

Department of Automatic Control

Tensor Decompositions of EEG Signals

for Transfer Learning Applications

Emma Fallenius

Linda Karlsson

MSc Thesis
TFRT-6172
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Emma Fallenius & Linda Karlsson. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2022

Abstract

In this report, tensor decomposition methods of EEG signals have been eval-
uated for the purpose of transfer learning. The aim has been to address the
person-to-person Brain-Computer Interface (BCI) calibration problem by trans-
ferring training data between sessions, which can shorten calibration times,
extend the amount of training data, and enable using data from simulated envi-
ronments in real world applications. For this, the datasets Alex MI (binary motor
imagery) and SA Driving (drowsiness detection during simulated driving) have
been analyzed. Tensor decompositions were performed unsupervised in two
pipelines, with aim of capturing universal structures relevant to BCI tasks.

For the first pipeline, two decompositions (Canonical Polyadic and Tucker) were
computed to compare similarity between sessions. From that, a subset of ses-
sions were selected that during classification, were aimed to outperform random
selection and training with the full training database. In the first pipeline, a new
similarity measure was designed, which included weighting of the factor matrix
in the mode of interest. We consider this a more representative measure of how
similar two sessions are, compared to simply studying the unweighted factor ma-
trices, which was done in previous literature. For the second pipeline, one tensor
decomposition (Tucker) was used for feature extraction and similarity compar-
ison between sessions. The aim was the same as for pipeline one, with the ad-
dition of investigating the properties of tensor decompositions as features. The
results show that unsupervised tensor decompositions can extract structures of
varying relevance to a classification problem but did not result in superior perfor-
mance when used as features. With this knowledge, we propose extending tensor
decompositions to supervised and/or nonlinear ones. Additionally, the proposed
session selection methods showed potential in classification, but no significant
conclusions could be drawn of their superiority compared to random selection
or training with the full database. Additionally, the classifiers had a large variation
in performance between sessions, making them far from applicable for a BCI in
a real-world environment today.

3

Acknowledgments

We would like to say a big thank you to our supervisors Carolina Bergeling and
Bo Bernhardsson. They have always encouraged our curiosity and reasoning
when digging into the relatively unexplored field of tensors and EEG. Carolina,
your ability to see the full picture of a problem and quickly understand our most
unelaborated thoughts has been invaluable. Bo, even though you are a very busy
man, you have constantly taken time to engage in our problems and involve us
in the world of academics. We feel like both of you have believed in us from the
very first email, which we consider a huge privilege.

To Frida Heskebeck, Martin Gemborn Nilsson and Pex Tufvesson, thank you for
willingly including us in your EEG community and always being open to ques-
tions and great discussions. We wish you good luck with your super inspiring
work.

Next, we want to thank our examiner Pontus Giselsson for valuable optimization
inputs early on in the project. Another person that helped us getting started and
probably saved us weeks of time was Anders Nilsson. Thank you for your pa-
tience and pedagogical computer support. Regarding computational resources,
the support from SNIC is also gratefully acknowledged.

Furthermore, a great thanks to the department of Automatic Control at LTH for
the warm welcome. The coffee breaks at 10:00 and 15:00 (set in stone) have been
very, very appreciated. And, to our fellow students in the master’s thesis room,
working alongside you has lightened up many otherwise gray days.

Lastly, we want to thank our partners and family for their unconditional support
throughout our five years at LTH.

5

Contents

1. Introduction 10
2. Tensor Theory 17

2.1 Definition and Operations . 18
2.2 Tensor Decompositions . 20

3. Machine Learning Theory 31
3.1 Support Vector Machines . 32
3.2 Random Forests . 33

4. Datasets 34
4.1 Alex Motor Imagery . 35
4.2 Sustained-Attention Driving Task Dataset 36

5. Tensor Decompositions for Session Selection 41
5.1 Background . 42
5.2 Our Contribution . 45
5.3 Method . 49
5.4 Result and Discussion . 55

6. Tensor Decompositions for Feature Extraction and Session Selection 78
6.1 Background . 79
6.2 Our Contribution . 82
6.3 Method . 84
6.4 Result and Discussion . 88

7. Conclusions and Future Work 109
7.1 General Discussion . 110
7.2 Future Work . 111
7.3 Conclusions . 113

Bibliography 115
8. Appendix 118

8.1 Basic Operations . 118
8.2 Euclidean Geometry . 122
8.3 Riemannian Geometry . 122
8.4 Results . 124

7

Contents

Dictionary

Alex MI Alex Motor Imagery (dataset)

ALS Alternating Least Squares (algorithm)

BCI Brain Computer Interface

core tensor Component of the Tucker decomposition, translates how

the factor matrices should be scaled and combined to

obtain the approximated tensor

CP Canonical Polyadic (decomposition)

DI Drowsiness Index

EEG Electroencephalogram

factor matrix Component of a tensor decomposition, answering to a

specific mode

feature characteristic believed to be of importance for a classification

task

HOOI Higher Order Orthogonal Iteration (algorithm)

latent ∼ non-observable ∼, inferred through a mathematical model

mode Specific dimension of a tensor

order Dimension of a tensor

PSD Power Spectral Density, a signal’s power divided into frequency

components

RT Reaction Time

SA Driving Sustained-Attention Driving task (dataset)

session A set of trials, belonging to a subject

subject A person whose EEG signals have been recorded

SVC Support Vector Classifier

SVR Support Vector Regressor

rbf Radial basis function

target session Previously never seen test session used to evaluate

performance

TFR Time-Frequency Representation, describes the power in a signal

by time- and frequency components

trial EEG recording when performing a task

tensor Multidimensional array

9

1
Introduction

The purpose of this report was to address the person-to-person calibration prob-
lem in Brain-Computer Interfaces. This has been done by transferring training
data between sessions of EEG data, with aim of selecting a subset of sessions
similar to a target session. To compare similarity between sessions and for fea-
ture extraction, tensor decomposition methods have been applied. This chapter
will further explain the background and motivate the relevance of this problem.

10

Chapter 1. Introduction

EEG Signals and Brain-Computer Interfaces
This first section serves as a brief introduction of the brain, EEG-signals and
Brain-Computer Interfaces. The section is based on Chapter 2 The Electroen-
cephalogram - A Brief Background in the book Bioelectrical signal processing in
cardiac and neurological applications by Leif Sörnmo, 2005. For the interested
reader, we refer to the book for a more detailed description.

The brain is a complex organ that controls an enormous amount of processes
and activities in our body, such as thought, memory, motor skills, vision, breath-
ing, hunger etcetera. All these processes and activities are interactions between
billions of neurons (nerve cells), which send/receive chemical and electrical
signals inside the brain and to/from the rest of the body via the spinal cord. Dif-
ferent parts of the brain are responsible for separate tasks. One example is the
motor cortex, which is located on top of the head, and responsible of planning,
control, and execution of voluntary movements. Another example is the visual
cortex, located at the back of the head, which receives, integrates, and processes
visual information.

The electrical activity of the brain can be measured with electroencephalography
(EEG). During an EEG recording, electrodes are placed on top of the subject’s
scalp in a non-invasive manner. The recorded electrogram will be a representa-
tion of the macroscopic activity of the surface layer of the brain. Advantages with
the technique, apart from being non-invasive, is its mobility and its millisecond-
range temporal resolution. The big disadvantage is that it is hard to comprehend
the signals and filter out a specific event occurring inside the brain, as the macro-
scopic behavior that is recorded represents a large complexity of processes.

During the EEG measurement, spatial behavior of the signal can be analyzed and
mapped to areas of interest in the brain. A standardized system has been devel-
oped for the placement of scalp electrodes during EEG recordings. It is denoted
the 10–20 system, where the name refers to that the distance between adjacent
electrodes usually is 10% or 20% of the total front–back or right–left distance of
the skull. Depending on how many electrodes one wishes to use, there are differ-
ent versions and extensions of the 10-20 system, called montages. An example of
a 64-channel montage placement according to the modified1 international 10-20
system can be seen in Figure 1.1.

1 Including extensions/exclusions of electrodes compared to the original 10-20 system.

11

Chapter 1. Introduction

Figure 1.1 64-channel montage placement according to the modified international 10-
20 system. Channel names are printed next to the electrodes.

Today, several types of EEG caps have been developed to simplify electrode place-
ment and data gathering. The caps are designed with pre-determined montages
and can be adapted to different head sizes. In Figure 1.2, an example of an EEG
cap can be seen. This particular one is 24-channel EasyCap2 of size 58.

Figure 1.2 An EasyCap2 EEG cap of size 58 from two different perspectives. The cap has
a 24-channel montage, with the purpose of simplifying electrode placement in a conse-
quent manner between subjects.

2 https://www.easycap.de/

12

Chapter 1. Introduction

The measured electrical activity of all channels can be kept in the time domain,
or transformed to the frequency/time-frequency domains. In the frequency do-
main, EEG signals have been sorted into different frequency bands which power
increases during different states of brain activity. A description of the frequency
bands can be seen in Table 1.1.

Table 1.1 Name, range and description of EEG frequency bands [Sörnmo, 2005].

Name Frequency Range Description (increase in power)

Delta <4 Hz Deep sleep.

Theta 4-7 Hz Drowsiness and certain stages of sleep.

Alpha 8-13 Hz Relaxation and eyes closing.

Beta 14-30 Hz
Awake stages, for example active focus

and thinking.

Gamma >30 Hz
Active information processing and

cognitive incline.

An EEG recording can be used as a diagnostic tool, for example to detect epilepsy
or sleeping disorders. Another application is Brain-Computer Interfaces (BCI). A
BCI is a way for an external device to bypass the normal communication pathway
between the brain and body, the spinal cord, and instead directly communicate
with the brain. For a person with an injury/disease that affects the ability to for
example move or talk, this can be a useful way to move a robotic limb or com-
municate with the outside world only by thinking.

A BCI is not only of interest for people with physical disabilities, but can be ex-
tended to areas of applicability in healthy subjects’ every day lives. Controlling
an external device only by thinking creates many possibilities, like turning on a
light without moving, writing a text without typing or playing video games with-
out controllers. Besides this, a person’s mental state can be monitored, which for
example could be a useful way to measure the drowsiness level during nighttime
driving.

Worth keeping in mind when working with BCIs are the ethical, social, and legal
challenges that follow from BCI integration in society. For example, accessing
someone’s thoughts could be considered a great question of privacy intrusion.
This report will not handle the ethical, social or legal aspects of BCIs. Focus will
only lie on the technicalities of EEG signals in transfer learning, applied in two
specific BCI tasks. We encourage the reader to look into details3 of the above
mentioned challenges for a full perspective of what role BCIs can and/or should

3 For example, see [Drew, 2019].

13

Chapter 1. Introduction

play in our future society.

EEG signals from a specific subject are typically recorded during a session. In
each session, a task of interest is repeatedly performed, where every such itera-
tion is called a trial. Trials can be denoted with specific labels, and classifiers can
be trained to predict the label of new, unlabeled trials. These definitions will be
further explained in Chapter 4 Datasets.

A key challenge when working with EEG data is the inter- and intra-variation
between subjects. Two sessions of EEG recordings from two subjects who are
performing the same task can be very different. Furthermore, not only do dif-
ferent subjects differ in EEG recordings, but separate session recordings from the
same subject can also vary to an extensive amount. Historically, this has made
it necessary to calibrate classifiers for each session individually, recognized as
the person-to-person BCI calibration problem. This calibration process is not only
time consuming, but also limits the amount of useful data during training of the
classifier. Additionally, this constrains all classes to be performable during the
calibration phase. For example, this means that the previously mentioned BCI
application of measuring the drowsiness level during nighttime driving would be
very dangerous to perform in reality. On top of that, not only does the inter- and
intra-variation between subjects result in the need for individual calibration, but
it also makes it a challenge to understand the properties of the EEG signals and
hence, the brain itself.

Tensors
Tensors are multidimensional arrays that provide a useful way to store and work
with high-dimensional data. By using tensors, no dimension needs to be ex-
cluded, and all spatial structures can be examined at the same time. EEG data can
for example be formulated as the three dimensional structure (session × channel
× frequency) that can be visualized as a cube. Similarly to matrices, tensors can
be factorized or decomposed, and from the decomposition components, again be
recreated. Instead of recreating the complete, original tensor, an approximation
can be made by including fewer components of the decomposition. The purpose
of this is usually to highlight structures of importance in the data and exclude
noise. In Chapter 2 Tensor Theory, tensors and tensor decompositions will be
described in detail.

Main Objective
Throughout this project, the main objective has been to evaluate tensor repre-
sentations and decomposition methods for EEG signals in the field of transfer
learning. In this report, transfer learning is defined as the action of transferring
data between sessions. From this perspective, what is mainly of interest is how

14

Chapter 1. Introduction

well tensors can capture and/or describe "universal" structures of EEG signals.
By universal structures, we mean characteristics that are mutual between differ-
ent subjects and sessions and prominent for a certain task (for instance moving
a hand, or being drowsy during driving). By removing the session dependency of
EEG signals, it would be possible to address the person-to-person BCI calibration
problem. This would shorten the calibration time for every new session signif-
icantly, extend the amount of training data which could be used for a certain
classification task, and make it possible to transfer data from simulated environ-
ments to real applications.

To accomplish this, classifiers/regressors have been trained only with transferred
EEG data from other sessions than the target session (the previously never seen
test session, used to evaluate performance). In this project, tensor representa-
tions of EEG signals have been applied in two different approaches; as a way of
solely comparing similarity between sessions, or for feature extraction in com-
bination with similarity comparison between sessions. The main questions have
been the following:

• Can tensor decompositions, performed unsupervised, capture structures
relevant and useful to a classification problem?

• Are the captured structures efficient for similarity comparison between
sessions in a transfer learning setting?

Tools and Implementation
In this project, only publicly available open source datasets have been used, fur-
ther described in Chapter 4 Datasets. All code has been written in Python, and
can be found in a GitLab repository4. The main Python packages/libraries used
were MNE [Gramfort et al., 2013] (for EEG data analysis and visualization), Ten-
sorLy [Kossaifi et al., 2019] (for tensor operations and decompositions) and scikit-
learn [Pedregosa et al., 2011] (for machine learning classification/regression). Ad-
ditionally, due to the extensive amount of CPU hours required to evaluate the dif-
ferent approaches, several Python scripts have been run on the computer cluster
Kebnekaise, which is a part of Swedish National Infrastructure for Computing
(SNIC).

4 https://gitlab.control.lth.se/exjobb-bci/emmalinda

15

https://gitlab.control.lth.se/exjobb-bci/emmalinda

Chapter 1. Introduction

Report Outline
The report will start with relevant theory on tensors and machine learning in
Chapters 2 Tensor Theory and 3 Machine Learning Theory. Thereafter, the two
datasets Alex MI and SA Drivers, will be presented in Chapter 4 Datasets. Chapter
5 Tensor Decompositions for Session Selection will include the first pipeline; us-
ing tensor decompositions solely for session selection. Method, results and dis-
cussions will be described and analyzed, including our self-designed weighted
similarity measure. Chapter 6 Tensor Decompositions for Feature Extraction
and Session Selection will present the second pipeline in a similar manner, with
the extension of using the decompositions for session selection and feature ex-
traction. Lastly, a general discussion, future work, and conclusions will be sum-
marized in Chapter 7 Conclusions and Future Work.

16

2
Tensor Theory

The following sections present tensors; their definition, operations, and two of
the most common decomposition methods: the Canonical Polyadic (CP) decom-
position and the Tucker decomposition. For an explanation of the mathematical
operations, e.g. the outer product, see Basic Operations in the Appendix.

17

Chapter 2. Tensor Theory

2.1 Definition and Operations

Tensors are multidimensional arrays. Their order answers to their number of
dimensions, and every dimension is known as a mode. For example, vectors are
tensors of order one, matrices are tensors of order two, and a third order ten-
sor can be visualized as a cube, see Figure 2.1. Vectors will be denoted with bold
lower case letters, matrices with bold upper case letters, and higher order tensors
with bold, upper case, calligraphic letters as seen in Figure 2.1.

Figure 2.1 Visualization of a first, second, and third order tensor respectively.

More generally, a tensor X ∈ RI1×I2×···×IN is said to be of order N and is by def-
inition an element of the tensor product of N vector spaces. Each vector space
n = 1, . . . , N has a dimension of In ×1. If the tensor in turn can be written as the
outer product of N first order tensors (vectors), it is said to be of rank one:

X = a(1) ◦a(2) ◦ · · · ◦a(N) (2.1)

where ◦ answers to the vector outer product. Expanding this thought, a tensor
X ∈ RI1×I2×···×IN is said to be of rank R∗ if it can be expressed as a linear combi-
nation of R∗ outer products of N first order tensors:

X =
R∗∑

r=1
a(1)

r ◦a(2)
r ◦ · · · ◦a(N)

r (2.2)

Consequently, a non-zero vector is a tensor of rank one [Kolda and Bader, 2009].
The rank R∗ is thus, the smallest integer such that (2.2) holds.

Similarly to matrices, higher order tensors can be multiplied, but the notation of
the operations is less intuitive. Taking the matrix multiplication AB of two ma-
trices A and B , the number of columns in A must coincide with the number of
rows in B . If a matrix A ∈ RJ×In is to be multiplied with a tensor X ∈ RI1×I2×···×IN ,

18

2.1 Definition and Operations

the corresponding multiplication would evaluate the product along the mutual
dimension In . To do so, one has to unfold the tensor; fixing all dimensions but
one and concatenating the entries along this mode such that one obtains a ma-
trix.

For example, a third order tensor X ∈ RI1×I2×I3 can be unfolded in three ways,
one for every dimension. Fixing the tensor in all directions but I1, one can see
the tensor as a I2 × I3 matrix where every element corresponds to a vector, often
referred to as a fiber, of length I1. Figure 2.2 visualizes the fibers of a third order
tensor:

Figure 2.2 The fibers along the three modes of a third order tensor X ∈ RI1×I2×I3 .

Unfolding with respect to the first mode I1, the resulting matrix has a dimension
of I1 × (I2I3), where I2I3 vectors of length I1 have been rearranged as columns in
a matrix. If unfolding along the second mode, I1 and I3 are fixed and the resulting
tensor answers to a matrix of shape I2 × (I1I3), see Figure 2.3 for a visualization.
Returning to a general tensor X of order N , the n-mode unfolded tensor answers
to a In ×ΠN

i=1,i ̸=n Ii matrix and is denoted X (n) [Kolda and Bader, 2009]. Fixing
a direction n is thus a way of enabling a multiplication between a matrix and a
tensor. The n-mode product of a tensor is one method that utilizes this.

Figure 2.3 Unfolding along the second mode of a third order tensor X , resulting in the
matrix X (2) of shape I2 × I1I3.

The n-mode product can be evaluated with respect to any tensors as long as the

19

Chapter 2. Tensor Theory

factors share an index. Taking a matrix A ∈ RJ×In and the tensor X ∈ RI1×I2×···×IN ,
the n-mode product answers to multiplying every n-mode fiber of the tensor
with A. The i th element of the product becomes:

(X ×n A)i1 ... in−1 j in+1 ... iN =
In∑

in=1
xi1i2 ... iN a j iN (2.3)

and the resulting tensor X ×n A is of size I1×·· ·× In−1× J × In+1×·· ·× IN . Unfold-
ing this tensor along the nth mode, the resulting matrix (X ×n A)(n) answers to
the matrix multiplication for the corresponding mode AX (n) [Kolda and Bader,
2009]. Note that the n-mode product does not project the tensor X to a lower
dimensional space, but uses the unfolding to enable a multiplication along the
desired dimension.

2.2 Tensor Decompositions

The Canonical Polyadic Decomposition
In accordance with the previous section, the rank R∗ of a tensor is defined as the
number of terms needed in a linear combination of rank-one tensors to describe
the tensor exactly. These linear combinations answer to a decomposition of the
original tensor, and is described by a linear combination of lower dimensional
structures. In literature, the decomposition that describes the original tensor as a
sum of R∗ rank-one tensors is referred to as the canonical polyadic (CP) decom-
position1.

A CP decomposition of a tensor X ∈ RI1×I2×···×IN has the form:

X = �A(1)∗ , A(2)∗ , . . . , A(N)∗�

=
R∗∑

r=1
a(1)∗

r ◦a(2)∗
r ◦ . . . ◦a(N)∗

r (2.4)

and the i th element answers to:

xi1 ... iN =
R∗∑

r=1
a(1)∗

i1r a(2)∗
i2r · · · a(N)∗

iN r (2.5)

where a(n)∗
r in (2.4) denotes the r th column of the factor matrix A(n)∗ ∈ RIn×R∗

answering to mode n, and ◦ the outer product [Kolda and Bader, 2009]. Note that
there will be N factor matrices, each one corresponding to one of the N modes.
Also note that ∗ symbolizes the components of the exact decomposition and

1 Also referred to as the CANDECOMP/PARAFAC decomposition [Kolda and Bader, 2009]

20

2.2 Tensor Decompositions

thus, does not answer to an approximation of X .

Expanding this argument, one can approximate the tensor by including fewer
terms of one rank tensors. Figure 2.4 shows a third order tensor X approximated
by the R rank one tensors in the CP decomposition of order R. Note that the
approximation should not be made by simply excluding the rank one tensors
R < r ≤ R∗ from the full decomposition of rank R∗. This, as there is no guar-
antee that the rank one tensors R < r ≤ R∗ are of less importance than the r ≤ R
ones. Instead, a new decomposition should be computed for each approxima-
tion, which could conclude in a completely different set of rank one tensors.
[Kolda and Bader, 2009]

Figure 2.4 A third order tensor X ∈ RI1×I2×I3 approximated by the R rank one tensors

in the CP decomposition of order R. The vectors a(n)
r for r = 1, . . . ,R correspond to the

columns of the factor matrix A(n) of the nth mode.

Computing a CP Decomposition
As mentioned, when the summation over r is taken for an R smaller than the
rank R∗ of the tensor, the decomposition becomes an approximation. For a fixed
number of terms R < R∗, the computation is presented as an optimization prob-
lem; minimize the error between the true and approximated tensor. Here, the
least squares formulation is often chosen as a loss function:

L(A(1), A(2), ..., A(N)) = ∥X −X̂ ∥2

= ∥X −�A(1), A(2), . . . , A(N)�∥2

= ∥X −
R∑

r=1
a(1)

r ◦a(2)
r ◦ . . . ◦a(N)

r ∥2 (2.6)

where the norm is the squared tensor norm of the error tensor, see The Tensor
Norm in the Appendix. The optimization problem is then formulated as:

min
A(1), ..., A(N)

L(A(1), A(2), ..., A(N)) (2.7)

21

Chapter 2. Tensor Theory

Note that the decomposition is not unique; a factor A(n) can equally be set to
λA(n) as long as another factor matrix is scaled by the inverse 1/λ. This is an
acknowledged downside of the CP decomposition and will be discussed later.

Alternating Least Squares To compute factor matrices A(n) for all n = 1, . . . , N ,
one can iteratively solve the problem for every mode of the tensor by fixing the
others as constant. Consequently, all factor matrices but one are fixed and the
optimization is carried out for one matrix at the time. (2.6) can thus be formu-
lated as a least squares problem with respect to matrices, for which the solution
is given by the Moore-Penrose pseudoinverse (see Appendix):

A(n) = X(n)[(A(N) ⊙ ·· · A(n+1) ⊙ A(n−1) ⊙ ·· · A(1))T]†
(2.8)

where X(n) is the mode n unfolded tensor, and ⊙ the Khatri-Rao product (see
Appendix) [Kolda and Bader, 2009].

An issue with the alternating least squares (ALS) algorithm, is it not being guar-
anteed to converge to a stationary point. To account for this, one can apply gra-
dient descent when updating the factor matrices (instead of the Moore-Penrose
pseudoinverse). This has proven to be both more efficient and result in a better
accuracy of the factor matrices [Acar et al., 2011][Lin et al., 2018]. Additionally,
to find a unique solution, one needs to attack the scaling indeterminacy of the
decomposition. One way of doing so is by benefiting one solution by subjecting
the optimization problem to a constraint, discriminating a subset of the possible
solutions. For example, one can restrict the optimization to benefit non-negative
decompositions, or by adding a regularization term [Kolda and Bader, 2009].

