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Abstract

Machine downtime is an important subject in manufacturing because of its
connection to production rate and business profit. The causes of machine down-
times are diverse and understanding the cause is critical to have actionable infor-
mation, identify areas of improvement and set specific targets. This master’s the-
sis explores the possibility of using machine learning to classify downtime events
for machines in connected factories. In this study we use data from a Swedish
Lithium-ion battery producer. We collected downtime data from one machine in
one facility and combined it with data on active alarms from this same machine.
The data was analysed, cleaned and features were selected for modeling. We im-
plemented five baselines: three naive ones and two simple supervised learning
models (Naive Bayes and Decision tree) and two ensemble models (Random for-
est and XGBoost). For correctly classifying a downtime event with one out of
17 categories, the Random forest model performed the best with an accuracy of
38.9%. When giving a Top-5 suggestion of the top five most probable categories
for a downtime event, the Random forest model was the best with an accuracy
of 82.3%. The results show that alarms being active during a downtime has a
correlation with the reason of the machine being down. The findings indicate
that machine learning can be used to determine the cause of downtime events
but that more data is needed to get a higher accuracy.
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Chapter 1

Introduction

This chapter gives an introduction to the background and goals of this master’s thesis project.
The scope of the project is presented, along with assumptions and limitations. Previous re-
search and it’s relation to this master’s thesis is established.

1.1 Background
This master’s thesis project was performed in collaboration with the Swedish company North-
volt. Northvolt was founded in 2016 in Stockholm and aims to become Europe’s leading sup-
plier of sustainable, high-quality battery cells and systems. The company produces lithium-
ion cells and has more than 3,000 employees and sites in Sweden, Poland, Germany, Norway
and USA.

Northvolt wants to bring Industry 4.0 to batteries and set a new standard in the digital-
ization of battery assets. The company is harnessing data from every process in it’s manufac-
turing and tagging battery materials and components with metadata, so that it later can be
used for analysis. Northvolt has more than 150 employees working specifically with digital-
ization and expects that its adoption of it will bring about a significant competitive edge.

1.2 Problem description
Northvolt has machines in their production facilities that can either be in a producing state
or in a non producing state, referred to as “down” in this thesis. A machine that is down can
be so either due to a planned or unplanned reason. A planned reason could be "scheduled
break" and an unplanned one "machine breakdown". Northvolt is recording and storing data
on when their machines are down. It is vital for the company to understand the causes behind
this to increase productivity.
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1. Introduction

For a machine called stacker situated in one of Northvolt’s production facilities, operators
(employees who operates equipment or a machine as used in production) are manually adding
a category to why the stacker is down. Northvolt wants to examine the possibility of auto
categorizing these so called ’downtime events’ using machine learning. This master’s thesis
will therefore investigate the potential of using machine learning to automatically classify
and identify the reason for the stacker not being in a producing state. Furthermore, there are
business incentives behind successful autocategorization. It allows operators to save valuable
time since they don’t have to manually classify downtimes and it enables storing of valuable
data for further analysis. Analysis using the stored data can in turn lead to less downtime
and increased productivity. This could help Northvolt remain competitive.

1.3 Research question
The goal of this thesis is to contribute to Northvolt’s digitalization journey. Specifically, we
explore machine learning (ML) in the context of availability analysis and management. We
aim at helping Northvolt utilize ML to understand why a machine is unavailable.

RQ1 How can Northvolt use machine learning to understand why a machine is unavailable?

RQ2 How can a classifier autocategorize downtime events from a machine given alarm and
downtime data?

1.3.1 Scope
This thesis is a proof-of-concept and explores if autocategorization of downtime events can
be done. The focus is exclusively on data from a machine called stacker in one of Northvolt’s
production facilities. The stacker as a machine is chosen as a good proof-of-concept since it
is a very complex machine, meaning that if autocategorization works for the stacker, it could
achieve better results for other less complex machines. The scope is to use historical down-
time and alarm data from Northvolt. A fully working application to be used in production
is not in the pipeline. Additionally it is not in the scope to predict the category for planned
downtimes since these are planned gaps in the production schedule.

1.3.2 Assumption
The category which the operator has selected to classify each downtime event with is deemed
to be accurate.

1.3.3 Limitations
To autocategorize downtime events we will use alarm data sent from a machine. More details
on alarms is presented in 3.2. A machine is an individual unit that may consist of several
modules. A limitation is that alarm data is sent for a unit whereas downtime events are sent
per module, see more details of this subject in 2.2. This means that we have more granular
information about each downtime event than of alarms. This adds a level of complexity since
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1.4 Related work

we won’t know if a certain alarm received on unit level has anything to do with a particular
module having a downtime. Another limitation is that the factory which we use data from is
partially used as a testing and training facility and partly production facility. This may result
in discrepancies in the data.

1.4 Related work
The use of Internet of things (IoT) techniques in industrial applications offers a new approach
for factories built now and in the future. [27]. Embedding Industry 4.0 concepts into the
manufacturing sector enables the interconnection of anything, anywhere and at any time to
improve the the productivity and efficiency [27]. Northvolt aims to embed Industry 4.0 into
their battery gigafactories and build up a digital infrastructure that can enhance production
and battery performance.

In Advances in Machine Learning Detecting Changeover Processes in Cyber Physical Production
Systems the authors used machine learning to determine automatically if a machine was either
running or not running due to changeover being performed. The authors argued that with
increasing data from machines due to the interconnection of them, traditional methods and
analytical models have reached their limitations and they suggest that machine learning could
be a good means of evaluation the data. Decision Trees and Ensemble Classifiers was imple-
mented in the research and showed good results for the classification problem. Their type of
Decision Tree algorithm achieved an overall accuracy of 92.8% [5]. In our thesis we use alarm
data from a machine whereas in the paper sensor data was used from five sensors from their
machine. Also, their classification problem only had the two target variables "changeover" or
"production", whereas we have 17 different ones (53 in the initial dataset). This introduces a
lot more complexity for the classifiers implemented in this thesis and we therefore expect a
lower accuracy. In their work they also had 36,844 datapoints recorded and labelled whereas
we in our final dataset have 1735, so approximately 95% less data.

In Downtime Data Classification Using Naïve Bayes Algorithm on 2008 ESEC Engine the au-
thors show the potential of using a Naive Bayes algorithm to classify diagnostic history data
for a certain type of machine [14]. The results shown are especially interesting for this thesis
since it clearly shows the potential of using machine learning to understand why a machine
is unavailable. However, the dataset as a whole is not the same as in this thesis and they have
only two target variables to predict whereas we have 17. There are several other implementa-
tions in different areas using Naive Bayes classifier such as [3] and [17], [9] where it has shown
good performance. In this thesis, Naive Bayes classifier will therefore be used as a baseline
model to compare our implemented models against.

Another classification model widely used in many research settings is the Random forest
model [24]. In Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
179 different classifiers and 121 datasets were evaluated and the authors concluded that the
Random forest versions were most likely to perform best for any dataset [6]. A major benefit
of using Random forest for prediction modeling is the ability to handle datasets with a large
number of predictor variables [24]. Since our dataset has many predictor variables Random
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forest seem like a good model to handle this with.

Combining Random forest with XGBoost is used in a paper for fault detection in wind
turbines [28]. In the proposed design, Random forest is first used to rank the features by
importance, and then the XGBoost model trains the ensemble classifier for each specific
fault. In this thesis, both Random forest and XGBoost will be evaluated but not used in this
combination. The authors showed that the proposed design was robust and showed strong
anti-overfitting ability. [28]

1.5 Contribution
This thesis aims to give knowledge and methods into how historical production data can be
utilized to categorize downtime events. It is a a proof-of-concept to see if machine learn-
ing can be used to determine the cause of downtime events for machines within the battery
industry and indicate whether or not it can be implemented and rolled out for the remain-
ing production equipment. It will also give information regarding what features make good
predictors for downtime events.
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Chapter 2

Theory

This chapter presents necessary theory in order to comprehend the project approach and
interpret the results. Overall Equipment Efficiecy is introduced and downtime as a concept is
defined. The process equipment is briefly presented and the current Downtime Management
System is introduced. A selection of Machine learning models along with their corresponding
evaluation metrics are presented.

