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Abstract

Blood analysis is an integral part of diagnostic medicine and used in most medical fields.
The concentrations of red blood cells and platelets, and ratio between these, are used for

diagnosing several diseases. CellaVision develops machines and software for
automatically capturing images of blood sample smears and detecting its cellular

contents. The company currently has separate algorithms for detecting red blood cells
and platelets. The aim of this master’s thesis is to develop an object detection model
that simultaneously detects these blood cell types, with su�ciently high accuracy and

speed for use on CellaVision systems.

The object detection model YOLOv5 was selected to develop the detector. Several
model parameters, hyper parameters and improvement techniques were evaluated, and
the ones maximising the performance were selected. Image augmentations proved to be

the most important improvement technique added during development in terms of
detection performance. Pseudo labelling was successfully used for creating a large

training data set. The results obtained show that it is possible to combine red blood cell
and platelet detections in a single object detector with higher speed than when using
separate algorithms. Comparing performance with the current individual algorithms,
platelet detection was almost as good and red blood cell counting significantly better

when using the detector developed during this thesis.
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1 Introduction

Blood analysis plays a central role in modern medicine. Samples of blood are taken across
most medical fields and used to detect numerous deficiencies and diseases. One of the
more common uses of blood samples is taking a drop of peripheral blood and smearing it
on a glass microscope slide, with the aim of part of the smear being a single layer of cells.
CellaVision has developed hardware that automatically take high-resolution pictures of
blood smears, in many cases replacing the need for manual microscopes. In addition to
hardware, CellaVision develops automation software for locating blood cells and abnormal-
ities. This means significantly faster analyses compared to manual microscopy methods
and a more standardised method.

There are three main types of blood cells: red blood cells, white blood cells and platelets.
Their occurrence and morphology in blood smears may indicate diseases. In this project
we primarily look at the occurrence of red blood cells and platelets but also touch upon
their morphology. The ratio between red blood cells and platelets is normally around 20:1
and deviations from this may be an indication of illness. The size of platelets can be a
further indicator, which was considered during the project.

A low execution time on the CellaVision hardware’s CPUs is paramount when developing
new detection methods. CellaVision currently use separate algorithms for counting the
number of red blood cells and platelets in blood smears. Red blood cells are detected using
a segmentation algorithm and platelets are detected using an object detection network.
For the sake of speed and simplicity, it is of interest to combine the detections. It is also of
interest to see if an object detection algorithm is superior to the segmentation algorithm
used for red blood cell counting.

For this task we studied and applied a sub-class of artificial neural networks, called object
detectors. Object detectors are algorithms which both detect objects in images and classify
them. There are a variety of approaches which each have their individual strengths and
weaknesses. After studying a few of them a method called YOLOv5 was chosen. It
combines very high detection speed with accuracy amongst the state-of-the-art.

1.1 Aim and Limitations

The aim of this master’s thesis is to develop an object detector that simultaneously detects
and classifies red blood cells and platelets, with an execution time lower than what is
today possible with CellaVision’s red blood cell and platelet detection algorithms. Due
to this aim as well as the limited project duration, only the YOLOv5 algorithm has been
evaluated.
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2 Background

2.1 Blood Cell Analysis

Blood cell analyses are most commonly done using cell counters or microscopy. Automated
cell counters force the blood sample through a tube and use electrical or optical impedance
to count how many of each cell type goes through the tube based on the size of them.
Microscopy on the other hand can be done either manually where a person counts all the
di↵erent cell types based on their appearance, or automatically where this is done with
image analysis and object detection.

2.1.1 Peripheral Blood

Human blood consists of two components: plasma and blood cells. Plasma makes up
approximately 60% of the blood volume. It mainly consists of water, but also carries
important particles such as proteins, sugars and fats. Blood cells are primarily created in
the bone marrow as stem cells, and then mature into erythrocytes (red blood cells, RBCs),
leukocytes (white blood cells, WBCs) or thrombocytes (platelets, PLTs), see [1]. Their
appearance can be seen in Figure 2.1.

Figure 2.1: Image of a blood sample containing RBCs, a WBC and PLTs. The image was
captured with CellaVision’s systems.

Erythrocytes
Erythrocytes are the most common blood cells, with the main function of transporting
oxygen to all parts of the body. They also carry carbon dioxide and other waste products
out of the body. When red blood cells are formed in the bone marrow, they have a nucleus
and do not contain the oxygen-carrying protein haemoglobin. During maturation the cells
lose their nucleus and haemoglobin appears in the cell. A healthy adult person should not
have nucleated erythrocytes in their blood stream, see [2].
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According to [3], normal RBCs have the shape of a biconcave disk with a diameter of
about 7-8µm. Deviations from the normal appearance may indicate medical conditions or
diseases. Abnormal RBCs can vary in size, colour and shape and can contain inclusions
and parasites. Examples of abnormal RBCs are shown in Figure 2.2.

(a) Pappenheimer in-
clusions

(b) Acanthocyte (c) Malaria parasites (d) Sickle cell

Figure 2.2: Examples of RBC abnormalities, classified by a morphology expert at CellaV-
ision.

Leukocytes
White blood cells are, unlike red blood cells, nucleated even in the blood stream. They
appear in various shapes and sizes and are specialised for di↵erent tasks. They play a big
role in both the body’s immune defence mechanisms and reparation. As they contain a
nucleus and are able to produce RNA they can synthesise proteins, see [4].

Thrombocytes
Platelets are the smallest blood cells in humans. They do not carry a nucleus and are very
important in the prevention and control of bleeding. When the surface of a blood vessel is
injured, the platelets immediately attach to the injured site and to each other forming a
mesh that stops the bleeding. The platelets also contribute with substances important for
normal coagulation, as well as for reduction and retraction of already formed blood clots,
see [5]. It is important to know if there is an abnormal number of thrombocytes present
in the blood to be able to give patients the right treatment.

The medical term for a decreased number of thrombocytes is thrombocytopenia. This con-
dition impairs the body’s ability to form blood clots, therefore prolonged bleeding from
small wounds is likely to occur. When the platelet count is very low, spontaneous internal
bleeding could start, such as a stroke. Thrombocytopenia can also indicate a more serious
condition such as cancer or a severe infection.

An increased number of platelets is called thrombocytosis. It can happen because of over-
production in the bone marrow or due to an ongoing condition or disease such as anemia,
inflammation, infection or cancer. Thrombocytosis can lead to blood clots in arms or legs,
and this in turn can lead to a heart attack or stroke, see [6], [7]. According to [8], a normal
RBC:PLT ratio is around 20:1.

In addition to the number of platelets, the size of them can also be of importance. Large
platelets are called macrothrombocytes and have a diameter of ca 4-7µm. Platelets over
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ca 7µm are called giant platelets. In automated cell counters that only classify cells based
on size, giant platelets can sometimes be classified as RBCs and a high presence of these
may cause the platelet count to be incorrectly low, see [9].

When calculating the PLT concentration at CellaVision, the number of RBCs and PLTs
in the image as well as the RBC concentration (million cells per microliter blood) from
the cell counter are needed. The concentration of PLTs is then calculated using Equa-
tion (2.1), where RBCCellcounter is the concentration received from the cell counter, and
#RBC and #PLT the received numbers of cells from the CellaVision application.

PLTconcentration = RBCCellcounter ⇤
#PLT

#RBC
(2.1)

2.1.2 Blood Smear Preparation

There are several techniques for making blood smears, both regarding the smearing and
the staining. The applications that CellaVision o↵er can handle both manually and auto-
matically made smears, and three stains: May Grünwald Giemsa (MGG), Wright Giemsa
(WG) and Wright (W), see [10]. These three are all Romanowsky stains and are commonly
used in studies within haematology and for bone marrow samples, see [11]. Staining is
used to be able to di↵erentiate cells in microscopy. It could also be used to highlight
and find malaria or other parasites. These stains are all natural and consist of oxidized
methylene blue (azure) dyes and Eosin Y. The azure and Eosin react with di↵erent cellular
components and the idea of the stain is to be able to di↵erentiate the components more
easily through the formation of varying hues. Which stain is used can vary between labs
and depending on what is being examined. The di↵erent stains also create a variety in
colour and intensity, as can be seen in Figure 2.3.

(a) MGG (b) Wright Giemsa (c) Wright

Figure 2.3: Three di↵erent stains.

In addition to using di↵erent stains, di↵erent labs may also use varying protocols for the
staining procedure. The concentration of the dyes and the time each slide is dyed can
vary. This may result in even more variety between the images. An example of this is
shown in Figure 2.4 where the same stain results in di↵erent colours for the same blood
cell types.
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(a) (b) (c)

Figure 2.4: Three blood smear slides dyed with Wright Giemsa, but with varying appear-
ances.

2.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is a special type of machine learning algorithm in-
spired by the human brain’s network of neurons. Di↵erent parts of the brain are responsible
for recognising and making decisions about di↵erent types of information, which is imi-
tated in ANNs by di↵erent nodes and layers. There are three types of layers in an ANN:
the input layer where the data enters the system, the hidden layer(s) where the data is
processed, and the output layer where the system makes a decision on what to do based
on the information fed through from the hidden layer(s).

An ANN consisting of multiple hidden layers that process data and feed it forward through
the network can also be referred to as a Deep Neural Network. Deep systems are self-
teaching where the system learns as it goes by filtering the information through the mul-
tiple layers, similarly to how the human brain processes information, see [12]. The archi-
tecture of a neuron in a neural network is shown in Figure 2.5, with the corresponding
Equation (2.2).

Figure 2.5: Illustration of a neuron in an Artificial Neural Network [13].

y = f(
nX

i=1

xiwi + b) (2.2)
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2.2.1 Weights and Biases

The large circle in Figure 2.5 represents a node in an ANN that has a threshold. The
negative value of the threshold is called the bias. Every node can have connections to
several nodes in both the previous and the next layer. Each incoming connection is
assigned a weight from the receiving node. While active, the node receives a di↵erent
data item from each of its connections, and multiplies it with its weight, see [14]. All
the resulting products are then summed together with the bias and fed into an activation
function. In the beginning of the training phase, the weights and biases are set to random
values. During training these values are adjusted until the network yields the desired
output, see [15].

2.2.2 Activation Functions

Activation functions are applied to determine the output from a neural network and to
decide whether information should be passed to the next layer or not. They map the
value of a neuron between for example 0 and 1 or -1 and 1, depending on the activation
function applied. These functions can basically be divided into two subgroups: linear
and non-linear functions. The linear function is not widely used, since it is simply a line
corresponding to the equation f(x) = cx. The most commonly used non-linear activation
functions are sigmoid, tanh, ReLu and leaky ReLu. Visualisations and the correspond-
ing equations for each of these are shown in Figure 2.6. Two important terms used for
non-linear activation functions are di↵erentiable and monotonic, see [16]. A di↵erentiable
function has a derivative at any point, and does not include any break, angle or cusp.
This enables back propagation of the error in the model to correctly adjust the weights.
The activation function should be di↵erentiable because we want to calculate the change
in error with respect to given weights, see [17]. A monotonic function is a function which
is either entirely non-increasing or non-decreasing. If this is not the case, a change in the
weight of the neuron can cause the neuron to have less influence on the reduction of the
error, see [18].

Sigmoid Function
The sigmoid function maps the neuron value in the range [0, 1], and is therefore widely
used when the probability of an output is being predicted. The function is both di↵er-
entiable and monotonic. A function that is very similar to the sigmoid function is the
softmax function, which is a more generalised logistic function that is used for multi-class
problems. The softmax function assigns each class a probability between 0 and 1, where
all probabilities sum up to 1.

ReLu and Leaky ReLu Function
The ReLu function maps the output to the range [0,1] and is a monotonic function.
If the input value is negative it will be mapped to zero, and otherwise be equal to the
input value. The problem with all negative values being directly mapped to zero is that it
decreases the ability for the model to learn from the data properly. Mapping all negative
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values to zero would result in them being considered as exactly the same. An attempt to
address this problem resulted in the leaky ReLu, which introduces ✏ in the equation in
Figure 2.6 that allows slightly negative values. Both the leaky and randomised ReLu are
monotonic functions, see [16].

Tanh Function
The tanh function maps the output to the range [�1, 1] and is most commonly used for
binary classification. The advantage of the tanh function is that negative values can be
mapped as strongly negative, while zero inputs can be mapped as very close to zero. The
gradient is strong, meaning the function is both di↵erentiable and monotonic.

