
BACHELOR’S THESIS 2022

Model-based Generation of a
Sensor Reading web Test Tool
Christoffer Lindell Bolin, Jonas Andersson

ISSN 1651-2197
 LU-CS/HBG-EX: 2022-13

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

KANDIDATARBETE
Datavetenskap

LU-CS/HBG-EX: 2022-13

Model-based Generation of a Sensor
Reading web Test Tool

Modellbaserad generation av sensorläsande
webbaserat testverktyg

Christoffer Lindell Bolin, Jonas Andersson

3

Model-based Generation of a Sensor
Reading web Test Tool

Christoffer Lindell Bolin
chrisse.lindell@gmail.com

Jonas Andersson
jonas.bruse@telia.com

September 5, 2022

Bachelor’s thesis work carried out at Saab Kockums AB.

Supervisors: Marcus Klang, marcus.klang@cs.lth.se
Daniel Thunberg, daniel.thunberg@combitech.se

Examiner: Jesper Öqvist, jesper.oqvist@cs.lth.se

mailto:chrisse.lindell@gmail.com
mailto:jonas.bruse@telia.com
mailto:marcus.klang@cs.lth.se
mailto:daniel.thunberg@combitech.se
mailto:jesper.oqvist@cs.lth.se

Abstract

This Bachelor’s thesis is in collaboration with Saab Kockums AB. Saab Kock-
ums develops and constructs marine technology, ships and submarines for civil
and military use. In different development stages for systems to be implemented
and built on ships, submarines or the like, different components such as sen-
sors or information display systems need to be tested and functionality verified.
For the system to work, the interfaces between components need to be able to
send consistent and compatible data adhering to a standard. The communica-
tion requirements between interfaces are specified in an Interface Requirement
Specification (IRS). To effectively test new hardware built by a third party re-
quires a test tool to be built. Today, such a test tool is constructed from scratch
for each project, a time-consuming process. A small change to the IRS can also
add significant manual synchronization effort across different stakeholders and
developers. This thesis investigates how to construct a generic test tool using
a minimal machine-readable specification. We built a test tool that introduces
dynamic specification of any field-based protocol with the use of an XML spec-
ification format. This test tool is designed to send, receive, and validate the
user-specified protocols with the help of a React based web user interface and
Saab’s WISE framework for a modular network architecture. The implemented
parts are the CJEX library, a React application, and the WISE components Pars-
eSE, TLDriver and APIDriver, along with an XML standard for the solution.
To validate the tool, we used a specification for an Inertial Navigation System
(INS) that communicates using the NMEA 0183 protocol, and can send updates
with a frequency up to 100 Hz. In addition, we also demonstrate the test tool’s
flexibility to support multiple protocols by implementing a JSON protocol.

Keywords: WISE, GUI, REST, Testing, Integration

Acknowledgements

We want to thank Andreas Carlsson first and foremost for giving us the opportunity to work
with this project. This project has been a great learning experience for both of us and we
have made many new contacts within the field which we value highly. Andreas has been a
great help throughout by giving accurate and valuable feedback to us.

We want to thank Daniel Thunberg for being our supervisor at Saab. He has had to en-
dure plenty of questions from us. The outcome of this thesis would most likely not have been
as favourable without you. Thank you for your patience and competence.

Marcus Klang, our LTH supervisor, is incredibly clear-sighted and experienced. We appreci-
ate all the guidance we have received. He has widened our thought process to include things
we probably would not have thought of ourselves.

We would like to acknowledge Michael Johansson for his great humour, support and valuable
feedback throughout this thesis.

We are also grateful for Tobias Almén the creator of WISE for taking his time guiding us
through WISE, being available for discussion and giving feedback.

We would like to thank Jesper Öqvist for deciding to partake in this thesis as examiner.

Finally we would like express a huge gratitude towards all Saab employees at Saab Kockums
Helsingborg, they have all been really friendly, helpful and welcoming.

2

CONTENTS

Contents

1 Introduction 8
1.1 The problem . 9
1.2 Purpose . 10
1.3 Scope . 11

2 Related Work 12
2.1 Material UI . 12
2.2 WISE . 12

2.2.1 WISE Driver . 13
2.2.2 WISE Data Manager . 14
2.2.3 WISE Information Model . 14
2.2.4 WISE Connectivity . 15

2.3 Previous Test tool . 17
2.4 Enterprise Architect . 17
2.5 Sailsoft’s NMEA/AIS Simulator . 18

3 Technical Background 19
3.1 React . 19

3.1.1 Components . 19
3.1.2 State . 20
3.1.3 Declarative . 20
3.1.4 React Rendering . 20

3.2 REST API . 21
3.3 XML . 21
3.4 NMEA 0183 . 21

3.4.1 Sensors . 22
3.4.2 Applications . 22

3.5 Azure DevOps . 22

4 Approach 23
4.1 Process . 23

4.1.1 Daily Stand-up . 24
4.1.2 Office Environment . 24

4.2 Method . 24
4.2.1 Prototype . 25
4.2.2 Brainstorming . 25
4.2.3 Logbook . 26
4.2.4 Pair Programming . 26

3

CONTENTS

4.2.5 Object Oriented Design . 26
4.2.6 Class vs Functional components in React 26

4.3 Division of work . 27
4.4 Experimental Setup . 27

4.4.1 GUI to GUI . 27
4.4.2 GUI to Previous Test Tool . 28
4.4.3 INS to GUI . 28
4.4.4 SE to GUI . 29
4.4.5 MUI Component Tests . 29
4.4.6 Test Tool Comparison . 30

5 Implementation 32
5.1 Azure DevOps Pipelines . 32
5.2 XML . 33
5.3 GUI . 33
5.4 CJEX . 33
5.5 REST-API . 36
5.6 WISE . 36

5.6.1 TL Driver . 37
5.6.2 API Driver . 37
5.6.3 ParseSE Driver . 38

6 Result 40
6.1 Workflow of Solution . 42
6.2 Result of Experiments . 42

6.2.1 Test tool comparison . 43

7 Discussion 44
7.1 Process . 44
7.2 UX/UI . 45
7.3 Technical Choices . 45

7.3.1 API . 45
7.3.2 GUI . 45
7.3.3 WISE . 46

7.4 Frameworks, tools and Libraries . 47
7.4.1 React . 47
7.4.2 MUI . 47
7.4.3 NMEA . 47
7.4.4 XML . 48
7.4.5 react-json-viewer . 48
7.4.6 ESLint . 48

7.5 Tests . 48
7.6 Comparison . 49

7.6.1 SailSoft’s NMEA/AIS Simulator . 49
7.6.2 Wireshark . 49
7.6.3 Previous Test Tool . 50

7.7 Source Evaluation . 50

4

CONTENTS

7.8 Ethical aspects . 51

8 Conclusions 53
8.1 Future Development . 53

8.1.1 XML . 54
8.1.2 WISE . 54
8.1.3 Security . 54
8.1.4 Scenarios . 54
8.1.5 Data Visualization . 54
8.1.6 Testing . 55
8.1.7 Communication . 55
8.1.8 UX . 56
8.1.9 UI . 57

9 References 58

Appendices 61

Appendix A Information Model Definition 62

Appendix B Iterations of the prototype 63

Appendix C MUI comparison 66

Appendix D Solutions functionality 67

Appendix E XML reference 69

Appendix F Final Design 70

5

CONTENTS

Foreword
This article is a bachelor’s thesis and therefore the knowledge corresponding to a bachelor’s
degree in Computer Science or equivalent is assumed. As such the motivation to perform this
work is partly to work towards a degree. However, in this process, we gain an opportunity
to perform meaningful work and to acquire additional knowledge.

6

CONTENTS

Terminology
Some terms can be repeated during this dissertation, including the following terms.

COTS - Commercial off the shelf, public purchase-able product.

CJEX - Acronym from "Christoffer Jonas Examensarbete" (bachelor work), Swedish term
for .NET class library

EA - Enterprise Architect

ECDIS - Electronic Chart Display and Information System

GUI - Graphical User Interface

INS - Inertial Navigation System

IRS - Interface Requirement Specification

JS - JavaScript

MUI - Material UI, a component library for react

MVP - Minimum Viable Product

props - A often used name for parameters passed into functional components in react de-
velopment

SE - Synthetic Environment, a simulation environment

QOL - Quality of Life

WECDIS - Warship Electronic Chart Display and Information System

XSD - Extensive Markup Language Schema Definition

XML - Extensive Markup Language

7

Chapter 1

Introduction

This thesis is done in collaboration with the Swedish aerospace and defence company Saab
AB, more specifically with the business area called Kockums. Saab Kockums develops, con-
structs and maintains surface vessels, submarines and marine technology. The different con-
structed vessels contain a network of systems similar to cars with their CAN bus and different
sensors and control systems.

Before a system is assembled for use in marine vessels, each separate system is tested to ensure
that all of the individual components work as expected. Then the system is built together
and more extensive testing is done to ensure no compatibility issues. Furthermore a reference
system is constructed to test for new system modifications and down the line issues that may
occur. This avoids having to conduct testing onboard which usually is less than ideal. The
vessel may not always be available since it is in active service. And if it can be obtained, the
ship will be out of service during the period. A ship out of service results in lost potential
which can be expensive. Additionally, testing onboard is cumbersome due to tight spaces,
which makes it time consuming.

For the mentioned steps, different components can be built by third-party, which brings
the need to know how to set up the communication between components. This is where
the Interface Requirement Specification (IRS) is needed, which is modelled as UML using a
tool called Enterprise Architect. Interfaces can be defined as the rules for the communica-
tion between components such as what operations and types of messages that are exchanged,
while protocols define how those messages are formatted and transformed. Each component
can implement different interfaces, using different protocols and sentences, and the IRS de-
scribes those protocols and sentences to be used along with information about what ports to
use and similar information. Additionally, tools to verify the interfaces and simulate com-
munication to control systems, and read information from sensors, need to be implemented
with the help of different IRSes, by using the IRS as a source for validation of the test tools
specification, and then using the test tool to validate the components interfaces without a

8

1.1 The problem

need for other parts of the complete system. Any change to an interface needs to be updated
in the IRS and communicated between the parts. An example would be if a system is to be
built, a certain need for a specific data format to one component exists. The sensor that feeds
data to that component need to do so in a consistent manner. When ordering that compo-
nent, the IRS is consulted to specify what format the communication has to have from the
sensor. This is mainly for the one building the component to know what communication
needs to be implemented.

1.1 The problem
The problem for Saab Kockums is related to the fact that test tools are ordered from third
party and implemented from scratch for every IRS. Instead of having one test tool that can
adapt to a given IRS, a test tool is ordered from third parties for every new or modifica-
tion made to an IRS. Ordering a test tool involves sending e-mail, waiting for responses and
validating continuously until delivery is completed. Any new change to the IRS need to be
communicated, implemented and validated across parts. This process can take several weeks
whereas reusable software can be changed in minutes.

Currently, IRSes are human-readable only and test tools are implemented by a developer
reading the IRS. This could easily result in requirements being missed or misunderstood.
Generating a test tool straight from a machine-readable IRS removes these risks and im-
proves traceability between IRS and test tool.

Some questions asked at the initial phase of the project include:

• How many of all the WISE components can be generated dynamically by code?

• What are the interface requirements to consider when generating components?

• What language or techniques can be used to enter data into the generation?

• To what extent can existing functionality in Enterprise Architect be used?

• How does one design the use of component generation to be as efficient as possible
while taking into account the limited time frame for the task?

• How is the balance between dynamic and hard coding made based on the time frame?

• What specification is required to generate a functional and dynamic GUI?

Additional subset of central questions which arose in the process:

• How does one show the user real time high frequency data in a comprehensive manner?

• What other protocols may be relevant to extend for?

• What data is interesting for the user?

• What software parts have what responsibility?

• What are the relevant capabilities of WISE?

9

1. Introduction

1.2 Purpose
The goal of this solution is to show viability and concept for an in-house reusable tool for
testing and simulating sensors. This tool is to be used to decrease time of integration and
testing of communication systems. Any interesting functionality yet to be implemented is
also documented in this report to lay the foundation for a better solution than currently
exists. A secondary goal is to implement or create possibility to implement with minimal
change, a coupling between IRS and test tool to increase traceability.

The initial proposal can be seen in figure 1.1, which was proposed by Saab at early briefings.
What the figure shows is that Enterprise Architect generates some input to our solution and
the output is a set of components. Those components should then be able to be reused at
various moments.

Figure 1.1: Reuse of components between different solutions, i.e. in-
terface simulator, integration site, reference system and training sys-
tem.

The test tools purpose is to:

• Send formatted information as a sensor according to a specified standard to a naviga-
tion system.

• Receive and look for faults in information formatted for a specified standard from a
sensor.

• Show the data in a easy to manage format.