2.1 Overall Equipment Efficiency
Productivity improvement is one of the biggest challenges for manufacturing companies in
order to remain competitive in a global market [15]. Companies need to improve and opti-
mize their productivity [10]. A well known way of measuring the effectiveness of a production
facility is using the Overall Equipment Effiency (OEE) metric. OEE was first described by
Nakajima in the 1980s and is used to measure the effectiveness and evaluate manufacturing
operations across the industry [10]. OEE identifies the percentage of manufacturing time
that is truly productive using three underlying factors: availability, performance and quality.
OEE is calculated by multiplying three parameters:

OEE = Availability × Performance ×Quality

Availability is calculated with:

Availability =
Total Hours Planned - Lost Time

Total Hours Planned
Performance is calculated with:

Performance =
Actual Machine Speed

Designed Machine Speed

Quality is calculated with:
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2. Theory

Quality =
Number of Good Parts

Total Parts Made

An OEE score of 100% means that the company is manufacturing only good parts, as
fast as possible, with no downtime. The metric helps identify areas of improvement and set
specific targets [21].

2.2 Stacker
A stacker is a machine used in the battery manufacturing process. It is one of the most
complicated process steps in the battery manufacturing process at Northvolt, so high quality
downtime data is of utmost importance. Northvolt has together with the supplier of the
machine created a structured modular breakdown of the parts of the machine that performs
a specific task. It is divided into six different modules where each module has it’s own unique
identifier.

Downtime data is gathered on module-level. If a module in the stacker is down that does
not necessarily mean that the entire stacker is down. Alarm data for the stacker is however
received on unit level, see 2.1 for an overview of how the alarms and downtime signaling is
done. This causes a level of complexity when interpreting what alarm is related to which
downtime event, more on this subject underneath and how the problem is mitigated under
3.2.4. The data used in this master’s thesis comes from a stacker located in one of Northvolt’s
production facilities.

Figure 2.1: Unit and module levels for a stacker. To the left one may
see how the alarm signal is handled on unit level, whereas the right
side of the figure shows how the downtime signals are handled on
module levels a-f. For details on what the functions of OPC UA is,
see 2.3.1

12



2.3 Downtime

2.3 Downtime
Machine downtime is an important subject in manufacturing because of its connection to
production rate and business profit [16]. Reducing downtime in production processes is vital
since it serves the purpose of maximising machine uptime, increasing the productivity of the
machine. Every lost minute of operation can translate into significant cost to a firm due to in-
creased lead times and a negative impact on customer satisfaction [1]. The causes of machine
downtimes are diverse and differ from one machine to another. Causes can include problems
with the actual machines such as machine breakdowns or be due to other factors such as a
cleaning, a machine operator being unavailable or change of material. Understanding the
cause behind a downtime is critical to have actionable information.

2.3.1 Downtime Management System at Northvolt
Norhtvolt has an internally built Downtime Management System. The system enables auto-
matic recording of downtime events for a machine. It’s purpose is to identify, categorize and
manage downtime events. Tracking and storing of the data makes it possible to accumulate
downtime on units, process areas, and factories and see statistics about the most contribut-
ing factors of downtime bottom-up. This gives Northvolt a standardized way of measuring
downtime across all sites and units enabling comparison.

The structure of the Downtime Management System is presented in 2.2. The flow of
information goes from labels 1-5 as seen in the figure.

Figure 2.2: Overview of the Downtime Management System infras-
tructure
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2. Theory

• 1 – Stacker: One of the modules a-f registers that a stop of production has occurred
and sends a signal to the OPC UA server.

• 2 – OPC Unified Architecture (OPC UA): OPC UA is an interoperability standard
for secure and reliable exchange of data from sensors to cloud applications. [7] The
OPC UA server calls data from the machine on a refresh cycle.

• 3 – Mapper: When signal conditions from the OPC UA server indicate a stoppage, an
event is created in the mapper that represents that stop. The mapper runs on factory
machine gateways and is the link between the machine and the internal cloud services
at Northvolt. The internal cloud services, such as the Downtime Service can then read
and process data from the mapper.

• 4 – Downtime Service: Events from the mapper are streamed via Amazon Kinesis Data
Streams and are processed and captured by Northvolt’s Downtime Service. Amazon
Kinesis Data Stream is a serverless streaming data service. [2] When the Downtime
Service receives an event from the mapper that indicates a stoppage for a machine,
the service creates a downtime event with information from the event and stores it
in a non-relational database called DynamoDB. When the Downtime Service receives
a corresponding event indicating that the machine is running again, a timestamp is
added to the downtime event and duration is calculated.

• 5 – Operator User Interface (UI): Once the Downtime Service has registered a down-
time event a machine operator will be able to view this in an Operator User Interface
(UI). The Operator UI gives operators, the users, an opportunity to view downtime
events in real-time and manually categorize the reason to why a specific downtime oc-
curred. The user categorizes by choosing from a list of predefined categories and can
also add comments. See Operator UI in 2.3.
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2.4 Machine Learning

Figure 2.3: Northvolt’s Downtime Operator User Interface, the view
for when a user is opted to pick a downtime reason for a specific
machine that most correctly represents the actual stop. (Fictive data
due to confidentiality reasons)

Downtime categories
There are general and machine specific categories. The general ones are available for all ma-
chines whereas the machine specific ones can only be chosen as a category for that machine.
An example of a machine specific category for the stacker is that a certain knife needs to be
changed.

There are so called ’admin’ users for the Downtime Management System that are the
ones with knowledge of the machines and responsible of configuring and adding downtime
categories that should be available for that machine.

2.4 Machine Learning
Machine Learning (ML) is a subsection within Artificial Intelligence (AI) which is used to
develop algorithms that, based on a dataset, natively can learn and evolve it’s ability to create
predictions and decisions. The three key areas of ML can be divided into supervised learn-
ing, unsupervised learning and reinforcement learning. [11] In this master’s thesis supervised
learning models will be implemented. For supervised learning models data is provided in
so called input-output pairs. It is up to the model to identify what input values that entails
which output value. Data is divided into input values, referred to in this thesis as features
and output values, referred to in this thesis as target variables. The data is then split into
training and testing datasets, by which the training data is used to build the model and the
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2. Theory

testing data is used to verify how the model performs. The data used in this thesis may easily
be divided into input-output-pairs and therefore supervised learning models are considered.
During the training phase of a machine learning algorithm the quality of the so called fit is
of great importance. Underfitting is when a model is unable to find the pattern of a training
set’s inputs and relation with its outputs. An underfitted model will perform poorly on new
unseen data points as well. Overfitting is when the model is unable to find underlaying pat-
tern between a training set’s inputs and relation with its outputs, instead it takes the noise
into account which makes the model to perform with a high score on the training data, but
poorly on new unseen data.

2.4.1 Simple supervised learning models
Naive Bayes
Naive Bayes classifier generates predictions based on Bayes Theorem 2.1.

P(A|B) = P(A)
P(B|A)
P(B)

(2.1)

It states that we can identify the probability of A happening given that B has occurred.
This can be rewritten with X for the n number of features, such as the alarms in our case,

and y for the classes, which correspond to downtime categories in our case. The formula then
looks like 2.2.

P(y|X) = P(y)
P(X|y)
P(X)

X = (x1, x2, x3, ..., xn) (2.2)

As seen in 2.2 this is a rough predictor which does not have any means of giving different
features different weights. This is a probabilistic model which takes the probability distribu-
tion of the inputs to see if there is a pattern towards the outputs. Any correlation of features
will not be detected with this model.