Figure 2.6: Plots of the activation functions described above with their corresponding
equations [19].

2.2.3 Loss Functions and Optimisers

In order for an ANN to learn from data there needs to be some type of guidance for how
the weights should be updated between training epochs. This guidance comes from what
is called a loss function (also called cost function). The goal of the loss function is to
quantify the error between the predictions and the ground truth, see [20]. What this error
should be depends on the task of the network. For example, it does not make sense to
describe the error of a bounding box not being placed correctly in an image in the same
way as describing the error of the predicted probability of a class. It is therefore the re-
sponsibility of the developer to choose an appropriate loss function for their specific task.
The loss functions used in our networks are more elaborately described in section 2.4.4.

Having a loss function is not enough for an ANN to learn during training. There has to
be some way of minimising the prediction errors based on the loss function. This problem
is solved with a so-called optimiser. Optimisers are mathematical functions that calculate
how the weights and biases should change during training in order to minimise the loss.
The simplest yet most commonly used is gradient descent and variations of it, such as
stochastic gradient descent (SGD). Gradient descent calculates the negative gradient of
the loss function through its first order derivative and guides the network towards the
minimal loss between iterations of weight updates, see [21] This is illustrated in Figure 2.7
where the dots are training iterations. A more modern algorithm, also widely used, is the
Adam optimiser. It is based on gradient descent but adds complexity in the form of two
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parameters which, based on the first and second moments of the gradients, control how
each individual weight in the network is updated during training, see [22].

Figure 2.7: An illustration of gradient descent where the weights are adjusted in the
direction of the negative gradient between iterations. The left image shows a small learning
rate and the right image a large learning rate. Adapted from [23].

2.2.4 Forward and Backpropagation

The learning phase of a neural network is based on forward propagation and backpropa-
gation. Forward propagation pertains the stage where information if being fed from the
input layer to the output layer. The weighted sum from the previous nodes is calculated
together with the bias, stored and passed to the activation function, see Section 2.2.2, see
[24]. The predictions resulting from the forward propagation together with a loss function
result in an error. This error is propagated backwards through the layers and the gradient
is computed. Then the optimiser, further explained in Section 2.2.3, uses this gradient
to perform learning. Every forward propagation is followed by a backpropagation which
means that the network calculates a new error and adjusts its weights between iterations,
ultimately minimising the loss, see [25].

2.2.5 Data Annotation

Data annotation is the process where data is labelled in for example text, image or video
format. In supervised training algorithms this is required for giving the model correct
and precise information. There are several types of annotations, but in this thesis two-
dimensional bounding boxes are used. [26]

2.2.6 Learning Methods

Depending on the availability of labelled data, there are di↵erent methods for the network
to learn from it. The methods relevant to this thesis can be divided into three categories:
supervised, unsupervised and semi-supervised learning.

Supervised Learning
Supervised learning means using a pre-labelled data set to train a network to predict or
classify the outcomes, see [28]. This method allows the algorithm to measure the accuracy
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and loss correctly, and adjusts the weights and biases according to these until the error
is as small as possible. The challenge with supervised learning is that it often requires
expertise to label correctly, meaning that it can be very time consuming, di�cult and
expensive to gather enough data for the task at hand.

Unsupervised Learning
Unsupervised learning clusters data sets into label groups without any human interven-
tion. These algorithms find patterns or groupings on their own, and discover similarities
in the data. They are most commonly used for three main tasks: clustering, association,
and dimensionality reduction. The down-side of unsupervised learning is the increased
probability of inaccurate labelling and that human intervention is needed to validate the
results, see [29].

Semi-Supervised Learning
This method involves a small set of labelled data, and a large set of unlabelled data.
Neither supervised nor unsupervised learning methods can make use of this mixture of
data in an e↵ective way, why semi-supervised learning could be required. Since gathering
labelled data can be both time consuming and costly, pseudo labels can be used. Pseudo
labelling is a method where a model first is trained using a data set containing manually
labelled data. That model is then used to predict labels for the unlabelled data set. The
final model is trained on a combination of the manually and pseudo labelled data sets, see
[27]. This method gets benefits of both supervised and unsupervised learning, but has an
uncertainty regarding the pseudo labels being correct, see [30].

2.2.7 Performance Metrics

To evaluate how well a network performs and how much it needs to be adjusted di↵erent
performance metrics are used. The most common ones in object detection are intersection
over union, precision, recall, F1 score and average precision.

Intersection over Union (IoU)
When working with bounding boxes it is of importance to evaluate how well the predicted
boxes align with the ground truth boxes. IoU is the most popular evaluation metric for
this task. It is calculated with Equation (2.3) where A is the predicted box, B the ground
truth box, I the intersection area and U the union area. The best possible score is 1
meaning perfect alignment, and the worst possible score 0 meaning no alignment, see [31].
A visual explanation of the equation is shown in Figure 2.8.

IoU =
|A \B|
|A [B| =

|I|
|U | (2.3)
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Figure 2.8: Visual explanation of the IoU calculation.

Precision, Recall & F1 score
When labelling the content of the predicted boxes in object detection there is no single
metric that mediates a perfect understanding of how well the detection performed. In-
stead, a combination of metrics is used. Three of the most commonly used are precision,
recall and F1 score. They are all based on relations between true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN), and score between 0 and 1
where 1 is the highest score, see [32]

Precision is calculated as shown in Equation (2.4). It gives an idea of how trustworthy a
predicted positive is without regard to how often it misses a true positive.

Precision =
TP

TP + FP
(2.4)

Recall is calculated as shown in Equation (2.5). It shows how successful the detector is at
finding all the true positives without regard to how often it detects a false positive.

Recall =
TP

TP + FN
(2.5)

F1 score is the harmonic mean of precision and recall and is calculated as shown in
Equation (2.6). It is used in a similar way to accuracy (all correct predictions divided by
total predictions), but is often a superior metric to accuracy especially when working with
imbalanced data in binary classification. In multi-class tasks there are several variations of
calculating F1 score depending on how the individual class F1 scores are weighted. When
dealing with highly imbalanced data, the macro F1 score is often used. It is simply the
arithmetic mean of the F1 scores from all classes, as shown in Equation (2.7) where r is
the number of classes, see [33].
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F1 = 2 · Precision · Recall
Precision + Recall

(2.6)

macro F1 =
1

r

rX

i=1

F1i (2.7)

Average Precision (AP)
When comparing object detection algorithms average precision is often used as the main
metric. The metric is, in slight contrast to its name, a combination of precision and recall.
It is calculated as the area under the curve (AUC) of the precision plotted against the
recall, see Equation (2.8) where p(r) is the precision-recall curve. When plotting this curve
the zig-zag pattern is often smoothed out by replacing the precision at each recall value
with the maximum precision to the right of that recall value, see Figure 2.9. The zig-zag
pattern is a result of the recall increasing when more TPs are found, but also FPs, which
alters the precision.

AP =

Z 1

0
p(r)dx (2.8)

Figure 2.9: Precision-Recall curve illustrating which values are used in the calculation of
AP. Adapted from [34].

There are several ways of calculating the AP. The modern approach is to sample the curve
at all unique recall values (r1, r2,...) generated at points when the maximum precision
drops during training. The AUC is calculated as the sum of all the rectangular blocks
created by the sampling method, shown in Equation (2.9) where p is the precision as an
interpolated function of the recall r. This approach results in measuring the exact AUC
after having removed the zig-zag pattern. The best possible AP score is 1 and the worst
possible score 0, see [34].

AP =
X

(rn+1 � rn)pinterp(rn+1) (2.9)

In order to get the precision-recall curve in the first place one needs to set an IoU threshold.
The standard AP is generated from an IoU threshold of 0.5 and is often denoted as AP@0.5.

18



It is also common to calculate the average AP for a range of IoU thresholds, which can
give a better AP performance insight when comparing models. This type of AP is denoted
with a colon between the IoU ranges e.g. AP@0.5:0.95 which is a standard range to use.
Sometimes AP is referred to as mean average precision (mAP) which is an average over
several classes, but the expressions AP and mAP are used interchangeably depending on
context.

2.2.8 Overfitting

When a model fits exactly to its training data, it is said to overfit to the data and does not
perform well on unseen data, as it fails to generalise. Instead it starts to learn irrelevant
and overly specific information, like noise, in the training data. If the training loss decreases
as the validation loss increases, it is a strong indication that the model is overfitting, see
[35]. To avoid this, the training process can be stopped earlier, known as ”early stopping”.
If this method is used, it is important to not stop too early, since this could result in the
opposite e↵ect, that the model underfits. Because of this, the goal is to find the perfect
time to stop training the model. The relation between the training and validation error
for this perfect timing (the ”sweet spot”) is illustrated in Figure 2.10.

Figure 2.10: The ”sweet spot” between under- and overfitting during training. Adapted
from [35].

2.2.9 Convolutional Neural Networks

When dealing with images, Convolutional Neural Networks (CNNs) are widely used for
object detection. It is a deep learning algorithm that has the ability to take an image as
input, assign weights and biases to objects and/or aspects in the image and di↵erentiate
them. The convolutional neural network does not map images to vectors, as a feed forward
network would. The most noteworthy operation in the algorithm is a special kind of linear
operation called convolution. CNNs are basically a neural network which use convolution
in at least one of their layers where normally a general matrix multiplication with a weight
would occur, see [36]. An illustration of the general architecture of a convolutional neural
network is shown in Figure 2.11.
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Figure 2.11: Example of a CNN pipeline from input image to output [36].

Convolution
In convolution, a two-dimensional array of weights called a filter or kernel is multiplied
with the input data instead of a normal weight. The filter is intentionally smaller than
the input data since it allows the same filter to ”slide” over the entire input data as shown
in Figure 2.12. The type of multiplication used is a dot product and therefore always
returns a single number that can be mapped in a so-called feature map as a weighted sum.
Each feature map will represent a special feature in the image, hopefully relevant to the
problem at hand, such as edges, see [37].

Figure 2.12: How a kernel operates sliding over input data resulting in a convoluted
feature. Adapted from [38].

Pooling
When performing convolution the size of the problem can scale up very quickly. In addi-
tion to this, the outputs from the feature maps are very sensitive to the location of the
features in the input. Making a small change of the location of a feature could create
an entirely di↵erent feature map. Because of this, pooling is often used to down sample
the feature maps, making them more robust to changes. Two commonly used pooling
methods are average pooling and max pooling. Average pooling maps the average value
in the current patch, while max pooling maps the maximum value of it, see Figure 2.13.
The kernel size used for pooling is often 2x2, resulting in an output half the size of the
input in each dimension, i.e. each feature map containing a quarter of the pixels from
before the pooling, see [39].
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Figure 2.13: How max and average pooling operate on pixel data [40].

Stride and Padding
Sometimes a specific output size is required. If the size is to be decreased, setting the
stride is a possible solution. When applying a filter in a neural network, such as pooling,
the stride decides how many pixels the weight filter should move each step. The larger
the stride, the smaller the output image. If the size reduction is to be minimised, padding
could be applied. Padding is a feature that adds empty pixels (set to 0) to the outer
border of the image, increasing the input image size thus counteracting the minimising
e↵ect the stride has, see [41].

2.3 Object Detection Models

Object detection models detect and classify objects within an image or video. The dif-
ference from classification algorithms is that object detection algorithms locate objects of
interest with bounding boxes, and detect several objects within a single image, see [42].
There are several di↵erent object detection algorithms, often divided into two sub groups:
one-stage and two-stage detectors. In general, one-stage detectors have a lower inference
time while the two-stage detectors have higher accuracy. The most distinguishable dif-
ference between the two is that the two-stage detectors first find region of interest (RoI)
proposals and then sort them out as real bounding boxes or not, while the one-stage de-
tectors find the bounding boxes directly without any region proposals. One of the most
outstanding two-stage detectors is the R-CNN and the most prominently used one-stage
detector is YOLO.

2.3.1 Region Based Convolutional Neural Network (R-CNN)

R-CNN [43] is a deep convolutional neural network that was developed in 2014 by a group
of researchers at UC Berkely. Since then it has been updated twice, resulting in fast R-
CNN [44] and faster R-CNN [45], where the latter is the one most used today. R-CNN
works by first finding region proposals, and then classifying them. How this is done di↵ers
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between the three mentioned versions of the R-CNN, but the state of the art one - the
faster R-CNN - does it most e�ciently. Both of the previous ones use selective search
to find the regions. The creators of faster R-CNN, see [45], came up with a strategy to
eliminate this time consuming method.

