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Abstract

Biomolecular condensates are aggregates formed from liquid-liquid phase separation through the
interactions between nucleic acids and multivalent proteins. These condensates are essential for
many biochemical processes inside the cell. Therefore, there has been a large effort during the last
decade to create models and methods to describe these systems. Mixtures of RNA and proteins
are very common in nature, making it conceivable that RNA-protein interactions are important in
many biomolecular condensates. In this thesis these biomolecules are modeled as simple chains
of charged beads. First, one- and two-component protein systems are investigated, with results
that are consistent with previous findings made by other groups. RNA was then added to few
different one-component protein systems. It was found that the presence of a few RNA molecules
increases the aggregation propensity in the sense that aggregation sets in at a higher temperature.
When the amount of RNA in the system was increased past a certain threshold, this trend was
reverted.



Sonny Nilsson

Populärvetenskaplig beskrivning

Cellen är den fundamentala byggstenen för allt liv vi idag känner till. Inuti celler kompartmen-
taliseras viktiga funktioner till organeller, vilket är cellernas motsvarighet till organ. Klassiska
organeller kan kontrollera sin biokemiska miljö med hjälp av ett membran som avgränsar or-
ganellens inre från cytoplasman. Under de senaste åren har forskare dock funnit att membran
inte är universell för organeller. Biomolekyler, likt vattenmolekyler, kan attrahera och repellera
varandra. Precis som vattenmolekyler har olika aggregationstillstånd, har många biomolekyler
också det. Dessa biomolekyler kan under lämpliga förhållanden bildar droppar med mycket högre
täthet inuti droppen än utanför. Dropparna har kommit att kallas för biomolekylära kondensat
och kan ses som membranlösa organeller.

Huvudkomponenter i biomolekulära kondensat är proteiner och RNA. De proteiner som in-
går tillhör ofta den klass av proteiner som, istället för att vika sig till en särskild struktur, är
strukturellt oordnande. Precis som ordinära proteiner är de strukturellt oordnade kedjemoleyler
med aminosyror som byggstenar. De ingående aminosyrornas fysikaliska egenskaper avgör hur
ett protein beter sig. Det är dock inte enbart vilka aminosyror som förekommer i ett protein som
spelar roll, utan även deras inbördes ordning längs kedjan är viktig.

Hos majoriteten av de funna biomolekylära kondensaten förekommer också en annan sorts
biomolekyl - RNA. Istället för aminosyror är dessa uppbyggda av nukleotider. RNA-molekyler
är starkt negativt laddade och attraherar därmed positivt laddade aminosyror som till exempel
lysin. En möjlig hypotes är att RNA kan agera som aggregationsfrön, och hjälpa de strukturellt
oordnade proteinerna att bilda kondensat.

Att förutsäga en given biomolekyls benägenhet att fasseparera har visat sig vara en utman-
ing. Analytiska teorier kan ibland användas för att ge en viss förståelse av dessa system. Dock
bygger analytiska teorier på grova approximationer. Genom att använda numeriska simuleringar
kan en del av dessa approximationer undvikas.

I detta examensarbete undersöker vi förmågan att fasseparera hos korta proteiner med olika
laddningsmönster, genom numeriska simuleringar baserade på en enkel modell där varje aminosyra
representeras som en kula. Vi studerar system med en eller två proteinsorter. Dessutom under-
söker vi hur ett system med en proteinsort påverkas när RNA-molekyler tillförs. Resultaten tyder
på att tillförseln av en liten andel RNA ökar systemet benägenhet att aggregera.
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1 Introduction

In recent years, a large body of research has illuminated the importance of membrane-less or-
ganelles, also commonly referred to as biomolecular condensates. An extensively studied example
is P-granules, which are important for mRNA metabolism [1, 2, 3]. Stress granules have been
shown to be biomolecular condensates which are triggered due to stressors applied to the cell, such
as temperature changes and oxidation stress. Additionally, clustering of certain proteins in the cell
membrane is important for signal transduction, where the clusters are thought to be biomolecular
condensates [4]. Biomolecular condensates alter the local biochemical environment within cells
by changing the concentration of certain proteins or RNA molecules and thereby the rate of chem-
ical reactions. They also have the ability to change the physical environment such as viscosity [5].

Caenorhabditis elegans is a roundworm often used as a model organism when conducting
biomolecular research. In 2009 Brangwynne et al. [6] showed that P-granules in this worm
have liquid-like properties such as wettability, surface tension and repeated dissolution/conden-
sation. It was then suggested that the physical mechanism liquid-liquid phase separation (LLPS)
is responsible for the formation of these granules. This hypothesis has since been confirmed in
multiple experiments [7]. Furthermore, certain proteins with repeating/“blocky” amino acid se-
quences seem to be very common among the proteins found in biomolecular condensates [7, 8, 9].
These proteins with low-complexity domains are often intrinsically disordered proteins (IDP),
which, instead of folding into a specific 3D conformation, populate a broad ensemble of many
different conformations. Due to their flexibility, IDPs have many locations where they can interact
with other biomolecules. This is thought to be a driving force for LLPS [10].

Understanding the phase behaviour of biomolecules requires the use of statistical mechanics.
The complete solution to the problem is encoded into the partition function [11]. However, com-
puting the partition function of non-trivial systems in general impossible. For polymer-solvent
mixing, a widely used approximate method is the Flory-Huggins mean field theory from the
1940’s [12, 13]. An extension to polyelectrolytes was developed by Voorn and Overbeek in
1957 [14]. However, the mean-field methods are insensitive to the ordering of the monomers
written along the polymer chain, which is known to be important in biomolecular LLPS. A more
recent theoretical approach is usage of random phase approximation on polyampholytes [15]
which does indeed account for the ordering in the polymer sequence, but is approximately valid
only for low polymer densities [16].

The interaction energy between non-neighbouring amino acids is thought to be a combination of
several different kinds of interaction such as van der Waal, hydrophobic/hydrophillic, electrostatic
forces and the Pauli exclusion principle. The 21 different amino acids found in eukaryotic cells
have all different structure and potentials.

To understand the properties of polymer systems, numerical simulations are helpful. One cate-
gory of these simulations are the explicit chain simulations which is what this study will focus on.
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A popular strategy is to use coarse-grained (CG) models, where biomolecules are represented
by a chain of beads that interacts with other beads through two-body potentials. The loss of
resolution is made up by a gain in computer efficiency which makes simulations of larger systems
possible, while still preserving qualitative thermodynamical properties [17, 18].

The majority of the well-studied biomolecular condensates contain not only IDPs, but also
RNA [19, 20]. The negatively charged RNA molecules interact with proteins through electro-
static as well as other forces [21, 22]. Thus it is conceivable that the addition of RNA molecules
can function as “seeds” that IDPs can start to aggregate around, potentially leading to the forma-
tion of a biomolecular condensate.

In this thesis, we investigate an IDP-RNA system, where the molecules are modeled as chains of
charged beads, interacting through a simplified piecewise constant potential. For comparison, we
explore some one- and two-component IDP systems that have been studied before, using other
models. These studied found that the aggregation temperature of one-component systems and
the demixing propensity of the two-component system depend on the charge distribution along
the chains, as measured by the “blockiness”/charge patterning called ^ [23, 24, 25]. Using our
model, we find qualitatively similar results, which indicates that the properties studied are largely
insensitive to the precise form of the interactions.