Decision tree
A decision tree is a simple machine learning algorithm which utilise a tree-like structure
for classification. The goal of the model is to make a decision and predict the value of a
target variable by learning simple decision rules deduced from the data features. It is used
in decision analysis and helps map out different courses of action, as well as their poten-
tial outcomes. The decision tree consists of a root node, decision nodes and terminal nodes
(sometimes referred to as leaves) which are connected via branches. [12]

The root node is the beginning of the tree and represents the entire population being
analysed. From that point, the population is divided into sub-groups. Each decision node
has an attribute that is tested and depending on the decision being taken, a branch will be
chosen from that to either a succeeding decision node, or a terminal node. This process is
then repeated until a terminal node, representing a class label, is reached. The decision nodes
are decision branches with each one representing a possible alternative from that point. The
alternatives must be mutually exclusive meaning that if one branch is chosen, the others
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2.4 Machine Learning

cannot be chosen. The alternatives must also be collectively exhaustive meaning that all
possible alternatives must be included.

How to split at each node is made according to a metric called purity. If all of the data
in a node belongs to a single class it is 100% pure and if it is split evenly into two subsets it
is 100% impure. This metric is used by the model to optimize the splits. There are two main
ways of determining the purity of a split, entropy and gini impurity. They are both used to
calculate how the proportions of different classes stand after a split. For a decision tree used
for binary classification entropy varies between 0 and 1. An entropy of 0 is equivalent to a
node with only one class, whereas an entropy of 1 is equivalent to a node which contain equal
part of each two classes. Entropy is mathematically defined as H in: 2.3

H =
c∑

n=i

Pilog2(pi) (2.3)

Where c is the number of classes and Pi denotes the probability that one randomly chosen
sample of label i is retrieved from the set.

Entropy may be used to calculate information gain. By using information gain a model
can evaluate different potential splits of a node to minimize entropy for future nodes. Infor-
mation gain can simply be expressed as how much entropy that is removed from each split.
See information gain, denoted IG in 2.4.

IG(S, A) = HS −
∑

v∈values(A)

(Sv)
(S)

H(Sv) (2.4)

Hs denotes entropy of the subset S, before splitting on attribute A. Sv Refers to the subset of
S after splitting. So by maximizing IG one lowers H between splits which in turn will yield a
higher level of purity in the split. This results in the terminal node being reached with fewer
steps and hence the predictive power will be greater and level of overfitting lower.

Decision trees provide a clear indication of which fields are most important for predic-
tion or classification. Decision trees are prone to overfitting once the model becomes more
complex and the tree is deepened. To combat this, there exist a technique called decision tree
pruning which eliminates irrelevant nodes. Decision trees can be unstable because small vari-
ations in the data might result in a completely different tree being generated. This problem
is mitigated by using multiple decision trees within an ensemble, see 2.4.3.
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2. Theory

2.4.2 Ensemble techniques
Ensemble techniques aim to improve the overall performance and achieve a higher level of
prediction quality by combining multiple simple models and their outputs into a single pre-
diction. This can assist in preventing overfitting and reducing the bias of a model. [8]. In
this section three ensemble techniques are introduced which are used by the ensemble models
presented in section 2.4.3.

Bagging
Bagging is a method with the goal to reduce the variance within the dataset. In bagging, the
training data is randomly split into multiple sub-samples of the original training set. The split
is done using sampling with replacement, meaning that each data point randomly selected
from the original training set is returned to that set before the next data point is selected.
Sampling with replacement ensures that the probability of choosing any specific data point
remains constant. After the split, each of the sub-samples are provided to the models to be
trained on. Once the models are trained they are tested with data from the testing set to
create their individual predictions. The final prediction from each individual model is then
aggregated. For classification models the majority result is the prediction that is outputted.
For regression models the mean value is used instead. In bagging, the [13]

Boosting
Boosting is a method for improving the predictions of any given learning algorithm. In boost-
ing, models are trained sequentially, meaning that the following model is trained on data
which the previous model had troubles to predict. The idea is that each model tries to com-
pensate for the weaknesses of the previous one in order to improve the overall accuracy of all
models. The method iteratively have models complement each other to create good predic-
tions.

Random subspace
Random subspace method, also called feature bagging, is a method which trains models in
an ensemble on random samples of features instead of the entire feature set. The different
models will have access to a different set of features and hence provide a level of variability
which can provide a higher level of quality predictions once combined. The reason for this is
that if one or a few features are deemed strong predictors then the individual models may be
strongly correlated and hence they will overall predict the same outcome to a higher degree.

2.4.3 Ensemble models
Random forest
Random forest is a supervised machine learning model made up of a collection of decision
trees to circumvent some of the downsides of decision trees. Once the Random forest model
is trained and exposed to the testing set each decision tree will make its own prediction and a
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2.4 Machine Learning

majority vote is made to determine the most probable prediction. The Random forest model
combines the output of the decision trees to reach a single result. For classification models,
the prediction outputted by most of the decision trees is the result. For regression models,
the predictions from the individual decision trees are averaged and used as the result. The
Random forest model uses both bagging, described in 2.4.2 and random subspace, described
in 2.4.2 to create an uncorrelated forest of decision trees. Random subspace is used to create
an element of variation for the decision trees and reduce the data for the individual models
in terms of both samples and features. [4]

XGBoost
XGBoost is a decision-tree based machine learning model which uses gradient boosting tech-
niques and can be used for both regression and classification purposes. Gradient boosting
differs from ordinary boosting, as described in section 2.4.2 underneath "Boosting", by using
the gradient of the loss function between iterations. The XGBoost classifier is deemed to
be one of the most powerful machine learning algorithms when the dataset is sized small to
medium.[25]

2.4.4 Evaluation metrics
Accuracy
Accuracy is the percentage of how many of the predictions made by the model that are cor-
rect. It is calculated as :

accuracy =
Truepositive + Truenegative

Truepositive + Truenegative + Falsepositive + Falsenegative

Precision
Precision is the ratio between how many positive predictions a model classified correctly and
the total number of positive predictions made by the model. It is calculated as:

precision =
Truepositive

Truepositive + Falsepositive

Recall
The recall is the ability of the model to find all the positive samples, it returns a value of how
many true positive a model recalls. It is calculated as:

recall =
Truepositive

Truepositive + Falsenegative

F1-score
The F1-score can be interpreted as an average, or harmonic mean, of the precision and recall.
An F1 score of 1 is max, and 0 is min. It is calculated as:

19



2. Theory

F1-score = 2 ×
precision × recall
precision + recall

For precision, recall and F1-score we can also get a weighted and macro average. The
weighted average considers how many of each class is in the dataset, whereas the macro av-
erage does not.

Top-N accuracy
Top-N accuracy is the standard accuracy of the true class matching to any of the N most
probable classes predicted by the classification model. A classification is considered correct
if any of the N predictions equals the correct class.

2.5 Hyperparameter tuning
Machine learning models has a set of parameters that can be tweaked to achieve better per-
formance with regards to the different evaluation metrics, described in section 2.4.4, and
overfitting.

2.5.1 Random forest parameters used for hyperpa-
rameter tuning

See table 2.1 for a list of parameters used in hyperparameter tuning for the random forest
model. [23]

Table 2.1: Hyperparameter description - Random forest

Hyperparameter Description
n_estimators Determines the number of trees used in the random forest
criterion The function in use to calculate the quality of a split. See more

details regarding the criteria "Entropy" and "Gini" in section 2.4.1.
max_depth The maximum depth of the trees, restricting the number of splits

done.
max_features The maximum number of features considered for splitting the

trees.
min_samples_split The minimum samples needed in to allow splitting a decision

node. Restricting this will result in reaching the terminal node
earlier and decide how well the model will fit.

min_samples_leaf The minimum samples needed to define a cell as a terminal cell
(also called leaf cell) and stop the splitting from proceeding
further, no matter what the inpurity is.
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2.5.2 XGBoost parameters used for hyperparameter
tuning

See table 2.2 for a list of parameters used in hyperparameter tuning for the XGBoost model.
[26]

Table 2.2: Hyperparameter description - XGBoost

Hyperparameter Description
colsample_bytree The subsample fraction of features to be used for training each

tree. The selection is at random
gamma Regularization parameter used to control the loss reduction.
learning_rate Parameter used to control the speed of correction between each

iteration of the boosting steps. May have implications for
counteracting overfitting.

max_depth Parameter used to control the maximum depth of the trees. To
high depth of trees can cause the model to overfit.

n_estimators Number of boosting rounds, and gradient boosted trees
subsample The fraction of the training sample that will be used when training

each tree. The selection is at random
tree_method Defines the type of algorithms used to build the model as a whole
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Chapter 3

Approach

This chapter presents the overall approach of this project. It is divided into a methodology
part, a data section as well as baseline and modeling sections.