The Tucker decomposition
Another commonly applied decomposition is the Tucker decomposition, which
can be viewed as a higher order singular value decomposition (SVD). A tensor
X ∈ RI1×···×IN is then factorized by N factor matrices A(n) ∈ RIn×Rn and a core
tensor G ∈ RR1×···×RN [Kolda, 2006]:

X =G×1 A(1) ×2 · · ·×N A(N)

=
R1,...,RN∑
r1,...,rN

gr1 ... rN a(1)
r1

◦a(2)
r2

◦ · · · ◦a(N)
rN

= �G; A(1), . . . , A(N)� (2.9)

where the i th element of the resulting tensor is given by:

xi1 ... iN =
R1,...,RN∑
r1,...,rN

gr1 ... rN a(1)
i1r1

a(2)
i2r2

· · · a(N)
iN rN

(2.10)

22

2.2 Tensor Decompositions

Similarly to the singular value decomposition of a matrix, the factor matrix A(n)

can be viewed as the principal components of mode n, where the elements of the
core tensor G measures the interaction between components. A visualization of
the Tucker decomposition for a third order tensor can be seen in Figure 2.5.

Figure 2.5 A third order tensor X ∈ RI1×I2×I3 approximated by the Tucker decomposi-
tion of rank (R1,R2,R3).

The shape of G depends on the shape of the factor matrices, which illuminates
the flexibility of the Tucker decomposition; the factor matrices A(n) ∈ RIn×Rn

must not have the same number of columns (which they must in the CP decom-
position). Consequently, one can compress the core tensor differently in different
modes. In the case of Rn = In for all N factors, the core tensor will have the same
shape as the original tensor X . The decomposition can then be seen as a change
of basis, where the elements of G answer to the scaling in a new space spanned
by the factor matrices A(1), . . . , A(N). If Rn < In for some mode(s) though, the core
tensor will be smaller and answer to a lower dimensional representation of X
[Kolda and Bader, 2009].

Computing the Tucker Decomposition
Assuming one is to approximate a tensor X ∈ RI1×···×IN by a Tucker decomposi-
tion, the optimization problem can be formulated as:

min
G,A(1), ..., A(N)

∥X −�G; A(1), . . . , A(N)�∥2 (2.11)

for the factor matrices A(n) ∈ RIn×Rn and the core tensor G with shape (R1 × ·· ·×
RN). Remembering that the Tucker decomposition could be seen as a higher or-
der SVD, one could define the factor matrices from the eigenvectors of the cor-
responding mode [Kolda and Bader, 2009]. The most common approaches today
though, settle with computing an orthonormal basis since it is computationally
cheaper. De Lathauwer, De Moor, and Vandewalle proposed in 2000 one such

23

Chapter 2. Tensor Theory

method; Higher Order Orthogonal Iteration [De Lathauwer et al., 2000], later re-
ferred to as HOOI. The optimization problem answers to the one presented in
(2.11), but with an orthogonality constraint on the factor matrices:

min
G,A(1), ..., A(N)

∥X −�G; A(1), . . . , A(N)�∥2

subject to G ∈ RR1× ··· ×RN

A(n) ∈ RIn×Rn columnwise orthogonal for all n = 1, . . . N (2.12)

where the loss function to minimize is:

L(X ,G, A(1), . . . , A(N)) = ∥X −�G; A(1), . . . , A(N)�∥2 (2.13)

Since the Tucker decomposition answers to the n-mode product between a core
tensor G and the factor matrices A(1), . . . , A(N), the norm in (2.12) can be written
in vectorized form [Kolda and Bader, 2009]:

∥vec(X)− (A(N) ⊗ A(N−1) ⊗ ·· · ⊗ A(1))vec(G)∥2 (2.14)

where the vectorization of tensors are done with respect to the first mode (i.e. the
columns). By definition, the norm will only equal zero if the vector answers to the
zero vector. The optimal solution thereby answers to:

vec(G) = (A(N)T ⊗ A(N−1)T ⊗ ·· · ⊗ A(1)T
)vec(X) (2.15)

where it has been used that the Kronecker product of (semi) orthogonal2 matri-
ces is (semi) orthogonal (see 8.1 Basic Operations: The Kronecker Product in the
Appendix). Rewriting the expression in (2.15), the core tensor G can be written

as a Tucker decomposition of the tensor X and the inverse factor matrices A(n)T

[Kolda, 2006]:

G =X ×1 A(1)T ×2 · · · ×N A(N)T
(2.16)

Using the expression above, the norm to minimize (see 2.13) can be simplified:

2 A semi orthogonal matrix does not need to be a square matrix, but must only fulfill AT A = I or
A AT = I .

24

2.2 Tensor Decompositions

∥X−�G; A(1), . . . , A(N)�∥2

= ∥X ∥2 −2〈X ,�G; A(1), . . . , A(N)�〉+∥�G; A(1), . . . , A(N)�∥2

= ∥X ∥2 −2〈X ×1 A(1)T ×2 · · · ×N A(N)T
,G〉

+〈G×1 A(1) ×2 · · · ×N A(N),G×1 A(1) ×2 · · · ×N A(N)〉
= ∥X ∥2 −2〈G,G〉

+〈G×1 A(1) ×1 A(1)T ×2 · · · ×N A(N) ×N A(N)T
,G〉

= ∥X ∥2 −2〈G,G〉
+〈G×1 (A(1)T

A(1))×2 · · · ×N (A(N)T
A(N)),G〉

= ∥X ∥2 −2〈G,G〉+〈G,G〉
= ∥X ∥2 −∥G∥2

= ∥X ∥2 −∥X ×1 A(1)T ×2 · · · ×N A(N)T ∥2 (2.17)

where the fourth equality utilizes X ×n A ×n B =X ×n (B A), and the fifth equal-
ity that the factor matrices are (semi) orthogonal. Since the tensor X is constant,
the original problem in (2.12) can be reformulated as N subproblems, each max-
imizing the norm of the (optimal) core tensor G:

max
A(n)

∥X ×1 A(1)T ×2 · · · ×N A(N)T ∥2

subject to A(n) ∈ RIn×Rn columnwise orthogonal (2.18)

The solution can be addressed by using an alternating least squares approach.
Assuming the nth factor matrix as constant, the expression within the norm can
be written as:

∥A(n)T
W ∥2 with W = X (n)(A(N) ⊗ ·· · ⊗ A(n−1) ⊗ A(n+1) ⊗ ·· · ⊗ A(1)) (2.19)

for which the optimal A(n) can be computed as the Rn most significant left singu-
lar vectors of W . Since the singular vectors by definition are orthogonal to each
other, the orthogonality constraint on the factor matrices will be fulfilled.

There are two issues when computing the Tucker decomposition. Firstly, this ALS
approach is not guaranteed to converge to a stationary point, but only to a solu-
tion where the loss in (2.13) ceases to decrease (as for the CP decomposition).
Secondly, the Tucker decomposition itself is not unique [Kolda and Bader, 2009].
The algorithm is thereby likely to produce inconsistent results because of the var-
ious decompositions it can converge to, and its non-guarantee of converging to

25

Chapter 2. Tensor Theory

any of them. Similarly as for the CP-decomposition, the non-uniqueness can be
addressed by restricting the loss function to a subset of solutions.

Non-negative Decompositions
A non-negative decomposition yields an approximated tensor with non-negative
elements only. With the purpose of modeling positive data, these decomposi-
tions can be a desirable option. This is partly as they impose a constraint on the
decomposition (shrinking the number of possible solutions), but also as they
preserve the sign of data that (possibly after processing) is only positive. For
naturally positive data, non-negative decompositions thereby allow for a more
intuitive interpretation of the result [Kolda and Bader, 2009].

The restriction on preserving the positivity translates to computing non-negative
factors of the decomposition. For the CP and Tucker decompositions, this trans-
lates to positive factor matrices, where the Tucker decomposition requires the
core tensor to be non-negative as well. For the past twenty years, various ap-
proaches for computing non-negative CP and Tucker decompositions have been
presented, where some are based on Lee and Seung’s work on non-negative
matrix factorization [Kolda, 2006]. The sections below account for two of those
methods; non-negative CP decomposition, and non-negative Tucker decompo-
sition. For a better understanding, Lee and Seung’s conclusions on non-negative
matrix factorization will firstly be presented.

Non-Negative Matrix Factorization A matrix X of shape m×n represents a sec-
ond order tensor and can thus be factorized. Assuming the decomposition is de-
fined from two factor matrices A ∈ Rm×R and B ∈ RR×n , an element of X answers
to:

X = AB

xi j =
R∑

r=1
ai r br j (2.20)

which equals the element of a CP decomposition for the factor matrices A and
B T , recall (2.5). A matrix factorization can thereby be seen as a second order CP
decomposition. If one is to calculate a lower dimensional representation, the op-
timization can be formulated as a least squares problem:

min
A,B

∥X − AB∥2
F

To calculate a non-negative decomposition, Lee and Seung have added a con-
straint to this formulation, requiring all elements of the factor matrices to be
non-negative:

26

2.2 Tensor Decompositions

min
A,B

∥X − AB∥2
F

subject to A ≥ 0, B ≥ 0 (2.21)

Denoting the loss function L as the quadratic norm of the error, it is only convex
if one studies one factor at the time [Lee and Seung, 1999]. Consequently, one can
use an alternating approach with a gradient based search to compute the factor
matrices. Calculating the gradient with respect to every factor, one obtains:

∇AL=−2X B T +2AB B T

∇BL=−2AT X +2AT AB (2.22)

Applying gradient descent, the update rule becomes [Lars-Christer Böiers, 2010]:

A ← A −ηA∇AL
B ← B −ηB∇BL (2.23)

To apply the constraint of positive factor matrices, Lee and Seung propose re-
stricting the algorithm to return only non-negative updates. They do so by choos-
ing the learning rates ηA and ηB such that there is no subtraction:

ηA = A ⊘ (2AB B T)

ηB = B ⊘ (2AT AB) (2.24)

where⊘ denotes the element-wise division. Inserting the expression to (2.23) one
obtains a multiplicative update rule:

A ← A ∗ (X B T)⊘ (AB B T)

B ← B ∗ (AT X)⊘ (AT AB) (2.25)

where ∗ is the element-wise multiplication, referred to as the Hadamard product
(for details, see 8.1 Hadamard Product in the Appendix)). The positivity of the
factor matrices will be preserved as long as A and B are initialized positive, and
X itself is non-negative. In their work, Lee and Seung prove that this approach
leads to convergence of the factor matrices (in terms of the gradients in (2.22)
being zero) [Lee and Seung, 1999].

Non-Negative CP Decomposition Similarly to the original ALS approach, the
non-negative CP decomposition can be derived by iteratively solving the factor

27

Chapter 2. Tensor Theory

matrices. The difference in the approach lies in the constraint on the factor ma-
trices:

min
A(1), ..., A(N)

∥X −�A(1), . . . , A(N)�∥2

subject to A(n) ≥ 0 ∀n = 1, . . . , N (2.26)

To solve (2.26), one could form a loss function including the norm of the error,
and penalty terms for the non-negativity constraints [Cichocki et al., 2009]. An-
other approach is by extending Lee and Seungs non-negative matrix factoriza-
tion to general tensors of order N . The update rule in (2.25) then translates to:

A(n) ← A(n) ∗
(

X (n) A(−n)
⊙

)
⊘

(
�A(1), . . . , A(N)�(n) A(−n)

⊙
)

A(−n)
⊙ = A(N) ⊙ ·· · ⊙ A(n+1) ⊙ A(n−1) ⊙ ·· · ⊙ A(1)

(2.27)

where one has computed the gradient of ∥X −�A(1), . . . , A(N)�∥2 and applied gra-
dient descent with a multiplicative update, setting the learning rates such that
positivity is preserved 3 [Shashua and Hazan, 2005].

Non-Negative Tucker Decomposition Computing the non-negative Tucker de-
composition, Kim and Choi utilize the properties of unfolding the decomposi-
tion. Recalling the Tucker decomposition, unfolding the tensor X ∈ RI1×···×IN

along the nth mode answers to [Kolda and Bader, 2009]:

X (n) ≈
[
G×1 A(1) ×2 · · · ×N A(N)]

(n)

= A(n)G (n)(A(N) ⊗ ·· · ⊗ A(n+1) ⊗ A(n−1) ⊗ ·· · ⊗ A(1))T (2.28)

which can be simplified to a matrix multiplication between two factors:

X (n) ≈ A(n)G (−n)
A

where G (−n)
A =G (n)(A(N) ⊗ ·· · ⊗ A(n+1) ⊗ A(n−1) ⊗ ·· · ⊗ A(1))T (2.29)

allowing the decomposition to be read as a matrix factorization of X (n). The de-
composition can thus, be viewed as N sub-problems; the non-negative matrix
factorization for every mode n = 1, . . . , N . By Lee and Seung, the least squares so-
lution of the non-negative matrix factorization can be solved iteratively. For every
mode n, the updating rule translates to:

3 For a complete derivation, see [Shashua and Hazan, 2005]

28

2.2 Tensor Decompositions

A(n) ← A(n) ∗
(

X (n)G
(−n)T

A

)
⊘

(
A(n)G (−n)

A G (−n)T

A

)
(2.30)

Continuing with the second factor, G(n) and not G(−n)
A is of interest. Therefore,

the expression in (2.28) is rewritten as X (n) ≈ A(n)G (n) A(−n)T

⊗ . For the tensor G,
the update rule becomes:

G←G ∗ X ×1 A(1)T ×2 · · · ×N A(N)T

Gk ×1 A(1)T
A(1) ×2 · · · ×N A(N)T

A(N)
(2.31)

which was derived in detail in [Kim and Choi, 2007], and can be found in Non-
negative Tucker Decomposition Derivation Appendix.

As proven by [Lee and Seung, 1999], computing the factor matrices and the core
iteratively from (2.30) and (2.31) leads to convergence.

Rank Selection of Decompositions
Computing a tensor decomposition for a rank R lower than the rank R∗ of the
tensor itself, one obtains (as mentioned) an approximation. A reasonable ques-
tion is what rank R one should choose. To start with, the rank R∗ of the tensor is
often unknown, and calculating R∗ is an NP-hard problem, and thereby not an
option [Kolda, 2006]. Instead, one tends to focus on defining a suitable R only,
assuming it will have lower rank than the original tensor. Considering the rank
R is directly correlated to the shape of the factor matrices (A(n) ∈ R In×R for CP,
and A(n) ∈ R In×Rn for Tucker), a small rank is beneficial in terms of dimension-
ality reduction. The ideal rank should thus be as low as possible, while still cap-
turing prominent characteristics such that the decomposition suggests a good
approximation. Based on work from [Phan and Cichocki, 2010], such a rank can
be calculated for every mode by determining the extent of variation for each di-
mension. For a tensor X of order N , a measure of the variation along mode n can
be translated from the eigenvalues along that mode:

X (n) X T
(n) =UΣV T (2.32)

where UΣV T is the SVD of X (n) X T
(n), and X (n) answers to the original tensor

X unfolded along the nth mode. The diagonal matrix Σ thereby contains the
squared eigenvalues of X (n) X T

(n), assumed to represent the variation of mode n.

Applying the elbow technique, the rank of the corresponding factor matrix A(n)

can be chosen such that a significance α of the variation is explained:

argmin
Rn

∑Rn
i=1λi∑In
i=1λi

> α (2.33)

29

Chapter 2. Tensor Theory

where λi is the i th diagonal entry of Σ, corresponding to the i th largest singular
value. For example, choosing α= 0.95 would yield a rank Rn that results in mod-
eling 95% of the variability of mode n [Phan and Cichocki, 2010].

Applying the approach to the Tucker decomposition, one simply determines the
rank of every factor matrix by (2.33). For the CP decomposition, one similarly
calculates the rank of every mode by (2.33), but then has to settle for one of them.
This, as all factor matrices must have the same number of columns in the CP
decomposition.

30

3
Machine Learning Theory

The following chapter will serve as short description of the supervised machine
learning classifiers and regressors used in this project. The descriptions will be
based on the theory of classifiers (labeling discrete classes), but the methods can
be generalized to continuous response variables (regression). What is of most rel-
evance in this chapter is what techniques the different methods apply to predict
and separate labels. This will later be relevant and discussed when put in relation
to structures in EEG data, in combination with the tensor operations described
in Chapter 2 Tensor Theory.

31

Chapter 3. Machine Learning Theory

3.1 Support Vector Machines

The Support Vector Machine (SVM) is an extension of a Support Vector Classifier
(SVC). An SVC is based on finding separating hyperplanes between classes. Given
a 2-dimensional space, the separation answers to a line, and for the general case
of an N -dimensional space, one has an N − 1 dimensional hyperplane. Ideally,
for a dataset with binary classes and separable data, data from one class would
be located on one side of the hyperplane, and data from the other class on the
other side. Since there often are several hyperplanes that could achieve this (for
example by shifting the location of the hyperplane a tiny bit), the maximal mar-
gin hyperplane is usually selected. This is the hyperplane that is farthest from all
training data. It can be found by computing the perpendicular distance for all
training data points to the hyperplane, then selecting the one from each class
that is closest to the hyperplane, and maximizing the corresponding distances.
These data points are the support vectors, which are the only points that directly
affect the location of the hyperplane. If these points are moved, the hyperplane
will move as well. New data is classified based on what side of the hyperplane it
is located [James et al., 2013].

Sometimes, no such hyperplane that separates all data into the two binary classes
exists. Additionally, if it does exist, it might be overfitting the data as it only adapts
to the support vectors, which can be outliers. Therefore, a soft margin classifier
is often used, which allows some data points to be on the incorrect side of the
margin/hyperplane. This is controlled by a tuning parameter C, which bounds
the violation tolerance [James et al., 2013].

The SVM, in contrast to the SVC, applies a linear/nonlinear transformation to
the training data, referred to as a kernel K (·, ·). The feature space of the training
data can consequently be enlarged, and enhance different relationships and in-
teractions between data points, for instance nonlinear ones. For the transformed
training data, a hyperplane is estimated to separate labels, with hopes of more
easily distinct different classes in this enlarged feature space. In the linear SVM
(which consequently, is an SVC), the linear kernel in (3.1) is used. An example of
another well established kernel is the radial basis function (rbf) kernel, see (3.2):

K (xi , xi ′) =
N∑

n=1
xi n xi ′n (3.1)

K (xi , xi ′) = exp(−γ
N∑

n=1
(xi n −xi ′n)2) (3.2)

where xi and xi ′ are two training observations, N is the number of features and
γ is a positive constant. Using an rbf kernel instead of the standard linear one
leads to a more flexible decision boundary. In particular, the rbf kernel enhances

32

3.2 Random Forests

a local behavior, as only training observations nearby a test observation have an
effect on the class label [James et al., 2013].

3.2 Random Forests

The Random Forest method utilizes a combination of several Decision Trees. A
Decision Tree applies recursive binary splittings to find features and thresholds
that divide the data into different classes, which is a nonlinear procedure. The
aim is to choose the split that minimizes a loss function and thus, yields the best
classification of the data [James et al., 2013].

A Random Forest uses the average of several Decision Trees. The Decision Trees
are here only allowed to consider a random sample of m input features during
each split, and then choose one of these features for the split. Typically, m is
selected as the square root of the total number of features. With this technique,
the variance is reduced as the trees are not as probable of being correlated (since
they are ”forced” to use different sets of features), compared to for example bag-
ging where a simple averaging of different trees is applied [James et al., 2013].

Random Forests have several different tuning parameters, which can be specified
to affect regularization and overfitting. The depth of each tree, the number of
trees, and requirements on each binary split can for example be selected. Good
values for these parameters are usually highly dependent on the structure of the
data [James et al., 2013].

33

4
Datasets

During this project, two different datasets were used: one small, binary (Alex
Motor Imagery) and one larger with a continuous response variable (Sustained-
Attention Driving Task Dataset). The datasets have contributed to a detailed and
complex analysis of tensor decompositions of EEG signals in the field of transfer
learning. They were both chosen as they illuminated different features, struc-
tures and possible applications of the result. In this chapter, the datasets will be
described in detail.

Throughout the report, a trial (in literature sometimes also denoted epoch),
refers to a continuous time series of an EEG signal that occurs around an event
of interest. Every trial receives a label specifying the event, and has usually been
extracted from a longer time interval during a session. The sessions are in turn
related to a subject, which is the person who is performing the tasks and whose
EEG signals are measured. For example, a trial in the binary dataset Alex Motor
Imagery represents the 3 second EEG signals during an imagined hand or feet
movement, which are the two possible labels. A trial of the Sustained-Attention
Driving Task dataset answers to the 3 second EEG signals before reacting to a
car drift. The label of the trial is computed from the subject’s reaction time and
translates to a continuous drowsiness index.

34

4.1 Alex Motor Imagery

4.1 Alex Motor Imagery

Dataset Description
The first dataset is publicly available, and taken from the Mother Of All BCI
Benchmarks (MOABB) science project. The dataset: Alex Motor Imagery (AlexMI)
[Barachant and Chevallier, 2021]1, contained EEG signals of motor imagery,
meaning a subject imagined motor movements. The data was collected from
eight subjects, recorded at 512Hz using 16 wet electrodes placed according to the
international 10-20 system. Every subject performed one session of 60 trials, an-
swering to 20 trials of three classes; imagined movement of the right hand, imag-
ined movement of the feet, and doing nothing. All trials were three seconds long
and prior to every trial, the subjects were asked to move their right hand, feet, or
do nothing, dependent on what they were to imagine during the trial [Barachant
et al., n.d.] The placement of the electrodes and their names can be seen in Figure
4.1 below.

Figure 4.1 Electrode placement of the 16 electrodes during data collecting for the AlexMI
dataset. Channel names are printed next to the electrodes.

Trial Extraction
For the classification, only the motor imagery classes were included; right hand
and feet. The preprocessing used the MOABB-package in Python, where a
paradigm is the pipeline defining how to extract trials from continuous EEG data.
The MOABB project means to supply a standardized way of labeling EEG data
and thus, its library has defined standard pipelines. For this task, the paradigm
MotorImagery() was chosen with default settings. This resulted in the EEG data
being divided into trials, where a trial was extracted from the raw EEG data using

1 Instructions on how to download the data at
http://moabb.neurotechx.com/docs/generated/moabb.datasets.AlexMI.html

35

http://moabb.neurotechx.com/docs/generated/moabb.datasets.AlexMI.html

Chapter 4. Datasets

the event start and end times pre-denoted by the dataset creators; a three sec-
onds time series of the subject imagining a motor movement. Additionally, the
paradigm included a bandpass filter between 8 and 32Hz. The default frequency
range 8-32Hz was concluded as reasonable since data characteristics for motor
imagery often lies in the alpha- (8-13Hz) and beta- (14-30Hz) bands [Energy Ef-
ficiency of Medical Devices and Healthcare Applications 2020]. Table 4.1 below
displays an overview of the dataset:

Table 4.1 Details about the AlexMI dataset used for the classification of right hand and
feet respectively. Note that the labels were randomly mixed within each session, making it
not possible for the subject to know what label to expect during each trial.

Subject Sessions Trials Label

1 1 40 20×”right_hand” and 20×”feet”
...

...
...

...

8 1 40 20×”right_hand” and 20×”feet”

Total: 8 Total: 8 Total: 320 Total: 160×”right_hand” and 160×”feet”

All trials were included, leading to 40 trials per session and subject where 20
trials answered to an imagined movement of the right hand and feet respectively.
Consequently, there were 320 trials in total. For more detailed information on
the dataset, see [Barachant and Chevallier, 2021].

The 3 first trials of the two classes (3 hand and 3 feet, so 6 trials in total) of a
session are defined as the pre-trial data of that session. This is what will be used
for session similarity comparisons. The advantages of representing a new target
session just by its pre-trial data are that the data can be quickly collected, and
that it will be computationally inexpensive to use during comparisons between
sessions.

4.2 Sustained-Attention Driving Task Dataset

Dataset Description
The second dataset was, just as AlexMI, a publicly available EEG dataset, this one
collected during a sustained-attention driving task [Cao et al., 2019]. In this re-
port, the dataset will be denoted as the SA Driving dataset. The data had been
collected from 27 subjects aged 22-28 years. Each subject participated in one to
five 90 minute sessions, resulting in 62 sessions in total. The task of each session
was for the subject to react to deviation onsets (the car starting to drift), during a
simulated night driving session. Each deviation onset together with the partici-
pant’s response onset and back-adjustment to the center of the original lane was

36

4.2 Sustained-Attention Driving Task Dataset

defined as a deviation event. The reaction time (RT) during an event was defined
as the time from the deviation onset to the response onset. The response onset
was selected as the moment the subject started steering the wheel of the car to
counteract the car drift. As the car was constantly moving at the speed 100 km/h
in the simulation, there was no need for the subject to control the accelerator or
breaks. This made it possible to view steering as the only response variable of the
test. See Figure 4.2 for further explanations of the timeline of an event.