In the faster R-CNN network, images are provided as input to a convolutional network
which produces a convolutional feature map. Instead of using a selective search algorithm
on the feature map, as in fast R-CNN, an independent network is used to predict the
region proposals. After this step, a RoI pooling layer is used to reshape the proposed
regions and sends them to the classifier. The work flow of the faster R-CNN can be seen
in Figure 2.14. By doing this modification of the R-CNN, the test time for the faster
R-CNN is 8.7% of the fast R-CNN and only 0.4% of the first R-CNN, see [45].

Figure 2.14: Faster R-CNN pipeline [45].

2.4 You Only Look Once (YOLO)

The object detection networks described in Section 2.3.1 are rather large and computa-
tionally heavy networks which results in slow training and detection as well as needing
powerful hardware. As a counter reaction to the object detection community’s trend of
moving towards larger and more complex network, the paper ”You Only Look Once: Uni-
fied, Real-Time Object Detection”, see [46], was released describing an object detection
model that can process images in real-time. The first version of the model, see Sec-
tion 2.4.1) had speed but lacked in prediction performance compared to the more classic
models described in Section 2.3.1. However, since its release in 2016 the YOLO model
has undergone several improvements and is today amongst the state-of-the-art in object
detection.

The core idea of YOLO is, as the name suggests, to both find objects in images and classify
them whilst only ”looking” at the image once. By ”looking once” it is meant that bounding
boxes and their subsequent class probabilities are predicted simultaneously, straight from
pixel level data, by a single convolutional network. Apart from YOLO’s approach making
it significantly faster than previous detection methods, it also stands out as viewing the
whole image means that it implicitly encodes contextual information about classes, thus
minimising the number of background errors made.
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2.4.1 YOLOv1

YOLOv1 is a single neural network with 24 convolutional layers followed by two fully
connected layers, see Figure 2.15 for a structural break down. It takes input images of
size 448⇥ 448.

Figure 2.15: YOLOv1 architecture [46].

The input image is divided into an S ⇥ S grid. Each grid cell is responsible for detecting
objects that fall within it. During training each cell will predict B bounding boxes,
defined as centre coordinates, width and height scaled to image size (x,y,w,h) along with a
confidence score. The confidence score is the product of the probability of a box containing
an object, see Section 2.4.5, and its IoU with the ground truth, as defined in Equation
(2.10). Parallel to predicting bounding boxes the YOLO network creates a class probability
map, see Figure 2.16, predicting C conditional class probabilities (Pr(Classi|Object)) per
grid cell, where C is the number of classes, see [46]. This results in class specific confidence
scores for each box, see Equation (2.11). During inference the confidence replaces the
confidence scores, which is simply Equation (2.10) and (2.11) without the IoU, since ground
truth is not available during inference.

Conf score = Pr(Object) · IOUtruth
pred (2.10)

Conf scorei = Pr(Classi|Object) ·Pr(Object) · IOUtruth
pred = Pr(Classi) · IOUtruth

pred (2.11)
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Figure 2.16: Object detection process in YOLOv1 [46].

The series of simplifications introduced in YOLOv1 naturally come with limitations and
some cost in performance compared to region-based networks. Apart from the obvious
downside of a small network having to use rather coarse features for prediction, the strict
division of the images into grids which can only contain one class and a set number of
bounding boxes makes it di�cult to detect small objects that lie close to each other
or overlap. The network also struggles to generalise to objects in new aspect ratios or
configurations.

2.4.2 YOLOv2 - YOLOv5

Since the release of YOLOv1 it has undergone several updates with significant improve-
ments: YOLOv2 introduced the concept of anchor boxes, see Section 2.4.3, YOLOv3 up-
dated and modernised the architecture and YOLOv4 provided a plethora of improvement
techniques such as more intense data augmentations. There are several more improve-
ments than listed here which can be read in the versions’ individual papers, see [47], [48],
[49].

The latest version, YOLOv5, is built on PyTorch making it very easy to use. It is based
on YOLOv3 but has similarities to YOLOv4. Its structure can be divided into three parts,
see [50] and Figure 2.17:

• Backbone: Cross Stage Partial Network (CSPNet). A CNN that extracts informa-
tive features from the input images and reduces computations for improved process-
ing time.

• Neck: Path Aggregation Network (PANet). This layer is an enhanced Feature
Pyramid Network (FPN). A FPN is a CNN with two parts: First, a bottom-up
structure that takes feature maps through levels of decreasing the spatial resolution.
As the spatial resolution decreases the semantic value increases. Secondly, a top-
down structure where the semantic information from the coarser upper map layers
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is passed on to the layers with high resolution, thus combining the advantages of the
top and bottom layers, see [51].

• Head: YOLO layer as described in section 2.4.1 where anchor boxes are applied
and predictions made on the features fed from the neck. The YOLO layer uses
ReLu activation in the hidden layers, sigmoid activation in the final layer and SGD
as the optimiser. The head outputs the class predictions along with bounding box
coordinates.

Figure 2.17: Simplified overview of YOLOv5 architecture [52].

The entire architecture of YOLOv5 is presented in Appendix A. Detailed explanations of
some integral parts of YOLO are given in the sub-sections below.

2.4.3 Anchor Boxes

Anchor boxes are a way of improving speed and e�ciency for predicting the bounding
boxes in object detection tasks. They are a set of pre-defined boxes with a set height
and width based on what objects are meant to be detected. In other words they are
prior guesses on the bounding box shapes before the detection. For example, if an object
detector is developed to find balls in images it would make sense to have square anchor
boxes of varying size as there are very few balls that are not equal in height and width
when enclosed by a bounding box. The network then predicts box probabilities and o↵sets
along with attributes such as IoU compared to the ground truth. These predictions are
used to fine tune the placement and dimensions of each anchor box, see [53].

In YOLOv5 anchor boxes are used, but their dimensions are based on clustering. The
unsupervised learning method k-means clustering maps the ground truth bounding box
dimensions and identifies clusters which are translated into anchor boxes. This has shown
to be a better method than hand-picking anchor boxes. For the sake of model stability
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the anchor boxes are not initialised randomly across the image. Instead, they are initially
placed within grid cells similarly to how boxes are placed in YOLOv1, see [47] and Section
2.4.1.

2.4.4 Loss Functions

YOLOv5 calculates three di↵erent losses: a box loss, an object loss, and when detecting
more than one class, a class loss.

Generalised Intersection over Union
For calculating the box loss, i.e. the loss function that makes the object detector improve
its predicted bounding boxes, the YOLOv5 repository uses Generalised Intersection over
Union (GIoU). It is the IoU equation with an added term that adjusts for cases where there
is no overlap between the predicted and ground truth boxes i.e. IoU = 0, see Equation
2.12. This term is the smallest convex hull (C) that encloses both A and B. As the
prediction improves the area of C decreases thus minimising the subtracted term yielding
a better GIoU score. If regular IoU was used the loss would not decrease/increase in cases
where predictions have no overlap with ground truth despite the predictions moving closer
to/further from it, see Figure 2.18. The authors of GIoU show in [54] that there is an
analytical solution to Equation (2.12), making it possible to use as a loss function.

GIoU =
|A \B|
|A [B| �

|C/(A [B)|
|C| = IoU� |C/(A [B)|

|C| (2.12)

(a) (b)

Figure 2.18: Illustration of how GIoU is calculated and di↵erent from IoU, where A, B
and C are the same as for Equation 2.12. In (a) there is no overlap and C is equal to the
union of A and B, yielding both IoU = 0 and GIoU = 0. In (b) there is no overlap but C
is larger than the union of A and B. This yielding a IoU = 0 and a GIoU = -0.7. Adapted
from [55].

Binary Cross-Entropy
For calculating object and class loss YOLOv5 uses binary cross-entropy. The loss is based
on the calculation of entropy which is a measure of the uncertainty associated with a given

26



distribution q(y), where C is the number of classes, see Equation (2.13). In the case of
training a neural network the distribution q(y) is available as the ground truth, but we
want the network to estimate this distribution and continuously improve that estimation.
For this, the equation for entropy can be altered to include an estimated distribution p(y)
yielding the so-called cross-entropy, see Equation (2.14). Comparing these it is clear that
H(q) = Hp(q) if p(y) = q(y) i.e. the estimated distribution is equal to the true distribution.

Finally, in the case of binary cross-entropy the classifier needs to make the binary decision
whether a given box should be labelled true or false, and therefore the distribution of false
(1�p(yi)) is added to the loss function, see Equation (2.15), where the score is an average
over the N points/samples and i is the class, see [56].

H(q) = �
CX

c=1

q(yc) · log(q(yc)) (2.13)

Hp(q) = �
CX

c=1

q(yc) · log(p(yc)) (2.14)

Hp(q) = � 1

N

NX

i=1

yi · log(p(yi)) + (1� yi) · log(1� p(yi)) (2.15)

2.4.5 Objectness

Object detectors produce box proposals in image areas they deem to possibly contain an
object. It is therefore of interest to score the boxes based on how probable it is that they
actually contain an object. This score is called objectness. In YOLOv5 it is based on the
parameters Multi-scale saliency, Colour contrast, Edge density and Superpixel straddling,
where the higher the score is in these underlying parameters the more probable a box is
considered to contain an object, see [57].

Using objectness reduces detection time as it leads to an e↵ective way of making relevant
box proposals. At the same time it allows multi-class detection as it is a generalised
algorithm not developed to work on a specific class.

2.4.6 Non-Maximum Suppression

Object detection algorithms output a large number of bounding boxes. These need to be
sorted through in order to find the boxes that a) contain an object according to what one
is trying to detect and b) best enclose that object. In order to do this an algorithm called
NMS is used in YOLOv5. It is based on the confidence and IoU of each bounding box,
see [58].

At its core the NMS algorithm is greedy and loops over all boxes for all classes. It takes
the box with the highest confidence and removes it from the list of proposed boxes and
then calculates the IoU score between it and every other proposed box. If the IoU is over
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a set threshold the box with the lower confidence score is removed, see Equation (2.16).
This process is then repeated with the list of remaining proposed boxes until it is empty,
thus yielding a new list of boxes considered to be correct, see [59].

si =

(
si, IoU(M, bi) < Nt

0, IoU(M, bi) � Nt
(2.16)

This algorithm is not perfect, for example it is highly time consuming (O(n2)) and therefore
other versions of the algorithm exist. The time issue can be bettered by removing box
proposals with low confidence score before running the algorithm. Another issue is that
it is poorly adapted to cases where two (or more) instances of the same class exist in the
image and overlap. There is a high chance that their boxes will overlap enough for the
IoU to be above the threshold resulting in only one instance of the class being detected.

2.4.7 The COCO Data Set

The COCO data set is a commonly used data set for training object detectors, and was
the data set primarily used for evaluating YOLOv5 in the development phase. The data
set consists of annotated images of complex everyday scenes with common objects. The
composition is as follows:

• 328k images

• 2.5 million labelled instances

• 91 object classes

For a more extensive analysis of the data set and the composition of it, see [60].

2.4.8 Model Fitness

YOLOv5 uses a fitness function to evaluate how close the found solution is to the optimal
solution. The function is used to decide for which epoch the model should be saved as the
”best one”. It takes the performance metrics precision, recall, AP@0.5 and AP@0.5:0.95
into account. The default setting is weighted so that the score is based 10% on the AP@0.5
and 90% on the AP@0.5:0.95.

2.4.9 Learning Rate

When updating the weights during back propagation it is of interest to control how much
the weights are updated. This is done by controlling the step size, known as the learning
rate. The learning rate is typically a small positive value between 0.0 and 1.0, which the
estimated error is scaled with. It is important to choose an appropriate value since it
controls how fast the model adapts to the problem. A smaller value would need more
training epochs since it changes less for each epoch, while a larger value would adapt
faster. Despite this, a large value could result in too fast an adaptation, making the model
converge to a sub-optimal solution too quickly and oscillate around the optimal solution,
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whereas a smaller value could cause the model to get stuck or just take very long time.
An illustration showing the step size to find the minimum loss is shown in Figure 2.7. It
is not possible to analytically calculate the optimal learning rate, thus it must be found
trough trial and error.