3.1 Methodology
In this master’s thesis project we follow a framework called Cross-Industry Standard Pro-
cess for Data Mining (CRISP-DM) to structure the workflow. See figure 3.1 for an overview
of the process. The process is iterative and contains six parts: business understanding, data
understanding, data preparation, modeling, evaluation and deployment. The following sub-
sections cover the approach process by process, whereas specific details on data adjustments
and modelling is presented under the respective sections 3.2 and 3.4 [19]

Figure 3.1: Overview of the CRISP-DM process. (CC-BY-SA-3.0
Kenneth Jensen)
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Business Understanding
Business understanding is crucial to create a project roadmap and understand the problem
at its core. In this thesis information was gathered through interviewing software engineers,
process engineers, project managers and operators at Northvolt. The interviews were con-
ducted in a semi-structured manner and the purpose was to understand the problem at hand
and the data available as well as to gain domain-specific knowledge. The information gained
is reflected and used throughout this thesis: from which machine we should collect data from,
what data is included in the dataset, how it’s gathered, what limitations there are and so forth.

We gathered an overall understanding of what the Downtime Management System at
Northvolt is and how it works, described in 2.3.1. Additionally, information was used to
improve the data quality by performing different data cleaning steps 3.2.4. Once researched
we understood that the problem we needed to solve was a so called multiclass classification
problem.

Data Understanding
There is stored downtime data for the stacker available from June 2021. The dataset used in
this thesis therefore contains data from June 2021 to April 2022.

Data Understanding was an exploratory phase where we analysed the dataset, as described
in 3.2.3. Data Understanding and Data Preparation was treated in an iterative fashion, ad-
justment on the data meant that new conclusions could be drawn and further adjustment
followed. An overview of the data is described in 3.2.

Data Preparation
The data available needed cleaning and restructuring. The data cleaning included removing
downtimes with more than one label, removing downtimes with no category and relabeling
downtimes with an outdated category to a new one. Further details on this subject is pre-
sented in 3.2.4. In terms of restructuring the data we rearranged it in order to have each and
every row represent a downtime event and alarms, along with the other features, represented
as columns. see figure 3.3 for an illustration of the final dataset. Data preparation is impor-
tant since all investments in data quality can be transferred between the models, which is not
true for model code.

Modeling
Five baselines were established. The models were evaluated in accordance with the CRISP-
DM model, and iterated with new models being added. Features were added and their relative
importance was reviewed. In section 3.3 the process of introducing the baseline is presented
and in section 3.4 details of modeling is described.

Evaluation
We evaluated the models using the following metrics: accuracy, precision, recall and F1-score.
Additionally, the company wanted to know the Top-N accuracy for each model and it was
therefore also used. For further detail in this subject, see section 2.4.4.
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Deployment

The deployment step is not within the project scope. In section 5.2 we discuss how a future
deployment could look like.

3.2 Data

3.2.1 Data Gathering
The data gathering step included merging of data from two data sources into one table. A
SQL query was written to retrieve data from one table with downtime events and one with
alarm events. The data was extracted from a database and converted into a Comma Separated
Values (CSV) file format, which is suitable for processing [14]. To join the downtime and
alarm data together we used an inner join with the condition of alarms occurring from and
including the start and end time of a downtime event. See figure 3.2 for more details.

Figure 3.2: Three downtime events are illustrated. Downtime 1 and
Downtime 2 have alarms that are active (as seen in orange) during
the respective downtime events. During the timeframe of Downtime
3, no alarms were active, and Downtime 3 is therefore excluded from
the dataset. The alarms in grey are also not included in the dataset
since they don’t occur during a downtime event.

We excluded downtime events from our dataset that had no active alarms. This was done
since the features of determining what type of downtime that has occurred is in the alarm
data.

3.2.2 Dataset
The final dataset is a combination of downtime and alarm data. Every row represents a
unique downtime event. As can be seen in figure 3.3 our final dataset contains 1735 unique
downtime events, one target variable (encoded category) and 601 features.
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Figure 3.3: Final dataset

• Encoded category is the numerical encoding of which category the downtime event
belongs to. This is the target variable which our models will try to predict.

• Duration as described in section 3.2 underneath "Downtime". The reason to include
duration as a feature is because there appeared to be a pattern between downtime
categories and average downtime duration as covered in section 3.2.3 and showed in
figure 3.7.

• 1-1293 are columns each representing one unique alarm. There were initially 1293
unique alarms for the stacker, but as described in section 3.1 underneath "Features"
694 of these were removed. One of the removed alarms was alarm with ID 4, as can be
seen in figure 3.3 the column number 4, is not present in the final dataset. The number
in the rows of these columns represent how many times the alarm was active during
that downtime event. E.g. in the column named ’1’ it has a value of 11 in the first row
and a value of 0 in the second row. This means that for the first downtime event the
alarm with ID 1 was active 11 times and for the second downtime event it was never
active. Instead of just showing a boolean of True or False to indicate that an alarm has
been active during a downtime a decision was made to provide the number of times
it had been activated during each downtime event since section 3.2.3 showed that the
number of active alarms for each downtime vary between categories.

• Encoded module name is a numerical encoding of which module the downtime event
belongs to.

Downtime
Each unique downtime between June 2021 to April 2022 is represented as a row in the dataset.
Data attributes used in this thesis about each downtime event is as follows:

• ID: a unique identifier assigned to each individual downtime. The ID is generated upon
the creation of a downtime event in Northvolt’s Downtime Service.
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• Actor: is a unique ID for a machine. In our dataset the actor field is the stacker’s ID.

• Start time: is a timestamp of when the stacker went from a producing state to being
down.

• End time: is a timestamp of when the stacker went from being down to a producing
state.

• Duration: is the duration of the downtime in seconds, calculated as the difference
between End time and Start time.

• Category: a label describing why the stacker was down. It is manually labeled by oper-
ators from a list of predefined categories or auto categorized by the Downtime Service.
The category is what we aim to predict in this thesis.

• Comments: an optional free-text description written by operators, giving additional
information about the downtime.

Alarm
Alarms are machine type specific, i.e., each process equipment has a unique set of alarms.
The stacker in the chosen production facility has 1293 different alarms and each of these are
represented as a column in the dataset. Out of the 1293 different alarms only 599 was active
during a downtime event and the others were therefore removed. Data attributes used in this
thesis about each alarm is as follows:

• ID: a unique identifier to each individual alarm event, generated upon alarm activation.

• Actor: is a unique ID for a machine. In our dataset the actor field is the stacker’s ID.

• Created: is a timestamp of when the stacker received the specific alarm.

• Alarm ID: is an identifier that represents which type of alarm that has occurred. 1-1293
are possible alarm IDs.

• Message: is a description from the supplier of the machine of what type of alarm that
has occurred in the form of a message.

3.2.3 Data Understanding
Data Understanding was an exploratory phase where we analysed the dataset. The dataset
used in this thesis contains downtime and alarm data from June 2021 to April 2022 for the
stacker. For the figures containing downtime categories, the categories are anonymized due
to confidentiality reasons. The categories are also sorted in the same order so that one may
compare them more easily.

Figure 3.4 shows the distribution of downtime events and their corresponding categories.
As seen in 3.4 the dataset is rather imbalanced, meaning a majority of downtime events belong
to a minority of the categories.
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Figure 3.4: Distribution of downtime categories

Figure 3.5: Overview of alarm distribution

In figure 3.5 the alarm distribution is presented for the top 70 most frequent alarms. As
seen a few selection of alarms are overrepresented compared to the others. The total sum of
alarms active during downtimes in the dataset is 76504, so the top three alarms, alarm ID
451, 1219 and 650 represent approximately 20% of the alarms. When viewing the right part
of the graph one can tell that the alarms cause the dataset to be rather sparse since it consists
of very many features (alarms), where most of them occur relatively seldom.

