
Bachelor’s Thesis

A Synthetic Proof of Myhill’s Theorem
in the Effective Topos

Author: Sara Rousta

Supervisor: Prof. Martin Hyland

Advisor: Dr. Anitha Thillaisundaram

September 12, 2022

Abstract

One of the first results in classical computability theory was establishing the undecid-
ability of the halting problem. In this thesis we will prove an even stronger version in
the internal logic of the effective topos; more precisely in its full subcategory 𝑀𝑜𝑑(1)
of modest sets internal to assemblies 𝐴𝑠𝑠(1). We will do this by proving that the
diagonal halting set 𝐾 is creative with our new definition. Our notion of creativity
is classically equivalent to Post’s and Myhill’s definition, but importantly, it contains
recursive content. The moral lesson is that if we do computability theory in the effective
topos, the proofs turn out to be more constructive and in the spirit of what one intended
to begin with.

Acknowledgements

First and foremost, I want to express my sincerest gratitude towards Professor Martin
Hyland for introducing me to this subject and his guidance and patience throughout
the entire process. I am thankful for our many enjoyable discussions and constructive
meetings, which have influenced my mathematical taste and interest, and for teaching
me that mathematical investigation can start with a ‘why not’.

I also want to sincerely thank Dr. Anitha Thillaisundaram for giving me the oppor-
tunity to work on this topic, her kind and crucial support throughout the project and
for arranging so many practical matters.

If it was not for Carina Geldhauser’s mentorship I would not have applied for
the internship out of which this project was engendered. I am thankful for all the
encouragement and help.

The project was partially funded by the Philippa Fawcette Internship Programme
and the Erasmus+ Traineeship Programme. I want to thank the people there for the
financial support, which made the project as well as the many new friendships and
beautiful memories possible. I am also thankful to the University of Cambridge for their
hospitality.

To Matthias whose categorical support was my constant source of reassurence. Last
but not least, I want to thank my family and friends. The number of occasions you were
there for me cannot be effectively listed.

Contents

Introduction 3

1 Classical Computability Theory 5
1.1 Formal characterisations of algorithms 5
1.2 Some standard results . 12
1.3 Undecidability of the halting problem 14

2 Crossing Over to the Effective Topos 25
2.1 Intuitionistic logic in the language of categories 25
2.2 Categories with an internal logic . 33
2.3 Partial combinatory algebras . 37
2.4 Category of assemblies and modest sets 43

3 Synthetic Computability Theory 47
3.1 Preliminaries . 47
3.2 Basic synthetic results . 50
3.3 Synthetic Myhill’s theorem . 51
3.4 Conclusion and future work . 54

References 54

2

Introduction

The conclusion is inescapable that
even for such a fixed, well-defined
body of mathematical propositions,
mathematical thinking is, and must
remain, essentially creative.

Post

An analytic treatment of computability theory in a classical model for set theory
inevitably leads to leaning heavily towards informal proof methods. They are of course
partially justified by the empirical evidence provided by the works of Turing, Church
and Kleene among others [8, 19, 22]. But informal methods are mainly used to avoid
cumbersome details involving Gödel numbers to be able to get to the core mathematical
ideas without having to deal with routine manipulations. This calls into question the
appropriateness of the mathematical universe in which these ideas are encoded.

A suitable mathematical universe turns out to be Hyland’s effective topos 𝑓𝑓 [5].
Here, all functions are recursive or computable so that no reference to an external model
of computation is necessary. Synthetic or axiomatic treatment of computability theory,
pioneered by Bauer among others [1], allows us for instance to talk about recursively
enumerable sets as just the (effective) sets, which are enumerable. In this sense, the
synthetic approach reveals the mathematical structures without the encoded ‘noise’.
What is more, both the objects and morphisms between them carry constructive data in
the effective topos. It therefore captures the essence of computability theory in which
not only the results, but also the proofs are uniformly effective.

Our aim in this thesis is mainly to demonstrate how to translate results of com-
putability theory in the classical world to the world of the effective topos. A certain
amount knowledge of computability theory, logic and category theory is required
to this end. To make the work self-contained, we avoided shortcuts and redid the
proofs presented. In Chapter 1 we present two models of computation, discuss the
encoding scheme and reproduce the classical result of the undecidability of the halt-
ing problem. Chapter 2 serves as a bridge to the effective topos where we also give
an account of its internal intuitionistic logic. Finally, Chapter 3 culminates in a syn-
thetic proof of Myhill’s theorem, which is our main contribution. At the same time,

3

the Curry-Howard-Lambek correspondence: formulae-as-objects, objects-as-types and
proofs-as-morphisms, morphisms-as-algorithms is loosely explored.

Notation: The set of natural numbers ℕ starts at 0. When the domain of compre-
hension is clear we simply write { 𝑥 | … }. We write 𝑥 for a tuple of appropriate length
(𝑥1, … , 𝑥𝑛). The Kleene equality ≃ used in the first chapter is defined in section 2.3.
We will we will use 𝜆-notation whenever convenient. The reader not familiar with
𝜆-calculus can think of it as a prefix notation for ‘maps to’, viz. 𝜆𝑥.𝑓 (𝑥) can be taken
to mean 𝑥 ↦ 𝑓 (𝑥). See section 2.3 for a reference of untyped 𝜆-calculus with partial
application. Otherwise, we use standard notation that can be found in the references.

4

Chapter 1

Classical Computability Theory

This chapter will serve as a brief introduction to recursion theory or computability
theory in the classical world, where the topics covered are only relevant to the chapters
to come. The broad idea is to identify a class of (partial) functions that coincide with
our intuition of an effective procedure: a deterministic finite procedure carried on in
a discrete stepwise fashion with finite input and output. We study some properties
of this class and establish the undecidability of the halting problem in a strong sense.
The books by Roger [19, Chapters 1-7, 11] and Soare [22, Chapters 1-2] are our main
references for this chapter.

1.1 Formal characterisations of algorithms

We begin by presenting Turing’s characterisations of algorithms as it gives the most
intuitive notion of an effective procedure carried out by a calculating agent with an
infinite supply of ink and paper.

Definition 1.1.1. A partial function 𝐴 ⇀ 𝐵 is a pair (𝑆, 𝑓) with a subset 𝑆 ⊆ 𝐴 and a
function 𝑓∶ 𝑆 → 𝐵.

A partial function generalises the notion of a function by allowing at most one
output.

Definition 1.1.2 (Turing). A Turing machine 𝑀 consists of a two-way infinite tape
divided into cells and a mechanical reading head containing a Turing programme 𝑃
controlled by a partial map

𝛿∶ 𝑄 × 𝑆 → 𝑆 × 𝐷 × 𝑄.

Here, 𝑄 ≡ { 𝑞0, 𝑞1, … , 𝑞𝑛 }, 𝑛 ≥ 1 denotes a finite set of internal states of the machine,
𝑆 ≡ { 𝐵, 1 } (blank or 1) represents the symbols on each cell and 𝐷 ≡ { 𝐿, 𝑅 } (left or right)
gives the direction in which the reading head moves.

5

We view 𝛿 as a finite set of quintuples (𝑞, 𝑠, 𝑠′, 𝑥, 𝑞′) where machine 𝑀 in state 𝑞

1. reads symbol 𝑠;
2. changes the symbol 𝑠 to 𝑠′;
3. moves the reading head one step either to 𝑥 = 𝐿 or 𝑥 = 𝑅;
4. switches internal state to 𝑞′.

Any finite set of quintuples may determine a programme 𝑃 if every pair of quintuples
differ in the first or second position. This consistency criteria restricts the machine in
performing two or more courses of actions at once. The input (𝑥1, 𝑥2, … , 𝑥𝑘) ∈ ℕ𝑛 are
represented by (𝑥𝑖 +1), 1 ≤ 𝑖 ≤ 𝑛 consecutive 1’s separated by a blank cell. The machine
starts at the initial state 𝑞1 on the leftmost 1 as shown in fig. 1.1. If the machine reaches

… …1 1 1 1 1

𝛿

𝑞1

Turing programme 𝑃Reading head

Current internal state

Figure 1.1: A Turing Machine 𝑀 in an initital state with input (2, 1).

the halting state 𝑞0 after a finite number of steps, we say that 𝑀 halts and the output
integer is the number of consecutive 1’s on the tape. A programme 𝑃 determines a
partial computable function 𝑓∶ ℕ𝑛 ⇀ ℕ, 𝑛 ∈ ℕ and we say that 𝑓 (𝑥1, … , 𝑥𝑛)↓ converges
if machine 𝑀 halts for programme 𝑃 on input (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℕ𝑛. Otherwise, it is
said to diverge 𝑓 (𝑥1, … , 𝑥𝑛)↑. A programme that determines an everywhere divergent
function is given in fig. 1.2.

𝑞1 𝑞2

𝑞0

1𝐵𝑅 𝐵1𝐿𝐵1𝐿

11𝑅

Figure 1.2: A program for the completely undefined function 𝑓∶ ∅ ⇀ ℕ.

Recursion is an integral component in many of the basic procedures we deem
algorithmic such as factorial, exponentiation or sorting. Another way of formalising
the notion of an effective procedure is in terms of recursion. We will obtain the class of

6

partial recursive functions as a counterpart to the functions computable by a Turing
machine.

Definition 1.1.3 (Gödel). The class of primitive recursive functions  is defined induc-
tively as the least class of functionsℕ𝑛 → ℕ, 𝑛 ∈ ℕ containing

(i) the constant functions 𝐶𝑛
𝑐 (𝑥1, … , 𝑥𝑛) ≡ 𝑐 with 𝑐, 𝑛 ∈ ℕ;

(ii) the successor function 𝑆(𝑥) ≡ 𝑥 + 1;

(iii) the projections 𝑈 𝑛
𝑖 (𝑥1, … , 𝑥𝑛) ≡ 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛;

and closed under

(iv) composition such that for a 𝑘-ary function ℎ ∈ , and 𝑛-ary functions 𝑔1, 𝑔2, … , 𝑔𝑘 ∈ ,
the function

𝑓 (𝑥1, … , 𝑥𝑛) ≡ ℎ(𝑔1(𝑥1, … , 𝑥𝑛), … , 𝑔𝑘(𝑥1, … , 𝑥𝑛))

is in ;

(v) primitive recursion such that for a (𝑛 − 1)-ary function 𝑔 ∈ , and (𝑛 + 1)-ary
function ℎ ∈ , 𝑛 ≥ 1 the function 𝑓 described by

𝑓 (0, 𝑥2, … , 𝑥𝑛) ≡ 𝑔(𝑥2, … , 𝑥𝑛),
𝑓 (𝑥1 + 1, 𝑥2, … , 𝑥𝑛) ≡ ℎ(𝑥1, 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥2, … , 𝑥𝑛)

is in . (For 𝑛 = 1, a 0-ary functions is taken to be constant and therefore in  by
schema (i).)

Proposition 1.1.4. Let  denote the class of functions for which there exists a sequence
of functions 𝑓1, … , 𝑓𝑛, with 𝑓𝑛 = 𝑓 , 𝑛 ∈ ℕ such that for each 𝑖 ≤ 𝑛, 𝑓𝑖 ∈  by (i) – (iii) or
directly obtainable from some 𝑓𝑗 , 𝑗 < 𝑖 by (iv) or (v). Then  coincides with .

Proof. The class  is closed under schemes (i) – (v) and contained in every class of
functions closed under (i) – (v). ■

Such a sequence is called a derivation of a primitive recursive function 𝑓 in .
Consider for instance multiplication recursively defined as,

{
𝑀(0, 𝑦) ≡ 0;
𝑀(𝑥 + 1, 𝑦) ≡ 𝑀(𝑥, 𝑦) + 𝑦.