10

1.3 Scope

The purpose of the WISE components is to:

• Allow communication according to a communication-standard from sensor to web
GUI

• Allow communication according to a communication-standard from web GUI to sys-
tems requiring sensor data.

1.3 Scope
• This thesis prioritizes support for a Log-sensor and its format.

• The supported platform is Windows 10 on PC.

• The web GUI is limited to support Google Chrome, Microsoft Edge and Mozilla Fire-
fox. The supported versions of these browsers are the latest versions during the period
of the work being done.

• The compatible transport layer protocols are limited to multicast UDP and Serial port.

• The web GUI shall handles messages being sent with a frequency up to 100 Hz.

• The presented solution in this thesis can support protocols that send field-based in-
formation.

11

Chapter 2

Related Work

2.1 Material UI

Material UI (MUI) is an open-source framework featuring React components that is based
on Google’s Material Design. MUI was created in 2014 but is still supported today with a
team of 12 engineers and 2 designers (MUI, 2022). The goal of the MUI team is to enable
quick development of GUI’s with components implementing Material Design. MUI was also
deemed important from the stakeholders perspective in order to align with Google’s Material
Design, to increase the consistency among future Saab products.

2.2 WISE

Building an integrated environment usually is a cumbersome process that involves modifying
each of the participating systems so that they can communicate through a shared protocol.
This is less than ideal for the system owners since they need to support multiple different
protocols or communication standards, in the end leading to higher maintenance costs. This
is also especially burdensome when the participating systems owned are controlled by third
parties.

WISE, an in-house tool developed by Saab Kockums, is an integration solution allowing
different systems to seamlessly exchange information without the need to modify the end
system. WISE achieves this by moving the integration work to a central position, known as
WISE Connectivity.

12

2.2 WISE

(a) Traditional approach. (b) Integration with WISE.

Figure 2.1: Integration differences, WISE interacts with the partic-
ipating systems on a network protocol level, preferably using the
native protocol of the participating systems.

This means there is no longer a need to support multiple different versions of a protocol.
However, by moving the integration work to a central position requires tools to create the
compatibility layer. This is where the mapping between different information models comes
in. So that each participating system can rely on a specification, but one can change the in-
coming data to fit an old system. In that way, there is no longer a need to modify the old
system to support new ones, hence the majority of the maintenance costs are moved from
each of the separate systems to a central system.

With the above said, there is a need to define how the information comes in and out of
the new central system. This is where a WISE Drivers comes in. Thereafter is the need to
store the data provided by the Driver so that it can be accessed from each of the participating
systems. This is where the WISE Data Managers come in. Furthermore, there is a need to
define the structure of the data, this is where a WISE Information model comes in. Finally
is WISE Connectivity, which ties everything together in order to enable information to be
converted and adapted for each of the participating system so that they receive the correct
data.

2.2.1 WISE Driver
A WISE driver’s purpose is to extract the information provided by the underlying protocol
and store it in the local database that is handled by a WISE Data Manager. There exists a
number of default drivers that comes with the WISE connectivity framework such as Secure
Socket Layer (SSL) or null drivers that do nothing. This is handy when it comes to testing
different configurations and speeds up the development time.

13

2. Related Work

Figure 2.2: How a WISE Driver communicates with an application
and the corresponding OSI layers.

2.2.2 WISE Data Manager
WISE Data Manager is a component that implements the local database that is formatted ac-
cording to an information model. The WISE database can be described as following database
principles although it is stored in the system memory. Which means that WISE is session-
based and loses its data after a session has been terminated. The Data Manager uses a WISE
Driver to distribute or synchronize the changes made in this local database.

A data manager may also contain a WISE service as can be seen represented in figure 2.3
as an S within the Data Manager for Driver A. A service subscribes to alternations made to
its database and is used to extend functionality of an existing system. The service may either
be triggered by a modification to its database, for example when a new object or event is
created or independently such as internal timers.

2.2.3 WISE Information Model
The information model contains the objects and events that is supported by the associated
Data Manager and is internally represented using XML. An example of how an Information
Model may be defined can be seen in Appendix A. Similarities could be drawn between a
Information Model and relational databases such as SQLite. Which uses tables to define the
structure of the data.

Objects and events consist of attributes of basic data types such as long, string, vector and
blob. An object can be defined as: it is created, lives a period and is then destroyed. Ob-
jects can be used to represent entities such as vehicles. Meanwhile events can be described as
momentary, fire and forget i.e the event must not be handled by any component and may be
dropped silently.

14

2.2 WISE

2.2.4 WISE Connectivity
WISE Connectivity consists of one or several Data Managers and a connectivity layer. WISE
Connectivity is what determines the flow of information.

A typical WISE information structure contains several Data Managers. One Data Manager
may be configured to contain the common information model, which acts as a source of truth
and contains all values from all connected information models, and a backbone driver. The
backbone driver can be used to output and input data from the common information model,
for example when saving data across sessions. One could export the data from the common
information model and import in a later session through the backbone driver. If a case ex-
ists where data conflicts between the common information model and another application
specific information model, the common information model will be prioritized. This is what
"Source of truth" refers to. The data managers that does not contain the common information
model and backbone driver can be configured to contain an application specific communi-
cation driver and information model.

WISE connectivity also utilizes transactions to handle changes propagated through the net-
work. This is done by grouping changes through the network to assure changes are visible
to other parts simultaneously. As a result, any triggers associated with the grouped changes
are not made until the transaction is committed. Leading to triggers and consequences being
based off consistent data. If a data manager contains different variables that make up a posi-
tion, for example longitude and latitude, transactions ensure that the two are never acted on
when there is old data in one variable and new data in the other. Consequently, any object or
event with incorrect format according to WISE will be rolled back across the entire network,
hindering errors from reaching other parts.

Figure 2.3: WISE Connectivity Layer.

As can be seen in figure 2.3 is the typical design of a WISE Connectivity layer. The layer
is used in WISE to tie the different Data Manager instances together and allow them to
exchange information, which is done in the designer edition of WISE Connectivity. The

15

2. Related Work

designer edition is a graphical tool that is used to create the flow of information by mapping
between the information models, also known as connections, which can be seen in figure
2.4. In this case, whenever a Network_Settings object is created in the API database, another
object is created in the TL database with same attribute values.

Figure 2.4: Example of mapping connections in WISE Designer Edi-
tion.

The designer can add triggers and transformations to connections between the attributes of
the objects or events. For example, if one information model contains an attribute of type
3D vector, while another information model contains a string, the vector can be mapped
to a string through a transformation which outputs the vector in string form into the data
manager with the belonging information model with a string, as can be seen in figure 2.5.

Figure 2.5: Example of transformation between the object
LVC_USER attribute POSITION v (3D vector) to the event For-
mattedMessage attribute message_string in WISE Connectivity De-
signer Edition.

The integration can then be executed using the WISE Connectivity Runtime. WISE Con-
nectivity Runtime is a software program that can be run on a local machine to execute con-
figurations created in the WISE Connectivity Designer Edition.

16

2.3 Previous Test tool

There also exists tools to test and manipulate WISE components. Other than the designer
edition, there exists a test tool to create and view events and objects in WISE Data Managers,
which is useful in debugging.

2.3 Previous Test tool
There already exists a test tool from a third party, which is partly classified but some general
description can be given. The test tool is re-built every time a new sensor needs to be tested
and is used in implementation of sensor interfaces, but also testing of those interfaces. A
new test tool is built manually according to an IRS which contain what messages the test
tool needs to send. The flow of building one of these test tools is roughly:

• Order test tool

• Send IRS for test tool to third party

• Third-party developer(s) reads the IRS, interprets and implements test tool

• Test tool is acceptance-tested

• Test tool is used

Additionally, there is administrative work such as billing. Furthermore, any changes made
to the IRS results in the test tool needing further development, testing and billing. Every
test tool should be adhering to an IRS, but without any coupling, this needs to be manually
checked. Communication is done by e-mail mostly, which means lead-time when waiting for
answers.

The test tool can receive, transmit and log specific implemented IP protocols and messages.
There exist a limited amount of surrounding functionality as to how messages are viewed
and transmitted. However, some implemented functionality encountered during this thesis
is unreliable, giving rise to usability issues. Furthermore, the test tool is implemented with-
out WISE, which means integration with an SE is not possible without further steps.

The previous test tool may have set a bar pertaining to this work, but no source code was
available as the test tool is a closed source.

2.4 Enterprise Architect
Enterprise Architect (EA) is an enterprise COTS application with UML-modeling capabili-
ties (Systems, 2022). The application has several features such as being able to simulate state
machines, generate some code based on UML-documentation and more. The generated code
is a skeleton for a class representing the modelled object containing a set of variable name
and types with empty methods for objects, EA seemingly has no knowledge of programming
languages other than a few keywords to generate variables and classes with empty methods

17

2. Related Work

containing the names from the UML-model. The mentioned code generation has flaws, such
as allowing the user to define whatever variable even though the specified programming lan-
guage does not support it. For example, a user can define a variable as being of the type "text",
without the type being available in C# . EA has the ability to export XML which defines the
objects with relations, for example inheritance.

Furthermore, EA has enterprise modelling features outside of this work’s scope. Such as
modelling business flow, administrative tasks and more.

An example of how requirements could be modelled with EA can be seen in (Meeks, 2015).

2.5 Sailsoft’s NMEA/AIS Simulator
SailSoft’s NMEA/AIS Simulator (Sailsoft, 2014), is a tool for simulating NMEA and AIS
components. The tool sends out valid NMEA sentences either via serial port or Ethernet
UDP. This reduces the need for field testing, which this thesis also aims to achieve.

Sailsoft’s tool has a limited dynamic GUI with the option of using different formatters for
different NMEA sentences. The formatters are predetermined and not able to be specified
by the user. Sailsoft’s tool has some similarity to the one presented in this thesis. Hence, it is
deemed to be interesting to make a comparison with, which is done towards the end of this
thesis.

18

Chapter 3

Technical Background

With the rise of cloud based solutions, web interfaces are becoming increasingly popular.
Furthermore, web based techniques are useful in a lot of ways. For example, the advantage
of web is that the server can be run on a machine with a specific OS and the connecting
client does not need more than a web-browser. This circumvents the need to download a
program and prevents compatibility issues by putting the setup on the server side. Web based
development also offer an increasing amount of frameworks and languages (Vuksanovic and
Sudarevic, 2011) for efficiently developing professional tools.

3.1 React
React is an open-source front-end JavaScript library for building web user interfaces devel-
oped and maintained by Meta (Meta Open Source, 2022). React’s focus is component-based
and declarative. React became popular because of it’s fast performance compared to Angu-
lar, and is today in some capacity used by many developers, including developers at Apple,
Netflix, Microsoft, Airbnb, Twitter, Discord, Coinbase and Zoom.

React contains unique solutions to several concepts to optimize the performance, and React
DevTools exist to check performance in the browser. React was used in combination with
JSX (Meta Platforms, 2022) which is a syntax extension to JS which allows an interchanging
of HTML objects and JS. JSX by default prevents certain code injection vulnerabilities.

3.1.1 Components
Components in React take principles from object oriented programming, which are reusable
chunks of code that return HTML. React components are similar in structure and logic to
classes in a high-level object oriented programming language. This allows a faster learning
curve, especially for developers with back-end experience.

19

3. Technical Background

A big component of React is hooks. Hooks allow the programmer to use state changes and
re-renders to trigger functions, which in turn bypasses the need for a class. Classes in React
are only syntactic sugar since JS is functional at its core.

3.1.2 State
A state is an object containing data for a specific component. Multiple properties can be
contained in state. A component’s state is mutable and any changes will trigger a re-render
of the component. Changes to state can be made by user input or system-generated events.
This is achieved by using "setState()", which tells React to re-render the component.

3.1.3 Declarative
Another big benefit with React is that it is declarative. Declarative with regards to rendering
means you can tell React what components look like, however the rendering of those compo-
nents is controlled by React. This results in the developer not having to implement rendering
or state behavior, but instead just use state and React will know the rest. This in turn leads
to less surface area for bugs to appear, the state implementation is instead controlled by and
rigorously tested by the React team during a longer duration. Separating concern also lead
to easier understanding of React.

3.1.4 React Rendering
In regards to the rendering logic, React uses a virtual Document Object Model (DOM) and
a real DOM. The real DOM is a tree representation of objects in the application and is used
to render and control components in the application. The virtual DOM is a light-weight
abstraction of the real DOM, which is used to efficiently check changes and check for con-
ditions to trigger re-renders. React utilizes the virtual DOM to check for state changes in
components and thereafter decide to re-render components with state changes, which in turn
lets React re-render affected components only and not re-render the entire website.

A render life-cycle is first creating the virtual and real DOM. Secondly, changes are made
to component parameters with any kind of event, which updates the virtual DOM. Thirdly,
the virtual and real DOM is compared to check for changes, this is called reconciliation. Fi-
nally, the updated real DOM is used to paint components onto the users browser.