As presented in figure 3.6 the categories and frequency of alarms is presented. This in
itself does not give very much information since it could easily be the case that downtime
events which have longer duration accumulate more alarms, but once compared with 3.7 this
effect can be mitigated since the two graphs don’t fully align, only to some limited extent
as seen specifically on category "T". If one compares 3.6 with 3.4 one may also see that the
correlation of alarm frequency is not proportional to the frequency of downtime events with
the specific category. The implication of this is that not only the individual specific alarms
may impact the category of a downtime, but also that the number of alarms that occur may
be relevant to determine what category it may be. This must be considered in the modeling.
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3.2 Data

Figure 3.6: Overview of categories and frequency of alarms

Figure 3.7: Overview of categories and average downtime duration

In 3.7 an overview of downtime categories and it’s average downtime duration is pre-
sented. Besides for the implications of this figure, as covered above, one can note that the
average downtime duration for individual categories differs largely, this is considered to be
a potentially good feature for the models.

3.2.4 Data Preprocessing
To use the data as input to the models we needed to clean it and preprocess it.
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Target variable
The target variable is the variable whose values are to be modeled and predicted by other vari-
ables. The target variable in our case is the downtime category that a downtime event has
been labeled with. The category names are omitted for confidentiality reasons. We started
with 53 different values on the target variable and ended up with 17, see figure 3.8. The num-
ber in the gray circle in the figure represents how many categories were left after performing
the step described in the green box. We started out with 53 different values and after the first
step 52 remained, and therefore it says 52 in the figure.

Figure 3.8: Displaying how we went from 53 different values of the
target variable to 17

• We removed all downtime events that were not labeled since we cannot use those for
training classifiers.

• Downtime events with categories regarding planned downtimes were removed since
these are out of scope.

• Categories that are already automatically labeled by Northvolt’s Downtime Service
were removed. The objective of the thesis is to classify downtime events with categories
that are manually categorized.

• From our interviews in the Business Understanding phase 3.1 we realized that since the
first labeled downtime event in our dataset some categories have changed, some are no
longer used and have been replaced by others. We removed deprecated categories and
some downtime events that could be relabeled with another valid category having the
same meaning.

• We removed categories that were misspelled and relabeled the corresponding down-
time events with the correctly spelled category. An example is removing a category
"machine brekdow" and relabeling the downtime event to "machine breakdown".
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• We removed all downtime events with more than one category, meaning that it had
been labeled twice and we were unable to know which label was the correct one.

• Lastly we removed categories that had fewer than 10 data points. Less than 10 data
points were deemed too few to predict the category accurately and train on.

As mentioned above, some categories were removed from the dataset since they had been
deprecated. One of which had the label ’other’. In order to avoid removing all downtime
events categorized as ’other’ we relabeled some of them using comments written by operators
in the Comments column indicating the label. This was only done when it was obvious that
the comment had a correlation to the category and later confirmed with Northvolt.

When reviewing the historical downtime data we noticed that some categories which
were not present in the beginning of the timeframe, were added later due to a need to cate-
gorize a certain machine fault. This may have problematic implications for a model running
in production if new categories are added which the model hasn’t previously seen. More on
this subject in section 5.2.

Label encoding for the target variable
The machine learning models implemented in this thesis can’t interpret the target variable in
text format. We therefore converted each category to numerical format so that the models can
interpret them. This was done using a label encoding method from SciKit-learn’s library. The
category "changeover" for example could after label encoding be represented by the number
16. We decided to use this method to convert our categories from text to numerical ones
since our target variables does not have any ranking or ordering. This means that when we
converted them from text format we didn’t need to take into account any ordering. Another
method that can be used is called One-Hot encoding. It adds a new column per unique
category. In our dataset we have 17 unique categories and wanted to avoid increasing the
dimensionality of the dataset, especially considering that the number of categories according
to Northvolt will increase in the future.

Features
The stacker has 1293 alarms that can be triggered, see description of alarm data 3.2.2. Each
specific alarm that can be triggered for the stacker machine was initially added as a feature
to the dataset. These represented how many times that specific alarm was active during a
specific downtime event. However, as mentioned in 3.2.2, out of 1293 unique alarms we
found that 694 of these were never triggered at any given time for any downtime event in
our dataset. These were therefore removed as features since they provided no information,
see final dataset 3.3.

From the interviews we gained information that some modules might not have the same
downtime categories as others. One module is for example first in line and might be down
due to other reasons than the last module in the line. We therefore also included in the final
dataset a feature based on which of the stacker’s module the downtime event belonged to,
see final dataset 3.3.

The duration of each downtime was added as a feature as well since figure 3.7 showed
that the average duration varied largely between some of the categories, see final dataset 3.3.
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Numerical encoding of the stacker’s module names The stacker’s module names is a fea-
ture in the final dataset. The module names are however in text format and the machine
learning models implemented in this thesis need them to be in a numerical format. We there-
fore converted each module name to a numerical one so that the models can understand them.
Since the modules have ordering we took this into account to not lose information. There-
fore we decided to convert the six module names to a number between 1-6. A module that
comes before another one in the line is represented by a lower number to keep the ordering.

Outliers Outliers exist in almost any dataset and can severely deteriorate the model accu-
racy. We examined and removed potential outliers in the "duration" feature. In our iterative
work, this turned out to be especially important since it was shown to be the most important
feature for predicting a downtime category.

Mitigate module/unit level problematic One limitation we identified from the start was
that we only had alarm data on a unit level whereas we track downtime on the level of mod-
ules, see 2.2. In our initial dataset we therefore put all ongoing alarms during a downtime for
a unit on all the modules belonging to that unit. However, during our interviews with the
operators working with the stacker, gained in 3.1, we got information that they had learnt
to recognize that some alarms belonged to a specific module. Using that information we
were able to match specific alarms to a specific module and partly mitigate the problem. In
the iterative process, this showed an improvement to the performance of the implemented
models.

Training and test data
The dataset is divided into a training and test set with a ratio of 80/20 using SciKit-learn’s
package. Splitting is made with the stratify parameter set to the target variable of the dataset.
This results in a split which takes proportions into account for each target variable, meaning
that the division will strive towards an 80/20 split within each category. Besides for this
condition, the splitting is made randomly. The test set is untouched for the entirety of the
training process, and only used for the final evaluation of the models.

K-fold cross validation is used on the training data in order to most efficiently use the
data for training the model. In K-fold cross validation the training data is divided into K
subsets, whereas it is trained on K-1 subsets and validated on the remaining 1 subset. This
is iterated K times, until each subset has been used as validation set. The scoring on the
validation set is averaged out on all the iterations. Using cross fold validation also acts as a
countermeasure to overfitting [20]. We acknowledge that our decision to use cross-validation
disregards temporal relations in the data but it has still yielded positive results in previous
work [20].
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3.3 Establishing Baselines
To understand and evaluate our models’ performance we implemented five different baseline
models, divided into three naive baselines and two simple supervised learning models, see
figure 3.9

Figure 3.9: Baseline overview

• Uniform classifier generates predictions uniformly at random from the list of unique
classes observed in the dataset, i.e. each class has equal probability.

• Stratified classifier generates random predictions by respecting the training set’s class
distribution. Categories which occur more often is hence predicted more frequently
than those which occur less often.

• Most frequent category classifier always predicts the most frequent class label from the
training dataset and makes predictions based on that label. This is a valid baseline in
the presence of class imbalance as is the case in our dataset, i.e., the data contained some
categories which were more frequently occurring than others, as covered in section
3.2.3 and presented in figure 3.4

• Decision tree is the most simple type of tree-based supervised learning models. The
classifier creates predictions based on feature values within certain intervals, more on
this described in 2.4.1. The quality of the split was evaluated with both gini and en-
tropy, see section 2.4.1 for an overview of the two ways of measuring the quality of a
split. In this thesis we did no tree pruning of the decision tree as we focused our efforts
on implementing the ensemble models.