(1.1.1)

7

A derivation of multiplication could be as follows,

𝑓1(𝑥) ≡ 𝑈 1
1 (𝑥) (iii)

𝑓2(𝑥) ≡ 𝑆(𝑥) (ii)
𝑓3(𝑥1, 𝑥2, 𝑥3) ≡ 𝑈 3

2 (𝑥1, 𝑥2, 𝑥3) (iii)
𝑓4(𝑥1, 𝑥2, 𝑥3) ≡ 𝑓2(𝑓3(𝑥1, 𝑥2, 𝑥3)) (iv)
𝑓5(0, 𝑥2) ≡ 𝑓1(𝑥2)
𝑓5(𝑥1 + 1, 𝑥2) ≡ 𝑓4(𝑥1, 𝑓5(𝑥1, 𝑥2), 𝑥2) (v)
𝑓6(𝑥1, 𝑥2, 𝑥3) ≡ 𝑈 3

3 (𝑥1, 𝑥2, 𝑥3) (iii)
𝑓7(𝑥1, 𝑥2, 𝑥3) ≡ 𝑓5(𝑓3(𝑥1, 𝑥2, 𝑥3), 𝑓6(𝑥1, 𝑥2, 𝑥3)) (iv)
𝑓8(𝑥) ≡ 0 (i)
𝑓9(0, 𝑥2) ≡ 𝑓8(𝑥2)
𝑓9(𝑥1 + 1, 𝑥2) ≡ 𝑓7(𝑥1, 𝑓9(𝑥1, 𝑥2), 𝑥2) (v)
𝑓 (𝑥1, 𝑥2) ≡ 𝑓9(𝑥1, 𝑥2)

where the applied schema are indicated to the right. Note that 𝑓5(𝑥1, 𝑥2) ≡ 𝑥1 + 𝑥2,
indeed there is a derivation of addition 𝑓1 …𝑓5 as one would expect from eq. (1.1.1). Fig.
1.3 expresses 𝑓5 equivalently as a Turing computable function. A list of basic primitive

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑞0

1𝐵𝑅

11𝑅

𝐵1𝑅

𝐵𝐵𝐿

1𝐵𝐿1𝐵𝑅

11𝑅

Figure 1.3: A program 𝑃 for 𝜆𝑥𝑦.(𝑥 + 𝑦).

recursive functions can be found in [8, §44]. An important one is the prime enumeration
function,

𝑝(𝑖) ≡ the (𝑖 + 1)th prime number. (1.1.2)

8

Let 𝑝0, 𝑝1, … , 𝑝𝑖, … be an effective listing of the prime numbers. The fundamental
theorem of arithmetic states that each 𝑛 ∈ ℕ has a unique representation,

𝑛 = 𝑝𝑛00 𝑝
𝑛1
1 ⋯𝑝𝑛𝑖𝑖 ⋯ , (1.1.3)

where all but finitely many 𝑛𝑖 are zero. It follows that the prime factor representa-
tion eq. (1.1.3) is primitive recursive. The idea is to use the prime factor representation
to assign a unique code to syntactical objects such as derivations of primitive recursive
functions. For instance we assign to each symbol such as function symbols, parenthesis,
variable symbols and numerals a unique natural number, which we then code up accord-
ing to eq. (1.1.3). To give a concrete example, let us encode scheme (iii) independently
in the following way:

𝑈 𝑥 ◦ _ ̂ () ≡ ,
3 5 7 9 11 13 15 17 19

Then the instance 𝑈 2
1 (𝑥1, 𝑥2) ≡ 𝑥1 becomes

𝑈 ◦ _ ◦ ◦ ̂ (𝑥 , ◦ 𝑥) ≡ 𝑥
23 32739 52737511 713 115 1319 172735 1915 2317 295

where ◦works as a successor for the variable symbol 𝑥 and digits for sub- and superscript
numerals _ and ̂. We can code up Turing programmes in a similar way. For more details
see [19, §1.4] or [8, §52, §56]. For this encoding to be meaningful we would like it to be
effectively invertible, viz. given a number we would want to retrieve the syntactical
object it represents. It can be shown that the prime exponent function,

(𝑛)𝑖 ≡

{
𝑛𝑖 if 𝑛 > 0;
0 if 𝑛 = 0,

(1.1.4)

is primitive recursive for a fixed 𝑖 ≥ 0 [8, §45], which acts as a componentwise inverse
to the numbering.

Definition 1.1.5. The above encoding scheme is known as Gödel numbering and we
take it to be the canonical numbering of the theory.

Every primitive recursive function may be derived in a finite number of steps from
an application of schema (i)–(v). Thus we could make a listing, viz. a surjective mapping
from the set of natural numbersℕ to the class of primitive recursive functions  via
the Gödel numbering. In principle we could device an algorithm that lists all primitive
recursive functions of one variable. Suppose such a listing exists and let 𝑓𝑛 denote the
function determined by the (𝑛+1)th derivation 𝑄𝑛 in this list. Now consider the function
𝑔 defined as,

𝑔(𝑥) ≡ 𝑓𝑥(𝑥) + 1. (1.1.5)

9

Evidently, 𝑔 is computable in the unrestricted sense: to compute 𝑔(𝑥), find 𝑄𝑥 in the list
and retrieve the derivation to compute 𝑓𝑥(𝑥) and add one. However, 𝑔 is not primitive
recursive. For suppose towards a contradiction that 𝑔 = 𝑓𝑥0 for some 𝑥0 ∈ ℕ, then
𝑓𝑥0(𝑥0) = 𝑔(𝑥0) ≡ 𝑓𝑥0(𝑥0) + 1, which is impossible by 𝑆(𝑥) ≠ 𝑥 . This is an example of
a proof by Cantor’s diagonalisation method. The argument suggests that the class of
primitive recursive functions is not exhaustive.

Definition 1.1.6 (Kleene). The class  of partial recursive functions (p.r) is the least
class closed under schema (i)–(v) of definition 1.1.3 and

(vi) unbounded minimisation such that for a partial recursive (𝑛 + 1)-ary function
𝑔 ∈ , the function 𝑓 described by

𝑓 (𝑥1, … , 𝑥𝑛) ≡ 𝜇𝑦[𝑔(𝑥1, … , 𝑥𝑛, 𝑦)↓= 1 ∧ (∀𝑧 < 𝑦)[𝑔(𝑥1, … , 𝑥𝑛, 𝑧)↓≠ 1]]

is in .

Remark 1.1.7. In general, Kleene’s 𝜇-operator 𝜇𝑦𝑅(𝑥1, … , 𝑥𝑛, 𝑦) gives the least 𝑦 such
that the predicate 𝑅(𝑥1, … , 𝑥𝑛) holds or equivalently 𝜇𝑦[𝜒(𝑥1, … , 𝑥𝑛, 𝑦) = 1], where 𝜒 is
the characteristic or representing function of the predicate 𝑅,

𝜒(𝑥1, … , 𝑥𝑛, 𝑦) ≡

{
1 if 𝑅(𝑥1, … , 𝑥𝑛, 𝑦);
0 otherwise.

(1.1.6)

A predicate is said to be primitive recursive if it possesses a primitive recursive character-
istic function. To give an example, the characteristic function of the equality predicate
𝑥 = 𝑦 is given by sgn|𝑥 − 𝑦| and is primitive recursive [8, §45].

To see why we cannot repeat the same argument, fix a p.r function 𝑔 and an input
𝑥 . Compute 𝑔(𝑥, 0), 𝑔(𝑥, 1), … in order and do not proceed to the next unless 𝑔(𝑥, 𝑧)
converges. If there is a least 𝑦 such that 𝑔(𝑥, 𝑦) converges and is equal to 1, output 𝑦.
Otherwise, proceed forever. Thus there may be inputs for which 𝑓 (𝑥1, … , 𝑥𝑛) diverges.
We can therefore no longer diagonalise out of the class of partial recursive functions 
as 𝑓𝑥0(𝑥0) may be undefined. The price we pay is that { 𝑛 ∈ ℕ | 𝜙𝑛 is total } is no longer
decidable. We make precise what this means in section 1.3.

Church’s lambda calculus is yet another variant of formalisation for algorithmic
procedures. What these models of computation have in common is content of the
Church-Turing thesis. We summarise it here as fact.

Fact 1.1.8 (Church-Turing thesis).

(i) The proposed formal characterisations of algorithms are shown to define the same
class of partial functions and there exists a uniform effective procedure for translating
a set of finite descriptions of one characterisation to another. For reference see for
example [8, §68 – §69].

10

(ii) Partial functions that coincide with our intuitive notion of algorithmic functions are
shown to have formal descriptions, which provides strong empirical evidence that
this class of partial functions is sufficiently inclusive.

(iii) These characterisations are in the above sense the correct classification of our informal
notion of algorithms.

The techniques developed in establishing the above points allow us to to give
informal proofs, which we can think of as pseudo code that with some effort can be
implemented in one of the models. This ‘proof technique’ is known as proof by Church’s
Thesis and asserts the validity of a proof independent of the degree of formality.

It is a remarkable fact that these characterisations are only equivalent up to the class
of functions they define in the classical world. The different notions of computability
turn out to give rise to two distinct realizability topoi, the world they model [7, 15].

In light of Church-Turing thesis the following definition is unambiguous.

Definition 1.1.9. Let 𝑃𝑒 denote the set of instructions associated with with the code
𝑒 ∈ ℕ in the fixed listing of all sets of instructions. We call 𝑒 the index or Gödel number
of 𝑃𝑒. Let 𝜙(𝑛)𝑒 denote the partial recursive function of 𝑛 variables determined by 𝑃𝑒. We
call 𝜙𝑒 total recursive or simply recursive if it converges for every input.

Note that the Gödel numbering allows us to uniformly effectively go from an index
to a programme and vice versa. The following is another coding scheme that is useful
for encoding 𝑘-tuples.

Definition 1.1.10. Define a bijective primitive recursive coding ⟨−⟩(𝑘)∶ ℕ𝑘 → ℕ, 𝑘 ≥ 0
inductively as follows:

(i) ⟨−⟩(1) ≡ 𝜆𝑥.𝑥;

(ii) ⟨−⟩(𝑘+1) ≡ 𝜆𝑥1 …𝑥𝑘+1.⟨⟨𝑥1, … , 𝑥𝑘⟩(𝑘), 𝑥𝑥+1⟩(2),

where ⟨−⟩2∶ ℕ(2) → ℕ is Cantor’s pairing function (𝑥, 𝑦) ↦ 1
2(𝑥 + 𝑦)(𝑥 + 𝑦 + 1) + 𝑥 .

Let recursive functions 𝜋(𝑘)
1 , … , 𝜋(𝑘)

𝑘 denote the componentwise inverses of ⟨−⟩(𝑘), that is
for all 𝑧, ⟨𝜋(𝑘)

1 (𝑧), … , 𝜋(𝑘)
𝑘 (𝑧)⟩(𝑘) = 𝑧. The superscript is dropped whenever the context is

clear.

Proposition 1.1.11. Let 𝜙 be partial recursive functions of one variable, then

(i) 𝜓(𝑘) ≡ 𝜆𝑥1 …𝑥𝑘.𝜙(⟨𝑥1, … , 𝑥𝑘⟩)

is a partial recursive functions of 𝑘 variables. Let 𝜓(𝑘) be a partial recursive function of 𝑘
variables, then

(ii) 𝜙 ≡ 𝜆𝑧.𝜓(𝑘)(𝜋(𝑘)
1 (𝑧), … , 𝜋(𝑘)

𝑘 (𝑧)),

11

is a partial recursive function of one variable. Moreover, the association in (ii) is inverse to
the association in (i).

Proof. Immediate by pairing in definition 1.1.10 and Church’s Thesis. For given 𝜙
construct 𝜓(𝑘) as in (i). Now define 𝜙′ as in (ii). Then

𝜙′(𝑧) = 𝜓(𝑘)(𝜋(𝑘)
1 (𝑧), … , 𝜋(𝑘)

𝑘 (𝑧)) = 𝜙(⟨𝜋(𝑘)
1 (𝑧), … , 𝜋(𝑘)

𝑘 (𝑧)⟩) = 𝜙(𝑧);

and similarly

𝜓′(𝑥1, … , 𝑥𝑘) = 𝜙(⟨𝑥1, … , 𝑥𝑘⟩)

= 𝜓(𝑘)(𝜋(𝑘)
1 (⟨𝑥1, … , 𝑥𝑘⟩), … , 𝜋(𝑘)

𝑘 (⟨𝑥1, … , 𝑥𝑘⟩))

= 𝜓(𝑘)(𝑥1, … , 𝑥𝑘). ■

1.2 Some standard results
We will formulate a few important results that will be used readily throughout the
coming section.

Proposition 1.2.1. There are exactly ℵ0 partial recursive- and recursive functions.

Proof. There are at least ℵ0 recursive– and therefore partial recursive functions as all
constant functions are recursive by Church’s Thesis. By Gödel numbering there are at
most ℵ0 partial recursive– and therefore recursive functions. ■
Proposition 1.2.2. There exist functions which are not recursive.

Proof. Follows from diagonalisation. ■
The following result, makes precise the distinction between an effective procedure

and mapping yielded by an effective procedure; a function may have multiple algorithms.

Lemma 1.2.3 (Padding lemma). Each p.r function has ℵ0 distinct indices.