In the reconciliation step, where React compares virtual and real DOM, a heuristic algorithm
is used with O(n) time complexity instead of generic algorithms with O(n3). The algorithm
allows the developer to define what components are static and do not need to be checked.
When comparing DOMs in React and the compared objects are different types, a full rebuild
of the DOM is made, but when objects are of the same type, attributes are compared and only
that node in the DOM tree is updated. This means changing components, for example in-
serting a new image in the view when clicking a button, triggers a larger re-render; however,

20

3.2 REST API

only changing attributes, for example clicking a button which changes the color of another
object, will result in an update of affected components only.

3.2 REST API
Representational state transfer application programming interface (REST API) is an archi-
tecture style that allows applications or devices to connect and communicate with each other
via for example HTTP requests (IBM Cloud Education, 2021). These requests can perform
standard functions such as creating, reading, updating and deleting records (CRUD) in a
database or similar. As an example, a GET request could be used to get hold of a record,
while a POST request could be used to add a new record to a database. The information
provided by REST can be delivered in nearly any type of format including JSON, HTML
and plain text. Whereas JSON is the most popular choice of them all mainly due to it being
readable by both humans and machines. Due to REST’s relative high flexibility and freedom
it has become widely adopted.

3.3 XML
Extensible Markup Language (XML) is a standardized text format that is easy to extend,
structure and validate (Khare and Rifkin, 1997). The purpose of the XML is to be used in
serialization, meaning converting an XML model to protocol structure. Another benefit with
XML is the ability to validate the structure and content of an XML file with a XML Schema
Definition (XSD) file (W3 Schools, 2022). XSD is primarily used to define the elements,
attributes and data types the document can contain. The information in the XSD is used to
verify if each element, attribute or data type in the document matches its description.

3.4 NMEA 0183
NMEA is a standard for electrical and data specification between marine electronics, for
example sensors and several other instruments. It is controlled by the National Marine Elec-
tronics Association (NMEA) (Raymond, 2018). It is slowly being replaced by NMEA 2000
but remains the norm in commercial shipping.

Figure 3.1: Example of an NMEA message.

21

3. Technical Background

NMEA is text based and a typical string can look like in figure 3.1 above. The first part of the
string "HEHDT" contains information of the talker ID "HE", which is a string representation
of the type of unit the sender is. In this case "HE" is a north-seeking gyro. The beginning part
also contains "HDT" which is the type of message sent. HDT is according to the NMEA stan-
dard, a message with a heading value in degrees, a T for true and a checksum in hexadecimal
after the asterisk. The checksum is a typical XOR of the message fields (Rietman, 2008).

3.4.1 Sensors
There are two types of sensors that are especially relevant for this project. First and foremost
is the LOG-sensor, which is a sensor that can send out NMEA and other sentences with a
given frequency. The LOG-Sensor consists of a speed log with two subsystems, the passive
log and the active log. The passive log measures speed through water. The active speed log
is a correlation log that measures transversal and longitudinal speed over ground, as well
as longitudinal speed through water and distance travelled. Additionally, the LOG-sensor
can measure relative depth below keel using an echo sounder. To emulate a LOG-sensor, an
available Inertial Navigation System (INS) is used in this project. The INS used is a North-
seeking Gyroscope which gives the orientation in degrees. The INS uses the NMEA protocol
the same as a LOG-sensor would.

3.4.2 Applications
Warship electronic chart display and information (WECDIS), which is similar to the civil
version electronic chart display and information system (ECDIS). The WECDIS is used to
gather and display data pertaining to different sensors and the environment, which is mainly
used to navigate as it can replace the need for a paper map. The WECDIS can receive NMEA
sentences.

3.5 Azure DevOps
Azure DevOps is a platform developed by Microsoft similar to GitHub, with a focus on en-
terprise software development (Microsoft, 2022). The features include version control using
git, automated builds, testing and project management.

The tool for implementing continuous integration in Azure DevOps is called Pipelines. Set-
ting up a pipeline is deciding which actions to take with certain triggers, such as when a
git push is done. The actions include building the project to check for compile errors and
running tests on the application. There are also standard actions such as zipping files and
creating build artifacts and many more. Azure was used to organize this project and access
was granted through Saab Kockums.

22

Chapter 4

Approach

The approach was mainly iterative and agile. The beginning consisted of mostly elicitation
and learning, the middle consisted mainly of development and design, while the ending con-
tained more testing, evaluation, and writing. Work was done in an office environment with
close proximity to involved parts. Collaboration was done through discussions, interviews
and workshops.

Figure 4.1: Process for each functionality.

4.1 Process
Our process for developing the solution stemmed from agile practices and thus from the ag-
ile manifesto (Beck et al., 2001). Inspiration was also taken from Kanban. This is especially
apparent when the report was developed iteratively, parallel with the work and throughout
the project. The problems and designs were solved and evaluated when needed, to allow the
postponing of solutions to a point where knowledge was maximized. There was a strive to be
flexible and to be able to adjust the scope or design if it was deemed advantageous. Therefore

23

4. Approach

the principle of doing work only when necessary was adopted, to not have to change func-
tionality or risk doing the wrong functionality with lacking information to begin with. The
principle meant doing work when enough information existed. The determination of having
"enough" information, was done through intuition and eliciting a set of statements from the
stakeholder that supported that functionality.

4.1.1 Daily Stand-up
A relevant step in the process was the daily stand-up, which was not strictly always daily but
nonetheless used frequently, the daily stand-up was used when there was uncertainty about
what to do or to when there was a need to synchronize the work done between us. More
specifically, if it already was known what had to be done and it had already been discussed
with no information change, the daily stand-up was skipped or postponed. The involved
parts in the daily stand-up were the developers of the solution. An example of what it could
look like was that the last person to arrive to the office would come up to the other developer
and ask what was being done or had been done and if there were any comments or obstacles
in the current tasks. Thereafter the same questions would be asked back. The daily stand-up
allows for close collaborative work and the commitment to a daily or weekly goal contributes
with motivation to get that work done. The Kanban board was not implemented digitally
because of the small scale of the developer team, it was in this case deemed sufficient by us
to write needed functionality on a list and to cross it off as it was done. New task lists were
made when the work on the previous list was completed. In some cases there could be left over
tasks which were carried over to the next list or dropped if deemed no longer a priority. This
allowed for a more lightweight approach which aligns with the agile principle "Individuals
and interactions over processes and tools" and "The most efficient and effective method of
conveying information to and within a development team is face-to-face conversation."

4.1.2 Office Environment
By working in an office there was also possibility for collaboration with the product owner
and other competent employees. This was most apparent with the interviews where needs
were elicited which were done whenever uncertainty appeared. Sessions were held towards
the later stages after the MVP was made where the GUI was shown in a structured manner,
by going over all the functionality, especially the latest functionality, and then asking for
their opinion on the functionality. After the specific feedback was received general design
opinions were gathered and possible future functionality was discussed to implement next,
or if too large for the scope, documented in this report. Finally, an evaluation interview was
held when the development slowed down where the included parts reflected on efficiency
and fit of the solution to the problem.

4.2 Method
To start the project a start-date and a presentation date had to be planned. Then the available
hours were approximated. For a bachelor’s thesis with 22.5hp, one person is expected to work
about 600 hours. Thus, with two people, there were 1200 hours to work with. Estimating

24

4.2 Method

the hours for various tasks and putting everything in a Google Sheets resulted in a time plan.
The time plan was also used during the work to report hours worked. Both effective hours,
the active hours spent towards a specific goal, and total hours, the hours spent in the Saab
Kockums office. This metric allows us to evaluate our productivity as well as compare if the
time plan is followed. Though, it is necessary to take into consideration the informal nature
of the document, therefore the accuracy is questionable due to possibility to forget to report
time.

With a security-oriented company, the initial phase of the project was slightly slower due
to the need to go through various processes and on-boarding.

Initially information had to be gathered about the task and determine what information was
available already. Interviews and meetings were arranged with employees and consultants
who were involved or had experience with WISE and Enterprise Architect. The relevant
diagrams received were retained and discussions about scope resulted in summaries in a doc-
ument with an initial description of the project. Relevant references were gathered in the git
repository and evaluated early in the process. Google Scholar was utilized to find techniques
and academic articles for model-based generation of various components. The model-based
research articles were useful for comparing designs and general concepts to be utilized. But
the ones found were general tangent solutions and not directly applicable to our problem.

4.2.1 Prototype
An evolutionary prototype was developed early while more of WISE and React was to be
investigated and learned about. The prototype was iteratively refactored and developed to
become the solution. The evolution of the prototype into solution can be seen in Appendix
B. Some alternative prototypes were made as git branches, mostly to briefly experiment with
design such as the last image seen in Appendix B or when experimenting with MUI.

To create a user interface that is appealing, design principles were taken into considera-
tion. They include principles found on Google by searching for "design principles web". This
search inspired reflecting on purpose of every view opposed to overwhelming the user with
everything at once and additionally reflecting on the notion that every view needed a logical
structure that was consistent throughout the website. The search also highlighted concepts
such as white-space, balance, visual hierarchy, use of colour, typography, contrast and im-
agery to create a coherent design. Doing work for a larger company meant design documents
already existed, however, they were somewhat flexible. To improve the user interface even
more, feedback was gathered from the product owner and various involved parts through
semi-structured interviews.

4.2.2 Brainstorming
For each new feature a brainstorming session was completed to decide design choices, here
the pros and cons of various designs were weighed against each other. Thereafter, some form
of diagram or drawing was produced to ensure the mental image of the design was synchro-
nized. Weighing pros and cons can include comparing experience with tools, scalability,

25

4. Approach

maintainability and time required to implement compared to the potential impact of the
feature. It also had to be taken into consideration how well the feature brought the product
closer to solving the current problem. This results in some decisions being made that for ex-
ample are not optimal for the long term, but are viable to implement in the given time span.
When the functionality was backed up by a need and deemed necessary, it was prototyped
and thereafter iterated on to increase its functionality. The diagrams or drawings were put on
a whiteboard or in a notebook. In the case of the whiteboard, the diagrams and information
was kept up to date and relevant for the design that was decided on at the given time.

4.2.3 Logbook
For each week an entry into an informal logbook was made containing information about
what was done that week and any goals or obstacles that appeared. The main idea behind
the usage of a logbook was to gain a better understanding of the choices that were made
throughout and was also used as a reference for writing this thesis.

4.2.4 Pair Programming
When programming more complex functionality or design-heavy functionality and often at
the beginning of new features, pair programming was done improve the quality of code (Han-
nay et al., 2009). Pair programming not only worked to increase the quality of the code but
also as a catalyst for more design discussions. When doing back-end API work, this enables
information sharing about what API points to fetch or post to.

4.2.5 Object Oriented Design
When programming, an effort was made to follow the SOLID principles to facilitate future
development in the back-end. Such as classes having a single coherent responsibility and be-
ing open for extension but closed for modification. Liskov substitution principle was also
followed with back-end formatting interfaces and conversion from XML for different pro-
tocols. Interface segregation principle is encouraged when extending for more protocols and
conversions by not having too large interfaces, and bundling methods that are to be used
together. The dependency inversion principle has also been taken into account by designing
the system to encourage implementing interfaces, and not encouraging implementation of
low-level classes.

4.2.6 Class vs Functional components in React
In the front-end, React with JS was used, which contain classes and object oriented syntac-
tic sugar but also functional components. The functional components were chosen over the
class components because of assumed increased support for functional components in the fu-
ture from React compared to classes. The React team have previously encouraged functional
components (Alpert et al., 2018). As this software is meant to be further developed if viable,
it is advantageous if it supports a long shelf-life by utilizing future optimizations to increase
its future performance. Functional components also decrease the amount of total code.

26

4.3 Division of work

4.3 Division of work
Much of the work was done collaboratively due to close proximity when working. However,
Christoffer did the overwhelming majority of the back-end programming related to WISE,
setting up the REST API and implementing the CJEX library. Jonas was more focused on
the front-end, gathering information and creating documentation, however he also helped
Christoffer with deliberating different solutions and gave his insight on the back-end.

4.4 Experimental Setup
First and foremost, to check if the communication was functional, several communication
pathways had to be investigated. These include:

• GUI to GUI. (Ethernet)

• GUI to the previous test tool. (Ethernet)

• Previous test tool to GUI. (Ethernet)

• INS to GUI. (Ethernet)

• Saab Kockums simulator (SE) to GUI.

The tests done with the communication was done to assure the messages arrived with the
complete data and a correct validation in the GUI based on structure and value-ranges spec-
ified in the XML. In the test cases the specified NMEA sentences are HDT, DBT and VBW
and a custom JSON message.