Figure 4.2 Timeline of an event during the Sustained-Attention Driving Task. The 3 sec-
onds of EEG data are extracted before the deviation onset (beginning of car drift). The
reaction time is measured as the time from the deviation onset to the response onset. The
deviation onset together with the response onset and back-adjustment to the center of the
original lane (ending at the response offset) is a deviation event.

A new deviation event was initialized 5-10 seconds after a finished one. During
the session, 30-channel EEG signals were recorded from the participants using a
wired EEG cap, with sampling frequency of 500 Hz. The electrodes were placed
according to the modified international 10–20 system, see Figure 4.3:

37

Chapter 4. Datasets

Figure 4.3 Electrode placement of the 30 electrodes during data collecting for the SA
Driving dataset. Channel names are printed next to the electrodes.

The pre-processed version of the dataset from [Cao et al., 2019] was used, which
had been prepared with bandpass filtering (1-50Hz) and artifact rejection. The
artifact rejection included manually removal of evident eye-blink in EEG-signals
and automatic removal of ocular and muscular artifacts.

Trial Extraction
3 second trials were extracted from the driving task EEG data set. Each trial con-
tained 3 seconds of EEG data from right before a deviation onset (see Figure 4.2).
Additionally, the RT for the corresponding deviation event was saved for each
trial. For a session to be split into trials, it had to fulfill two requirements:

1. The first 10 trials of a session were all below the non-drowsy limit.

2. The session contained at least 10 trials above the non-drowsy limit.

where the non-drowsy limit was defined as 1.5µ0, with µ0 being the median RT
of the first 10 trials. These 10 first trials of a session are defined as the pre-trial
data of that session, which is what will be used for session similarity comparison
(imitating the approach and definition in [Jeng et al., 2021]). Just as for AlexMI,
there are several advantages with representing a new target session just by its
pre-trial data. First of all, 10 trials of calibration data is quickly collected (less
than three minutes) and computationally inexpensive to use for comparison be-
tween sessions. Additionally, in practice it would be more realistic and beneficial
to collect only non-drowsy data for calibration of a new session, as drowsy trials
would require exposing the subject to a dangerous traffic situation.

38

4.2 Sustained-Attention Driving Task Dataset

The trimmed dataset contained 19 177 trials from 42 sessions with 24 different
subjects. The data for sessions 4 and 5 were identical, even though they were
documented as belonging to different sessions and subjects. Both sessions were
therefore excluded, as it was not possible to identify if the data belonged to sub-
ject 4 or 5. The final dataset contained 18455 trials from 40 sessions with 23 dif-
ferent subjects, see Table 4.2.

Table 4.2 Details about the final, trimmed dataset, containing 18455 trials from 40 ses-
sions with 23 different subjects. µ0 is the median RT of the first 10 trials for each session,
which was used to filter out wanted sessions.

Subject Sessions Trials µ0 [s]

1 2 309, 533 1.078, 1.672

2 2 332, 344 0.686, 0.776

5 1 683 0.770

9 2 188, 254 0.920, 0.988

12 1 351 1.038

13 2 479, 269 0.586, 0.652

14 1 333 0.534

22 3 333, 509, 515 0.584, 0.800, 0.636

23 1 439 0.736

31 2 640, 566 1.188, 1.120

35 2 540, 555 0.718, 0.680

40 2 675, 632 0.860, 0.786

41 3 322, 527, 413 0.634, 0.500, 0.626

42 1 548 1.004

43 2 711, 564 0.602, 1.094

44 3 521, 662, 568 1.002, 0.568, 0.768

45 1 688 0.620

48 1 350 0.620

49 1 343 0.552

50 2 361, 334 0.786, 0.870

53 3 244, 510, 464 0.692, 0.696, 0.684

54 1 205 0.712

55 1 641 0.616

Total: 23 Total: 40 Total: 18 455

39

Chapter 4. Datasets

Drowsiness Index
During the Sustained-Attention Driving Task, there were two problems with the
raw response variable RT (intended to use for prediction). First of all, the dis-
tribution of RTs was unbalanced with low frequency of high values, see Figure
4.4. An unbalanced dataset results in less likeliness to predict minority classes,
corresponding to high reaction times (drowsiness) in this case. A particular is-
sue that contributed to this large spread in long RTs was that the subjects who
had fallen asleep during the task were not woken up, resulting in occasional RTs
longer than 100s.

The second problem was that RTs were session dependent, which becomes ev-
ident when looking at the variation in µ0 for different sessions in Table 4.2. The
drowsiness level for a specific subject could not be predicted by solely looking
at the absolute value of a RT, but had to be individually adapted. For instance
could 1.5 s be considered drowsy for one session and non-drowsy for another,
depending on the subject’s non-drowsy normal reaction time.

To account for these two problems, a Drowsiness Index (DI) was created, using
the definition in [Wei et al., 2018]. The corresponding conversion from RT to DI
for a trial m in a specific session can be seen in (4.1):

DIm = max(0,
1−e−a(µm−µ0)

1+e−a(µm−µ0)
) (4.1)

where µ0 is the median RT of the first 10 trials in that session, µm is the RT of trial
m and a is a constant set to 1 s−1. The raw RT distribution and corresponding DI
distribution can be seen in Figure 4.4.

Figure 4.4 Raw RT distribution (left) and DI distribution after conversion of RTs accord-
ing to 4.1 (right). Both distributions are plotted in log scale.

40

5
Tensor Decompositions for
Session Selection

Throughout this project, the main objective has been to evaluate tensor decom-
positions of EEG signals in the field of transfer learning. The first pipeline, Tensor
Decompositions for Session Selection, is described in this chapter. The approach
is based on the assumption that a classifier/regressor will benefit from only train-
ing on sessions which have EEG data that is similar to the target session (which
has been seen previously in literature, for example in [Jeng et al., 2021]). Here,
tensor representations were thus only applied as a session selection step to mea-
sure similarity between different sessions. In Figure 5.1, this selection process is
visualized. Additionally, two baseline methods (random and Riemann selection)
were also created to validate the results.

In Section 5.1 Background, an overview of the implemented approach can be
found, inspired by the article Low-Dimensional Subject Representation-Based
Transfer Learning [Jeng et al., 2021]. Furthermore, the section includes explana-
tions of how the factor matrices of the tensor decompositions can be interpreted,
which later will be used for session selection. Thereafter, our extensions to the
method used by Jeng et al. will be described in Section 5.2 Our Contribution.
This will be followed by a detailed description of our approach in 5.3 Method,
and the results combined with a discussion in 5.4 Result and Discussion.

41

Chapter 5. Tensor Decompositions for Session Selection

Figure 5.1 Session selection process using tensor decompositions. A tensor was created
from a database of training sessions and a target session. A tensor decomposition was
performed, and from it, the similarity of all training sessions and the target session was
measured. The training sessions most similar to the target session were extracted and later
used to train a classifier/regressor.

5.1 Background

In Low-Dimensional Subject Representation-Based Transfer Learning [Jeng et al.,
2021], the SA Driving dataset was used to train regressors, which were to predict
the drowsiness levels in a target session. Their approach was the following: firstly
they converted each 3 second EEG trial to the frequency domain. The resulting
power spectral density1 (PSD) of a trial was used as the input features to the
regressor. Thereafter, to evaluate the regressors, they used leave one session out
(LOSO) cross-validation, meaning all sessions were viewed as the target session
once. A subset of all available sessions were selected for training, with the aim of
selecting the ones most similar to the target session. They performed a selection
process by using a regularized CP decomposition2 and studying the resulting fac-
tor matrix of the session mode, where each session was represented by a latent
vector. The Pearson Correlation between latent vectors was used as the similarity
measure. They found the tensor selection method could improve the prediction
performance with 95% significance when choosing a subset of sessions, both

1 The spectral energy distribution, that is, how much power each frequency component contains
[Stoica and Moses, 2005].

2 The regularization reduced the complexity of the model, see [Jeng et al., 2021] for details.

42

5.1 Background

compared to random selection and a Riemannian selection method.

Inspired by the article, we have followed a similar approach but with several mod-
ifications. Before introducing these modifications, a detailed description of how
tensor decompositions can be interpreted as a similarity measure will be given.
The terms factor matrices, latent variables and latent vectors will play an impor-
tant role in this, and will be explained next.

Factor Matrix Interpretations
For a tensor X of order N , both the CP and Tucker decompositions yield N factor
matrices (one for each mode). These factor matrices contain information of the
variability in the corresponding mode.

CP Decomposition Consider a third order tensor, composed of the EEG data
(session×channel×frequency). Performing a CP decomposition of rank R results
in the three factor matrices A(1), A(2), A(3) of shape (# sessions×R), (# channels×
R) and (# freqs×R) respectively. Together, they approximate the original tensor,
X̂ = �A(1), A(2), A(3)�, recall (2.4). Figure 5.2 visualizes this for the example with a
third order tensor.

Figure 5.2 Visualization of the CP decomposition for a third order tensor (session ×
channel× frequency). The decomposition results in three factor matrices, A(1), A(2), A(3),
each corresponding to one of the three modes. To approximate the original tensor X , R
tensors of the same shape as X are summed together, each tensor created from three rank
one tensors (vectors), corresponding to the columns in the factor matrices.

43

Chapter 5. Tensor Decompositions for Session Selection

Looking at a single column in one of the factor matrices, for example the first
column a(1)

1 in A(1), it can be seen that to approximate the original tensor, every

element is multiplied with the first columns a(2)
1 and a(3)

1 of A(2) and A(3). This
becomes evident from (2.4), and the definition of the outer product (see 8.1 The
Outer Product in the Appendix). The elements in a(1)

1 can thus be considered
scaling of how much of the structure described by the first column in the other
factor matrices should be included. We define the elements of a column as differ-
ent outputs of the same latent variable (l (n)

r). Thus, a latent variable describes a
coordinate in a vector space spanned by the corresponding columns in the other
factor matrices. This vector space is the set {a(k)

r }, where k ̸= n. For example,
each session is therefore represented by a specific coordinate, a latent variable
value l (n)

r,s , in the vector space {a(k)
r }, where k ̸= 1, corresponding to columns r

in the channel and frequency factor matrices. The relation of the latent variable
values can thus be interpreted as a description of how similar two sessions are in
that specific vector space. See Figure 5.3a for the latent variable definition in the
example.

Looking at a single row in one of the factor matrices, for example the first row in
A(1), it can be seen that every element corresponds to values of different latent
variables l (1)

r,1 , where r = 1, ...,R. We define a row of latent variables as a latent

vector v(n). Each session is thereby represented by a latent vector v(n)
s , which is

a specific set of R latent variable values, each value a coordinate in one of the R
different vector spaces. The relation between latent vectors of different sessions
can be interpreted as a description of how similar two sessions are. See Figure
5.3c for the latent vector definition in the example.

(a) (b) (c)

Figure 5.3 Definitions in a factor matrix: (a) latent variable l (n)
r , latent variable value l (n)

r,s ,

(b) column a(n)
r , and (c) latent vector v(n)

s . A(1) corresponds to the factor matrix of the first
mode in the example tensor (session×channel× frequency), which means that n = 1.

44

5.2 Our Contribution

Tucker Decomposition In the Tucker decomposition, the factor matrices do
not all have to be of the same rank. Consider again the previous example: a third
order tensor composed of the EEG data (session×channel×frequency). Perform-
ing a Tucker decomposition of rank (R1,R2,R3) results in three factor matrices
A(1), A(2), A(3) of shapes (# sessions×R1), (# channels×R2), and (# freqs×R3),
together with a core tensor G of shape (R1 ×R2 ×R3).

For the Tucker decomposition, the same notation as in the CP case of latent vari-
ables, latent variable values, and latent vectors are used for the components of the
factor matrices. The constraint that each latent variable is only multiplied with a
single column in the other factor matrices is however removed (due to the core
tensor). This allows for a more flexible combination of the latent variables. As a
consequence, one can not consider the columns of the factor matrices to "belong
together" in the same way as for the CP decomposition. This means that each la-
tent variable can not be mapped to a specific vector space in a corresponding
matter. Instead, all latent variables l (n)

rn
scale the same set {a(k)

rk
}, where k ̸= n and

rk = 1...Rk . The scaling and combinations of columns is further specified by the
core tensor G.

5.2 Our Contribution

EEG Data Normalization
In Low-Dimensional Subject Representation-Based Transfer Learning [Jeng et al.,
2021], the EEG-data for each 3 second trial was converted to its PSD. Thereafter,
the trials were pre-processed by applying the logarithm and subtracting the me-
dian of each session’s pre-trials (first 10 trials of a session). The last step created a
relative adaption of the data for each session. The corresponding data contained
positive and negative values around 0.

As the PSD of EEG-data is positive, we propose to retain the same sign of all data
after the normalization. This makes it possible to restrict the tensor decompo-
sitions to non-negative ones, increasing the probability of finding unique solu-
tions. Similarly to Jeng et al., we converted the EEG-data to its PSD, resulting in
values around 10−15. We then applied the logarithm, resulting in only negative
values as the PSDs were positive but far less than 1. Thereafter, we divided the
data with the median of the pre-trials instead of subtracting it. All data was now
positive and contained values around 1. The last step was done as we found it
beneficial to keep the relative normalization for each session. This made it possi-
ble to reduce the impact of data collection differences between sessions, for ex-
ample electrode impedance. Note that this normalization transforms the data to
the counter-intuitive form that values above 1 correspond to PSDs lower than the

45

Chapter 5. Tensor Decompositions for Session Selection

median pre-trial, and values below 1 correspond to PSDs higher than the median
pre-trial.

Tensor Decompositions
In Low-Dimensional Subject Representation-Based Transfer Learning [Jeng et al.,
2021], every session was represented by computing the mean of its pre-trials,
resulting in a matrix of shape (channel × frequency). From these matrices, a
third order tensor of shape (session× channel× frequency) was created. Jeng et
al. created a regularized CP decomposition algorithm, which implemented gra-
dient descent. They motivate the implementation of this algorithm as reducing
the complexity of the decomposition.

As we applied a different normalization to the data, resulting in only positive val-
ues, we instead used only non-negative tensor decompositions. Additionally, we
did not only consider the CP decomposition, but also studied the Tucker decom-
position. The non-negative constraint was from empirical testing enough to find
unique solutions in both cases; CP computed with ALS and Tucker computed
with HOOI.

In Low-Dimensional Subject Representation-Based Transfer Learning [Jeng et al.,
2021], a rank 10 CP decomposition was performed. For the Tucker decomposi-
tion, we applied a rank selection such that 95% of the variability in the original
tensor X was explained by the factor matrices, see section 2.2 Rank Selection of
Decompositions. For the CP decomposition, we performed the same rank inves-
tigation to find 95% of the variability in each mode, and then chose the smallest
of the three resulting ranks as the mutual R. The 95% significance was chosen
with the purpose of preserving the variability in the data, while still excluding
noise.

Similarity Measure
In Low-Dimensional Subject Representation-Based Transfer Learning [Jeng et
al., 2021], the session selection process was performed using a CP decompo-
sition and studying the factor matrix of the session dimension. Each session
was represented by its latent vector in that matrix, and the Pearson correlation
between latent vectors was used as a similarity measure. This means that the
intra-relation of latent variable values was considered of most importance when
comparing sessions, and not the absolute difference between latent vectors.
Consider the example of vector v1 = [1,2,3]. v1 will have higher correlation with
v2 = [10,11,12] than v3 = [3,2,1], even though the absolute difference between v1

and v3 is smaller than for v1 and v2.

46

5.2 Our Contribution

Another way to measure similarity and preserve the intra-session-relation is by
using the Euclidean distance between normalized latent vectors. If all values in a
latent vector sum up to 1, one can view the latent variables as capturing the ses-
sion’s percentage of variability. v1 would then become [0.167,0.333,0.5], which
can be interpreted as that 16.7% of the variability is described by latent variable
l1, 33.3% by latent variable l2 and 50% by latent variable l3.

What is excluded in this similarity measurement, as well as in the Pearson cor-
relation measurement used by Jeng et al., is the fact that the latent vector spaces
are of varying sizes. We therefore propose a new similarity measure, combining
the percentage of variability-method and accounting for the weight of each la-
tent vector space. This means not all latent variables are considered equally im-
portant, as was the case in Jeng et al., but their impact depends on how much
of the data they describe. We consider this to be a more representative measure-
ment of how similar two sessions are. Details on this similarity method for the
two decompositions (CP and Tucker) will be described next.

CP Decomposition For the CP decomposition, the weighting of each latent vec-
tor space is relatively intuitive. Consider a CP decomposition of rank R of the
third order tensor of EEG data (session × channel × frequency). As described in
section 5.1 Background, the latent variables l (n)

r r = 1...R in the factor matrix of
the sessions-mode (n = 1) represent values in the R vector spaces spanned by
the sets {a(k)

r }, where k ̸= n. As each of the R latent variables represent a value in
a unique vector space, we calculate the size of the corresponding vector space
and use as the weighting factor. The size should be proportional to how much
of the data each vector space describe. When all vector spaces are non-negative,

the Frobenius norm of the columns a(j)
r can be considered a valid measurement

for how much each column contributes to the inverse power approximated ten-
sor. We choose to multiply the norms of all columns in a vector space, as this is
most similar to how the recreation of the approximated tensor is made; by mul-
tiplicative operations between latent variables and columns. Another approach
could be to add the norms together, or with some other combination of oper-
ations, create a weighting factor. Our multiplicative weighting factor becomes
w(C P) = [

w (C P)
1 w (C P)

2 ... w (C P)
R

]
, where each element w (C P)

r is computed ac-
cording to (5.1):

w (C P)
r =

N∏
k
||a(k)

r ||F , k ̸= n. (5.1)

To include the information about the vector space sizes, the Hadamard product
between each latent vector and the weighting factor w(C P) is computed. There-
after, each latent vector is normalized such that all values sum up to 1. Now, the
percentage of variability-method can be used to interpret how much of the vari-
ability is described by each latent variable. The Euclidean distance between the

47

Chapter 5. Tensor Decompositions for Session Selection

weighted and normalized latent vectors of each session is viewed as the similar-
ity measure. Similar sessions will hence have a shorter distance than non-similar
ones.

Tucker Decomposition As the Tucker decomposition yields a more flexible
combination of latent variables, the weighting factor needs to be calculated in
a different way. Consider a Tucker decomposition of rank (R1,R2,R3) of the third
order tensor of EEG data (session × channel × frequency). The decomposition
results in three factor matrices of shape (# sessions ×R1), (# channels ×R2) and
(# freqs ×R3), and a core tensor of shape (R1 ×R2 ×R3). To find a representative
weight for the latent variables in the session dimension, it is reasonable to ana-
lyze what each latent variable is scaling. To do so, all factor matrices but that of
the sessions dimension are multiplied with the core tensor. This creates a tensor
of size (R1× # channels × # freqs). It now becomes evident that each latent vari-
able in the session dimension is always combined with a specific slice Sr1 of this
tensor, see Figure 5.4.

Figure 5.4 Each latent variable in the factor matrix of the session dimension (A(1)) is
always combined with a specific slice Sr1 from G ×2 A(2) ×3 A(3) during approximation
of the original tensor X . The size of the slices can therefore be considered a reasonable
weighting factor for the latent variables in A(1).

Similarly to the CP decomposition case, a weighting factor w(Tu) =

48

5.3 Method[
w (Tu)

1 w (Tu)
2 ... w (Tu)

R1

]
can be created, where each element w (Tu)

r1
is com-

puted according to (5.2). When all slices are non-negative, the Frobenius norm
can be considered a valid measurement for how much of the inverse power of
the data each slice describe.

w (Tu)
r1

= ||Sr1 ||F (5.2)

To include the weighting information, the Hadamard product between each la-
tent vector and the weighting factor w (Tu)

r is computed. Thereafter, each latent
vector is normalized such that all values in it sum up to 1. The percentage of vari-
ability-method can now be used to interpret how much of the variability that is
described by each latent variable. The Euclidean distances between sessions are
viewed as the similarity measure, where similar sessions will have (as for the CP
decomposition) a short distance.

5.3 Method

In the following section, a detailed description of this chapter’s method can be
found. The purpose is for the reader to understand the pipeline, the decisions
made, and for reproducibility.

The section firstly handles the small, binary dataset Alex MI, for which accuracy
for motor imagery classification is evaluated. Thereafter, the larger dataset SA
Drivers will be used for regression analysis. The two datasets illuminate different
aspects of the tensor decomposition methods. For Alex MI, focus will be on what
structures the tensor decompositions capture and qualities of the similarity
measures. This, as it is easier to visualize a small dataset, and that more pre-
knowledge of important channel locations and frequency intervals exists for this
binary classification problem. SA Drivers will instead mainly be used to evaluate
what effect the tensor decomposition selection has on the performance of the
regression. This, as a larger dataset enables a greater variation between sessions
and thus, a more detailed analysis of the method’s performance. Additionally,
regressors can capture small improvements in a model better than binary classi-
fication, as the uncertainty of the prediction is more clearly included.

Apart from this, all preprocessing steps, as well as some data exploration in re-
lation to the tensor decomposition methods, will be further looked into for both
datasets.

49

Chapter 5. Tensor Decompositions for Session Selection

Alex MI
Preprocessing For every trial, the EEG data in each of the 16 channels was
transformed into its PSD using a multitaper method3. The PSD multitaper trans-
formation resulted in 72 equally spaced bins of size 0.33 Hz between 8 to 32 Hz.
As this high resolution was excessive and resulted in unnecessarily long training
times later on, the amount of bins was reduced. This was done by applying a
moving average filter to the data, using a window size of 3 together with a 3-step
slide. The result was data of 25 equally spaced bins of size 1 Hz between 8-32 Hz.

The logarithm was thereafter applied to each trial, and normalization was per-
formed by dividing all trials of a session with the median pre-trial from the corre-
sponding session. This resulted in only positive values centered around 1. Note
that this normalization transforms the data to the counter-intuitive form that val-
ues above 1 correspond to PSDs lower than the median pre-trial, and values be-
low 1 correspond to PSDs higher than the median pre-trial. Each trial was now
described by a normalized 16×25 matrix of the form (channel × frequency).

Data Exploration To get a better understanding if certain frequencies and
channels were more important than others during this specific EEG classifica-
tion problem, an ANOVA filter was applied to the training database of trials.
This was done through leave one session out (LOSO), that is, all sessions were
viewed as the target session once (and consequently, excluded from the training
database). Using the ANOVA filter, the 10 features that separated the two classes
right hand and feet most evidently were extracted. In total, 10×8 features were
selected (10 features each for the 8 sessions). Every single feature represented
a specific channel location and frequency bin. Statistics of the most frequently
chosen frequency and channel combinations were studied. To visually inspect if
the selected features differed between the two classes, the frequency ranges of
greatest significance were plotted in a topographic map (topomap) together with
all channels marked out (see Figures 5.5 and 5.6).

Session Selection: Baselines For baseline comparison, a random selection of
sessions was applied. For each target session, this method randomly selected k
different sessions from the database as the training data.

For comparison against one of today’s state of the art methods, a Riemann se-
lection method was created [Congedo et al., 2017]. For this method, six channel
covariance matrices (of size 16 × 16) were estimated from the six pre-trials of
a session, according to (8.10) in the Appendix. Then for each session, a mean
covariance matrix was estimated from the corresponding pre-trial covariance
matrices, using the Riemannian geometric mean, see (8.12). To select the ses-

3 Estimation of the power spectrum using an average of multiple window functions applied to the
signal [Thomson, 1982]

50

5.3 Method

sion(s) most similar to the target session, the Riemannian distances (see 8.11))
between the target’s and all other sessions’ mean covariance matrices were com-
puted. The shorter the distance, the more similar the sessions were assumed to
be. The comparison between all sessions was displayed in a distance matrix.

Session Selection: Tensor Decomposition Methods Two different tensor decom-
position selection methods were evaluated; non-negative CP decomposition and
non-negative Tucker decomposition (see section 2.2 Tensor Decompositions).
In both cases, each session was represented by the mean of its six pre-trials. The
tensor was then formulated as (session × channel × frequency), resulting in the
shape (8×16×25). The rank of the two decompositions was selected to α= 0.95,
describing 95% of the variability in the data, see section 2.2 Rank Selection of
Decompositions. The significanceα= 0.95 was chosen with the aim of excluding
noise and yet, not remove any structure that could be of relevance for the classifi-
cation. Assuming only a part of the decompositions’ identified structures were of
relevance, a smaller α should be enough in theory. Because of the unsupervised
approach though, it was impossible to know what was excluded when decreasing
α. To allow for a safety margin, it was thus chosen to 0.95.