Having verified this, we explore how RNA effects the aggregation propensity of an IDP. Here
RNA is modeled as a polymer consisting of negatively charged beads. We find that adding a
small amount of RNA increases the aggregation propensity of the system.

2 Theory and Methods

2.1 Biophysical Model

In this study amino acids contained in the proteins are modeled as hard beads with a step potential.
The simulations are run with a constant number of beads 𝑁 and in a box of volume 𝑉 , yielding
a bead density of 𝜌 = 𝑁/𝑉 . Each sequential bead within all chains are separated by a constant
distance of 𝑏. The chains of 𝑙 beads reside inside a cubic box of length 𝐿 𝑏 with a periodic
boundary.

Let the 𝑖th bead have the position,

®𝑟𝑖 = (𝑥1
𝑖 , 𝑥

2
𝑖 , 𝑥

3
𝑖 ) 𝑖 = 1, 2, 3, ..., 𝑁

where 𝑥𝑘
𝑖

are the 𝑘th Cartesian component of ®𝑟𝑖. Since a box with a periodic boundary is used,
interactions can occur over the boundary. Let 𝑟𝑖 𝑗 be the distance between beads of index 𝑖, 𝑗 .
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Then 𝑟𝑖 𝑗 is calculated with:

𝑟𝑖 𝑗 =

√√√ 3∑︁
𝑘=1

[
min( |Δ𝑥𝑘

𝑖 𝑗
|, |𝐿 − Δ𝑥𝑘

𝑖 𝑗
|)
]2
.

The two-body potential between beads used is similar to the one used in Daniel Nilsson’s thesis
[26], but instead of a hydrophobic potential, here an electrostatic step potential with hard spheres
is used:

𝐸𝑖 𝑗 =


∞, if 𝑟𝑖 𝑗 < 0.75𝑏
𝜖𝑄𝑖𝑄 𝑗 , if 0.75𝑏 < 𝑟𝑖 𝑗 ≤ 2𝑏
0, else

, 𝐸 =
∑︁
𝑖< 𝑗

𝐸𝑖 𝑗

where 𝑄 = ±1 is the charge of residue 𝑖, 𝑗 and 𝜖 is the interaction strength. The total system
energy 𝐸 is the sum of all the interaction energies.

2.2 Monte Carlo Simulation

Monte Carlo is a class of simulations where random sampling from a probability distribution are
performed to obtain numerical results. In this case, we desire to sample configurations of the
system from the canonical (𝑁𝑉𝑇) ensemble, meaning the probability to observe a configuration
S is:

𝑝𝛽 (𝑆) =
exp(−𝛽𝐸 (𝑆))

𝑍 (𝛽) (2.1)

where 𝑍 is the canonical partition function and 𝛽 = 1/(𝑘𝑏𝑇). A common technique used to
sample from this distribution is the Metropolis-Hastings Algorithm (MHA) [27]. This algorithm
is a Markov chain Monte Carlo technique, meaning that every generated state, 𝑆′, depends only
on the current state 𝑆 and the system parameters.

Let 𝑊 (𝑆, 𝑆′) be the conditional probability to transition to 𝑆′, given that the system is in 𝑆.
To ensure that MHA samples from a given (desired) probability distribution 𝑃(𝑆), the two
following two conditions are sufficient:

• That 𝑃(𝑆) is a stationary distribution, meaning that
∑

𝑆 𝑃(𝑆)𝑊 (𝑆, 𝑆′) = 𝑃(𝑆′)

• The system is ergodic, meaning that every state can from reached by any other.

Even if the second criterion is fulfilled in theory, the expected time it takes to go between states
can be significantly larger than simulation time. Detailed balance is a sufficient condition to
guarantee that the first criteria is fulfilled:

𝑃(𝑆)𝑊 (𝑆, 𝑆′) = 𝑃(𝑆′)𝑊 (𝑆′, 𝑆). (2.2)
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In MHA the transition probability is decomposed into a proposal probability, 𝐹 (𝑆, 𝑆′), and an
acceptance probability, 𝐴(𝑆, 𝑆′), such that 𝑊 (𝑆, 𝑆′) = 𝐴(𝑆, 𝑆′)𝐹 (𝑆, 𝑆′) for 𝑆 ≠ 𝑆′. Inserting this
form into eq. 2.2, one finds

𝐴(𝑆, 𝑆′)
𝐴(𝑆′, 𝑆) =

𝑃(𝑆′)𝐹 (𝑆′, 𝑆)
𝑃(𝑆)𝐹 (𝑆, 𝑆′) = exp(−𝛽(𝐸′ − 𝐸))𝐹 (𝑆

′, 𝑆)
𝐹 (𝑆, 𝑆′)

𝐴(𝑆, 𝑆′) and 𝐴(𝑆′, 𝑆) are not uniquely determined. A common choice is

𝐴(𝑆, 𝑆′) = min(1, 𝑒−𝛽Δ𝐸 𝐹 (𝑆
′, 𝑆)

𝐹 (𝑆, 𝑆′) ).

If now the proposition probabilities are symmetric (𝐹 (𝑆
′,𝑆)

𝐹 (𝑆,𝑆′) = 1) one further obtains

𝐴(𝑆, 𝑆′) = min(1, 𝑒−𝛽Δ𝐸 ). (2.3)

Now this scheme will only yield the true distribution if the simulation have run long enough
to “forget” the initial states because these early states will not be directly sampled from the
Boltzmann distribution. This means a “burn-in” period has to be initially conducted. The
proposed transitions, also referred here to simply as “updates”, will influence how fast the system
will converge to the right distribution [28]. This will be the topic of the next subsection.

2.3 MHA Updates

2.3.1 Single Chain Updates

The first class of updates are the rotation of one/two bead. To rotate a bead of index 𝑖 + 1, a vector
is drawn between the two neighbouring beads 𝑖, 𝑖 +2. The bead is then rotated a randomly chosen
angle, \, around this vector, acting as the axis of rotation. Another similar move is the rotation of
two neighbouring beads with indices (𝑖 + 1, 𝑖 + 2) simultaneously which is performed similarly,
but around the vector between the beads 𝑖 and 𝑖 + 3.

A classical move that is included here is the pivot which is a “folding” of a chain. This is
performed by selecting a random bead 𝑖, then creating a unit vector, ®𝑣, of random direction from
that bead. Then either neighbouring bead 𝑖 − 1 or 𝑖 + 1 is randomly selected. All of the beads on
the neighbour’s side are then rotated around ®𝑣 going through bead 𝑖 by a randomly determined
angle.

The last two updates for single chains are rigid-body rotation and translation. Chain rotation
is performed in a similar way as the previous rotations, but now the axis of rotation goes through
the center of mass of the chain.
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2.3.2 Cluster Updates

One of the issues sampling near a critical point is that the correlation time of many-particle systems
grows faster than linear size of the system. To reduce correlation time it was suggested by Robert
H. Swendsen and Jian-Sheng Wang in 1987 that certain cluster updates can be performed, called
Swendsen-Wang cluster algorithm [28]. They showed that when introducing these types of
updates, the correlation time in a system decreased significantly. The main idea is that a cluster
of chains is constructed, followed by a translation/rotation of said cluster. The procedure to
construct a cluster is:

1. Select a random chain 𝑖 in the system.

2. Let 𝐸𝑖 𝑗 denote the interaction energy between chains 𝑖 and 𝑗 . Chain 𝑗 is added to the cluster
with probability 𝑝 = max(1 − 𝑒𝛽𝐸𝑖 𝑗 , 0).