4.4.1 GUI to GUI

Figure 4.2: Configuration using the built TL and API drivers run-
ning on two different machines.

Testing the communication from GUI to GUI was the first of the tests done. This was realized
by having two different PC’s running respective WISE components and the GUI. One part
would send to the other and vice versa. The messages were controlled to have the same
information retrieved as was sent. In later stages this test setup was repeatedly used to test
the validation by sending intentionally wrong messages and checking the error codes for

27

4. Approach

any inaccuracy. If a field was removed, an error code for missing field was expected. If a
faulty checksum was sent, the checksum error code was expected. The connection was made
using ethernet and with specified ports to multicast UDP from. The PC’s were on the same
network.

4.4.2 GUI to Previous Test Tool

Figure 4.3: Configuration using the built TL and API driver and
previous test tool running on the same machine.

The communication between GUI to previous test tool was performed both to the same PC
and to another PC. This test was done to ensure the format of the messages was consistent
with the format of the previous test tool in the case of NMEA messages.

The previous test tool contained automated sending according to a frequency, which was
useful to stress test the GUI to test the frequency at which problems appeared. This could
also be utilized to see how many messages the GUI could store and show before showing any
slow down.

4.4.3 INS to GUI

Figure 4.4: Configuration using the built TL and API drivers and
existing WISE SSL Driver with a INS connected to a machine.

28

4.4 Experimental Setup

The WISE components were setup on a PC connected to the INS by ethernet. The INS can
send various messages, but only HEHDT was tested to assert a functioning communication
between the PC and the sensor. The INS in its built state is assumed to send NMEA messages
correctly formatted, and therefore any messages specified in XML according to the NMEA
standard received is assumed to be shown as valid when testing. The INS can send according
to other protocols than NMEA but these are expected to be shown as invalid when receiving
in the GUI because they are not specified in XML in the test cases.

4.4.4 SE to GUI

Figure 4.5: Configuration using the built ParseSE and API Driver
with existing mobile and SSL drivers running a SE on a machine
with connected mobile device.

The ParseSE driver was tested to check for correct parsing of data from a Synthetic environ-
ment (SE). This was setup with WISE connectivity runtime running on two separate com-
puters. One PC was running the SE server and WISE connectivity runtime configured with
a SSL driver with the SE information model. The SSL driver acted as the server and for-
warded the information via TCP to the client configured on the other PC running a WISE
SSL driver, ParseSE driver and API driver. A mobile device with a gyroscope was used to
send a position in degrees with a frequency of up to 100 Hz. The position in degrees was sent
using the HDT sentence.

4.4.5 MUI Component Tests
Some components have been tested as MUI components that are relevant to discuss. The
tests performed included changing the tags from <div> and <p> to MUI Accordion and MUI
Typography and observing the difference in input-latency from perceived click to perceived
completed expansion of the div. The code differences are shown in Appendix C. This test
was done without the use of further optimization using React hooks in both cases. React
offers hooks such as UseMemo(), which can be utilized to optimize tasks by saving values

29

4. Approach

previously rendered and only re-rendering when a shallow comparison of the components
input parameters results in detected change.

4.4.6 Test Tool Comparison
The previous test tool is partly confidential, to compare the two solutions requires some form
of anonymity in the comparison. This is done by ranking functionality from 1-3, with 1 being
necessary functionality for MVP, 2 being functionality that provides value but is not required
for MVP, 3 being unimportant QOL functionality. MVP in this case is a test tool which can
view and send messages with some logging containing previous messages.

The list of functionalities is composed before any ranking and the ranking will be done by
someone not directly involved in the project to minimize conflict of interest. When the
ranking of importance for each functionality is done, the functionality is checked for in both
solutions and deemed implemented or not implemented. When this is completed, a result
is composed by counting the number of functionality in each importance category which
is implemented in the respective solutions. If uncertainty exists for a functionality or it is
partly implemented, it is counted separately to showcase a strict result and an optimistic
result. This can then be compared to yield an estimated count of how much more of each
functionality for each importance category is implemented in the solutions.

Comparison Example
Test Tools could have the ability to send and receive messages, while one has the ability to
display a PDF and the other could send automatic messages with a given frequency. The
ranking would look something along the lines of:

• Send Message

• Receive Message

• Display PDF

• Automatic send

Someone would then rank the functionality 1-3:

• Send Message: 1

• Receive Message: 1

• Display PDF: 3

• Automatic send: 2

Finally one would count the functionality found in each tool. Test tool 1 might have send,
automatic send and a substandard implemented receive message, for example meaning it
might sometimes break. Test tool 2 has display PDF and send message. The result would be:

30

4.4 Experimental Setup

Category Test Tool 1 Test Tool 2
1 1(2) 1
2 1 0
3 0 1

Table 4.1: Example-result of test tool comparison where the paren-
thesis contain a count of even partially or substandard functionality.

31

Chapter 5

Implementation

The WISE Drivers ParseSE, TLDriver and APIDriver were implemented with Visual stu-
dio 2017 in a mix of XML, C# , Newtonsoft JSON and WISE Connectivity SDK with .NET
framework 4.6.1. The CJEX library was written using C# in Visual Studio 2022 using .NET
framework 4.6.1 and Newtonsoft JSON. The solution’s implemented functionality can be
seen in Appendix D.

A balance was made between flexibility and rigidity for the implementation, leaning more
towards flexibility. Both have their own trade-offs, whereas a more rigid system is generally
less error prone although may not cover as many use cases and is harder to edit compared with
a more flexible system. By allowing for example the user to edit the GUI in real-time made
the system lean heavily towards a more flexible state. Although, this could lead to a number
of issues. To minimize this, a number of error handling procedures where implemented such
as validating the XML file so that it follows the reference as seen in Appendix E.

5.1 Azure DevOps Pipelines
Build pipelines were implemented in Azure DevOps to experiment with pipelines and au-
tomated testing. In total 10 automated unit tests were implemented for the CJEX library
through a pipeline triggered by push to any branch. Exceptions were made when the push to
the repository contained changes to the front-end only, in this case Azure DevOps did not
build. The pipeline was used to assure the project could build and the unit tests were passed.
A secondary pipeline was made with a manual trigger which was used to output files used for
running the solution. The pipelines uses NuGet restore on a solution and then builds that
solution, and then does that for all the solutions specified. The last stage is deleting files used
in the builds to clean up. The manually triggered pipeline does the same but with the added
step of outputting a .zip file, named after build ID, containing .dll files.

32

5.2 XML

5.2 XML
The XML file used for generating the structure of various input-fields contain information
pertaining to what protocol is to be used, what sentence type in that protocol and various
Fields organized in groups to represent logical coherence. The fields themselves are defined
with a datatype and acceptable range parameters. Every field can have several options. For
the complete structure of the XML file, see Appendix E.

Given a field is of type string and contains options, a "drop-down" menu is instantiated to
represent that value in the GUI. Similar logic is used to determine if ints or floats will be
represented using "drop-down" as strict options or just a box with the functionality to write
any value.

The XML format was not made to support EA out of the box. EA was deemed too time
consuming to work with and thus the XML uses another format made from the ground up in
this project. However, EA can export XML with similar structure. The parsing of the XML
is therefore only in need of minimal changes to work with EA.

5.3 GUI
The GUI is a web based graphical user interface that was written in Visual Studio Code us-
ing HTML, CSS, JavaScript and ReactJS. The GUI also used Material UI and Node.js. To
fetch information sent from the WISE components, the GUI uses the REST-API by fetching
JSON-formatted packets. The information sent is used to generate input fields based on the
datatype specified, the input field, with the help of a switch-statement, generates a compo-
nent compatible with that datatype. InputField.js utilizes some ternary operators to check if
required props are defined, otherwise default values are returned. The different types imple-
mented is shown in Appendix E.

Some complex components such as the multi-select originates from the MUI component
library. The multi-select has the ability to auto-complete input. If the option for "invalid"
exists and the user types "inv" then presses Enter, "invalid" is selected. Using Materials UI
is convenient if it is necessary to save time, such as with components implementing more
complex filtering behaviour. However, styling MUI components requires learning API’s that
frequently change and sometimes are less intuitive. Thus MUI components was used only
when needed to reduce dependency on third-party.

5.4 CJEX
Christoffer Jonas Examensarbete (CJEX) is a standalone library made to handle the parsing
and validation of protocols with a given standard. The main purpose of the library is to ex-
tract the fields from the defined XML-file and create the protocols with the associated fields.
CJEX also has the ability to generate a WISE information model based on the XML-file. The
generated information model could later be used in WISE designer edition in combination

33

5. Implementation

with ParseSE Driver.

A couple of conscious choices were made in regards to following certain object oriented
design patterns. Including strategy, factory and adapter pattern. Whereas the strategy pat-
tern is the most compelling. The main reason behind implementing this pattern was to make
it straightforward to replace the current implemented XML converter without the need to
make major overhauls. All that has to be done is implement the interface for the converter
and then change the strategy used to the new converter as can be seen below.

1 public class GenerateStructure
2 {
3 private IXMLConverter converter ;
4 public GenerateStructure (IXMLConverter converter)
5 {
6 this. converter = converter ;
7 }
8

9 public void SetConverter (IXMLConverter converter)
10 {
11 this. converter = converter ;
12 }
13

14 public void GenerateProtocols ()
15 {
16 converter . GenerateProtocols ();
17 }
18

19 public List <IProtocol > GetProtocols ()
20 {
21 return converter . GetProtocols ();
22 }
23 }

CJEX is able to support all types of field-based protocols and out of the box can support
JSON and NMEA. This meant a generic approach had to be taken in order to support future
extensions. The Protocols implement the interface IProtocol with a few methods as can be
seen below. Whereas the most important ones are FormatMessage, Verify and GetFields.

1 public interface IProtocol
2 {
3 /// <summary >
4 /// Formats fields according to protocol ,
5 /// expects the values to come in order according to the

protocol definition
6 /// </summary >
7 /// <param name =" values "> value of the fields </param >
8 /// <returns > </returns >
9 byte [] FormatMessage (List <string > values);

10

11 /// <summary >
12 /// Verifies that data is according to the protocol
13 /// </summary >
14 /// <param name =" data"> The bytes to verify </param >
15 /// <param name ="sb"> Contains if any the error messages </

param >

34

5.4 CJEX

16 /// <param name =" dict"> Contains the id and value of a field
</param >

17 /// <returns > True if message is following the protocol </
returns >

18 bool Verify (byte [] data , StringBuilder sb , Dictionary <string ,
string > dict);

19

20 Fields GetFields ();
21

22 string GetID ();
23

24 string ToString ();
25 }

The FormatMessage method returns a byte array of the formatted fields according to how
the protocol is defined in the XML and takes in a list of string with values. The assumption
was made that the list is sorted in the order that the protocol was defined. The user normally
does not need to take this into account when using the GUI or ParseSE, since it is generated
and follows this structure. Although when defining the XML-file this has to be taken into
account.

The Verify method should return true if the data is formatted correctly according to the
protocol. If for any reason the data is not formatted correctly, for example an NMEA mes-
sage with incorrect checksum. This method shall return false and a log of what when wrong
(StringBuilder) which the GUI will use to display any error messages to the user. Lastly is the
dictionary with a field id as key and value of the field extracted from the data. This is used
by the GUI to display the separate field values of the protocol.

The GetFields method should return the fields associated with the protocol. This is mainly
used by the web GUI when generating the layout and inputs. As can be seen below is a
number of attributes that a field can contain.

1 public class Field
2 {
3 public string name { get; set; }
4 public object value { get; set; }
5 public string type { get; set; }
6 public string id { get; set; }
7 public int groupID { get; set; }
8 public object min { get; set; }
9 public object max { get; set; }

10 public int? minLength { get; set; }
11 public int? maxLength { get; set; }
12 public bool required { get; set; }
13 public List < KeyValuePair <string , string >> options { get; set;

}
14 }

35

5. Implementation

5.5 REST-API
The communication used a REST API with a proxy built using Microsoft.AspNetCore.Mvc
in Visual Studio 2017. The Microsoft.AspNetCore.Mvc allows the use of routes to define
what back-end API-method to use. For example if a user puts /apimethod in the end of the
URL, the API checks for that route and if it is defined.

The API is implemented using a proxy following the design described in figure 5.1. Using
a proxy is essentially decoupling the API from the front- or back-end. This makes extending
the function of the API to include monitoring easier while being relatively lightweight.

Figure 5.1: Proxy setup.

5.6 WISE
A total of three wise drivers were built in this thesis, Transmit-listen (TL) Driver, API Driver
and the Parse synthetic environment (ParseSE) Driver.

Figure 5.2: Connectivity layer for the web GUI.

36

5.6 WISE

The connectivity layer was configured for the TL and API driver according to the figure 5.2
above.