• Naive Bayes generates predictions based on Bayes Theorem as described in 2.4.1. The
classifier is trained using the default parameters from the SciKit-learn package for
multinominal classification.
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3.4 Modeling
Two ensemble models, Random forest and XGBoost were implemented 3.10 following the
modeling process as presented in figure 3.11.

Figure 3.10: Ensemble models overview

Figure 3.11: Modeling outline

• Training data from the test/train split (see 3.2.4) was used as input to a function along
with a variety of hyperparameters. This was made using a grid-search which runs
through all possible combinations of a set of parameters to see which parameters yields
the highest score. SciKit-learn’s package GridSearchCV [22] was used which combines
hyperparameter optimization using grid-search and K-fold cross validation. In prac-
tice this meant that each hyperparameter combination is used to be trained and val-
idated K times, see section "Training and test data" in 3.2.4 for further details. An
evaluation is made once every combination of parameters has been used to train and
validate model performance. A so called classification report was then generated with
the accumulated performances and respective hyperparameters. Performance is mea-
sured as described in 2.4.4 (with the exception of Top-N accuracy), for each model.
With this information one is able to draw conclusions on what hyperparameters which
yielded the best score.

• Once optimal hyperparameters are identified they are used as an input to a model and
training is done with the same training dataset.
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• The fully trained model is tested with the unseen testing data. The result is evaluated
and compared against the other models and baselines based on the metrics as described
in section 2.4.4. As seen in section 3.2.3 the data is imbalanced and hence the weighed
scores are being used instead of the macro ones.
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Chapter 4

Result & Discussion

In the first section of this chapter we present the results of the five baseline and two ensemble
models implemented in the modeling phase. In the next section a discussion follows to in-
terpret the results. Then we discuss limitations and threats to the validity of our conclusions
in the last section.

4.1 Results

4.1.1 Baselines
The performance of the five baseline models can be seen in table 4.1. Note that the values for
F1-score, recall and precision are the weighted values, hence they take into account the num-
ber of actual occurrences of each class in the dataset. See section 2.4.4 for further details on
the metric definitions. The best performing model with regards to all metrics is the decision
tree.

Baseline classifiers
Type Scoring

Accuracy Precision Recall F1-score
Random uniform 0.0446 0.1167 0.0446 0.0587
Random stratified 0.1247 0.1260 0.1247 0.1247

Most frequent 0.2232 0.0498 0.2232 0.0814
Naive Bayes (multinominal) 0.2345 0.1469 0.2345 0.1558

Decision tree (gini) 0.3087 0.3079 0.3087 0.3042

Table 4.1
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4.1.2 Random forest
In figure 4.1 the precision, recall and F1-score is presented for each individual downtime
category (anonymized) as well as the averaged scores and accuracy value for the testing set.
The random forest model achieved an accuracy of 0.389. The weighted average values for
precision, recall and F1-score are the following: 0.389, 0.389 and 0.367.

Figure 4.1: Classification report - Random forest

In table 4.2 the identified optimal hyperparameters, are presented. See more about hy-
perparameter tuning in section 2.5.

Table 4.2: Optimal hyperparameters

Random forest
Hyperparameter Value

criterion entropy
max_depth 15
max_features sqrt
min_samples_leaf 1
min_samples_split 2
n_estimators 750
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The relative feature importance scores for the Random forest model’s top 20 features are
presented in figure 4.2. The duration feature proved to be the most important feature and
the encoded module feature also proved to be a good predictor. The alarms seem to have
quite similar feature importance, with the best alarm as a feature being alarm with ID 451.

Figure 4.2: Feature importance Random forest (Gini importance)
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4.1.3 XGBoost
In table 4.3 the precision, recall and F1-score is presented for each individual downtime cate-
gory as well as the averaged scores and accuracy value for the testing set. The XGBoost model
achieved an accuracy of 0.383. The weighted average values for precision, recall and F1-score
are the following: 0.372, 0.383, 0.368.

Figure 4.3: Classification report – XGBoost

In table 4.3 the identified optimal hyperparameters, are presented.

Table 4.3: Optimal hyperparameters

XGBoost
Hyperparameter Value
colsample_bytree 0,5
gamma 0
learning_rate 0,2
max_depth 9
n_estimators 100
subsample 10
tree_method exact
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The relative feature importance scores for the XGBoost model’s top 20 features are pre-
sented in figure 4.4. The most important feature is duration, with a score of almost 0.20.
Alarm with ID 451 also proved to be a good predicator along with the encoded module fea-
ture. The rest of the alarms (except 1219), seem to have quite similar feature importance.

Figure 4.4: Feature importance XGBoost (using total gain measure)

4.1.4 Top-5 accuracy

In table 4.4 the Top-5 accuracy is presented for the three models that give a probability for
each prediction, enabling us to get the Top-5 predictions. The Random forest model achieved
the best score with a Top-5 accuracy of 0.823.

Type Top-5 accuracy
Naive Bayes (multinominal) 0.672

Random forest 0.823
XGBoost 0.818

Table 4.4: Top-5 accuracy
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4.2 Discussion

Ensemble models

The two ensemble models Random forest and XGBoost outperformed the five baselines with
regard to accuracy, precision, recall, and F1-score. The Random forest model performed
the best with an accuracy of 0.389 compared to the decision tree model which was the best
performing baseline model with an accuracy of 0.309. Random forest utilises a large selection
of ordinary decision trees to create its predictions as described in section 2.4.3 and this has
been proven to be effective in classification in previous work, as described in the related work
section 1.4. The XGBoost model however performed very similar to the Random forest one
with an accuracy of 0.383.

The macro average values for precision, recall and F1-score are not of great interest com-
pared with the weighed values since it is not taking into consideration that the distribution
of downtime categories is uneven as seen in figure 3.4. In terms of the weighed values: the
Random forest and XGBoost models have very similar values as can be seen in the classifi-
cation report for random forest: 4.1 and for XGBoost: 4.3. Random forest have a slightly
higher weighted average precision and recall value than the XGBoost model. The XGBoost
model have a slightly higher weighted average F1-score (0.368 compared to 0.367). This minor
difference is to be deemed negligible.

To get a wider image of how the models performed we measured Top-N accuracy. This
was done for the two ensemble models and for Naive Bayes as a baseline to compare against.
Top-5 accuracy was not calculated for the other baseline models since they do not provide
probabilities for their predictions, not enabling us to get the next best prediction and so
forth. The Random forest classifier performed the best in terms of Top-5 accuracy with
a result of 0.823. The XGBoost model however achieved a result of 0.818 which is not a
statistically significant difference compared to the Random forests result. The Naive Bayes
model achieve a Top-5 accuracy of 0.672, which is lower than that for Random forest and
XGBoost. We made the assumption that the hyperparameters identified with the highest
accuracy would also yield the highest Top-5 accuracy, we deem this assumption reasonable,
but if one would like to optimise for Top-5 accuracy one could rewrite the code in order to
achieve this.

Top-5 suggestion is something Northvolt was very interested in. Giving a suggestion of
top five categories to an operator will be an improvement of the current Downtime Man-
agement System and can help the operator in his or her selection of a category. According
to Northvolt, it would make it easier for the operator, in line with “narrowing the selection”
as argued by [18]. We hypothesize it would save time for the operator and make the cate-
gorization work task more accurate. Also it could make operators label more data which in
turn would contribute to better annotated amount of training data for further supervised
learning. Moreover, the feedback from this activity will benefit future work on autocatego-
rization since the information of which category an operator ultimately selected could be
used to further improve the classification model.
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In comparison to the baselines there is a difference in terms of performance as measured
by each evaluation metric, most notably comparing the Top-5 accuracies. This indicates that
the correlation between the features and target variables is easier identified by the ensemble
models and that the correlation is rather complex.