Both decompositions resulted in three factor matrices; one in the session di-
mension, one in the channel dimension and one in the frequency dimension.
The factor matrices of the CP decomposition were consequently, of shape (8×R),
(16 × R) and (25 × R). Correspondingly, the Tucker decomposition resulted in
factor matrices individually adapted for each dimension, (8×R1), (16×R2) and
(25×R3) respectively. In addition, the core tensor of the Tucker decomposition
was of size (R1 ×R2 ×R3). The CP and Tucker similarity measures, proposed in
section 5.2 Our Contribution, were used and evaluated. For each of the two ten-
sor methods, the distance was pairwise computed between the latent vectors in
the session dimension. The shorter the distance, the more similar the sessions
were assumed to be. The comparison between all sessions was displayed in a
distance matrix, one for each tensor decomposition method. Additionally, the
channel and frequency factor matrices were studied and visually inspected to get
a better idea of what structures the tensor decompositions captured.

Training and Evaluation For training and evaluation, LOSO cross-validation
was applied. For each session, 1-7 other sessions were selected using one of the
different session selection methods. To maintain consistent classification results,
the selected sessions were sorted according to their subject number (see Table
4.1) . The selected session(s) where used to train a linear Support Vector Classi-
fier (linear SVC), a Support Vector Classifier with an rbf kernel (SVC rbf) and a
Random Forest Classifier (ranfor). Minimal tuning was performed to not favor
any of the selection methods, details can be found in the project’s GitLab reposi-

51

https://gitlab.control.lth.se/exjobb-bci/emmalinda
https://gitlab.control.lth.se/exjobb-bci/emmalinda

Chapter 5. Tensor Decompositions for Session Selection

tory4. For the random selection method, every selection, training and evaluation
sequence was repeated 20 times and the average performance was calculated, as
the selection was not unique. The average prediction accuracy was used to eval-
uate the LOSO cross-validation result.

SA Driving
Preprocessing The preprocessing steps for the SA Driving dataset were iden-
tical to that of Alex MI, apart from differences in dimensions and numbers. For
every trial, the EEG data in each of the 30 channels were transformed into their
power spectral densities (PSD) using a multitaper method. The PSD multitaper
transformation resulted in 107 equally spaced bins of size 0.33 Hz between 1
to 35 Hz. The range 1 to 35 Hz was selected as a reasonable range, where lower
frequencies than 8 Hz were included unlike the Alex MI case. This was as lower
frequencies in EEG data are, in theory, enhanced during a subject’s decrease in
consciousness level (drowsiness), but are not as much of interest for motor im-
agery (see Table 1.1 in Chapter 1 Introduction).

As for Alex MI, the amount of bins was reduced by applying a moving average fil-
ter to the data, using the window size 3 together with a 3-step slide. The result was
data of 35 equally spaced bins of size 1 Hz between 1-35 Hz. The logarithm was
thereafter applied to each trial, and normalization was performed by dividing
all trials of a session with the median pre-trial from that corresponding session.
Again, this resulted in only positive values centered around 1. Each trial was now
described by a 30×35 matrix of the form (channel × frequency).

Data Exploration To get a better understanding of if certain frequencies and
channels were more important than others during this specific EEG regression
problem, an ANOVA filter was applied to a subset of the training database of tri-
als. Limits were set to filter out 20 drowsy and 20 non-drowsy trials. The limits
were defined as reaction times (RTs) above 2.5µ0 s and below 1.5µ0 s for drowsy
and non-drowsy respectively, where µ0 is the median reaction time of the corre-
sponding session’s ten first trials. Seven of the 40 sessions did not contain 20 tri-
als with RTs above 2.5µ0 s and were thereby ignored. Similarly to Alex MI, LOSO
was applied and the 10 features that separated the two classes drowsy and non-
drowsy most evidently were extracted. In total, 10×33 features were selected (10
each for the 33 sessions). Every feature represented a specific channel location
and frequency bin, and statistics of the most frequently chosen combinations
was studied. To visually inspect if the selected features differed between the two
classes, the frequency ranges that were of greatest significance were plotted in a
topomap together with all channels marked out (see Figure 5.12).

4 https://gitlab.control.lth.se/exjobb-bci/emmalinda

52

https://gitlab.control.lth.se/exjobb-bci/emmalinda
https://gitlab.control.lth.se/exjobb-bci/emmalinda

5.3 Method

Session Selection For a target session, k sessions were chosen to train a clas-
sifier. Note that other sessions from the same subject as the target session were
excluded during selection. At most, three sessions were recorded from the same
subject, allowing the number of training sessions k to range between 1 and 37.
During selection, only the ten pre-trials of every session were included.

For baseline comparison, a random selection of sessions was applied. For com-
parison against one of today’s state of the art methods, a Riemann selection
method was created.

Two tensor decomposition selection methods were evaluated; non-negative
CP decomposition and non-negative Tucker decomposition. The tensor was
formulated as (session × channel × frequency), resulting in a tensor of shape
(40 × 30 × 35). The factor matrices of the CP decomposition of rank R were of
sizes (40×R), (30×R) and (35×R). Correspondingly, the (R1,R2,R3) Tucker de-
composition resulted in three latent factor matrices individually adapted for
each dimension to sizes (40×R1), (30×R2) and (35×R3), and a core tensor of size
(R1 ×R2 ×R3). The ranks of the decompositions were, using the same argument
as for Alex MI, selected to α = 0.95. For the CP method, the lowest rank of all
dimensions was selected.

See Session Selection-specifications of Alex MI for more details, as the selection
methods were identical.

Training and Evaluation For training and evaluation, LOSO cross-validation
was applied. For each session, 1-37 other sessions were selected using one of the
different session selection methods. To maintain consistent classification results,
the selected sessions were sorted according to their subject/session number (see
Table 4.2). The selected session(s) where used to train a linear Support Vector
Regressor (linear SVR), a Support Vector Regressor with an rbf kernel (SVR rbf),
and a Random Forest Regressor (ranfor). Minimal tuning was performed to not
favor any of the selection methods and due to the computational load of tun-
ing. All tuning details can be found in the Git repository. Before evaluating the
performance, a causal moving average filter with window size 11 was applied
to the true and predicted drowsiness indices (DIs). The window corresponds to
approximately 2-3 minutes when including non-drowsy trials only, and a higher
variation in length when including drowsy ones (dependent on the increase in
reaction time). The smoothing was made as short-time fluctuations in reaction
time were assumed to not be attributions of drowsiness. This was included and
argued for in the article which defined the DI: [Wei et al., 2018]. The length of
the window was selected according to the amount of pre-trial data, making the
prediction performable directly after pre-trial data collection.

53

Chapter 5. Tensor Decompositions for Session Selection

The evaluation was done for each subset of sessions by looking at the Pearson
correlation and mean absolute error (MAE) of the predicted, smoothed DIs and
the true, smoothed DIs of all sessions. For the random selection method, every
selection, training and evaluation sequence was repeated 20 times and the aver-
age performance was calculated, as the selection was not unique.

54

5.4 Result and Discussion

5.4 Result and Discussion

Alex MI
Data Exploration After applying the ANOVA filters to the training database
during LOSO, it became evident that two frequency ranges, each paired with
two specific channels, were of most significance for the classification of imagery
movement of right hand or feet. These were frequencies 9-12 Hz (alpha band)
with channels C3 and C4, and frequencies 17-19 Hz (beta band) with channels Cz
and C4. The two frequency bands appeared in 98 % of the 10×8 selected features
(10 features each for the 8 sessions). The proportion of each freq-band/channels-
pair were the following:

• Frequency range 9-12 Hz appeared in 84 % of the features, and was then in
75 % of the cases in channels C3 or C4.

• Frequency range 17-19 appeared in 14 % of the features, and was then in
91 % of the cases in channels Cz or C4.

The corresponding two frequency ranges for the two classes (averaged over all tri-
als), plotted in topomaps with all channels marked out, can be seen below in Fig-
ures 5.5 and 5.6. Note that the normalization is such that low values correspond
to higher PSD, and high values to lower PSD. Additionally, the absolute PSD dif-
ference between the two classes is displayed to emphasize where the classes dif-
fer the most for the specific frequencies.

Figure 5.5 Logarithmic, normalized PSD for the frequency range 9-12 Hz, averaged over
all trials from all sessions. The figure shows class right hand (left), class feet (middle) and
the absolute difference between the two classes (right). Note that the normalization is
such that low values correspond to higher PSD, and vice versa.

55

Chapter 5. Tensor Decompositions for Session Selection

Figure 5.6 Logarithmic, normalized PSD for the frequency range 17-19 Hz, averaged over
all trials from all sessions. The figure shows class right hand (left), class feet (middle) and
the absolute difference between the two classes (right). Note that the normalization is
such that low values correspond to higher PSD, and vice versa.

Looking at the class specific plots in Figure 5.5 and 5.6, it becomes evident that
for both frequency ranges, the two classes right hand and feet are relatively well
separated. As high values correspond to lower PSD, the EEG signal of imagined
hand movement has less power than imagined feet movement in general. Addi-
tionally, looking at the absolute difference plot in Figure 5.5, it becomes clear that
the channels C3 and C4 differ the most between the two classes in the frequency
range 9-12 Hz. Correspondingly, in Figure 5.6 it can be seen that channels Cz and
C4 differ the most between the two classes in the frequency range 17-19 Hz.

As expected, the most significant channels during this motor imagery classifica-
tion problem were the ones closest to the brain’s motor cortex (C3, Cz and C4).
The fact that two narrow, specific frequency ranges (9-12 Hz and 17-19 Hz) within
the larger expected interval of interest (8-32 Hz) would be of the greatest impor-
tance was less obvious beforehand.

CP Decomposition Selection Results For the chosen significance α = 0.95, the
rank of the CP decomposition was computed to R = 8. As explained earlier in 5.1
Background, the rank R = 8 CP decomposition of a third order tensor (session ×
channel × frequency) results in three factor matrices (one for each mode), with
8 columns each. For the factor matrix A(1) (the session dimension), the latent
vectors v(1)

s , with s = 1, ...,8, should be highlighted as each vector represents one
specific session. For the factor matrices A(2) and A(3) (the channel and frequency
dimensions), the columns a(n)

r , where n = 2,3 and r = 1, ...,8, were of more in-
terest as they make up the 8 vector spaces that are to be scaled by the latent
variables in the session dimension. The interpretation of these decomposition
results will be presented and analyzed next.

56

5.4 Result and Discussion

A detailed study of the structures captured by the CP decomposition in the fre-
quency and channel dimensions can be seen below. In Figure 5.7a, the columns
of latent variable values a(3)

r in the frequency dimension factor matrix A(3) can
be seen. In Figure 5.7b, the columns of latent variable values a(2)

r of the channel
dimension factor matrix A(2) can be seen.

(a) Frequency dimension A(3). (b) Channel dimension A(2).

Figure 5.7 The columns a(n)
r , where n = 2,3 and r = 1, ...,8, corresponding to the factor

matrices A(3) (left) and A(2) (right) in the CP decomposition. The colors of the topomaps
represent the deviation from the column’s mean value (see colorbar).

Looking at Figure 5.7, it is clear that the columns of each factor matrix describe
different structures of the data. As the latent variables in the session dimension
can be viewed as scaling of the corresponding columns a(n)

r in the other dimen-
sions, high values in the figure should be interpreted as high variability of that
specific characteristic (since the decomposition is non-negative). For example,
the local frequency maximas at 12, 18, 25 and 32 Hz in a(3)

2 correspond to larger
variability for those specific frequencies than those of the local minimas. This
should be combined with the corresponding column a(2)

2 in the channel dimen-

57

Chapter 5. Tensor Decompositions for Session Selection

sion, which in a similar way has the largest variability at the channels on top of
the head (C3, Cz and C4) and to the back right (T8, Pz, P4 and P6). As the latent
variable value l (1)

2,s of a session s scales the combination of these two columns

{a(2)
2 , a(3)

2 }, the greatest impact of the value will be at those specific frequency and
channel maximas.

Comparing the different vector spaces, columns {a(2)
1 , a(3)

1 } describe the mean
structure of the data, as they have high mean values and little internal variation
between different channels/frequencies. The other columns in both dimensions
had more internal variation. Notable is that vector space {a(2)

2 , a(3)
2 } seem to sig-

nify the frequency range 17-19 Hz combined with the channels Cz and C4, which
during the data exploration were of particular interest for this classification prob-
lem. The other informative combination, frequency range 9-12 Hz paired with
channels C3 and C4, was not as clearly pronounced in a single vector space.
Although, looking at the three vector spaces {a(2)

4 , a(3)
4 }, {a(2)

5 , a(3)
5 } and {a(2)

6 , a(3)
6 },

they all seem to have less well pronounced peaks, but nonetheless peaks, at the
frequency range 9-12 Hz, and they include the channels C3 and C4 in the chan-
nel dimension. In conclusion, it seems like channel-frequency-combinations of
interest can be preserved, and even occasionally separated into a single/a few
vector space(s), in the CP decomposition.

As seen in Figure 5.7, the mean value and variance of the vector spaces differed
quite a bit. The proposed similarity measure (which includes weighting in sizes)
thereby affected the selection. This compared to only considering the factor ma-
trix of the session dimension, without taking the other factor matrices into ac-
count (as done in [Jeng et al., 2021]). The resulting weights, calculated from the
norm of each space, can be seen in Table 5.1:

Table 5.1 The weights of the 8 different vector spaces from the CP decomposition, cal-
culated from the norm of each space.

Vector Space Weight
{a(2)

1 , a(3)
1 } 62.5

{a(2)
2 , a(3)

2 } 44.7

{a(2)
3 , a(3)

3 } 9.4

{a(2)
4 , a(3)

4 } 14.2

{a(2)
5 , a(3)

5 } 4.7

{a(2)
6 , a(3)

6 } 3.7

{a(2)
7 , a(3)

7 } 8.0

{a(2)
8 , a(3)

8 } 1.4

As seen in Table 5.1, there were large differences in weight of the 8 vector spaces.

58

5.4 Result and Discussion

The first vector space {a(2)
1 , a(3)

1 } had clearly the largest weight (62.5). As men-
tioned above, this vector space represented the mean structure of the data. It
is thus expected that this vector space should have great weight, as the data
normalization in the original tensor resulted in positive data centered around 1.
To reproduce the original tensor from the decomposition, an average is clearly
beneficial to make up for this centering that differed from zero.

The weights of the other vector spaces varied between 1.4 and 44.7. We argue
that our proposed similarity measure is hence more representative of the data,
compared to solely looking at the latent factor matrix in the session dimension,
assuming that each latent variable can be regarded as mutually important. This,
as the vector spaces with larger weights contribute more to the approximation
of the original tensor than those with small weights. Worth mentioning is that
the weights of the CP decomposition are highly dependent on the normalization
of data. This means that the weighting contribution will not have as large of an
impact in the cases where the decomposition concludes in similar weights for all
vector spaces.

An example of how the weighting factor affected the latent vector v(1)
1 (session 1)

can be seen in Table 5.2:

Table 5.2 Latent vector v(1)
1 (session 1) before and after multiplied with weight and nor-

malized to sum up to 1.0.

l (n)
r l (1)

1 l (1)
2 l (1)

3 l (1)
4 l (1)

5 l (1)
6 l (1)

7 l (1)
8 Sum

v(1)
1 w.o.

weight
0.268 0.027 0.085 0.045 0.040 0.070 0.064 0.116 0.715

v(1)
1 w.

weight
0.815 0.059 0.039 0.031 0.009 0.013 0.025 0.008 1.00

Looking at Table 5.2, the weighting factor enhanced some latent variable values
and depressed others. Particularly large changes can be found in latent variables
l (1)

1 , l (1)
6 and l (1)

8 . Additionally, the normalization that made the latent vector sum
up to 1.0, makes it possible to see how each latent variable value can be viewed
as the session’s percentage of variability.

The weighted latent vectors for all sessions from the CP decomposition can be
seen in Table 5.3.

59

Chapter 5. Tensor Decompositions for Session Selection

Table 5.3 Latent vectors v(1)
s , weighted and normalized (to sum up to 1.0), for all sessions

s.

v(1)
s \l (n)

r l (1)
1 l (1)

2 l (1)
3 l (1)

4 l (1)
5 l (1)

6 l (1)
7 l (1)

8

v(1)
1 0.816 0.059 0.039 0.031 0.009 0.013 0.025 0.008

v(1)
2 0.596 0.126 0.064 0.072 0.022 0.030 0.072 0.019

v(1)
3 0.869 0.043 0.028 0.025 0.011 0.005 0.013 0.006

v(1)
4 0.912 0.034 0.027 0.010 0.000 0.008 0.005 0.004

v(1)
5 0.699 0.096 0.052 0.051 0.014 0.024 0.049 0.016

v(1)
6 0.843 0.053 0.034 0.023 0.008 0.013 0.02 0.007

v(1)
7 0.849 0.047 0.035 0.027 0.011 0.008 0.016 0.007

v(1)
8 0.517 0.148 0.076 0.089 0.03 0.033 0.084 0.023

Studying Table 5.6, the greatest difference between latent vectors can be found
in latent variable l (1)

1 . Since this vector space mainly represented the mean value
of the data, it can be questioned if this latent variable/vector space should be in-
cluded in the comparison between sessions or not. A difference in mean value
could be an effect of difference in electrode impedance or general brain activity
between sessions, which may or may not be of interest for a specific BCI problem.
As the data normalization included individual adaption for each session, one can
argue that the device differences during data collection was to a large extent com-
pensated for already. Throughout this project, we have decided to keep the mean
value component from the tensor decomposition when comparing the similarity
between sessions, but we view it as an interesting future extension to exclude it.

Tucker Decomposition Selection Results For the chosen significance α = 0.95,
the rank of the Tucker decomposition was computed to R1 = 8 in the session
dimension, R2 = 14 in the channel dimension and R3 = 20 in the frequency
dimension. Again, in the factor matrix A(1) (the session dimension), the latent
vectors v(1)

s should be highlighted, as each vector represents one specific session.
In the factor matrices A(2) and A(3), the columns are of more interest as they make
up the vector space that are to be combined and scaled by the latent variables in
the session dimension and the core tensor.

A detailed study of the structures captured by the Tucker decomposition can be
seen below. Figure 5.8 shows the columns of the channel factor matrix A(2), and
Figure 5.9 shows the columns of the frequency factor matrix A(3).

60

5.4 Result and Discussion

Figure 5.8 The columns a(2)
r2

(r2 = 1, ...,14) corresponding to the factor matrix A(2) in the
Tucker decomposition. The colors of the topomaps represent the deviation from the col-
umn’s mean value (see colorbar).

Figure 5.9 The columns a(3)
r3

(r3 = 1, ...,20) corresponding to the factor matrix A(3) in the
Tucker decomposition.

61

Chapter 5. Tensor Decompositions for Session Selection

As for the CP decomposition, the columns in each latent factor matrix A(2) and
A(3) describe different structures in the data. The latent variables in the session
dimension can again be viewed as scaling of the columns in A(2) and A(3), but
without the constraint of only being combined with a single column in each
matrix (because of the core tensor).

Again, the mean structure of the data has been captured by columns a(2)
1 and a(3)

1 .
Apart from that, it is clear that all columns enhance different variability of the
data in terms of channel location and frequency peaks. As a combination of all
channels and frequency columns are used to recreate the data of each session,
no evident channel-frequency pair can be viewed as "belonging together", in
contrast to the CP decomposition. Still, channels and frequencies of more rele-
vance to this classification problem, compared to the data exploration, can be
identified (for example channel columns a(2)

4 and a(2)
14 , and frequency columns

a(3)
2 and a(3)

12).

The weighting factor in the Tucker decomposition, calculated as the norm of the
8 slices after multiplying the core tensor G with factor matrices A(2) and A(3), can
be seen in Table 5.4:

Table 5.4 The 8 weighting factors of the Tucker decomposition, calculated as the norm
of each slice after multiplying the core tensor G with factor matrices A(2) and A(3).

Vector Space Weight
||S1||F 57.1
||S2||F 0.80
||S3||F 0.76
||S4||F 0.76
||S5||F 0.73
||S6||F 0.64
||S7||F 0.64
||S8||F 0.57

As for the CP decomposition, the slice representing the mean structure of the
data had the largest weight (slice S1). The fact that this slice describes the mean
structure can be seen as it includes the combination of latent variable columns
a(2)

1 and a(3)
1 , and will be combined with the latent variable l (1)

1 . All other slices
had similar weights (between 0.57 to 0.8), implying the proposed similarity mea-
sure did not affect their relation as much.

An example of how the weighting factor affected the latent vector v(1)
1 (session 1)

can be seen in Table 5.5:

62

5.4 Result and Discussion

Table 5.5 Latent vector v(1)
1 (session 1) before and after multiplied with weight and nor-

malized to sum up to 1.

l (n)
r l (1)

1 l (1)
2 l (1)

3 l (1)
4 l (1)

5 l (1)
6 l (1)

7 l (1)
8 Sum

v(1)
1 w.o.

weight
0.329 0.129 0.120 0.438 0.047 0.272 0.234 0.632 2.20

v(1)
1 w.

weight
0.938 0.005 0.005 0.017 0.002 0.009 0.007 0.018 1.00

Studying Table 4.2, the weighting factor enhanced the first latent variable value
l (1)

1 and depressed the other ones. The normalization (making the latent vector
sum up to 1.0) makes it possible to see how each latent variable value can be
viewed as the session’s percentage of variability.

The weighted latent vectors for all sessions from the Tucker decomposition can
be seen in Table 5.6.

Table 5.6 Weighted and normalized (to sum up to 1.0) latent vectors v(1)
s for all sessions

s.

v(1)
s \l (n)

r l (1)
1 l (1)

2 l (1)
3 l (1)

4 l (1)
5 l (1)

6 l (1)
7 l (1)

8

v(1)
1 0.938 0.005 0.005 0.017 0.002 0.009 0.007 0.018

v(1)
2 0.932 0.002 0.013 0.007 0.013 0.016 0.014 0.003

v(1)
3 0.954 0.035 0.003 0.001 0.003 0.001 0.003 0.001

v(1)
4 0.938 0.007 0.010 0.008 0.000 0.004 0.019 0.013

v(1)
5 0.937 0.002 0.018 0.024 0.003 0.008 0.002 0.007

v(1)
6 0.941 0.003 0.001 0.008 0.003 0.018 0.015 0.011

v(1)
7 0.935 0.006 0.022 0.013 0.017 0.001 0.002 0.003

v(1)
8 0.936 0.008 0.011 0.003 0.025 0.012 0.004 0.001

Again, latent variable l (1)
1 was of most importance when describing the data of the

original tensor. For the same reasons as the CP decomposition, it can be ques-
tioned if the combination of components that describes the mean value of the
data should be included or not. Throughout this project, we have kept it when
comparing similarity between sessions.

Selection Results The Euclidean distances between sessions were presented in
normalized distance matrices, see Figure 5.10. For baseline comparison, the Rie-
mannian distance between sessions were also presented in a normalized dis-
tance matrix in the same figure. A short distance (close to 0) implies similar ses-
sions.

63

Chapter 5. Tensor Decompositions for Session Selection

Figure 5.10 Normalized distance matrices for Riemann selection (left) and tensor selec-
tion (middle and right). An element di j answers to the similarity between sessions i and
j .

From the distance matrices, it is clear that the three selection methods disagree
on which sessions are (non-)similar. Additionally, in the Riemannian distance
matrix the colors varied little (different shades of blue), implying all sessions
were of relatively similar distance to each other. The tensor decomposition dis-
tance matrices had more color variation, meaning some sessions were a lot
further away from each other than others.

Comparing the distance matrices in Figure 5.10 to the latent vectors in Table 5.3
and 5.6, it is clear that the mean value component has a great impact when it
comes to distances between sessions. This is particularly evident for the sessions
that are far away from all other sessions, for example session 8 in the CP decom-
position and session 3 in the Tucker decomposition.

An example of which sessions were selected as most similar to session 1 can be
seen in Table 5.7, corresponding to the shortest distance for Riemann and tensor
selection. The table translates to the first row (or column) in the distance matri-
ces in Figure 5.10.

Table 5.7 Similar session selection for session 1, from most to least similar.

Selection Method
Selection

(most to least similar)
Riemann [8, 2, 6, 7, 4, 3, 5]
Tensor CP [6, 7, 3, 4, 5, 2, 8]
Tensor Tucker [4, 6, 5, 2, 7, 8, 3]

64

5.4 Result and Discussion

Prediction Results The prediction accuracy for the three different classifiers
(Linear SVC, SVC rbf and Random Forest) and the four different session selection
methods can be seen in Figure 5.11. Each method selected 1-7 training sessions,
and all 8 sessions were selected as the target once (LOSO). The plotted accuracy
was the average of the prediction accuracy for all 8 sessions.