5.6.1 TL Driver
The responsibility of the TL Driver is to listen and to send data over the multi-cast UDP or
serial-port depending on how the user configures it in the GUI. The TL driver waits for a
change in its object model and acts upon it depending on the type.

The following can occur:

• A Settings object is created or updated

• A Message event is created

• It receives data from another system, for example a LOG-sensor

Initially on startup, the API Driver creates a new settings object for a UDP connection with
a standard port, multi-cast address and the local IP of the current computer running the API
Driver. This in turn via a WISE connectivity transformation creates an identical object in
the TL object model with the same attribute values. When that occurs, the TL Driver opens
the connection and starts listening. This was done in order to avoid having the user configure
the connection for each session.

When a new settings object is created or updated, the TL Driver checks if a connection
is currently open and if so stops it. Then it establishes a new connection according to the
configuration.

When a message event is created, the driver checks if a current connection is open, and if
so takes out the attributes of the event and sends the data on the underlying protocol.

When the TL Driver receives data from another system it creates a new event with the ex-
tracted data, determines who sent the message and adds it to its local database.

5.6.2 API Driver
The responsibility of the API Driver is to receive information from WISE connectivity and
forward that information over the REST API to the GUI. It also is responsible for creating
the layout for the web GUI with the help from CJEX as shown in figure 5.2. On initialization,
it starts up the API service using a kestrel web server and configures it with the MVC-pattern.

The following can occur with the API Driver:

• It receives an event

• An API Request is made

37

5. Implementation

When the API driver receives an event, it means new data has been sent to it. The Driver
then uses CJEX to try and validate the data according to the defined protocols in the XML-
file and then adds it to its data log.

When an API request is made, the API controller forwards it to its associated service. It
may look like below.

1 private IService service ;
2 public TemplateController (IService service)
3 {
4 this. service = service ;
5 }
6

7 [HttpPost]
8 [Route("clear")]
9 public void ClearMessages ()

10 {
11 service . ClearMessages ();
12 }

In this case whenever an API POST request is made to the web server for the specified URL
"localhost:5000/api/clear" it tells the service that it should clear the log of messages.

5.6.3 ParseSE Driver
As part of this solution, ParseSE was built. ParseSE is a standalone generic WISE Driver that
is able to convert attributes from, as an example, SE and outputs a formatted message event
accordingly to the protocol that was mapped in WISE. This driver could be combined with
other WISE Drivers such as with TL Driver to send out the formatted message via multicast
UDP, serial port or combined with the API Driver to send the data directly over to the web
GUI.

As can be seen in the figures below is how the ParseSE connectivity file may be configured
and the chain of events after a transformation have occurred.

Figure 5.3: How a WISE connection may look like to the generated
information model from a SE information model.

38

5.6 WISE

Figure 5.4: How a WISE transformation may look like for the gener-
ated information model from another information model. Here can
be seen a math transformation (the ones with the y-output), where
it converts the MaxDepth to the different units in Water_depth for
a NMEA DBT object.

As shown in figure 5.4 whenever a subsurface vessel is created or the vessels MaxDepth
attribute updates a transformation will occur which creates a DBT object in the ParseSE
database.

Figure 5.5: How it looks like in WISE Test tool when a transforma-
tion takes place.

The driver then extracts the attributes from the object created in its database and creates a
new message event formatted according to the protocol standards as can be seen in figure 5.6.

Figure 5.6: The created event with the message formatted accord-
ingly.

39

Chapter 6

Result

Interviews along the process were helpful to create discussion about where the software was
headed and how it related to business needs. Every interview session resulted in useful re-
flection around architecture or potential functionality. Showcasing the GUI and discussing
design resulted in receiving useful feedback.

The evaluation interview at the end was held with the product owner where a set of state-
ments about the fit of the solution were gathered. The GUI was said to feel modern and was
deemed to have Saab characteristics. Having the XML as a single source of information on
the user side was deemed an advantage. Additionally, the functionality in the test tool was
relevant and further development was interesting for the product owner. The final design of
the GUI can be seen in Appendix F.

The tests performed using various components were successful. This was decided because
of the retrieval of messages with a consistent validation according to the principles by which
the validation was designed, and by asserting that the messages transmitted could affect or
be displayed in the components that could receive messages. The communications success
depended on the messages keeping their integrity from the transmitting part to the receiving
part.

Following section contains the questions asked at the start of the project, with answers.

• How many of all the WISE component can be generated dynamically by code?
The drivers could not be generated but could be made to support generic information
models such as a generated one. This is due to them being defined in XML-format.
The connections between the Data Managers need to be mapped manually.

• What are the user-interface requirements to consider when generating components?
The generation had to be coupled with what was written in XML using names which
would show near the generated inputs. There also had to be some form of grouping that

40

showed if inputs belonged logically. Finally, there had to be error messages shown if the
user tried to enter faulty data without override active. Some additional general design
concepts were considered as well, such as need for contrast and a coherent design.

• To what extent can existing functionality in Enterprise Architect be used?
The integration to EA was deemed time consuming because of the reliance on third
party delivery of documents, which at the was not sufficient to find use cases and com-
mon structures of documents. Furthermore, the modelled IRSes in EA are currently
only fit for human use and was missing information needed to be a viable alterna-
tive. However, EA has the ability to export XML documents from UML objects, thus
the parsing can be extended to support the EA format of XML without redesigning
significant parts of the existing solution.

• How does one design the use of component generation to be as need-fulfilling for
Saab and as performant as possible while taking into account the limited time frame
for the task?
With the help of using simpler-to-implement techniques and constraining the deliv-
ered solution to include the most important functionality to prove the concept works.
It’s helpful to make the solution extendable to be integrated into an environment with-
out significant change.

• How is the balance between dynamic coding and hard coding made based on the time
frame?
By combining dynamic and non-dynamic coding. First using non-dynamic coding to
implement a prototype and afterwards inserting dynamic behavior where necessary.
The dynamic behavior needed was the behavior responsible for enabling different pro-
tocols to be specified and used with the help of the XML specification.

• What specification is required to generate a functional and dynamic GUI?
To categorize the protocols and sentences, a string for the protocol name and the sen-
tence name was introduced. To generate the inputs, the field type and name with
relevant text was introduced. To group the inputs, group tags were introduced. Inputs
categorized as dropdown menus needed the different options presented to the user.

• How does one show the user real time high frequency data in a comprehensive man-
ner?
By creating a compact layout with summaries of messages that can be expanded. Thus
by creating layers to filter information that is not interesting at first glance and cre-
ating an overview before diving deeper. The chat-like layout of the first few designs
shown in B were not suitable for high-frequency data. Graphs and data visualization
is discussed in conclusions. Graphs could be useful when showing an overview.

• What other protocols may be relevant to extend for?
Any field based protocol with application relevant to the owner of the product. The
implementation shows implementation of JSON and NMEA. However, if the solution
were to be used for, as an example, testing IOT components, MQTT could be imple-
mented. If there would be a desire to test for example ground vehicles, CAN bus could
be extended for.

41

6. Result

• What data is interesting for the user?
In this scenario the message values along with validation for the messages. The message
header also had relevance.

• What are the relevant capabilities of WISE?
Noteworthy capabilities are:
Handling of transactions, including rollback in the data managers.
Driver with the ability to hook into data manager changes.
Connections with designer tool allowing for mapping through a GUI.
WISE Connectivity’s ability to connect interfaces without having to manually program
transmission and retrieval.

6.1 Workflow of Solution
The solution as of now is made to be hosted locally and not reachable outside the network.
Therefore the assumption is made that setup of the program is done on a machine and there-
after use is repeated on that machine. Therefore is it assumed that most use cases do not
involve installation of the program. Furthermore, the GUI is run in a terminal with "npm
start" and the WISE components in Visual Studio 2017 or any substitutes for those programs.
It is thus up to the developers competence to install the software according to the existing
documentation. The resulting start point of the workflow is an installed and run-able pro-
gram with a dummy XML file baked into the project. If retrieval is to be done from a SE,
meaning a simulator, alterations have to be done to the connectivity file by mapping con-
nections in WISE Designer. The following step is to go to "Settings" in the launched GUI
to choose source IP, transmit port and multicast-address. To implement or update the list
of specified protocols, changes are made in an XML file in accordance with a reference table
found in Appendix E and additional documentation containing examples in the repository
for the project. The GUI is then reloaded by using the browsers refresh button or F5. This re-
sults in an updated GUI with fields for the inputs specified in the XML. The GUI is thereafter
ready to transmit. To receive, the "play" button has to be clicked once.

Figure 6.1: Chain of events for updating XML.

6.2 Result of Experiments
The communication between GUI’s and between GUI and the previous test tool was suc-
cessful from an early stage. This because NMEA-sentences could be sent back and forth. The
GUI could correctly classify the messages as valid or invalid. The validation followed the rules
set in the XML-file for both structure and value for NMEA and JSON. The result of the test

42

6.2 Result of Experiments

with the INS was retrieval of the full messages with a correct validation for both structure
and value-ranges. Any other formats that could be sent by the INS-sensor was received but
deemed invalid as expected, because they were not specified in the XML.

As for the MUI component tests, a significant performance degradation was observed. For
100 rendered ListEntry objects, which is the dividers representing messages in the GUI, a
debilitating amount of input-latency was apparent when expanding the message dividers.
The latency from perceived click to perceived complete expansion was approximated to be
at least 500 milliseconds. Whereas the components without MUI accordingly showed no ap-
parent input-latency. The MUI-free versions latency is thus approximated to be below 200
milliseconds. Worth mentioning however, was that useMemo was not used in the test.

The briefly mentioned 100 Hz stress test using the previous test tool resulted in all messages
being received, all while the GUI remained stable and responsive.

6.2.1 Test tool comparison

Category CJEX-sim Previous tool
1 10(11) 10(11)
2 7 4(7)
3 4 4

Table 6.1: Result of test tool comparison where the parenthesis con-
tain a count of even partially or substandard functionality.

43

Chapter 7

Discussion

The starting point of this project was inexperience of web development. We had some expe-
rience working with Visual studio and C# external to our time at LTH. This is relevant when
discussing the time span of the project. The inexperience of web development meant some
extra time was spent reading and trying React hooks and JSX objects. While the experience
with C# and its tools meant that those parts could be quickly started.

7.1 Process
Because of the small size of the development group the need for a prescriptive or strict pro-
cess was not apparent. A task list was deemed sufficient because the amount of parallel work
in the project never exceeded an unmanageable amount. Reflecting on the use of lists brings
to light some similarities to a Kanban board because of the dynamic appending to the list
when a need for a functionality was apparent. But also because of the flow of having a list of
tasks to do and crossing them off one or two at a time. Informally there were roles emulating
a product owner and a scrum master. The product owner was the person with the knowledge
of the business need and the scrum master was the one with the notebook containing the task
lists.

Reasoning around the process makes it clear that a mix of principles were used that felt
natural and easy to implement at the time. The complexity of figuring out the design and
eliciting parallel to structuring a process meant the process was not set up at first, but was
iterated upon during the project. If this work were to be continued or extended with more
developers, the task list would naturally progress to a Kanban board to ensure a more col-
laborative space. The digitalisation of the task list would also offer better traceability and
documentation at the cost of some initial setup- and learning effort.

The iterative implementation of functionality by first introducing the least complex func-

44

7.2 UX/UI

tionality first was convenient to reduce the complexity of the brainstorming, and allowed for
design of more complex parts being done when the practical information was maximized.
Figuring out the least complex functionality also led to dividing the task into smaller parts
and starting with a manageable part.

The use of whiteboards which always were in the vicinity was deemed useful because the
information and diagrams from focused brainstorm sessions were easy to find and see. Min-
imal context switching was needed to access the information, just a turn of the head. This
allowed our code decisions to be more frequently influenced by the design decisions that
were agreed on.

7.2 UX/UI
The GUI follows the Saab design guidelines (Saab AB, 2022). The design guidelines are used
for inspiration and to give the GUI a design that is recognisable as a Saab product. However,
the design guidelines are not meant to severely restrict the design and do not cover all as-
pects of the design. Sometimes complementary design choices had to be done, such as what
happens when hovering over certain parts. Designs of effects existed but being cautious of
overuse of those effects led to some diversification and additional effects.

7.3 Technical Choices
A range of technical choices were made in the project, some almost unconsciously.

7.3.1 API
REST was one of those technical decision that was made early on in the project. REST was
relatively straightforward to implement and our prior experience with it also helped. Despite
this, other solutions than REST were investigated at later on such as WebSocket and long-
polling. However, REST was deemed to be sufficient and thus the time required to overhaul
it was instead spent on developing other features that contributed more towards the goal of
this thesis.

