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Abstract

Interactions between T-cells and other body cells is an essential part of the immune system.
It involves the binding between surface receptors of the two cells. Specifically, T-cell
receptors (TCRs) bind onto pMHC (peptide-loaded major histocompatibility complex)
molecules on the partnering cell surface. This way, a cell signal from the TCR to the
nucleus can be initiated. Depending on the ”message” of the signal, cells may respond in
various ways. While it has been found that the signal message is dependent on how, where
and when the signalling occurs, the interaction details and kinetics remain largely unclear.
A specific observable that has been found experimentally is the average time duration of
a binding event, called the ”lifetime” of the interaction.

To measure biophysical parameters in practise, e.g. diffusion constants or lifetimes,
is not as straightforward as it may appear. In here, we consider an experimental setup
which utilises fluorescence microscopy in a controlled environment. The TCRs are allowed
to move on a supported lipid bilayer (mimicking a real cell membrane) and have been
labelled with a fluorescent dye. The partnering pMHCs are free to move on the surfaces
of live T-cells. As such, the motion of these proteins is effectively two-dimensional and the
resultant pMHC trajectories can be imaged with a fluorescence microscopy setup with a
suitable camera.

After tracking the particles in a tracking program, we are left with data in the form
of single-particle tracks. At this point, most conventional methods start by trying to
estimate the diffusion constants (corresponding to free or bound TCR, respectively). For
instance, this can be done with a usual mean-square-displacement analysis. Despite the
importance of this data analysis step, many of its difficulties are often overlooked. These
include systematic bias, such as tracking errors in the form of dot detection and dot linking.
Moreover, there are uncharted errors involved in the analysis procedures and it is hard to
assess the reliability and associated errors of estimated parameters.

In this study, we assess the ability of analysis methods for estimating diffusion constants
and the fraction of steps spent in a free versus a bound state. To be able to estimate the
errors on parameter estimates and potential biases in these, we analyse tracking data from
synthetic movies. To this end, we include the diffusive motion, binding as well as photon
statistics and camera-induced noise in the imaging system. As a benefit, the synthetic
movies allow us to test and assess less conventional analysis methods on the data. In
particular, we test a hidden Markov model analysis scheme and systematically compare
it to a step-size distribution analysis. Furthermore, reliable simulated results could help
us mitigate the uncertainty involved in the analyses by indicating sound experimental
modifications. This can be done by calibrating all simulation parameters to agree with
experiments, such that whatever errors and biases we obtain when analysing synthetic
movies, will correspond well to those obtained with experimental movies.
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Populärvetenskaplig sammanfattning

I samband med att vi människor bor allt tätare och träffas allt oftare, ökar tyvärr även
spridningen av virus. Det som tidigare i historien var en epidemi, blir nu snabbt en pandemi
(t.ex. coronapandemin med start 2020). Mot denna bakgrund st̊ar det klart att v̊art
immunförsvar spelar en avgörande roll för v̊ar hälsa och i sin tur samhällets funktion. V̊ar
bästa metod är som bekant att träna upp v̊art immunförsvar mot en specifik inkräktare,
t.ex. ett virus, genom att vaccinera oss. Att läran om immunförsvaret är mer relevant än
n̊agonsin är därför ingen överdrift.

Men för att t.ex. kunna producera ett effektivt vaccin, behöver vi först̊a hur v̊art
immunsystem fungerar. I synnerhet behöver immunsystemets celler kunna kommunicera
med varandra. För det ändamålet har cellerna receptorer fästa p̊a sina utsidor; informa-
tionsöverföringen sker genom att en s̊adan receptor fr̊an den ena cellen kemiskt binder
till en motsvarande receptor p̊a den andra cellen. Receptorerna är proteinkomplex som
sträcker sig ner mot cellkärnan.

Denna typ av bindning är dock sv̊ar att studera, till följd av den mikroskopiska längdskalan
och proteinernas komplexa former. Tv̊a relevanta storheter i sammanhanget är hur snabbt
proteinerna rör sig i fritt och bundet tillst̊and, och hur ofta ett protein byter mellan dessa
tillst̊and. Även tidsintervallet d̊a proteinerna är bundna till varandra, kallad deras livstid,
är viktigt för att först̊a bindningarna. I artikeln [J. J. Y. Lin. et al, “Mapping the stochas-
tic sequence of individual ligand-receptor binding events to cellular activation: T cells act
on the rare events”. I: Science Signaling 12.564 (2019)] visas att det är interaktionerna
med ovanligt l̊anga livstider som T-cellen reagerar p̊a.

För att kringg̊a sv̊arigheterna med att studera enskilda bindningar i detalj, studerar
Peter Jönsson m.fl. vid fysikalisk kemi p̊a kemicentrum vid Lunds universitet händelserna
ur ett statistiskt perspektiv. De imiterar den ena celltypens cellmembran, p̊a vilken de
fäster många ytproteiner. Dessa proteiner har färgats in med ett självlysande ämne,
s̊adant att de syns i en mörk omgivning. P̊a s̊a vis kan Jönssons grupp filma protein-
ernas tv̊adimensionella rörelser genom ett mikroskop. Idén bakom detta är att proteinerna
bör röra sig mindre i bundet tillst̊and, vilket syns om man analyserar filmen genom att
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sp̊ara enskilda proteiner.
Vilken sorts rörelse uppvisar egentligen proteinerna i en stilla, enformig vattenmiljö

(utan n̊agra bindningar)? D̊a vattnet har en viss värme, rör sig faktiskt vattnets molekyler
sett p̊a en mikroskopisk längdskala. Denna rörelse leder i sin tur, via massor av krockar,
till en observerad slumpmässig rörelse - diffusion - hos proteinerna. Diffunderingen är
fullständigt oregelbunden, till synes likt en flygdrakes rörelser under snabbt varierande
vindar. Utmaningen är att urskilja effekten av bindningen fr̊an denna slumpmässiga rörelse.

Att identifiera de bundna komplexen fr̊an att de diffunderar l̊angsammare än de fria pro-
teinerna försv̊aras av de många fler större stegen, tillsammans med diverse brus (t.ex. fr̊an
kameran) som ing̊ar i mätningarna. Mot den bakgrunden g̊ar projektet i denna uppsats
ut p̊a att undersöka förutsättningarna för att bestämma diffusionskonstanterna, sanno-
likheterna för att byta tillst̊and och livstiden. Detta görs genom att simulera hela exper-
imentet p̊a en dator, för att sist analysera denna data med olika statistiska metoder. För
detta behövs modeller av proteinernas rörelser och bindningar, mikroskopet och kameran
som används i experimentet. Att simulera förloppet har nämligen fördelen att all relevant
information är känd, exempelvis proteinernas positioner vid varje tidpunkt.
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1 Introduction

Immune cells need to be able to communicate in order to mount an effective defence against
harmful invaders. For this purpose, cell surface receptors bind to peptides displayed on
MHC (major histocompatibility complex) molecules, expressed on the surfaces of other
immune cells. These peptides carry information of what is happening inside the cell [1].
For instance, a virus-infected cell may display viral peptides, such that a killer T-cell can
then scan them, committing it to kill the infected cell[1]. That is, T-cell responses are
initiated by the triggering of signalling events from T-cell receptor - peptide MHC (TCR-
pMHC) bindings.

The overall functioning of TCRs, such as those of killer T-cells, is understood fairly
well. For instance, it is known that they consist of an external binding region and an
internal signalling region. But despite experimental effort, the interaction kinetics of TCR-
pMHC binding events and its connection to biological function are largely unclear [2]. The
interactions take place on the two-dimensional plane of the meeting cell surfaces, which
complicates the study compared to measurements in solution. How factors such as protein
density and auxiliary binding molecules influence the TCR-pMHC binding is not yet fully
understood [2]. What we do know is that the activation of T-cells depends on the TCR-
pMHC binding parameters [3]. Another study revealed that T-cell activation results from
binding events with rare long lifetimes [4].

Important to note, is that TCR-pMHC interactions is only one example of binding
between cell surface proteins of T-cells and other body cells. There also exist adhesive
surface proteins that help stabilise the TCR-pMHC interaction. An example is rCD2 that
binds to rCD48 proteins, which is studied by Peter Jönsson’s group at the Department of
Physical Chemistry in Lund, see e.g. [5]. In fact, TCR-pMHC interactions are strengthened
by rCD2 adhesion molecules, which act to align the two cell membranes [5].

A standard overall method to study these reactions, say the rCD2-rCD48 for definite-
ness, is to label one of the proteins, say the rCD2, with fluorescent dyes. The rCD2 are
confined to the surface of a supported lipid bilayer (SLB), while the rCD48 are confined to
the surfaces of live T-cells allowed to approach the SLB. In the cell contact, which forms
once a T-cell has reached the SLB, the protein motion is effectively two-dimensional. The
rCD2 motion can then be followed through fluorescence microscopy and its positions im-
aged with a camera. In these images, the rCD2 molecules appear as bright dots on a dark
and noisy background. Tracking data is obtained with a single-particle tracking analysis,
through a software that locates and links the dots between frames. This tracking can be
done in a variety of ways, see [6] for a review.

Data analysis of rCD2-rCD48 tracking experiments is based on the displacements of
the tracked particle, rCD2, which depend on the rCD2-rCD48 binding kinetics. This is
typically done with a mean-square-displacement (MSD) analysis. In this kind of analysis,
one plots the MSD of single particle tracks against time, to obtain the diffusion coefficient
from the slope of a linear fit to the displacement data. In the simple case of no binding,
this method works well. But in the present case of rCD2-rCD48 tracking, there is binding
involved that lead to two separate diffusion constants, corresponding to free or bound
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rCD2. Transitions between these two states make it more difficult to distinguish the two
characteristic diffusion constants with an MSD analysis. Moreover, there are systematic
errors, mostly related to dot detection and linking, in which experimenters lack insight.
Thus, experimental researchers have little guidance in anticipating the consequences of
tuning experimental parameters, estimating tracking errors, and of picking an optimal
data analysis method.

To remedy the above lack of guidance available to researchers, stochastic computer
simulations of reaction and diffusion processes are being increasingly employed. Most of
these are, however, implemented directly from knowledge of the experimental system and
its processes (e.g. diffusion), as in e.g. [7]. These simplifications confine their use, primarily
to experimental consistency-checks of specific quantities that may be difficult to measure
in practice. Further examples are found in [8] and [9].

In this study, we aim to provide a more rigorous and complete ”testing ground” for the
evaluation of different analysis methods. We do this through step-by-step simulations of
the experiment, emanating in synthetic movies. First, we model the reaction-diffusion as a
physical system with moving particles (Sec. 2.2.2). Then, we consider photon statistics rel-
evant for hitting the camera pixels (Sec. 2.3.2). On this data, we impose the response of an
sCMOS-camera (scientific complementary metal–oxide–semiconductor camera) filming the
system (Secs. 2.3.5, 2.3.6, 2.3.7) together with the point spread function of the microscope
(Sec. 2.4). As a demonstration, we implement these steps based on Jönsson’s experimental
setup. The camera-related parameters are then realistically selected based on the specific
camera used (Photometrics Prime 95B). The other parameters (Sec. 2.2.3), related to
the reaction-diffusion system, are chosen more freely to correspond to a bimolecular and
reversible cell-to-cell reaction. We thereby produce high-quality synthetic movies.

Using our synthetic movies, we then test different data analysis procedures. Accord-
ingly, we first generate particle trajectories from the synthetic movies (herein, we use the
software TrackMate). These trajectories are then analysed using two methods: a hidden
Markov model (HMM) analysis (Sec. 2.5.2) and a step-size distribution analysis (Sec.
2.5.3). By virtue of having full control over the simulated environment, we systematically
test and study the effect of track length and fluorophore emission intensity on analysis
uncertainties (Sec. 3.2). Many more quantities can be investigated in this way.
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2 Methods

2.1 Outline

In this section, we outline the thesis and the questions that it aims to answer. The goal
of all simulations, box A. and box B. in Fig. 1, is to produce realistic synthetic movies.
By tracking the particles with a third-party software, box C., we obtain trajectories. We
then analyse the trajectories with two methods (step-size distribution analysis and HMM,
box D.) to estimate physical parameters and draw conclusions regarding the accuracy of
the methods in various cases.