Finding the Optimal Learning Rate
The learning rate will interact with several other parameters in the model and the interac-
tions may not be linear. Smaller learning rates may need more training epochs and larger
may need fewer. Smaller values have also shown to be better suited with smaller batch
sizes, because of the noisy estimates from the gradient error. Traditionally the learning
rate is set to a value between 10�6 and 1.0, but a good starting point seems to be 0.1 or
0.01.[61]

Learning Rate Schedule
An approach to be considered instead of using a fixed learning rate is to allow it to change
over time. This is referred to as the learning rate schedule. The simplest schedule would
be to initially have a large learning rate to allow large changes in the beginning and then
linearly decrease it for fine-tuning. The schedule could also be chosen to decrease for a
fixed number of epochs, and then fixed to give more time for fine-tuning, see [61]. In
YOLOv5 two values are used, one denoted lr0 that is the initial learning rate, and one
denoted lrf that decides how much the learning rate should decrease per epoch. The final
learning rate, for the last epoch, is then lr0 · lrf . The default values in YOLOv5 are 0.1
and 0.01.

2.5 Improvement Techniques

There are several ways to improve the performance of networks. Some of the techniques,
like augmenting the data, are used to generate more data from the existing data for the
network to learn from, while some help the network to learn more e�ciently or accu-
rately. These di↵erent techniques could cause a longer training time or a higher memory
allocation, but generally do not a↵ect the inference speed for detection.

2.5.1 Image Augmentation

Neural networks are heavily reliant on the quality and amount of data available to train on.
Contrary to this, medical data often is limited in its availability, especially when it comes
to data annotated by professionals. It is therefore of interest to use this data as e�ciently
as possible. A way of doing this is with image augmentation. Image augmentation takes
the existing images and applies transformations that alter the images thus generating new
data from the network’s perspective. To the human eye it can seem like augmented data
adds very little new information, but even small changes can help improve object locating
and minimise overfitting. Some of the augmentation techniques considered in this thesis
are described below.
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Mosaic
Mosaic is a data augmentation algorithm that mixes and puts several images next to each
other in a single image. This is done to take the images out of their context, allowing the
network to work on a di↵erent context in each layer, also reducing the batch size. This
may also reduce the risk of overfitting and has been shown to give a higher AP for several
detectors on the COCO data set, see [49].

HSV Augmentation
HSV, short for Hue-Saturation-Value, is a colour model aimed to be more logical to the
way the human eye perceives colour compared to the traditional RGB (Red-Green-Blue)
model. The model has a cylindrical geometry and is easiest to understand visually, see
Figure 2.19. The conversion to HSV from the traditional RGB scale is rather complex,
but is explained in [62]. When used for image augmentation the H, S and V values are
each set to a range of how many per cent they are minimally/maximally to be altered.
This results in images we perceive as lighter, darker or di↵erently coloured.

Figure 2.19: The HSV colour cylinder [63].

Positional Augmentations
There are several positional augmentations available. The ones used in this thesis are
described in [64] as below:

• Flip: A flip can be made either horizontally or vertically. A flip horizontally is the
same as a mirrored image of the original image. A vertical flip could be described as
a 180 degree rotation followed by a horizontal flip. When added as an augmentation,
the probability of the images flipping is added as the argument.

• Shear: Shear augmentation is an image transformation that slants the shape of the
image and can be applied on the either the x- or y-axis. In other words, it transforms
a rectangular image into a parallelogram. The argument added for shear is a +/-
degree value.

• Scale: The image can be scaled inwards or outwards. If the image is scaled outwards
the image size will be larger than the original, why a common thing to do is to cut
out a part from the new image with equal size to the original image. When scaling
inwards, resulting in a smaller image size, the framework makes an assumption about
the image, filling the lack of information as it seem fitting. The scale is added as an
augmentation based on a +/- gain value.
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2.5.2 Focal Loss

The binary cross-entropy equation has a weakness when the network is unevenly confident
in its predictions of di↵erent classes, as is often the case when working with an imbalanced
data set. In these cases it may be advantageous for less confident class predictions to
generate a much larger loss than is the case in binary cross-entropy, leading to training
focusing more on improving these predictions instead of the already good predictions. A
way of handling this was introduced in [65], presenting the so-called focal loss shown in
Equation (2.17). It introduces both a term ↵ that adjusts class weights and a term � that
regulates how much the predicted class probabilities, pt, contributes to the loss. A large
� will alter the loss function so that less confident predictions (e.g. pt < 0.6 ) contribute
a lot more to the loss than more confident predictions (e.g. pt > 0.8).

FL(pt) = �↵t(1� pt)
� log(pt) (2.17)

2.5.3 Image Sizes

At CellaVision, it has previously been shown that a larger input image size increases
the detection performance on PLTs. When larger original images are not available, the
larger image size can be obtained by upsampling the image. Larger input image sizes
would result in more pixels, letting the smaller objects become larger and therefore easier
for the network to detect. During subsampling and convolutions, see Figure 2.11, some
information is lost due to the mapping to feature maps. Having a larger image size yields
more pixels and a lower risk of information loss. It is important to use the same image size
when using it for detection as was used for training the network. To increase the image
size is also suggested by the developer of YOLOv5 when having smaller object, see [66].

2.5.4 Class Weights

Class weights are used when having imbalanced data. They give all classes equal impor-
tance and prevent the network from predicting the more frequent class more often only
because of it having most samples in the training data. During training, the total loss
that is computed for each batch is replaced by a weighted sum, meaning that the samples
contribute to the loss proportionally to the weight for the class of the sample, see [67].
One way of doing this is to assign weights for the classes inversely proportional to the
frequency of the class, meaning the class(es) occurring less frequently contributes more to
the total loss.

2.5.5 Image Weights

’Image weights’ is used during training to give images with lower AP from previous training
epochs higher likelihood to be selected in the next epoch of the training. In YOLOv5 the
images are weighted by the inverse AP from the previous epoch according to the developer
of YOLOv5, see [68].

31



2.6 Current Algorithms at CellaVision

The current PLT application at CellaVision has two separate algorithms for finding RBCs
and PLTs. The RBCs are found using a method called segmentation, where the algorithm
assigns each pixel a class and therefore both finds the object and the shape of it. The
algorithm can only find single cells if they do not touch another cell in the image, i.e. when
pixels of one class are completely surrounded by pixels of another class. If the cells are
overlapping, the algorithm instead finds the aggregation and estimates how many RBCs
are in it based on the size of the aggregation. The detached cells are classified, based on
their size, as RBCs, PLTs, WBCs or discardable. All cells not classified as RBCs are not
included in the analysis. The PLTs on the other hand are found using a YOLOv5 object
detector, with a model called nano v6 which is available in the YOLOv5 repository. The
image size trained on is 1088⇥704. The average combined inference time for the current
algorithms, based on 30 images, is 300ms/image where 211ms is for the segmentation al-
gorithm and 79ms for the PLT detection.

Since two separate algorithms are used, they can be evaluated separately. Henceforth,
the current methods used in CellaVision’s systems will be referred to as RBC CV and
PLT CV.
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3 Method

3.1 Data Gathering

When starting this thesis project, a large data set of blood smear images with PLTs an-
notated as the result of an existing PLT detector at CellaVision was available, however no
equivalent data set existed for RBCs. Since the PLT annotations as well as the underlying
images were a great asset to this project, those images were decided to be used as our
data set. To not allocate to much memory on the server, these images were down sampled
to half of the original size (1920⇥1200), resulting in images with the size 960⇥600. It was
immediately clear that there was not enough time to manually annotate the RBCs in all
these image. Therefore, an approach to train a good enough RBC detector to, within a
reasonable amount of time, pre-annotate the RBCs in these images and then complete
missed/incorrect annotations manually was initiated.

An iterative approach was used where images were manually annotated, and then net-
works trained on these images used to pre-label the remaining images more quickly and
accurately. This process was repeated until the training, validation and test set were
large enough to start evaluating RBC networks. Once all test, validation and a fraction
of the training images had been labelled, an attempt was made to run detection on both
RBCs and PLTs simultaneously. Since the data set did not seem to be large enough for
accurate PLT detections, more RBCs needed to be annotated to be able to use more of
the labelled PLT data set. Because of the cumbersome task of manually completing the
training set annotations, a pseudo labelling approach was considered to complete the RBC
annotations. This approach would also be an interesting topic of discussion since there is
no shortage of blood smear images at CellaVision in contrast to the amount of manually
annotated images. Successful pseudo labelling techniques would mean the possibility of
training future networks on very large amounts of data.

3.1.1 Pseudo Labelling RBCs

In order to develop the best network for pseudo labelling RBCs in the remaining training
image data, di↵erent parameters and models were evaluated and later combined based on
performance. The metrics used for evaluating performance were F1 score, AP@0.5 and
AP@0.5:0.95. Inference time was not considered as the pseudo labelling network was not
intended for use on CellaVision systems. As a base, the networks explored were pre-trained
with weights from the COCO data set with the low augmentation settings. The parame-
ters explored were image sizes, YOLOv5 model size and image augmentations. The image
size used (unless exploring more image sizes) was 960⇥608 since image dimensions need
to by dividable by 32 in YOLOv5.

In the end, a YOLOv5 small model pre-trained on the COCO data set operating on
the image size 960⇥608 with the high level of augmentation from YOLOv5’s options was
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chosen as it had the highest score for all three performance metrics. This network was
then used to run detection on all the remaining unannotated images and the subsequent
bounding box coordinates for each image were saved. To ensure that all images had been
labelled, one image showing the detected boxes from each smear image region were viewed
manually. The smallest annotation data files from the detection were also checked to have
a reasonable amount of RBC annotations, ensuring that the network had not failed to
detect in any of the images. The RBC annotation files were then merged with the corre-
sponding PLT annotations, ultimately forming a data set with both manually and pseudo
labelled RBCs and manually labelled PLTs.

In order to evaluate the usefulness of pseudo labelling, three networks were run on one
training set containing manually labelled data only and on one training set containing
manually and pseudo labelled data. One network detecting only RBC, one detecting only
PLT (no pseudo labelled data here but it gives a comparison of the e↵ect more data has)
and one detecting both classes. Since the network including pseudo labelled data improved
PLT detection performance without decreasing RBC detection performance, the labelled
+ pseudo labelled training set was decided to be the training set used going forward with
the project.

The composition and analysis of the final data set can be viewed in Section 4.

3.2 Testing Individual Parameters

Once the training data set had been established, the development of the RBC + PLT
detector was initiated. The approach used was to first test di↵erent models and hyper
parameters individually to get an idea of which factors have the largest positive impact
on performance. All models were trained for 300 epochs and evaluated using an algorithm
described in Section 3.2.1. The idea was to later combine the parameters in the hope of
further improvement. The IoU threshold between predicted and ground truth boxes used
when evaluating models at this stage was set to 0.3.

When evaluating performance for the individual parameters, precision, recall and F1 score
on the validation set were considered. The networks were evaluated for RBC + PLT de-
tection as well as for individual performance on RBCs and PLTs. This was done to be able
to compare the found detector to existing RBC and PLT detection algorithms/networks
at CellaVision and for the sake of identifying imbalances and weaknesses in our network.
For example, as the training set was heavily imbalanced, see Figure 4.2) a very good RBC
detection would mean a very good overall performance even if the detection on PLTs per-
formed much worse. At this point, AP@0.5 and AP@0.5:0.95 were not considered, since
it would be of more importance for CellaVision to find cells, and find the right cells, than
for the findings to have higher IoU scores than 0.5. Instead precision, recall and F1 score
for the confidence where the networks had their maximum F1 score during training were
used.
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3.2.1 Performance Evaluation Algorithm

CellaVision’s systems capture small images that later on are put together to form a larger
image. The images are put together with an overlap, meaning the cells detected in the
edges are often only partially visible and are not used since the entire cell is visible in
another image. The data set in this thesis was made up of these small images, and it
was clear early on that performance was significantly lower near the edges. Therefore the
precision, recall and F1 score were calculated only including cells that did not touch the
edges to give a fairer picture of how performance on CellaVision’s system would be. This
is also how the performance is evaluated for the networks used by CellaVision today.

The performance metrics calculations were made with a custom algorithm. After models
had finished training and the best model selected according to the fitness function, see
Section 2.4.8, a detection on the validation set was run for the confidence score that had
given the highest F1 score during training. These detections were evaluated against the
ground truth. For RBCs and PLTs the precision, recall and F1 score were calculated for
each class individually as well as combined. The macro F1 score between the classes was
also calculated.

The performance on detecting large and giant PLTs were not considered for the validation
set since there were very few instances of each class, especially giants, in the set (673 large
and 15 giant, see Figure 4.3.