7.3.2 GUI
It was decided early on to save the values of inputs, options and so forth in the local storage
of the browser. This was mainly a QOL improvement, to prevent the user having to type in
the same values multiple times when for example swapping between the different protocols
or pages. Local storage was also used to log the messages being fetched from the REST API.
Although, this lead to a number of issues, mainly in regards to security and performance.
After a deliberation with Marcus and investigating this further it turns out that any website
could access the local storage. This was a big issue that had to be addressed. Furthermore
by logging the messages sent from the REST API in the local storage it impacted the perfor-
mance heavily when rendering the information. Local storage is also limited to 5MB which

45

7. Discussion

would most likely be exceeded. Local storage was changed for session storage in regards to
saving inputs, which is cleared after the session has ended. Moreover, the logging of messages
was moved to the REST API that implemented filtering and pages. Instead of sending all the
messages for each API Request, a limited number of the latest received messages would be
sent.

7.3.3 WISE
There were a number of technical choices made related to WISE, all having their drawbacks
and advantages. To begin with, it was decided not to separate the API service from WISE
as originally was intended, see figure 1.1. This was mainly due to reducing the number of
components and complexity. A separate database that is not part of WISE would have to
be constructed such as a SQLite database in order to store the data from WISE so that a
separate API service could access it. This would also have an impact on the delay, since there
would be one more step until the the information can be accessed. Although it would allow
saving the session data for later use and analysis which would be deemed beneficial. Another
decision that was considered was in regards to combining the API and TL Driver or at least
changing the TL Driver to a WISE service attached to the API Data Manager. This decision
was also not made mainly due to the decision being deliberated too late in the project stage
and it would not be worth the time needed to refactor the drivers. There is also a benefit
with splitting the drivers up since it makes it possible for the TL Driver to be located in
another network than the API Driver. Similar decisions were made with the ParseSE Driver,
to combine it with the other drivers. However, this was also deemed unnecessary for the task.

(a) The functionality of the API and TL Drivers are
moved outside WISE, while the ParseSE remains a WISE
Driver. All of the messages are logged in a database.

(b) API Driver combined with the
same functionality of the TL driver as
a service.

Figure 7.1: Two alternative solutions.

There was also a discussion held with the product owner towards the end of this thesis in
regards to the purpose of WISE in this solution. There is not necessarily a need for WISE in

46

7.4 Frameworks, tools and Libraries

this particular case, although it has a few benefits as is described above. There is a possibility
to partially transition away from WISE towards a monolithic approach as can be seen in
figure 7.1b where only ParseSE remains a WISE component.

7.4 Frameworks, tools and Libraries
This section lists the most important frameworks and libraries utilized in this project.

7.4.1 React
React with JSX allowed for fluid programming without thinking too much about dividing
HTML and JS. This allowed for easier implementation of logic where HTML objects had
to be returned conditionally. JSX allows for more variations, which means less restraints, in
programming which also increased ease of learning.

In this thesis, React was new to us, which meant that the code in this project can be op-
timized. Something that was missed were the assigning of keys in ternary operators. Adding
a key to the HTML objects is necessary to hint to the DOM that the components are differ-
ent. We did not use React to its full potential, which is advised if this product is to be further
developed. However, functional components and state was used which is sustainable.

7.4.2 MUI
MUI provides well-rounded components especially fitting when there is a need for more com-
plex logic. Having more complex logic behind components generally means the component
takes longer time to create, which in turn means the potential reward of using MUI is in-
creased. Furthermore, using MUI means flexibility of the UI is increased in later stages of
development due to the simple theme changes of MUI components compared to CSS. How-
ever, since MUI components carry a certain performance weight imposed by its implemen-
tation which can not be changed by any developer, certain applications involving a frequent
or high amount of rendering can be slowed down. MUI solves this by exposing hooks which
can be utilized to implement a lightweight version of a component. However, in this project
with limited knowledge of React, it was deemed riskier to use these hooks than to imple-
ment components ourselves. The performance degradation with MUI components can most
likely be mitigated by using useMemo on the individual expandable accordion components.
Correct use, which means assigning a unique key to components using UseMemo, can most
likely result in smooth performance. Combined with optimizations done with a production
build, MUI could be viable for future use.

7.4.3 NMEA
Some libraries existed for implementing NMEA messages. However, they were either poorly
documented or too complex for our use case. When seeing the risk of time waste studying
existing complex libraries or the risk of using libraries not optimized for our use case, it was

47

7. Discussion

decided that NMEA was to be implemented from the ground up. Having a fairly straight-
forward implementation, the need for an existing implementation was not great enough.

7.4.4 XML
Some alternatives exist for XML in the use of serialization. The ones compared were Protobuf
and JSON. The advantages of XML over protobuf is beginner-friendliness. Protobuf has a
more complex syntax which were different from previous experience with markup languages
such as HTML. Another option for serialization was JSON. However, XML was deemed to
have more human-readable tags and has the option to add attributes to tags directly. Further-
more, Enterprise Architect has the ability to export XML from models, which means that for
a coupling with EA, XML was required lest another conversion to JSON would need to be
added to integrate into the solution. Additionally, there is the benefit of being able to use an
XSD, which also is integrated in .NET that is able to generate XML-reading-classes from an
XSD file. All of this coupled with XML being deemed sufficient led to the choice.

7.4.5 react-json-viewer
react-json-viewer is a component in React which can display JSON-formatted messages with
a tree view containing expandable nodes. This component saved time and decreased risk
implementing JSON messages in a readable format.

7.4.6 ESLint
ESLint(OpenJS Foundation, 2022) is a tool used to flag errors in JS code. Usage of ESLint is
recommended to keep a clean environment. Visualising errors in the terminal and keeping an
overview is motivating to fixing those errors. When the code is completely free of detected
errors there is a green text indicating this. This probably proves as a reward for the brain
(Schiffer et al., 2014) which in turn encourages the behaviour of creating cleaner code.

7.5 Tests
The MUI component test with MUI Accordion and custom build components did not use
further optimization techniques. However, using further optimization techniques could per-
haps result in acceptable input-latency, if coupled with fewer objects rendered in the list.
Although, this would impose greater limits on the solution and was deemed to be disadvan-
tageous. The cause for the greater performance with the custom build components was the
lightweight approach. MUI Accordion is made to be a general component and thus contains
more content to be implementable in many scenarios. Additionally, MUI Accordion con-
tained an animation when expanding which gives the GUI a more living appearance. How-
ever, with our use case, a lightweight approach was considered more advantageous due to
the commercial potential use of the solution. In commercial scenarios, productivity is pri-
oritized and therefore the faster expansion is more aligned with the prioritization. Showing
more components on screen at once is also better for giving the user a better overview of data
when needed.

48

7.6 Comparison

7.6 Comparison
Upon looking for other programs similar to this solution, no other program with the same
characteristics were found. Several tools with the ability to view data and do some kind of
health check of network was found. But none which could send specified protocol messages
at the same time, which makes the solution in this thesis unique. Furthermore, a dispropor-
tionate need of an in-house tool because of security and confidentiality concerns exist for
Saab. These concerns makes an in-house tool essential for the types of operations needed.

7.6.1 SailSoft’s NMEA/AIS Simulator
The closest competitor found was SailSoft’s NMEA/AIS Simulator. The tool has routes which
is a variation of the future development of scenarios for the developed tool in this thesis. The
additional use of this thesis solution would be the dynamic specification, with the ability
to specify even more custom messages and extend for more behavior. Sailsoft’s solution is
missing the part with validation that is present in this solution. It is also strictly limited
to the NMEA 0183 protocol, while the solution presented in this thesis is more of a general
approach that is able to support a wide array of different field-based protocols such as JSON.
This comparison credits this thesis’ solution with some uniqueness.

7.6.2 Wireshark
If one were to compare our solution with Wireshark (Wireshark, 2022), which is a packet
sniffer program to investigate network protocols and communication, one would see that
Wireshark is a popular program with broad investigative functionality. However, all of that
functionality is used with the help of a certain syntax for filtering and the user gets a wide
range of data shown. The solution shown in this thesis is a more specific tool that filters
out relevant information with the help of a GUI with buttons and the like. Firstly, this helps
lower the competence needed to use the program and secondly, because of the specific nature,
the relevant information is gathered with less clicks or steps and therefore faster. This speeds
up the process. Another attribute of the solution is that it is in-house to Saab Kockum’s,
which means that any future development can be tailored to Saab’s needs, which can further
improve the speed of the testing and integration process. Controlling the software develop-
ment can allow easier addition of triggers when certain values are gathered. Take for example
the future development of scenarios mentioned later in future development in this report,
where one would have to create a new program since Wireshark lacks a robust API to use the
data or add triggers to it. This means any attempt to automate testing procedures would not
work better with Wireshark.

Wireshark also lacks the ability to send any information or to simulate a sensor. Wireshark
is intended to look at data, not create and send it. This is where this thesis’ solution has
the upper hand when considering Saab Kockum’s needs, since it is made with those needs in
mind.

49

7. Discussion

7.6.3 Previous Test Tool
The previous test tool has the flaws relating to the process in which it is created. Those flaws
such as repeated development led to longer time to change or implement sensor testing. Fur-
thermore, the development of the test tool was further from the users in terms of amount
of parties involved and any distance from the user can result in increased steps the user-
needs need to be communicated, which can increase risk of miscommunication or missed-
communication.

The test tool comparison gives some estimation of a comparison. However, one has to con-
sider that the list of functionality that is compared can be flawed by containing more func-
tionality that is contained in one tool compared to the other. This bias was mitigated by
looking for all existing functionality and include it in the list. Meaning a superset of the
union between each test tools functionality. There is still possibility for bias through the
assessment of whether or not the functionality exists. Because it’s the developers of one test
tool deeming if functionality exists. Having more knowledge around one test tool could cause
some misses in the other tool. This was kept in mind during the comparison process and dis-
cussion were had among developers to maximize the fairness in the comparison.

The result of the comparison seems to indicate that the test tools are not significantly dif-
ferent when it comes to amount of pure functionality. There were some functionality where
one performed better and vice versa. This is seen as positive for the new web-based test tool
as it holds more potential going forward. This is reasoned forth by the fact that the new
test tool is built on a foundation which allows for more re-use and flexibility, and the use
of more modern frameworks. The new tool is designed to be dynamic, which means that
any re-implementation can be done at a fraction of the time using XML. The XML is an ad-
vantage because it requires less competence to use than to implement an entire application
from scratch. The XML acts as a source for the entire program’s dynamic behaviour, which
improves the traceability since any change made to the XML will have an immediate synchro-
nizing effect. If a coupling to EA is implemented in future versions, the machine-readable
parts of the IRS for the new test tool would be guaranteed to be followed by the test tool,
whereas the previous test tool cannot be guaranteed to follow the latest IRS. Also the new test
tool is developed in-house, meaning the lead time to obtain and use said test tool is assumed
to be significantly shorter.

7.7 Source Evaluation
When searching for information on how to solve programmatic problems there is a focus
on gathering many examples with speed to broaden the problem-solving horizon. Therefore
google is frequently used for hastily finding many sources. The problem with google is that
anything can be shown, including old or incorrect information. Especially with ever evolving
products and frameworks. However, because of the programmatic nature of the problems,
they can be evaluated quickly by checking if the program compiles and analyzing fitness
by reflecting on the soundness of the solution in line with personal knowledge. Therefore,
finding incorrect information is usually quickly detected as incorrect resulting in the cost

50

7.8 Ethical aspects

being low for finding faulty information. Several sources are visited to compare solutions
and which solution is most up to date. Using Google to search has the benefit that the most
fitting answer most often is at the top. Regarding React, the sources mentioning hooks were
preferred instead of those containing ComponentDidMount. This because ComponentDid-
Mount is deprecated and hooks are more recent. Moreover, when researching frameworks,
the documentation stemming from the developers of the framework is preferred as long as it
is up to date.

Some sources can be validated by us with the use of other sources that back up claims. An
example of a source that has been validated is (Rietman, 2008). The reference is a walk
through of how to calculate NMEA checksums. The principle set forth is widely used to
calculate checksums for other protocols. Calculating checksum in line with this method re-
sulted in the NMEA-sentences being validated as correct when sent from an IMO-certified
INS outputting NMEA-sentences. The INS is identical to the ones used in real scenarios. Ad-
ditionally, the INS outputs the same message as a LOG-sensor would according to sources at
Saab. Others can be validated by their source of origin, ones which are regarded as especially
trustworthy includes sources from governments, companies or well known journals such as
IEEE. For example (IBM Cloud Education, 2021), IBM is a well established actor with more
than a century of experience and operation within the tech domain with many inventions
and patents. Hence it could be considered a reliable source. In instances where the origin
may not be verified and source may be suspect, other sources can be used to back up the
claims of the unverified one if found. If not, the unverified source would be disregarded.