Figure 1: Schematic of the methods outline. We generate random particle trajec-
tories, including stochastic binding, by simulating the motion of fluorescent proteins (box
A.). With these positions known at every time, we generate associated images at differ-
ent times, based on a calibrated camera response model (box B.). With synthetic movies
at hand, we track the particles in an image analysis program (box C.). In box D., we
analyse the so-produced trajectories. Since all quantities involved in the synthetic movies
are known, we can draw conclusions regarding the performance of the analysis methods by
testing them on these movies. We can also learn what experimental parameters are better
suited for a particular analysis scheme, so that a real fluorescence microscopy experiment
can be optimally conducted.

In Fig. 1 box A., we simulate the motion of the fluorescent (and non-fluorescent)
proteins. The purpose of this is to generate realistic particle tracks. In the simulations, we
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consider single jumps across a discretised space, where the lattice spacing is much smaller
than the spatial resolution set by the imaging system. The tracked proteins can be in one
of two possible states: freely diffusing with diffusion constant DA or diffusing as a complex,
bound to a substrate, with diffusion constant DC. Our simulations of this process yields
all particle positions at all times. The details of this simulation procedure is found in Secs.
2.2.2-2.2.3.

With access to simulated particle tracks from box A., we want to make this data more
realistic by including errors in the particle tracking. Therefore, in Fig. 1 box B., we
generate a synthetic film of noisified artificial images. These are based upon the particle
positions obtained from box A. and the response of Jönsson’s camera. When generating
these synthetic movies, we consider photon statistics from the fluorophores to the camera
pixels, the point spread function of the microscope and the read noise of the camera. The
details of methods for generating synthetic movies is found in Sec. 2.4.

The overarching aim of our framework in Fig. 1 is to provide a testing ground for
our analysis methods, so that we can obtain insight into how well they work in different
situations. In Fig. 1 box C., we upload the movies obtained in box B. into an image
analysis software (ImageJ). Then, we track the particles (TrackMate plug-in) and extract
tracking data in the form of trajectories. On this tracking data, we apply our analysis
methods - step-size distribution analysis and HMM (box D.). Details of the methods for
trajectory analysis are found in Secs. 2.5.2-2.6. For the synthetic movies we know all
quantities of interest, which allow us to compare the performances of the two trajectory
analysis methods.

2.2 Reaction-diffusion simulations

Reaction-diffusion processes are at the heart of realistic particle trajectories. In the follow-
ing, we consider such processes involving precisely two types of particles (A and B). To be
specific, the A-B particle reaction is modelled as a bi-molecular, reversible one. In-between
these reactions, the particles diffuse freely with a diffusion constant depending on their
particle type.

We use various methods for simulating diffusion with occasional binding. Beginning
with Sec. 2.2.1, we generate the tracks independently and with Gaussian displacements.
In these tracks, there are transitions between a free and a bound diffusive state. Then, in
Sec. 2.2.2, we increase the realism of tracks by simulating a physical system of particles.
The purpose of these methods is to generate ever more realistic data, on which we later
apply our analysis methods. Note that, for the A-particles, we separate between a free
state A (free diffusion) and a bound state C (diffusion of bound complex).

2.2.1 T1: Two-state diffusion simulations

As a simple way of producing two-state particle trajectories, we simulate a random walk
in the continuous limit. The jump lengths are then distributed differently depending on
which state the particle is in. Specifically, we follow the method outlined in [10]; a particle
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is assumed to change state only in-between steps. Hence, we first generate a sequence of
states S = s1, s2, ..., sN , each state associated with one of the N steps. This is actually a
Markov chain, generated using Algorithm 1. It requires the input of transition probabilities
pAC (pCA) from state A (C) to state C (A). Then, we draw two random numbers from Eq.
(A.40) in Appendix A, one for each dimension, with the diffusion constant (DA or DC)
associated with the state of that step.

If we were to analyse a two-state system with a one-state model, the single diffusion
constant (effective diffusion constant), under the assumption of a homogeneous system, is
[10]

Deff = πADA + πCDC, (2.1)

with πA (πC) being the probability to be in state A (state C). We have that πA = pCA

pCA+pAC

and πC = 1− πA.

State sequence algorithm

1: Calculate stationary probabilities πA = pCA/(pCA + pAC), πC = 1− πA

2: Generate a rectangular random number r1 ∈ U(0, 1)

3: if r1 ≤ πA then

4: s1 = 1

5: else

6: s1 = 2

7: end if

8: for i = 2 to i = N do

9: Generate a rectangular random number ri ∈ U(0, 1)

10: if si−1 = 1 AND ri ≤ pAC then

11: si = 2

12: else if si−1 = 2 AND ri ≤ pCA then

13: si = 1

14: else

15: si = si−1

16: end if

17: end for

Algorithm 1: Generating a 2-state state sequence. By using transition probabilities
pAC and pCA, the rules of a Markov chain are applied. At each step, the state either changes
to the other one, or stays the same. 1 corresponds to state A and 2 corresponds to state
C.
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2.2.2 T2: Gillespie simulations

To include reactions and model protein motion more accurately, we now include more
aspects in the simulations. The T1 simulations described above are namely idealised in
two important aspects. Primarily, because state transitions are constructed to happen in-
stantaneously in-between time frames (steps), but also because exponential waiting times
between binding/unbinding are presumed. We will in this section introduce a more ad-
vanced method for generating trajectories, that lets us drop those two idealisations.

The dynamics is as follows. Firstly, there are two particle types: A and B diffusing
with constants DA and DB, respectively. For simplicity, two particles of the same kind
are not allowed to occupy the same square. However, an A and a B may. Such a double-
occupancy is a necessary condition for a molecular reaction to happen. A bound complex
of the two particles can then form. This binding happens at a rate Qon and likewise,
unbinding happens at a rate koff. In similarity with free particles, these bound complexes
also diffuse. Lastly, reflecting boundary conditions are imposed on the system edges (the
edges of a cell contact region modelled as a square).

At this point, a method is needed that can handle this complexity. To generate stochas-
tic trajectories from the model described above, we use the Gillespie method. These are
flexible simulations, wherein, at a given time, one lists all possible ”reactions”. By a reac-
tion, we refer to any possible event: a diffusive step or binding/unbinding. A reaction is
then selected at random, with a probability proportional to its rate. After a reaction has
happened and the system has been updated accordingly, the time is updated based on the
inverse sum of reaction rates. By repeating these steps, a stochastic realisation of the time
evolution of the chemical system simulated is obtained. Our model is as follows: there
are four types of ”particles” - an A-particle alone on its square (A-particle), a B-particle
alone on its square (B-particle), an A- and a B-particle unbound on the same square (ABu-
particle) and bound on the same square (ABb-particle). The A-particle has four possible
”reactions” (hop diffusion), each with a rate kA. Likewise for the B-particle, with rate kB.
The ABu-particle has nine different reactions - hop diffusion in either of four directions for
either particle, each with rate kA and kB respectively, and binding with rate Qon. Lastly,
the ABb-particle has 5 different reactions - hop diffusion in either direction as a complex
with rate kAB, or unbinding with rate koff.

Unfortunately, slow computing speed is a major drawback for systems with at least one
large molecular population using the original Gillespie algorithms. For cellular systems,
this is almost always the case [11]. A reason for it being slow, is that the cumulative
(partial) sum of all rate constants must be recalculated at each step. For instance, if an
A-particle has another A-particle as its neighbour, the rate constant for diffusion in that
direction must be updated and set equal to zero to forbid that reaction. Since the first
Gillespie algorithms were presented, several newer versions have improved upon them [11].
We decided to use a modified version of the Gillespie algorithm presented in [12]. It is
called the ”trial-and-error method” and is computationally efficient for our system, where
most lattice sites are unoccupied.

Our new method is tailored for interacting systems of particles with different diffu-
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sion constants. While the original Gillespie simulation methods were intended to handle
molecular reactions directly as concentrations [13][11], we here use the underlying ideas to
handle the situation of discrete diffusion and binding as part of a bi-molecular reaction. A
Gillespie algorithm is then an example of a kinetic Monte Carlo (KMC) method [14]; here
essentially the same as a time-dependent rejection-KMC simulation. We use it as a way of
generating stochastic trajectories for interacting particles.

To simulate the process described above, we introduce a fast version of the Gillespie
algorithm that avoids repeated calculations of partial sums of rate constants (see Eq. (2.8)
below). In each step we draw first a waiting time and then we pick a reaction at random,
based on probabilities resulting from the rates. If the reaction is allowed, we update the
system, time and rates, and draw a new waiting time. Else, we increase the waiting time
for the next reaction. The simulation is stopped when it reaches a chosen stop time tstop.
So, instead of listing all possible reactions we use a ”factorising method”. To this end, we
first pick a particle type (A, B, ABu or ABb), then a specific particle of that type, and
lastly a reaction from the list of possible reactions for that particle type. The mean waiting
time between reactions, allowed or forbidden, is

τTE = 1/(4NAkA + 4NBkB +NABu(4kA + 4kB +Qon) +NABu(4kAB + koff)), (2.2)

with NA, NB, NABu and NABb
being the number of particles of the type denoted in their

indices. Note that these numbers change during the simulation run and that τTE is the
inverse sum of all possible reaction rates. Only if the number of particles of a certain type
changes during a reaction, do we need to recalculate τTE. And because diffusion is much
more common than binding/unbinding, this recalculation is infrequent. The probabilities
corresponding to each particle type are now

PA = 4NAkAτTE (2.3)

PB = 4NBkBτTE (2.4)

PABu = NABu(4kA + 4kB +Qon)τTE (2.5)

PABb
= NABu(4kAB + koff)τTE. (2.6)

That is, the probability for picking a reaction involving the particle type indicated. All
these probabilities have the same basic structure: they are proportional to the number of
ways that they can happen (e.g. 4 directions for every NA particle for PA) and also to their
respective rate (or sum of rates) and to the waiting time. The waiting time is drawn from
the distribution (B.5), simply by using the continuous transformation method. Similarly,
a specific reaction is drawn from (B.6), this time with the discrete transformation method.
Note that the transformation method uses the cumulative density function (CDF) of the
relevant distribution.

The exact procedure, specifying the steps above, are listed below.

1. Initialise random particle positions and set time t = 0.
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2. Compute the discrete CDF of picking a certain particle reaction. This is done only
for ABu− and ABb−particles.

3. Compute the discrete CDF of picking a certain particle type. This is done by com-
puting the partial sums

p0 = 0 (2.7)

pµ =

µ−1∑
ν=0

pν , µ = 1, 2, 3, 4 (2.8)

of probabilities associated with particle types of different µ, see Eqs. (2.3)-(2.6).

4. Set the waiting time equal to zero: τ = 0.

5. Update the waiting time by drawing a random number r1 ∈ U(0, 1) and updating

τ → τ + τTE log(
1

r1
).

6. Pick a particle type according to the probabilities in Eqs. (2.3) - (2.6). This is done
by drawing a random number r2 ∈ U(0, 1) and searching for the type µ satisfying

pµ < r2p4 ≤ pµ+1. (2.9)

7. Pick a specific particle by drawing a random integer between 1 and the current
number of such particles.

8. Pick a reaction.

(a) If it is an A- or B-particle, pick a jump direction by drawing a random integer
between 1 and 4.

(b) If it is an ABu- or an ABb-particle, draw a random number r3 ∈ U(0, 1) and
search for the reaction satisfying the respective equation analogous to Eq. (2.9).

9. Check if the reaction is allowed (not colliding with another particle or violating BCs).
If it is forbidden, return to step 5.

10. If t ≤ tstop, return to step 3 or 4, depending on whether the number of particles of
different kinds have changed. Else, end the simulation.

The random initial particle positions are computed using the algorithm due to Bebbington
[15]. Since no bindings are present at the start, we let the system reach equilibrium. The
time to reach equilibrium is estimated in Appendix C. A schematic of the algorithm can
be seen in Fig. 2 below.
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Figure 2: Schematic of our Gillespie/T2 simulations. Picking a reaction is factorised
into three individual random picking steps. One first selects one out of four possible
”particle” types (A, B, ABu, ABb). Each particle represents a possible state of a non-
empty lattice site (in the figure, we pick an ABb-particle, representing a bound complex
of two particles). In the second step, we list all existing ABb-particles and pick one of
those (number 2 in the figure). Lastly, we list all possible ”reactions” available to the
ABb-particle. From this list of hop diffusion in either direction and unbinding, we pick one
reaction.
If the reaction happens to be forbidden, one increases the waiting time and draws a new

reaction.
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Table 1: Experimental parameters. Parameters that we consider as given for the
experimental system that we want to simulate. Note that these values are reasonable,
albeit not corresponding to a particular real-life experiment.