Figure 5.11 Average prediction accuracy for the three classifiers Linear SVC (upper left),
SVC rbf (upper right) and Random Forest (lower left) for the four session selection meth-
ods.

As seen in Figure 5.11, the accuracy reaches at most barely 65%, which in com-
parison with today’s state of the art results above 85% can be considered relatively
poor [Zhang et al., 2021]. Furthermore, no clear effect in performance could be
seen between the different selection methods. This is expected as the training
database was small, meaning it was less likely there were any training session(s)
similar to the target session. A more detailed evaluation of performance will be
made for the larger dataset SA Drivers.

SA Driving
Data Exploration After applying the ANOVA filter during LOSO, it became evi-
dent that the frequency range 4-6 Hz was the most relevant for this classification
problem. The most frequently occurring channels were the ones placed on the
central/back rows of the head: T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5,
P3, Pz, P4 and T6. The proportion of this frequency band and channels of the
total 10 × 33 features selected (10 each for the 33 subjects) were the following:

65

Chapter 5. Tensor Decompositions for Session Selection

• Frequency range 4-6 Hz appeared in 100 % of the features, and was then 87
% of the cases in channels T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, T5,
P3, Pz, P4 and T6.

The corresponding frequency range for the two classes (averaged over all trials),
was plotted in topomaps with all channels marked out. The result can be seen
below in Figure 5.12. Additionally, the absolute difference PSD between the two
classes is displayed to emphasize where the classes differ the most for this spe-
cific frequency range.

Figure 5.12 Average logarithmic normalized PSD for the frequency range 4-6 Hz for class
non-drowsy (left), class drowsy (middle) and absolute difference between the two classes
(right). Note that the normalization is such that low values correspond to higher PSD, and
opposite.

As seen in Figure 5.12, the frequency range 4-6 Hz differed at almost all channels
for the two classes non-drowsy and drowsy. The class drowsy had lower values,
which correspond to higher power in the data. This was considered reasonable
since lower frequencies are enhanced when the consciousness level decreases,
as mentioned in Table 1.1 in Chapter 1 Introduction. Notable is that channel
T4 in Figure 5.12 stood out, as it had higher values for both classes. No obvious
reason why such a local activity on the side of the head occurred was found. It
was therefore considered likely that channel T4 was an outlier during data col-
lection. Furthermore, as the majority of the channels seemed to be of interest
in this classification problem, a frequency-channel vector space adapted to this
specific problem was harder to find than for the Alex MI dataset.

Selection Results For the chosen significance α = 0.95, the rank of the CP de-
composition was computed to R = 19. The rank of the Tucker decomposition
was correspondingly R1 = 29, R2 = 19 and R3 = 22. As for Alex MI, a detailed
analysis of the structures captured by the CP/Tucker decomposition was made,
but will not be as thoroughly discussed in this section. This is due to the fact that

66

5.4 Result and Discussion

it was harder to filter out what channels that were of interest, and that the ranks
of the decompositions were higher. Additionally, the high rank made the variety
in structures greater, and in combination with the small prior knowledge of what
frequency-channel pairs that could be of importance in this regression problem,
it was hard to visually inspect which columns that were of interest. In summary,
the behavior was similar to that of Alex MI in terms of the mean value of the data
captured by the combination of latent variable l (1)

1 in vector space {a(2)
1 ,a(3)

1 } for
the CP decomposition, and in slice S1 for the Tucker decomposition. Addition-
ally, there was no single frequency column a(3)

r that captured the 4-6 Hz structure
particularly well, but peaks around those frequencies could be found in several

columns. All resulting plots of columns a(j)
r , j = 2,3 and r = 1...19 in the CP de-

composition, and columns a(j)
r j

, j = 2,3, r2 = 1...19 and r3 = 1...22 in the Tucker
decomposition can be found in the Appendix, Figures 8.1-8.4. The weights of the
19 different vector spaces {a(2)

r ,a(3)
r } from the CP decomposition, and 29 different

slices ||Sr1 || from the Tucker decomposition, followed the same behavior as for
Alex MI. All weights contributed to the selection as they affected the impact of
the latent variables. Again, vector space {a(2)

1 ,a(3)
1 } for CP and slice S1 for Tucker

had the largest weights, and represented the mean behavior when combined
with latent variable l (1)

1 .

The Euclidean distance between sessions for the two tensor decomposition
methods can be seen in the normalized distance matrices in Figure 5.13. For
baseline comparison, the Riemann distance between sessions was also pre-
sented in a normalized distance matrix in the same figure. A short distance (close
to 0) implies similar sessions.

Figure 5.13 Normalized distance matrices for Riemann selection (left) and tensor selec-
tion (middle and right). An element di j answers to the similarity between sessions i and
j .

Looking at the Riemannian distance matrix in Figure 5.13, the colors were all
similar (different shades of blue), implying all sessions were of relatively similar
distance to each other. The tensor decompositions show more color variations,

67

Chapter 5. Tensor Decompositions for Session Selection

meaning some sessions were regarded as a lot further away from each other than
others. Additionally, the three different similarity measures did not agree on what
sessions were similar/non similar. For instance, sessions 27, 29 and 40 were in
general most non-similar to all other sessions in the Riemann selection method.
In the CP decomposition method, session 15 instead stood out in this aspect. For
the Tucker decomposition, single sessions standing out from the entire group
were not as clearly seen (e.g. session 8 does not differ from all other sessions).

Prediction Results An example of the prediction results for the Random Forest
regressor can be seen in Figure 5.14. The example shows true and predicted DI of
330 trials in session 19, when selecting a subset of 8 sessions during training for
all four selection methods (random, Riemann, CP and Tucker). Note that this was
one of the sessions with best performance overall, and where the tensor methods
showed superiority compared to random.

Figure 5.14 Example of the prediction results for session 19 with a Random Forest regres-
sor, trained with a subset of 8 sessions. The black line corresponds to the true DI, which
varies between 0 and 0.65 throughout the session. All other lines correspond to regressor
results from prediction, were the subset of 8 sessions used for training has varied between
the methods. As seen in the figure, the result from the CP and Tucker selection methods
look more similar to the true DI, both in terms of amplitude and increasing/decreasing
trends, compared to random and Riemann. See legend for colors/symbols corresponding
to each selection method.

The corresponding performance measurements (Pearson correlation and MAE)
for the results in Figure 5.14, can be seen in in Table 5.8:

68

5.4 Result and Discussion

Table 5.8 Performance measurements (Pearson correlation and MAE) for the results of
session 19 in Figure 5.14. Note that this was one of the sessions with best performance.

Random Riemann CP (tensor) Tucker (tensor)
Correlation 0.781 0.716 0.837 0.816

MAE 0.158 0.139 0.100 0.113

As seen in Figure 5.14 and Table 5.8, the prediction and performance were af-
fected by the selection methods. In this particular case, the tensor decomposition
selection methods (CP and Tucker) had the best results, while random and Rie-
mann selection had the worst, both in terms of Pearson correlation and MAE.

The two evaluation methods (correlation and MAE) capture different charac-
ters of the prediction, which becomes evident when comparing the results for
random and Riemann prediction in Table 5.8. The random selection method
resulted in higher correlation, while the Riemann method resulted in lower MAE.
In a BCI application, it is reasonable that both measurements can be of interest,
which will be argued for next.

The correlation evaluates how well trends of fluctuations in drowsiness are cap-
tured. This would be of high interest in drowsiness detection, as a high correla-
tion makes it possible to recreate the true DI by rescaling. Although, to find the
correct rescaling of a new session, this would require some initial calibration. Ini-
tial calibration is what to a large extent is aimed to be avoided in transfer learning
applications, which hence is a disadvantage with this evaluation measurement.

The MAE on the other hand is a good way of evaluating how useful the regressors
are without any extra calibration. The downside with this measurement is that it
benefits a DI series that does not vary much over time, which clearly makes the
regression task unequally hard for different sessions. The prediction results for
all sessions, corresponding to the results in Figure 5.14, can be found in Figure
8.5 in the Appendix. From Figure 8.5, the variation in difficulty level of different
sessions from an MAE perspective is clearly seen, as some sessions for example
always have DIs below 0.3 while others often vary between 0 to above 0.6.

The average performance results for the full database is presented in Figures 5.15
and 5.16. The three different regressors (Linear SVR, SVR rbf and Random Forest),
and four different session selection methods (random, Riemann, CP and Tucker)
are plotted together for comparison. For each selection method, a subset of 1-37
sessions was selected for training, and all 40 sessions were selected as the target
session once (LOSO).

69

Chapter 5. Tensor Decompositions for Session Selection

Figure 5.15 Average Pearson correlation plotted against the number of sessions selected
as the training subset. All three regressors Linear SVR (upper left), SVR rbf (upper right)
and Random Forest (lower left) for the four different session selection methods are shown.
The two SVRs reached a maximum average performance of around 0.4, while the Ran-
dom Forest regressor showed its superiority by reaching almost 0.6. The results show that
the two tensor selection methods (CP and Tucker) on average performed better than ran-
dom/Riemann selection for the SVRs, for most subsets of sessions. For the Random Forest
regression, the CP decomposition selection method performed best. See legends for col-
ors/symbols corresponding to each selection method.

Studying Figure 5.15 above, the CP and Tucker decomposition selection methods
often resulted in higher correlation than random and Riemann selection (on av-
erage). This was particularly evident for a subset of 5-10 sessions. For the Linear
SVR, the Tucker decomposition initially stood out, as it on average increased
the correlation with 5-12 percentage units when the number of training sessions
was less than 10 (compared to random). For the SVR with an rbf kernel, both the
CP and Tucker decompositions increased the correlation on average, for most
subsets of sessions. The increase was relatively similar and constant for a small
range of subsets; for 5-12 training sessions around 5 percentage units better
than random. For the random forest regressor, the CP decomposition selection
method stood out, as it on average increased the correlation with 2-5 percentage
units throughout the interval 5-24 training sessions.

70

5.4 Result and Discussion

Figure 5.16 Average MAE performance against number of sessions selected as the train-
ing subset. All three regressors Linear SVR (upper left), SVR rbf (upper right) and Random
Forest (lower left) for the four different session selection methods are shown. The three
regressors reached minimum MAEs of 0.15-0.17. For all three regressors, the CP decompo-
sition selection method performed best by reaching a minimal MAE for a small subset of
training sessions. See legend for colors/symbols corresponding to each selection method.

Looking at the MAE results above, the CP decomposition selection method per-
formed best for all regressors. In particular, for the two SVRs, the minimum was
found for a subset of 8 training sessions, and for the Random Forest regressor,
for a subset of 18 training sessions. For all three regressors, these minimas were
lower than training with the full training database.

From Figures 5.15 and 5.16, it can be seen that there, in general, was a relatively
large difference in performance between the regressors. The Random Forest re-
gressor clearly stood out, as it reached both higher correlation and lower MAE
than the two SVRs, almost already from a subset of 1 session during training. The
goal of the regressors was to find distinctions in characteristics between trials
with different DIs. The results indicate that the Random Forest regressor, which
utilizes recursive binary splittings, captures such distinctions better than the
two SVRs do. As EEG signals measure the macroscopic, complex behavior of the
brain, it is reasonable that the differences between drowsy and non-drowsy trials
are most efficiently separated in a nonlinear manner. Worth noting is that both
tensor decomposition methods, that were used to select sessions, were linear. It
may be of interest to instead consider a nonlinear tensor decomposition when

71

Chapter 5. Tensor Decompositions for Session Selection

comparing similarity of sessions, as nonlinear relationships in the data look to
be of more use in a regressor. However, it is not evident from the figures above
that these linear tensor decompositions were more beneficial for the linear SVR,
as one then could have expected, than for the other two regressors. A non-linear
tensor decomposition extension will be further discussed in Chapter 7 Conclu-
sions and Future Work.

When comparing the regressors’ performances, one needs to account for a par-
ticular factor. As mentioned in the method description, minimal amount of
tuning was performed. This was due to the computational expense, and to avoid
benefiting one or several selection methods. It is therefore possible that the SVRs
could reach the same performance as the Random Forest regressor if more time
would have been spent on tuning. However, it could also be the case that the
performance of the Random Forest regressor could be increased as well, creating
an even greater difference between the regressors.

Notable is that in both Figures 5.15 and 5.16, the Riemann selection method did
not outperform random. On the contrary, it often performed worse than ran-
dom. This was not expected and does not agree with the results in [Jeng et al.,
2021] and the EEG classification field in general. The reason for these results
is probably that little adaptation in the pipeline was made for the Riemann se-
lection method. For instance, the data normalization was mainly done to suit
the non-negative tensor decompositions, while the Riemann method may have
benefited from a different choice. As a future extension, it could be interesting to
improve the Riemann selection method to be able to better compare the tensor
methods to a "state of the art" method.

Even though the tensor selection methods often outperformed random on aver-
age, it was found that there was a big uncertainty in the results. This was mainly
due to two reasons, which made it questionable both if the regressors could be
considered reasonable to use in a future BCI application, and how certain one
can be that the selection methods performed better than random. To visualize
these two uncertainties, two of the most promising regressor-number of training
session-combinations in Figures 5.15 and 5.16 were studied in detail:

1. The SVR with an rbf kernel when selecting 8 training sessions.

2. The Random Forest regressor when selecting 18 training sessions

Combination 1 yielded a clear increase in average correlation performance com-
pared to random selection for the CP and Tucker methods, and in the MAE per-
formance for the CP method. Additionally, it used a relatively small subset of
sessions for training, speeding up the training process. Combination 2 yielded

72

5.4 Result and Discussion

a clear increase in average Pearson correlation and MAE performance compared
to random for the CP selection method. Additionally, combination 2 resulted in
one of the overall best performances achieved (correlation 0.595 and MAE 0.150)
compared to all other regressors and selection methods. Error plots of the two
combinations, visualizing the performance results for all sessions compared to
random, can be seen in Figures 5.17 (correlation) and 5.17b (MAE).

(a) Combination 1. (b) Combination 2.

Figure 5.17 Error plots of two promising regressor and number of training sessions-
combinations. Each error bar represents the mean correlation for a session and its stan-
dard deviation during random selection (which was performed 20 times). The markers
show the resulting correlation when using the selection methods to find a subset of ses-
sions for training.

As seen in Figure 5.17, the Pearson correlation performance varied extensively
between sessions. Looking only at the results from random selection (black dot
and error lines) in Figure 5.17a, the mean correlation value for each session was
between -0.42 and 0.85, and in Figure 5.17b it was correspondingly between -0.32
and 0.88. This means that for a completely new, unseen test session, it will be
hard to know if the performance will be sufficiently good for a BCI. This of course

73

Chapter 5. Tensor Decompositions for Session Selection

depends on the performance requirements, but a correlation close to or less than
0 would definitely not be useful. As seen in Figure 5.17, occasionally, a session
had correlation below or close to 0, even for the high-performing combination 2.

(a) Combination 1. (b) Combination 2.

Figure 5.18 Error plots of two promising regressor-number of training sessions-
combinations. Each error bar represents the mean MAE for a session and its standard
deviation during random selection (which was repeated 20 times). The markers show the
resulting MAE when using the selection methods to find a subset of sessions for training.

Studying Figure 5.18, the MAE performance also varied significantly between
sessions. Notable was that the sessions with high MAE (bad performance) were
usually not the same as those with low correlations. For example, session 18 had
the clearly lowest correlation for the Random Forest regressor, while it had close
to average MAE. Instead, session 8 stood out as the one with highest MAE, but
with also high correlation on average. This is most likely due to the fact that
the regression problem was not equally simple for all sessions in terms of MAE
evaluation, as discussed earlier. For a session that never reached high DIs, it was
easier to achieve a low MAE.

74

5.4 Result and Discussion

Comparing the two regressors both in terms of correlation and MAE, it can be
seen that the standard deviations for every session (length of black error lines)
were higher in the SVR rbf than for Random Forest. The main reason for this was
that a bigger subset of training sessions was used in the Random Forest regressor
example (18 vs 8). The probability of selecting useful sessions increased as the
subset size grew and thus, made the standard deviation decrease.

As seen in the Figures 5.17 and 5.18, the selection methods were not consistent
between sessions in terms of performance increase/decrease. The Riemannian,
CP, and Tucker selection methods could be found to result in performance far
above, far below or close to the mean of a specific sessions, for both the SVR
and Random Forest case. To summarize the performance change for these two
combinations of regressors/number of training sessions, an increase count was
created and presented in Tables 5.9 and 5.10.

Table 5.9 Count and % of sessions that performed better than random for
combination 1.

Combination 1
Pearson Correlation MAE

Riemann CP Tucker Riemann CP Tucker
better
than random

20 25 27 19 27 19

% better
than random

50% 62.5% 67.5% 47.5% 67.5% 47.5%

Table 5.10 Count and % of sessions that performed better than random for combination
2.

Combination 2
Pearson Correlation MAE

Riemann CP Tucker Riemann CP Tucker
better
than random

12 27 19 16 24 18

% better
than random

30% 67.5% 47.5% 40% 60% 45%

As seen in Tables 5.9 and 5.10, there were no evident results for a specific selec-
tion method in terms of selecting better sessions than random. The CP selection
method stood out as the best and most likely for a new, unseen session to per-
form better than random, but still only with 60-67.5% likelihood. The Riemann

75

Chapter 5. Tensor Decompositions for Session Selection

method was often outperformed by random, and the Tucker method was usually
similar to random.

Simply counting the results in terms of "better or worse" than random can to
some extent be regarded as incomplete. It is also of interest to what extent the
selection methods made the performance increase/decrease. Consider for ex-
ample, a case where 50 % of the sessions had 0.1 percentage units worse perfor-
mance than random, and the other 50% had 20 percentage units better. Clearly,
for a new session, it would be more reasonable to use this selection method, as
there is a lot to win from a gain, and far less to loose. For a case like this, one
could approximate all sessions with a distribution and weight the change in per-
formance differently. This could for example be done by looking at each result’s
p-value, and combining them to get a more representative idea of the signifi-
cance in increase of performance. As seen in Figures 5.17 and 5.18, the selection
methods could for some sessions result in a lot better performance results than
random. But as the performance result almost as often was a lot worse than ran-
dom, and it was not evident what type of distribution every session should be
approximated as when analyzing their histograms, such an evaluation was not
made.

Looking closer at Figures 5.17 and 5.18, unique sessions with a lot better/worse
performance for the CP or Tucker decomposition methods than random selec-
tion can be identified. The results can be compared to the distance matrices of
the selection methods in Figure 5.13, to see if these sessions stood out in any
way. No such connection was found, but further analysis could be an interesting
future extension to this work.

Another thing to consider is if using a subset of training sessions can achieve the
same, or even better performance, compared to training with the full training
database. From Figures 5.15 and 5.16, there are consistent indications that the
initial increase in performance appears faster as the number of training sessions
increases for the tensor methods, compared to random selection. Additionally,
the peak performance sometimes appears for a smaller subset of training ses-
sions than when training with the full database (see for example, the Random
Forest regressor). This result can be combined with the differences in time for
training with a subset of sessions versus the full training database. The fastest
regressor was the Linear SVR, which for each session took approximately 50 sec-
onds when training with the full database. For a subset of 10 sessions, it took
around 1/3 of that time. Second was the SVR rbf, which correspondingly took
about 5 minutes when training with the full database. For a subset of 10 sessions,
it took around 1/8 of that time. Lastly, the most time consuming regressor was
the Random Forest, which took around 20 minutes for each session with the full
database. For a subset of 10 sessions, it took around 1/5 of that time. This high-

76

5.4 Result and Discussion

lights the relevance of finding a method that can find appropriate subsets of data
to use instead of the full database, and the selection method’s future potential
despite its current uncertainties.

77

6
Tensor Decompositions for
Feature Extraction and
Session Selection

Using a tensor decomposition as a lower dimensional approximation of the orig-
inal tensor, the decomposition can be viewed as features of the data. During
the past twenty years, various papers have investigated the power of tensor de-
composition for precisely this; feature extraction. This chapter answers to our
second pipeline; how tensors can be used for both session selection and feature
extraction. Unlike the previous chapter, tensor representations are not only used
to measure the similarity between sessions, but also to compute features of the
data.

Section 6.1 Background presents an overview and explanation of the approach,
inspired by the work in Tensor Decompositions for Feature Extraction and Classi-
fication of High Dimensional Datasets [Phan and Cichocki, 2010]. Next, 6.2 Our
Contribution accounts for our extensions to their method, followed by a detailed
description of our approach in 6.3 Method. Finally, the results are presented and
evaluated in 6.4 Result and Discussion.

78

6.1 Background

6.1 Background

The approach in this section was based on the article Tensor Decompositions for
Feature Extraction and Classification of High Dimensional Datasets [Phan and Ci-
chocki, 2010]. Their idea was to compute a mutual feature space from the Tucker
decomposition, where every trial answered to a location in this space. In the
report, they tested their approach for binary motor imagery classification (left
or right hand) using 64-channel EEG recordings, and splitting the trials of each
session into training and test data1. Since our purpose was to investigate how
tensor decompositions can be used for transfer learning between sessions, our
approach slightly differed from theirs. The next section 6.1 The Tucker Feature
Space, includes how to compute the mutual feature space as made by Phan and
Chichocki. The following section 6.2 Our Contribution accounts for how we have
applied their method for transfer learning purposes and chosen to interpret the
feature space.

The Tucker Feature Space
As presented in Section 2.2 The Tucker Decomposition, the Tucker decompo-
sition returns a set of factor matrices and a core tensor. The factor matrices
(A(1), . . . , A(N)) can be viewed as the basis of a lower dimensional space in which
the core lies. Assuming the core captures characteristics of the original data, it
can be translated as features of X . Identifying mutual factor matrices for sev-
eral input tensors can thus be seen as identifying a common feature space for a
dataset.

Assume a dataset consists of M trials, where every trial can be represented as a
tensor X (m). It can for example be a set of EEG data recordings, where a trial is
represented by the frequency in every channel over time. The data thereby con-
sists of M trials, answering to M tensors of shape (channel×frequency×time).
Computing a Tucker decomposition where the factor matrices are restricted to
be identical for all trials, while the cores are allowed to differ, yields:

X (1) ≈G(1) ×1 A(1) ×2 A(2) ×3 A(3)

X (2) ≈G(2) ×1 A(1) ×2 A(2) ×3 A(3)

...

X (M) ≈G(M) ×1 A(1) ×2 A(2) ×3 A(3) (6.1)

1 The results showed an accuracy above 85%. For details, we refer to their report [Phan and Ci-
chocki, 2010].

79

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

or for general tensors of order N :

X (1) ≈G(1) ×1 A(1) ×2 · · · ×N A(N)

X (2) ≈G(2) ×1 A(1) ×2 · · · ×N A(N)

...

X (M) ≈G(M) ×1 A(1) ×2 · · · ×N A(N) (6.2)

The factor matrices that solve (6.2) constitute the basis of the feature space in
which the features (the core) of every trial lie. To calculate the cores G(m) and
factor matrices A(1), . . . , A(N), one must compute the Tucker decompositions un-
der the restriction of identical factor matrices. To apply this restriction, one can
concatenate all trials along an additional (N +1)th mode, forming a new tensor
XN+1 ∈ RI1×···×IN×M . Fixing this tensor along the (N +1)th mode and extracting
the elements along index m, one obtains the elements of the mth trial. Unfolding
XN+1 along mode (N +1), every trial translates to a row vec(X (m))T in the matrix
X (N+1):

X (N+1) =
[
vec(X (1)) vec(X (2)) · · · vec(X (M))

]T
(6.3)

To compute a common feature space for all trials X (1), . . . ,X (M), one calculates
the Tucker decomposition of XN+1:

XN+1 ≈GN+1 ×1 A(1) ×2 · · · ×N A(N) (6.4)

where the resulting core tensorGN+1 has the shape (R1×·· ·RN×M). Note that the
factor matrix of the final mode N +1 is excluded, meaning the trials-dimension
of the core tensor is the same as for the original tensor. By (6.4), every trial is
approximated by a Tucker decomposition and (6.3) can be written as:

X (N+1) =
[
vec(X (1)) vec(X (2)) · · · vec(X (M))

]T

= [
vec(G(1)) vec(G(2)) · · · vec(G(M))

]T
(A(N) ⊗ ·· · ⊗ A(2) ⊗ A(1))T

=G (N+1)(A(N) ⊗ ·· · ⊗ A(2) ⊗ A(1))T

(6.5)

where it has been utilized that the n-mode product between a core G(m) and the
factor matrices A(1), . . . , A(N) translates to the Kronecker product when unfolding
X (m). From (6.5), it can be seen that the core GN+1 and XN+1 share the same
structure; fixing GN+1 along the (N + 1)th mode and extracting the elements
along index m, they answer to the features of the mth trial. In the same manner,
the mth row of G (N+1) represents the features of trial m.