Proof. We give an informal proof. Let a p.r function 𝜙𝑒 be given. Let { 𝑞0, … , 𝑞𝑚 }
be the internal states of the program 𝑃𝑒 associated with 𝜙𝑒. Add for each 𝑘 ∈ ℕ the
extraneous quintuples (𝑞𝑚+1, 1, 1, 𝑅, 𝑞𝑚+1), … , (𝑞𝑚+𝑘+1, 1, 1, 𝑅, 𝑞𝑚+𝑘+1). The partial function
determined by the new program 𝑃𝑒′ is unchanged as none of the states 𝑞𝑚+𝑘+1 can be
entered. ■
Remark 1.2.4. The Padding lemma allows for the following useful construction. Define
a recursive function 𝑡′ such that

(i) 𝜆𝑧.𝜙𝑡′(𝑥,𝑦)(𝑧) ≃ 𝜆𝑧.𝜙𝑥(𝑧);

12

(ii) 𝑦 ≠ 𝑦′ ⟹ 𝑡′(𝑥, 𝑦) ≠ 𝑡′(𝑥, 𝑦′),

by constructing successively larger Gödel numbers for the same partial recursive func-
tion. Then define a function 𝑡 inductively as follows:

(i) 𝑡(0, 0) ≡ 𝑡′(0, 0);

(ii) suppose 𝑡(𝑥′, 𝑦′) is defined for all ⟨𝑥′, 𝑦′⟩ < ⟨𝑥, 𝑦⟩, then set 𝑡(𝑥, 𝑦) ≡ 𝑡′(𝑥, 𝑧),

where 𝑧 ≡ 𝜇𝑤[(∀⟨𝑥′, 𝑦′⟩ < ⟨𝑥, 𝑦⟩)[𝑡′(𝑥, 𝑤) ≠ 𝑡(𝑥′, 𝑦′)]]. Notice that 𝑡 is also recursive
as no two consecutive iterations of 𝑤 can yield equality by construction of 𝑡′. That is to
say, if 𝑡′(𝑥, 𝑤) = 𝑡(𝑥′, 𝑦′) then it implies that 𝑡′(𝑥, 𝑤 + 1) ≠ 𝑡(𝑥′, 𝑦′) for a fixed (𝑥′, 𝑦′),
hence 𝑧 is always defined. Thus, we get the desirable properties

(i) 𝜆𝑧.𝜙𝑡(𝑥,𝑦)(𝑧) ≃ 𝜆𝑧.𝜙𝑥(𝑧);

(ii) [𝑥 ≠ 𝑥′ or 𝑦 ≠ 𝑦′] ⟹ 𝑡(𝑥, 𝑦) ≠ 𝑡(𝑥′, 𝑦′).

Theorem 1.2.5 (Kleene normal-form theorem). Fix 𝑘 ∈ ℕ. There exist fixed primitive
recursive functions 𝑝, 𝑡𝑘 of one and 𝑘 + 2 variables respectively, such that for all 𝑒,

𝜙(𝑘)𝑒 ≃ 𝜆𝑥1 …𝑥𝑘.𝑝(𝜇𝑦[𝑡𝑘(𝑒, 𝑥1, … , 𝑥𝑘, 𝑦) = 1]). (1.2.1)

Proof. Define a function 𝑠 of 𝑘 + 3 variables by,

𝑠𝑘(𝑒, 𝑥, 𝑦, 𝑠) ≡

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1 if 𝑃𝑒 on input 𝑥 yields an output y,
in fewer than s steps of the computation;

0 otherwise.
(1.2.2)

The encodings in the description are all primitive recursive and definition by cases
for mutually exclusive predicates is primitive recursive, which gives that 𝑠 is primitive
recursive. Define two primitive recursive function 𝑞 ≡ 𝜆𝑦.(𝑦 + 1)0 and 𝑝 ≡ 𝜆𝑦.(𝑦 + 1)1.
Finally let 𝑡𝑘 be,

𝑡𝑘 ≡ 𝜆𝑒𝑥𝑦.𝑠𝑘(𝑒, 𝑥, 𝑝(𝑦), 𝑞(𝑦)), (1.2.3)

which is primitive recursive by definition 1.1.3. The theorem follows, for an even more
formal proof see [8, §58]. ■

The next theorem asserts the existence of a universal machine that can simulate any
instructions for a partial recursive function of lower arity. Intuitively, if we think that all
the 𝑘-ary partial recursive functions are listed in one column, then all the information
of that column, can be found in a single cell of in that entire numbering.

Theorem 1.2.6 (Enumeration theorem). There exists an 𝑒 such that for all 𝑦, 𝑥1 … , 𝑥𝑘,

𝜙𝑒(𝑦, 𝑥1, … , 𝑥𝑘) ≃ 𝜙𝑦(𝑥1, 𝑥2, … , 𝑥𝑘)

.

13

Proof. The theorem follows immediately from theorem 1.2.5:

𝜓(𝑦, 𝑥1, … , 𝑥𝑘) ≡ 𝑝(𝜇𝑧[𝑡𝑘(𝑦, 𝑥1, … , 𝑥𝑘, 𝑧) = 1]) ≃ 𝜙𝑦(𝑥1, … , 𝑥𝑘).

By Church’s Thesis, 𝜓 has an index 𝑒. ■
Definition 1.2.7. A function 𝑓 of 𝑘 variables is one-one if, for every 𝑦, there is at most
one 𝑘-tuple ⟨𝑥1, … , 𝑥𝑘⟩ such that 𝑓 (𝑥1, … , 𝑥𝑘) = 𝑦.

The next result is also known as parametrization theorem and is in spirit the converse
of the previous theorem.

Theorem 1.2.8 (s-m-n theorem). For every 𝑚, 𝑛 ≥ 1, there exists a one-one recursive
function of 𝑚 + 1 variables such that for all 𝑒, 𝑦1, … , 𝑦𝑚,

𝜆𝑥1…𝑥𝑛.𝜙(𝑚+𝑛)𝑒 (𝑦1, … , 𝑦𝑚, 𝑥1, … , 𝑥𝑛) ≃ 𝜙(𝑛)𝑠𝑚𝑛 (𝑒,𝑦1,…,𝑦𝑚). (1.2.4)

Proof. Informally, let 𝑃𝑠𝑚𝑛 (𝑒,𝑦1,…,𝑦𝑚) on input 𝑥 find 𝑃𝑒 and run it on input (𝑦, 𝑥). Hence,
𝑠𝑚𝑛 is recursive by Church’s Thesis. The function can be altered to a one-one function
𝑠𝑚𝑛 ≡ 𝜆𝑒𝑦1 …𝑦𝑚.𝑡(𝑠𝑚𝑛 (𝑒, 𝑦1, … , 𝑦𝑚), ⟨𝑒, 𝑦1, … , 𝑦𝑚⟩), where 𝑡 is the recursive function defined
in remark 1.2.4. A formal proof can be found in [8, §65]. ■
Corollary 1.2.9. There exists a recursive function 𝑔 of two variables such that for all 𝑥, 𝑦,

𝜆𝑧.𝜙𝑔(𝑥,𝑦)(𝑧) ≃ 𝜆𝑧.𝜙𝑥𝜙𝑦(𝑧). (1.2.5)

Proof. By Enumeration theorem there exists a universal machine 𝜓(𝑥, 𝑦) such that

𝜂(𝑥, 𝑦, 𝑧) ≡ 𝜓(𝑥, 𝜓(𝑦, 𝑧)) ≃ 𝜙𝑥(𝜙𝑦(𝑧)).

By Church’s Thesis, the function 𝜂 is recursive and has an index 𝑒 say. It follows by
s-m-n theorem that

𝜙𝑠21(𝑒,𝑥,𝑦)(𝑧) ≃ 𝜂𝑒(𝑥, 𝑦, 𝑧) ≃ 𝜙𝑥(𝜙𝑦(𝑧)).

Now define 𝑔(𝑥, 𝑦) ≡ 𝑠21(𝑒, 𝑥, 𝑦). The result follows. ■

1.3 Undecidability of the halting problem
In this section we will show that there is no effective decision procedure that would
give us a priori knowledge of whether an arbitrary machine on an arbitrary input would
halt. That is, the halting problem is unsolvable.

Definition 1.3.1. A set 𝐴 is called recursive or decidable if it possesses a recursive
characteristic function,

𝜒𝐴(𝑥) ≡

{
1 if 𝑥 ∈ 𝐴;
0 otherwise.

(1.3.1)

14

Intuitively, a set 𝐴 is recursive if we can uniform effectively decide its members.

Definition 1.3.2. A set 𝐴 is called recursively enumerable (r.e) or semidecidable if it
is the domain of a partial recursive function. Let the r.e set with Gödel number 𝑒 be
denoted by,

𝑊𝑒 ≡ dom 𝜙𝑒 = { 𝑥 | 𝜙𝑒(𝑥)↓ }. (1.3.2)

By the Padding lemma, there are also infinitely many indices for a recursively
enumerable set.

Remark 1.3.3 (Dovetailing). We give a description for a useful construction that allows
for simultaneous computation of possibly infinite inputs for a fixed p.r function 𝜙𝑒, or
for a fixed input 𝑥 the simultaneous computation of possibly infinite p.r functions. In the
first stage, perform one step of the computation of 𝜙𝑒(0) (or 𝜙0(𝑥)), in the second stage
perform the second step of 𝜙𝑒(0) (or 𝜙0(𝑥)) and first step of 𝜙𝑒(1) (or 𝜙1(𝑥)). Continue
the pattern as in fig. 1.4, where 𝜙𝑒,𝑠(𝑥) denotes 𝑠 steps in the computation of 𝜙𝑒(𝑥) and
𝜙𝑒,0(𝑥)↑. These diagonal procedures are known as dovetailing.

𝜙𝑒,1(0) 𝜙𝑒,2(0) 𝜙𝑒,3(0) ⋯

𝜙𝑒,1(1) 𝜙𝑒,2(1) 𝜙𝑒,3(1) ⋯

𝜙𝑒,1(2) 𝜙𝑒,2(2) ⋱

⋮
⋮

𝜙0,1(𝑥) 𝜙0,2(𝑥) 𝜙0,3(𝑥) ⋯

𝜙1,1(𝑥) 𝜙1,2(𝑥) 𝜙1,3(𝑥) ⋯

𝜙2,1(𝑥) 𝜙2,2(𝑥) ⋱

⋮

⋮

𝜙𝑒,4(0)

𝜙𝑒,1(3)

𝜙0,4(𝑥)

𝜙3,1(𝑥)

Figure 1.4: Illustration of dovetailing for inputs (left) and p.r functions (right).

Theorem 1.3.4 (Listing theorem). A set 𝐴 is r.e if and only if 𝐴 = ∅ or it is the range
of a total recursive function 𝜂. Moreover, 𝜂 can be found uniformly in an index 𝑒 for a
nonempty r.e set 𝐴.

Proof. Let 𝐴 = dom 𝜙𝑒 and define a function 𝜓 recursively by running the dovetailing
procedure. Set,

𝜓(𝑒, 0) ≡ first 𝑦 such that (∃𝑠)𝜙𝑒,𝑠(𝑦)↓;

𝜓(𝑒, 𝑥 + 1) ≡

{
first 𝑦 such that (∃𝑦)𝑦<𝑥+1[𝜙𝑒,𝑥+1−𝑦(𝑦)↓ ∧ (∀𝑤 < 𝑥 + 1)[𝜙𝑒,𝑥+1−𝑦(𝑦) ≠ 𝜓(𝑒, 𝑤)]];
𝜓(𝑒, 0) otherwise,

(1.3.3)

15

where 𝑥 + 1 is viewed as the diagonal stages in the dovetailing procedure. By Church’s
Thesis 𝜓 is a partial recursive function. Indeed, whenever 𝐴 ≠ ∅, then 𝜂 ≡ 𝜆𝑥.𝜓(𝑒, 𝑥)
is total and 𝐴 = 𝜂(ℕ) uniformly in 𝑒. Note that each 𝑥 ∈ 𝐴 is listed exactly once with
exception for 𝜂(0).

Conversely, if 𝐴 = ∅ then it is the domain of the completely undefined partial
recursive function 𝜆𝑥.(↑). If 𝐴 ≠ ∅, then 𝐴 = 𝜂(ℕ) with 𝜂 recursive. Now define
𝜓 ≡ 𝜆𝑥.𝜂(𝜇𝑦[𝜂(𝑦) = 𝑥]), which is partial recursive by Church’s Thesis, then it is clear
that 𝐴 = dom 𝜓. ■

It is in the sense of the Listing theorem that 𝐴 is enumerable.

Theorem 1.3.5. A set 𝐴 is r.e if and only if it possesses a partial recursive characteristic
function,

𝜓𝐴(𝑥) ≡

{
1 if 𝑥 ∈ 𝐴;
↑ otherwise.

(1.3.4)

Proof. Let 𝐴 = dom 𝜙𝑒 for some p.r function with index 𝑒. Then we have that

𝜓𝐴(𝑥) ≡

{
1 if 𝜙𝑒(𝑥)↓;
↑ otherwise,

is the desired p.r function by Church’s Thesis. The converse is immediate: we have that
𝐴 = dom 𝜓𝐴, where 𝜓𝐴 is p.r by definition. ■

It is in the above sense that 𝐴 is semidecidable. Intuitively, our decision procedure
is always limited to a partial answer as negative ones have a waiting time of forever.

Proposition 1.3.6. If 𝐴 is r.e and 𝜓 is p.r, then 𝜓−1(𝐴) and 𝜓(𝐴) are r.e.

Proof. Suppose 𝐴 = dom 𝜙𝑒 for some 𝑒. It is clear that 𝜓−1(𝐴) = dom 𝜙𝑒𝜓. The result
follows from corollary 1.2.9. We give a description of a partial recursive function whose
domain is the image of 𝐴 under 𝜓. For an input 𝑥 , check if 𝜙𝑒(𝑥) converges and only
then dovetail 𝜓 on all inputs 𝑦 and check if it converges and is equal to 𝑥 , otherwise
undefined. By Church’s Thesis this defines a partial recursive partial whose domain is
𝜓(𝐴). ■
Lemma 1.3.7. If 𝐴 is recursive, then 𝐴 is recursively enumerable.

Proof. Let 𝜒𝐴 be the characteristic function of 𝐴. Let 𝜓 be a partial recursive function
defined by,

𝜓(𝑥) ≡

{
1 if 𝜒𝐴(𝑥) = 1;
↑ otherwise.