3. Repeat step 2 for all new chains added to the cluster. Stop when no new interactions can
be found. The cluster obtained this way is then translated or rotated as a rigid body.

In a system containing only negative interactions, it turns out that the new state can always be
accepted (𝐴(𝑆, 𝑆′) = 1). However when positive interactions are present, negative contributions
from the max function in step 2 above must be compensated for, in order for detailed balance to
hold. Let 𝐸0,+/𝐸1,+ be the sum of all positive interactions between the cluster and surrounding
chains before/after the proposed update. Then

𝐴(𝑆, 𝑆′) = min
(
1, 𝑒𝛽(𝐸0,+−𝐸1,+)

)
.

The relative frequencies of the different updates is presented in Table 1, and are the same as in
Ref. [26]. The program used in present study is a variant of that used in Ref. [26], modified so
as to allow for positive interaction energies.

Table 1: Distribution of the proposition probabilities for the updates used in all of the simulation
performed here.

Update Probability (%)
1-bead Rotation 20
2-bead Rotation 20

Pivot 20
Chain Translation 15
Chain Rotation 15

Cluster Translation 5
Cluster Rotation 5
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2.4 Phase Transitions

For a system in the canonical ensemble, the Helmholtz free energy

𝐹 = 𝐸 − 𝑇𝑆 (2.4)

where 𝑆 is the entropy, is minimized. When two states have similar free energies, the system can
spend significant time in both states. In LLPS the two states corresponds to a dilute phase, 𝑔, and
a mixed phase, 𝑙. Figure 1 illustrates these two states with snapshots from a simulation.

Coexistence of these two types of states is observed along the so called bimodal line in the
𝜌𝑇 phase diagram, as illustrated in Figure 2.
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Figure 1: Snapshots of equilibrated particle configurations with the sv1 protein. Simulations ran
at low temperatures result in a mixed states and high temperatures in a dilute states.

Since 𝜌𝑔 and 𝜌𝑙 corresponds to different system energies, there will be a signature behaviour in
the run-time history of the energy and energy histogram, see Figure 3. In the run-time history
there occurs transitions between two states corresponding to 𝐸𝑔 (𝑇) and 𝐸𝑙 (𝑇), separated by a
distance Δ𝐸 . As seen in the histogram, the energy associated with the two states forms a bimodal
distribution, which can be approximated by two separate Gaussian distributions. The transition
temperature 𝑇𝑏 (𝜌) may be defined as the temperature at which the areas under these distributions
are the same.

The heat capacity, 𝐶𝑣, is an useful property of the system when looking for phase transitions. It
is can be written in two ways:

𝐶𝑣 (𝑇) =
𝑑⟨𝐸⟩𝑡 (𝑇)

𝑑𝑇
=

𝛿2𝐸

𝑘𝑏𝑇
2 (2.5)
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𝑇𝑏 (𝜌)
Two-Phase
Regime

𝜌𝑔 𝜌𝑙 𝜌

𝑇

(𝜌𝐶 , 𝑇𝐶)

Figure 2: Schematic phase diagram for a single-component protein system. The bimodal curve
(full line) defines the shape of the mixed two-phase regime. The critical temperature 𝑇𝐶 is the
highest temperature at which phase seperation is observed.
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Figure 3: Time series (left) and distribution (right) of the energy from a simulation near 𝑇 = 𝑇𝑏
with sv1 (30 chains). At this temperature the system spontaneously transition between a dilute
and a mixed state.

where ⟨..⟩ means ensemble average and 𝛿2𝐸 the variance of 𝐸 . Given that the energies associated
with each state are sufficiently large apart, 𝐶𝑣 is at its largest when 𝑇 = 𝑇𝑏, written as 𝐶𝑣 (𝑇𝑏) =
𝐶max
𝑣 . At 𝑇 = 𝑇𝑏 (𝜌) we can then write:

𝐶max
𝑣 =

𝛿2𝐸𝑔 (𝑇𝑏) + 𝛿2𝐸𝑙 (𝑇𝑏)
2𝑘𝑏𝑇2

𝑏

+ (Δ𝐸 (𝑇𝑏))2

4𝑘𝑏𝑇2
𝑏

=
𝐶
𝑔
𝑣 (𝑇𝑏) + 𝐶 𝑙

𝑣 (𝑇𝑏)
2

+ (Δ𝐸 (𝑇𝑏))2

4𝑘𝑏𝑇2
𝑏

(2.6)

where 𝐶𝑔
𝑣 and 𝐶 𝑙

𝑣 are computed from the variances of the energy distributions associated with the
two states. When the two distributions are similar in energy, the distribution seizes to be bimodal
and becomes essentially one peak. Judging whether the distribution is unimodal or bimodal in
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the large-system limit is not necessarily easy based on simulations of finite systems. Therefore,
it is important to investigate how the shape evolves with increasing system size.

2.5 Simulation Details

The simulation code is entirely written in C. Initially every chain is placed in uniformly random
positions. The system is then updated following the MHA procedure described in subsection
2.3. One “sweep” consists of 𝑁 (the number of beads in the system) updates of the system. The
number of sweeps for each system was varied depending on the length a “burn-in” period. For a
system close to 𝑇 = 𝑇𝑏, the increase in time correlations has to also be considered. In practice,
this was determined such that there was at least a couple of transitions between the mixed and
dilute states. As 𝑁 increases the free energy barrier between these states grows, leading to an
increasing correlation time. The systems used here were run for 2 · 106 to 107 sweeps, where
the larger simulations took about a week in real time. A way to circumvent this limitation is
to run multiple smaller simulations of the same system (but with different seeds) which can be
performed in parallel and then combined.

Simulations obtained at different temperatures near𝑇 = 𝑇𝑏 (𝜌), can be combined with reweighting
of the energy distribution, which gives a more complete and accurate description of the specific
heat. In appendix A.1 it is fully described how this procedure works. Briefly one could say that
since all samples follows a canonical distribution it is possible to use the information about the
energy landscape that is sampled, in order to estimate the shape of the energy landscape at a
“close-by” temperature. The further away a temperature is in relation to the simulation data, the
less of the energy landscape is known, leading to reweighting becoming less accurate.

The simulations are performed with 𝑁/𝑙 = 30, 60, 90 chains as will be indicated. To pro-
hibit chains from interacting with themselves across the periodic simulation box, the density was
chosen such that 𝐿 > 𝑙 𝑏 = 50 𝑏 for every simulation. Thus, 𝜌 = 0.0025𝑏−3 was chosen for all
systems.

Six different protein sequences and one RNA sequence will be studied in this thesis. The
six protein sequences shown in Figure 4 are taken from the thirty net-neutrally charged polyam-
pholytes studied by Das and Pappu in 2008 [24], and have been studied by several other groups.
These polyampholytic sequences have a different degree of “blockiness”, quantified by a charge
decoration parameter ^ (defined in A.2). The patterning parameter goes from ^ ≈ 0 for a alternat-
ing sequence (sv1) to ^ = 1 for a sequence with all the beads of one type on one end of the chain,
with the other type on the other end. The number in the name of each sequence indicates the
value of ^. Keeping the density and volume constant, we take the highest temperature at which
aggregation sets in as a measure of the propensity of the system to aggregate.