Parameter Numerical value Unit Description

cA 0.14 1/µm2 A-particle concentration

cB 99 1/µm2 B-particle concentration

R 0.0075 µm protein radius

A 71 µm2 cell contact area

DA 1.5 µm2

s
A-particle diffusion constant

DB 1.2 µm2

s
B-particle diffusion constant

DC 0.20 µm2

s
AB-complex diffusion constant

koff 10 1/s dissociation rate

kon 0.30 µm2

s·molecule
association rate

∆t 5 ms camera exposure time

Table 2: T1 simulation parameters. All parameters are chosen to correspond to the
experimental ones in Table 1 with long tracks.

Parameter Numerical value Unit Description

DA 1.5 µm2

s
A-particle diffusion constant

DC 0.20 µm2

s
AB-complex diffusion constant

pAC 0.0929 transition probability from free to bound

pCA 0.0464 transition probability from bound to free

N 4000 track length (steps)

L 10 number of tracks

2.2.3 Choice of simulation parameters

Picking values for our T1 simulation parameters is simple. We set the diffusion constants
equal to the experimental ones in Table 1, and decide upon how many tracks we want and
how long we want them to be (see Table 2). Note that in this thesis, the experimental values
have been manually and reasonably selected, without referring to a specific experiment.
The only challenge is how to pick the transition probabilities. We do this after choosing
simulation parameters for our T2 simulations, through Eqs. (2.12)-(2.13) in this section.
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As for the T1 simulations, we need to pick in-simulation parameter values for the
T2 simulations. By proceeding from the experimental values summarised in Table 1, we
determine the simulation parameters in Table 3.

Table 3: T2 simulation parameters. All parameters are determined as described in
section 2.2.3.

Parameter Numerical value Unit Description

NA 10 number of A-particles

NB 7000 number of B-particles

M 1120 number of lattice squares per side

t 20 s simulation time

kA 2.7 · 104 1/s A-particle hop rate

kB 2.1 · 104 1/s B-particle hop rate

kC 3.6 · 103 1/s AB-complex hop rate

a 0.0075 µm lattice constant

α = a2 5.6 · 10−5 µm2 voxel area

koff 10 1/s dissociation rate

k′
on 3.6 · 103 1/s association rate

Hereon, we prescribe the undetermined parameters. Let us start by choosing the lattice
constant (side length of a single lattice square), a. We set it equal to the radius of one of
the proteins, R (assuming that they are nearly identical in size).

Next, we want all particles to diffuse with realistic diffusion constants. Beginning with
the A-particles, their diffusion constant is proportional both to their lattice hope rate kA
and to the square of the lattice constant a:

DA = kAa
2, (2.10)

so that we can solve for kA. In contrast, to determine kB - the analogue of kA for B-
particles, we realise that this is a ”hidden variable”. Because the B-particles are not
labelled, experiments have not determined their diffusion constant. Nevertheless, we do
assume that they are approximately of the same size as the A-particles, but possibly slowed
down by other surface molecules as explained in [16]. We therefore assume a lower diffusion
constant, see Table 1. For the bound complexes, we follow exactly the same reasoning as
for A-particles.

Moving on, we now want to determine the simulation rates of reaction between the
two proteins. The simulated dissociation rate of bound complexes is simply equal to its
experimental value koff. For the association rate, the relation between the experimental
rate kon and the simulation rate k′

on is [17]
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kon = αk′
on, (2.11)

under the assumption of perfect mixing. k′
on is the binding rate for an A- and a B-particle

on the same site, α is the voxel area a2 (physical area of a lattice square) and kon is the
resulting rate constant for the system. Hence, to determine k′

on, we need only solve for it
in Eq. (2.11) above.

Finally, let us determine the last parameters. We set the number of lattice squares
per side M to yield the actual cell contact area A, i.e. M = A/α. The particle numbers
NA, NB, we set to match their concentrations cA, cB, respectively.

We end this section with some remarks. Firstly, although the perfect mixing assumption
is almost fulfilled in these simulations, by construction, two particles of the same kind may
not occupy the same square, leaving fewer available squares. Thus, there should be a small
correction factor on the RHS, that is a little higher than unity. Secondly, the relatively
large concentration of B-particles yields an excess of binding sites, allowing us to follow
[10] and consider the bi-molecular reaction as a reversible uni-molecular one. That is,
transitions of A-particles between free and bound states. The transition probabilities for
a sample time ∆t are then given by

pAC =
Qon

Qon + koff

(
1− e−(Qon+koff)∆t

)
, (2.12)

pCA =
koff

Qon + koff

(
1− e−(Qon+koff)∆t

)
. (2.13)

2.3 Estimating camera and light parameters

Our goal here is to completely characterise the response of the sCMOS camera used in
Jönsson’s experiments, i.e. ”Teledyine Photometrics Prime 95B”. To do so, we wish to
obtain a probability density function (PDF) for the final image count, based on the photon
flux and all noise sources. A schematic of this procedure is shown in Fig. 3. We calculate
the PDF based on the useful properties of characteristic functions (CFs), displayed in
Appendix G.

2.3.1 Calibration experiments

In order to mimic the specific camera used in Jönsson’s laboratory, we need not only a
camera model, but also accurate model parameters. Therefore, we analyse simple camera
experiments, which is a process we call ”camera calibration”. We make use of three kinds of
experiments to determine all unknown model parameters. These unknowns include a gain
parameter g and an offset o from Eq. (2.14), as well as the parameters of the distributions
of X (mean number of background photon counts) and Y (shape and scale parameters for
the read noise). Below, we describe three calibration experiments for this purpose.
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Figure 3: Schematic of camera simulation procedure. One begins with all emitter
positions (represented by 1’s in the top left) on a grid of pixels . Then, one adds background
and emitter counts, camera read noise and blurring caused by the point spread function.
Thus, one has generated a single time frame of a synthetic movie based on a fluorescence
microscopy experiment.

• Fluorescence microscopy experiment The first experiment is done by filming flu-
orescent, diffusing emitters through a microscope. These emitters (A-particles) are
part of a bi-molecular, reversible reaction happening inside a cell contact. In partic-
ular, these experimental movies contains information about the signal (fluorophore)
and background Poisson parameters.

• Dark frames experiment In the second experiment, no light is incident on the
camera lens. Images are simply taken in a dark room with the camera cap on. This
procedure yields ”dark frames”. 100 frames were taken in this way with an exposure
time of 15 ms.

• Stationary frames experiment In the third experiment, a stationary scene of a
partly lit wall inside a room is imaged many times. Contrary to [18], we do not repeat
our procedure for varying overall light levels, because the variation in light intensity
is already large enough. In doing so, we use a 15 ms exposure time, which leaves all
but the brightest regions rather dark, much like in a real tracking experiment. By
taking 100 such frames, we obtain our ”stationary frames”.

2.3.2 Photon statistics

The number of background photons λBg hitting a given pixel is Poisson-distributed. The
same holds for ”signal” photons λS that come from the fluorophores, see Appendix F.
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2.3.3 Camera response model

Let us consider the output value of a pixel. The quantitative components that make
up a pixel output are presented in Appendix F . In brief, photon counts multiplied by
a quantum efficiency (QE) factor gives ”photo-electron counts”. That is, the number of
electrons liberated due to the photoelectric effect, are proportional to the photon count. In
the conversion of these counts to voltages, the process goes through various stages in the
camera (the read-out structure), resulting in a collective ”read noise”. At the end, there
is a round-off error to give integer digital counts, called ”quantisation noise”.

So first, the light hits the pixels, secondly there is a read-out noise in the camera
and thirdly, there is a rounding to integers. We neglect the rounding and formulate this
mathematically as a sum of random variables:

I = gX + Y + o, (2.14)

where I is the final pixel value in digital counts (ADU = analog-to-digital units), X is a
Poisson random variable in units of e− (photo-electrons), Y is a Tukey-lambda random
number in units of ADU. Tukey-lambda is a family of distributions that can approximate
numerous symmetric distributions and was included in [18] to model the read noise. It
is characterised by two parameters - a shape parameter λTL and a scale parameter σTL;
further details are given in Sec. 2.3.7. g and o are constants; g is the conversion factor from
photo-electrons to digital image counts given in units of ADU/e−, and o is an offset in units
of ADU added to every pixel to make each count non-negative. Eq. (2.14) demonstrates
what components (gX, Y, o) comprise a final pixel count I. In the course of the exposure
time, during which all light for a frame is collected, a mean number of photons will have
hit the pixel. By converting these to the right units, and adding camera read noise and
offset, we obtain a final pixel value I.

2.3.4 Camera PDF

In constructing the camera PDF, we need a way to compute the distribution for the random
variable I in Eq. (2.14). For that reason, we consider the CF of I, ΦI(k) = ⟨eikI⟩. The
virtue of doing this lies in the fact that the CF of a sum of random variables factorise. In
the end, we obtain the PDF of I by Fourier-inverting ΦI(k). Thus, the CF of our noise
model I = gX + Y + o becomes

ΦI(k) = eiokΦX(gk)ΦY (k), (2.15)

ΦX(gk) being the CF of the background light noise and ΦY (k) being the CF of the read
noise. At this point we use Eq. (G.6) to invert to the camera PDF. With the CF in
general being complex (see Appendix H), this formula is particularly useful for numerical
implementation. The integration is done with a trapezoidal quadrature. We use this PDF
as a consistency-check against background from a real experiment, by visually checking that
the background counts are indeed generated (roughly) from the PDF. If that is the case,
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it confirms the validity of our noise model and implies that we can expect the background
of the simulated images to resemble those of the real experiment.

2.3.5 Estimating offset

Let us start by estimating the offset, since it is independent of all other camera-model
parameters. The offset balances the read noise, which is symmetric about zero and thus
could introduce negative counts. Moreover, it can be conveniently estimated from dark
frames [19] (see the ”dark frames experiment” data set in Sec. 2.3.1). Because no light is
incident on the lens, all variations in image count must be due to the read noise. Therefore,
the offset o is simply calculated as the statistical mean of the dark frames:

o =
1

N

N∑
i=1

Ji, (2.16)

where N is the number of frames and Ji is the mean image count for frame i.

2.3.6 Estimating gain

In a camera, the final counts should be proportional to the number of photo-electrons set
free by the incident light; this constant of proportionality is the gain g. We determine g
via a mean-variance analysis, as in [18]. As such, we calculate the mean and variance of
Eq. (2.14):

⟨I⟩ = g⟨X⟩+ ⟨Y ⟩+ o (2.17)

Var(I) = ⟨I2⟩ − ⟨I⟩2 (2.18)

At this point, we could insert Eqs. (2.14) and (2.17) into Eq. (2.18) and develop the
squares. However, it is quicker to utilise the general formula

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y ),

where Cov(X, Y ) = ⟨(X − ⟨X⟩)(Y − ⟨Y ⟩)⟩ = ⟨XY ⟩ − ⟨X⟩⟨Y ⟩ is the covariance of X and
Y , and also Var(a) = 0. In these formulae, X, Y are any random numbers and a, b are
constants. Now, given that the noise sources follow sequentially in time and have different
physical origins, we assume X, Y to be uncorrelated. By definition, the covariance term is
then zero. As such, Eq. (2.18) simplifies to

Var(I) = g2Var(X) + Var(Y ). (2.19)

A known property of the Poisson distribution is that Var(X) = λ = ⟨X⟩, X being Poisson
distributed and λ being the distribution parameter. With this fact at hand, we combine
Eqs. (2.17) and (2.19) to yield
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Var(I) = g⟨I⟩+ c1, (2.20)

c1 =
√

Var(Y )− ⟨Y ⟩ − o.

In Eq. (2.20), we see that g is the slope of a line in a variance versus mean plot. We can
now make use of the stationary frames (see the ”stationary frames experiment” data set
in Sec. 2.3.1) in determining the gain. From the frames, we follow each pixel’s value in
a time-series. For each series, we compute the variance and mean, obtaining a point in a
mean-variance plot. At this stage, we do a linear regression to obtain an estimate of g.

2.3.7 Estimating read noise parameters

Next, we characterise the read noise (Y in Eq. (2.14)), by estimating the shape parameter
λTL and scale parameter σTL of its distribution. We assume this distribution to belong to
the Tukey-lambda family of distributions, as done in Appendix F. In short, the Tukey-
lambda family can approximate many known symmetric distributions, e.g. a uniform,
Gaussian, or heavy-tailed Gaussian. We here follow the methods presented in [18], and
make use of the dark frames (see the ”dark frames experiment” data set in Sec. 2.3.1) once
again as our data set.