In comparison to related work such as [5], it is not surprising that our overall accuracy
is substantially lower. We have more target variables (17 compared to 2) and 95% less data
available. If we compare to another work [14], the authors received 100% accuracy. In that
paper only two target variables (minor or major) were also used and we are therefore not
surprised that their model performance was better than ours. Also, we believe our dataset
has more complexity to it. In our dataset we have data from day one of the roll-out of the
Downtime Management System at Northvolt. The dataset is therefore believed to contain
some dataset inconsistency due to operators classifying data in different ways and not yet be-
ing experienced users. The fact that the machine which we collected data from is located in
Northvolt’s research and development facility, we believe also adds complexity to the data.
However, these inconsistencies in the dataset might actually be representative of the true
distribution of the data which the model will see if implemented. Another aspect which
adds complexity to the dataset is that the Downtime Management System was continuously
built on during the time span of the collected data. There can therefore be changes imple-
mented affecting the tracking of the downtime events and alarms, contributing to further
inconsistencies.

Baselines
• Random uniform This baseline performed the worst of the five baselines. This is

deemed reasonable since the target space contains many classes and the occurrence
of each class varies largely. It is the simplest way of modeling and hence it is not sur-
prising that the model had the lowest scores in terms of accuracy, precision, recall and
F1-score.

• Random stratified Predictions with this baseline is made randomly with consideration
to the training set’s class distribution. In the dataset some categories occur more often
than others, as can be seen in figure 3.4. It was therefore expected that the Random
stratified model, taking the distribution of the classes into account, would perform
better than the Random uniform baseline.

• Most frequent This classifier predicts on the majority class every time which makes it a
decent baseline classifier, seeing the distribution of downtime categories in figure 3.4.
This classifier will be correct every time it sees the majority class and wrong all other
times. This will result in a low quality prediction, but since the majority category is
occurring very frequently the model’s achieved accuracy of 0.223 is still decent.

• Naive Bayes Naive Bayes produce the second best predictions out of the baseline mod-
els with an accuracy of 0.235. It was expected to perform better than the three base-
lines mentioned above since it is able to create more refined predictions based on the
features in the dataset, not just considering chance and the distribution of the target
variables. One major flaw of the Naive Bayes model is that it does not take correlation
of features into account, i.e. the model treats features as independent which is not very
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realistic for our case. For example, some alarms are module specific, and we have both
these alarms as features and the module which the downtime event belongs to, mean-
ing these features are very much dependent on each other. The Naive Bayes model’s
achieved accuracy is decent and quite similar to the accuracy for the ’most frequent’
classifier (0.235 compared to 0.223).

• Decision tree The fifth and final baseline, Decision tree, achieved the best scores of
all baseline models in terms of accuracy, precision, recall and F1-score. As mentioned
in section 2.4.1 the decision tree is a simplistic model used for classification without
ensemble techniques to counteract bias in the data. A lower accuracy score than the
Random forest and XGBoost models is therefore to be expected. The model did how-
ever provide a good baseline to compare against.

Dataset
The dataset consists of relatively few downtime events, 1735, since the data is recorded from
just one machine during an 11 month period. This is one factor which can negatively im-
pact the models’ ability to successfully train and identify true correlation between features
and the target variables. The alarm data provides information on 599 alarms. Relatively few
downtime events, combined with a large feature space and many categories to predict makes
modeling a difficult task. Given the small size of the dataset, it is difficult to extrapolate
how well our reported ensemble models’ accuracies would hold up for a larger dataset col-
lected over an extended time frame. Already by the end of this year there will be much more
data collected since Northvolt’s Downtime Management System is actively being used for the
stacker and more data will be manually labeled.

Overfitting
In order to mitigate overfitting, actions were taken in terms of cross validation, hyperparam-
eter tuning, and feature engineering. Cross validation allowed the model to train and validate
the model progress without splitting up the data further than necessary. This mitigates the
risk of overfitting. In the hyperparameter tuning phase, parameters which potentially have
impact on the level of overfitting, were tweaked to improve results. For Random forest this
included the maximum depth of the trees and the splits. For XGBoost the learning rate,
subsample fraction and maximum depth of the trees was tweaked in particular.

Encoding
Another aspect that effects our models performance is encoding. Label encoding was used
to convert the categorical text value of the target variable into a numerical one. However,
since the label encoder used uses a number sequence it can be a problem that relations and
comparisons between categories that do not exist are introduced. The models might assume
that there is some hierarchy or order 0 < 1 < 2 . . . < 16 and might give X times more weight
to a certain category in relation to another due to this. The models might also assume that
categories with numbers close to each other are related even though it is not the case. This
problem of creating relations that does not exist can be eliminated by using the One-Hot
Encoding method instead. However, it was decided to not be used for the target variable
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since it adds a new column per unique category. This was considered challenging to manage
since it would add many new columns to the data set, considering we have 17 categories. The
decision was made especially considering that the number of categories can also increase in
the future.

The feature regarding which stacker module the downtime event belonged to, was also en-
coded. The stacker modules have ordering and was therefore converted to numbers between
1-6, with the respective modules ordering taking into consideration. However, the encoding
can contribute to the model creating some imposed correlations that does not exists, which
affects the models’ performances.

Training and test data

Since the total dataset is small a lot of thought went into how one would divide the data into
training and testing sets. For hyperparameter tuning one could split the data into training,
validation and testing data. Then one could train the model using training data, benchmark
and find optimal parameters using the validation data and once optimal parameters were
identified, test using the test data. The downside of this strategy is that this would result
in less training data for the model, and since data was as scarce as it is, this was not deemed
optimal. Instead K-fold cross validation was applied in order to utilise the data as much as
possible in the training phase of the hyperparameter tuning. In the future work section, 5.2,
some additional thoughts on how the testing and training can be divided is presented.

Feature importance

Feature importance for the two ensemble models is presented in figure 4.2 for Random forest
and figure 4.4 for XGBoost. When comparing the two graphs one can see that both models
have identified downtime duration as the most important feature. This means that duration
has a large effect on both models and how they make their predictions. Downtime duration
was added as a feature since we deducted that there was a correlation between downtime
duration and specific downtime categories as seen in figure 3.7. Random forest and XGBoost
also have the same four features as their top four most important ones. Worth noting is that
the features with the highest feature importance are seen in figure 3.5 as the ones which occur
most frequently, alarm ID 451, 1219 and 650 for example. The rest of the features, except the
top five most important ones, for Random forest and XGBoost seem to have almost the
same predictive power. Since feature importance measurements are strongly associated with
a specific model, it is interesting that the models have almost the same features in their top
20. XGBoost has a larger difference between the importance score of its top two important
features than the Random forest model (0.20 and 0.07 for XGBoost and 0.09 and 0.04 for
Random forest). This can be explained by the XGBoost model picking one feature and using
it to break down the tree further. The XGBoost model might then ignore some of the other
correlated features. The feature picked is based on it having a high correlation with the other
variables. In the Random forest model however the trees are not built from specific features
but there is a random selection of features for each decision tree.
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4.2.1 Limitations
This section reports a critical discussion of our work including the most important threats
to the validity of our conclusions.

External validity
External validity is a way of reviewing how well the results of this thesis can be generalised
into other contexts.

The method and result of this project apply directly to other setups with stacker-machines
in Northvolt’s future production facilities. For other production equipment with similar im-
plementations that are to be added to the Northvolt fleet this can have implications as well,
the alarms may come in a different format but the overall structure of the downtime man-
agement system is the same.

In the greater picture of things the results of this thesis are rather specific towards the use
case at Northvolt, but if taken out of the Northvolt and battery manufacturing context the
approach and findings may very well be adaptable to other industries for applications which
depend on downtime management.

Internal validity
Internal validity is a way to review how internal bias and potential errors may impact the
end result.

We assume that the operators’ categorization is the truth. There can by all means be
cases where the operators are not categorizing correctly due to mistakes, lack of time and
so forth. We have for example seen in our data set a few selections of downtimes with two
different categories. There might also be lacking categories to choose from for operators, so
an operator might categorise with the most similar category instead.