It was shown by Das and Pappu that sequences with larger ^ can aggregate more easily than
sequences with low ^ [23]. However, they used two-body potential composed of a LJ and a
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Coulomb potential in their model. Here we will first test whether similar results are obtained
with our step-wise potential introduced in Section 2.1. In a study by Pal et. al. [25] they studied
demixing of protein-mixtures with two types. Similar potentials were used as in Ref. [23], and
sv28 was mixed together with a second protein with smaller ^. It was shown that an increase
in the difference in charge decoration between the two proteins tends to decrease the proteins
propensity to mix.

To calculate the uncertainty of measured properties, Jackknife resampling will be performed.
How this resampling is performed is described in Appendix A.3. In short, it works by construct-
ing new data sets by removing parts of the original data set. These new partitions of the original
data set together makes up a statistic which can be used to estimate errors.

Figure 4: Sequences of amino acids in the proteins used. Higher number after sv indicates the
size of the blockiness. The color blue/red corresponds to a charge of 𝑄 = +1,−1.

In numerical simulations, the systems are limited in size. Therefore, it is important to consider
how the simulation results depend on system size. In this study, we compare results attained for
different proteins or pair of proteins using one and the same system size. Relative differences
in such comparisons are likely to show a relatively weak system size dependence. To illustrate
how the estimated shape of the phase diagram may depend on the system size, Figure 5 shows
the specific heat, 𝐶𝑣/𝑁 , for two sv1 systems with 30 and 90 chains, respectively, at the same
bead density 𝜌 = 0.0025 𝑏−3. In this example, a three-fold increase in system size leads to a 4%
positive shift of the transition temperature 𝑇𝑏.

3 Results and Discussion

3.1 Phase Behaviour of Single-Component Systems

To investigate the propensity to aggregate for each of the sequences presented in Figure 4, we
performed MC simulations at a series of temperatures. When the temperature is low enough,
all systems investigated exhibit a single dominant condensate. Aggregation sets in at 𝑇 = 𝑇𝑏
(Figure 2). The transition is signaled by a peak in the specific heat, 𝐶𝑣, which is caused by
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Figure 5: Two systems with equal density shifts 𝑇𝑏 and has a sharper aggregation transition as 𝑁
is increases due to finite size scaling.

the coexistence of states with and without a condensate. Every simulated system contains 30
chains and have a bead density of 𝜌 = 0.0025 𝑏−3. In Figure 6 (a) the specific heat can be seen
for these systems. As the charge decoration ^ (Section A.2) increases, the size and location of
the peak in the specific heat change. In particular, 𝑇𝑏 increases with ^, meaning that aggrega-
tion sets in at a higher temperature for blocky sequences. This increase in 𝑇𝑏 is illustrated in
Figure 6b. This conclusion is in agreement with the results obtained by Das et al. [23], who stud-
ied the same sequences but used a different model that was based on LJ and Coulomb interactions.

The energy distribution is expected to be bimodal at 𝑇 = 𝑇𝑏 if phase separation occurs, due
to the coexistence of states with and without a condensate. A bimodal energy distribution leads
to a high energy variance, which in turn leads to a high 𝐶𝑣. Figure 6(a) shows that the height of
the peak, 𝐶𝑣 (𝑇𝑏), decreases as ^ increases, indicating that the two existing states becomes less
separated in energy. This observation suggests that, especially for large ^, a more extensive anal-
ysis is required in order to firmly conclude whether or not LLPS occurs. A systematic approach
to this problem would be to carry out a finite-size scaling analysis [26].

3.2 Mixing of Two-Component Systems

Having studied single-component systems of the sequences in Figure 4, we now turn to two-
component systems containing pairs of these sequences. We find that these mixed systems, like
the one-component systems, form a single dominant aggregate if the temperature is sufficiently
low. Our goal is to explore the structure of these aggregates. In particular, we wish to find out
whether or not the two components are well mixed within the aggregates.

Consider a system with two sequences, labeled 𝑝 and 𝑞. To study the degree of mixing of
the two sequences, we construct radial (bead) distribution functions (RDFs), denoted by 𝑔𝑝𝑞 (𝑟),
𝑔𝑝𝑝 (𝑟) and 𝑔𝑞𝑞 (𝑟). To obtain 𝑔𝑝𝑝, given a chain 𝑝 bead in the system, 𝑏0, we compute the distri-
bution of distances to beads belonging to other 𝑝 chains. The final 𝑔𝑝𝑝 is obtained by averaging
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Figure 6: (a) Temperature dependence of the specific heat, 𝐶𝑣/𝑁 , in one-component systems.
Dots represents the specific heat from individual simulations, while the line is calculated by
reweighting the energy histograms obtained from the same simulations. The reweighting proce-
dure is described in Appendix A.1 (b) 𝑇𝑏 versus the charge decoration of the sequences in (a).
Errors are calculated from the reweighting in (a) but are smaller than the points.

over all possible choices of 𝑏0. 𝑔𝑞𝑞 is analogously computed. Finally, in constructing 𝑔𝑝𝑞, we
consider the distribution of chain 𝑝 beads around a given chain 𝑞 bead. Specifically, 𝑔𝑝𝑞 may be
written as

𝑔𝑝𝑞 =
⟨𝜌𝑝 (𝑟)⟩𝑞

𝜌𝑝
(3.7)

Here, the normalization is such that 𝑔𝑝𝑞 (𝑟) is unity for all 𝑟 if the chain 𝑝 beads are uniformly
distributed in the system.

For all systems we used 30+30 chains of the two types of proteins. The total bead density
remained the same as in previous section, 𝜌 = 0.0025 𝑏−3. The temperature 𝑇 = 1.3 𝜖/𝑘𝑏 was
used as it is well under 𝑇 = 𝑇𝑏 for all single-component systems with 30 chains. All simulations
ran for 107 sweeps. In the single-component systems, there was a large difference in transition
temperature 𝑇𝑏 between the sequences. Consequently, the low temperature used in the mixed
systems yields large burn in periods. Therefore, only configurations from the final 30% of the
simulation time were used. All combinations of proteins mentioned in the previous section were
used here, except for combinations between exclusively sv25,sv27,sv28 and sv30 due to the burn
in period exceeding 107 sweeps.

In each simulated system, the protein type with smallest and largest charge decoration is de-
noted 𝑝 and 𝑞, respectively. Consider Figure 7 where the RDFs for the sv1+sv30 (upper panel)
and sv10+sv25 (lower panel) systems. For small distances, 𝑔𝑞𝑞 is typically larger than 𝑔𝑝𝑝,
indicating that the core of the condensate is at least somewhat dominated by proteins with larger
charge decoration, as one might have anticipated from the fact that aggregation sets in at a higher
temperature for sequences with large ^ (Fig. 6). If this tendency is strong, then the proteins

14



Sonny Nilsson

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

200

400 p=sv1, q=sv30
gpp

gqq

gpq

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

100

200

p=sv10, q=sv25g

r (b)

Figure 7: Radial distribution function of systems with two proteins. For sequences with small
difference in charge decoration are mixed together, the mixed RDF 𝑔𝑝𝑞 becomes more similar in
shape and size as 𝑔𝑝𝑝 and 𝑔𝑞𝑞. In the upper/lower plot are the RDFs for sv1+sv30/sv10+sv25
respectively.

are demixing. Demixing appears to occur in sv1+sv30, where the core is strongly dominated by
protein 𝑞. This is evident by the difference in size and shape of the mixed RDF, 𝑔𝑝𝑞, and 𝑔𝑝𝑝 (or
𝑔𝑞𝑞). In the sv10+sv25 system, the size and shape of 𝑔𝑝𝑞 is similar to that of 𝑔𝑝𝑝. This means
that the density profile of proteins of type 𝑝 is similar around proteins of both types. In contrast,
𝑔𝑝𝑞 in the sv1+sv30 system is flattened, meaning that proteins of different types are demixed to
a greater extent.