The first step is to decide upon what specific distribution within the Tukey-lambda
family to use. Equivalently, we want to find the value of the shape parameter, λTL, that
best suits our data. This can be done with the help of a graphical technique, known as a
PPCC-plot (probability plot correlation coefficient plot) [20]. It works like this: consider
a specific value of λTL. Construct a probability plot (Quantile-Quantile plot, QQ-plot,
with one theoretical distribution) of the quantiles of our dark frames data versus the
theoretical quantiles of the chosen distribution. Then, calculate a Pearson correlation
coefficient (PCC) of the plot ”curve”. (Note that if our data was drawn from exactly
this distribution, the line should be linear with unit slope.) This PPC ”score” assesses
the linear correlation between the data and the chosen distribution, such that a value
of 1 means perfect correlation, a value of 0 means no correlation (and -1 means perfect
anti-correlation). Now, we repeat these steps for many values of λTL and finally plot the
PCCs versus the corresponding λTLs, which is precisely our PPCC-plot. From this plot, we
graphically see which λTL corresponds to the highest PCC, and pick this particular value.

With the shape parameter known, we want to estimate the scale parameter σTL. Again,
we make use of a QQ-plot, this time only for our chosen value of λTL. It turns out that a
linear regression of the plotted points is closely related to the scale parameter: its slope is
an estimate of scale (and its intercept is an estimate of location) [20]. Thus, we directly
obtain σTL (and the location parameter which estimates the offset).

2.3.8 Estimating background photon counts

Moving on to parameters related to photon statistics, we estimate λBg, i.e. the background
mean photon counts per pixel during exposure time. From Eq. (2.17) we have
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⟨I⟩ = gλBg + o ⇐⇒ λBg =
⟨I⟩ − o

g
. (2.21)

We utilise Eq. (2.21) in order to estimate λBg in the following way: consider a background
region from an actual experiment (the ”fluorescence microscopy experiment” data set in
Sec. 2.3.1) and follow each such pixel in a time-series. By computing the mean of each
time-series we have estimated ⟨I⟩ and can thus solve for λBg. All these approximations
make up a histogram and its mean value is our final estimate of λBg. The width of this
histogram decreases as the number of images considered increases; this width represents
the analysis uncertainty.

2.3.9 Estimating signal photon counts

Not only does a final image have background photon counts, but also ”signal” photon
counts λS, associated with every emitter. It represents the mean number of emitted pho-
ton counts per emitter during exposure time. These counts are distributed over nearby
pixels; how many pixels to consider, is determined by the standard deviation of the micro-
scope point spread function (PSF), σPSF, and our acceptable confidence interval (6σPSF).
Generalising Eq. (2.21) for a region around n emitters, we have

⟨Itot⟩ = ngλS +NgλBg +No ⇐⇒ λS =
1

ng
(⟨Itot⟩ −N(gλBg + o)). (2.22)

Here, Itot is the total intensity (image counts) of the region, ⟨Itot⟩ is the average of this over
several frames and N is the number of pixels in the image region. The data set used was
the ”fluorescence microscopy experiment” in Sec. 2.3.1. By using Eq. (2.22), we obtain a
single number for λS.

2.4 T3: Generating artificial images

Consider a two-dimensional physical system of diffusing fluorophores, which occasionally
bind. These molecules emit photons that travel through a microscope and onto a camera
sensor. One might wonder ”what will the resulting images look like?”. As we have shown,
the answer depends on the expected number of incoming background photons, noise from
the camera internal functioning (read noise) and a constant value added to every pixel
(offset). Moreover, the answer also depends on the microscope: the light wavelength acts
in conjunction with the microscope in a way characterised by the point spread function
(PSF). The PSF results in that a point particle appears as a Gaussian with width σPSF,
and is explained in more detail in Appendix E. Thus, given a quantitative camera model
such as Eq. (2.14) above, we here seek to generate representative images of this physical
system on a computer. We do this as follows:

1. Consider a pixel.

2. Consider an emitter.
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Figure 4: Simulated camera response. This is an example image generated as de-
scribed in section 2.4. The following parameters were used: λBg = 2, g = 1.8, σPSF =
1.3, σTL = 1.9, o = 99.

.

3. Check if emitter k is close enough to affect pixel i, j.

4. Calculate the probability that the photons from emitter k will hit the pixel.

5. Multiply with the expected number of photon counts.

6. Add background, read noise and offset.

7. Repeat steps 2-6 for every emitter.

8. Repeat steps 1-7 for every pixel.

Eq. (E.3) in Appendix E is used to calculate the probability of photon counts in step 4
above. An example image generated in this way can be seen in Fig. 4.

To produce a film of artificial images, we simply collect the individual images in the
right order and save them as a single TIF-file. This file-format is the same as produced in
experiments and is compatible with most image-analysis software. Our synthetic movies
are thus composed of T2-trajectories with added camera-response. The trajectories that
are extracted from the movies with a tracking programme, we call ”T3” and is our most
realistic set of trajectories.
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2.5 Estimation of motion model parameters

We list two methods employed to determine diffusion constants and transition rates or
fraction of steps in a free versus bound state.

2.5.1 Particle tracking in movies

In order to extract tracking data from a fluorescence microscopy movie, we need to track
the particles. Herein, we use the TrackMate plug-in in ImageJ to do this. As detector, we
use the Laplacian-of-Gaussian type and as tracker, we use the LAP type. Still, there are
many alternative programmes and methods that could be used for tracking.

2.5.2 A1: Hidden Markov model analysis

Our first method for estimating diffusion constants (and binding/unbinding rates) utilises a
Hidden Markov model. A Markov chain is a process with a ”short memory”: the probability
for transitioning to another state is conditionally dependent only the current state. Adding
the word ”hidden”, means that we have access only to the data produced by the model
[21], but the state variables themselves cannot be observed. That is, as the model is in
a certain state, it emits data with a certain probability. An important characteristic of
Markov models is that the time spent in each state, i.e. the waiting times, is exponentially
distributed. To summarise, we model the A-particle tracks as a Markov process, with
model parameters that are hidden to us.

Our analysis is from this point to estimate these parameters. In other words, we are
given a track (or several independent ones), considered as a sequence of displacements.
By utilising a HMM analysis method, we try to recover the set of model parameters
θ = {DA, DC, pAC, pCA}. Note also that the average lifetime 1/koff can be solved for by
combining Eqs. (2.12) and (2.13).

To analyse tracks, in particular T2 generated by our Gillespie motion model, we want
to compute an associated likelihood. The idea is that, for any set of particle position
observations and choice of model parameters, we can estimate a likelihood. Later, this
likelihood can be maximised with respect to our model parameters, to infer what parame-
ters are most likely to have yielded the observations. We follow the method given in [10].
The likelihood for a diffusion coefficient Di for a displacement rj is

Li(rj) ∝
1

4πDi∆t
exp (−r2j/(4Di∆t)), (2.23)

where, r2j = x2
j + y2j . Up to constant coefficients, the log-likelihood is

li(rj) = −
r2j

4Di∆t
− log(Di∆t) (2.24)

and computed using Algorithm 2. The log-likelihood for an ensemble of M independent
trajectories {O(1), ...,O(M)}, where O(i) is trajectory number i, is the sum of log-likelihoods
for each individual trajectory [10]:
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log-likelihood estimation algorithm

1: θ = {DA, DC, pAC, pCA}
2: Generate a rectangular random number r ∈ U(0, 1)

3: Define logsum (x, y) = log (ex + ey) =

{
x+ log (1 + ey−x), if x ≤ y

y + log (1 + ex−y), otherwise

4: Calculate li(rj) for i = 1, 2 and j = 1, ..., N using Eq. (2.5.2)

5: α1(i) = log(πi) + li(r1); i = 1, 2

6: for j = 2 to j = N do

7: αj(i) = logsum[αj−1(1) + log(p1i), αj−1(2) + log(p2i)] + li(rj); i = 1, 2

8: end for

9: L(θ|O) = logsum[α1(N), α2(N)]

Algorithm 2: Calculating the log-likelihood of the parameters of a track. α is the
so-called forward variable. This algorithm is a modified version of the forward-backward
algorithm as seen in e.g. [21]. Here, 1 corresponds to state A and 2 corresponds to state
C.

L(θ|O(1), ...,O(M)) =
M∑
k=1

L(θ|O(k)), (2.25)

where θ = {DA, DC, pAC, pCA} is the set of model parameters.
Once we have access to a track, or a set of independent tracks, we want to use Bayesian

inference to estimate the parameter set that is most likely to have yielded the specific
track. In other words, we seek a way of optimising the likelihood function, Eq. (2.25),
for the parameter set θ. We do as in [10] and use a stochastic Markov chain Monte Carlo
(MCMC) scheme, based on the Metropolis algorithm. When applying this algorithm, seen
in Algorithm 3, we first let the system thermalise. This entails waiting for the MCMC to
reach an equilibrium, so that the current values are independent on the initial configuration.
The maximum likelihood estimates are then simply computed as the sample mean. We
tweak the displacement scale number so that the number of accepted moves divided by the
number of proposed moves along a parameter axis after thermalisation to 30− 50%.
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Optimisation algorithm

1: n←− Number of MCMC steps.

2: d = {d1, d2, d3, d4} ←− Scale for displacement along each parameter axis.

3: Pick a random initial position in parameter space θ(0) = {θ(0)1 , θ
(0)
2 , θ

(0)
3 , θ

(0)
4 }

4: Calculate the log-likelihood of the guessed parameter set, i.e. L(θ(0)|O), as in Algorithm 2.

5: for i = 1 to i = n/4 do

6: for k = 1 to k = 4 do

7: l = 4(i− 1) + k − 1 ←− Number of current counts.

8: Propose a displacement δθk along the kth parameter axix, drawn from a normal

distribution with mean 0 and variance sk: θ
(proposed) = θ(l) + δθk.

9: Calculate L(θ(proposed)|O).

10: if L(θ(proposed)|O) ≥ L(θ(l)|O) then

11: θ(l+1) = θ(proposed)

12: else

13: Generate a rectangular random number r ∈ U(0, 1)

14: if log(r) ≤ L(θ(proposed)|O)− L(θ(l)|O) then

15: θ(l+1) = θ(proposed)

16: else

17: θ(l+1) = θ(l)

18: end if

19: end if

20: end for

21: end for

Algorithm 3: Finding optimal parameter values. A Metropolis algorithm as a
stochastic method for calculating our maximum likelihood estimates.
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2.5.3 A2: Analysis based on Rayleigh’s distribution

This approach for determining D focuses on the observable

s =
√

(∆x)2 + (∆y)2,

i.e. the step length. Following the derivation in Appendix D, the PDF for s is

ϕ(s) =
s

b2
exp

(
− s2

2b2
)
.

In words, it follows a Rayleigh distribution where D appears as parameter through the
relation b2 = 2D∆t. Therefore, if we have determined b, we have also determined D.

Finding b turns out to be easy. With access to tracks, we compute and store every
individual step length s. Note that we here do not make use of information regarding to
which track an individual displacement belongs. Then, for data with only one diffusion
constant, we would plot the histogram of s together with a maximum-likelihood-estimate
(MLE) fit of a Rayleigh curve, estimating b.

This procedure has the potential of resolving both diffusion constants from 2-state data.
One then fits two separate Rayleigh curves to the histogram. Our final function, which we
MLE-fit to the distribution, can be written as a weighted sum of Rayleigh-distributions:

f(πA, bA, bC) = πAϕ(bA) + (1− πA)ϕ(bC), (2.26)

where bA, bC are our maximum-likelihood estimations related to the free and bound dif-
fusion constants, respectively. πA is the fraction of steps spent in the free state, c.f. Eq.
(2.1).

2.6 Track segmentation

The A1 analysis introduced in Sec. 2.5.2 can, in contrast to the A2 analysis, output
segmented tracks. Suppose that we have analysed a given track O and thus obtained
a corresponding set of maximum likelihood estimates θ̂ = {D̂A, D̂C, p̂AC, p̂CA}. We then
want to associate each step (displacement) with a particle state - a procedure called ”track
segmentation”. For each step j = 1, ...N along a track, we estimate the most likely state
ŝj that the particle is in. As in [10], we use a modified version of the forward-backward
algorithm, Algorithm 4. This way, we obtain a state sequence for each track. By storing
the true states in a T2 simulation, we can in the end compare estimated state sequences
to true state sequences.
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Track segmentation algorithm

1: Calculate the forward variable αj(i) for j = 1, ..., N and i = 1, 2 with θ = θ̂.

Use the procedure in Algorithm 2.

2: βN(i) = 0; i = 1, 2

3: for j = N − 1 to j = 1 do

4: βj(i) = logsum[log(pi1) + l1(rj+1) + βj+1(1), log(pi2) + l2(rj+1) + βj+1(2)]; i = 1, 2

With θ = θ̂.

