
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where β =
√
2

π
g3/2 will be used as a parameter to modulate the strength of the LHY term. A

two-component dimensionless form of the regular GPe under symmetric conditions becomes,

using Eq. (2.14)

i
∂

∂t
Ψ =

[
−1

2
∇2 + α|Ψ|2

]
Ψ (4.3)

where α = 1
2
δg, will similarly be used as a parameter to modulate the strength of the MF

term.

4.2 Imaginary time propagation

When studying the dynamics of a quantum mechanical system, the wavefunction can be

iterated forward in time using real-time propagation. Real-time propagation can be expressed

using the standard time evolution operator,

Ψ(t) = exp
(
−itĤ

)
Ψ(0). (4.4)

But, if we want to find the ground state solution of a quantum mechanical system, the

imaginary time propagation is a great tool to use. In this method, the real-time t in the

real-time propagation is replaced with imaginary time τ , such that τ = it. Essentially, it

works by ”projecting out” the ground state of any quantum mechanical superposition. Why

this works can be easily seen when the wavefunction is expressed as a superposition of all

the eigenstates,

Ψ(t) =
∑
i

exp(−τEi)ciψi (4.5)

where ci are the coefficients and ψi is the eigenvector for each state. For increasing values

of τ , the larger Ei is, the faster the eigenstate decays (goes to zero). This means that for

large τ only the eigenstate with the lowest energy will remain, i.e. it converges to the ground

state. The Hamiltonian of our system, depending on the number of dimensions d is shown

in Eq. (4.6) below, which should correspond to Eq. (3.5) and Eq. (3.11) for a 1D and 2D

system respectively. Where Ti is the kinetic energy, Vi is the external potential and U is the

nonlinear term in the GPe,

Ĥ =
d∑
i

(Ti + Vi) + U = T + U. (4.6)

The wave function is then iterated forward in imaginary time via

|Ψ(τ +∆τ)⟩ = e∆τ(T+U) |Ψ(τ)⟩ . (4.7)
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Convergence of the imaginary time iteration can be assessed by monitoring the chemical

potential or the energy of the system. To solve the extended GPe for a 1D or 2D LHY-fluid,

the numerical method from the following paper referenced here [33] is used. It is essentially

an algorithm for iterating the imaginary time propagation using the fast Fourier transform

method.
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5 Results and Discussion

5.1 Quantized vortices
In our investigation of the rotational properties of a pure 2D LHY-fluid, we begin by looking

at one of the simplest cases, a BEC droplet inside a rotating harmonic trap, see Eq. (4.1) and

Fig. 4.1. Here we look at the ground states for different rotational frequencies, using imagi-

nary time propagation, as introduced in section 4.2 to find the ground states. What we find is

similar to what has been observed before in other cases using the GPe and extended GPe [29].

As the rotational frequency increases, vortices are induced inside the BEC. The number of

vortices in the rotational ground states grows as the rotational frequency increases. Fig. 5.1

shows the density distributions for different rotational ground states for up to seven vortices

and Fig. 5.2 shows the phases of the corresponding rotational ground states. As can be

seen in these figures, the vortices are positioned in a way such that they are symmetrically

distributed along the symmetry axis.
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Figure 5.1: Density distribution of the rotational ground states for different rotational frequencies Ω in a

harmonic trap (V0 = 0) with ω = 0.1 and N = 1000. For increasing values of the rotational frequency Ω, the

energy level of the rotational ground states are quantized according with the number of vortices inside the

droplet. The colorbar represents the relative density distribution from zero to one (one being the maximum

density for each individual case). The x and y axis shows the distance in each dimension using dimensionless

units.
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Figure 5.2: The corresponding phases of the rotational ground states from Fig. 5.1. The circulation of the

phase around a point indicates the center of a vortex.
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Figure 5.3: The rotational frequency Ω/ω is plotted against the angular momentum of the BEC. As can be

seen in the graph, the angular momentum of the states are separated into distinct ”lines” which corresponds

to the different rotational ground states, starting with zero vortices at Ω/ω = 0.
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Fig. 5.3 shows the rotational ground state angular momentum as a function of the rotational

frequency Ω/ω, for states shown in Fig. 5.1. As can be seen in the figure, the values are

segmented into several parts, corresponding to the number of vortices of the state. For states

that have more than one vortex, the symmetry is broken and the states can thus occupy a

range of possible angular momentum values, as seen in Fig. 5.3. In practice, this is possible

by letting the spacing between the vortices vary.