To quantify demixing a mixing parameter b (𝑟) will be used, defined as [25]

b (𝑟) =
2𝑔𝑝𝑞 (𝑟)

𝑔𝑝𝑝 (𝑟) + 𝑔𝑞𝑞 (𝑟)
. (3.8)

In Figure 8, b (𝑟) is computed for three different mixtures. Large deviations from b = 1 indicates
that the different types of proteins do not mix well. Therefore, b (𝑟) is computed for a small single
value of 𝑟 = 𝑅 for all the systems. 𝑅 = 0.5 𝑏 was chosen here as it captures the distribution at the
smallest distances possible in the system.
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Figure 8: b, as defined by equation 8, provides a measure of demixing at distance 𝑟. The degree
of mixing at small 𝑟, as measured by b (𝑟), is small when the difference in ^ is large (as in the
sv1+sv30 system), and larger when this difference is smaller (as in the sv10+sv25 system)
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Figure 9: Mixing parameter b (𝑟) at 𝑟 = 0.5 𝑏 plotted against the difference Δ^ in patterning
parameter between the two systems. The temperature was set to 𝑇 = 1.3 𝜖/𝑘𝑏, which is well
below 𝑇 = 𝑇𝑏 for all systems. Blue/red points are for systems with sv1/sv10 as p component.

A natural question is if charge decoration can be used to predict demixing. We defineΔ^ = ^𝑞−^𝑝
where ^𝑞 and ^𝑝 are the charge decorations for the two types of proteins. Plotting b (0.5𝑏) versus
Δ^ for all systems studied we obtain Figure 9. Here protein type 𝑝 is either sv1/sv10 as indicated
by blue/red. Clearly, b (0.5𝑏) is not a simple function of Δ^, as the points with 𝑝 = sv1 fall below
those with 𝑝 = sv10. It is evident that by only changing protein type 𝑞 to proteins with higher
charge decoration leads to the system being less prone to mix. This is in agreement with what
was found in [25] where a Coulomb+LJ potential was used.
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Figure 10: Snapshots of RNA-protein simulations at 𝑇 = 1.56 𝜖/𝑘𝑏. When few RNA 𝑛 = 12
is present (see left) RNA molecules tend to stay inside the high-density phase. When too many
RNA molecules are present in the system, additional molecules ends up in a dilute phase outside
the aggregate, as in 𝑛 = 25 (see right).

3.3 Aggregation of Protein-RNA Systems

In this last part we investigate if the addition of RNA molecules to a protein system alters the
system’s propensity to aggregate. This is primarily done by comparing the specific heat of sys-
tems containing different amount of RNA chains. The RNA molecule is modeled as a chain of
50 negatively charged beads with the same kind of potentials as for the beads in the proteins.
Additionally, the distance between neighbouring beads is the same as in the proteins, 𝑏. The
protein used in the mixtures was chosen to be sv1 as it was the protein with the sharpest evap-
oration/condensation transition in single-component systems. Each system investigated contains
90 − 𝑛 sv1 and 𝑛 RNA chains.

Since the beads inside each RNA-molecule are repulsive to each other, the RNA-RNA inter-
action energies are always positive. Therefore, one would expect that replacing some protein
molecules with RNA molecules leads to a system that is less prone to aggregate (if RNA-proteins
interactions are weak). However, the question remains if RNA-protein interactions can increase
the system’s propensity to aggregate. In Figure 10 two snapshots of systems can be seen, for
𝑛 = 12 (left panel) and 𝑛 = 25 (right panel). The temperature in these snapshots is 𝑇 = 1.56
𝜖/𝑘𝑏, a temperature low enough for both systems to contain an aggregate. When only a few RNA
molecules are present in the system, RNA is prone to stay inside the aggregate. However, when
too much RNA is added, the aggregate becomes saturated and the dilute region of the system

17



Sonny Nilsson

1.40 1.45 1.50 1.55 1.60 1.65 1.70
T ( /kb)

100

101

102

C V
/N

 (k
b)

n=0
n=1
n=2
n=3
n=4
n=6

n=9
n=12
n=15
n=20
n=25
n=30

(a)

0 5 10 15 20 25 30
n

0.000

0.025

0.050

0.075

0.100

0.125

T b
 (

/k
b)

(b)

Figure 11: Specific heat of sv1-RNA mixtures. Total system size is 90 molecules and 𝑛

corresponds to the number of RNA molecules. Addition of RNA-molecules shifts 𝑇𝑏 in a
non-trivial way.(a) Heat capacity as depending on 𝑇 . (b) The shift in transition temperature
Δ𝑇𝑏 (𝑛) = 𝑇𝑏 (𝑛) − 𝑇𝑏 (0) from the simulated systems in (a). For a system with 𝑛 RNA molecules
and 90 − 𝑛 proteins, 𝑇𝑏 (𝑛) is defined as the temperature at which the specific heat is the largest.
the error bars are smaller than markers.

contains both sv1 and RNA molecules.

As mentioned in Section 3.1, the maximum of the specific heat, 𝑇𝑏, is the maximum temperature
at which a larger aggregate is observed. How the specific heat changes with 𝑛 is presented in
Figure 11a. From this figure we can confirm that the aggregation depends on the amount of RNA
chains in the system. For clarity, the shift Δ𝑇𝑏 (𝑛) = 𝑇𝑏 (𝑛) − 𝑇𝑏 (0) is presented in Figure 11b as
a function of 𝑛. When a system with sv1 proteins is perturbed by a few RNA molecules, there
is a large increase in 𝑇𝑏. As further RNA molecules are added, the increase of Δ𝑇 diminishes
until a threshold is reached, after which adding more RNA decreases 𝑇𝑏, and thus the aggregation
propensity. The largest value of 𝑇𝑏 occurs when 17% of the chains are RNA molecules.

At an evaporation/condensation transition, a bimodal energy distribution is expected. Figure 12
shows the energy distribution at 𝑇 = 𝑇𝑏 (𝑛) for different 𝑛. The observed energy distribution is
bimodal for all 𝑛 except 𝑛 = 1 and 𝑛 = 2. For these two 𝑛, the shape of the distribution at nearby
temperatures was inspected. For 𝑛 = 1, no sign of bimodality was observed at any temperature.
On the other hand, bimodality was observed for 𝑛 = 2 at a temperature slightly above 𝑇𝑏 (2), but
with a small separation of the two peaks. Those observations indicate that to decide whether
or not phase separation occurs, one would have to scale up the system size (while keeping the
sv1:RNA ratio fixed).