5: end for

6: ŝj = argmax
i=1,2

[αj(i)βj(i)] for j = 1, ..., N .

Algorithm 4: Segmenting a given track. We are given a track and its maximum
likelihood estimates. Each step j along the track is associated with its most likely state:
i = 1 (A) or i = 2 (C).

3 Results

In this section, we demonstrate results regarding camera response simulation and analysis
of generated tracks. Beginning with the camera response in Sec. 3.1, we first collect results
related to the calibration of our camera model. At the end, we show how well our camera
noise model fairs against experimental noise, both quantitatively and qualitatively.

Continuing with analysis results in Sec. 3.2, we first include waiting times from within
our motion model. We then include diffusion constant estimations from both the A1 and
the A2 analysis. Furthermore, we test a track segmentation. This analysis we do in three
steps: with T1 data generated by a 2-state Markov model, T2 data generated by motion
model simulations, and T3 data with a camera response and real tracking of a synthetic
movie with T2 trajectories.

3.1 Camera and photon statistics parameters

As noted in Sec. 2.3, a key to be able to simulate realistic-looking movies in the computer
is to correctly handle photon statistics and the processing of the input photons by the
imaging system’s camera. These effects are modelled as described in Sec. 2.3.3, where we
found that we need seven model parameters: λBg and λS - mean number of background
and emitter photons, respectively, hitting a given pixel during exposure time, σPSF - the
point spread function standard deviation, g - gain, a proportionality factor in the camera
conversion to final pixel counts, read noise in the camera processing with a shape parameter
λTL and a scale parameter σTL for that distribution, and offset o - a constant count added
to every pixel.
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Figure 5: Mean-variance plot for estimating gain. A scatter plot consisting of
time-series data from 1.44 million pixels and 100 frames. The camera used was a Teledyne
Photometrics Prime 95B. Camera data are ”stationary frames”, which consist of groups
frames, each with its own constant light level. The slope of this plot is the camera gain,
as described in Sec. 2.3.6.

3.1.1 Results for camera parameters

The first camera parameter, offset, is simply obtained from the dark frames (Sec. 2.3.5).
By computing the mean of every frame, we obtain o = 99.2. This value is reasonable, given
that the manufacturer quotes a value of around 100 in [22].

Our next result relates to the camera electron-to-digital conversion and is based on the
stationary frames image data set (Sec. 2.3.1). Here, the gain is obtained as the slope of a
mean-variance plot (see Sec. 2.3.6). In Fig. 5, we show such a mean-variance plot, and see
that the line is approximately linear, as predicted by the analysis in Sec 2.3.6. The slope
of this blue line is then our result for the camera gain, i.e. g = 1.8. This value is in the
range of tested cameras in [19].

The final camera-related parameters to determine are those characterising the read
noise. To obtain its shape and scale parameters, we make a PPCC plot and a QQ-plot,
respectively (see Sec. 2.3.7). These two plots, which are based on the dark frames data
set (Sec. 2.3.1), can be seen in Fig. 6. In Fig. 6a, we find that a shape parameter
approximately equal to zero is the optimal one. We pick this exactly as zero, λTL = 0,
since this corresponds exactly to a logistic distribution [23]. The corresponding scale value
is then obtained from Fig. 6b, yielding σTL = 1.9.

For an experimental and an assumed distribution that are identical, the values in a QQ-
plot should follow a straight line with slope equal to one. The line in Fig. 6b approximately
follows this description, except that its ends deviate somewhat. This small deviation in tail
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(a) PPCC-plot for determining the shape pa-
rameter of the read noise distribution.

(b) QQ-plot for determining the scale parame-
ter of the read noise distribution.

Figure 6: Plots for determining read noise parameters. Camera data are same
”dark frames” in both panels, which consist of frames with zero expected incoming light.
The shape parameter for which the PPCC is highest is the optimal one. In (a), we see
that this occurs close to a shape parameter equal to zero. In (b), we see a probability plot
of the data. From a linear regression, we obtain approximations of the scale and location
parameters. These methods are described in Sec. 2.3.7.

behaviour implies that one of the distributions has a slightly heavier tail than the other,
or is slightly more skewed. But since the Tukey-lambda family can generate heavier tails
than the current value of λTL, we draw the conclusion that the actual read noise is slightly
skewed rather than being fully symmetric as the Tukey-lambda distributions, in agreement
with [22].

3.1.2 Results for photon statistics parameters

Beginning with the background photons, Fig. 7 shows a histogram over calculated λBg

using Eq. (2.21) in Sec. 2.3.8. The data seen is based on the ”fluorescence microscopy
experiment” data set in Sec. 2.3.1. The mean value of the histogram, λBg ≈ 2.1, is close
to the integer value λBg = 2, which is our result.

Unlike background photon counts, signal photon counts are not completely stable, due
to e.g. photo-bleaching and photo-blinking. We found λS to vary between time frames and
emitters, and so decided to settle with the approximate value λS = 130, using Eq. (2.22)
in Sec. 2.3.9.

Although determining σPSF quantitatively can be done, we approximated it visually.
As such, we set σPSF = 1.3 pixels.
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Figure 7: Histogram of estimated background Poisson parameter. Each pixel’s
time-series have been used to calculate λBg using Eq. (2.21) in Sec. 2.3.8. This data is
from a background region of a real experiment.

3.1.3 Consistency check of camera and photon statistics parameters

Our estimated parameter values for the camera and photon statistics completely determine
the camera response model. With our camera model being fully calibrated, we test it
against experimental images. The result of this test can be seen in Fig. 8. We see that
the model (orange curve) fits the data (histogram) well. The orange curve was computed
from the model CF, Eq. (2.15), as described in section 2.3.4. The good agreement seen in
Fig. 8, indicate that our choice of camera parameters and λBg are able to produce image
counts similar to those in experiments.

What is left then, is to validate our choices for σPSF and λS. To this end, let us do a
visual comparison between a simulated and an experimental image. The result is shown
in Fig. 9. The emitters share roughly the same size and brightness between the two
images, and the background regions look qualitatively similar. Note that there are only
two emitters in Fig. 9a and many more in Fig. 9b.
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Figure 8: Camera noise PDF versus experimental background. A calibrated
camera PDF (see Secs. 2.3.4 and 2.3), compared to experimental background data for 10
frames. This plot works as consistency check for the camera model (Sec. (2.3.3) and its
calibration.

(a) Simulated camera-response. (b) Experimental image.

Figure 9: Comparison of a simulated image and an experimental image. The
background should look qualitatively similar, since the camera model is based upon the
experimental data from a film including the frame in (b). The process behind the generation
of subfigure (a) is explained in detail in Sec. 2.3.
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3.2 Motion model

In this section, we analyse tracking data with different models and methods. First, we
check that waiting times in simulations are indeed exponential (recall Sec. 2.5.2). Then,
we compare the performance of the HMM (A1) and step-size distribution (A2) analyses on
three increasingly realistic data sets (T1, T2, T3) by comparing to ground truth parame-
ters. For every data set, we estimate the diffusion constants for free and bound A-particles
for full tracks with a sampling time of 5 ms, then for truncated tracks with varying number
of frames (steps), and in the end run a track segmentation analysis.

3.2.1 Analysis of T1 trajectories
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(a) A1 estimation on the complete data. (b) A2 estimation on the complete data.

Figure 10: Display of analysis methods. 10 tracks with 1000 positions each were
generated directly via a Markov-sequence, as described in Sec. 2.2.1. The parameters used
were DA = 1.5 µm2

s
, DC = 0.2 µm2

s
, pAC = 0.0929, pCA = 0.0464. In (a), a Metropolis-like

optimisation method is employed to find the optimal parameter values of the free (DA)
and bound (DC) diffusion constants and transition probabilities (not plotted). The final
estimations are calculated as the means after an initial thermalisation phase. In (b), a step-
size distribution analysis is instead employed. An MLE fit of the histogram yields estimates
of both diffusion constants and the bound fraction of particles. The two individual step
size distributions are dashed.

Let us now test our A1 and A2 analyses. Here, we simulate tracks directly from the
two-state sequence model T1 as described in Sec. 2.2.1. This provides us with a simple test
on ideal data. A demonstration of the analysis methods is shown in Fig. 10. In subfigure
(a), we see the optimisation scheme for the A1 analysis, wherein the final estimates are
obtained as mean values. The fitting of Rayleigh curves for the A2 analysis is visible in
subfigure (b), where we see how the distributions behind the dotted curves make up the
final histogram.
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The results of the track analysis can be seen in Fig. 11 below, where we double the
number of time frames for every plotted value. We see in Figs. 11a-11b, that both anal-
ysis methods are successful at inferring the diffusion constant of the bound fraction, DC,
given sufficiently many time frames. The estimations of DC converge faster than those of
DA, because each particle spends twice the amount of time in that state. Likewise, the
associated error is smaller for DC than for DA. After about 200 time frames, we obtain
good approximations of both diffusion constants, using either method. With the full data
set - 4000 time frames - excellent estimations are achieved.

The results of estimations of transition probabilities/bound fraction can be seen in
Figs. 11c-11d. Compared to the estimation of diffusion constants, convergences are slower
and there is a stronger dependence on the number of time frames considered. For the A1
method, we see a relatively smooth convergence for pCA and a more rough one for pAC. At
500 frames and above, we obtain good estimations. The A2 method requires as many time
frames to successfully converge and determine the fraction of bound particles, πC. With
4000 time frames, both methods give very precise estimations.

The track segmentation can be seen in Figs. 12a-12b. In the evaluation of these, we
have used the A1 estimations from 4000 time frames to obtain state sequences for 4000
time frames (although the sequences of the first 1000 steps are plotted for easier visuals).
Qualitatively, all the true features are present in the estimated sequence. With an average
correctness of 93%, we find that track segmentation works rather well. A high ”score” is
expected, given that the T1 data is both generated and analysed with a Markov model.
From testing different systems however, we found that the score increases further with
smaller transition probabilities.
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(a) A1 estimates of free (DA) and bound (DC)
diffusion constants.
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(b) A2 estimates of free (DA) and bound (DC)
diffusion constants.
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(c) A1 estimates of transition probabilities pAC

and pAC between a free and a bound state.
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(d) A2 estimates of the fraction πC of particles
that are bound at a given time.

Figure 11: Analysis of T1 trajectories. 10 tracks were generated directly via a
Markov-sequence, as described in Sec. 2.2.1. The parameters used were DA = 1.5 µm2

s
,

DC = 0.2 µm2

s
, pAC = 0.0929, pCA = 0.0464. Based on the analysis of these tracks, physical

parameters were inferred using a HMM/A1 approach (see Sec. 2.5.2) in (a) and (c), and
a step-size distribution/A2 approach (see Sec. 2.5.3) in (b) and (d). These estimations, of
diffusion constants and transition probabilities/bound fraction, are plotted as a function
of time frames (i.e. track length or number of steps).
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(a) Estimated state-sequence (94% correct). (b) True state-sequence.

(c) Estimated state-sequence (92% correct). (d) True state-sequence.

(e) Estimated state-sequence (91% correct). (f) True state-sequence.

Figure 12: Track segmentation analysis. Estimated state sequences of a HMM/A1
approach (see Sec. 2.6), are shown on the left hand side and the corresponding true state
sequences are shown on the right hand side. The top sequences come from a T1 trajectory
(see Sec. 2.2.1), the second ones come from a T2 trajectory (see Sec. 2.2.2) and the third
ones come from a T3 trajectory (see Sec. 2.4), which is extracted from a synthetic movie
using a tracking software (ImageJ). Note that (d) and (f) are identical, so that (c) and (e)
can be compared directly. The T1 simulation parameters are summarised in Table 2 and
the T2/T3 simulation parameters are summarised in Table 3.
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3.2.2 Analysis of T2 trajectories

Next, we consider motion model simulations, wherein we model a reversible, bi-molecular
reaction confined on an area (cell contact region), such that particles diffuse and may react
if they ”bump into” each other. Thus, we use Gillespie/T2 simulations (see Sec. 2.2.2) to
generate trajectories of such a system.

A known property of Markov chains is that they exhibit exponential waiting times. As a
simple way of testing whether or not the simulation waiting times are exponential, we store
bound and unbound times for all A-particles. In Fig. 13, we see that both the bound times
(a) and unbound times (b) are approximately exponentially distributed for our calibrated
parameters. (In subfigure (b), the first bar is somewhat high, which is probably due to a
rapid rebinding between the same two particles.) The good exponential fits verify that we
may indeed view the particle dynamics as the result of a two-state HMM.