5.2 Rotating ring in 2D
In this section we look at a 2D LHY-fluid, confined in a ring shape potential consisting of a

harmonic and Gaussian potential, see Fig. 4.1. This creates a trap that gives the condensate

a ring shape as seen in Fig. 5.4. For certain thicknesses and parameters, it is possible to in-

duce non-central vortices along the ring, but in this section, we are only interested in the case

where the ring has unitary flow i.e. flows in a single direction with respect to the central axis

(similar to the 1D case), which requires that the ring is sufficiently thin. The confinement

potential is therefore chosen such that it is no longer possible to induce non-central vortices.

Similar to the case in the previous section (section 5.1), when the rotational frequency in-

creases, the condensate orders itself into distinct rotational ground states corresponding to

the number of circulations of the phase, which can be seen in Fig. 5.5. Due to the symmetry

being conserved for all rotational states, the angular momentum appears in these fixed inte-

ger values of angular momentum. This is why in Fig. 5.6 we see these straight lines which

correspond to the different rotational states.
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Figure 5.4: Left: Density distribution of the ground state of the LHY-fluid inside a ring trap constructed

by a harmonic oscillator trap with a central gaussian function, see Eq. (4.1), N = 1000, µ = 20. Right: Cross

section of the ring density distribution at y = 0.
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Figure 5.5: Phases of the rotational ground states for different rotational frequencies Ω, from the setup

shown in Fig. 5.4. As can be seen in this figure, the rotational states are quantized according to the number

of phase circulations. The phases are only calculated in the proximity of the density distributions, hence the

ring shape of the phases.
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Figure 5.6: Similar plot as in Fig. 5.3. The rotational frequency Ω/ω is plotted against the angular

momentum of the ring shaped condensate. As can be seen in the graph, the angular momentum has fixed

values and is quantized according with the number of circulations, as shown in Fig. 5.5.
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Taking a look at the energy of the ring-shaped LHY-fluid as a function of angular momentum,

we end up with the graph shown in Fig. 5.7. This graph resembles the one shown in section

2.6, and can clearly be seen to consist of one periodic part and one parabolic part propor-

tional to L2. What is interesting about this is that this shows that even after the rotation

has been induced, the currents will keep persisting in their given metastable position. This

is different from the case in section 5.1, where the rotational states for the droplet are only

stable while the rotation is still active. Plotting the same type of relationship for the droplet

would in fact reveal no metastable points [29, 27]. Fig. 5.8 shows the specific solutions at

different values of angular momentum from the graph in Fig. 5.7. The gap in density in

Fig. 5.8 shows the entry of a vortex into the ring.

When we instead take a look at the same ring confinement but with a different particle count

N = 20, the behavior of the LHY-fluid changes completely. Instead of a homogeneous ring,

a (bright) soliton-like density distribution is formed which circulates inside the ring confine-

ment, see Fig. 5.9. This is what we would expect, recalling from section 3.3 (see Fig. 3.1),

that for low densities the 2D LHY-fluid interaction term becomes negative (attractive). Due

to this new shape, the metastable points which existed for the homogeneous ring have dis-

appeared. This is as expected because the density distribution is now localized in a small

region in space and does not have the same constriction of the phase as the homogeneous

ring does.
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Figure 5.7: Ground state energy in the laboratory frame as a function of the angular momentum. The

same system is used as shown in Fig. 5.4. The graph is made up of two parts, one periodic and one parabolic,

proportional to L2. This forms multiple local minima which can support persistent current, even if the

rotation is turned off. The shape of the LHY-fluid is compared to the regular GPe solution for a two-

component system where the only nonlinear term is the MF term.