At 𝑛 = 3, bimodality reappears (Figure 12). The high-energy peak corresponds to dilute states.
As 𝑛 is increased, this peak is shifted to higher energies. This is expected because intermolecular
interactions are weak and intramolecular interactions are higher for RNA than for sv1. The
low-energy peak corresponds to a mixed state, with a dense droplet in a dilute background. For
small 𝑛, all the RNA molecules tend to be part of the droplet. At 𝑛 ≈ 12, the droplet appears to
become saturated in RNA molecules. For 𝑛 > 12, some of the RNA molecules tend to end up in
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Figure 12: Energy histograms of sv1-RNA mixtures at the transition temperature. The systems
contain 𝑛 RNA and 90−𝑛 sv1 molecules. Adding RNA molecules affects the energies associated
with the dilute and the mixed states.

the dilute background (see Figure 10).

The size of the droplet formed at 𝑇𝑏 depends on the amount of RNA present in the system.
To analyze aggregate sizes, we divide a given configuration into clusters of chains, requiring that
any pair of chains with negative interaction energy must end up in the same cluster. By analyzing
many configurations, we can obtain the probability that a randomly selected chain belongs to a
cluster of a given size. Figure 13 shows the cluster size distribution obtained in this way for
𝑛 = 0, 1, 4, 9, 15 and 25. The distribution tend to be bimodal, with one peak corresponding to
the droplet and the other peak corresponding to the dilute background. For 𝑛 = 0, the droplet
is relatively large and the suppression of intermediate cluster sizes is very strong. However,
when RNA is present, intermediate cluster sizes become more common. Since proteins will not
aggregate in any significant way by themselves at 𝑇 > 𝑇𝑏 (0), RNA has to be important for these
intermediate-size clusters to form. Therefore, RNA appears to act as seeds that proteins can
aggregate around.

With only a few RNA molecules present the droplet is significantly smaller than it is in the
pure protein system. This is consistent with the fact that 𝑇𝑏 (𝑛) > 𝑇𝑏 (0) for 𝑛 > 0, which implies
that the proteins are unable to form a large cluster on their own at 𝑇𝑏 (𝑛). The presence of RNA
is therefore crucial for clustering, and with only a few RNA molecules present only a limited
number of protein molecules can be recruited to the droplet. For 𝑛 = 4, the largest cluster is
around 40% smaller than it is for 𝑛 = 0.

In a simple two-state picture, the transition temperature is given by 𝑇𝑏 = Δ𝐸/Δ𝑆, where Δ𝐸

and Δ𝑆 are the energy and entropy difference between the two states. With RNA present in the

19



Sonny Nilsson

0 10 20 30 40 50 60 70 80 90
Cluster Size

10 4

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y

n=0
n=1
n=4

n=9
n=15
n=25

Figure 13: Probability of molecules being in clusters of different sizes at 𝑇𝑏 (𝑛), for 𝑛 =

0, 1, 4, 9, 15 and 25. A cluster is defined as the connected network of chains with negative
interaction energies. Cluster sizes are reduced in systems containing RNA. The cluster size are
smallest when 𝑛 = 4, but grows again as more RNA molecules are added.

systems, we find that 𝑇𝑏 increases (Figure 11b) whereas Δ𝐸 decreases (Figure 12). This indicates
that Δ𝑆 is larger in the pure protein system, in which a large fraction of the molecules aggregate
to a relatively large structure upon droplet formation. Therefore, the increase in 𝑇𝑏 when adding
a few RNA molecules is consistent with the reduced droplet size observed in these systems
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4 Conclusion and Summary

In this project, we have used computer simulations to explore how the distribution of charge along
polymer chains influence the aggregation behavior in coarse-grained systems where aggregation
is driven by electrostatic forces. Here biomolecules were modeled as chains of hard spheres with
electrostatic interactions given by a simple step potential. We studied a set of zero net charge
IDPs with different degree of blockiness, as measured by the charge patterning parameter ^. The
project was divided into three parts.

In the first part, we studied one-component systems with 30 chains. In particular, we deter-
mined the temperature at which aggregation sets in, 𝑇𝑏. A positive correlation was found between
𝑇𝑏 and the charge patterning ^. This finding is in agreement with a previous study [23] of the
same sequences based on a model with Coulomb interactions rather than a step potential, which
indicates that the conclusion is insensitive to model details.

In the second part, we studied two-component systems with 30 chains of each type. Using
radial distribution functions, the degree of mixing of the two components was investigated. In
systems with a large difference in ^ between the two components, demixing was observed. This
observation is also in agreement with previous work based on a different model [25].

Finally, we also explored how the presence of RNA might affect the aggregation behaviour
of an IDP, using one of the sequences studied previously, the alternating sequence sv1. RNA was
modeled as a negatively charged homopolymer, using the same model as for the IDP sequences.
The results suggest that RNA helps sv1 to aggregate, in the sense that aggregation sets in at a
higher temperature when RNA is present. Also, the aggregation transition becomes less sharp
when adding RNA, and the droplet size is reduced, at least when the amount of RNA is small.
However, in order to draw any firm conclusions about the aggregation transition, further studies
are required. In particular, the system size dependence of the results should be adressed.
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A Appendix

A.1 Reweighting Technique

To use multiple simulation to calculate some function of 𝛽, a reweighting technique [29] can
be used. Suppose we are to calculate an function 𝑔(𝛽) in the canonical ensemble given set of
simulation has performed at 𝛽 = 𝛽1, 𝛽2, ..., 𝛽𝑅, each yielding a series of state configurations 𝑆.
The probability, 𝑝𝛽 (𝑆), to observe a particular configuration with energy 𝐸 is

𝑝𝛽 (𝑆) =
exp(−𝛽𝐸 (𝑆))

𝑍 (𝛽) .

For a given system there exists an energy density, 𝑛(𝐸), which is the sum of all configurations
corresponding to energy 𝐸 . Thus the probability, 𝑝𝛽 (𝐸), to observe a particular value of internal
energy must be

𝑝𝛽 (𝐸) = 𝑛(𝐸) exp(−𝛽𝐸)
𝑍 (𝛽) = 𝑛(𝐸) exp(−𝛽𝐸) exp(− log(𝑍)) = 𝑛(𝐸) exp(−𝛽𝐸 + 𝑓 (𝛽))

where 𝑓 (𝛽) is is free energy of the system at the inverse temperature 𝛽. Let 𝑖 be the index
corresponding to a particular simulation with the inverse temperature 𝛽 = 𝛽𝑖. The probability
distribution can be approximated with a histogram of 𝑁𝑖 observations:

𝑝(𝐸, 𝛽𝑖) = 𝑛(𝐸) exp(−𝛽𝐸 + 𝑓𝑖) ≈
ℎ𝑖 (𝐸)
𝑁𝑖

Thus the density of states can be approximated from a single simulation with:

𝑛(𝐸) ≈ ℎ𝑖 (𝐸) exp(𝛽𝑖𝐸 − 𝑓𝑖)
𝑁𝑖

The 𝑅 simulations performed can be combined to get a better estimate of 𝑛(𝐸). Every simulation
yields an approximation of 𝑛(𝐸), and can be linearly combined to:

𝑛(𝐸) =
𝑅∑︁
𝑖=1

𝑟𝑖 (𝐸)𝑝𝑖 (𝐸) exp(𝛽𝑖𝐸 − 𝑓𝑖),
𝑅∑︁
𝑖=1

𝑟𝑖 (𝐸) = 1 (A.9)

To minimize the residual sum of squares 𝛿2𝑛 with respect to 𝑟𝑖 (𝐸).