(a) A histogram of binding times from sim-
ulations. The bound times were stored for
diffusing A-particles.

(b) A histogram of unbound times from sim-
ulations. The time between bindings were
stored for diffusing A-particles.

Figure 13: Waiting times from Gillespie simulations. Simulation data exhibit an
exponential distribution in both (a) (bound times) and (b) (unbound times). An MLE fit
of an exponential is shown together with the data. The parameters used are identical to
those in Table 3; the simulations are described in detail in Sec. 2.2.2.

Here, we increase the realism of generated data, by using T2-generated trajectories.
The increased realism comes from the fact that a physical system has been simulated. In
particular, state transitions may now occur at any time, not just in-between time frames.
The results from repeating the same analysis as above, is shown in Fig. 14. From Figs.
14a-14b, it is clear that both methods (A1, A2) perform very well. With more than 1000
time frames, there are no gains in estimation accuracy. Thus, the small errors involved
in the analysis, e.g. due to state transitioning during a frame, set limits on the maximal
obtainable precision.

A note for the A2 analysis is that the discreteness of Gillespie simulations became visible
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(a) A1 estimates of free (DA) and bound (DC)
diffusion constants.
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(b) A2 estimates of free (DA) and bound (DC)
diffusion constants.
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(c) A1 estimates of transition probabilities pAC
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(d) A2 estimates of the fraction πC of particles
that are bound at a given time.

Figure 14: Analysis of T2 trajectories. 10 tracks were generated with Gillespie sim-
ulations, as described in Sec. 2.2.2. The parameters used are summarised in Table 3.
Based on the analysis of these tracks, physical parameters were inferred using a HMM/A1
approach (see Sec. 2.5.2) in (a) and (c), and a step-size distribution/A2 approach (see Sec.
2.5.3) in (b) and (d). These estimations, of diffusion constants and transition probabili-
ties/bound fraction, are plotted as a function of time frames (i.e. track length or number
of steps).
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in the Rayleigh histogram, in the form of distinct spikes. The number of combinations
of displacements for a typical step length in the bound state, were too few. To solve
this artificial problem, we added uniformly distributed random numbers from the interval
(−a, a), where a is the lattice constant, to every coordinate. This way, all possible positions
within a lattice site were filled in without causing a bias.

Looking at Figs. 14c-14d, the A1 analysis levels out after 250-500 time frames. Again,
it seems that there is a limit to the maximal precision that we can obtain. The same holds
true for the A2 analysis. Overall, there is a similarity in precision between the two methods
for corresponding time frames.

The track segmentation is a bit less accurate than with T1 trajectories, being on average
92% correct. One estimated and true pair of state sequences is shown in Figs. 12c-12d. The
main features are shared, but is easy to see some deviations. Presumably, the assumption
of immediate state transitions explains the deviations that were not present with T1 tracks.
For short tracks, other factors due to the increased realism of T2 simulations could also be
of some importance, e.g. temporary crowding effects.

3.2.3 Analysis of T3 trajectories

Finally, we consider Gillespie-tracks in synthetic movies (see Sec. 2.4) with particle tracking
done with the TrackMate plug-in in ImageJ. Clearly, we now include tracking noise in the
form of dot detection and dot linking. The tracking errors also cause most tracks to be
split as two dots cannot be separated. The results are presented in Fig. 15 with emitter
intensity λS = 200 and remaining camera-parameters chosen as in Sec. 3.1. Because the
trajectories are the same as the T2-trajectories in Sec. 3.2.2, all results in this section are
comparable to those.

We see in Figs. 15a-15b that there are large similarities with the corresponding anal-
ysis of T2 tracks. Yet, a clear difference is that DC levels out and does not converge to
exactly the correct value. This should be due to the localisation error, which is relatively
larger for shorter steps lengths. Considering the Figs. 15c - 15d, the A1 analysis actually
performs somewhat better than with T2 tracks. One must keep in mind that all four
HMM-parameters are linked together, which in this case may have proved beneficial. The
A2 analysis on the other hand, performs a bit inferior after 1000 steps compared to the
analysis of T2 tracks. Still, it is quite close to the real value.

For the track segmentation analysis, we analysed the only two intact tracks after 1000
steps. The mean correctness of these two trajectories is 90% and thus as accurately seg-
mented as with T2 tracks. Visually, we see the difference by comparing Figs. 12c and
12e.

The last analysis in Fig. 15, of T3 tracks, is dependent on the emitter intensity λS,
holding all other camera-parameters constant. In order to quantify this in some detail,
we here display errors in dot detection (emitter localisation). Accordingly, we compare
true dot positions to estimated ones, and associate them pairwise based on proximity. In
Fig. 16a, we see the distribution of distances between true dot positions and estimated
ones through tracking. It is somewhat reminiscent of Rayleigh’s distribution (compare to
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(b) A2 estimates of free (DA) and bound (DC)
diffusion constants.
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(c) A1 estimates of transition probabilities pAC
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(d) A2 estimates of the fraction πC of particles
that are bound at a given time.

Figure 15: Analysis of T3 trajectories. 10 tracks were extracted from tracking the
particles in a synthetic movie, based on Gillespie simulations (Sec. 2.2.2), and a camera
response model (Sec. 2.3.3). The Gillespie parameters used are found in Table 3 and as
tracking software, the TrackMate plug-in for ImageJ was used. Based on the analysis of
these generated tracks, physical parameters were inferred using a HMM/A1 approach (see
Sec. 2.5.2) in (a) and (c), and a step-size distribution/A2 approach (see Sec. 2.5.3) in
(b) and (d). These estimations, of diffusion constants and transition probabilities/bound
fraction, are plotted as a function of time frames (i.e. track length or number of steps).
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(a) Localisation errors compared to ground
truth for λS = 200.
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(b) Root-mean-squared as a function of emitter
intensity.

100 150 200 250 300 350 400

Emitter intensity 
S

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

T
ru

e
 p

o
s
it
iv

e
 r

a
te

(c) True positive rate as a function of emitter
intensity.
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(d) False positive rate as a function of emitter
intensity.

Figure 16: Tracking assessment based on emitter intensity. Tracking localisation
errors (a), root-mean-squared error for distances between dots and estimated positions
(b), true positive rate (c) and false positive rate (d). The true positive rate is defined as
the number of correct identifications divided by the number of particle ”dots”; the false
positive rate is defined as the number of incorrect identifications divided by the number
of estimated positions. By producing synthetic movies which we extract tracks from via
ImageJ and compare to ground truth tracks, we assess the tracking performance.
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the dotted curve in Fig. 10b), which would indicate Gaussian errors in both coordinate
directions. However, a Rayleigh fit turns out not to fit so well, because of outliers (see Fig.
22 in Appendix I). In Fig. 16b, the root-mean-squared (RMS) error of the distances is
plotted as a function of λS. We see that the most gains are found in the interval λS < 200,
where the low emitter intensity aggravates the goal of finding the centre of the dot. As a
comparison, 0.11 µm = 1 pixel.

In Figs. 16c - 16d we see the true positive rate (TPR) - the number of correct iden-
tifications divided by the number of dots - and false positive rate (FPR) - the number
of incorrect identifications divided by the number of estimated positions. For the lowest
emitter intensity, λS = 100, the TPR is rather low due to the difficulty of separating dot
from background. Above λS = 200, we reach a TPR > 95% and with minor further gains.
An analogous trend is seen for the FPR, which overall is very close to zero. This is reason-
able, since the probability of losing a dot should be much higher than for the background
to be bright enough to be mistaken as a dot. To put emitter intensities into context, it
has experimental room for improvement up to at least λS = 250. The highest value tested,
λS = 400, is idealised.

4 Discussion

4.1 A1 analysis assumptions

In order for a HMM-analysis to work optimally, a few constraints need to be fulfilled.
These are discussed below, one by one.

First, state switching in T2 simulations and reality may occur at any time. Still, the
A1 analysis presumes that state switching only occurs in-between frames, such that there
is only one state per frame [10]. Therefore, we require that

max(pAC, pCA)≪ 1. (4.27)

Recall that, by construction, switching only occurs in-between frames for T1 tracks. Con-
sulting Eq. (2.12), we see that we need to have Qon and ∆t small in order to fulfil Eq.
(4.27) above for T2 simulations.

Secondly, the A1 analysis presumes exponential waiting times. This is fulfilled whenever
there is an excess of binding sites [10]. In turn, this should be satisfied as long as the perfect
mixing assumption is fulfilled and with a relatively high substrate concentration.

Thirdly, the separation of diffusion constant magnitudes should be notable [10], with
at least a factor of two difference.

4.2 A hidden diffusion constant

In a usual type of tracking experiment, only one type of particle (the A-particles) is labelled.
Hence, there is no way of knowing the diffusion constant DB of B-particles. This is then
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a ”hidden variable”, that must be guessed based on properties such as particle size and
crowding effects from collisions with other surface molecules.

4.3 Choice of tracking parameters

All tracking software demands some input from its user. This point is seldom highlighted,
despite its important role in repeatability. This thesis is no exception, but we do know
our ground truth positions. We have chosen the parameters to be reasonable based on the
diffusion coefficients, and tested that it yields good results. The chosen parameters in the
TrackMate plug-in were: estimated object diameter = 0.5 µm, linking max distance = 0.7
µm = gap-closing max distance, gap-closing max frame gap = 1.

4.4 Quantisation noise and quantum efficiency

In the camera model, we made two simplifications, which could be important for other
cameras: disregarding a camera noise source and approximating the QE.

At the end of the camera response chain, there is a rounding to integers called ”quanti-
sation noise” [18], see Appendix F. We found it to be completely negligible in this thesis.

The QE, we simply set equal to one. In words, we are saying that the photo-diodes
work perfectly. On this camera, this is motivated since the peak QE value is larger than
0.95 [24]. Yet, it is strongly dependent on wavelength and can at wavelengths equal to 200
nm or 950 nm be lower than 0.3 [24]. On cameras with inferior photo-diodes however, it
may be important to include the QE also at peak values.

4.5 Motion blur

During the exposure time - the time during which the camera collects light for a given
frame - incessant diffusive motion occurs. While usually very small, these displacements
can be noticeable. Thus, a frame actually contains information of a mean value of scenes
from reality. The collective effect of this fact is blurring, called ”motion blur”.

There are two main ways that we could incorporate motion blur into the synthetic
movies. The simplest way is to add it after the movie has been generated. One then
convolves each frame with a Gaussian, resulting in increased blurriness. A more correct
way, would instead be to generate many images over time-intervals which are much shorter
than the exposure time. Then, one superposes these images over the exposure time. In
this thesis, we have not included motion blur.

The magnitude of motion blur is dependent on the magnitude of displacements occur-
ring within the sampling time. Thus, for a fixed diffusion constant, effects may be visible
for e.g. a 10 ms exposure time, but negligible for a 1 ms exposure time. Because this thesis
mainly contains relatively short exposure times, we do not expect it to be significant here.
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4.6 Photo-blinking

In this thesis, we did not include photo-blinking, whereby an emitter stops emitting photons
during one or several time frames. This ”noise” makes tracking, specifically dot linking,
more difficult. We then expect the mean track length to decrease and the number of iden-
tified tracks to increase. Shorter tracks would likely be a larger concern for the A1 analysis
(particularly track segmentation), due to its explicit calculation of transition probabilities.

5 Conclusion and outlook

In this thesis, we have constructed and tried out a testing-system for generating realistic
particle tracks. There are three main steps involved in this procedure. First, we introduced
a toolbox for producing synthetic fluorescence microscopy movies, by simulating reaction-
diffusion processes and emulating the response of an sCMOS camera imaging system.
The second step was to extract tracks by applying a standard tracking software (e.g.
TrackMate in ImageJ) on these movies. Finally, we introduced another toolbox to analyse
the trajectories and extract physical model parameters. For that purpose, we used two
methods - HMM/A1 and a step-size distribution/A2 analysis.

Our hope is that the methods presented in this thesis can be utilised to provide insight
into real experiments and into the optimal choice of analysis method. For example, one
may investigate systematically under what conditions on the transition probabilities an A1
analysis yields good results. Another potential use is as training data for a neural network,
to handle particle tracking.