80

6.1 Background

For a dataset of M trials, one can thus simply compute the Tucker decomposition
of the concatenated tensorXN+1. Using the concatenated coreGN+1, one can ex-
tract the features G(1), . . . ,G(M) of all trials, and from these train a classifier. When
predicting the label of a new trial X (m+1), one simply uses the factor matrices to
map the trial to the mutual feature space:

G(m+1) =X (m+1) ×1 A(1)T ×2 · · · ×N A(N)T
(6.6)

after which the features G(m+1) are the input to the trained classifier. Note that
the expression for computing G(m+1) answers to the optimal solution presented
in 2.2 Computing the Tucker Decomposition, see (2.16).

Computing the Feature Space To calculate the Tucker decomposition of the
concatenated tensor XN+1, Phan and Chichocki proposed using approaches
such as HOOI, or ALS. It should be mentioned though, that these algorithms re-
quire a modification for the purpose. By default, HOOI and ALS form one factor
matrix for every mode of the tensor. For the concatenated tensor XN+1, we only
seek the factors of the N first modes and thus want to ignore mode N +1. This,
as we want the interaction within the data and not between the trials, which are
represented by the N + 1 mode. Recalling the updating rule for HOOI and ALS
(see (2.19) and (2.8) respectively), this is easily accounted for by excluding the n-
mode multiplication with the final factor matrix; what should have been A(N+1).
One thereby iterates from 1 to N , computing the latent factor matrices and ex-
cluding the final mode N +1:

∥A(n)T
W ∥2 with W = X (n)(A(N) ⊗ ·· · ⊗ A(n−1) ⊗ A(n+1) ⊗ ·· · ⊗ A(1)) (6.7)

where X (n) is the concatenated tensor XN+1 ∈ RI1×···×IN×M , unfolded along the
nth mode. The factor matrix A(n) is then computed as the Rn most significant
left singular vectors of W .

To summarize this section, Figure 6.1 below displays a visualization of the ap-
proach:

81

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Figure 6.1 (a) Phan and Chichocki’s approach for computing a feature space from the
Tucker decomposition; concatenating the tensors of all M training trials and from this,
calculating the Tucker decomposition. (b) Training a classifier from the computed fea-
tures; the core tensors of each trial. (c) Predicting for a (new) test trial X (t) by projecting
it to the computed feature space and extracting its core tensor, which is the input to the
(trained) classifier.

6.2 Our Contribution

EEG Data Normalization
In the article Tensor Decompositions for Feature Extraction and Classification of
High Dimensional Datasets, [Phan and Cichocki, 2010] calculate the time fre-
quency representation (TFR) of each EEG trial, forming a fourth order tensor
(#trials)×(#channels)×(#freqs)×(#time bins). The TFR was computed (with Mor-
let Wavelets) and resulted in a frequency range from 8 to 30Hz with increments
of 1Hz, and a total of 50 time frames answering to 2 seconds of EEG data. Apart
from this, no further normalization was performed.

To benefit the identification of possible linear relationships, and to subject a
more well conditioned problem, we suggest normalizing the TFR of each session.
Firstly, the TFR was computed using a multitaper method. Then, the normaliza-
tion was done by applying the logarithm to every trial, dividing by the median
of the corresponding session’s pre-trials and lastly, subtracting the median of the
pre-trials. This resulted in a tailored normalization for each session, where the
data was centered around zero.

82

6.2 Our Contribution

Computing the Feature Space
In Tensor Decompositions for Feature Extraction and Classification of High Di-
mensional Datasets by [Phan and Cichocki, 2010], a mutual feature space was
computed from data belonging to one subject only. Consequently, the number
of feature spaces equals the number of subjects, and they must create another
feature space when predicting for a session that belongs to a new subject. For
each subject, they computed the feature space from 60 training trials, leaving 120
trials as test data.

With the purpose of removing the subject-dependency, we propose applying
transfer learning to this problem. When computing the Tucker decomposition to
create a mutual feature space, we thereby use data from all subjects except that
of the target session. Applying leave one session out (LOSO) cross validation, this
results in one feature space per subject.

For the motor imagery problem, Phan and Cichocki trained their classifier us-
ing the core tensors of the training trials. To compute the features of a test trial,
they projected its corresponding input tensor onto the mutual feature space,
recall (2.16). The prediction was carried out using these features as input to the
(trained) classifier.

For our approach, the features of a target session was calculated in the same
manner; projecting the corresponding trials to the target session’s feature space.
When training the classifier though, we only use a subset of all training sessions,
selecting the sessions most similar to the target session. To measure the similarity
between sessions, we propose using the distance between core tensors. For each
session, a mean core tensor was calculated from its pre-trials. The Euclidean
distances between the mean cores was thereafter used as a similarity measure,
meaning small values answered to high similarity. Note that the mutual feature
spaces were essential in this matter, since the position of cores would not be
comparative otherwise.

For the mean pre-trial core tensors, the Euclidean distance was calculated by
(6.8) below:

∥Ḡk1 − Ḡk2∥

where Ḡk =
P∑

p=1
G(p)

k (6.8)

where the norm is the tensor norm, i.e. the squared root of the summation over
the squared elements (see Appendix). Ḡk1 and Ḡk2 are the mean pre-trial core
tensors of two arbitrary sessions k1 and k2, and are calculated from the corre-

83

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

sponding pre-trials; the P first trials.

The proposed similarity measure is interpreted as that similar sessions have
cores that lie close to each other in the mutual feature space. Assuming the pre-
trials of a session are representative for its characteristics, the measure should
result in choosing sessions with similar features. Further on, we will refer to this
approach as Tucker Feature Extraction (TFE).

6.3 Method

The following section accounts for how the tensor representations were chosen
when applying TFE for two classification problems: motor imagery classification
using Alex MI and drowsiness level regression using SA Drivers. The intention is
to explain and motivate the chosen pipeline to the reader, as well as for repro-
ducibility.

Firstly, the method for classification of the small, binary dataset Alex MI is ac-
counted for. Next, the regression problem for the larger dataset SA Drivers is
presented. As explained in the previous chapter, the two datasets illuminate dif-
ferent aspects of the tensor decompositions. For Alex MI, the focus will mainly
be on what structures are captured by the TFE method. This, as there exists more
pre-knowledge for the chosen motor imagery problem, and that it is easier to
visualize a small dataset. For SA Drivers, the focus will instead lie in evaluating
the TFE method’s effect on the performance of the regression. This, as a larger
dataset combined with regression allows for greater variation between sessions
and complexity in the evaluation, and hence, a more thorough analysis of the
method’s performance.

The preprocessing in this chapter differs from that of the first pipeline. First, in-
spired by the work of [Phan and Cichocki, 2010], the time-frequency-domain was
utilized instead of solely the frequency-domain. Second, due to not restricting
the tensor decompositions to find only non-negative solutions, the normaliza-
tion of the data differed too. A more thorough explanation of the procedure is
accounted for next.

Alex MI
Preprocessing As accounted for in 4.1 Alex Motor Imagery, every trial an-
swered to three seconds long EEG data recordings from 16 channels. To compute
the tensor representation, the time-frequency representation (TFR) of every trial
was extracted using a multitaper method. The parameters were chosen such that
the resulting TFR answered to EEG data sampled at 128 Hz, and contained fre-
quencies in the range 8 to 32 Hz with 1 Hz resolution. For all 8 subjects and 320

84

6.3 Method

trials, this resulted in a fourth order tensor of shape (320×16×25×384), answer-
ing to the number of trials, channels, frequency- and time-bins. Next, a moving
average filter with a window and slide of 10 samples was taken with respect to the
final mode; the time domain. This lowered the dimension to (320×16×25×38)
and thereby decreased the memory allocation and computational expense dur-
ing the classification significantly.

For the normalization, the logarithm was firstly applied to every trial. Thereafter,
the sessions were divided by the median of their pre-trials, followed by subtract-
ing the median of their pre-trials. Here, the pre-trials answered to the first 8 trials
of a session. The final step of subtracting the median was thus, the only differ-
ence from the normalization of the PSD representation, see section 5.3 Method
in Chapter 5 Tensor Decompositions for Session Selection. The reason for the
additional normalization around zero lied in how the Tucker decomposition was
computed. Since the decomposition needed to exclude the final mode, the func-
tion partial_tucker() from TensorLy was used as it allows for ignoring modes.
However, the algorithm does not support the constraint of non-negative decom-
positions. It was thereby no reason for preserving the positivity in the data, and it
was normalized around zero to allow for a more well conditioned problem.

Computing the Feature Space To carry out the session selection, and later
classification, a mutual feature space for all sessions but the target session was
calculated with the Tucker decomposition. Given all eight sessions being viewed
as the target session once, eight feature spaces were computed in total. The fea-
ture space of each target session then corresponded to the feature space which
had excluded this session during creation. Since every session included 40 trials,
there were 280 core tensors for every feature space, which were used as the fea-
tures of the corresponding 280 trials. In accordance with the theory presented in
section 6.1 Background, the features of the target session was calculated from its
feature space and tensor of the original data.

The Tucker decomposition was calculated such that 95% of the variability in the
original tensor X should be explained by the core tensor G, see section 2.2 Rank
Selection of Decompositions. The 95% significance was chosen by the same ar-
gument as the in previous chapter; with the aim of excluding noise and yet, do
not risk removing structures that could be of relevance.

Data Exploration To allow for an analysis of what structures the tensor decom-
position captured, the mean approximated tensor Xc was calculated for the two
labels. Given all trials, it was defined as:

Xc = 1

Nc

Nc∑
k=1

G(k) ×1 A(1) ×2 A(2) ×3 A(3) for c = right hand or feet (6.9)

85

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

where Nc is the number of trials belonging to class c. The tensor Xc was in turn,
studied in each of the dimensions. Additionally, the feature space of each session
was analyzed by studying the factor matrices and resulting distance matrix.

Subject Selection Using the computed feature spaces, a distance matrix was
calculated for every session. For each target session, a subset of the k most sim-
ilar sessions were selected using the distance matrix. Additionally, a random se-
lection was applied for baseline comparison, meaning k sessions were randomly
selected from the database. None of the 8 subjects answered to more than one
session, allowing k to range from 1 to 7.

Training and Evaluation For training and evaluation, a LOSO cross-validation
was applied, as for the previous methods. For each of the eight sessions,
k = 1, . . . ,7 other sessions were chosen using the distance matrix and random
selection. To maintain consistent classification results, the selected sessions
were sorted by their numbering. The core tensors of the selected sessions were
used as features to train three classifiers; a Linear SVC, an SVC rbf, and a Random
Forest classifier. Lastly, the classifiers were used to predict each trial’s label in tar-
get session. For the random selection, the training and prediction was repeated
20 times and the average performance was calculated. Once again, the predic-
tion accuracy was used to evaluate the result.

SA Driving
Preprocessing The tensor representation for the regression problem used all
sessions and trials from SA Drivers (in total 23 subjects, answering to 40 ses-
sions and 18455 trials). The label of a trial was defined by its DI, see section 4.2
Sustained-Attention Driving Task Dataset for more details. Note that the num-
ber of trials varied with the session, Table 4.2 in 4.2 Sustained-Attention Driving
Task Dataset presents an overview of the data for every subject.

The tensor representation was defined from the TFR of the data, computed using
a multitaper method. Here, the resulting frequency range was 1 to 35Hz with a
resolution of 1Hz, and the sampling rate 128Hz. The resulting tensor had a shape
of (18 455×30×25×384), corresponding to (trials×channels× frequency× time).

Similarly to Alex MI, every trial was normalized by: applying the logarithm and a
causal moving average over 10 samples, dividing by the median of the pre-trials,
and subtracting the (new) median of the pre-trials. The only difference lied in
the number of pre-trials, which was set to k = 10 as the data now contained more
trials per session. The final tensor had a shape of (18 455×30×25×38), answering
to the number of trials, channels, frequency- and time bins respectively.

86

6.3 Method

As motivated in the previous chapter, the normalization around zero was ap-
plied, since there was no reason in preserving the positivity in the data. This,
as the algorithm for TFE required using partial_tucker(), which did not support
non-negative solutions.

Computing the Feature Space To perform session selection and regression, a
feature space was computed for every session. This yielded 40 feature spaces,
answering to the 40 sessions. The number of features (i.e. cores) varied for dif-
ferent target sessions, as the number of trials varied by session. For a session of
a subject, the training data corresponded to the trials of all sessions that did not
belong to this subject.

The Tucker decomposition was defined for a rank such that 95% of the variability
in the data XN+1 was explained by the core tensor GN+1. The reason for setting
α= 0.95 was still to exclude noise and not risk removing structures that could be
of relevance for the regression.

Data Exploration To allow for an analysis of what structures the tensor decom-
position captured, the mean approximated tensor was calculated for a binary
class of drowsiness; non-drowsy or drowsy. The labels were determined as in the
previous chapter:

non-drowsy if µ≤ 1.5µ0

drowsy if µ≥ 2.5µ0

for the response time µ of a trial, and the median response time µ0 of the corre-
sponding session’s ten first trials. For the resulting subset of trials (trials with a µ
between 1.5µ0 and 2.5µ0 were excluded), the mean approximated tensor for each
label (non-drowsy or drowsy) was computed by (6.10).

Xc = 1

Nc

∑
k∈Nc

G(k) ×1 A(1) ×2 A(2) ×3 A(3)

for c = non-drowsy or drowsy,

the number of trials Nc belonging to class c, and their indices Nc (6.10)

The mean tensor Xc of each label was in turn, studied in each of the dimensions.
Additionally, the feature space of each session was analyzed by studying the fac-
tor matrices and the resulting distance matrix.

87

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Session Selection Using the computed feature space, a distance matrix was de-
fined from the similarity measure presented in 6.2 Our Contribution; the Eu-
clidean distance between the mean pre-trial cores. For a target session, the k
most similar sessions were chosen to train a classifier. For baseline comparison,
a random selection was applied, meaning k sessions that did not belong to the
same subject were randomly chosen. At most, three sessions were recorded from
the same subject, allowing k to range between 1 and 37.

Training and Evaluation For training and evaluation, LOSO cross validation
was applied. Every session was thus viewed as the target session once. For
k = 1, . . . ,37, three regressors were trained; a linear Support Vector Regressor
(linear SVR), a Support Vector Regressor with a radial basis function kernel (SVR
rbf), and a Random Forest Regressor. As for the other approaches, the chosen
sessions were sorted by their numbering to maintain consistent classification
results. Lastly, the DIs of the target session’s trials were predicted. For the random
selection, the training and prediction was performed 20 times, after which the
average performance was used for evaluation. The mean average error (MAE)
and Pearson correlation were used as evaluation metrics.

6.4 Result and Discussion

Alex MI
Data Exploration Studying the computed Tucker decomposition, it became
evident that the decomposition captured activity in the assumed regions of inter-
est; channel activity over the brain’s motor cortex. Figures 6.2-6.4 below visualize
the mean of every dimension, computed from the mean approximated tensor for
the two labels; right hand and feet (see (6.9)). In Figure 6.2, the mean of is com-
puted with respect to the channel-dimension, while Figures 6.3 and 6.4 answer
to the mean of the frequency- and time-dimension. Note that the figures display
the absolute values, as it is the amplitude and not the sign that answers to the im-
pact of an element. A large absolute value thereby answers to a high amplitude in
relation to the performed normalization. Because of this, another colormap has
been used compared to the previous chapter.

88

6.4 Result and Discussion

Figure 6.2 The absolute mean with respect to the channel-dimension, calculated from
the mean approximated tensor for the two labels; right hand and feet. The right plot an-
swers to the absolute difference between the two labels, i.e. the difference between the left
and right plots.

Figure 6.3 The absolute mean with respect to the frequency-dimension, calculated from
the mean approximated tensor for the two labels; right hand and feet. The dashed black
line represents the absolute difference between the two labels, while the two solid lines
answer to each of the two labels.

89

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Figure 6.4 The absolute mean with respect to the time-dimension, calculated from the
mean approximated tensor for the two labels; right hand and feet. The dashed black line
represents the absolute difference between the two labels, while the two solid lines answer
to each of the two labels.

Looking at the absolute difference in Figure 6.2 of the channel-dimension, the
decomposition has captured a clear difference over the channels C3 and C4.
The decomposition thereby indicates that brain activity mainly varies in the mo-
tor cortex when imagining the movement of right hand or feet. Continuing to
study Figure 6.3 of the frequency-dimension, the results coincide; on average,
the imagined movement of feet corresponds to the same frequencies as when
imagining moving the right hand, only with a larger amplitude. A similar be-
havior is also found for the time-dimension in Figure 6.4, where the imagined
feet movement overall answers to a larger amplitude over time. Looking at the
absolute difference for the two modes though, only the time-dimension shows a
clear variation between the two labels. Additionally, the time-dimension shows a
difference in trend for the two labels around the time-bin 30. These results point
to that the time course for the two labels differs, and that the time-dimension
itself includes time-dependent information that can separate the two classes.
For the frequency-dimension however, it appears that a mean component would
be sufficient to differ between the two labels.

The Feature Space For the chosen significance α= 0.95, the rank of the Tucker
decomposition was R1 = 11 for the channels dimension, R2 = 3 for the frequency
dimension, and R3 = 27 or 28 for the time dimension. Note that as one feature
space was computed for every session, the shape of the factor matrices could
differ. Since all sessions did not answer to equally large feature spaces, a mean
feature space could not be calculated.

The feature space do not model any of the characteristics itself, but only con-

90

6.4 Result and Discussion

tain the structures necessary for the core tensors to model the data. Thus, the
factor matrices simply constitute an orthogonal basis (as orthogonality was a
constraint). Studying the columns of each factor matrix, this appears to be the
case. Figures 6.5-6.7 show the columns of the corresponding factor matrix, for
channels, frequency, and time respectively. The factors answer to those of the
6th session’s feature space, and the values correspond to the absolute values of
the factors. The used colormap was chosen for the same reason as for Alex MI.

Figure 6.5 Spatial plot of each column of the 6th session’s feature space channels-factor
A(1) ∈ R16×11. The 6th session was thus excluded when computing these factor matrices.
The plot should be read as the deeper the color, the larger the amplitude.

91

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Figure 6.6 Plot of each column of the 6th session’s feature space frequency-factor A(2) ∈
R25×3. The 6th session was thus excluded when computing these factor matrices. Note
that the plots present the absolute values of a column. A large value thus corresponds to a
large amplitude.

92

6.4 Result and Discussion

Figure 6.7 Plot of each column of the 6th session’s feature space time-factor A(3) ∈
R38×27. The 6th session was thus excluded when computing these factor matrices. Note
that the plots present the absolute values of a column. A large value thus corresponds to a
large amplitude.

Continuing to study the times factor in Figure 6.7, the three first columns (a(3)
1

and a(3)
3) show a peek after the 30th time bin, coinciding with when the time

characteristics of the two labels differed (see Figure 6.4). A tendency of the same
peak is also seen in a(3)

2 , and a(3)
4 -a(3)

7 . This indicates that the basis of the feature
space was affected by this characteristics of the EEG signal, meaning the Tucker
decomposition would have been tailored by the problem instead of answering to
a general basis2. The same indication is found from looking at the channel factor
in Figure 6.5, where several columns cover the motor cortex. Recalling section 5.4

2 e.g. a sinusoidal basis with different periods and phases.

93

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Result and Discussion - Alex MI - Data Exploration, C3, C4, and Cz were among
the most significant channels when applying ANOVA filters for this motor im-
agery classification. Thus, it is reasonable that the classification would benefit
if the feature space modeled these channels well, e.g. by computing a basis that
capture them. Additionally, it should be noted that the discussed characteristics
are found in several of the columns. Since the features of a trial are defined as
the core of this Tucker decomposition, it is reasonable that the combination of
columns is sufficient to model the characteristics of each trial.

Returning to the thought of a sinusoidal basis, it should enable a good modeling
to general data, as a variation in amplitude, phase, and period allows for covering
a variety of signals. Considering the complex and noisy structure of EEG data,
a sinusoidal basis could thereby be beneficial. Thus, it is reasonable that the
columns’ oscillating behavior is similar to that of a sinusoidal basis. In this way,
other macroscopic EEG characteristics, apart from the patterns unique to this
classification task, is included when approximating the original tensor.

Selection Results The Euclidean distances between sessions were presented in
a normalized distance matrix, see Figure 6.8. In accordance with the presented
similarity measure in section 6.2 Our Contribution, a small distance answered to
a large similarity.

Figure 6.8 The distance matrix for each of the eight sessions. An element di j answers
to the similarity between sessions i and j and represents the Euclidean distance between
the mean pre-trial core tensors of the two sessions. Recall that one feature space was com-
puted for each session. The distance matrix of each session was thus calculated from that
corresponding feature space.

Note that the corresponding distance matrix of a target session was used for

94

6.4 Result and Discussion

selecting training data for that session only. It was thus, only the corresponding
row (or column) that was utilized when selecting training sessions.

Studying the distance matrices in Figure 6.8, the set of similar sessions differ
between the matrices. For example, the distance matrix of the first session says
that session 4 is one of its most similar sessions, while the distance matrix of the
fourth session claims that session 1 is the least similar. Considering the feature
spaces were computed from different sets of training data (excluding the target
session), the matrices are expected to vary. If the similarities between sessions
should be consistent is however not obvious.

Assuming two sessions are similar when looking at their original EEG data, i.e. the
16×25×38 tensors of the trials, their corresponding core tensors do not need to
be similar. This, as we want the Tucker decomposition to project the trials onto a
lower dimensional space, which models prominent characteristics of each trial’s
EEG. For motor imagery, this could answer to capturing the activity over mo-
tor cortex, rather than the macroscopic activity in the brain. The macroscopic
activity can however, still represent a high activity in the original EEG data and
thereby increase the similarity between sessions with non-similar motor cortex
activity. Measuring the distance between the original tensors is thus, not neces-
sarily representative for measuring the desired similarity. For the feature spaces,
this means the similarity between cores does not need to be consistent as we do
not know which similarities to preserve. The inconsistency in similarity between
sessions is therefore expected. To obtain a consistency between the distance ma-
trices of difference sessions (i.e. different feature spaces), one would probably
need a much larger dataset. The more the subjects, the more similar would the
training data between sessions become. Assuming the decomposition is unique,
the feature spaces should thus converge to the same solution, leading to identical
distance matrices.

Prediction Results The mean prediction accuracy over sessions can be seen in
Figure 6.9. Each graph answers to one of the three classifiers (Linear SVC, SVC
rbf, and Random Forest).

95

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Figure 6.9 The mean accuracy of all sessions, plotted against the number of training ses-
sions included in the training data. The black, dashed line answer to selecting sessions
randomly, while the pink, solid line with triangles represent selecting sessions with the
presented similarity measure; the Euclidean distance between cores.

Studying Figure 6.9, the prediction accuracy reaches at most about 61%. As of
today, BCI state of the art results for binary motor imagery classification with
transfer learning reach above 80% [Zhang et al., 2021]. The obtained accuracy
can thus be considered poor, even if it exceeds 50% for the majority of train-
ing sessions and classifiers. Furthermore, the variance in accuracy when using
random selection was large, meaning no conclusions could be drawn of the pro-
posed method being better or not. Considering Alex MI is a small dataset with
respect to the number of sessions, this is expected. The contribution from the re-
sults rather lie in the study of the decomposition itself, as mentioned in previous
sections.

SA Driving
Data Exploration Looking into the computed Tucker decomposition, Figures
6.10-6.12 show the activity captured by the mean approximated tensor, calcu-
lated for the binary labels non-drowsy and drowsy, in accordance with (6.10).

96

6.4 Result and Discussion

Figure 6.10 below displays the absolute values when projecting the mean tensors
onto the channels dimension. The projection was done by calculating the mean
with respect to the other modes; frequency and time. Similarly, Figures 6.11 and
6.12 view the mean activity over the frequency and time dimension respectively.

Figure 6.10 The absolute mean with respect to the channel-dimension, calculated from
the mean approximated tensor for the two labels non-drowsy and drowsy. The right plot
represents the absolute difference between the labels, i.e. the difference between the left
and middle plots.

Figure 6.11 The absolute mean with respect to the frequency-dimension, calculated
from the mean approximated tensor for the two labels non-drowsy and drowsy. The
dashed black line represents the absolute difference between the labels, while the two
solid lines represent each of the binary labels.