𝛿2𝑛 = 𝛿2
( 𝑅∑︁
𝑖=1

𝑟𝑖 (𝐸)𝑝𝑖 (𝐸) exp(𝛽𝑖𝐸 − 𝑓𝑖)
)
=

𝑅∑︁
𝑖=1

𝑟2
𝑖 (𝐸)

𝛿2(ℎ𝑖 (𝐸))
𝑁2
𝑖

exp(2(𝛽𝑖𝐸 − 𝑓𝑖))

The number of counts in each bin of the histogram can be seen as a sample from a Poisson
distribution (_ = ℎ𝑖 (𝐸)). If each measurement are sampled with a fixed interval and there exists
a correlation step length of 𝜏𝑖 we further get

𝛿2ℎ𝑖 (𝐸) = (1 + 2𝜏𝑖)ℎ𝑖 (𝐸) = 𝑔𝑖ℎ𝑖 (𝐸) = 𝑔𝑖𝑁𝑖𝑛(𝐸) exp( 𝑓𝑖 − 𝛽𝑖𝐸)
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Thus,

𝛿2𝑛(𝐸) =
𝑅∑︁
𝑖=1

𝑟2
𝑖 (𝐸)

𝑛(𝐸)𝑔𝑖
𝑁𝑖

exp(𝛽𝑖𝐸 − 𝑓𝑖)

To minimize 𝛿2𝑛(𝐸) we use Lagrange multipliers and get:

𝜕

𝜕𝑟𝑖

(
𝛿2𝑛(𝐸) − _

( [ 𝑅∑︁
𝑗=1

𝑟 𝑗

]
− 1

) )
= 2𝑟𝑖

𝑛(𝐸)𝑔𝑖
𝑁𝑖

exp(𝛽𝑖𝐸 − 𝑓𝑖) − _ = 0

which means that
𝑟𝑖 =

_

2𝑛(𝐸)𝑁𝑖 exp(−𝛽𝑖𝐸 + 𝑓𝑖)𝑔−1
𝑖 .

Using the constraint from A.9 we further get:

_

2𝑛(𝐸) =
1∑𝑅

𝑖=1 𝑁𝑖 exp(−𝛽𝑖𝐸 + 𝑓𝑖)𝑔−1
𝑖

.

Now the exponential of the free energy (the partition function) can be written (from
∑

𝐸 𝑝𝑖 (𝐸) =
1):

exp( 𝑓𝑖) =
1∑

𝐸 𝑛(𝐸) exp(−𝛽𝑖𝐸)
so now we can finally write:

𝑛(𝐸) =
∑𝑅

𝑖=1 𝑔
−1
𝑖
ℎ𝑖 (𝐸)∑𝑅

𝑖=1
𝑁𝑖 exp(−𝛽𝑖𝐸)𝑔−1

𝑖∑
𝐸 ′ 𝑛(𝐸 ′) exp(−𝛽𝑖𝐸 ′)

where this equation can simply be solved with recursion. The density of states usually scales
exponentially with temperature. Therefore for a computer, the logarithm of the density of states
might be more practical to compute:

log
(
𝑛(𝐸)

)
= log

( 𝑅∑︁
𝑖=1

ℎ𝑖 (𝐸)𝑔−1
𝑖

)
− log

( 𝑅∑︁
𝑖=1

exp
(
log(𝑁𝑖𝑔

−1
𝑖
) − 𝛽𝑖𝐸

)∑
𝐸 ′ exp

(
log(𝑛(𝐸′)) − 𝛽𝑖𝐸

′) ) .
Now an energy probability distribution for a given temperature can be calculated with:

𝑝𝛽 (𝐸) =
exp

(
log(𝑛(𝐸)) − 𝛽𝐸

)∑
𝐸 ′ exp

(
log(𝑛(𝐸′)) − 𝛽𝐸′)

from which a specific heat and average energy can be calculated for any 𝛽. However, reweighting
too far away from an energy landscape that have not been thoroughly explored will yield large
errors. The temperatures used for NVT simulations should therefore be chosen such that the
energy histograms are not too far apart from each other.
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A.2 Charge Patterning Parameter

To quantify the “charge-blockiness” of a polyampholyte sequence, a patterning parameter ^ can
be utilized [24]. Let

𝑓+,− =
𝑄+,−
𝑁

where 𝑁 is the number of amino acids in the sequence and𝑄+,− be the number of positive/negative
charges in the sequence respectively. Then the charge asymmetry will be:

𝜎 =
( 𝑓+ − 𝑓−)2

𝑓+ + 𝑓−
.

The sequence is then partitioned into 𝑛 segments such that each following segment is shifted one
amino acid to the side. The size of each partition will then 𝑁𝑏𝑙𝑜𝑏 = 𝑁 − 𝑛. For each partition
new charge fractions 𝑓+,𝑖, 𝑓−,𝑖 are calculated for 𝑖 = 1, 2, ..., 𝑛. The charge asymmetry for each
segment will be:

𝜎𝑖 =
( 𝑓+,𝑖 − 𝑓−,𝑖)2

𝑓+,𝑖 + 𝑓−,𝑖

Now the unnormalized patterning parameter is defined as:

𝛿(𝑁𝑏𝑙𝑜𝑏) =
∑𝑛

𝑖=1(𝜎𝑖 − 𝜎)2

𝑛

which will depend on how large the partitions are. By convention, 𝛿 for a given sequence is
defined as the average of 𝛿(5) and 𝛿(6). The normalized patterning parameter is defined as:

^ =
𝛿

𝛿𝑚𝑎𝑥

where 𝛿𝑚𝑎𝑥 is the calculated from the sequence of length 𝑁 that has the highest patterning
parameter, which turns out to be a sequence with 𝑁/2 negative charges followed by 𝑁/2 positive
charges for an overall neutral sequence.

A.3 Jackknife Resampling

Assume that from a measured set of 𝑁 samples, �̂� = 𝑋1, 𝑋2, ..., 𝑋𝑛, it is of interest to estimate
some parameter 𝑔(𝑋). Then it might not be trivial to find an analytic expression of the variance
and bias of the estimator. In these situations the jackknife resampling method might be utilized
to produce a new set of jackknife samples as a “one-size fits all” solution [30].

To construct a jackknife sample, ®𝑋𝑖, remove one element of the original sample set:

®𝑋𝑖 = {𝑋1, ..., 𝑋𝑖−1, 𝑋𝑖+1, ..., 𝑋𝑛}
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This sample can then be used to construct 𝑔−𝑖 defined as

𝑔−𝑖 = 𝑔( �̂�𝑖)

where �̂�𝑖 is an estimation of ®𝑋𝑖. Furthermore we define the so called “Jackknife replicates”:

𝑔𝑖 = 𝑛�̂� − (𝑛 − 1)𝑔−𝑖

where �̂� = 𝐸{𝑔( �̂�)}. This is done so that it is further possible to obtained a less biased estimator
by eliminating the 𝑂 (1/𝑛) term from the expansion of 𝑔 with:

�̃� =
1
𝑛

𝑛∑︁
𝑗=1

𝑔𝑖 = 𝑛�̂� − 𝑛 − 1
𝑛

𝑛∑︁
𝑗=1

𝑔−𝑖

References
[1] Altmeyer M., Neelsen K.J., Teloni F., Pozdnyakova I., Pellegrino S., Grøfte M., Rask

M.-B.D., Streicher W., Jungmichel S., Nielsen M.L., and Lukas J. Liquid demixing of
intrinsically disordered proteins is seeded by poly(adp-ribose). Nature Communications,
6:1, 2015.