3.2.2 Model Sizes

The YOLOv5 repository comes with several di↵erent models di↵ering in network size. A
larger network should be able to handle more information and, in theory, perform bet-
ter than smaller networks. On the other hand, smaller networks often have significantly
lower training and inference time. To investigate the e↵ect model size had on the data,
the models named nano, small, medium and large were tested, without any pre-trained
weights or augmentations other than mosaic.

Based on their performance and low training and inference time, testing proceeded only
using the nano and small model sizes.

3.2.3 Pre-Trained Weights

It is possible to train networks using the best weights of an already trained network. The
creators of YOLOv5 have trained the network on the COCO data set and made these
weights available in the YOLOv5 repository. To see if the performance would be a↵ected
by these or other pre-trained weights, the ones from the YOLOv5 repository, the best PLT
detector at CellaVision and a PLT network created by us were tested. The latter came
from training the network from Section 3.1.1 on PLTs instead of RBCs. This network is
called PLT SoTi for the remainder of the report.
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3.2.4 Augmentations

The performance slightly increased for the RBC detector used for pseudo labelling when
adding image augmentations. It was also clear that when adding more data to the training
set, i.e. the data where RBCs had been pseudo labelled, the performance increased. Since
augmentations yield more data, augmentations for our combined detector was evaluated
at this early stage. The augmentations tested were three augmentation settings files pro-
vided by the YOLOv5 repository: low, medium and high, as well as the augmentations
used to train PLT CV.

3.3 Testing Combined Parameters

Before leaving the phase of testing individual parameters, higher IoU thresholds of 0.5 and
0.7 were tested. This resulted in slightly lower performance, but did not change which
parameter settings had performed best. Together with our supervisors at CellaVision, an
IoU of 0.5 was decided to be used in further tests. This because whilst it is important to
find all the cells, it is still important that they are boxed well enough to be able to make
further analyses.

When testing individual parameters to see which ones had most influence on the perfor-
mance, it was clear that di↵erent types of augmentation a↵ected the performance most.
Because of this, further augmentation testing was prioritised. Since previous testing did
not show a better performance for the larger models, the upcoming improvements were
decided to be tested on the small model size. The small model does not take as long time
as the medium or large models to train, but it is still more complex than the nano network
and should be able to make use of stronger augmentations and hyper parameters. In ad-
dition to this, since the networks seemed to benefit from using pre-trained weights in form
of how fast the network learned in the first epochs, there was no obvious downside to using
pre-trained weights when moving on with the augmentations. The COCO weights were
used as the PLT CV weights were only applicable for a nano v6 model, as mentioned in
Section 3.2.3. Additionally the COCO weights had better overall performance compared
to the weights from our network trained on PLTs only.

3.3.1 Further Augmentations

To find the optimal augmentation types and settings, the optimal HSV augmentation
values was first sought. Values in between those used in two best performing models dur-
ing the latest augmentation tests were used as a starting point. This resulted in setting
the HSV augmentation values to (0.01, 0.4, 0.4). These settings gave equal F1 scores to
PLT CV’s augmentations. For the sake of exploring alternatives to what was already used
at CellaVision we proceeded using the HSV settings (0.01, 0.4, 0.4) and kept these for all
future networks.

Next we investigated positional augmentations. The flip up/down probability was set to
0.5 in two networks based on its presence in the augmentation files used in Section 3.2.4.
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In one of these network an image shear set to 0.1 was also added in hopes of compensating
for the fact that cells are not uniformly shaped.

3.3.2 Continued Testing of Hyper Parameters

Since the PLT detection performance, especially the recall, seemed most di�cult for the
networks to increase, improving these scores was focused on going forward. As the fitness
function used so far was strongly weighted towards AP and not precision and recall, see
2.4.8, how changing the weights of the fitness function would influence the results was con-
sidered. The weights were changed to be based 50% on the recall, 40% on the precision
and 10% on the AP@0.5:0.95. These weights were kept for all further networks.

Finally, a number of hyper parameters and settings available in YOLOv5 were tested.
The parameters were chosen based on their availability, use at CellaVision and recom-
mendations in machine learning forums. They are all listed below and the subsequent
combinations of them presented in Table 3.1:

• Optimiser = ’Adam’

• ’Image weights’ = True

• Anchors = 5 or 7

• Class Weights [RBC, PLT] = [1, 20]

• Focal loss (� = 1.5)

Table 3.1: Di↵erent hyper parameter combinations tested.

Test no Flip Shear Fitness ’Adam’ Img w. Anchors Cls w. Focal loss
1 X
2 X X
3 X
4 X X
5 X X
6 X 5
7 X 7
8 X X
9 X X
10 X X 5

3.3.3 Image Size

Because of the uneven ratio between PLTs and RBCs, extra focus was put on improving
PLT detections. With support from section 2.5.3, increasing the image size could increase
the performance. Because of this two networks where image size was increased to 1152⇥720
(120%) and 1344⇥ 840 (140%) were tested.
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3.3.4 Final Network Selection

All results were evaluated and the best performing network based on the macro F1 score
was selected. At this point we concluded the exploration of networks and moved on to
evaluating performance on the test set. In the remainder of the thesis this network, called
’5’ in Table 3.1, will be referred to as YOLOv5 SoTi.

3.4 Final Testing

To evaluate our network without bias, the final network selected was tested on a test set,
meaning a set that has never been seen by the networks. Since there was an indication
of larger image sizes resulting in better performance for PLTs and considering it being
successful at the company before, the two bigger image sizes (120% and 140% of the
image size 960⇥608) were also evaluated on the test set. The performance metrics were
calculated as described in 3.2.1. The inference times for the networks with di↵erent image
sizes were tested with the help of our supervisor at CellaVision.

3.4.1 Testing Subsets

To investigate if YOLOv5 SoTi was performing better or worse on any type of stain,
the test set was divided into the three subsets with the di↵erent stains: WG, MGG and
Wright. Also, slides containing deviating cell types, according to morphology experts
at CellaVision, were divided into three subsets based on the presence of: Giant PLTs,
Abnormal RBCs (based on shape/size/colour) and Malaria/parasites.

3.5 Current Algorithms at CellaVision

For the sake of reference, the current detection algorithms/networks for RBCs and PLTs
at CellaVision were evaluated. As PLT CV is also based on YOLOv5 it was evaluated
in the same way as the networks developed during this thesis, described in section 3.2.1.
In addition to this, precision, recall and F1 score for large and giant PLTs was also
evaluated. RBC CV on the other hand is a segmentation algorithm used for counting and
was therefore not evaluated using precision, recall or F1 score. The number of RBCs from
our network as well as from the current segmentation algorithm were compared with the
ground truth number of RBCs in each region of the slides. All cells touching image edges
were neglected at this point as in every other performance evaluation. A visual comparison
of the detections was also made to be able to evaluate strengths and weaknesses among
the di↵erent methods.
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4 Data Set Analysis

Despite there being a plethora of models, hyper parameters and techniques for improving
results in machine learning tasks, the most important factor is the data. To understand
why a network performs as it does it is important to understand the underlying data.
Reports often neglect this, ignoring important aspects of the data set used such as vari-
ability and imbalance. Therefore, a break-down and simple analysis of the data used will
be presented. The analysis will show aspects of the data which has been considered when
developing the models presented in Section 5.

The images used to train, validate and test our models were were captured from slides col-
lected from di↵erent haematology laboratories in di↵erent countries using di↵erent staining
techniques. The stains used were either May Grünwald Giemsa, Wright Giemsa or Wright
(used in 50%, 26% and 3% of the slides, respectively). The remaining 21% of the slides
had one of these stains, but were not marked with which one. The slides were prepared
at laboratories in Sweden, Denmark, the Netherlands, New Zealand, Belgium, Canada or
the US. All images were colour images in the BMP format, originally of size 1900⇥1200,
but down sampled to 960⇥600. Due to YOLOv5 needing dimensions to be dividable by
32, the images were padded to an image size of 960⇥608 during training and testing.

The training data consists of 3880 images (from 168 slides) taken from di↵erent regions on
blood smear slides. The slides had varying number of regions, and the regions varied in
size meaning there was a varying number of images from each region in each slide. A few
background images, i.e. images from regions not containing cells, were added to the train-
ing set following YOLOv5 guidelines. The training set’s composition is shown in Figure
4.1. The validation and test sets were manually labelled and split into 481 (11 slides) and
948 (22 slides) images respectively . The ratio between RBCs and PLTs in the di↵erent
sets was very similar (approximately 20:1) but with the training set containing a slightly
higher percentage of PLTs, see Figure 4.2. A similar breakdown for PLT sizes is shown in
Figure 4.3, which also shows similar balance between the categories for the three data sets.
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Figure 4.1: The ratio between labelled, pseudo labelled and background images in the
training set.

Figure 4.2: The number of RBC and PLT annotations and the ratio between them in each
data set.

40



Figure 4.3: The number of normal, large and giant PLTs and the ratio between them in
each data set.

The bounding boxes in the training set are well distributed over all coordinates of the
images as can be seen in Figure 4.4a. The vast majority of these boxes are square and
similar in size. Figure 4.4b shows an accumulation of boxes around 0.05% of image width
and 0.07% image height representing normal RBCs, and a barely visible accumulation
around 0.015% width and 0.025% representing PLTs. It is also clear from Figure 4.4b
that there is a large variation in box dimensions although they are not frequent.

(a) (b)

Figure 4.4: Ground truth bounding box heat map histograms. Colour bars indicate num-
ber of boxes. (a) shows box locations in the images. (b) shows box dimensions as a
percentage of image width and height. Arrow shows when the boxes’ pixel width = pixel
height, due to the fact that the underlying images are not square.
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5 Results

The results are divided into four main sections. The first, Section 5.1, shows the results
from developing the network used for pseudo labelling RBCs. The second, Section 5.2,
shows the results from developing the network that detects both RBCs and PLTs. The
third, Section 5.3, shows the results from using YOLOv5 SoTi on the test data set. The
final one, Section 5.4, shows the results of separately comparing YOLOv5 SoTi to the
current algorithms at CellaVision.

5.1 RBC Model Selection

This section presents results from developing the RBC detection network used for pseudo
labelling RBCs. The final table shows a comparison between training without contra
training with pseudo labelled data. All networks presented in this section were evaluated
on the validation set.

5.1.1 Image Sizes

The nano YOLOv5 model pre-trained with the COCO weights and low augmentation set-
tings trained on 20%, 40%, 60%, 80%, 100%, 120% and 140% of the image size 960⇥608.
Smaller image sizes resulted in worse performance across all metrics whilst increasing im-
age size did not improve performance except for AP@0.5, see Table 5.1.

Table 5.1: YOLOv5n model trained on di↵erent image sizes and evaluated on the image
size 960⇥608, for RBCs only.

Image size F1 score AP@0.5 AP@0.5:0.95
192⇥128 0.876 0.906 0.626
384⇥256 0.958 0.972 0.771
576⇥352 0.969 0.981 0.791
768⇥480 0.970 0.981 0.789
960⇥608 0.970 0.982 0.802
1152⇥736 0.970 0.983 0.802
1344⇥832 0.967 0.981 0.777

5.1.2 Model Sizes

The performance of di↵erent YOLOv5 model sizes pre-trained with the COCO weights
and low augmentation settings trained on the image size 960⇥608. It shows that the small
network had the highest F1 and AP@0.5 score while the medium network had the highest
AP@0.5:0.95 score, see Table 5.2.
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Table 5.2: Di↵erent YOLOv5 models trained on the image size 960⇥608, for RBCs only.

Model F1 AP@0.5 AP@0.5:0.95
YOLOv5n 0.970 0.982 0.802
YOLOv5s 0.973 0.986 0.806
YOLOv5m 0.971 0.985 0.810
YOLOv5l 0.966 0.975 0.783

5.1.3 Augmentations

Three di↵erent levels of augmentations from the YOLOv5 repository tested on the small
model size pre-trained with the COCO weghts and trained on the image size 960⇥608.
The low and high augmentations are provided in the YOLOv5 repository. The custom
settings were the same as low but with HSV augmentations set to (0.4, 0.25, 0.25). The
high augmentation level had the best or equal best score across all metrics, see Table 5.3.

Table 5.3: YOLOv5 small model trained on the image size 960⇥608 with di↵erent levels
and types of augmentations.