97

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Figure 6.12 The absolute mean with respect to the time-dimension, calculated from the
mean approximated tensor for the two labels non-drowsy and drowsy. The dashed black
line represents the absolute difference between the labels, while the two solid lines repre-
sent each of the binary labels.

98

6.4 Result and Discussion

Studying the activity over the channels in Figure 6.10, the mean non-drowsy
corresponds to a significantly lower amplitude than drowsy for the majority
of channels. Further looking at the absolute difference between the labels, the
largest variation is found in the middle and back of the brain, and at channel
T4. Recalling the pattern found by the ANOVA filter for frequencies 4-6 Hz (see
Figure 5.12 in the previous chapter), the results seem reasonable. Continuing to
study the activity over frequencies, non-drowsy consistently answers to a lower
amplitude than drowsy. In theory though, a higher activity should occur for
lower frequencies only. Looking at the absolute difference of the two labels, the
support decreases the higher the frequency, yet shows a peak for frequencies in
the Theta- and Alpha-bands (4-7 Hz and 8-13 Hz). As those bands, by Table 1.1,
correspond to drowsiness, and relaxation and eyes closing, the result can be con-
sidered reasonable. Even so, it is surprising that it does not agree with features
recognized by the ANOVA filter.

Further looking at Figure 6.12 over the time dimension, no clear difference be-
tween the two labels can be seen, apart from that drowsy consistently corre-
sponds to a higher amplitude. Since the same information can be seen from the
frequency factor matrix, it is questionable if the time dimension contributes to
modeling the drowsiness. This seems reasonable as no particular occasion dur-
ing a three second trial is expected to stand out. The drowsiness level is measured
throughout the entire interval and should not be particularly evident at certain
times of a trial. The Alex MI dataset is an example of the opposite: structure could
be found in the time dimension as a trial went from relaxing, thinking of moving
and then back to relaxing.

The Feature Space For the chosen significance of 95%, the rank of the Tucker
decomposition varied between R1 = 15,16, R2 = 5, and R3 = 20,21 for the chan-
nels, frequency and time dimension respectively. Due to the varying shape, a
mean feature space could not be calculated. It is, however, worth to mention
that the sessions belonging to the same subject always corresponded to identical
feature spaces, indicating the computed decomposition was unique.

As mentioned, the feature space itself does not affect the similarity measure, it
only normalizes the data such that all cores lie in the same space. Furthermore,
the space is orthogonal (as orthogonality was a constraint), meaning the columns
of the factor matrices constitute an orthonormal basis. Studying the columns of
each mode’s factor thereby allows for a visualization of what patterns the core
tensor can capture. Figures 6.13-6.15 show the factor matrices of the mutual fea-
ture space corresponding to session 15.

99

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Figure 6.13 Spatial plot of each column of the 15th session’s feature space channels-
factor A(1) ∈ R30×15. The 5th session was thus excluded when computing the feature
space. The plots should be read as the deeper the color, the larger the amplitude.

Figure 6.14 Plot of each column of the 15th session’s feature space frequency-factor
A(2) ∈ R25×5. The 5th session was thus, excluded when computing the feature space. Note
that the plots present the absolute values of a column. A large value thus corresponds to a
large amplitude.

100

6.4 Result and Discussion

Figure 6.15 Plot of each column of the 15th session’s feature space time-factor A(2) ∈
R25×5. The 5th session was thus, excluded when computing the feature space. Note that
the plots present the absolute values of a column. A large value thus corresponds to a large
amplitude.

Looking at the channels-factor in Figure 6.13, the first column a(1)
1 appears to

answer to a mean. Next, the second column a(1)
2 solely cover the activity around

channel T4, coinciding with one of the identified structures for the difference
between the binary labels non-drowsy and drowsy. Studying the other columns
though, no apparent pattern can be seen as they seem to model activity around
arbitrary channels. For the frequency factor in Figure 6.14, the columns show an
oscillating behavior. For the first column, one oscillation is identified, followed by
two for a(2)

2 , three for a(2)
3 , and so on. The peaks are, however, crowding to the left

rather than covering the whole frequency span equally. Considering the mean
tensor showed a decreasing support the higher the frequency, the result can be
considered reasonable. Comparing to the factor matrix of the time dimension,
the columns in Figure 6.15 do not seem biased for a certain interval, but rather
resemble a sinusoidal basis. As discussed for Alex MI, a sinusoidal basis could be
beneficial for modeling EEG. Recalling the mean tensor for the time-dimension
though, no apparent variation during a trial was recognized. A mean component
may thus have been enough to account for the time dimension. Considering the

101

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

time domain is presented by the same original signal as the frequency domain,
one could argue that one of them is unnecessary for modeling the drowsiness.
Based on the results, the time domain appears to be redundant in this case. Due
to this, a brief study was conducted of whether using the PSD representation
only would benefit the regression. Since the results showed a significant loss in
performance, the TFR was kept, and we leave a more thorough analysis to future
work.

Note that all dimensions showed a consistently larger activity for drowsy than
non-drowsy. This indicates a mean component for all modes may have been suf-
ficient to classify if someone is drowsy or not. If this is the case for the continuous
drowsiness level can however not be fully concluded.

Once again studying the frequency factor in Figure 6.14, it should be noted that
the first column is almost identical to the mean approximated tensor for non-
drowsy, recall Figure 6.11. For the frequency domain, this implies the tensor
decomposition has chosen a mean a little more similar to non-drowsy, modeling
drowsy as a deviation further away from this mean. Looking at the distribution
of non-drowsy and drowsy throughout the dataset though, the majority of trials
answer to low drowsiness levels (i.e. non-drowsy). The appearance of the mean
component is thus, reasonable as the majority of data tends to this mean. The
fact that the decomposition identifies this structure though, still argues for ten-
sor decompositions being a good tool in identifying characteristics of data.

Finally, it should be noted that sessions belonging to the same subject resulted
in identical feature spaces. The factor matrices were in other words the same for
sessions corresponding to the same subject. Since the feature spaces of these ses-
sions were computed from the same data, the result is expected and indicates the
Tucker decomposition was unique.

Selection Results As accounted for, one feature space was created for every ses-
sion. Given all 40 sessions in SA Drivers, there were thus 40 distance matrices.
Figure 6.16 below displays a subset of those, answering to session 15, 18, and 26.
The three sessions belonged to different subjects and their feature spaces were
thereby calculated from different sets of data. Note that the distance matrices are
normalized, such that the largest distance answer to 1.

102

6.4 Result and Discussion

Figure 6.16 The normalized distance matrices of session 15 (left), 18 (middle), and 26
(right). The three sessions belong to different subjects and their feature spaces were thus
computed from different sets of data.

Studying the distance matrices in Figure 6.16, session 15 and 18 appear rather
similar. Most prominently, they show a clear dissimilarity to session 26 for all
sessions. When creating the feature spaces of session 15 and 18, session 26 was
included in the data. The Tucker decomposition thereby appears to have seen
session 26 as an outlier in order to minimize the distances between the other ses-
sions. What is interesting though, is that the distance matrix of session 26 does
not show the same pattern. This, as the 26th row (or column) does not answer
to unusually large distances. Assuming the data of session 26 actually answered
to outliers, it should result in large dissimilarities when projecting it onto any
feature space. The same pattern as for session 26 can be seen for other sessions
(e.g. session 4 look like an outlier in the distance matrix of session 26, but not
in those of session 15 and 18). The results thus imply the Tucker decomposition
tends to view certain sessions as outliers to compute the optimal mutual feature
space (recall (6.4) for the problem formulation).

Further looking at the distance matrices in Figure 6.16, sessions belonging to
the same subject do not necessarily lie close to each other. For example, the
2×2 bright cluster answering to the 17th and 18th diagonal elements of the 15th
session’s distance matrix, corresponds to different subjects. Similarly, the 2× 2
cluster around the 36th and 37th diagonal elements of the same matrix answers
to the same subject, but so does session 38 which is not included. Based on
the often large inter-variability in EEG data, it is reasonable to assume that ses-
sions of the same subject are, in general, more similar than sessions of different
subjects. Based on these results, it seems like the Tucker decomposition have
computed feature spaces that do not only favor the inter-variability between
subjects, but also the intra-variability between sessions of the same subject.

A more detailed analysis of how the above discussed patterns affect the perfor-
mance for a session will be presented next.

103

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Prediction Results Figures 6.17 and 6.18 show the mean Pearson correlation
and MAE over sessions, plotted against the number of sessions used when train-
ing the regressor. The three graphs in each figure correspond to the three regres-
sors used; Linear SVR, SVR rbf, and Random Forest regressor.

Figure 6.17 The mean Pearson correlation given all 40 sessions, plotted against the num-
ber of sessions used when training the regressor. The dashed, black line answers to the
performance when using random selection, while the solid, pink line shows the perfor-
mance when using the proposed similarity measure.

104

6.4 Result and Discussion

Figure 6.18 The mean MAE given all 40 sessions, plotted against the number of ses-
sions used when training the regressor. The dashed, black line answers to the performance
when using random selection, while the solid, pink line shows the performance when us-
ing the proposed similarity measure.

From the Pearson correlation results in Figure 6.17, a difference between the
two methods is hard to distinguish for any of the regressors. Furthermore, the
correlation of the proposed method shows an increasing trend in performance
with increasing amount of training data. Continuing to look at the MAE in Figure
6.18, a similar trend can be seen. The proposed similarity measure is consistently
better up to 25 training sessions only for the Random Forest regressor, compared
to random selection. For the Linear SVR, the proposed method seems to outper-
form the random selection for training data consisting of about 3-12 sessions.
The SVR with an rbf-kernel however, shows no clear difference between the pro-
posed similarity measure and random selection. Studying the combination of a
low MAE and a high Pearson correlation, the best results are found at 10 training
sessions for the two SVRs, and at 11 training sessions for the Random Forest
regressor, as well as training with the full database for all regressors.

To get an idea of the prediction, Figure 8.6 in the Appendix shows the predicted
drowsiness index for all sessions, using 11 training sessions and the Random

105

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

Forest Regressor.

To further study the promising results for 10 training sessions for the Linear SVR,
the performance of each session was investigated. Figure 6.19 below shows the
Pearson correlation and MAE of every session, plotted together with the error
plot of the performance when using random selection.

(a) Pearson correlation (b) MAE

Figure 6.19 Error plots for the Linear SVR with 10 training sessions. Each error bar
presents the mean correlation/MAE for a session and its standard deviation during ran-
dom selection (computed from 20 evaluations). The pink triangles answer to the correla-
tion/MAE when using the proposed similarity measure.

Studying the plots for Pearson correlation, the majority of the sessions perform
in the same range independently of using the proposed similarity measure or a
random selection. The same applies for the MAE, see Figure 6.19b. Additionally
for the Pearson correlation, there is consistently a large variation in performance
between sessions. For example, session 15 shows a high correlation (between
0.6 and 0.75) and small variance. Session 18 though, corresponds to the worst

106

6.4 Result and Discussion

correlation (< 0) and a small variance. The small variance of both sessions can
thus, be seen as an indication of some sessions being more beneficial to pre-
dict the drowsiness level of. From the presented results, there are however no
obvious way of telling which these sessions are on beforehand. Recalling the
distance matrices in Figure 6.16, no apparent difference between session 15 and
18 could be seen. On a second note, session 18 belongs to the same subject as
session 17, which does not show a similar (poor) performance. The supposed
non-beneficial sessions thereby do not necessarily correspond to subjects with
large inter-variability, but may equally well depend on a large intra-variability.

Another thing that is highlighted by Figure 6.19a, is the large variation in uncer-
tainty between sessions. As the uncertainty is dependent on the random selec-
tion, a large standard deviation corresponds to a large sensitivity when selecting
training sessions, meaning which sessions we choose have a big impact on the
regressor’s performance. Naturally, the uncertainty decreases with more training
sessions, since the possible combinations of sessions become fewer. However,
this also means it becomes harder to evaluate the significance of the proposed
method being better than random selection. Once again looking at the mean
correlation and MAE by session (Figures 6.17 and 6.18), it is desirable to know
if the proposed similarity measure, with some significance, outperforms random
selection for a subset of all sessions (here, probably 10 or 11 as discussed). To
further study this, Table 6.1 displays a summary of the results in Figure 6.19.

Table 6.1 Count (out of all 40) and percentage of sessions that performed better than
random for the presented number of training sessions in Figure 6.19 (10 for Linear SVR).

Linear SVR

Pearson MAE

better than random 26 17

% better than random 65.0% 42.5%

As seen in Table 6.1, the best results are obtained for the Pearson correlation,
where the proposed method results in a higher correlation than random selec-
tion for 65% of the sessions. For the MAE, the result is poorer, as only 42.5%
of the sessions performed better than random. From the above analysis, the
proposed method can thereby not be concluded to outperform random selec-
tion with a quantitative certainty for the chosen number of training sessions (10).

Viewing the problem from another perspective, selecting a subset of sessions to
train from can be desirable in terms of computational expense, as accounted for
in the previous chapter. By Figure 6.17, one can on average gain about 2, 4, and
5 percentage units in correlation when using all sessions instead of a subset of

107

Chapter 6. Tensor Decompositions for Feature Extraction and Session Selection

10, 10, and 11 sessions for Linear SVR, SVR rbf, and Random Forest Regressor
respectively. Comparing the computational expense for training a regressor from
10 or all sessions, using the subset cuts the run time to a 1/2, 1/13, and 1/6 for the
Linear SVR, SVR rbf, and Random Forest Regressor respectively. Considering BCIs
are often desired to use as real-time applications, the run time is substantial if
the application is to work in practice. Improved performance is hence not all that
matters, but reducing training times and still achieving comparable performance
is of high relevance too (as concluded in the previous chapter).

108

7
Conclusions and Future
Work

Throughout this project, several assumptions have been made, and their credi-
bility and consequences are going to be considered next in section 7.1 General
Discussion. Additionally, general results and conclusions that apply to Chapters
5 and 6 will be examined. Thereafter, possible future extensions will be discussed
in section 7.2 Future Work, and the summarizing conclusions of the report will
be enhanced in section 7.3 Conclusions.

109

Chapter 7. Conclusions and Future Work

7.1 General Discussion

Feature comparison In the two Chapters 5 and 6, two different ways of rep-
resenting EEG data to train classifiers/regressors were presented. The first one
simply used the EEG signals PSD. The second one included the TFR of the signal,
formulated as a tensor and for which a Tucker decomposition was computed
to find features. Comparing the performance of the two methods for the bigger
dataset SA Driving, the first approach was superior with the Random Forest re-
gressor. For the two SVRs, the two methods produced similar performance. As
of now, the second method (which used tensor decompositions as inputs to the
regressors instead of a simple frequency representation) can not be considered a
better choice than the first. This is as it did not show an increase in performance,
and that each trial was represented with more data points, which increased stor-
age requirements and computational expense. However, with future extensions
as supervised and/or nonlinear decompositions (described in Section 7.2 Future
Work), the results may become more satisfying.

Data Collection Throughout this project, we have worked with data that we
have not collected ourselves. This has made it possible to concentrate on the
methods and analysis. The datasets we have investigated (AlexMI and SA Drivers)
are well used in literature and thoroughly documented, which has been conve-
nient. However, it is an evident drawback when analyzing results to not have
collected data ourselves, especially when comparing similarity of sessions and
subjects. In all our conclusions regarding similarity of sessions, we assume that
there have not been any other factors than the EEG signals themselves that af-
fect the data. If we would have collected data ourselves, it may have been evi-
dent to us if the subjects behaved differently in other senses, or if the equipment
was more/less convenient to use between sessions. Additionally, one could have
communicated with the subjects before/during/after the data collection to re-
ceive more information of mood, current mental state and other characteristics
of interest that could affect the EEG signals. This is a clear drawback in our anal-
ysis, and can have contributed to the big difference in performance between ses-
sions.

Similarity of Sessions Assuming data collection did not answer to the main
impact on session similarity, let us consider other reasons for the big difference
in performance between sessions. For example, does the quality of the selected
subsets vary between sessions? As we are only looking at relatively small datasets
of 8 or 40 sessions, this is likely the case. Most probable is that some sessions
have more similar sessions to choose from than others. Indications of this can be
seen in almost all distance matrices, where there are sessions that seem further
away from all other sessions in an inconsistent manner. Additionally, from the
classification/regression results, some sessions are consistently harder to receive

110

7.2 Future Work

high performance for than others. This is seen in for example Figures 5.17 and
5.18 in Chapter 5, and Figure 6.19 in Chapter 6.

Imagine placing an infinite amount of sessions from different subjects in a multi-
dimensional space, where the true similarity can be measured. Would the ses-
sions cluster into different groups, or would they make up a continuous distribu-
tion? This thought is of interest, as it would supply a constraint on how good of a
performance we can reach for dataset with limited amount of training sessions.
Assuming the data is clustered, it might be enough to have a few samples from
each group in the training database and categorize a target session accordingly.
To investigate the clustering-capability of the data, a more in-depth analysis of
the sessions and their neighbors would have to be made. Additionally, such an
analysis would profit from an even bigger dataset.

Independent of the "true" distribution of sessions, from small datasets (like the
ones we have used), it is unlikely that all sessions benefit from the same num-
ber of training sessions. In our analysis, we have only compared all fixed number
of subsets possible, and averaged the performance for all sessions. More realis-
tically, there is no mutual maximum. Some sessions may reach maximal perfor-
mance by selecting a training dataset of few sessions, while others from more. A
more dynamic session selection approach, including a flexible decision on how
many training sessions to include, would probably be beneficial.

Pre-trial Similarity vs Drowsiness Response For SA Drivers dataset, the goal
has been to examine data in a way that would be interesting in future BCI appli-
cations. Therefore, only the pre-trial data has been considered when comparing
similarity between sessions. The pre-trial data can be quickly collected for a new
session (less than 3 minutes), and does not include drowsy states of the subject.
This means that in a real-world application, the subject does not have to be ex-
posed to dangerous traffic situations for calibration.

For the SA Drivers dataset, it is assumed that two sessions that are similar in their
pre-trial data will also have a similar EEG drowsiness response. As the brain is
complex and EEG data only capture macroscopic behavior, this assumption is
hard to evaluate and not necessarily true. It could be that two sessions initially
have similar EEG data, but have extensively different characteristics when turn-
ing drowsy. If that is the case, there would be no evident benefit from finding
similar sessions during the pre-trial phase to train a regressor.

7.2 Future Work

Supervised Selection of Latent Variables When working with tensors, it has
been done in an unsupervised manner. We have thus been able to examine all

111

Chapter 7. Conclusions and Future Work

structures enhanced in the decompositions as a result of the input EEG data.
However, the tensor decompositions have never been impacted by the specific
classification problem, and have therefore never adapted their components to it.
As seen in the analyses of the Alex MI dataset in Chapters 5 and 6, the columns
of the factor matrices in the channel/frequency/time-dimensions can be con-
nected to the specific classification problem if pre-knowledge of certain relevant
channels-frequencies-time combinations exists. For future extension, we pro-
pose examining supervised tensor decompositions for tasks that clearly enhance
certain EEG channels/frequencies/times. This could be made in a fashion that
compares how well columns in the factor matrices separate different classes.
The weighting factor of the latent variables could thereafter be adapted from
this, when using tensor decompositions as session selection as proposed in
Chapter 5. Or, only these columns could be included as features, when using
tensor decomposition for feature extraction as proposed in Chapter 6. Another
approach could be to formulate an optimization problem that penalizes the de-
composition if it does not separate the classes.

As a starting point for this extension, a brief check of whether the prediction
accuracy of AlexMI could benefit from using a subset of the latent variables was
conducted. For feature extraction and session selection (as in Chapter 6), a gain
of 3 to 7 percentage units in accuracy was on average obtained when manually
selecting which columns of the factor matrices to use. The chosen columns cov-
ered the assumed interesting characteristics; activity over the motor cortex, the
frequency ranges 9-12Hz and 17-19Hz, and a time interval around the 30th time
bin. Because of the promising results, we confirm that this future extension has
potential.

Lastly, the effect of the decomposition’s rank should be mentioned. As presented,
the rank was derived by choosing a significance α, answering to how much of
the data variability the decomposition should explain. Requiring a small signifi-
cance is thus a way of further reducing the dimension of the decomposition. In
the presented results, α was set to 0.95, answering to a 95 % significance. Some
method(s) were however, tested for a lower alpha too. Since the lower significance
resulted in a worsened performance, where the factor matrices tended to a mean
component only, the 95 % significance was concluded better for our unsuper-
vised problem. In a supervised problem though, a lower rank should allow for de-
riving a lower dimensional decomposition that captures features of the wanted
labels, rather than the overall characteristics of the whole dataset. For a super-
vised approach, we thus see potential in investigating the rank of the decompo-
sition further.

Non-linear Decompositions As the non-linear regressors (SVR rbf and Random
Forest) have proven their superiority to the linear one (Linear SVR), it is reason-

112

7.3 Conclusions

able to assume that relationships in EEG data benefit from non-linear compar-
isons. We therefore propose non-linear tensor decomposition methods as a fu-
ture extension to this project. We believe that non-linear structures can be bene-
ficial both for similarity comparison and feature extraction. In literature, an infi-
nite Tucker decomposition [Xu et al., 2012] has been proposed, which we consider
a good starting point for this.

Classifiers/Regressors As the classifiers/regressors differed in performance, it
would be reasonable to look further at how to maximize their performance. To
do so, more time should be spent on tuning. This should be done in a non-
overfitting manner, that do not benefit one/several particular selection methods
or number of training sessions.

Additionally, other classifiers/regressors, which use different methods to sepa-
rate data, could be of interest. In particular, we propose investigating the impact
of neural networks. Neural networks are generally good at finding complex, non-
linear relationships in data, and they have showed promising results for EEG data
lately. A good starting point could be the EEG net [Lawhern et al., 2016], which
has proven to perform well for EEG data in different tasks. EEG net can be ex-
tended from a classification to regression task by for example adjusting the last
layer, as was done in [Cui and Wu, 2018].

7.3 Conclusions

This report contains an analysis of two methods for evaluation of tensor de-
compositions in the field of transfer learning. In it, we have developed a new
similarity selection method. The method involves weighting the latent vectors of
the mode of interest, for example representing a session, with the corresponding
size of what it scales during recreation/approximation of the original tensor. We
consider this a more representative measurement of how similar two sessions
are, compared to simply studying the unweighted factor matrices which has
been done previously in literature.

Additionally, two main questions were brought up in the introduction, which
have been answered in this work.

Can tensor decompositions, performed unsupervised, capture structures rele-
vant and useful to a classification problem? Based on the analysis of the Alex
MI dataset in Chapters 5 and 6, it can be said that tensor decompositions can
extract structures that are of more or less relevance to a classification problem.
For example, a subset of columns of the channel and frequency factor matrices
in Chapters 5 and 6 did enhance the same channels/frequencies as was selected
during the ANOVA filter investigation. With this knowledge, we propose extend-

113

Chapter 7. Conclusions and Future Work

ing the tensor decomposition methods to supervised ones, both for session se-
lection and feature extraction. In addition, tensor decompositions for feature ex-
traction of EEG trials did not outperform simply transforming the trials to the
frequency domain (PSD). However, with future extensions as supervised and/or
nonlinear decompositions, the results may be more satisfying.

Are the captured structures efficient for similarity comparison between sessions
in a transfer learning setting? From the SA Driving dataset analysis in Chap-
ter 5 (session selection), there are indications of the tensor selection methods in
many cases performing better than random. Furthermore, maximal performance
(for the average of all sessions) was often reached when using a tensor selection
method and training with a subset smaller than the full database. Similar results
were obtained in Chapter 6 when using tensor decompositions for both feature
extraction and session selection, even if the performance continuously increased
with the number of training sessions, in contrast to Chapter 5. For both chapters,
these are promising results which show potential in the tensor selection meth-
ods. However, looking closer at every single session, there is a wide spread in per-
formance and an inconsistency in performance increase/decrease when involv-
ing the tensor selection methods. Therefore, for a new session, little can be said
about performance and it is relatively uncertain if the tensor selection methods
would lead to better results than random selection. This makes these regressor
models far from applicable for a BCI in a real-world environment today.

114

Bibliography

Acar, E., T. G. Kolda, and D. M. Dunlavy (2011). “All-at-once Optimization for
Coupled Matrix and Tensor Factorizations”. URL: http://arxiv.org/abs/
1105.3422.