Clearly, 𝐴 = dom 𝜓. ■

16

Theorem 1.3.8 (Post). A set 𝐴 is recursive if and only if 𝐴 and 𝐴 are recursively enumer-
able.

Proof. It is immediate that if 𝐴 is recursive, then its complement 𝐴 is recursive; set
𝜒𝐴̄(𝑥) ≡ 1 − 𝜒𝐴(𝑥). The result follows by lemma 1.3.7.

Conversely, suppose 𝐴 = dom 𝜙𝑒 and 𝐴 = dom 𝜙𝑟 for some 𝑒 and 𝑟 respectively.
Define the recursive function

𝑓 (𝑥) ≡ 𝜇𝑠[𝜙𝑒,𝑠+1(𝑥)↓ ∨ 𝜙𝑟 ,𝑠(𝑥)↓].

We are effectively dovetailing 𝜙𝑒 and 𝜙𝑟 . Now 𝑥 ∈ 𝐴 if and only if 𝜙𝑒,𝑓 (𝑥)(𝑥)↓, thus 𝐴 is
recursive. ■

Next we show that the converse of lemma 1.3.7 does not hold.

Definition 1.3.9. Let 𝐾 ≡ { 𝑥 | 𝜙𝑥(𝑥)↓ } = { 𝑥 | 𝑥 ∈ 𝑊𝑥 } denote the diagonal halting set.

Theorem 1.3.10. There exists a recursively enumerable but not recursive set, and 𝐾 is
such a set.

Proof. Let 𝜙𝑒(𝑥, 𝑦) be the universal partial function of two variables from theorem 1.2.6.
Then 𝐾 = dom 𝜓 with 𝜓(𝑥) ≡ 𝜙𝑒(𝑥, 𝑥). Suppose towards a contradiction that 𝐾 is
recursive. Then we have that 𝐾 is recursive, and therefore recursively enumerable by
theorem 1.3.8. Let 𝐾 = 𝑊𝑥 for some 𝑥 . It follows by definition of 𝐾 and every choice of
𝑥 that

𝑥 ∈ 𝐾 ⟺ 𝑥 ∈ 𝑊𝑥 ⟺ 𝑥 ∈ 𝐾 ⟺ 𝑥 ∉ 𝐾,

which is impossible. We conclude that 𝐾 cannot be recursive. ■
While the class of recursive sets is closed under complementation, theorem 1.3.10

shows that the class of r.e sets is not. We are now in a position to take on the halting
problem, which is encoded in the following way.

Definition 1.3.11. Let 𝐾0 ≡ { ⟨𝑥, 𝑦⟩ | 𝜙𝑥(𝑦)↓ } denote the halting set.

Corollary 1.3.12. The halting set 𝐾0 is r.e, but not recursive.

Proof. Indeed 𝐾0 = dom 𝜓 with 𝜓(⟨𝑥, 𝑦⟩) ≡ 𝜙𝑒(𝑥, 𝑦) in the Enumeration theorem 1.2.6.
Note that 𝑥 ∈ 𝐾 if and only if ⟨𝑥, 𝑥⟩ ∈ 𝐾0. Thus an effective decision procedure for 𝐾0

would imply the decidability of 𝐾 , a contradiction. ■
The above proof gives an indirect technique for determining solvability of new

problems by reducing a known unsolvable problem such as𝐾 to them. We can intuitively
think of a problem being reducible to another if testing membership for the latter is not
harder than the first.

Definition 1.3.13. Let 𝐴 and 𝐵 be sets.

(i) Write 𝐴 ≤𝑚 𝐵 to mean 𝐴 is many-one reducible (m-reducible) to 𝐵 if there is a
recursive function 𝑓 such that 𝑓 (𝐴) ⊆ 𝐵 and 𝑓 (𝐴) ⊆ 𝐵;

17

(ii) and write 𝐴 ≤1 𝐵 to mean 𝐴 is one-one reducible (1-reducible) to 𝐵 if there is a
one-one recursive function 𝑓 such that 𝑓 (𝐴) ⊆ 𝐵 and 𝑓 (𝐴) ⊆ 𝐵.

We write ≤𝑟 to refer to reducibility in general. Note that above condition is the same as
stating (∀𝑥)[𝑥 ∈ 𝐴 ⟺ 𝑓 (𝑥) ∈ 𝐵] or 𝐴 = 𝑓 −1(𝐵).

Proposition 1.3.14. The following are basic properties of reducibility:

(i) ≤𝑟 is reflexive and transitive;

(ii) if 𝐴 ≤1 𝐵 then 𝐴 ≤𝑚 𝐵;

(iii) if 𝐴 ≤𝑟 𝐵 then 𝐴 ≤𝑟 𝐵;

(iv) if 𝐴 ≤𝑟 𝐵 and 𝐵 is recursive, then 𝐴 is recursive;

(v) if 𝐴 ≤𝑟 𝐵 and 𝐵 is recursively enumerable, then 𝐴 is recursively enumerable.

Proof. In (i) transitivity follows from the fact that composition of recursive-and one-
one functions is recursive- and one-one respectively. For reflexivity take the identity
function 𝜆𝑥.𝑥 , which is recursive. Part (ii) is immediate by definition and (iii) follows
from the fact that in 𝐒𝐞𝐭, a set it equal to its double complement, so we can use the same
𝑓 . Suppose 𝜒𝐵 is the recursive characteristic function of 𝐵 in (iv), then 𝜒𝐴 = 𝜒𝐵𝑓 . It
follows by the proof of proposition 1.3.6 that 𝐴 = 𝑓 −1(𝐵) in (v) is r.e. ■
Proposition 1.3.15. Let 𝑇 𝑜𝑡 ≡ { 𝑥 | 𝜙𝑥 is total } and 𝐾1 ≡ { 𝑥 | 𝑊𝑥 ≠ ∅ }, then 𝐾 ≤1 𝑇 𝑜𝑡
and 𝐾 ≤1 𝐾1 and are therefore not recursive.

Proof. Define 𝜓 by,

𝜓(𝑥, 𝑦) ≡

{
1 if 𝑥 ∈ 𝐾;
↑ otherwise.

By Church’s Thesis 𝜓 is p.r with index 𝑧0 say. Then by an application of s-m-n theo-
rem 1.2.8 we have that 𝜓(𝑥, 𝑦) ≃ 𝜙𝑓 (𝑥)(𝑦) ≡ 𝜙𝑠11(𝑧0,𝑥). Therefore,

𝑥 ∈ 𝐾 ⟹ 𝜙𝑓 (𝑥) ≃ 𝜆𝑥.(1) ⟹ 𝑓 (𝑥) ∈ 𝑇 𝑜𝑡 (𝑓 (𝑥) ∈ 𝐾1); and
𝑥 ∈ 𝐾 ⟹ 𝜙𝑓 (𝑥) ≃ 𝜆𝑥.(↑) ⟹ 𝑓 (𝑥) ∈ 𝑇 𝑜𝑡 (𝑓 (𝑥) ∈ 𝐾1).

Hence if 𝑇 𝑜𝑡 or 𝐾1 were recursive then proposition 1.3.14 would render 𝐾 recursive,
which is impossible by theorem 1.3.10. ■
Remark 1.3.16. As 𝐾1 is not decidable, the converse statement in theorem 1.3.4 cannot
be proved uniformly effectively in an index for an r.e set 𝐴. In fact, these two notions
do not coincide in 𝑓𝑓 .

18

It follows from (v) in proposition 1.3.14 that if 𝐾 ≤𝑟 𝐴 then 𝐴 is not recursive or
recursively enumerable. Not only is 𝑇 𝑜𝑡 undecidable, it is not even semidecidable.

Proposition 1.3.17. We have that 𝐾 ≤𝑟 𝑇 𝑜𝑡.

Proof. We do this through a simple of dovetailing procedure. Define

𝜓(𝑥, 𝑠, 𝑦) ≡

{
↑ if 𝜙𝑥,𝑠(𝑥)↓;
1 if 𝜙𝑥,𝑠(𝑥)↑ .

It has an index 𝑧0 say, by Church’s Thesis. Through an application of s-m-n define
𝑓 (𝑥, 𝑠) ≡ 𝑠21(𝑧0, 𝑥, 𝑠). Then 𝑔 ≡ 𝜆𝑧.𝑓 (𝜋1(𝑧), 𝜋2(𝑧)), is a recursive one-one function of one
variable by proposition 1.1.11, where 𝜓(𝑥, 𝑠, 𝑦) ≃ 𝜙𝑔(⟨𝑥, 𝑠⟩)(𝑦). Then it is apparent that,

𝑧 ∈ 𝐾 ⟹ 𝜙𝑔(𝑧) = 𝜆𝑥.(1) ⟹ 𝑔(𝑧) ∈ 𝑇 𝑜𝑡; and

𝑧 ∈ 𝐾 ⟹ 𝜙𝑔(𝑧) = 𝜆𝑥.(↑) ⟹ 𝑔(𝑧) ∈ 𝑇 𝑜𝑡. ■
We next show two important closure properties of recursively enumerable set.

Recursively enumerable sets are closed under infinite union and finite intersection
indexed by a recursively enumerable set. Note that finite sets are r.e: we can just give a
finite description of a partial recursive function with that domain.

Proposition 1.3.18. Let 𝐼 be a possibly infinite recursively enumerable set and 𝐹 a finite
set, then ⋃

𝑛∈𝐼
𝑊𝑛 and ⋂

𝑛∈𝐹
𝑊𝑛 are recursively enumerable.

Proof. For a fixed 𝑥 run a dovetailing procedure on partial recursive functions 𝜙𝑛 with
𝑛 ∈ 𝐴. The process will terminate if and only if there an 𝑛 such that 𝜙𝑛,𝑠(𝑥)↓ in some
steps 𝑠. Thus ⋃

𝑛∈𝐼
𝑊𝑛 is the domain of such a partial recursive function by Church’s Thesis.

Similarly, dovetail the finite collection of partial recursive functions 𝜙𝑛 with 𝑛 ∈ 𝐹 , the
process will terminate if and only if every 𝜙𝑛,𝑠(𝑥) converges for some 𝑠. Thus ⋂

𝑛∈𝐹
𝑊𝑛 is

the domain of such a partial recursive function by Church’s Thesis. ■
Remark 1.3.19. Intersection of r.e sets under an r.e index is not necessarily r.e. In-
tuitively, we can think of it as the dovetailing procedure to be in vain as possibly an
infinite number of steps 𝑠 will still have to be checked. So, even if there is an answer
or the intersection is nonempty, we would have to wait forever. We give an explicit
construction. The set { 𝑥 | 𝜙𝑥(𝑛)↓ } is r.e. as it is the domain of 𝜓(𝑥) ≡ 𝜙𝑒(𝑥, 𝑛) with 𝜙𝑒
the universal machine described in theorem 1.2.6. Yet,

⋂
𝑛∈ℕ

{ 𝑥 | 𝜙𝑥(𝑛)↓ } = 𝑇 𝑜𝑡, (1.3.5)

which is not r.e by proposition 1.3.17. In fact, we have shown failure of closure under
infinite intersection indexed by a recursive set.

19

K is in a rather strong sense nonrecursive. Namely, that it in a sense has the highest
degree of unsolvability among the r.e sets.

Definition 1.3.20. A set 𝐴 is r-complete with respect to ≤𝑟 if

(i) 𝐴 is recursively enumerable;

(ii) (∀𝐵)[𝐵 recursively enumerable ⟹ 𝐵 ≤𝑟 𝐴].

Proposition 1.3.21. The sets 𝐾 , 𝐾0 and 𝐾1 are r-complete.

Proof. Let 𝐵 be any recursively enumerable set, then 𝐵 = 𝑊𝑒 for some 𝑒. It is immediate
that 𝑥 ∈ 𝑊𝑒 if and only if ⟨𝑒, 𝑥⟩ ∈ 𝐾0, thus 𝐾0 is complete. It suffices to show that 𝐾0 ≤𝑟 𝐾
by transitivity; define

𝜓(𝑥, 𝑦) ≡

{
1 if 𝜙𝜋1(𝑥)(𝜋2(𝑥))↓;
↑ otherwise,

then 𝜓 has an index 𝑧0 by Church’s Thesis. A tacit application of s-m-n theorem yields
that 𝜓(𝑥, 𝑦) ≃ 𝜙𝑓 (𝑥)(𝑦). We have,

𝑥 ∈ 𝐾0 ⟹ 𝜙𝑓 (𝑥) = 𝜆𝑥.(1) ⟹ 𝜙𝑓 (𝑥)(𝑓 (𝑥))↓ ⟹ 𝑓 (𝑥) ∈ 𝐾; and
𝑥 ∈ 𝐾0 ⟹ 𝜙𝑓 (𝑥) = 𝜆𝑥.(↑) ⟹ 𝜙𝑓 (𝑥)(𝑓 (𝑥))↑ ⟹ 𝑓 (𝑥) ∈ 𝐾.