Model F1 AP@0.5 AP@0.5:0.95
low 0.973 0.986 0.806
high 0.973 0.987 0.812
custom 0.968 0.978 0.788

5.1.4 Evaluation of Pseudo Labelling

Table 5.4 shows results from YOLOv5 small networks with COCO weights and the high
augmentation settings trained on the image size 960⇥608. The performance on PLTs
clearly increased, whilst the performance on RBCs did not decrease for any metric when
training on the manually + pseudo labelled data set.

Table 5.4: YOLOv5 small networks trained on the image size 960⇥608 with di↵erent
training sets and detection classes. The data set including pseudo labels contains both
manually and pseudo labelled RBCs, but only manually labelled PLTs.

Class Training set F1 AP@0.5 AP@0.5:0.95

RBC
Manually labelled 0.973 0.986 0.806
Manually + Pseudo labelled 0.974 0.986 0.815

PLT
Manually labelled 0.944 0.968 0.657
Manually + Pseudo labelled 0.954 0.981 0.698

Both
Manually labelled 0.953 0.969 0.719
Manually + Pseudo labelled 0.962 0.982 0.737
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5.2 RBC + PLT Model Selection

This section presents results from developing a network detecting both RBCs and PLTs.
In total, the results of six di↵erent tests are shown. All networks presented in this section
were trained on the training data set containing pseudo labelled RBCs and evaluated on
the validation set.

5.2.1 Model Sizes

Table 5.5 shows the performance for di↵erent YOLOv5 model sizes without pre-trained
weights or augmentations trained on the image size 960⇥608. For all three classes the
nano model size performed best or equal best based on F1 score. Detection on RBCs
showed both precisions and recalls over 0.98 whereas recall for PLTs was much lower.

Table 5.5: Di↵erent YOLOv5 model sizes trained on the image size 960⇥608 without pre-
trained weights or augmentations.

Class Model Precision Recall F1(@IoU 0.3) Macro F1

RBC

YOLOv5n 0.982 0.982 0.982
YOLOv5s 0.983 0.980 0.981
YOLOv5m 0.982 0.982 0.982
YOLOv5l 0.982 0.982 0.982

PLT

YOLOv5n 0.960 0.842 0.897
YOLOv5s 0.974 0.811 0.885
YOLOv5m 0.970 0.777 0.863
YOLOv5l 0.967 0.796 0.873

All

YOLOv5n 0.980 0.973 0.977 0.940
YOLOv5s 0.982 0.970 0.976 0.933
YOLOv5m 0.982 0.970 0.976 0.923
YOLOv5l 0.981 0.970 0.976 0.928

5.2.2 Pre-trained Weights

Table 5.6 shows the results for models without augmentations with pre-trained weights
from the COCO data set, PLT SoTi, and PLT CV trained on the image size 960⇥608.
The weights from the COCO data set as well as from PLT SoTi are applied to a small
YOLOv5 while the PLT CV are applied to a nanov6 model. The overall F1 score was
equal between the COCO and PLT CV weights, with the former having the best F1 for
RBCs and the latter the best F1 for PLTs, see Table 5.6. Using the PLT CV weights
yielded the best Macro F1 score.
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Table 5.6: YOLOv5 small and nano v6 models trained on the image size 960⇥608, pre-
trained with di↵erent weights without any augmentations.

Class Pre-trained weights Precision Recall F1(@IoU 0.3) Macro F1

RBC
COCO 0.985 0.982 0.983
PLT SoTi 0.984 0.983 0.983
PLT CV 0.982 0.982 0.982

PLT
COCO 0.967 0.830 0.893
PLT SoTi 0.977 0.766 0.858
PLT CV 0.960 0.885 0.921

All
COCO 0.984 0.972 0.978 0.938
PLT SoTi 0.984 0.969 0.976 0.921
PLT CV 0.980 0.976 0.978 0.951

5.2.3 Image Augmentations

Table 5.7 presents results from di↵erent image augmentation settings evaluated on the
nano model size without pre-trained weights and trained on the image size 960⇥608. The
best overall F1 score came from the medium augmentation settings and the Macro F1
scores were equal for medium, high and PLT CV.

Table 5.7: YOLOv5 nano model trained on the image size 960⇥608 with di↵erent image
augmentations.

Class Augmentation Precision Recall F1(@IoU 0.3) Macro F1

RBC

Low 0.984 0.982 0.983
Medium 0.990 0.982 0.986
High 0.987 0.982 0.985
PLT CV 0.986 0.982 0.984

PLT

Low 0.952 0.945 0.949
Medium 0.959 0.950 0.954
High 0.967 0.945 0.956
PLT CV 0.959 0.952 0.955

All

Low 0.982 0.980 0.981 0.966
Medium 0.988 0.980 0.984 0.970
High 0.982 0.980 0.983 0.970
PLT CV 0.984 0.980 0.982 0.970

5.2.4 Further Image Augmentations

Di↵erent augmentations applied to a YOLOv5 small model with pre-trained weights from
the COCO data set trained on the image size 960⇥608. It should be noted that the IoU
threshold here has been raised from 0.3 to 0.5 compared to previous testing. The PLT CV
augmentation settings and our HSV augmentations gave equal best F1 and macro F1
scores across all classes, see Table 5.8.
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Table 5.8: YOLOv5 small model trained on the image size 960⇥608, with pre-trained
weights from the COCO data set with di↵erent image augmentations.

Class Augmentation Precision Recall F1(@IoU 0.5) Macro F1

RBC

PLT CV aug 0.989 0.983 0.986
HSV 0.989 0.983 0.986
HSV+flip 0.991 0.982 0.986
HSV+flip+shear 0.986 0.982 0.984

PLT

PLT CV aug 0.970 0.953 0.961
HSV 0.967 0.955 0.961
HSV+flip 0.975 0.936 0.956
HSV+flip+shear 0.974 0.936 0.955

All

PLT CV aug 0.988 0.981 0.984 0.973
HSV 0.988 0.981 0.984 0.973
HSV+flip 0.990 0.979 0.984 0.971
HSV+flip+shear 0.985 0.979 0.982 0.969

5.2.5 Continued Testing of Hyper Parameters

Performance from adding/changing di↵erent hyper parameters to a YOLOv5 small model
pre-trained with the COCO weights with HSV augmentations and the new fitness function,
trained on the image size 960⇥608. Adding only ’Image weights’ yielded the best macro
F1 and PLT F1 scores, and equal best overall F1 scores, see Table 5.9.
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Table 5.9: YOLOv5 small model trained on the image size 960⇥608, pre-trained with the
COCO data set with di↵erent hyper parameters and hyper parameter settings added.

Class Parameter(s) Precision Recall F1(@IoU 0.5) Macro F1

RBC

Fitness function 0.991 0.983 0.987
Optimiser 0.988 0.986 0.985
Image weights 0.990 0.983 0.985
Anchors = 5 0.991 0.983 0.987
Anchors = 7 0.988 0.983 0.985
Class Weights 0.988 0.983 0.985
Focal loss 0.991 0.983 0.987
Image weights & anchors = 5 0.989 0.983 0.986

PLT

Fitness function 0.964 0.962 0.963
Optimiser 0.964 0.940 0.952
Image weights 0.970 0.968 0.969
Anchors = 5 0.967 0.964 0.965
Anchors = 7 0.972 0.955 0.963
Class Weights 0.955 0.937 0.946
Focal loss 0.964 0.959 0.962
Image weights & anchors = 5 0.969 0.964 0.967

All

Fitness function 0.989 0.982 0.985 0.975
Optimiser 0.986 0.980 0.983 0.969
Image weights 0.989 0.982 0.985 0.978
Anchors = 5 0.989 0.982 0.985 0.976
Anchors = 7 0.987 0.981 0.984 0.974
Class Weights 0.986 0.980 0.983 0.966
Focal loss 0.990 0.981 0.985 0.974
Image weights & anchors = 5 0.988 0.982 0.985 0.976

5.2.6 Image Sizes

YOLOv5 SoTi trained and tested on image sizes 1152⇥736 and 1344⇥832 (120% 140% of
the image size 960⇥608). The image size 960⇥608 performed best on RBC, overall and
Macro F1 scores, see Table 5.10. The larger image sizes had the equal best F1 score for
PLTs.
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Table 5.10: YOLOv5 SoTi trained and tested on di↵erent image sizes, on the validation
set.

Class Image Size Precision Recall F1(@IoU 0.5) Macro F1

RBC
960⇥608 0.990 0.983 0.985
1152⇥736 0.985 0.983 0.984
1344⇥832 0.985 0.983 0.984

PLT
9604⇥608 0.970 0.968 0.969
1152⇥736 0.972 0.969 0.971
1344⇥832 0.970 0.972 0.971

All
960⇥608 0.989 0.982 0.985 0.978
1152⇥736 0.985 0.982 0.983 0.977
1344⇥832 0.984 0.982 0.983 0.977

5.3 Final Testing

This section presents results from testing the network that performed best on the validation
data, YOLOv5 SoTi, on the test set or subsets of it.

5.3.1 Image Sizes

YOLOv5 SoTi trained and tested on image sizes 960⇥608, 1152⇥736 and 1344⇥832. The
image size 960⇥608 performed best on RBC, overall and Macro F1 scores, see Table 5.10.
The image size 1344 had the best F1 score for PLTs and a higher PLT recall than the
image size 960⇥608, see Table 5.11. The inference time was significantly higher for the
larger image sizes.

Table 5.11: YOLOv5 SoTi trained and tested on di↵erent image sizes, on the test set.

Class Image Size Precision Recall F1(@IoU 0.5) Macro F1 Inference time

RBC
960⇥608 0.989 0.983 0.986
1152⇥736 0.985 0.983 0.984
1344⇥832 0.985 0.983 0.984

PLT
960⇥608 0.961 0.957 0.959
1152⇥736 0.954 0.964 0.959
1344⇥832 0.951 0.971 0.961

All
960⇥608 0.987 0.981 0.984 0.972 150ms/image
1152⇥736 0.983 0.982 0.982 0.971 220ms/image
1344⇥832 0.982 0.982 0.982 0.972 250ms/image

5.3.2 Stains

YOLOv5 SoTi tested on subsets containing the images with the stains WG, MGG and
W. Performance was best or equal best on the MGG set for all F1 scores, especially for
PLT F1 and Macro F1, see Table 5.12.
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Table 5.12: YOLOv5 SoTi performance on subsets with di↵erent stains.

Class Test subset Precision Recall F1(@IoU 0.5) Macro F1 Images (n)

RBC
W 0.994 0.978 0.986
WG 0.988 0.981 0.979
MGG 0.989 0.982 0.986

PLT
W 0.969 0.950 0.959
WG 0.967 0.963 0.965
MGG 0.979 0.989 0.984

All
W 0.993 0.977 0.985 0.973 48
WG 0.986 0.979 0.983 0.975 424
MGG 0.989 0.983 0.986 0.985 145

5.3.3 Deviating Cell Types

YOLOv5 SoTi tested on subsets containing the images with giant PLTs, abnormal RBCs
and Malaria/parasites is shown in Table 5.13. It should be noted that the subset denoted
’Giants PLTs’ consists of slides where more giant PLTs have been noted than normal,
and does not contain all the giant PLTs in the test set. The subset with abnormal RBCs
refers to abnormal shape, size and/or colour. The results below are not a comparison and
therefore do not have the best performances marked in bold.

Table 5.13: YOLOv5 SoTi performance on subsets with deviating cell types.

Class Test subset Precision Recall F1(@IoU 0.5) Macro F1 Images (n)

RBC
Giant PLT 0.991 0.986 0.989
Abnormal RBC 0.980 0.975 0.978
Malaria/parasites 0.989 0.981 0.985

PLT
Giant PLT 0.955 0.982 0.969
Abnormal RBC 0.967 0.949 0.958
Malaria/parasites 0.940 0.948 0.944

All
Giant PLT 0.989 0.986 0.988 0.979 111
Abnormal RBC 0.978 0.972 0.975 0.968 170
Malaria/parasites 0.987 0.980 0.983 0.965 143

5.4 Current Algorithms at CellaVision

This section presents results that separately compare the performance of YOLOv5 SoTi
and the algorithms currently used at CellaVision. All results in this section are based on
the test set.

5.4.1 RBC Count

Comparing YOLOv5 SoTi as an RBC counter to RBC CV per slide showed 3.8 percentage
points lower mean error, 6 percentage points lower standard deviation and 43.4 percentage
points lower max error, as can be seen in 5.14. Comparing the performance per region
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show similar numbers with 2.6 percentage points lower mean error, 4.95 percentage points
lower standard deviation and 24.1 percentage points lower max error.