21



30

0

30

y

L/N = 0.6 L/N = 0.8 L/N = 1.0 L/N = 1.2 L/N = 1.4

30 0 30
x

30

0

30

y

30 0 30
x

30 0 30
x

30 0 30
x

30 0 30
x

Figure 5.8: Density distribution and the corresponding phase for the ground state solutions at different

angular momentum from Fig. 5.7. For solutions between the integer number of angular momentum, a tiny

vortex is created to carry the excess angular momentum and can be seen ”entering” the ring when approaching

an integer number of angular momentum.
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Figure 5.9: Left: LHY-fluid with N = 20, inside the same ring confinement as in Fig. 5.4 where the white

dotted lines show the contour of the ring shaped LHY-fluid from the same figure. As can bee seen, the LHY-

fluid at low densities forms a bright soliton-like density distribution. Right: Energy vs angular momentum.

The graph forms a simple parabolic curve which, compared to the case shown in Fig. 5.7, has no periodic

part and does thus not form any metastable minima.
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5.3 Rotating ring in 1D

The next step is to compare our findings in 2D with the 1D case. Using Eqs. (4.2)-(4.3)

(with α = 5 and β = 5), we look at the energy for specific values of the angular momentum

for a periodic system. In this case, we will look at both the effects of the MF term and the

LHY term. Fig. 5.10 shows the energy as a function of the angular momentum for the two

different models. In the MF case, using Eq. (4.3), the graph looks like the one in Fig. 5.7

and similarly allows for metastable persistent current to exist. However, for the LHY case,

Eq. (4.2), no local minima are present, except at L/N = 0.

The reason for this difference can be seen in Fig. 5.11, which shows the solutions for different

values of angular momentum. For the pure MF case, for integer values of angular momentum

L/N the density of the solution is homogeneous. For angular momentum values which are not

equal to an integer, the solutions form a dip with a local minimum that changes depending

on the angular momentum. At a first glance this might be mistaken for a dark soliton but

what we actually see is the sign of a vortex entering the ring, similarly as in Fig. 5.8. While

for the pure LHY case, the negative (attractive) LHY term makes the condensate form a

localized density distribution.
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Figure 5.10: Ground state energy in the laboratory frame as a function of the angular momentum for a 1D

BEC. The system are modelled with Eqs. (4.2)-(4.3) and the parameters used are N = 20, α = 5 and β = 5.

As can be seen, the MF solution, Eq. (4.3), forms these metastable points, as seen in Fig. 5.7 earlier, while

the same does not hold true for the LHY solution, Eq. (4.2).
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Figure 5.11: Two types of solutions from the plot shown in Fig. 5.10. D is the total length of the x-axis.

Left: MF case. Between integer angular momentum states, for example 0 < L/N < 1, the solutions form a

”dip” which has its lowest minimum at half-integer angular momentum values, in this case L/N = 0.5. The

cause of the dip is actually a vortex entering the ring, similar to the case in Fig. 5.8. Right: LHY case, the

solutions have all identical shapes and forms a soliton-like density distributions.

5.4 Symmetry breaking in an elliptic Ring
In practice, it may be experimentally impossible to create a perfect ring, so by examining

how a elliptical ring behaves, we are actually studying a more realistic case of the ring con-

finement. In the elliptic case, using the elliptic ring confinement from Eq. (4.1), it is only

the ground state without any rotation that is evenly uniform along the elliptic ring trap. As

the rotation frequency Ω is increased, the density tends to distribute itself more on the outer

edges of the trap, see Fig. 5.12. This is reminiscent of the classical way matter tends to dis-

tribute itself in rotating systems. By changing the trap from a circular ring to an elliptic ring,

the symmetry has been broken which enables the condensate to distribute itself non-evenly

along the trap for a nonzero rotation frequency, which effectively makes the states lose their

degeneracy, as can be seen in Fig. 5.13.
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Figure 5.12: Figure shows two solutions of the rotational ground state densities, which demonstrate the

shape deviation for increasing rotational frequency Ω (right) from the homogeneous density distribution (left)

as consequence of the elliptical shape. Left: Ground state density at no rotation. Right: Rotational ground

state density at a high rotational frequency.
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Figure 5.13: The rotational frequency Ω is plotted against the angular momentum of the ellipse shaped

condensate. As can be seen the graphs, compared to Fig. 5.6, the angular momentum states are no longer

straight and parallel to the x-axis.
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6 Conclusions and Outlook