Again, 𝐾1 is r-complete by transitivity and proposition 1.3.15. ■
Definition 1.3.22 (Dekker). A set 𝑃 is said to be productive if it possesses a productive
partial recursive function 𝜓 such that

(∀𝑥)[𝑊𝑥 ⊆ 𝑃 ⟹ [𝜓(𝑥)↓ ∧ 𝜓(𝑥) ∈ 𝑃 − 𝑊𝑥]].

The set 𝐾 , on the other hand, is not recursively enumerable in a very strong sense as
well. We are saying that 𝑃 is not recursive and moreover there is a uniformly effective
proof of this fact in: for every 𝑥 , the function 𝜓(𝑥) gives a counterexample.

Proposition 1.3.23. The set 𝐾 is productive.

Proof. Let 𝜓 ≡ 𝜆𝑥.𝑥 . Note that the identity function is recursive. Then given an 𝑥 , if
𝑊𝑥 ⊆ 𝐾 then 𝜙𝑥(𝑥)↑ and thus 𝑥 ∈ 𝐾 − 𝑊𝑥 trivially. ■
Proposition 1.3.24. The following are basic properties of productive sets:

(i) if 𝑃 is productive then 𝑃 is not recursively enumerable;

(ii) if P is productive and 𝑃 ≤𝑚 𝐴, then 𝐴 is productive.

20

Proof. Part (i) is immediate by definition. Let 𝜓 denote the product p.r function for 𝑃
and let 𝑃 ≤𝑚 𝐴 via 𝑓 with fixed index 𝑧0. Suppose 𝑊𝑥 ⊆ 𝐴, then 𝑊ℎ(𝑥) = 𝑓 −1(𝑊𝑥) ⊆
𝑓 −1(𝐴) = 𝑃 by productiveness and by proposition 1.3.6, where ℎ(𝑥) = 𝑔(𝑥, 𝑧0) from
corollary 1.2.9. It follows that 𝜓ℎ(𝑥)↓ and 𝜓ℎ(𝑥) ∈ 𝑃 − 𝑊ℎ(𝑥). Thus 𝑓 is witness that
𝑓 𝜓ℎ(𝑥) ∈ 𝐴 and 𝑓 𝜓ℎ(𝑥) ∉ 𝑊𝑥 by 𝑊ℎ(𝑥) = 𝑓 −1(𝑊𝑥). Hence 𝑓 𝜓ℎ defines a productive p.r
function for 𝐴. ■

Thus 𝑇 𝑜𝑡 is productive.

Proposition 1.3.25. A set 𝑃 is productive if and only if 𝑃 has a recursive productive
function 𝑝.

Proof. Let 𝜓 be a partial productive function of 𝑃 . Define

𝜂(𝑥, 𝑦) ≡

{
1 if 𝜓(𝑥)↓;
↑ otherwise.

By a usual application of s-m-n and Church’s Thesis, we have that 𝜂(𝑥, 𝑦) ≃ 𝜙𝑔(𝑥)(𝑦).
Taking domains we get,

𝑊𝑔(𝑥) =

{
𝑊𝑥 if 𝜓(𝑥)↓;
∅ otherwise.

To define 𝑝, dovetail 𝜓 on inputs 𝑔(𝑥) and 𝑥 and take the output to be the first to
converge. The function 𝑝 is total as ∅ ⊆ 𝑃 , thus there will always be an output.

The converse is immediate by definition. ■
Definition 1.3.26 (Post). A set 𝐶 is said to be creative if

(i) 𝐶 is recursively enumerable;

(ii) 𝐶 is productive.

Thus K is creative. There is an equivalent characterisation.

Proposition 1.3.27 (Myhill). A set 𝐶 is creative if and only if 𝐶 is recursively enumerable
and there exists a unary partial recursive function 𝑢 such that

(∀𝑥)[𝑊𝑥 ∩ 𝐶 = ∅ ⟹ [𝑢(𝑥)↓ ∧ 𝑢(𝑥) ∉ 𝑊𝑥 ∪ 𝐶]]. (1.3.6)

Proof. Immediate by writing out the definitions and using the same p.r function. ■
Proposition 1.3.28. The following are properties of creative sets:

(i) if 𝐶 is creative then 𝐶 is not recursive;

(ii) if C is creative and 𝐶 ≤𝑚 𝐴, then 𝐴 is productive;

21

(iii) if 𝐴 is m-complete, then 𝐴 is creative.

Proof. Part (i) follows from theorem 1.3.8 and the fact that 𝐶 is productive and thus
not r.e by definition. Recall from proposition 1.3.14 that 𝐶 ≤𝑚 𝐴 implies that 𝐶 ≤𝑚 𝐴,
and thus (ii) follows from (ii) of proposition 1.3.24. For (iii) it suffices to show that 𝐴 is
productive as 𝐴 is r.e by definition. But 𝐴 is m-complete, so in particular 𝐾 ≤𝑚 𝐴. The
result follows by part (ii). ■

The content of Myhill’s theorem is the converse of (iii) in proposition 1.3.28. Before
we can prove that creative sets are complete, we need to establish a few results that are
interesting in their own right.

Theorem 1.3.29 (Fixed point theorem). For every recursive function 𝑓 there exists an 𝑛
such that

𝜙𝑓 (𝑛)(𝑥) ≃ 𝜙𝑛(𝑥).

Such an 𝑛 is called a fixed point of 𝑓 .

Proof. Define a partial recursive function 𝜓 by,

𝜓(𝑢, 𝑥) ≡

{
𝜙𝜙𝑢(𝑢)(𝑥) if 𝜙𝑢(𝑢)↓;
↑ otherwise.

By s-m-n theorem 1.2.8 we have that 𝜓(𝑢, 𝑣) ≃ 𝜙𝑔(𝑢)(𝑥) ≡ 𝜙𝑠11(𝑧0,𝑢)(𝑥), where 𝑧0 is an
Gödel number for 𝜓 by Church’s Thesis. Then 𝑓 𝑔 is recursive with an index 𝑣 say. As
𝜙𝑣 ≃ 𝑓 𝑔 is total, 𝜙𝑣(𝑣)↓ so that

𝜙𝑓 𝑔(𝑣)(𝑥) ≡ 𝜙𝜙𝑣(𝑣)(𝑥) ≃ 𝜙𝑔(𝑣).

Thus take 𝑛 ≡ 𝑔(𝑣) as the desired fixed point. ■
The proof of the first recursion theorem is quite odd. It looks like a diagonal

argument, but it fails. Imagine an infinite matrix with rows 𝑅𝑖 = { 𝜙𝜙𝑖(𝑢) }𝑢∈ℕ. The
diagonal is precisely 𝐷 = { 𝜙𝜙𝑢(𝑢) }𝑢∈ℕ with 𝜙𝜙𝑢(𝑢) = 𝜆𝑥.(↑) whenever 𝜙𝑢(𝑢)↑. Yet we fail
to generate any indices beyond those that already exist as

𝐷 = { 𝜙𝜙𝑢(𝑢) }𝑢∈ℕ = { 𝜙𝑔(𝑢) }𝑢∈ℕ = { 𝜙𝜙𝑒(𝑢) }𝑢∈ℕ = 𝑅𝑒.

This is due to the strong properties of 𝑆𝑚𝑛 that recovers the data. Now it is clear that
𝑅𝑣 = { 𝜙𝜙𝑣(𝑢) }𝑢∈ℕ = { 𝜙𝑓 𝑔(𝑢) }𝑢∈ℕ and 𝐷 must coincide on (𝑣, 𝑣).

Corollary 1.3.30. For every recursive function 𝑓 there exists an 𝑛 such that

𝑊𝑓 (𝑛) = 𝑊𝑛.

22

Proof. Immediate by the the first recursion theorem 1.3.29. ■
Corollary 1.3.31. There exists an 𝑛 such that

𝑊𝑛 = { 𝑛 }.

Proof. Define a function 𝜓 by,

𝜓(𝑥, 𝑦) ≡

{
1 if 𝑥 = 𝑦;
↑ otherwise.

By Church’s Thesis and the usual application of s-m-n we have that 𝜓(𝑥, 𝑦) ≃ 𝜙𝑓 (𝑥)(𝑦)
so that for all 𝑥 , 𝑊𝑓 (𝑥) = { 𝑥 }. Then theorem 1.3.29 asserts the existence of an 𝑛 such
that 𝑊𝑛 = 𝑊𝑓 (𝑛) = { 𝑛 }. ■

In fact the first recursion theorem has the property that we can find 𝑛 uniformly in
a Gödel number for 𝑓 whenever 𝑓 is total.

Proposition 1.3.32. There exists a recursive unary function 𝑛 such that for any 𝑧, if 𝜙𝑧 is
total, then

𝜙𝜙𝑧(𝑛(𝑧)) ≃ 𝜙𝑛(𝑧).

Proof. Let 𝑓 ≡ 𝜙𝑧. By corollary 1.2.9 we can obtain a Gödel number for 𝑓 𝑔 in the proof
of theorem 1.3.29 uniformly from 𝑧. Let 𝜙𝑣(𝑧) ≃ 𝑓 𝑔 , then define 𝑛(𝑧) ≡ 𝑔𝑣(𝑧) as the
desired recursive function. ■

Actually by padding the indices, viz. defining 𝑣̃(𝑧) = 𝑡(𝑣(𝑧), 𝑧), with 𝑡 in remark 1.2.4
we can get 𝑛 to be one-one. In order to prove Myhill’s theorem, we need to establish a
stronger version of the Fixed point theorem, which is parametrised.

Theorem 1.3.33 (Kleene’s second recursion theorem). For each 𝑘, there exists a recursive
function 𝑛 of 𝑘 + 1 variables such that for any 𝑧, if 𝜙(𝑘+1)𝑧 is total, then for all 𝑥1, … , 𝑥𝑘

𝜙𝜙(𝑘+1)𝑧 (𝑛(𝑧,𝑥1,…,𝑥𝑘),𝑥1,…,𝑥𝑘)
≃ 𝜙𝑛(𝑧,𝑥1,…,𝑥𝑘).

Proof. Define a partial recursive function 𝜓 by,

𝜓(𝑢, 𝑥, 𝑦) ≡

{
𝜙𝜙𝑢(𝑢,𝑥) if 𝜙𝑢(𝑢, 𝑥)↓;
↑ otherwise.

By s-m-n theorem 1.2.8 we have that 𝜓(𝑢, 𝑥, 𝑦) ≃ 𝜙𝑔(𝑢,𝑥) ≡ 𝜙𝑠(𝑘+1)𝑛 (𝑧0,𝑢,𝑥)
, where 𝑧0 is a

Gödel number for 𝜓 by Church’s Thesis. Let 𝑣 be a recursive function such that 𝑣(𝑧) is
a Gödel number for the total recursive function 𝜙𝑧(𝑔(𝑢, 𝑥), 𝑥), then 𝜙𝑣(𝑧)(𝑣(𝑧), 𝑥)↓. Now
define 𝑛(𝑧, 𝑥) = 𝑔(𝑣(𝑧), 𝑥). This is the desired fixed point, for

𝜙𝜙𝑧(𝑔(𝑣(𝑧),𝑥),𝑥) ≃ 𝜙𝜙𝑣(𝑧)(𝑣(𝑧),𝑥) ≃ 𝜙𝑔(𝑣(𝑧),𝑥). ■

23

Theorem 1.3.34 (Myhill). A set 𝐶 is creative if and only if 𝐶 is complete.

Proof. We will show that 𝐾 is a kind of lower bound for productiveness, viz. 𝐾 ≤𝑚 𝑃
for any productive set 𝑃 . Fix a 𝑃 , then by proposition 1.3.25 it possesses a productive
recursive function 𝑝. Define

𝜓(𝑥, 𝑦, 𝑧) ≡

{
1 if 𝜙𝑦(𝑦)↓ ∧ 𝑝(𝑥) = 𝑧;
↑ otherwise.

A tacit application of Church’s thesis and s-m-n yields 𝜓(𝑥, 𝑦, 𝑧) ≃ 𝜙𝑓 (𝑥,𝑦)(𝑧). Taking
domains we get,

𝑊𝑓 (𝑥,𝑦) =

{
{ 𝑝(𝑥) } if 𝑦 ∈ 𝐾;
∅ otherwise.

Theorem 1.3.33 asserts the existence of a recursive function 𝑛 such that

𝑊𝑛(𝑥) = 𝑊𝑓 (𝑛(𝑥),𝑥) =

{
{ 𝑝(𝑛(𝑥)) } if 𝑥 ∈ 𝐾;
∅ otherwise.

It follows that

𝑥 ∈ 𝐾 ⟹ 𝑊𝑛(𝑥) = ∅ ⟹ 𝑝(𝑛(𝑥)) ∈ 𝑃; and
𝑥 ∈ 𝐾 ⟹ 𝑊𝑛(𝑥) = { 𝑝(𝑛(𝑥)) } ⟹ 𝑝(𝑛(𝑥)) ∉ 𝑃 − 𝑊𝑛(𝑥) ⟹ 𝑊𝑛(𝑥) ⊈ 𝑃 ⟹ 𝑝(𝑛(𝑥)) ∈ 𝑃.