Table 5.14: Comparison between YOLOv5 SoTi and RBC CV for counting RBCs. Cal-
culated per individual image and per slide region. Best (lowest) percentage in bold.

RBC Counter Mean error (%) Std error (%) Max error (%)

Per image
YOLOv5 SoTi 1.4 1.3 7.6
RBC CV 5.2 7.3 51.0

Per region
RBC SoTi 0.9 0.65 3.1
RBC CV 3.5 5.6 27.2

Plots of the RBC detection counts of YOLOv5 SoTi and RBC CV against the true counts
for all individual images can be seen in Figure 5.1 and for slide image regions in Figure
5.2. The plots show that YOLOv5 SoTi is the closest to the ground truth and that it
results in less outliers (unusually large errors).

Figure 5.1: RBC count predicted by YOLOv5 SoTi (blue) and RBC CV (orange) plotted
against the true number of RBCs in each individual image (948 images) in the test set.
Green line shows perfect count for reference.
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Figure 5.2: RBC count predicted by YOLOv5 SoTi (blue) and RBC CV (orange) plotted
against the true number of RBCs in each slide region (70 regions from a total of 22 slides)
in the test set. Green line shows perfect count for reference.

Images of the worst RBC count using RBC CV next to the count from YOLOv5 SoTi on
the same area are shown in Figure 5.3, and the reverse shown in Figure 5.4.

(a) YOLOv5 SoTi (0.04% error in entire region). (b) RBC CV (27% error in entire region).

Figure 5.3: Comparison of the two algorithms on a region where RBC CV performed
worst. YOLOv5 SoTi have both RBCs (red boxes) and PLTs (blue boxes) detected. The
di↵erence in image colour is due to (b) being modified by CellaVision software, but the
underlying images are identical.
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(a) YOLOv5 SoTi (3.1% error in entire region). (b) RBC CV (15% error in entire region).

Figure 5.4: Comparison of the two algorithms on a region where YOLOv5 SoTi performed
worst. YOLOv5 SoTi have both RBCs (red boxes) and PLTs (blue boxes) detected. The
di↵erence in image colour is due to (b) being modified by CellaVision software, but the
underlying images are identical.

5.4.2 PLT Detection

Performance on the test set for PLT CV and YOLOv5 SoTi shows PLT CV as the best
PLT detector based on F1 score and recall on all PLTs, see Table 5.15. Evaluating per-
formance on only large and giant PLTs separately yielded the same type of results, where
the F1 score was best for PLT CV in both cases, see Table 5.15. It should be noted that
YOLOv5 SoTi is trained and tested on image size 960⇥608 and PLT CV on image size
1088⇥704.

Table 5.15: Comparison between YOLOv5 SoTi and PLT CV for detecting PLTs of dif-
ferent sizes.

PLT Class Detector Precision Recall F1

All PLT
YOLOv5 SoTi 0.961 0.957 0.959
PLT CV 0.952 0.981 0.966

Large PLT
YOLOv5 SoTi 0.789 0.662 0.720
PLT CV 0.790 0.684 0.733

Giant PLT
YOLOv5 SoTi 0.475 0.422 0.447
PLT CV 0.654 0.405 0.500
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6 Discussion

Similarly to the results section, the discussion is divided into four main sections. The
first, Section 6.1, discusses the process and results of developing the RBC pseudo labelling
network as well as pseudo labelling as an area of improvement. The second, Section 6.2,
discusses the process and results of developing a network detecting both RBCs and PLTs
and the decisions made to select YOLOv5 SoTi as the final network. The third, Section
6.3, discusses the results of testing YOLOv5 SoTi on the test data and what conclusions
can be drawn from them. It also presents separate discussions for the class imbalance
issue and how RBC recall may have a↵ected the development process as well as ways of
improving it. The fourth, Section 6.4, discusses how YOLOv5 SoTi performed compared
to the current algorithms at CellaVision and whether it is an improvement, based on several
di↵erent aspects. The fifth and final section simply states the ethical considerations made
during this thesis.

6.1 RBC model selection

The initial RBC detector was developed as a tool for more e�ciently labelling the images
used in our data sets, but ended up being used as a pseudo labelling network. Due to
this initial purpose the RBC detector did not undergo as extensive experimentation and
testing as the later RBC + PLT detector. However, as it ended up being an integral part
of our work its development is discussed below.

Looking at Table 5.1 it can be seen that training on image sizes did little to improve
performance with the only improvement being for AP@0.5 by merely 0.01 when training
on 120% of the image size 960⇥608. A clear drop in performance is seen when decreasing
the image size trained on. This is expected as information is lost when down-sampling an
image. Although, sometimes down-sampling can increase performance as it may remove
noise and help the network generalise like for FPNs, see [51] and Section 2.4.2. The results
from this test should be taken lightly though, as we made the mistake of testing on the
image size 960⇥608 for all the networks. Testing the networks on the same image size as
they had been trained on would probably improve the results.

Little improvement was made when testing di↵erent YOLOv5 model sizes, although a
slight improvement was made across all metrics when using the small or medium models,
comparing Table 5.1 and 5.2. The rather small improvements here indicate the advantages
of larger models’ abilities to handle more information, but it is likely that our training
data was not large enough to make significant use of this. Testing model sizes with image
augmentations applied to the training data would possibly have have shown the advantage
of larger models.
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Lastly, applying di↵erent image augmentations to the small model size only improved
AP@0.5 and AP@0.5:0.95 by a small margin, comparing Table 5.2 and 5.3. We find this
quite surprising and rather interesting, considering that significant improvements to PLT
detection were later made when applying the same type of augmentations. Possible reasons
for this is that the augmentations used were the wrong ones or set to too high or low levels
for RBC detection, and that RBC and PLTs need di↵erent types of augmentation. It is
also possible that the RBCs not found and falsely classified were due to issues such as
overlap which may be di�cult to fix with augmentations.

6.1.1 Pseudo Labelling

The use of pseudo labelling in this thesis is an interesting topic which perhaps was not
explored as extensively as it could have. It was primarily used as a means of accessing
all PLT annotation data and we were therefore satisfied with RBC detection performance
not decreasing when adding pseudo labelled RBC data to the training set. As our work
progressed the performance was significantly worse on PLT and focus was therefore placed
on improving PLT detection, slightly neglecting the topic of improving RBC detection.
Since 72 % of the RBCs in our training set were pseudo labelled, see Figure 4.1, further
exploration and experimentation within the topic might have been a key to improving
RBC detection. Semi-supervised learning and subsequently pseudo labelling is a scientific
topic in itself with a lot of research presenting improvement techniques not explored here.

When using a network to pre-annotate data to later manually complete the annotations
as we initially did, a refined RBC detection network could be useful for others wanting
to e�ciently annotate images. A mistake made was having too low an IoU threshold
(0.6) during the validation when training the network, possibly being the reason for boxes
needing to be adjusted for more cells than what would be considered e�cient. This is seen
in Table 5.3 where the AP@0.5 is 0.987 and the AP@0.5:0.95 0.812 indicating that quite
a few boxes have an IoU in the lower range of 0.5:0.95. How large an IoU is necessary
depends on the aim. For the sake of simply counting red blood cells the IoU is of next
to no importance as long as the count is correct. However in applications where the user
wants to view each individual cell, as is the case in some CellaVision applications, a high
IoU could be crucial for getting a full view.

When the network is used for pseudo labelling, a higher IoU in both training and detection
could also be argued to be important. If the entire cell is not within the box or, reversely,
extra surrounding objects included in the box there is a loss or distortion of information.
The e↵ects of this may propagate through training and result in a worse performance than
would be attained with accurate boxes in the training set. When networks are developed
to perform a task previously performed by humans we want them to closely imitate how
humans approach the problem. If the boxes are di↵erent from those manually annotated,
the network no longer trains on what one expects it to and might form biases which are
hard to see, especially if performance is still considered good. This may have long-term
e↵ects if the network fails to generalise and one needs to understand why.
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6.2 RBC + PLT Detector

The initial evaluations of testing parameters individually showed small to no changes
in performance when training and testing on di↵erent model sizes, see Table 5.5, and
pre-trained weights, see Table 5.6. When applying augmentations PLT recall increased
remarkably, from a highest score of 0.885 to 0.952, see Table 5.7, using PLT CV’s aug-
mentations. The precision for RBCs increased slightly, but the recall remained at 0.982.
Why the augmentation had more e↵ect on PLT performance may have several reasons,
where the number of instances might be a crucial one. Augmentations add variation to
the images, in this case mostly regarding hue, saturation and value. This could lead to
a more robust network that is not as dependent on the colour being exactly as in the
training data, and for the network to be more confident in its detections. The fact that
the recall increased while the precision decreased could also strengthen the theory of the
network being more confident. More confident predictions would result in more detections
over the confidence threshold, including false positives. The RBC recall did not change
significantly regardless of the alterations to the model.

Adding a flip up/down to get more instances was wrongly assumed to increase the per-
formance. The assumption was that it would not change anything in the images, only
flip them up and down and therefore generate more data. The precision improved slightly
for all classes but the recall decreased, especially for PLTs which decreased from 0.955 to
0.936, see Table 5.8. The reason for this is not clear, but might have to do with added
generalisation of the over represented morphologies of PLTs. A flip could help if the train-
ing data does not have images with evenly distributed objects, meaning that the network
learns that objects are more likely to be located in certain parts of the images. Our train-
ing data is very evenly distributed, since the cells have similar probability to be located
anywhere on the slide, see Figure 4.4a, which might have given positional augmentations
less impact in the training. Adding a shear would possibly help increase the recall, since
the cells would get more variations in their shape. The shear neither increased nor de-
creased the recall significantly, and all other performance metrics were either unchanged
or lowered. Out of all remaining tested hyper parameters the ones that improved the
performance metrics significantly were anchors = 5 and ’Image weights’.

The image weights had most influence on improving the PLT performance, which was
reflected in the highest macro F1 score, see Table 5.9. Since image weights allow images
with the highest error to be more likely to be selected in the training, it is a reasonable
cause for the increased performance. However, the overall performance did not improve
as the precision, and therefore the F1 score, for RBCs decreased. This is interesting since
the error during training is calculated for the combined classes, where RBC performance
has more influence due to the superior number of instances. A possible reason for the
decreased RBC performance combined with the increased PLT performance is that the
images where RBCs had a high error contained RBCs that are di�cult to detect. Another
reason could be that the pseudo labelling of the images with bad performance for RBCs
was inadequate and several false positives existed. This would lead to a low precision and
a high error, and the network would be less confident in its findings when these images
get a higher probability for being selected during training. Since pseudo labelling is a
semi-supervised method where the user trusts a network trained on labelled data to make
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predictions on unseen data, its actual performance cannot be evaluated. This adds uncer-
tainty to the use of pseudo labels.

When combining ’Image weights’ and anchors = 5, we discovered that the performance
did not improve. This indicates that improvements from hyper parameters are not linear,
meaning that two hyper parameters improving performance individually does not imply
that they will improve the performance combined. It was still the network with image
weights that performed best at this point, why this network was kept.

Increasing the image size resulted in an increase of all performance metrics for PLTs,
while all metrics for RBCs were unchanged or decreased, see Table 5.10. The reason why
the performance increased for PLTs but not for RBCs might have to do with the sizes of
the objects. In the subsampling and convolution steps in a CNN, see Figure 2.11, some
information is lost, why smaller objects may loose to much of information for the CNN
to later detect. This together with the fact that the performance for detecting PLTs in
larger images has previously been stated to increase at CellaVision, see Section 2.5.3, are
examples of why this is reasonable. The size of a PLT is much smaller than for an RBC,
indicating that a larger image size would benefit the detection for these more than for
RBCs. An error made at this stage was to use the same down sampled images (960⇥608)
for up sampling to the larger image sizes, since down sampling results in loss of informa-
tion. A more correct way of testing di↵erent image sizes would be to down sample from
the original image size (1920⇥1200) to the sought after image sizes, which would possibly
yield even higher performance.

A deeper analysis of augmentations and di↵erent hyper parameters would be interesting
for increasing performance. Learning rate was not tested in this thesis, which according
to Section 2.4.9 could be an important hyper parameter to test. On the other hand,
the learning rate used in YOLOv5 is already a type of learning rate schedule, and may
therefore already be the optimal solution. Testing di↵erent hyper parameters is a very
time-consuming task. To improve the performance of our model more hyper parameters,
and especially the combinations of them, could be tested. As mentioned above, the im-
pact each hyper parameter has on the performance is not linear, meaning that even if
improvements were not seen from some hyper parameters, a combination of them might
be the optimal choice. To explore this further, an algorithm that explores many di↵erent
types of hyper parameters and combinations of them could be used.