7.8 Ethical aspects
This work has been done during weeks containing no more than 46 hours, and most often
under 40 hours. A work/life balance has been encouraged and no personal conflicts have ap-
peared during this work. Collaboration has been encouraged with compromises being made
when developers have had different opinions. Because of the software living in office comput-
ers, weekend-work has for the most part not been possible. Therefore allowing for recovery
during weekends. The writers are confident that the work done has been completed under
ethically sound work conditions.

The purpose of this solution is to increase the productivity of developers developing or test-
ing communication across systems. As a general and dynamic toolset, there is no shortage of
use cases.

With such a general tool, one can wonder where the responsibility is of its use. Is the en-
gineer responsible for how the product is used? If a football is constructed, is the constructor
responsible for the football not being used to harm anyone? An example would be if a player
was struck by the ball in the head. Is the maker at fault or the user? Is it the intention of the
maker or the result of the makers actions? The same goes for the user, is it the intention of
the user or the result of the users actions that dictate morality? This dilemma is called dual-
use (Miller and Selgelid, 2007). Perhaps everyone carries responsibility to at least reflect on
ethical aspects.

51

7. Discussion

The solution is not exclusive of other industries. However, working with Saab, a company
in the defence sector, results in the discussion naturally progressing towards aiding technical
military development. Aiding in military development might not intuitively be considered
ethical. However, military development has had many benefits for civil use. As an example,
GPS originated from the US military which is widely used today on the planet to navigate
(Federal Aviation Administration, 2022). Another example is the positive development the
military has had on cryptography, which saw a paradigm shift during world war two that
also contributed to the invention of modern computers (Tresorit team, 2022). Cryptography
is crucial in today’s society in protecting sensitive information, such as bank details, from
malicious third parties.

Furthermore, halting production of military material is not effective due to it opening up
opportunities for other companies in the same market. Another company can simply replace
the production down the line if systemic and regulatory inhibitions are missing. What a
company can do to have a healthy ethics, is align itself and comply with regulations set up
by government branches influenced by democracy. Today, Saab is complying with regula-
tions set up by the Inspectorate of Strategic Products (ISP) (The Board of Directors of Saab
Aktiebolag, 2021). Which in turn is influenced by the ruling party, decided by a democratic
process. Therefore the responsibility of limiting export is passed to ISP. The subject of na-
tional defence is more easily justified in a democratic society where accepted values of the
people are defended and not repressed. The question thus becomes if democracy is worth
defending, which is supported with the concept that ethics can be the art of rationalising
what is best for a majority of people. Since democracy is for the majority, democracy is con-
ceptually aligned with what makes ethics. As opposed to communism, which is also for the
masses, democracy has been proven to be rather stable.

The solution can possibly be used to gain more funding through sales and to deliver more.
Therefore the solution can have an impact on keeping the company afloat. Keeping Saab
afloat can result in the 18000 people employed keeping economic stability and further devel-
oping technology. Employments are good for the economy and good for keeping peace. (The
United States Institute of Peace, 2022).

Finally, transparency is important when working with confidential material. Transparency
from authors of work based on confidential material can often be lacking in information re-
quired to evaluate the article. Which creates a need to trust the authors words with subpar
evidence. It is in such moments that the authors need to hold themselves accountable to re-
port accurately and to be honest. The possibility to make up information and when asked
to prove it, claim confidentiality, is not ethically sound as it can fool people into believing
faulty information, which then can jeopardize their performance at work or generally in life.
Therefore, authors may to be held to a certain standard to ensure minimal inaccuracy can
occur. The reader is encouraged to further reflect on this subject.

52

Chapter 8

Conclusions

To conclude this thesis, a solution was delivered with functioning communication according
to the specifications of the product owner. The product owner saw potential, value and real
use cases for the product. Exception was the exclusion of Enterprise Architect, for which the
program instead was designed to handle with minimal change. The solution delivered has
potential to be a unique program aligned with Saab Kockum’s needs.

A comparison was made to show that the difference in functionality between the two is
not significant. Although, the foundation of the new test tool is considered to be more mod-
ern, reusable and dynamic than the previous test tool. The solution is advised to be further
developed to create more value. The solution can be used in its current state for viewing
communication with validation and filtering functionality.

This work brings light to what data and metadata is required to generate a functional GUI,
and proposed techniques and formats to possibly be used. Interesting to further investi-
gate would be if Enterprise Architect can sufficiently provide this metadata in a worthwhile
manner and what advantages and drawbacks would exist in such enterprise workflows. Fur-
thermore, modelling standards for Enterprise Architect needs to be investigated.

8.1 Future Development
The preliminary idea for the project was to allow generation of software components from
Enterprise Architect. However, the increased complexity and inconvenience of working with
EA, and therefore third party consultants which held the EA competence, led to the feature to
be left out for this project. This means the option to extend the software to handle XML from
Enterprise Architect instead of standalone XML exist and therefore it is a realistic possibility.

53

8. Conclusions

8.1.1 XML
Currently XSD is not used to verify the structure of the XML file, instead some manually
error checks were implemented. This is not ideal since not all of the possible cases may be
covered and it is more of a flexible approach that relies on the user making no mistakes. It is
strongly suggested to instead implement XSD.

8.1.2 WISE
The main limitation with WISE is that it is session based. To overcome this a database such
as a SQLite or similar could be implemented as proposed in section 7.1a.

8.1.3 Security
The GUI could implement user authentication to limit the users access rights to specific IRSs.
This could be done with a login which also can be used to save information related to the
user.

8.1.4 Scenarios
When sending messages to the GUI, there could be a defined scenario to respond with certain
information, such as an acknowledgement. This concept allows for automated test-plans
directly in the GUI. This functionality could be extended to send information back and forth
to simulate certain control systems.

8.1.5 Data Visualization
Display trends
Data Visualization could show trends of messages and graphically visualize information sent.
Because of the fact that the system logs information, trends can be shown. More data points
such as received message frequency could be measured and reported through the GUI. Latency
could be measured by comparing the WISE time stamp with the time the message is rendered
on the GUI. Graphs of various types could be shown and/or exported to summarize certain
behaviour of the messages.

More filtering
With more data comes the need for more filtering functions. Filtering functions can be ex-
tended to filter for protocol type and to filter for specifically invalid messages. It could also
be extended to sort the messages in different chronological orders. More filters that could be
implemented is filtering for specific error messages.

54

8.1 Future Development

8.1.6 Testing
The Azure DevOps pipelines could contain more automated tests to further integrate with
Saab’s practice of continuous integration. Testing gives confidence to automate. More specif-
ically, implement automated tests for the GUI and the communication. Currently only the
CJEX library is partly tested.

8.1.7 Communication
More complex protocols
Currently only field-based protocols are supported that can be sent either via serial port or
UDP multicast. This could be extended to also support more advanced protocols with more
complex chain of sequences, such as acknowledgement.

Allow to listen/send on multiple ports
There was a late desire from the product owner to be able to send and/or listen to multiple
different systems or sensors at the same time. Those wishes were not able to be fulfilled due
to time constraints. This could possible be achieved by replacing the TL driver with WISE
services in the API Driver.

REST API
REST-API works great for many cases, however it has a major flaw in regards to real-time
communication since there is a need to continuously poll. This means that a request will be
sent regardless if new information is available or not from the back-end service. This will
have an impact on the performance for the browser, server and cause unnecessary strain on
the network. Another downside to polling is the delay between the requests. For example
if new information is available on the server and client recently polled, client will have to
wait for the information until next polling request which causes a delay. This can be miti-
gated by increasing the polling frequency, although this will further degrade the performance.

One way to combat this issue is to switch from a REST API to WebSocket which allows a two
way interactive communication session to be opened between a client’s browser and a server
(Mozilla Corporation, 2022) (Herwig et al., 2015). The WebSocket API makes it possible for
the client to send and receive event-driven responses without having to continuously poll the
server. In the article (Herwig et al., 2015) the authors compare the energy consumption for
mobile devices between REST and WebSocket. They found that WebSocket is better suited
for real-time communication since the connection to the server is always open and active
which improves performance. They also found that the latency was improved by not having
to send the HTTP-Headers for each request. However, the major challenge with WebSocket
is that it is mainly a protocol for communication and not for defining the structure itself
(jfarcand, 2012).

55

8. Conclusions

Another way is to use a variant of polling called long-polling (Javascript.info, 2021) (Her-
wig et al., 2015). It is much simpler to implement than WebSocket and shares some of its
benefits such as being able to receive messages without delays. The way it works is that the
client sends a request to the server, which does not close the connection until it has new in-
formation available. Once it does, the server responds immediately to the request and the
client makes a new request to the server. However, in comparison to WebSocket it still has the
drawback of having to establish a new connection after each request is responded to which
has a negative affect on the performance compared to the open and active connection of a
WebSocket (Herwig et al., 2015).

The best of both worlds is to combine REST over a WebSocket. By implementing an ap-
plication level protocol on top of the WebSocket. This is achievable with a library such as
SwaggerSocket (jfarcand, 2012) (jfarcand et al., 2019). In our case the WebSocket may be
used for the real-time communication while the REST for initialization of the web GUI and
other related settings.

8.1.8 UX

Embedded IRS
Connected IRS could be generated and embedded into the web GUI when generating said
GUI. This could be done by linking to a .PDF on a server or locally. The GUI could then
have a switch between different embedded IRSs and get the belonging collection of protocol
messages.

Custom behaviour
The react application could contain custom coded behaviour for more complex NMEA mes-
sages. For example the DBT message contains water depth in different units. A custom
behaviour in this case could be automatically converting between the different units when
one of the fields is filled in the web GUI. Alternatively, only the SI units could be displayed
in the web GUI and the rest could be converted in the back-end away from the user.

Combine protocols
The solution could contain behaviour to clump together similar messages into one interface.
An example is the HDT and HDM -NMEA messages which differ by the value in one field.
Switching that field could automatically switch protocol from one to the other.

Drag and drop of XML definition file
The GUI could contain drag and drop functionality of XML files to send file path to the
back-end instead of having to assign a file path programmatically.

56

8.1 Future Development

Tutorial
A tutorial could be implemented at the first visit to the site which explains functionality and
any required information.

8.1.9 UI
Better accessibility
The GUI could contain keyboard-focus-able elements and tags that can be read by screen-
writers. Material UI has support for this type of behaviour with Aria-labels.

Experimental design
Experiment with more modern appearance by deviating from Saab Design Guidelines.

Different themes
Theme switching can be implemented with the choice of light and dark mode. Currently
only dark mode is implemented.

Expanded MUI usage
The components can be ported to MUI or extended in functionality. The options can be
implemented to color code components based on errors. MUI can allow easy popups to be
implemented which can be used to give the user information. Popups can also be used at the
first visit to the site to explain how the site works. MUI can also be used to further align
with Saab’s goal to use Google’s Material Design. MUI comes with both extra functionality
but also some limitations. The main limitation found in this project included poor optimiza-
tion when rendering many components. Although this could be further investigated using
different optimization techniques such as UseMemo() and by evaluating a production build.
Production builds in React are greatly optimized because of bundling of software resources
to allow for use of resources only when relevant.

57

Chapter 9

References

Alpert, S., Abramov, D., and Florence, R. (2018). React today and tomorrow and 90%
cleaner react with hooks. https://youtu.be/dpw9EHDh2bM?t=411.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-
ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S.,
Schwaber, K., Sutherland, J., and Thomas, D. (2001). Manifesto for Agile Software Devel-
opment. https://agilemanifesto.org/iso/en/manifesto.html.

Federal Aviation Administration (2022). Satellite Navigation - Global Positioning System
(GPS). https://www.faa.gov/about/office_org/headquarters_offices/ato/
service_units/techops/navservices/gnss/gps.

Hannay, J. E., Dybå, T., Arisholm, E., and Sjøberg, D. I. (2009). The effectiveness of pair
programming: A meta-analysis. Information and Software Technology, 51(7):1110–1122. Special
Section: Software Engineering for Secure Systems.

Herwig, V., Fischer, R., and Braun, P. (2015). Assessment of REST and WebSocket in
regards to their energy consumption for mobile applications. International Conference on
Intelligent Data Acquisition and Advanced Computing Systems, 1:342–347. doi: 10.1109/I-
DAACS.2015.7340755.

IBM Cloud Education (2021). REST APIs. https://www.ibm.com/cloud/learn/
rest-apis.

Javascript.info (2021). Long polling. https://javascript.info/long-polling.

jfarcand (2012). Introducing SwaggerSocket: A REST
over WebSocket Protocol. https://blog.wordnik.com/
introducing-swaggersocket-a-rest-over-websocket-protocol.

58

https://youtu.be/dpw9EHDh2bM?t=411
https://agilemanifesto.org/iso/en/manifesto.html
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/gps
https://www.ibm.com/cloud/learn/rest-apis
https://www.ibm.com/cloud/learn/rest-apis
https://javascript.info/long-polling
https://blog.wordnik.com/introducing-swaggersocket-a-rest-over-websocket-protocol
https://blog.wordnik.com/introducing-swaggersocket-a-rest-over-websocket-protocol

jfarcand, elaktio, fehguy, webron, JanxSpirit, and starlightknight (2019). Swagger-
Socket: A REST over WebSocket Protocol. https://github.com/swagger-api/
swagger-socket.