Moreover, we hope that the overall analysis presented here will be developed further.
For instance, one could include motion blur and photo-blinking into the synthetic movies.
On the analysis-side, one could try to include a dot detection error into the A1 and A2
methods. We assess the realism already to be quite high and there is no obvious limit as
to how realistic, and thus useful, this can be developed in the future.
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A The diffusion equation

Let us use a path integral approach to microscopically derive the two-dimensional joint
probability density for a particle displacement during a time interval. Bearing that in
mind, note that the observed motion of a diffusing particle is the result of a tremendous
number of microscopic collisions with the surrounding fluid molecules (first suggested by
Smoluchowski [25]). We may therefore think of diffusion as the result of independent,
random collisions. Suppose the particle starts at position r0 at time t0 and ends at a
nearby position rs at time ts just a little later. Suppose further that the probability
density for this small displacement is

u(rs, ts|r0, t0) =
1

4πD(ts − t0)
exp

(
− |rs − r0|2

4D(ts − t0)

)
. (A.28)

Now, we wish to find the corresponding PDF of observing a displacement r after at a time
∆t > ts − t0. Let t0 = 0 for simplicity. Then, divide up the time into n steps (n large)

tk = kϵ, k = 0, 1, 2, ..., n− 1, (A.29)

so that ∆t = tn and r = rn. Between every time step, the particle trajectory may be
any path connecting the latest position rk to the next position rk+1. These positions are
considered to be fixed, so that a path is a sequence of fixed positions. Assuming that all
the incremental steps are independent, the probability density of a path is

ω(r0, r1, ..., rn|tn) =
n−1∏
k=0

u(rk+1, tk+1|rk, tk) (A.30)

=
n−1∏
k=0

1

4πDϵ
exp

(
− |rk+1 − rk|2

4Dϵ

)
(A.31)

=
1

(4πDϵ)n
exp

(
−

n−1∑
k=0

|rk+1 − rk|2

4Dϵ

)
. (A.32)

Note that Eq. (A.31) is central to the HMM/A1 parameters estimation method. In the
language of HMMs, every factor in the product is an ”emission probability”; with access
to track displacements we can draw probabilistic conclusions about the motion model
parameters.

The probability density of rn at time tn, is obtained by integrating over all possible
paths (integrating out all intermediates):

u(rn,∆t|r0) =
∫ ∞

−∞
d2r1...

∫ ∞

−∞
d2rn−1

1

4πDϵ
exp

(
− |r1 − r0|2 + ...+ |rn − rn−1|2

4Dϵ

)
,

(A.33)
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where we use the notation d2r = dxdy. For every integral to be evaluated, there will be
two exponential terms involved. All these can be evaluated by using the identity

∫ ∞

−∞
d2rk exp (−a|rk − rk−1|2 + b|rk−1 − rk−2|2) =

π

a+ b
exp

(
− ab

a+ b
|rk − rk−2|2

)
,

(A.34)
where a, b are constants. Thus, for the first integral, we have that

∫ ∞

−∞
d2rn−1 exp

(
− |rk − rk−1|2 + b|rk−1 − rk−2|2

4Dϵ

)
=

1

2
4πϵD exp

(
− |rn − rn−2|2

2 · 4Dϵ

)
(A.35)

and therefore Eq. (A.33) becomes

u(rn,∆t|r0) =
1

2

1

(4πDϵ)n−1

∫ ∞

−∞
d2r1...∫ ∞

−∞
d2rn−3

1

4πDϵ
exp

(
− |r1 − r0|2 + ...+ |rn−3 − rn−4|2

4Dϵ

)
∫ ∞

−∞
d2rn−2 exp

(
− |rn−2 − rn−3|2

4Dϵ
− |rn − rn−2|2

2 · 4Dϵ

)
.

(A.36)

By utilising Eq. (A.34) again, we have

∫ ∞

−∞
d2rn−2 exp

(
− |rn−2 − rn−3|2

4Dϵ
− |rn − rn−2|2

2 · 4Dϵ

)
=

1

3
2 · 4πϵD exp

(
− |rn − rn−3|2

3 · 4Dϵ

)
,

(A.37)
so that Eq. (A.36) simplifies to

u(rn,∆t|r0) =
1

3

1

(4πDϵ)n−2

∫ ∞

−∞
dr1...∫ ∞

−∞
d2rn−4

1

4πDϵ
exp

(
− |r1 − r0|2 + ...+ |rn−5 − rn−4|2

4Dϵ

)
∫ ∞

−∞
d2rn−3 exp

(
− |rn−3 − rn−4|2

4Dϵ
− |rn − rn−3|2

3 · 4Dϵ

)
.

(A.38)

By continuing these integral evaluations, we end up with

u(rn,∆t|r0) =
1

n · 4πDϵ
exp

(
− |rn − r0|2

n ·Dϵ

)
(A.39)

and by reintroducing ∆t = tn = nϵ and r = rn, we have the final result
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u(r,∆t|r0) =
1

4πD∆t
exp

(
− |r− r0|2

4D∆t

)
. (A.40)

Some remarks about the solution in Eq. (A.40) can be mentioned. Importantly, it can
be shown to satisfy the diffusion equation (also known as the heat equation):

∂u(r, t)

∂t
= D∇2u(r, t). (A.41)

By adopting a statistical viewpoint, we can regard solution (A.40) as a (Gaussian) distri-
bution of particles. As such, we can calculate (or directly read off) its mean and variance.
The results are

⟨|r− r0|⟩ = 0 (A.42)

and

⟨|r− r0|2⟩ = 4Dt. (A.43)

The mean centred on zero is expected; the variance increasing linearly with t is a charac-
teristic of diffusion processes. It implies that a particle’s typical displacement in a time
interval t is proportional to

√
t.

B Gillespie simulations

We here give an overview of Gillespie simulations, with information collected mostly from
[13]. In short, a Gillespie simulation is a stochastic simulation method, which was originally
designed for modelling chemical reactions. Thanks to its stochastic nature, it naturally
incorporates fluctuations that are not present in deterministic models (which are usually
formulated as a set of coupled ordinary differential equations for the concentrations of the
molecular species at each instant of time, c.f. Eqs. (C.1) in Appendix C). The Gillespie
algorithm is equivalent to the solution of a spatially homogeneous probabilistic master
equation, of which its solution describes the probability of finding molecular populations
at each instant in time. In a probabilistic framework, reaction constants are interpreted as
reaction probabilities per unit time. Needless to say, most realistic systems lack an analytic
solution to the master equation. So apart from an assumption of homogeneity, it is a very
general method with far-reaching applicability.

The centrepiece quantity in a Gillespie simulation is the ”reaction probability density”
(rPDF) P . The probability that at time t, the next reaction will happen in differential
time interval (t+ τ, t+ τ + dτ) and be the particular reaction Rµ is Pdτ . In the Gillespie
method, one assumes the following form of the rPDF:

P (τ, µ) = kµ exp (−
M∑
ν=1

kντ). (B.1)
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τ is the waiting time between events, M is the number of reactions and kµ is the average
probability per time that an Rµ reaction will occur somewhere inside the volume (or area
in our case). Note that in contrast to the original intention of the Gillespie method, ”a
reaction” here is any possible event (i.e. hop diffusion or binding/unbinding) that has a
rate associated with it.

P (τ, µ) above can be conditioned into a probability P1 for a reaction happening in the
time interval (t+ τ, t+ τ + dτ), and a probability P2 that the next reaction will be of type
Rµ, given that it will happen during (t+ τ, t+ τ + dτ):

P (τ, µ) = P1(τ)P2(µ|τ). (B.2)

Then, marginalising over µ,

P1(τ) =
M∑
µ=1

P (τ, µ) (B.3)

and combining Eqs. (B.2) and (B.3),

P2(µ|τ) =
P (τ, µ)∑M
ν=1 P (τ, ν)

. (B.4)

Rewriting P1 and P2 in terms of k =
∑M

ν=1 kν , we now have

P1(τ) = ke−kτ , 0 ≤ τ ≤ ∞ (B.5)

P2(µ|τ) =
kµ
k
, µ = 1, 2, ...,M. (B.6)

The time between reaction events is exponentially distributed with mean 1/k (Eq. (B.5)),
and the probability for a given reaction is proportional to its reaction rate (Eq. (B.6)).

The Gillespie algorithm simulates the stochastic process described by the reaction prob-
ability density. Doing a single Gillespie simulation amounts to a single realisation of Eq.
(B.1). By carrying out several independent realisations with the same initial conditions,
we obtain a statistically correct temporal evolution of the system [13].

C Reaction simulations

As en extra method of verifying the results of several runs of stochastic Gillespie sim-
ulations, we numerically solve the corresponding set of deterministic rate equations for
concentrations. These assume perfect mixing at all times, which implies that the system
is in a reaction-limited regime. Let cAB denote the concentration of formed complexes,
and cA (cB) denote the concentrations of A- (B-) particles. The system of equations that
describe the evolution of each concentration is then
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Figure 17: Time evolution of reacting molecular concentrations. Free and bound

A-particle concentrations are plotted as a function of time with parameters kon = 0.20 (µm)2

s
,

koff = 0.10/s, cA = 0.1 molecules
(µm)2

, cB = 100 molecules
(µm)2

and cAB = 0.0 molecules
(µm)2

. Eqs. (C.1) were
solved numerically with a Runge-Kutta integration scheme. The B-particle concentration
is suppressed for clarity.



dcAB(t)

dt
= −koffcAB(t) + koncA(t)cB(t)

dcA(t)

dt
= koffcAB(t)− koncA(t)cB(t)

dcB(t)

dt
= koffcAB(t)− koncA(t)cB(t).

(C.1)

We see that the rate of change of each concentration is dependent on the current con-
centrations of all molecular species. On the RHS of each equation above, the first term
considers the dissociation of an AB-complex; the second term considers the formation of
an AB-complex. The system of equations, Eqs. (C.1), lets us test dependence of later
concentrations on initial concentrations and assess the time it takes to reach equilibrium.
In Fig. 17 for example, we see that equilibrium occurs after about 0.3 s.

D Derivation of Rayleigh’s distribution

Let us derive the distribution for the step length of a 2-dimensional random walk. This
distribution is put to use for the A1 analysis in Sec. 2.5.3 in the main text. Let ∆X be a
random variable with probability density function (PDF)
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f(∆x) =
1√
2πσ2

exp
(
−1

2

(∆x− µ

σ

)2)
µ = 0 and σ =

√
2D∆t =⇒

= f(∆x) =
1√
2πσ2

exp
(
−(∆x)2

2σ2

)
and similarly ∆Y be another, independent, random variable with PDF

f(∆y) =
1√
2πσ2

exp
(
−(∆y)2

2σ2

)
.

Form a new stochastic variable, S(∆X,∆Y ), with values

s =
√

(∆x)2 + (∆y)2.

Its PDF, call it ϕ(s), can be found from those of ∆X and ∆Y . By independence, their
joint PDF is

p(∆x,∆y) = f(∆x)f(∆y)

=
1

2πσ2
exp

(
−(∆x)2 + (∆y)2

2σ2

)
.

Therefore,

ϕ(s) =

∫ ∞

−∞
d∆x

∫ ∞

−∞
d∆y δ(s−

√
(∆x)2 + (∆y)2)p(∆x,∆y).

Here, we have introduced the delta-function, so that for every possible value of p, we pick
out the corresponding step length s. Now, transform to plane polar coordinates

r =
√

(∆x)2 + (∆y)2, θ = arctan(
∆y

∆x
)

d∆xd∆y = rdrdθ

so that

ϕ(s) =

∫ ∞

0

rdr

∫ 2π

0

dθ δ(s− r)
1

2πσ2
exp

(
− r2

2σ2

)
=

s

σ2
exp

(
− s2

2σ2

)
,

i.e.
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ϕ(s) =
s

2D∆t
exp

(
− s2

4D∆t

)
. (D.1)

Eq. (D.1) is called ”Rayleigh’s distribution”. It shares some similarities with the Gaussian
distributions from which it is ”built”, e.g. that it goes to zero in both limits of s. An
important difference, however, is that is is not symmetric, but has a long tail.

E Photon counts at a pixel

E.1 Point spread function

No apparatus has an infinite resolution. As a consequence, the distribution which we want
to measure (the true distribution) will be distorted and thus limited by the apparatus’
resolution function. In mathematical terms, such a resolution function is therefore not a
δ-function, but has a finite width. The observed distribution h(z) can be shown to be the
convolution of the true function f(x) and the resolution function g(y):

h(z) =

∫ ∞

−∞
f(x)g(z − x) dx (E.1)

as demonstrated in e.g. [26]. This can also be seen from the fact that the PDF of a sum
of two independent random variables is given by their convolution.