6.3 Final Testing

Evaluating YOLOv5 SoTi on the test set yielded a lot of interesting results. Most promi-
nently a rather small drop across our chosen performance metrics was seen compared to
evaluating on the validation set. The macro F1 score only dropped by 0.006 and the over-
all F1 score by 0.001 (compare image size 960⇥608 in Table 5.10 and 5.11). There was,
regrettably, a drop in PLT performance despite series of e↵orts to improve it. Conversely
the RBC F1 score very marginally increased. This points to our validation data set being
well selected, which is further confirmed by its similarity in composition shown in Figure
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4.2 and 4.3. We consider the performance to be very good, especially considering that the
test set was selected by CellaVision prior to our thesis work, and considered to include
”di�cult” and diverse blood smear images.

Also training and testing YOLOv5 SoTi for di↵erent image sizes on the test set did not
improve neither overall F1 or macro F1 score. It did however improve the PLT recall
significantly for image size 1344, see Figure 5.11, confirming that an increased image size
can have a positive impact on PLT detections.

Dividing the test set into subsets based on the stains used in the images proved interest-
ing as there was a rather large di↵erence in performance between the subsets. The MGG
subset outperformed the others in macro F1 by a 0.01 margin, see Figure 5.12, which can
be seen as rather large considering previous testing in this thesis. This primarily came
from the performance on PLTs where the F1 score was the highest by almost a 0.02 mar-
gin and both the precision and recall the highest achieved in any test while developing
YOLOv5 SoTi, see Figure 5.12. There may be several explanations for this. It could sim-
ply be that the network was more easily trained to MGG images because of factors such
as contrast between cells and background. Considering the great performance on PLTs,
it is an indication that the MGG stain does this for PLTs. It is also possible that the
image slides considered ”di�cult” were more present in the worse performing stain subsets.

Dividing the test set into subsets based on the presence of giant PLTs, abnormal RBCs
(regarding shape, size and colour) and Malaria/parasites was primarily done hypothesising
that these subsets would be di�cult to detect on. Surprisingly, performance on the ’Giant
PLT’ subset was very good even for PLT detection, see Table 5.13. This is di�cult to
explain especially considering how poor detection is for large and giant PLTs on the entire
test set, see Figure 5.15, but could be that the image quality happens to be unusually
high in this subset. Despite there being a high presence of giant PLTs in the images in
this subset, there were only 111 images in the subset, and therefore not many giant PLTs
overall. This may lead to rather unreliable metrics. Less surprisingly, the presence of
abnormal RBCs decreased performance significantly across all metrics for RBC detection,
compare Table 5.11 and 5.13. The presence of Malaria/parasites did not a↵ect RBC per-
formance much but lowered PLT performance, compare Table 5.11 and 5.13, which could
be explained by this image category being rare and that parasites/inclusions can have
similar appearance to PLTs.

6.3.1 Class Imbalance

A lot of e↵ort was put into improving performance on PLT detection as it was always
trailing behind the performance on RBC detection. The e↵orts were successful, increasing
the PLT F1 score on the validation set from 0.897, see Table 5.5, to 0.971, see Table 5.10.
This was however still below the performance on RBCs.

It was identified early on that there was a heavy imbalance between RBCs and PLTs in
the training set, see Figure 4.2. Large class imbalances notoriously complicate classifica-
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tion/detection on the under represented class(es) in neural network tasks. Our e↵orts to
weight the classes’ contributions to the loss by using ’class weights’ was unsuccessful, but
the use of ’image weights’ showed a noticeable improvement, see Table 5.9. The e↵ects of
imbalance in PLT subclasses shown in Figure 4.3 can also be seen in Table 5.15.

Unfortunately, assessing the RBC/PLT imbalance in the training set is very di�cult as
RBCs will always be more present than PLTs in blood smear images. A possible solution
briefly discussed with our supervisors but not implemented, would be to cut out PLTs
from images and then add them in large numbers on top of the original images, thus
creating artificial data where the imbalance is much smaller.

6.3.2 Improving RBC Recall

An interesting aspect that was present throughout the RBC + PLT network development
process was the RBC recall. Viewing Table 5.5 - 5.11 one can see that it is 0.982 or 0.983
for every single test except two. The RBC recall was only higher than this when replac-
ing SGD with Adam as the optimiser used, see Table 5.9. A recall of 0.983 should be
considered a very good score, meaning that the network only fails to find and su�ciently
well box 1.7% of RBCs. Although impressive, the fact that recall barely ever changed
indicates that the same RBCs are consistently missed which points towards a weakness in
the training set. If this is the case we suggest two inter-related causes:

Imbalance in the training set. RBCs can, just like PLTs, be divided into sub-categories
based on morphology. Some of these morphologies di↵er largely in size and shape from
the norm. Figure 4.4b shows this as the vast majority of cells fall within a small range of
sizes with relatively square shape. At the same time there is a clear presence of infrequent
but very di↵erent sizes and shapes. This indicates an imbalance. Another indication is
that the RBC recall dropped to 0.975 when testing only on images from slides containing
a high presence of abnormal RBCs.

The pseudo labelling network’s weaknesses and biases propagating throughout our devel-
opment. Since the network developed for pseudo labelling did not go through as extensive
attempts of improvement as the RBC + PLT detector and was not even evaluated based
on recall, the RBC recall issue was not even noticed. If it was present at this stage, pseudo
labelling will likely have made under-represented RBC morphologies even more di�cult
to detect.

Lastly, a possible cause unrelated to RBC morphology is the di�culty of detecting over-
lapping objects. It can be seen that YOLOv5 SoTi sometimes struggles with overlapping
RBCs in Figure 5.4b. This may be improved with augmentations that exaggerate edges.
NMS could also be a reason as the algorithm may throw away overlapping detections, see
Section 2.4.6. We were aware of this but failed to implement variations of NMS which are
said to improve detection of overlapping objects, such as soft NMS described in [69].
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6.4 Comparison with current algorithms at CellaVision

Since the RBC algorithm used at CellaVision today is a segmentation algorithm and the
PLT algorithm is an object detector, the comparisons will be discussed separately.

6.4.1 RBC Count

Table 5.14 shows that YOLOv5 SoTi has 3.8 percentage points lower mean error on image
level and 2.6 lower on region level, compared to RBC CV. The lower standard deviation
of 6 percentage points on image level and 4.95 percentage points on region level indi-
cate YOLOv5 SoTi having less outliers both on image and region level. Additionally,
YOLOv5 SoTi has a 43.4 percentage points lower max error on image level and 24.1 per-
centage points on region level. Figure 5.1 shows that RBC CV predicts both too many and
too few RBCs in the individual images, which is rare for YOLOv5 SoTi. RBC CV also
has more extreme outliers, indicating that YOLOv5 SoTi is more robust. Since the region
errors shown in Figure 5.2 are made up of the images in Figure 5.1, the over estimations
by RBC CV may sometimes cancel out under estimations, thus improving results on the
regions. This can also be seen in Table 5.14 where the mean error, standard deviation
and max error are all lower for the entire regions than the individual images. Although
the error on the whole region is what matters from an application point of view, the large
individual image errors should be seen as a weakness from a scientific point of view. Figure
5.3 shows images from the worst performing region for RBC CV. Comparing Figure 5.3b
and 5.3a clearly shows that YOLOv5 SoTi found more of the RBCs in this image than
RBC CV, indicating an improved performance on these types of slides containing RBC
aggregations and/or this specific stain. Figure 5.4 shows images of the worst performing
region for YOLOv5 SoTi. It is clear that the overlapping RBCs in this region are hard
for the object detector to find, see Figure 5.4a. Despite this being the worst performing
region for YOLOv5 SoTi, it still has a 11.9 percentage points more accurate prediction
than RBC CV.

Overall we consider YOLOv5 SoTi to outperform RBC CV. As RBC CV is considered
good enough for clinical use, YOLOv5 SoTi should be too for RBC counting.

6.4.2 PLT Detection

As can be seen in Table 5.15, YOLOv5 SoTi has better precision than PLT CV, but lower
recall for all PLTs. The F1 score is also lower for our detector. This means that PLT CV
finds more of the PLTs, but that it has more false positives than YOLOv5 SoTi. How to
evaluate which model is -the best one- depends on the goal. Only looking at the F1 score,
PLT CV is the best performing one, as well as when it is most important to find many of
the PLTs. On the other hand, if it is more of interest that the findings are true positives,
YOLOv5 SoTi is the best performing one. To get the recall higher on our model, an idea
would be to lower the confidence threshold during detection. This would most likely result
in more findings, where both true and false positives would be included. In that case, the
precision would decrease and the recall increase.
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When comparing the performance for large and giant PLTs, the metrics are higher for
PLT CV in all categories except for the giant PLT recall, see Table 5.15. There is not a
big di↵erence between the two networks’ performances, except for the precision on giant
PLTs. The metrics on large and giant PLTs are hard to compare, partly because of the
low number of instances. In the test set there are 1152 large PLTs, and only 53 giant
PLTs, see Figure 4.3. In addition to this, our evaluation algorithm is very sensitive to the
sizes. For example, if a bounding box for a PLT in the ground truth file is 4µm, and in
the detection file only 3.999µm, the large PLT would be considered as a false negative.
The same would apply to the border between large and giant PLTs. A way to improve
the detection of large and giant PLTs would be to gather more data, since giant PLTs are
especially under represented in the training data as well.

6.4.3 Inference Time

When working with clinical applications like this one, performance versus speed is some-
thing that always needs to be considered. PLT CV has an inference time of 89ms/im-
age and RBC CV of 211ms/image, with a total of 300ms/image. YOLOv5 SoTi with
image sizes 960⇥608, 1152⇥736 and 1344⇥832 had the inference times 150, 220 and
250ms/image respectively. Based on these inference times, all three image sizes tested
with YOLOv5 SoTi have a lower inference time than today’s algorithms. RBC CV and
PLT CV work simultaneously, meaning that they have to share the processor power. This
in combination with the segmentation algorithm being slower results in the slower anal-
ysis. The advantage with YOLOv5 SoTi is that both analyses are done simultaneously,
meaning that there is only one process running at a time, resulting in a lower inference
time. Depending on what is considered most valuable in terms of performance (precision
or recall) and inference speed, di↵erent models or image sizes would be considered the
best one.

6.5 Ethical Considerations

The blood samples used in this master’s thesis did not contain any patient data for the
sake of patients’ security and integrity.
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7 Conclusion

In summary, this master thesis has shown it possible to achieve good results with a multi-
class object detector, detecting both RBCs and PLTs. The performance for counting
RBCs proved to be an improvement compared to the segmentation algorithm currently
used at CellaVision, as a result of more accurate and robust predictions. Meanwhile,
the performance for detecting PLTs was slightly lower than for the current algorithm.
The inference time for YOLOv5 SoTi was lower than the combined inference time of
CellaVision’s RBC and PLT detection algorithms.
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8 Future Work

There are several possible improvements and experiments that could be performed if al-
lowed to continue with the work presented in this thesis:

Deeper analysis of what types of cells or stains the network performs poorly on would be
interesting. If this could be isolated, these types should be added to the training data to
improve the data diversity and balance, and possibly increase performance.

A more extensive evaluation of the pseudo labelling would also be interesting. If the pseudo
labelling lacked in performance for some types of RBCs, it could possibly be improved. It
would also be interesting to compare the network used for the initial pseudo labelling and
YOLOv5 SoTi on RBC performance. If YOLOv5 SoTi performed better than the pseudo
labelling network it could be used for generating new, more accurate, pseudo labels. This
approach could be repeated until the best performance on RBCs, and thus the best pseudo
labelling network, is achieved.

If the inference time would turn out to be too high, all model and hyper parameters for
YOLOv5 SoTi could be applied and modified for a nano network, possibly in combination
with the exploration of an algorithm that explore di↵erent combinations of parameters.

Lastly, a further development of YOLOv5 SoTi could be to teach the network to classify
di↵erent types of cell sub classes. RBCs can for example be classified based on size, colour
and shape, as well as the presence of parasites, such as malaria.
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A Full YOLOv5 Architecture

Figure A.1: Top half of full YOLOv5 architecture.
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Figure A.2: Bottom half of full YOLOv5 architecture.
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