Khare, R. and Rifkin, A. (1997). Xml: a door to automated web applications. IEEE Internet
Computing, 1(4):78–87. doi: 10.1109/4236.612222.

Meeks, T. M. (2015). How one project at sandia labs is using sparx enterprise architect to
create model-driven requirements and documents.

Meta Open Source (2022). React A JavaScript library for building user interfaces. https:
//reactjs.org/.

Meta Platforms (2022). Introducing jsx - react. https://reactjs.org/docs/
introducing-jsx.html.

Microsoft (2022). Azure DevOps. https://azure.microsoft.com/en-us/services/
devops/.

Miller, S. and Selgelid, M. J. (2007). Ethical and Philosophical Consideration of the Dual-use
Dilemma in the Biological Sciences. Science and Engineering Ethics. doi: 10.1007/s11948-007-
9043-4.

Mozilla Corporation (2022). The WebSocket API(WebSockets). https://developer.
mozilla.org/en-US/docs/Web/API/WebSockets_API.

MUI (2022). MUI: The React component library you always wanted. https://mui.com/.

OpenJS Foundation (2022). Eslint. https://eslint.org/.

Raymond, E. S. (2018). NMEA Revealed. https://gpsd.gitlab.io/gpsd/NMEA.
html#_dbt_depth_below_transducer.

Rietman, G. (2008). How to calculate the NMEA checksum. https://rietman.
wordpress.com/2008/09/25/how-to-calculate-the-nmea-checksum/.

Saab AB (2022). Digital Design. https://brand.saab.com/brandcenter/en/saab/
digital-design.

Sailsoft (2014). Sailsoft AIS and NMEA Simulator Software. https://www.sailsoft.
nl/.

Schiffer, A.-M., Muller, T., Yeung, N., and Waszak, F. (2014). Reward activates stimulus-
specific and task-dependent representations in visual association cortices. Journal of Neuro-
science, 34(47):15610–15620. doi: 10.1523/JNEUROSCI.1640-14.2014.

Systems, S. (2022). ENTERPRISE ARCHITECT. https://sparxsystems.com/
products/ea/index.html.

59

https://github.com/swagger-api/swagger-socket
https://github.com/swagger-api/swagger-socket
https://reactjs.org/
https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://mui.com/
https://eslint.org/
https://gpsd.gitlab.io/gpsd/NMEA.html#_dbt_depth_below_transducer
https://gpsd.gitlab.io/gpsd/NMEA.html#_dbt_depth_below_transducer
https://rietman.wordpress.com/2008/09/25/how-to-calculate-the-nmea-checksum/
https://rietman.wordpress.com/2008/09/25/how-to-calculate-the-nmea-checksum/
https://brand.saab.com/brandcenter/en/saab/digital-design
https://brand.saab.com/brandcenter/en/saab/digital-design
https://www.sailsoft.nl/
https://www.sailsoft.nl/
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html

9. References

The Board of Directors of Saab Aktiebolag (2021). Annual General Meet-
ing of Saab AB on 13 April 2021. https://www.saab.com/globalassets/
corporate/corporate-governance/annual-general-meeting/2021/en/
board-statement-re-proposal-from-sw-peace-and-arbitration-society.
pdf.

The United States Institute of Peace (2022). Em-
ployment Generation. https://www.usip.org/
guiding-principles-stabilization-and-reconstruction-the-web-version/
sustainable-economy/employment-g.

Tresorit team (2022). The history of encryption: the roots
of modern-day cyber-security. https://tresorit.com/blog/
the-history-of-encryption-the-roots-of-modern-day-cyber-security/.

Vuksanovic, I. and Sudarevic, B. (2011). Use of web application frameworks in the
development of small applications. 34th International Convention MIRPO, pages 458–
462. https://www.researchgate.net/publication/221412761_Use_of_web_
application_frameworks_in_the_development_of_small_applications.

W3 Schools (2022). XML Schema Tutorial. https://www.w3schools.com/xml/
schema_intro.asp.

Wireshark (2022). Wireshark. https://www.wireshark.org.

60

https://www.saab.com/globalassets/corporate/corporate-governance/annual-general-meeting/2021/en/board-statement-re-proposal-from-sw-peace-and-arbitration-society.pdf
https://www.saab.com/globalassets/corporate/corporate-governance/annual-general-meeting/2021/en/board-statement-re-proposal-from-sw-peace-and-arbitration-society.pdf
https://www.saab.com/globalassets/corporate/corporate-governance/annual-general-meeting/2021/en/board-statement-re-proposal-from-sw-peace-and-arbitration-society.pdf
https://www.saab.com/globalassets/corporate/corporate-governance/annual-general-meeting/2021/en/board-statement-re-proposal-from-sw-peace-and-arbitration-society.pdf
https://www.usip.org/guiding-principles-stabilization-and-reconstruction-the-web-version/sustainable-economy/employment-g
https://www.usip.org/guiding-principles-stabilization-and-reconstruction-the-web-version/sustainable-economy/employment-g
https://www.usip.org/guiding-principles-stabilization-and-reconstruction-the-web-version/sustainable-economy/employment-g
https://tresorit.com/blog/the-history-of-encryption-the-roots-of-modern-day-cyber-security/
https://tresorit.com/blog/the-history-of-encryption-the-roots-of-modern-day-cyber-security/
https://www.researchgate.net/publication/221412761_Use_of_web_application_frameworks_in_the_development_of_small_applications
https://www.researchgate.net/publication/221412761_Use_of_web_application_frameworks_in_the_development_of_small_applications
https://www.w3schools.com/xml/schema_intro.asp
https://www.w3schools.com/xml/schema_intro.asp
https://www.wireshark.org

Appendices

61

Appendix A

Information Model Definition

How a Information Model may be defined in XML, in this example
a generated one can be seen.

62

Appendix B

Iterations of the prototype

Early layout of the GUI with some API functionality.

63

B. Iterations of the prototype

Experimenting with different input types.

Initial design of the message viewer.

64

Experimental layout for the navigation bar, updated design for the
message window and generation of inputs from dummy-data.

65

Appendix C

MUI comparison

MUI version using Accordion and Typography. Lightweight custom version.

66

Appendix D

Solutions functionality

The solution’s functionality includes:
• Sending specified field-based protocols.

• Receive specified field-based protocols.

• Dynamic and lightweight specification of protocol.

• Validation of messages according to specified protocol.

• Error description.

• Filter between received and sent messages.

• Filter between valid and invalid messages.

• Show messages in Hexadecimal format.

• Show messages in ASCII format.

• List view.

• Latest message view in fields.

• Multi-cast UDP.

• Serial communication.

• Time received measurement.

• Network settings.

• Display PDF of choice.

67

D. Solutions functionality

• Real-time edit of specified protocols.

• Dark Mode.

• Allows user to send faulty data if specified(e.g 361 degrees).

• Stops user when sending data outside of specified ranges.

• Modern appearance (according to product owner).

• Expandable windows.

• Expandable message.

• Ability to stop retrieval.

68

Appendix E

XML reference

Tag params Example Values Description
<Protocol> type type="NMEA" Any

Children
<Protocol>
<Sentence/>
</Protocol>

<Sentence> id id="VBW" Any
talkerid talkerid="VD" Any

Children
<Sentence><Group/>
</Sentence> <Group>

<Root> id id="V1" Any
Can replace
<Sentence>

title title="Template" Any

<Group> Children
<Group>
<Field/>
</Group>

Fields
Used to show
group in GUI.

<Field> type type="float" float,unit,bool,int,string Required.

name name="water depth"
ASCII, A-Z, space
and comma.

Required,
Unique.

id id="waterdepth1" ASCII
Required,
Unique.

min min="0" float, int, time
minimum allowed
field input.
Default none.

max max="360" float, int, time
Maximum allowed
field input.
Default none.

minLength minLength="5" int
Minimum allowed
characters in field.
>0. default: "1".

maxLength maxLength="8" int
Maximum allowed
characters in field.
>0. default "inf".

value value="10" Same as type
Default value in
field.Default none. >0.

required required="true" bool
Specifies if field must be
filled by user.
Default "true".

Children
<Field>
<Option>
</Field>

<Option>

<Option> label label="Star Wars" Any
Used to create a dropdown
with specified options
in the parent field.

value value="1" Number Unique

Table E.1: Reference for tags and variables for the XML file.

69

Appendix F

Final Design

70

Finaldesign
ofthe

hom
epage.

71

F. Final Design

Selecting
anotherprotocol.

72

Finaldesign
ofthe

M
essage

view
erthatshow

sa
num

berofvalidated
and

one
invalidated

m
essage.

73

F. Final Design

Expanded
m

essagesw
ith

the
data

and
hexadecim

alvalue,also
show

san
errorforthe

invalidated
ones.

74

H
ow

a
JSO

N
m

essage
isshow

n
w

hen
expanded.

75

F. Final Design

Settings
page

for
serial-port,currently

no
serial-port

could
be

found
in

this
instance

since
the

PC
running

it
has

none.

76

Settingspage
form

ulticastU
D

P.

77

F. Final Design

PD
F

selection
forIR

S.

78

A
n

Exam
ple

PD
F

being
displayed.

79

FACULTY OF ENGINEERING | LUNDS TEKNISKA HÖGSKOLA | PRESENTED 2022-08-23

EXAMENSARBETE Model-based Generation of a Sensor Reading Web Test Tool
STUDENTS Jonas Andersson, Christoffer Lindell Bolin
SUPERVISOR Marcus Klang (LTH)
EXAMINER Jesper Öqvist (LTH)

Dynamic Sensor Reading Web Test Tool

POPULAR SCIENCE SUMMARY Jonas Andersson, Christoffer Lindell Bolin

Competence for software can be rather expensive, you do not want to waste work on
duplicate, redundant software. This thesis aims to remove some repeated work for
Saab Kockum’s engineers and save time. This is achieved with a test tool that can
handle various field-based protocols specified in an XML-file by the user.

Saab’s current test tool is implemented from
scratch by a third-party for each new protocol
and sensor. This is problematic because it wastes
time that could be spent on more innovative tasks.
This project sets forth a solution which uses XML
to edit generated components to adapt to one or
more specified protocols to be tested for. The
XML file allows for specification of a field-based
protocol which alters not only the communica-
tion supported through Saab Kockum’s WISE
connectivity, but the inputs and outputs gen-
erated in a web-based Graphical User Interface
(GUI). While the previous test tools needs weeks
to re-implement, the new solution simply require
the user to change the XML. This allows for
lightweight and rapid adaptation.

The solution was quantitatively compared to the

previous test tool and there were not significant
difference in amount of functionality, and with a
more flexible foundation, there is more potential
to further develop, which is advised using the doc-
umented possibilities.

	Introduction
	The problem
	Purpose
	Scope

	Related Work
	Material UI
	WISE
	WISE Driver
	WISE Data Manager
	WISE Information Model
	WISE Connectivity

	Previous Test tool
	Enterprise Architect
	Sailsoft's NMEA/AIS Simulator

	Technical Background
	React
	Components
	State
	Declarative
	React Rendering

	REST API
	XML
	NMEA 0183
	Sensors
	Applications

	Azure DevOps

	Approach
	Process
	Daily Stand-up
	Office Environment

	Method
	Prototype
	Brainstorming
	Logbook
	Pair Programming
	Object Oriented Design
	Class vs Functional components in React

	Division of work
	Experimental Setup
	GUI to GUI
	GUI to Previous Test Tool
	INS to GUI
	SE to GUI
	MUI Component Tests
	Test Tool Comparison

	Implementation
	Azure DevOps Pipelines
	XML
	GUI
	CJEX
	REST-API
	WISE
	TL Driver
	API Driver
	ParseSE Driver

	Result
	Workflow of Solution
	Result of Experiments
	Test tool comparison

	Discussion
	Process
	UX/UI
	Technical Choices
	API
	GUI
	WISE

	Frameworks, tools and Libraries
	React
	MUI
	NMEA
	XML
	react-json-viewer
	ESLint

	Tests
	Comparison
	SailSoft's NMEA/AIS Simulator
	Wireshark
	Previous Test Tool

	Source Evaluation
	Ethical aspects

	Conclusions
	Future Development
	XML
	WISE
	Security
	Scenarios
	Data Visualization
	Testing
	Communication
	UX
	UI

	References
	Appendices
	Appendix Information Model Definition
	Appendix Iterations of the prototype
	Appendix MUI comparison
	Appendix Solutions functionality
	Appendix XML reference
	Appendix Final Design