Thus 𝐶 is creative implies 𝐾 ≤𝑚 𝐶. The desired result follows from (ii) and (iii) of
proposition 1.3.14, and proposition 1.3.21. ■

24

Chapter 2

Crossing Over to the Effective Topos

2.1 Intuitionistic logic in the language of categories

Intuitionistic logic is a logic of constructive mathematics, where a proposition is not
taken to have an intrinsic truth-value unless an explicit proof of it has been constructed
and an object exists only when its proof also exhibits a way to find it. The former leads
to the rejection of the law of excluded middle as a principle that should universally hold
for every proposition. On these grounds, proofs by contradiction must also be rejected
as we shall see. We begin by studying Lambek’s axiomatisation of intuitionistic logic in
which proof theory is put in the syntactical framework of objects and arrows following
the book by Lambek and Scott [11]. A more standard treatment can be found in the
following book by van Dalen [3]. We derive the usual rules of propositional calculus,
which hold intuitionistically.

Definition 2.1.1. A graph  is the data (𝑋, 𝑌 , 𝑠, 𝑡) consisting of a set of arrows (oriented
edges) 𝑋 and a set of objects (nodes) 𝑌 and a pair of functions 𝑠, 𝑡∶ 𝑋 → 𝑌 assigning to
each arrow 𝑓 its source 𝑠(𝑓) = 𝐴 and target 𝑡(𝑓) = 𝐵, denoted by 𝐴

𝑓
→ 𝐵 or 𝑓∶ 𝐴 → 𝐵.

To a logician a directed multigraph with loops, in which reflexivity and transitivity
of entailment is captured, is of particular interest. We call such structures deductive
systems.

Definition 2.1.2. A deductive system  is a triple (, 1, ◦) consisting of a graph  such
that for each object 𝐴 there exists an arrow 1𝐴∶ 𝐴 → 𝐴, and for each pair of arrows
𝑓∶ 𝐴 → 𝐵 and 𝑔∶ 𝐵 → 𝐶 there is an arrow 𝑔 ◦ 𝑓∶ 𝐴 → 𝐶.

We view the objects of the deductive system as formulas and arrows as proofs or
deductions. In the proof 𝑓∶ 𝐴 → 𝐵, we call 𝐴 the antecedent, 𝐵 the consequent, and 𝑓 the
witness of entailment. Operations on arrows are seen as inference rules and specified
arrows as axiom schema. We will follow the custom of denoting composition 𝑔 ◦ 𝑓 by
juxtaposition 𝑔𝑓 .

25

By further imposing additional structure with binary operations and ∧, or ∨ and
implies ⇒, and specified objects true ⊤ and false ⊥ we can capture the full intuitionistic
propositional calculus. Thus, as in the definition for a deductive system we insist that
for each object certain arrows exist, viz. for each operation there are introduction
rules 𝐈, which show how formulas can be derived and elimination rules 𝐄, which show
how formulas can be used to derive others. We summarise the above in the following
definition.

Definition 2.1.3. The following are axiom schema and rules of inference for intuition-
istic propositional logic:

R1. 𝐴
1𝐴−→ 𝐴 (𝐓𝐚𝐮𝐭)

R2. 𝐴
𝑓
−→ 𝐵 𝐵

𝑔
−→ 𝐶

𝐴
𝑔𝑓
−−→ 𝐶

(𝐂𝐮𝐭)

R3. 𝐴
○𝐴−−→ ⊤ (𝐓)

R4a. 𝐴 ∧ 𝐵
𝜋𝐴,𝐵−−−→ 𝐴 (∧𝐄𝟏)

R4b.
𝐴 ∧ 𝐵

𝜋′
𝐴,𝐵−−−→ 𝐵

(∧𝐄𝟐)

R4c. 𝐶
𝑓
−→ 𝐴 𝐶

𝑔
−→ 𝐵

𝐶
⟨𝑓 , 𝑔⟩
−−−→ 𝐴 ∧ 𝐵

(∧𝐈)

R5a. (𝐵 ⇒ 𝐴) ∧ 𝐵
𝜀𝐴,𝐵−−→ 𝐴 (⇒𝐄)

R5b. 𝐴 ∧ 𝐵
𝑓
−→ 𝐶

𝐴
𝑓
−→ 𝐵 ⇒ 𝐶

(⇒𝐈)

R6. ⊥
□𝐴−−→ 𝐴 (𝐄𝐅𝐐)

R7a. 𝐴
𝜅𝐴,𝐵−−−→ 𝐴 ∨ 𝐵 (∨𝐈𝟏)

R7b.
𝐵

𝜅′𝐴,𝐵−−−→ 𝐴 ∨ 𝐵
(∨𝐈𝟐)

R7c.
(𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶)

𝜉𝐶𝐴,𝐵−−→ (𝐴 ∨ 𝐵) ⇒ 𝐶
(∨𝐄)

Axiom schema of classical propositional logic:

26

R8. (𝐴 ⇒ ⊥) ⇒ ⊥
𝜈𝐴−→ 𝐴 (𝐃𝐍𝐄)

The rules R1.–R4 and R1.–R5. constitute a conjunction- and a positive intuitionistic
calclulus respectively.

Composing operations on arrows give rise to derived rules. We say that an inference
rule is admissable whenever there are proofs of the premise, there is a proof of the
conclusion. We can therefore admit these rules without changing the specified rules of
the calclulus.

Lemma 2.1.4. The following derived rules of inference are admissable.

𝐴
𝑓
−→ 𝐵 𝐶

𝑔
−→ 𝐷

𝐴 ∧ 𝐶
𝑓 ∧𝑔
−−−→ 𝐵 ∧ 𝐷

(2.1.1)

𝐵
𝑓
−→ 𝐶

𝐴 ⇒ 𝐵
1𝐴⇒𝑓
−−−−→ 𝐴 ⇒ 𝐶

(2.1.2)

𝐴
𝑓
−→ 𝐵 𝐶

𝑔
−→ 𝐷

𝐷 ⇒ 𝐴
𝑔⇒𝑓
−−−→ 𝐶 ⇒ 𝐵

(2.1.3)

𝐴
𝑓
−→ 𝐵

⊤
⌜𝑓 ⌝
−−→ 𝐴 ⇒ 𝐵

(2.1.4)

⊤
𝑓
−→ 𝐴 ⇒ 𝐵

𝐴
𝑓 ≀
−→ 𝐵

(2.1.5)

𝐴
𝑓
−→ 𝐶 𝐵

𝑔
−→ 𝐶

𝐴 ∨ 𝐵
[𝑓 , 𝑔]
−−−→ 𝐶

(2.1.6)

𝐴
𝑓
−→ 𝐵 𝐶

𝑔
−→ 𝐷

𝐴 ∨ 𝐶
𝑓 ∨𝑔
−−−→ 𝐵 ∨ 𝐷

(2.1.7)

Proof. We give an illustration of the first derived rule.

(∧𝐄𝟏) 𝐴 ∧ 𝐶
𝜋𝐴,𝐵−−−→ 𝐴 𝐴

𝑓
−→ 𝐵

(𝐂𝐮𝐭)

𝐴 ∧ 𝐶
𝑓 𝜋𝐴,𝐵−−−−→ 𝐵

(∧𝐄𝟐) 𝐴 ∧ 𝐶
𝜋′
𝐴,𝐵−−−→ 𝐶 𝐶

𝑔
−→ 𝐷

(𝐂𝐮𝐭)

𝐴 ∧ 𝐶
𝑔𝜋′

𝐴,𝐵−−−→ 𝐷 (∧𝐈)

𝐴 ∧ 𝐶
⟨𝑓 𝜋𝐴,𝐵 , 𝑔𝜋′

𝐴,𝐵⟩−−−−−−−−−→ 𝐵 ∧ 𝐷
Let 𝑓 ∧ 𝑔 ≡ ⟨𝑓 𝜋𝐴,𝐵, 𝑔𝜋′

𝐴,𝐵⟩, now we can abbreviate the above derivation to the
inference rule (2.1.1). We will only define the remaining rules. It is straight forward to
retrieve the derivation from the definition. Next set 1𝐴⇒𝑓 ≡ 𝑓 𝜀𝐵,𝐴, fromwhich it follows
that 𝑔 ⇒ 𝑓 ≡ 𝜀𝐵,𝐷((1𝐷 ⇒ 𝑓) ∧ 𝑔). Define name of 𝑓 as ⌜𝑓 ⌝ ≡ 𝑓 𝜋⊤∧𝐴 and application as
𝑓 ≀ ≡ 𝜀𝐵,𝐴⟨𝑓 ○𝐴, 1𝐴⟩. The last two derived rules are thus given by [𝑓 , 𝑔] ≡ (𝜉𝐶𝐴,𝐵⟨⌜𝑓 ⌝, ⌜𝑔⌝⟩)≀

and 𝑓 ∨ 𝑔 ≡ [𝜅𝐵,𝐷𝑓 , 𝜅′𝐵,𝐷𝑔]. ■

27

Note how implication is tied to adjunction in definition 2.1.3 as opposed to negation
and disjunction in the classical case. For instance, modus ponens (⇒𝐄) resembles the
counit of adjunction. Indeed, we can derive what resembles the unit of adjunction,

𝐴
𝜂𝐴,𝐵−−→ 𝐵 ⇒ (𝐴 ∧ 𝐵) (2.1.8)

where 𝜂𝐴,𝐵 ≡ 1𝐴∧𝐵. Conversely, given (2.1.8) and (2.1.2) we can replace the transpose
(rule R5b.) in definition 2.1.3 by letting 𝑓 ≡ (1𝐴⇒𝑓)𝜂𝐴,𝐵. Next, we derive a few familiar
rules of propositional calculus.

Lemma 2.1.5. The following proofs are valid in intuitionistic propositional calculus for
each object. The subsequent arrows are pairwise converse.

𝐴 ∧ ⊤
𝜋𝐴,⊤−−−→ 𝐴 (2.1.9)

𝐴
⟨1𝐴, ○𝐴⟩−−−−−→ 𝐴 ∧ ⊤ (2.1.10)

⊤ ⇒ 𝐴
𝜀𝐴,⊤⟨1⊤⇒𝐴, ○⊤⇒𝐴⟩−−−−−−−−−−−→ 𝐴 (2.1.11)

𝐴
𝜋𝐴,⊤−−−→ ⊤ ⇒ 𝐴

(2.1.12)

𝐴 ⇒ ⊤
○𝐴⇒⊤−−−→ ⊤ (2.1.13)

⊤
𝜋⊤,𝐴−−−→ 𝐴 ⇒ ⊤

(2.1.14)

𝐴 ∧ ⊥
𝜋′
𝐴,⊥−−−→ ⊥

(2.1.15)

⊥
⟨□𝐴, 1⊥⟩−−−−−→ 𝐴 ∧ ⊥ (2.1.16)

⊥ ⇒ 𝐴
○⊥⇒𝐴−−−→ ⊤ (2.1.17)

⊤
⌜□𝐴⌝−−−→ ⊥ ⇒ 𝐴 (2.1.18)

𝐴
𝜅𝐴,⊥−−−→ 𝐴 ∨ ⊥ (2.1.19)

28

𝐴 ∨ ⊥
[1𝐴, □𝐴]−−−−−→ 𝐴 (2.1.20)

It is possible to derive absurdity from contradiction,

𝐴 ∧ (𝐴 ⇒ ⊥)
𝜀⊥,𝐴⟨𝜋′

𝐴,𝐴⇒⊥, 𝜋𝐴,𝐴⇒⊥⟩
−−−−−−−−−−−−−→ ⊥

(2.1.21)

and double negation introduction (𝐃𝐍𝐈) is a valid rule.

𝐴
𝜀⊥,𝐴⟨𝜋′

𝐴,𝐴⇒⊥, 𝜋𝐴,𝐴⇒⊥⟩
−−−−−−−−−−−−−→ (𝐴 ⇒ ⊥) ⇒ ⊥

(2.1.22)

Proof. The proof is in the pudding. ■
Lemma 2.1.6. Distributivity of conjunction over implication is a valid rule of intuitionistic
propositional calculus.

𝐶 ⇒ (𝐴 ∧ 𝐵) −→ (𝐶 ⇒ 𝐴) ∧ (𝐶 ⇒ 𝐵) (2.1.23)

(𝐶 ⇒ 𝐴) ∧ (𝐶 ⇒ 𝐵) −→ 𝐶 ⇒ (𝐴 ∧ 𝐵) (2.1.24)

Proof. The first derivation is given by ⟨𝜋𝐴,𝐵𝜀𝐴∧𝐵,𝐶 , 𝜋′
𝐴,𝐵𝜀𝐴∧𝐵,𝐶⟩ and the derivation of the

second arrow is given by ⟨𝜀𝐴,𝐶(𝜋(𝐶⇒𝐴)∧(𝐶⇒𝐵) ∧ 1𝐶), 𝜀𝐵,𝐶(𝜋′
(𝐶⇒𝐴)∧(𝐶⇒𝐵) ∧ 1𝐶)⟩. ■

Lemma 2.1.7. Commutativity and associativity of conjunction is a valid rule of intuition-
istic propositional calculus.