[2] Parker M.W., Bell M., Mir M., Kao J.A., Darzacq X., Botchan M.R., and Berger J.M. A
new class of disordered elements controls dna replication through initiator self-assembly.
eLife, 8:48562, 2019.

[3] Sabari B.R., Dall’Agnese A., Boija A., Klein I.A., Coffey E.L., Shrinivas K., Abraham B.J.,
Hannett N.M., Zamudio A.V., Manteiga J.C., Li C.H., Guo Y.E., Day D.S., Schuijers J.,
Vasile E., Malik S., Hnisz D., Lee T.I., Cisse I.I., Roeder R.G., Sharp P.A., Chakraborty
A.K., and Young R.A. Coactivator condensation at super-enhancers links phase separation
and gene control. Science, 361:3958, 2018.

[4] Khuloud Jaqaman and Jonathon A. Ditlev. Biomolecular condensates in membrane receptor
signaling. Current Opinion in Cell Biology, 69:48, 2021.

[5] Shana Elbaum-Garfinkle, Younghoon Kim, Krzysztof Szczepaniak, Carlos Chih-Hsiung
Chen, Christian R. Eckmann, Sua Myong, and Clifford P. Brangwynne. The disordered
p granule protein laf-1 drives phase separation into droplets with tunable viscosity and
dynamics. Proceedings of the National Academy of Sciences, 112:7189, 2015.

[6] Clifford P. Brangwynne, Christian R. Eckmann, David S. Courson, Agata Rybarska, Carsten
Hoege, Jöbin Gharakhani, Frank Jülicher, and Anthony A. Hyman. Germline p granules
are liquid droplets that localize by controlled dissolution/condensation. Science, 324:1729,
2009.

25



Sonny Nilsson

[7] Masato Kato, Tina W. Han, Shanhai Xie, Kevin Shi, Xinlin Du, Leeju C. Wu, Hamid
Mirzaei, Elizabeth J. Goldsmith, Jamie Longgood, Jimin Pei, Nick V. Grishin, Douglas E.
Frantz, Jay W. Schneider, She Chen, Lin Li, Michael R. Sawaya, David Eisenberg, Robert
Tycko, and Steven L. McKnight. Cell-free formation of rna granules: Low complexity
sequence domains form dynamic fibers within hydrogels. Cell, 149:753, 2012.

[8] Bálint Mészáros, István Simon, and Zsuzsanna Dosztányi. The expanding view of pro-
tein–protein interactions: complexes involving intrinsically disordered proteins. Physical
Biology, 8:035003, 2011.

[9] Carolyn J Decker, Daniela Teixeira, and Roy Parker. Edc3p and a glutamine/asparagine-rich
domain of lsm4p function in processing body assembly in saccharomyces cerevisiae. The
Journal of cell biology, 179:437, 2007.

[10] Salman F Banani, Hyun O Lee, Anthony A Hyman, and Michael K Rosen. Biomolecular
condensates: organizers of cellular biochemistry. Nature reviews Molecular cell biology,
18:285, 2017.

[11] David Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press,
New York, 1987.

[12] Paul J. Flory. Thermodynamics of high polymer solutions. The Journal of Chemical Physics,
10:51, 1942.

[13] Maurice L. Huggins. Solutions of long chain compounds. The Journal of Chemical Physics,
9:440, 1941.

[14] J. T. G. Overbeek and M. J. Voorn. Phase separation in polyelectrolyte solutions. theory of
complex coacervation. Journal of Cellular and Comparative Physiology, 49:7, 1957.

[15] A Johner J Wittmer and J. F Joanny. Random and alternating polyampholytes. Europhysics
Letters, 24:263, 1993.

[16] Julie D. Forman-Kay Yi-Hsuan Lin and Hue Sun Chan. Theories for sequence-dependent
phase behaviors of biomolecular condensates. Biochemistry, 57:2499–2508, 2018.

[17] Gregory L. Dignon, Wenwei Zheng, Young C. Kim, Robert B. Best, and Jeetain Mittal.
Sequence determinants of protein phase behavior from a coarse-grained model. PLOS
Computational Biology, 14:1, 2018.

[18] Russell DeVane, Wataru Shinoda, Preston B Moore, and Michael L Klein. Transferable
coarse grain nonbonded interaction model for amino acids. Journal of chemical Theory and
Computation, 5:2115, 2009.

[19] Benjamin R. Sabari, Alessandra Dall’Agnese, and Richard A. Young. Biomolecular con-
densates in the nucleus. Trends in Biochemical Sciences, 45:961, 2020.

26



Sonny Nilsson

[20] Phase separation of c9orf72 dipeptide repeats perturbs stress granule dynamics. Molecular
Cell, 65:1044, 2017.

[21] William M. Aumiller, Fatma Pir Cakmak, Bradley W. Davis, and Christine D. Keating.
Rna-based coacervates as a model for membraneless organelles: Formation, properties, and
interfacial liposome assembly. Langmuir, 32:10042, 2016.

[22] William M Aumiller and Christine D Keating. Phosphorylation-mediated rna/peptide com-
plex coacervation as a model for intracellular liquid organelles. Nature chemistry, 8:129,
2016.

[23] Suman Das, Alan N Amin, Yi-Hsuan Lin, and Hue Sun Chan. Coarse-grained residue-based
models of disordered protein condensates: Utility and limitations of simple charge pattern
parameters. Physical Chemistry Chemical Physics, 20:28558, 2018.

[24] Rahul K. Das and Rohit V. Pappu. Conformations of intrinsically disordered proteins are
influenced by linear sequence distributions of oppositely charged residues. Proceedings of
the National Academy of Sciences, 110, 2013.

[25] Tanmoy Pal, Jonas Wessén, Suman Das, and Hue Sun Chan. Subcompartmentalization
of polyampholyte species in organelle-like condensates is promoted by charge-pattern mis-
match and strong excluded-volume interaction. Physical Review E, 103:042406, 2021.

[26] Daniel Nilsson and Anders Irbäck. Finite-size scaling analysis of protein droplet formation.
Physical Review E, 101:022413, 2020.

[27] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57:97, 1970.

[28] H. Swendsen and J.-S. Wang. Nonuniversal critical dynamics in monte carlo simulations.
Physical Review Letters, 58:86, 1987.

[29] Alan M Ferrenberg and Robert H Swendsen. Optimized monte carlo data analysis. Com-
puters in Physics, 3:101, 1989.

[30] M. Quenouille. Notes on bias in estimation. Biometrika, (43), 1956.

27


	Introduction
	Theory and Methods
	Biophysical Model
	Monte Carlo Simulation
	MHA Updates
	Single Chain Updates
	Cluster Updates

	Phase Transitions
	Simulation Details

	Results and Discussion
	Phase Behaviour of Single-Component Systems
	Mixing of Two-Component Systems
	Aggregation of Protein-RNA Systems

	Conclusion and Summary
	Appendix
	Reweighting Technique
	Charge Patterning Parameter
	Jackknife Resampling