The duration of a downtime event might not always be accurate due to inaccuracies with
how the Downtime Management System functions. We consider both threats to internal
validity acceptable for the proof-of-concept presented in this thesis.

Construct validity
Construct validity is a way to review the result of the thesis and if the metrics used to measure
the result of the models are suitable.

The main means in this thesis of benchmarking the models is by comparing the measures
of accuracy, precision, recall, F1-score and Top-5 accuracy. These performance metrics are all
calculated in accordance with their definitions and they offer a good standardized overview of
which model that provides the best results. See section 2.4.4 for more details on this subject.
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Chapter 5

Conclusion & future work

5.1 Conclusion
This goal of this master’s thesis was to identify if machine learning models could successfully
classify the categories of downtime events based on downtime and alarm data. The approach
of this project followed the CRISP-DM 3.1 framework, starting with business understanding
in order to understand the problem, followed by an extensive iterative phase of data under-
standing, data preparation and modeling. Evaluation of model performance was done and
the loop was iterated once more with further analysis and adjustments of the dataset, model
tweaking and so forth.

The results show that alarms being active during a downtime event have a correlation
with the reason of the machine being down. The ensemble models can therefore give in-
formation, at least to some extent, on why a machine is unavailable, especially the Random
forest model. The findings indicate that machine learning can be used to determine the cause
of downtime events. This master’s thesis can be seen as a proof-of-concept whereas conclu-
sive results would require larger amount of data to be analysed and supplied to the models for
training. Machine learning may be used to either categorize a downtime event automatically
or provide decision support to the operators to understand why a machine is unavailable.
Due to the relatively low accuracy achieved by the best model we recommend, until more
data is available for the model to be retrained on, to use the classification as an indication
of what the category might be. Northvolt should determine a confidence threshold for how
sure the model would have to be on a prediction to actually autocategorize that downtime
event. If the probability for a prediction is below that threshold one could use the predic-
tion instead as a suggestion for a category and leave it to the operator to confirm the option.
By reviewing the results, presented in 4.1, one might be of the opinion that an accuracy of
almost 40% for the two ensemble models implies that the predicting power of the models is
rather weak, but first and foremost one need to compare with the baseline models. There
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is still a substantial difference between the ensemble models and the baselines in terms of
the evaluation metrics. We suggest Northvolt to use the Top-5 predictions which was able
to provide the Top-5 categories at an accuracy of 82%, using the Random forest model. This
information can provide decision support to the operators and assist in their activities whilst
increasing the downtime data quality with more categories being labeled. (RQ1)

This thesis suggests that one can train a machine learning model using active alarms,
downtime duration and machine modules as features, to identify the Top-5 most probable
downtime categories with an accuracy score of approximately 80%. (RQ2)

The research contribution goal of this thesis was to give knowledge and methods as a
proof-of-concept into how historical production data can be used to categorize downtime
events. The important features of determining the category of an event were also to be re-
searched (see section 4.1 underneath the ensemble models) and the possibility to roll out a
system for classification is discussed in the "discussion" section in 4.1. The approach used for
analysing the data and modeling is presented in this report and there appear to be signals in
the data to classify downtime categories, but in order to draw any further conclusions from
this work more data is required.

5.2 Future work
First of all, as mentioned previously in the discussion section in 4.1, more data is needed.
When this is in place, the model should be retrained and tested. After that we suggest that
one should investigate using the alarm data available in more ways. Alarms are active during
different times of a downtime event but this information was not taken into consideration in
this thesis. We only have as feature if a certain alarm has been active during that downtime
event or not but one could consider adding a feature with the delta between the time when the
downtime event started and when the alarm was triggered. This would make this information
available to the machine learning models. Also, we suggest to include alarms that were active
before the actual downtime event. As described in the "Data gathering" section in 3.2 we only
included alarms that were active during a downtime event. We think it would be interesting
to include alarms that were active for example five minutes or one minute before a downtime
started. In the future this might also help to actually predict a downtime event of a certain
type even before it actually happens. This could help operators with troubleshooting and
perhaps even decrease the duration of the downtime event.

Furthermore, it would be interesting to measure if a Top-5 suggestion actually helps the
operator pick a category. One could use a product such as Mixpanel for measuring in real-
time how the user interacts with the suggestions in the Downtime Operator UI.

The dataset initially had 53 categories and after the data was cleaned 17 remained as
described in section 3.1. As described in section 3.2.4 there might be additional categories
added in the future. The fact that categories can be removed/not used any longer affects the
accuracy of the model when used with new data. It adds complexity and the model might
then predict a category that does not exist any longer. There will therefore need to be some
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further data cleaning if applying the model to new data with new or removed categories.
Also, the fact that new categories can be added means that if the model is used it would
not have seen any downtime events with this category before and will therefore not make
accurate predictions.

Using different splits of the training and testing data can be made in order to see if a
better split can be achieved. Same goes for K-fold cross validation, one could try to use a
different value on K than that of 5 which was used in this thesis. Once more data is available
one could introduce a validation set as well to be used in the hyperparameter optimization
step instead of cross validation to compare the results.

In this thesis autocategorization based on downtime event data and alarm data was re-
searched for the stacker machine in one facility. This was chosen as a good proof-of-concept
machine since it is a very complex machine. We suggest to follow the implemented steps in
this thesis and test the possibility of autocategorization for other machines.
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Kan maskininlärning användas för att
kategorisera orsaken till varför en
maskin är ur produktion?

POPULÄRVETENSKAPLIG SAMMANFATTNING Alexandra Antgren, August Lindberg
Brännström

Att minska driftsstopp är ett viktigt ämne inom tillverkningsindustrin på grund
av dess koppling till produktivitet och lönsamhet. I detta arbete presenteras hur
maskininlärningsmodeller kan användas för att förstå orsaken till ett driftstopp och på
så sätt kunna minska tiden som en maskin är ur produktion.

Varje timme, varje minut, varje sekund som en
produktionslinje står stilla kostar det oerhörda
summor för tillverkningsföretag. Att förstå or-
saken bakom en maskins driftsstopp är avgörande
för att kunna identifiera förbättringsområden och
ha handlingsbar information.

I detta examensarbete implementerades
maskininlärningsmodeller för att automatiskt
kategorisera orsaken till en maskins driftstopp
hos en svensk tillverkare av litiumjonbatterier.
Detta gjordes med hjälp av historisk data på
när maskinen var ur produktion och information
om vilka alarm som skickats från samma maskin
under samma tidsintervall. Datan analyserades,
bearbetades och modeller valdes ut för modeller-
ing. Den modell som presterade bäst lyckades
välja 1 av 17 kategorier med en träffsäkerhet på
ca 40%. Detta anses vara en rimlig träffsäkerhet
med tanke på att modellen hade många olika
kategorier att välja mellan och en liten mängd
tillgänglig data att tränas på. Resultatet kan jäm-
föras med den bäst presterande baslinjemodellen
som hade en träffsäkerhet på ca 30%.

Detta arbete har tillfört en större insikt i korre-
lationen mellan alarm som skickas från maskinen
när den är ur produktion och orsaken till drift-
stopp. Möjligheten för företaget att använda vår
modell för den undersökta maskinen är god. Vi
rekommenderar att modellen till en början an-
vänds för att ge en indikation på varför maski-
nen är ur produktion och inte ses som den slut-
giltiga anledningen. Man kan också bestämma ett
tröskelvärde för hur säker modeller måste vara på
sin kategorisering för att man ska använda den.
Vi rekommenderar att låta modellen föreslå fem
kategorier istället för en, för att ge beslutsstöd åt
de som sköter maskinen. När modellen ger fem
förslag istället för en så presenteras i ca 80% av
fallen den korrekta orsaken. Detta skulle spara
värdefull tid för de som sköter maskinen. Tillvä-
gagångssättet i rapporten kan följas för att bygga
samma lösning för övriga maskiner i företagets
fabrik.

Framtida arbeten med en större mängd insam-
lad data, hade sannolikt kunnat kategorisera or-
saken till en maskins driftstopp med en högre träff-
säkerhet.
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