Barachant, A., S. Bonnet, M. Congedo, and C. Jutten (n.d.). “Classification of co-
variance matrices using a Riemannian-based kernel for BCI applications” ().
DOI: 10.1016/j.neucom.2012.12.039{\"{i}}. URL: https://hal.
archives-ouvertes.fr/hal-00820475.

Barachant, A. and S. Chevallier (2021). moabb.datasets.AlexMI. URL: http://
moabb.neurotechx.com/docs/generated/moabb.datasets.AlexMI.
html.

Berger, M. (2002). A Panoramic View of Riemannian Geometry. Springer, p. 124.

Bolagh, S. N. G. and G. D. Clifford (2017). “Subject Selection on a Riemannian
Manifold for Unsupervised Cross-subject Seizure Detection”. URL: http://
arxiv.org/abs/1712.00465.

Cao, Z., C. H. Chuang, J. K. King, and C. T. Lin (2019). “Multi-channel EEG record-
ings during a sustained-attention driving task”. Scientific data 6:1, p. 19. ISSN:
20524463. DOI: 10.1038/s41597-019-0027-4.

Cichocki, A., S. Profile, and R. Zdunek (2009). Nonnegative Matrix and Ten-
sor Factorizations-Applications to Exploratory Multi-way Data Analysis and
Blind Source Separation, p. 50. URL: https://www.researchgate.net/
publication/237145400.

Congedo, M., A. Barachant, and R. Bhatia (2017). “Riemannian geometry for EEG-
based braincomputer interfaces; a primer and a review”. Taylor & Francis,
pp. 155–174.

Cui, Y. and D. Wu (2018). “EEG-Based Driver Drowsiness Estimation Using Con-
volutional Neural Networks”. URL: http://arxiv.org/abs/1809.00929.

115

http://arxiv.org/abs/1105.3422
http://arxiv.org/abs/1105.3422
https://doi.org/10.1016/j.neucom.2012.12.039{\"{i}}
https://hal.archives-ouvertes.fr/hal-00820475
https://hal.archives-ouvertes.fr/hal-00820475
http://moabb.neurotechx.com/docs/generated/moabb.datasets.AlexMI.html
http://moabb.neurotechx.com/docs/generated/moabb.datasets.AlexMI.html
http://moabb.neurotechx.com/docs/generated/moabb.datasets.AlexMI.html
http://arxiv.org/abs/1712.00465
http://arxiv.org/abs/1712.00465
https://doi.org/10.1038/s41597-019-0027-4
https://www.researchgate.net/publication/237145400
https://www.researchgate.net/publication/237145400
http://arxiv.org/abs/1809.00929

Bibliography

De Lathauwer, L., B. De Moor, and J. Vandewalle (2000). ON THE BEST RANK-
1 AND RANK-(R 1 , R 2 ,. .. , R N) APPROXIMATION OF HIGHER-ORDER
TENSORS *. Tech. rep. 4, pp. 1324–1342. URL: https://epubs.siam.org/
terms-privacy.

Drew, L. (2019). “The ethics of brain–computer interfaces”. Nature 571:7766.
ISSN: 14764687. DOI: 10.1038/d41586-019-02214-2.

Encyclopaedia Britannica (2007). Riemannian geometry. URL: https://www.
britannica.com/science/Riemannian-geometry.

Energy Efficiency of Medical Devices and Healthcare Applications (2020). Elsevier,
p. 28. DOI: 10.1016/c2018-0-04773-8.

Gramfort, A., M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck,
R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M. Hämäläinen (2013). “MEG and
EEG data analysis with MNE-Python”. Frontiers in Neuroscience 7 DEC. ISSN:
1662453X. DOI: 10.3389/fnins.2013.00267.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2013). An introduction to sta-
tistical learning : with applications in R. Springer, New York, pp. 320–352.
ISBN: 9781461471370. URL: https : / / www . ime . unicamp . br / ~dias /
Intoduction%20to%20Statistical%20Learning.pdf.

Jeng, P. Y., C. S. Wei, T. P. Jung, and L. C. Wang (2021). “Low-Dimensional Subject
Representation-Based Transfer Learning in EEG Decoding”. IEEE Journal of
Biomedical and Health Informatics 25:6, pp. 1915–1925. ISSN: 21682208. DOI:
10.1109/JBHI.2020.3025865.

Kim, Y.-D. and S. Choi (2007). Nonnegative Tucker Decomposition. Tech. rep.

Kolda, T. G. (2006). Multilinear operators for higher-order decompositions. Tech.
rep. URL: http://www.doe.gov/bridge.

Kolda, T. G. and B. W. Bader (2009). “Tensor decompositions and applications”.
SIAM Review 51:3, pp. 455–500. ISSN: 00361445. DOI: 10.1137/07070111X.

Kossaifi, J., Y. Panagakis, A. Anandkumar, and M. Pantic (2019). TensorLy: Tensor
Learning in Python. Tech. rep., pp. 1–6. URL: http://jmlr.org/papers/
v20/18-277.html..

Lars-Christer Böiers (2010). Mathematical Methods of Optimization. 2nd ed.
Vol. 1. Studentlitteratur AB.

Lawhern, V. J., A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J.
Lance (2016). “EEGNet: A Compact Convolutional Network for EEG-based
Brain-Computer Interfaces”. DOI: 10.1088/1741-2552/aace8c. URL: http:
//arxiv.org/abs/1611.08024%20http://dx.doi.org/10.1088/1741-
2552/aace8c.

Lee, D. D. and H. S. Seung (1999). Algorithms for Non-negative Matrix Factoriza-
tion. Tech. rep.

116

https://epubs.siam.org/terms-privacy
https://epubs.siam.org/terms-privacy
https://doi.org/10.1038/d41586-019-02214-2
https://www.britannica.com/science/Riemannian-geometry
https://www.britannica.com/science/Riemannian-geometry
https://doi.org/10.1016/c2018-0-04773-8
https://doi.org/10.3389/fnins.2013.00267
https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf
https://www.ime.unicamp.br/~dias/Intoduction%20to%20Statistical%20Learning.pdf
https://doi.org/10.1109/JBHI.2020.3025865
http://www.doe.gov/bridge
https://doi.org/10.1137/07070111X
http://jmlr.org/papers/v20/18-277.html.
http://jmlr.org/papers/v20/18-277.html.
https://doi.org/10.1088/1741-2552/aace8c
http://arxiv.org/abs/1611.08024%20http://dx.doi.org/10.1088/1741-2552/aace8c
http://arxiv.org/abs/1611.08024%20http://dx.doi.org/10.1088/1741-2552/aace8c
http://arxiv.org/abs/1611.08024%20http://dx.doi.org/10.1088/1741-2552/aace8c

Bibliography

Lin, C. Y., L. C. Wang, and K. H. Tsai (2018). “Hybrid Real-Time Matrix Fac-
torization for Implicit Feedback Recommendation Systems”. IEEE Access 6,
pp. 21369–21380. ISSN: 21693536. DOI: 10.1109/ACCESS.2018.2819428.

National Council of Educational & Research Training (2021). “Introduction to Eu-
clid’s Geometry”. In: Mathematics, pp. 80–83.

Pedregosa, F., V. Michel, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, J. Vander-
plas, D. Cournapeau, F. Pedregosa, G. Varoquaux, A. Gramfort, B. Thirion, O.
Grisel, V. Dubourg, A. Passos, M. Brucher, M. Perrot andÉdouardand, a. Duch-
esnay, and F. Duchesnay (2011). Scikit-learn: Machine Learning in Python.
Tech. rep., pp. 2825–2830. URL: http://scikit- learn.sourceforge.
net..

Phan, A. H. and A. Cichocki (2010). “Tensor decompositions for feature extraction
and classification of high dimensional datasets”. Nonlinear Theory and Its Ap-
plications, IEICE 1:1, pp. 37–68. ISSN: 2185-4106. DOI: 10.1587/nolta.1.37.

Rowland, T. (n.d.). Manifold. URL: https : / / mathworld . wolfram . com /
Manifold.html.

Shashua, A. and T. Hazan (2005). “Non-negative tensor factorization with ap-
plications to statistics and computer vision”. In: ICML 2005 - Proceedings of
the 22nd International Conference on Machine Learning, pp. 793–800. ISBN:
1595931805. DOI: 10.1145/1102351.1102451.

Sörnmo, L. (2005). Bioelectrical signal processing in cardiac and neurological ap-
plications. Biomedical engineering: 8. Elsevier, p. 34. ISBN: 9780124375529.

Stoica, P. and R. L. Moses (2005). Spectral analysis of signals. Pearson/Prentice
Hall, pp. 1–12. ISBN: 0131139568.

Thomson, D. J. (1982). “Spectrum Estimation and Harmonic Analysis”. Proceed-
ings of the IEEE 70:9, pp. 1055–1096. ISSN: 15582256. DOI: 10.1109/PROC.
1982.12433.

Wei, C. S., Y. P. Lin, Y. T. Wang, C. T. Lin, and T. P. Jung (2018). “A subject-transfer
framework for obviating inter- and intra-subject variability in EEG-based
drowsiness detection”. NeuroImage 174, pp. 407–419. ISSN: 10959572. DOI:
10.1016/j.neuroimage.2018.03.032.

Xu, Z., F. Yan, and Y. Qi (2012). Infinite Tucker Decomposition: Nonparametric
Bayesian Models for Multiway Data Analysis. Tech. rep.

Zhang, K., N. Robinson, S. W. Lee, and C. Guan (2021). “Adaptive transfer learning
for EEG motor imagery classification with deep Convolutional Neural Net-
work”. Neural Networks 136, pp. 1–10. ISSN: 18792782. DOI: 10.1016/j.
neunet.2020.12.013.

117

https://doi.org/10.1109/ACCESS.2018.2819428
http://scikit-learn.sourceforge.net.
http://scikit-learn.sourceforge.net.
https://doi.org/10.1587/nolta.1.37
https://mathworld.wolfram.com/Manifold.html
https://mathworld.wolfram.com/Manifold.html
https://doi.org/10.1145/1102351.1102451
https://doi.org/10.1109/PROC.1982.12433
https://doi.org/10.1109/PROC.1982.12433
https://doi.org/10.1016/j.neuroimage.2018.03.032
https://doi.org/10.1016/j.neunet.2020.12.013
https://doi.org/10.1016/j.neunet.2020.12.013

8
Appendix

8.1 Basic Operations

The Outer Product
Assuming two first order tensors a and b of shape A × 1 and B × 1 respectively,
their outer product is a second order tensor N of shape A×B :

a ◦b = abT =

a1

a2
...

aA

[
b1 b2 · · · bB

]=

a1b1 a1b2 · · · a1bB

a2b1 a2b2 · · · ...
...

. . .
aAb1 · · · aAbB

where an element ni j answers to the product between the i th and j th element
of a and b respectively. The outer product can thus be seen as scaling a tensor a
with each of the elements of another tensor b. Taking the outer product between
three rank-one tensors a,b, and c = [c1 c2 · · · cC]T , the resulting tensor will have
the shape A ×B ×C and represent C stacked matrices, each answering to a ◦b
weighted by the corresponding element of c.

More generally, the outer product of M first order tensors a,b, . . . ,m is a Mth
order tensor of shape A×B × . . . ×M and the (i A , . . . , iM):th element answers to:

ni A ,iB , ... ,iM = ai A biB · · · miM

The Kronecker Product
The Kronecker product generalizes the outer product to matrices; second or-
der tensors. As for the outer product, a tensor is distributed to another tensor,
weighted by the corresponding element. For two second order tensors A ∈ RI×J

and B ∈ RK×L , the Kronecker product is defined as:

118

8.1 Basic Operations

A ⊗B =

a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
. . .

...
aI 1B · · · aI J B

= N

where the resulting tensor N is a second order tensor of shape (I K)× (JL).

Furthermore, it holds that:

(A ⊗B)(C ⊗D) = (AC)⊗ (B D) (8.1)

which results in that the Kronecker product (A ⊗B) between (semi) orthogonal1

matrices A and B is (semi) orthogonal:

(A ⊗B)T (A ⊗B) = (AT ⊗B T)(A ⊗B) = (AT A)⊗ (B T B) = I ⊗ I = I (8.2)

The Khatri-Rao Product
The Khatri-Rao product can be seen as a columnwise Kronecker product. Assum-
ing two second order tensors A ∈ RI×K and B ∈ RJ×K , it is defined as:

A ⊙B = [
a1 ⊗b1 a2 ⊗b2 · · · aK ⊗bK

]

=

a11b1 a12b2 · · · a1K bK

a21b1 a22b2 a2J bK
...

. . .
...

aI 1b1 · · · aI K bK

where ai and bi are the i th column vectors of A and B respectively. The resulting
product is a second order tensor of shape (I J)×K . Note that A and B must share
the number of columns for the Khatri-Rao product to be possible, which is not
the case with the Kronecker product.

1 A semi orthogonal matrix A does not need be a square matrix but must fulfill AT A = I or A AT = I

119

Chapter 8. Appendix

The Hadamard Product
The Hadamard Product answers to the elemental product between matrices, and
the matrices must thereby have the same shape. For two matrices A ∈ RI×J and
B ∈ RI×J the product is defined as:

A ∗B =

a11b11 a12b12 · · · a1J b1J

a21b21 a22b22 · · · a2J b2J
...

. . .
...

aI 1bI 1 · · · aI J bI J

The Tensor Norm
For matrices, the Frobenius norm answers to the squared root of the summation
over the squared elements. For the tensor norm of a tensor X ∈ RI1×I2× ··· ×IN of
order N , the principle is the same:

∥X ∥ =
√√√√I1,...,In∑

i1,...,iN

x2
i1,...,iN

where the sum is taken over the squared elements of the tensor.

The Moore Penrose Pseudo-inverse
The Moore Penrose pseudo-inverse is a generalization of the matrix inverse since
it does not require a matrix to be quadratic. However, it still satisfies properties
similar to those of the matrix inverse. For a matrix A with the pseudo-inverse A†

it holds that:

1. A A† A = A

2. A† A A† = A†

3. A† A and A A† are Hermitian matrices

From the above conditions, the pseudo inverse is unique; i.e. it exists exactly one
matrix A† that fulfills the criteria above. Furthermore, if A is an invertible matrix,
then its inverse is the Moore-Penrose pseudo-inverse A−1 = A†.

For a system of linear equations, the pseudo inverse answers to the least squares
solution. By the normal equations, it follows that:

Ax = b ⇐⇒ x = A†b

where the solution satisfies the normal equations (AH Ax = AH b). For the case of
A being invertible, this coincides with the well known solution x = A−1b.

120

8.1 Basic Operations

Non-negative Tucker Decomposition Derivation
Below follows an extension of the section 2.2 The Tucker Decomposition - Non
Negative Tucker Decomposition. It accounts for a derivation of the update rule of
the core tensor G.

Deriving the update rule of the second factor, we are interested in G(n) and not

G(−n)
A . Therefore, we rewrite the expression in (2.28) as X (n) ≈ A(n)G (n) A(−n)T

⊗ . To
arrive at the final expression of G, we utilize the following property:

vec(U SV T) = (V ⊗U)vec(S) (8.3)

which for a vectorization of X (n) yields [Kim and Choi, 2007]:

vec(X (n)) ≈ vec(A(n)G (n) A(−n)T

⊗)

= (A(−n)
⊗ ⊗ A(n))vec(G (n)) (8.4)

By [Lee and Seung, 1999], this answers to the updating rule:

vec(G (n)) ← vec(G (n))∗K

K = (A(−n)
⊗ ⊗ A(n))T vec(X (n))

(A(−n)
⊗ ⊗ A(n))T (A(−n)

⊗ ⊗ A(n))vec(G (n))
(8.5)

where the factor K can be simplified using (2.28) and (8.7):

K = vec(A(n)T
X (n) A(−n)

⊗)

vec(A(n)T
A(n)G (n) A(−n)T

⊗ A(−n)
⊗)

=
vec

([
X ×1 A(1)T · · · ×N A(N)T

]
(n)

)
vec

([
G×1 (A(1)T

A(n)) · · · ×N (A(N)T
A(N))

]
(n)

) (8.6)

To arrive at the final expression of G, we utilize the following property:

vec(U SV T) = (V ⊗U)vec(S) (8.7)

which for a vectorization of X (n) yields [Kim and Choi, 2007]:

vec(X (n)) ≈ vec(A(n)G (n) A(−n)T

⊗)

= (A(−n)
⊗ ⊗ A(n))vec(G (n)) (8.8)

121

Chapter 8. Appendix

For the tensor G, the update rule in (8.5) thereby translates to [Kim and Choi,
2007]:

G←G ∗ X ×1 A(1)T ×2 · · · ×N A(N)T

Gk ×1 A(1)T
A(1) ×2 · · · ×N A(N)T

A(N)
(8.9)

8.2 Euclidean Geometry

Euclidean geometry is the commonly taught geometry that is intuitive to visual-
ize. In Euclidean geometry, there exists a 3-dimensional space which is built up
by points, lines, surfaces and solids. Each step adds one dimension, so from a
point with no dimension, a line has one, a surface has two and a solid has three.
Euclid defined five postulates for how these shapes can interact [National Coun-
cil of Educational & Research Training, 2021]:

1. Given two points, there is a straight line that joins them.

2. A straight line segment can be extended indefinitely.

3. A circle can be constructed from a center point and a distance for its radius.

4. All right angles are equal.

5. If a straight line falling on two straight lines makes the interior angles on
the same side of it taken together less than two right angles, then the two
straight lines, if produced indefinitely, meet on that side on which the sum
of angles is less than two right angles.

8.3 Riemannian Geometry

Description
Riemannian geometry (sometimes referred to as elliptic geometry) is a non-
Euclidean geometry. To describe Riemannian geometry, it is appropriate to start
by defining a manifold. A manifold is a locally Euclidean topological space. This
means that the manifold itself does not have to fulfill the Euclidean constraints,
but the tangent space will. A good visualizing example of this is the earth, which
has a spherical shape, but when looking at a small, local area, it appears to be flat
[Rowland, n.d.]

The Riemannian manifold is a C∞ (infinitely differentiable) curved manifold,
where differential calculus and a change of coordinates can be performed
[Berger, 2002]. An evident difference between Euclidean and Riemannian geom-
etry is that Euclid’s fifth postulate is no longer valid. The fifth postulate implies

122

8.3 Riemannian Geometry

that through a point not on a given line, there is only one line parallel to the given
line. In Riemannian geometry, there are no parallel lines. Additionally, the sum of
angles in a triangle is not equal to the sum of two right angles as in the Euclidean
case, but in fact larger [Encyclopaedia Britannica, 2007].

Application on EEG Data
Riemannian Geometry has showed to be a useful tool to describe EEG data. Let
X i ∈ RC×Ts denote a trial of EEG data, measured from C channels with Ts time
samples. The covariance matrix of the trial can be considered a feature, describ-
ing characteristics of this specific trial. It can be estimated using for example a
Sample Covariance Matrix (SCM), see (8.10):

Σi = 1

Ts −1
X i X T

i (8.10)

Such a covariance matrix belongs to the space of symmetric positive definite
(SPD) matrices, which is a Riemannian manifold [Bolagh and Clifford, 2017].

To compare the similarity of two covariance matrices Σi and Σ j in the Rieman-
nian manifold, the Riemannian distance between them can be computed as:

δR (Σi ,Σ j) = || log(Σ−1/2
i Σ jΣ

−1/2
i)||F =

[
C∑

c=1
log2λc

]
(8.11)

where ||·||F denotes the Frobenius norm, λc are the real eigenvalues of
Σ−1/2

i Σ jΣ
−1/2
i and C the number of channels [Bolagh and Clifford, 2017].

To create a covariance matrix representation of a specific subject or session from
several trials, a mean covariance matrix can be calculated using the Riemannian
geometric mean G. To describe this mean, an optimization problem can be for-
mulated as:

G(Σ1...ΣI) = argmin
Σ

I∑
i=1

δ2(Σ,Σi) (8.12)

There is no closed form solution to this equation for I > 2, that is, for finding
the mean covariance matrix from a session containing more than two trials [Bo-
lagh and Clifford, 2017]. It can although be computed iteratively, following an
algorithm described in [Barachant et al., n.d.] The method consists of three steps
which are performed until convergence. Firstly, the covariance matrices in the
Riemannian manifold are projected to the tangent space of the estimated Rie-
mannian mean. Secondly, the arithmetic mean in the tangent space is calculated.
Thirdly, the arithmetic mean is projected back to the Riemannian space and used
as the updated Riemannian mean.

123

Chapter 8. Appendix

8.4 Results

Tensor Decompositions for Session Selection

Figure 8.1 The columns a(2)
r (r = 1, ...,19) corresponding to the factor matrix A(2) in the

CP decomposition of the SA Drivers dataset. The colors of the topomaps represent the
deviation from the column’s mean value (see colorbar).

124

8.4 Results

Figure 8.2 The columns a(3)
r (r = 1, ...,19) corresponding to the factor matrix A(3) in the

CP decomposition of the SA Drivers dataset.

125

Chapter 8. Appendix

Figure 8.3 The columns a(2)
r2

(r2 = 1, ...,19) corresponding to the factor matrix A(2) in the
Tucker decomposition of the SA Drivers dataset. The colors of the topomaps represent the
deviation from the column’s mean value (see colorbar).

126

8.4 Results

Figure 8.4 The columns a(3)
r3

(r3 = 1, ...,22) corresponding to the factor matrix A(3) in the
Tucker decomposition of the SA Drivers dataset.

127

Chapter 8. Appendix

Figure 8.5 Prediction result for all sessions with a Random Forest regressor, trained with
a subset of 8 sessions. See legend in Figure 5.14 for colors/symbols corresponding to each
selection method.

128

8.4 Results

Tensor Decompositions for Feature Extraction and Session
Selection

Figure 8.6 Prediction result for all sessions with a Linear SVR, trained with a subset of 10
sessions. The solid pink line answers to the prediction using the proposed (TFE) method,
the dashed black line to when using random selection, and the solid black line to the
true DI.

129

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
June 2022
Document Number
TFRT-6172

Author(s)

Emma Fallenius
Linda Karlsson

Supervisor
Carolina Bergeling, Dept. of Automatic Control, Lund
University, Sweden
Bo Bernhardsson, Dept. of Automatic Control, Lund
University, Sweden
Pontus Giselsson, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Tensor Decompositions of EEG Signals for Transfer Learning Applications
Abstract
In this report, tensor decomposition methods of EEG signals have been evaluated for the purpose of
transfer learning. The aim has been to address the person-to-person Brain-Computer Interface (BCI)
calibration problem by transferring training data between sessions, which can shorten calibration
times, extend the amount of training data, and enable using data from simulated environments
in real world applications. For this, the datasets AlexMI (binary motor imagery) and SA Driving
(drowsiness detection during simulated driving) have been analyzed. Tensor decompositions were
performed unsupervised in two pipelines, with aim of capturing universal structures relevant to BCI
tasks.
For the first pipeline, two decompositions (Canonical Polyadic and Tucker) were computed to
compare similarity between sessions. From that, a subset of sessions were selected that during
classification, were aimed to outperformrandom selection and training with the full training database.
In the first pipeline, a new similarity measure was designed, which included weighting of the factor
matrix in the mode of interest. We consider this a more representative measure of how similar two
sessions are, compared to simply studying the unweighted factor matrices, which was done in
previous literature. For the second pipeline, one tensor decomposition (Tucker) was used for feature
extraction and similarity comparison between sessions. The aim was the same as for pipeline one,
with the addition of investigating the properties of tensor decompositions as features. The results
show that unsupervised tensor decompositions can extract structures of varying relevance to a
classification problem but did not result in superior performance when used as features.With this
knowledge, we propose extending tensor decompositions to supervised and/or nonlinear ones.
Additionally, the proposed session selection methods showed potential in classification, but no
significant conclusions could be drawn of their superiority compared to random selection or
trainingwith the full database. Additionally, the classifiers had a large variation in performance
between sessions, making them far from applicable for a BCI in a real-world environment today.
Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-129

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Introduction
	Tensor Theory
	Definition and Operations
	Tensor Decompositions

	Machine Learning Theory
	Support Vector Machines
	Random Forests

	Datasets
	Alex Motor Imagery
	Sustained-Attention Driving Task Dataset

	Tensor Decompositions for Session Selection
	Background
	Our Contribution
	Method
	Result and Discussion

	Tensor Decompositions for Feature Extraction and Session Selection
	Background
	Our Contribution
	Method
	Result and Discussion

	Conclusions and Future Work
	General Discussion
	Future Work
	Conclusions

	Bibliography
	Appendix
	Basic Operations
	Euclidean Geometry
	Riemannian Geometry
	Results

	Tom sida
	regler-forstasida_A4.pdf
	Tom sida