(𝐴 ∧ 𝐵) −→ 𝐵 ∧ 𝐴 (2.1.25)

(𝐴 ∧ 𝐵) ∧ 𝐶
𝛼𝐴,𝐵,𝐶−−−−→ 𝐴 ∧ (𝐵 ∧ 𝐶) (2.1.26)

𝐴 ∧ (𝐵 ∧ 𝐶)
𝛼′𝐴,𝐵,𝐶−−−−→ (𝐴 ∧ 𝐵) ∧ 𝐶

(2.1.27)

Proof. Commutativity is given by ⟨𝜋′
𝐴,𝐵, 𝜋𝐴,𝐵⟩. Associativity is given by,

𝛼𝐴,𝐵,𝐶 ≡ ⟨𝜋𝐴,𝐵𝜋𝐴∧𝐵,𝐶 , ⟨𝜋′
𝐴,𝐵𝜋𝐴∧𝐵,𝐶 , 𝜋

′
𝐴∧𝐵,𝐶⟩⟩; and symmetrically

𝛼′
𝐴,𝐵,𝐶 ≡ ⟨⟨𝜋𝐴,𝐵∧𝐶 , 𝜋𝐵,𝐶𝜋′

𝐴,𝐵∧𝐶⟩, 𝜋
′
𝐵,𝐶𝜋

′
𝐴,𝐵∧𝐶⟩. ■

Lemma 2.1.8. Exportation is a valid rule of intuitionistic propositional calculus.

(𝐴 ∧ 𝐵) ⇒ 𝐶 −→ 𝐴 ⇒ (𝐵 ⇒ 𝐶) (2.1.28)

𝐴 ⇒ (𝐵 ⇒ 𝐶) −→ (𝐴 ∧ 𝐵) ⇒ 𝐶 (2.1.29)

29

Proof. Let 𝛼 be defined as in lemma 2.1.7, then the first proof is given by 𝜀𝐶,𝐴∧𝐵𝛼(𝐴∧𝐵)⇒𝐶,𝐴,𝐵,
and the second follows by 𝜀𝐶,𝐵(𝜀𝐵⇒𝐶,𝐴 ∧ 1𝐵)𝛼′

𝐴⇒(𝐵⇒𝐶),𝐴,𝐵. ■
Lemma 2.1.9. Conjunction distributes over disjunction in intuitionistic propositional
calculus.

(𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶)
𝛿𝐴,𝐵,𝐶−−−→ (𝐴 ∨ 𝐵) ∧ 𝐶 (2.1.30)

(𝐴 ∨ 𝐵) ∧ 𝐶
𝛿′𝐴,𝐵,𝐶−−−→ (𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶)

(2.1.31)

Proof. Define 𝛿𝐴,𝐵,𝐶 ≡ [𝜅𝐴,𝐵∧1𝐶 , 𝜅′𝐴,𝐵∧1𝐶] and set 𝛿′𝐴,𝐵,𝐶 ≡ 𝜀(𝐴∧𝐶)∨(𝐵∧𝐶),𝐶[𝜅𝐴∧𝐶,𝐵∧𝐶 , 𝜅′𝐴∧𝐶,𝐵∧𝐶].
■

For the sake of brevity we introduce a new notation for negation.

Definition 2.1.10. For each formula 𝐴, define ¬𝐴 ≡ 𝐴 ⇒ ⊥, read not 𝐴.

Lemma 2.1.11. The following two rules are derivable in intuitionistic proposition calculus:

¬𝐴 → ¬¬¬𝐴 (2.1.32)

¬¬¬𝐴 → ¬𝐴 (2.1.33)

Proof. For the first proof replace the instance 𝐴 by ¬𝐴 in (2.1.22). The following deriva-
tion yields the converse.

(𝐓𝐚𝐮𝐭) ¬¬¬𝐴 → ¬¬¬𝐴 (𝐃𝐍𝐈) 𝐴 → ¬¬𝐴
(2.1.1)

¬¬¬𝐴 ∧ 𝐴 → ¬¬¬𝐴 ∧ ¬¬𝐴 (⇒𝐄) ¬¬¬𝐴 ∧ ¬¬𝐴 → ⊥
(𝐂𝐮𝐭)

¬¬¬𝐴 ∧ 𝐴 → ⊥ (⇒𝐈)
¬¬¬𝐴 → ¬𝐴

■
Lemma 2.1.12. The converse of (∨𝐈) in definition 2.1.3 is a valid rule of intuitionistic
propositional calculus,

(𝐴 ∨ 𝐵) ⇒ 𝐶 −→ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) (2.1.34)

and thus De Morgan’s law hold.

¬(𝐴 ∨ 𝐵) → ¬𝐴 ∧ ¬𝐵 (2.1.35)

¬𝐴 ∧ ¬𝐵 → ¬(𝐴 ∨ 𝐵) (2.1.36)

Proof. The converse is given by ⟨𝜅𝐴,𝐵 ⇒ 1𝐶 , 𝜅′𝐴,𝐵 ⇒ 1𝐶⟩. Now replace the instance of 𝐶
by ⊥ in (∨𝐈) in definition 2.1.3 and similarly in (2.1.34) to obtain De Morgan’s law. ■

30

Lemma 2.1.13. Disjunctive syllogism is a valid rule of intuitionistic propositional calculus.

(𝐴 ∨ 𝐵) ∧ (𝐵 ⇒ ⊥) −→ 𝐴 (2.1.37)

Proof. Let 𝛿 be the arrow defined as in lemma 2.1.9, then the derivation of the above
arrow is as follows [1𝐴, □𝐴](𝜋𝐴,𝐵⇒⊥ ∨ (𝜀⊥,𝐵⟨𝜋′

𝐵,𝐵⇒⊥, 𝜋𝐵,𝐵⇒⊥⟩))𝛿𝐴,𝐵,𝐵⇒⊥. ■
Proposition 2.1.14. In the presence of rules R1 – R8 , the classical axiom (𝐃𝐍𝐄) can be
replaced by the law of excluded middle (𝐋𝐄𝐌) ⊤ → 𝐴 ∨ (𝐴 ⇒ ⊥) for each object 𝐴.

Proof. The following derivation shows that LEM follows from DNE. We split the deriva-
tion into two parts for the sake of presentation.

(2.1.35) ¬(𝐴 ∨ ¬𝐴) → ¬𝐴 ∧ ¬¬𝐴 (2.1.25) ¬𝐴 ∧ ¬¬𝐴 → ¬¬𝐴 ∧ ¬𝐴
(𝐂𝐮𝐭)

¬(𝐴 ∨ ¬𝐴) → ¬¬𝐴 ∧ ¬𝐴 (⇒𝐄) ¬¬𝐴 ∧ ¬𝐴 → ⊥
(𝐂𝐮𝐭)

¬(𝐴 ∨ ¬𝐴) → ⊥
⋮

⋮
¬(𝐴 ∨ ¬𝐴) → ⊥

(2.1.4)
⊤ → ¬¬(𝐴 ∨ ¬𝐴) (𝐃𝐍𝐄) ¬¬(𝐴 ∨ ¬𝐴) → 𝐴 ∨ ¬𝐴

(𝐂𝐮𝐭)
⊤ → 𝐴 ∨ ¬𝐴

Conversely, we have that DNE follows from LEM by the following derivation.

(𝐋𝐄𝐌) ⊤ → 𝐴 ∨ ¬𝐴 (𝐓𝐚𝐮𝐭) ¬¬𝐴 → ¬¬𝐴
(2.1.1)

⊤ ∧ ¬¬𝐴 → (𝐴 ∨ ¬𝐴) ∧ ¬¬𝐴 (2.1.37) (𝐴 ∨ ¬𝐴) ∧ ¬¬𝐴 → 𝐴
(𝐂𝐮𝐭)

⊤ → ¬¬𝐴 ⇒ 𝐴 (2.1.5)
¬¬𝐴 → 𝐴

■
In the previous chapter, we used the term uniformly effectively to mean different

things. For instance in remark 1.3.16 it meant that the disjunction was undecidable.
Intuitively, truth is taken to carry some data and some amount of ‘work’ must be done to
establish existence. The Brouwer-Heyting-Kolmogorov interpretation of intuitionistic
logic makes this precise [3, 5.1].

Definition 2.1.15 (BHK interpretation). Let 𝜑 be a sentence of Heyting arithmetic. We
say that 𝑒 proves 𝜑 if 𝑒 verifies 𝜑 by an explicit construction. Define inductively,

(∧) 𝑒 proves 𝜑 ∧𝜓 if and only if 𝑒 is a pair ⟨𝑛, 𝑚⟩ such that 𝑛 proves 𝜓 and 𝑚 proves 𝜓;

(∨) 𝑒 proves 𝜑 ∨ 𝜓 if and only if 𝑒 is a pair ⟨𝑛, 𝑚⟩ with 𝑛 ∈ ℕ such that either 𝑛 = 0
and 𝑚 proves 𝜑 or 𝑛 = 1 and 𝑚 proves 𝜓;

(→) 𝑒 proves 𝜑 → 𝜓 if and only if 𝑒 is a construction that converts every proof 𝑛 of 𝜑
into a proof 𝑒(𝑛) of 𝜓;

31

(⊥) no 𝑒 proves ⊥;

and introduce quantifiers over a domain 𝐷 of objects for which,

(∀) 𝑒 proves ∀𝑥.𝜑(𝑥) if and only if 𝑒 is a construction such that for each 𝑛 ∈ 𝐷, 𝑒(𝑛)
proves 𝜑(𝑛);

(∃) 𝑒 proves ∃𝑥.𝜑(𝑥) if and only if 𝑒 is a pair ⟨𝑛, 𝑚⟩ such that 𝑛 ∈ 𝐷 and 𝑚 proves 𝜑(𝑛),

where n is the numeral for n.

When the verifying objects are partial recursive functions 𝜙𝑒 and the domain of
quantification is the natural numbers ℕ, we obtain Kleene’s notion of recursive real-
izability. For a historical account see Kleene’s paper [9]. We understand by 𝑒 ⊩ 𝜑
that there is a partial recursive function with index 𝑒, which realizes 𝜑. Note that
𝑒 ⊩ ¬𝜑 ≡ 𝜑 → ⊥ if and only if 𝜙𝑒(𝑛)↑ for every realiser 𝑛 of 𝜑, that is there cannot be
a realiser 𝑛 of 𝜑. From this point of view, rejecting double negation elimination is a
sensible choice. For suppose 𝑒 ⊩ ¬¬𝜑, then 𝜙𝑒 converts every proof 𝑛 of ¬𝜑 to a proof
of ⊥, thus the domain is empty. Such a realiser 𝑛 would itself convert every proof 𝑚 of
𝜑 to a proof of ⊥, again there are no such 𝑚. All we are saying is that there cannot be a
construction that converts a proof of 𝜑 to a known contradiction, but this is far from
an explicit construction for verifying 𝜑 itself. It simply lacks constructive content. A
comprehensive list of intuitionistically valid rules can be found in [3, 5.2.1].

A topological interpretation of intuitionistic logic due to Scott [21] gives another
natural reason to why double negation elimination may not necessarily hold for all
objects.

Definition 2.1.16. Let Open(𝑋) denote the lattice of open subsets of a topological
space 𝑋 . To each formula 𝐴 assign an open set J𝐴K ∈ Open(𝑋). Then define,

J𝐴 ∧ 𝐵K = J𝐴K ∩ J𝐵K;
J𝐴 ∨ 𝐵K = J𝐴K ∪ J𝐵K;

J¬𝐴K = Int(𝑋 − J𝐴K);
J𝐴 → 𝐵K = Int((𝑋 − J𝐴K) ∪ J𝐵K);

J∀𝑥.𝜑(𝑥)K = Int (⋂
𝑛∈𝐷

J𝜑(⌜𝑛⌝)K);

J∃𝑥.𝜑(𝑥)K = ⋃
𝑛∈𝐷

J𝜑(⌜𝑛⌝)K,

where ⌜𝑛⌝ is the name of 𝑛 in the formal language and 𝐷 a given domain.

It follows from the definition that J¬¬𝐴K = Int(𝑋 −J¬𝐴K) = Int(𝑋 −Int(𝑋 −J𝐴K)) =
Int(Cl(J𝐴K)) ⊇ J𝐴K.

32

2.2 Categories with an internal logic

In this section, we give a sense of how there can be an internal logic when appropriate
structures are imposed on deductive systems.

Definition 2.2.1. A category is a deductive system satisfying

E1. 𝑓 1𝐴 = 𝑓 = 1𝐵𝑓 ;

E2. ℎ(𝑔𝑓) = (ℎ𝑔)𝑓 ,

for all 𝑓∶ 𝐴 → 𝐵, 𝑔∶ 𝐵 → 𝐶 and ℎ∶ 𝐶 → 𝐷.