To conclude this thesis, we have introduced the main theoretical framework to create and

model an LHY-dominated fluid, i.e. a two-component BEC modeled with the extended GPe

using a specific set of parameters such that the MF term gets canceled and only the non-

linear LHY-correction term remains. The remaining part of this work has been dedicated

to numerically (using imaginary time propagation) investigating the rotational properties of

the 2D and 1D LHY-fluid. What we find displays some new phenomena which occurs for a

LHY-fluid in 1D and 2D, which is different form regular BEC.

Specifically, we have looked at the rotational behavior of an LHY-fluid in a droplet and on

a ring. In the droplet (confined in a harmonic trap), as the rotational frequency increases,

the angular momentum manifests as quantized states with a certain integer number of vor-

tices. This is as expected and similar to all the other cases using one or two-component BEC

with the regular or extended GPe. In the ring case, the angular momentum is manifested

as quantized circulation around the ring (or multiple central vortices), which is also similar

to the 1D case. It is also clear from these examples that the angular momentum states are

highly dependent on the shape of the BEC and will lose their degeneracy if the symmetry is

broken.

Perhaps the most interesting case is the energy vs. angular momentum relation of the 1D and

2D LHY-fluid in a ring. Firstly, when comparing the 2D LHY-fluid with the 1D MF BEC,

we find points of metastable persistent current. In both cases, the nonlinear term is positive

(repulsive). If we look at the 1D LHY-fluid, there are no longer any metastable points and

does instead form a simple parabolic shape because the condensate instead forms a soliton-

like density distribution due to the nonlinear term being negative (attractive). Secondly, for

both the 1D case, and low density 2D case for a LHY-fluid in a ring, a soliton-like structure

is formed which does not form any metastable points and is very different from the regular

MF case.

There are two potentially exciting topics to investigate further. The first one is to investigate

the transition in a ring system between 1D and 2D; how does the ring lose its metastable

minima? How thin or thick does the ring need to be to still be able to support persistent

metastable current? What does the LHY term look like in quasi-1D? The second one is

since we know that it is possible to have self-bound LHY droplets in 2D [27], is it possible

to find similar metastable currents after inducing a vortex in a weak ring-shaped potential

confinement? After which the confinement potential reduces to zero after a specific time

(both the trap confinement and the rotational frequency)?
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Appendix: Derivation of the energy den-

sity for the 2D LHY-fluid

Starting from Eq. (3.2), the 2D energy contribution is derived as follows. Since the integral

is divergent we will instead introduce a cutoff κ when integrating over the momentum space.

E =
1

2

1

(2π)2

∫ κ

−κ

dk

∫ 2π

0

dθ

√ h̄2k4

4m2
+ h̄2k2c2 − h̄2k2

2m
−mc2

 k. (6.1)

To make the calculation less messy, we will use natural units m = h̄ = 1. Simplifying the

above equation, it then becomes

E =
1

4π

∫ κ

−κ

dk

(√
k6

4
+ k4c2 − k3

2
− kc2

)
. (6.2)

For κ, c > 0

E =
1

4π

[
√
4c2 + κ2(22 + κ3)− 8c4 ln

(
κ

2c
+

√
κ2

4c2
+ 1

)]
. (6.3)

Assuming κ >> c

E =
1

π

[
κ4

4
− 2c4 ln

(κ
c

)]
=

1

π

[
κ4

4
+ c4 ln

(
c2

κ2

)]
. (6.4)

When N → 0 the energy becomes

E =
κ4

4π
. (6.5)

We will consider the energy at N = 0 as the ground state energy of the system and thus

Eq. (6.5) can safely be ignored, so the final energy density for the 2D condensate becomes

ELHY2D =
1

π
c4 ln

(
c2

κ2

)
. (6.6)

Note that this expression is not exactly the same as the one Petrov used [14], but exhibits

the dependencies on c in the same manner.
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