For a microscope, the resolution function is called the ”point spread function” (PSF).
It is the impulse response function of a microscope to a point source of light [27], of a
certain wavelength. A point source emitter will then not look like a point source, but as
a ”smeared out” blob. In 2D, this smearing effect is approximately characterised by the
Gaussian distribution [27]:

PSF(x, y) =
1

2πσ2
PSF

exp

(
− (x− x0)

2 + (y − y0)
2

2σ2
PSF

)
, (E.2)

where (x, y) is the evaluation point, (x0, y0) is the emitter position and σPSF is its standard
deviation. PSF(x, y) is then a two-dimensional version of g(y). Like most resolution
functions, it is centred and symmetric around the true value. Its key property is its width,
determined by σPSF. Note also, that σPSF is dependent on the wavelength of light and
therefore, so is the PSF.

E.2 Photon count probability

Let us calculate the probability that the photons from an emitter hits a given pixel. To
that end, consider a photon emitted from a given point source, (x0, y0), in the camera focus.
The probability that the photon hits a certain pixel can be calculated by integrating the
PSF over that pixel. Suppose furthermore that the pixels are square-shaped with side
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length 1 pixel. Let pixel i have centre (xm, ym) and denote its corresponding probability
by P (i). Then, we find that

P (i) =

∫ xm+ 1
2

xm− 1
2

dx

∫ ym+ 1
2

ym− 1
2

dy PSF(x, y)

=

∫ xm+ 1
2

xm− 1
2

dx exp

(
− (x− x0)

2

2σ2
PSF

)∫ ym+ 1
2

ym− 1
2

dy exp

(
− (y − y0)

2

2σ2
PSF

)
making a change of variables t2 = (x−x0)2

2σ2 yields

∫ xm+ 1
2

xm− 1
2

dx exp

(
− (x− x0)

2

2σ2
PSF

)
=
√
2σ

∫ xm−x0+
1
2√

2σ

xm−x0−
1
2√

2σ
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=
√
2σ

√
π

2

(
2√
π
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1
2√
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0

dt exp (−t2)− 2√
π

∫ xm−x0−
1
2√
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0

dt exp (−t2)
)

=
σ
√
π√
2

(
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(
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1
2√

2σ

)
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(
xm − x0 − 1

2√
2σ

))
By treating the y-integral in a similar manner, we obtain

P (i) =
1

4

(
erf

(
xm − x0 +

1
2√

2σ

)
− erf

(
xm − x0 − 1

2√
2σ

))(
erf

(
ym − y0 +

1
2√

2σ

)
− erf

(
ym − y0 − 1

2√
2σ

))
(E.3)

which is our final result and agrees with [27]. erf(x) here is the ”error function” defined by

erf(x) =
2√
π

∫ x

0

exp (−t2) dt. (E.4)

F Step-by-step image modelling

In this appendix, we describe a means of generating synthetic images, based on an sCMOS
(scientific complementary metal–oxide–semiconductor) camera. CMOS is a newer camera
architecture then EMCCD (electron-multiplying charge-coupled device), in particular the
subtype sCMOS. This subtype is suitable for low-light conditions such as fluorescence
microscopy. The output will be an image count, based on the sum gX + gS + Y + Z + o,
partly like in [18]. Here, the new variables S and Z denote the emitter photon counts and
rounding errors, respectively.

F.1 Photon counts

We begin by considering ”background” photons, i.e. light from outside our experiment of
interest. Due to quantum uncertainty, there is a varying photon flux. Therefore, an image
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sensor pixel will receive photons at random during a given time interval. Note that this
noise is camera-unrelated and ineluctable.

The resulting distribution of photon counts during exposure time is known to be Pois-
sonian, see Eq. (H.1). This makes sense, given that sufficient assumptions for a Poisson
distribution are fulfilled: the events occur independently of one another and the mean
event rate is independent of any occurrences (and two events cannot occur at the exact
same instant). Therefore, we set the background counts to

X ∼ P(λBg), (F.1)

where P(λBg) denotes the Poissonian distribution with parameter λBg - the expected num-
ber of background photons hitting a given pixel during the exposure time. By the symbol
∼ we mean ”is a random number drawn from the distribution”

Now, let us consider photon counts due to fluorophores. We realise that the same
assumptions for a Poisson distribution still holds. Therefore, just as for background counts,
the fluorophore-emitted photons will be Poisson distributed. But in contrast to background
counts, these ”signal” counts are based upon the location of the fluorophores. In order to
relate this location to that of a given pixel, we make use of the results in Sec. E.2.
Combining these two facts, we obtain

S ∼ P(λSP (i)), (F.2)

where λS denotes the expected number of fluorophore photons hitting a given pixel i during
exposure time and P (i) is the probability for a given photon to hit pixel i.

In practice, when generating the number of incoming photons onto a pixel, we consider
one pixel at a time. All, if any, emitters that are close enough to the current pixel will
generate a photon count. There is also always a background count for each pixel. How-
ever, the number of photons at a pixel cannot in reality be recorded directly as photon
counts. Rather, the camera response to these photons introduces further noise and effects
as discussed in the next in sections.

F.2 Photons to electrons

In an ideal camera, each incident photon generates a fixed number of electrons, called
”photo-electrons”. The physical mechanism utilised in doing so is the photoelectric effect.
Camera photo-diodes convert photons into photo-electrons; the conversion factor is the
quantum efficiency, QE. It accounts for the imperfect work done by the photodiodes in
converting photons to electrons and is defined as the ratio of the average number of electrons
generated in a pixel, to the number of incident photons on that pixel during exposure time.

Because the wavelength of light is proportional to its energy (E = hc/λ), QE is
wavelength-dependent. This dependence is camera-specific and should be provided by the
manufacturer - in our case it can be found in [24]. However, for simplicity, we here assume
monochromatic light. This should be a very good approximation, since the fluorophores
are identical and subject to the same environment.
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Figure 18: Schematic of CMOS camera architecture. Light hits a pixel and is
converted to a voltage, that passes down that column were it is converted into digital
counts and read out into a PC. Each pixel has its own condensator and amplifier (C&A)
and every column has its own analog-to-digital converter (ADC). Image inspired from [28].

Simply by multiplying the expected photon counts with the QE, we obtain the number
of photo-electrons directly from Eqs. (F.1)-(F.2):

Xe ∼ P(QE · λBg) (F.3)

Se ∼ P(QE · λS · P (i)). (F.4)

F.3 Electrons to voltage

The CMOS camera architecture has a specific read-out structure. In contrast to a CCD-
camera, each pixel has its own capacitor and amplifier, that handle the conversion of charge
to voltage [28]. Moreover, every column of pixels share the same analog-to-digital converter
(ADC), see Fig. 18. These ADCs are in turn connected to a computer. It is thanks to this
design that the CMOS read-out speed of is faster than that of CCD.

Another consequence of the architectural differences, is that the the read noise Y of
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CMOS-cameras will not become normally distributed as for CCD-cameras [29]. Rather, it
will feature longer tails. We will approximate this distribution with a distribution from the
Tukey-Lambda (TL()) family of distributions, as done in [18]. This family of distributions
can approximate a wide range of symmetrical distributions.

To generate TL-random numbers, we regard its definition. Since it is a family of wildly
different distributions, there is no single PDF in its definition. We have that the random
numbers drawn fulfil

TL(λTL;µTL, σTL) = µTL + σTL
RλTL − (1−R)λTL

λTL

, (F.5)

where λTL is the shape parameter that determines the specific distribution and R is a
uniformly generated random number from [0, 1] [30]. We have here also introduced a
location parameter µTL and a scale parameter σTL.

Rectangular (pseudo)-random numbers are available directly in computational pro-
grammes such as MATLAB, and so we can use Eq. (F.5) to directly generate TL random
numbers. We assume that this distributions is centred on zero, i.e. µTL = 0. To summarise,

Y ∼ TL(λTL; 0, σTL). (F.6)

Alternatively, the heavy tails can be modelled by a logistic distribution:

Y ∼ L(0, σTL), (F.7)

see Eq. (H.3) for its PDF. This distribution is contained within the Tukey-lambda family
and can be described as ”a heavy-tailed Gaussian” distribution. Whether this specific
distribution is a good approximation depends on the specific camera used; for the Teledyne
Prime 95 B considered in this thesis, it is an excellent approximation.

F.4 Voltage to digital numbers

There are round-off errors involved in converting voltage to digital numbers in a camera.
We call this the ”quantisation noise” and write

Z ∼ U(−1

2
,
1

2
), (F.8)

where U denotes the uniform distribution. If an image count has a value of 80.4, the
rounding subtracts 0.4. We assume that the first decimal of every non-rounded count
should be almost equally likely. Therefore, modelling the rounding in this way makes
sense, at least for a camera that rounds its counts to the nearest integer. Because this
rounding error is so small however, we neglect it in this thesis. In other words, we use a
”continuum approximation” for the final image counts.
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G Characteristic function

The characteristic function (CF) of a distribution is a useful construct when dealing with
sums of random variables. For a continuous random variable, the CF is the Fourier trans-
formation of its PDF:

Φ(k) = F [p(x)](k) =
∫ ∞

−∞
dx p(x)eikx = ⟨eikx⟩, (G.1)

where p(x) is the PDF of a random variable X, < X > denotes the average of X and k is
the Fourier variable. The last equality is taken to be the definition of a CF, and also holds
for a discrete distribution.

A key theorem, the ”inversion theorem”, states that the CF of a given PDF is unique
[31]. Hence, we may first calculate the CF and then Fourier-invert it back to its corre-
sponding PDF. In the general case Z = f(X, Y ), we have that

ΦZ(k) = ⟨eikf(X,Y )⟩. (G.2)

If furthermore f(X, Y ) = X + Y , and X and Y are independent, we directly obtain

ΦZ(k) = ⟨eik(X+Y )⟩ = ⟨eikXeikY ⟩ = ⟨eikX⟩⟨eikY ⟩ = ΦX(k)ΦY (k). (G.3)

Like so, the CF of a sum of independent random variables factorise into the CFs of the
individual random variables. In the end, we calculate the inverse Fourier transform

p(z) = F−1[ΦZ(k)](z) =
1

2π

∫ ∞

−∞
dk ΦZ(k)e

−ikz (G.4)

to obtain the final PDF of our random variable Z. If we now use Eq. (G.3), the final result
is

p(z) = F−1[ΦZ(k)](z) =
1

2π

∫ ∞

−∞
dk ΦX(k)ΦY (k)e

−ikz (G.5)

and is thus given directly in terms of the individual CFs. The expression for p(z) can be
reformulated [32], into a form known as Gil-Pelaez inversion formula:

p(z) =
1

π

∫ ∞

0

dk R(Φ(k)e−ikz), (G.6)

where R denotes the real part of the expression inside brackets. The merit of this formula
is that it is well formulated for numerical quadrature.

H Relevant distributions

The CFs corresponding to the relevant noise distributions (see Appendix F) are well-known
and can be calculated analytically with Eq. (G.1) in Appendix G.
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H.0.1 Poissonian CF

The CF of a Poissonian distribution

f(x) = e−λλ
x

x!
, x = 0, 1, 2, 3... (H.1)

is
Φ(k) = exp (λ(eik − 1)). (H.2)

H.0.2 Logistic CF

The CF of a logistic distribution

f(x) =
e−

x−µ
σ

σ(1 + e−
x−µ
σ )2

(H.3)

is

Φ(k) = eikµ
πσk

sinh(πσk)
. (H.4)

I Supplementary figures
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Figure 19: Example trajectory from a Gillespie simulation. The simulation pa-
rameters are summarised in Table 3. Here, 4000 steps are plotted with a sampling time
∆t = 5 ms.

(a) A simulated trajectory of 103 steps. (b) A simulated trajectory of 104 steps.

Figure 20: Segmented state sequence trajectories. All displacements were generated
from the probability density Eq. (A.40) for diffusion in two dimensions, with diffusion
constant depending on the current state. The state sequence was determined using the
algorithm in Fig. 1. Parameters used are DA = 0.1 (µm)2/s, DC = 0.01 (µm)2/s, pAC =
0.05, pCA = 0.025 in both cases. The sampling time was ∆t = 15 ms. Blue indicates state
A and red indicates state C for each step.
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Figure 21: Step-size distribution for experimental data. A maximum-likelihood-
estimation fit of Rayleigh’s distribution (line) to experimental data (bars) of individual
displacements. Particle tracking was done with the TrackMate plug-in in ImageJ.

(a) Rayleigh fit to localisation errors up to
0.15 µm.

(b) The same Rayleigh fit from (a), ex-
tended to all tracking errors.

Figure 22: Rayleigh fitting to localisation errors. A fitting to the distribution in
Fig. 16a in the main text.
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