Every deductive sytem can be made into a category /∼ whose objects are the
formulas of  and whose morphisms are equivalent classes of proofs over a suitable
equivalence relation, which is compatible with the axiom schema and rules of inference.
For instance (ii) prevents us from differentiating between the following two proofs:

𝐴
𝑓
−→ 𝐵 𝐵

𝑔
−→ 𝐶 (𝐂𝐮𝐭)

𝐴
𝑔𝑓
−−→ 𝐶 𝐶 ℎ−→ 𝐷 (𝐂𝐮𝐭)

𝐴
ℎ(𝑔𝑓)
−−−−→ 𝐷

∼ 𝐴
𝑓
−→ 𝐵

𝐵
𝑔
−→ 𝐶 𝐶 ℎ−→ 𝐷 (𝐂𝐮𝐭)

𝐵
ℎ𝑔
−−→ 𝐷 (𝐂𝐮𝐭)

𝐴
(ℎ𝑔)𝑓
−−−−→ 𝐷

The point that proofs differ unessentially from each other is much like the fact that
there may be infinitely many algorithms that implement a given function.

Definition 2.2.2. A bicartesian closed category is a category and an intuitionistic
propositional calculus satisfying

E3. 𝑓 = ○𝐴,

for all 𝑓∶ 𝐴 → 𝑇 ;

E4a. 𝜋𝐴,𝐵⟨𝑓 , 𝑔⟩ = 𝑓 ;

E4b. 𝜋′
𝐴,𝐵⟨𝑓 , 𝑔⟩ = 𝑔 ;

E4c. ⟨𝜋𝐴,𝐵ℎ, 𝜋′
𝐴,𝐵ℎ⟩ = ℎ,

for all 𝑓∶ 𝐶 → 𝐴, 𝑔∶ 𝐶 → 𝐵 and ℎ∶ 𝐶 → 𝐴 ∧ 𝐵;

E5a. 𝜀𝐶,𝐵⟨𝑓 𝜋𝐴,𝐵, 𝜋′
𝐴,𝐵⟩ = 𝑓 ;

E5b. 𝜀𝐶,𝐵⟨𝑔𝜋𝐴,𝐵, 𝜋′
𝐴,𝐵⟩ = 𝑔 ,

for all 𝑓∶ 𝐴 ∧ 𝐵 → 𝐶 and 𝑔∶ 𝐴 → (𝐵 ⇒ 𝐶);

E6. 𝑓 = □𝐴,

33

for all 𝑓∶ ⊥ → 𝐴;

E7a. [𝑓 , 𝑔]𝜅𝐴,𝐵 = 𝑓 ;

E7b. [𝑓 , 𝑔]𝜅′𝐴,𝐵 = 𝑔 ;

E7c. [ℎ𝜅𝐴,𝐵, ℎ𝜅′𝐴,𝐵] = ℎ,

for all 𝑓∶ 𝐴 → 𝐶, 𝑔∶ 𝐵 → 𝐶 and ℎ∶ 𝐴 ∨ 𝐵 → 𝐶.

Each calculus given by rules R3.–R7. in definition 2.1.3 give rise to a corresponding
category. A conjunction calculus generates a cartesian category, equationally presented
in E1.–E4. and similarly, the equations E1.–E5. present a cartesian closed category
whose counterpart is a positive intuitionistic calculus. In terms of universal properties
E3. for instance, expresses that ⊤ is the terminal object 1 and E5a, b. asserts the existence
of exponential objects 𝐴𝐵 such that given products and an evaluation map 𝜀, for any
𝑓 ∶ 𝐴 × 𝐵 → 𝐶 there exists a unique transpose 𝑓 ∶ 𝐴 → 𝐶𝐵 such that the following
diagram commutes:

𝐴 𝐴 × 𝐵

𝐶𝐵 𝐶𝐵 × 𝐵 𝐶

𝑓

𝜀𝐶,𝐵

𝑓 × 1𝐵𝑓 (2.2.1)

Then E5b. ensures that the mapping (𝐴 × 𝐵, 𝐶) −→ (𝐴, 𝐶𝐵) is bijective. Here, a
suitable equivalence relation would be one that for example includes the assertion
𝑓 ∼ 𝑔 ⟹ 𝑓 ∼ 𝑔 for all proofs 𝑓 and 𝑔 .

It turns out that one can obtain the usual connectives, introduce quantifiers and
do 𝑛-valued logic and in a bicartesian closed category. The details are given in a paper
by Lambek [10]. To illustrate what constitutes an internal logic in such a category, we
give an example from this paper. Define 2 = 1 + 1 and interpret morphism 𝑝∶ 1 → 2
as propositions or truth-values. Define specific morphism true ⊤∶ 1 → 2 and false
⊥∶ 1 → 2 with ⊤ = 𝜅1,1 and ⊥ = 𝜅′1,1, not to be confused with terminal and initial objects
in the category. Then negation is the morphism ¬∶ 2 → 2 described by ¬ = [⊥, ⊤] and
conjunction is the morphism ∧∶ 2×2 → 2 described by ∧ = [−, ⊥] so that 𝑝∧𝑞 = [𝑝, ⊥]𝑞.

However, we will need more than a classical internal logic. Indeed, an in-depth
explanation would require studying more broadly topos theory. For completeness we
state the definition of an elementary topos according to Lawvere [12] and explore some
of its elementary features below.

Definition 2.2.3. An elementary topos  is a category which

(i) is cartesian closed;

(ii) is finitely complete and cocomplete;

34

(iii) has a subobject classifier Ω.

Definition 2.2.4. Let  be a category and 𝐴 an object of . A subobject of 𝐴 is an
isomorphism class of monics into A. Let𝑀𝑜𝑛𝑖𝑐(𝐴) be the full subcategory of /𝐴whose
objects are monics, then sub(𝐴) denotes the class of isomorphism classes of 𝑀𝑜𝑛𝑖𝑐(𝐴).

In 𝐒𝐞𝐭 subobjects of a set 𝐴 are precisely its subsets. Indeed, monics 𝑋
𝑚′

↣ 𝐴 and
𝑌

𝑚
↣ 𝐴 are isomorphic in 𝑀𝑜𝑛𝑖𝑐(𝐴) if and only if they have the same image [14, 5.1.40].

For suppose they are isomorphic, in 𝐒𝐞𝐭 this corresponds to having a bijection 𝑋
𝑓
−→ 𝑌

such that 𝑚𝑓 = 𝑚′ and 𝑚′𝑓 −1 = 𝑚 and thus 𝑚′(𝑋) = 𝑚𝑓 (𝑋) = 𝑚(𝑌). For the converse
define 𝑓 ∶ 𝑥 ↦ 𝑚−1(𝑚(𝑥)) which is well-defined and bijective as 𝑚,𝑚′ have the same
image and are injective. Now suppose the category  also has pullbacks, then it is easy
to see that 𝐴′ 𝑓

−→ 𝐴 induces a morphism Sub(𝐴)
𝑆𝑢𝑏(𝑓)
−−−−→ Sub(𝐴); [𝑚] ↦ [𝑚′],

𝑆′ 𝑆

𝐴′ 𝐴

𝑚

𝑓

𝑚′

𝑓 ′

as monics are preserved under pullback. In 𝐒𝐞𝐭 this just amounts to the inverse image
𝑆′ = 𝑓 −1(𝑆). By the pasting lemma for pullbacks, we can see that Sub∶ op → 𝐬𝐞𝐭𝐬
defines a functor. If the category in addition is well-powered, viz. for each 𝐴we have that
Sub(𝐴) is small, then the category is said to have a subobject classifier if the functor Sub is
representable [14, 6.3.26]. Namely, there is a choice of objectΩ and natural isomorphism
such that Sub ≅ (−, Ω). Equivalently, a subobject classifier is a monic true 1

⊤
↣ Ω

such that for any subobject of 𝐴 there exists a unique characteristic morphism 𝐴
𝜒
−→ Ω

such that the following following square forms a pullback [16, I.3.1].

𝑆 1

𝐴 Ω

○𝑆

𝑚 ⊤

𝜒

In other words, monics or rather isomorphism classes of monics into 𝐴 are in one-
to-one correspondence with characteristic morphisms 𝐴 → Ω. The object 2 is up to
isomorphism the subobject classifier in 𝐒𝐞𝐭 and indeed subsets 𝑆 of 𝐴 are in one-to-one
correspondence with characteristice functions 𝐴

𝜒𝑆−→ 2.
Analogously to remark 1.1.7 we can express a predicate 𝑅 ↣ 𝐴 via its characteristic

morphism 𝐴
𝜒𝑅−→ Ω and take morphism 1

𝑝
↣ Ω to be truth-values. We can thus derive

35

the usual connectives, as was done above, albeit in terms of universal properties; for
example

0 1 1 1 Ω 1

1 Ω Ω Ω Ω × Ω Ω

○0

⊤□0

⊥

⊥ ⊤

○1 ○Ω

⊤

¬

⟨⊤, ⊤⟩

∧

and forget about the archery and operate as if we were using set theory. We could
therefore say that subobjects are generalisations of subsets, but the subobject classifier
is a much more powerful tool than what it appears to be in 𝐒𝐞𝐭.

Consider the category of graphs 𝐆𝐫𝐩𝐡𝐬, where the objects are graphs  as defined
in definition 2.1.1 and morphisms are functors 𝐹 mapping nodes to nodes and edges to
edges. Then the notion of a subobject is the familiar notion of a subgraph. Consider
the red arrow in fig. 2.1 below. It is obviously not included in the ′, yet its source
and target are. In the right setting we can fine-tune our answer to account for such

′


Figure 2.1: Graph ′ is a subobject of  in 𝐆𝐫𝐩𝐡𝐬.

subtleties. In 𝐆𝐫𝐩𝐡𝐬 the subobject classifier is up to isomorhpism a graph that takes
into account the five cases for source, edge, target and the two cases for nodes [13], see
fig. 2.2. Now, we can instead of simply asking if something is or is not true, ask more

1
Ω

⊤

Figure 2.2: Subobject classifier in 𝐆𝐫𝐩𝐡𝐬.

complicated and interesting questions like where is it true or how true is it. In 𝑓𝑓 , we
even require that there be proof of a simple membership problem.

36

Similar to how the notion of subobject generalises subsets, the power object 
generalises the notion of powerset. This is more complicated and we will not describe
it here, but in the same way in which (𝑋) ≅ 2𝑋 in 𝐒𝐞𝐭, internally Ω𝑋 functions as
the powerset. In 𝑓𝑓 , the subobject classifier is Ω = 1. True 1 and false 0 are its
elements, but unlike the classical world these are not its only elements. Nor is it true
that there are elements that differ from both 1 and 0, much like Ω in 𝐆𝐫𝐩𝐡𝐬, except
not as dicrete. Another way to describe it is Ω = ((ℕ), J𝑝 ⟷ 𝑞K) with non-standard
equality (ℕ) × (ℕ) → (ℕ); (𝑝, 𝑞) ↦ J𝑝 ⟷ 𝑞K as sets, where ⟷ is in the sense
of Kleene in definition 2.1.15. The resulting internal logic of the effective topos is
higher-order intuitionistic logic with a built-in notion of uniformly effectively in the
sense of recursive realizability. This of course is a massive simplification, but good
enough for the purposes of this thesis.

2.3 Partial combinatory algebras

In this section, we take a more abstract view of the models of computation and study
the so called Schönfinkel algebras (𝐴, ., 𝑖, 𝑘, 𝑠) with a closure property crucial to logic.
We establish this combinatory completeness and introduce our model of computation
following van Oosten [18, Chapter 1] and Longely [15, Chapter 1].

Definition 2.3.1. A partial applicative system (pas) is a nonempty set A equipped with
a partial binary operation . ∶ 𝐴 × 𝐴 ⇀ 𝐴.

We call the map (𝑎, 𝑏) ↦ 𝑎.𝑏 application and denote by the juxtaposition 𝑎𝑏 the result
of applying a to b. As we will see, the application map is not necessarily associative.
We adopt left-association and write 𝑎𝑏𝑐 for (𝑎𝑏)𝑐 whenever unambiguous.

For elements 𝑎, 𝑏 ∈ 𝐴, the term 𝑎𝑏 may not denote an element of 𝐴. The following
definition provides a formal distinction between elements of 𝐴 and terms over 𝐴.

Definition 2.3.2. Let 𝐴 be a pas and let 𝑉 be an infinite set of variables. Define the set
𝑇 (𝐴) of terms over 𝐴 to be the least set such that

(i) 𝐴 ⊆ 𝑇 (𝐴);

(ii) 𝑉 ⊆ 𝑇 (𝐴);

(iii) if 𝑡 ∈ 𝑇 (𝐴) and 𝑡′ ∈ 𝑇 (𝐴) then (𝑡𝑡′) ∈ 𝑇 (𝐴).

We understand by 𝑡(𝑥1, … , 𝑥𝑛), the term 𝑡 whose variables are among 𝑥1, … , 𝑥𝑛 ∈ 𝑉 .
Let 𝑡, 𝑡′ be terms and 𝑥 a variable. We write 𝑡[𝑡′/𝑥] to mean the term obtained by
substituting 𝑡′ for 𝑥 in 𝑡. We write 𝑡[𝑎/𝑥] instead of 𝑡[𝑎1/𝑥, … , 𝑎𝑛/𝑥𝑛]. A term is called
closed if no variables occur in it. We establish a relation between closed terms and
elements of 𝐴.

37

Definition 2.3.3. For a closed term 𝑡↓𝑎, read 𝑡 ∈ 𝑇 (𝐴) is defined and denotes an element
𝑎 ∈ 𝐴, is the least relation such that

(i) 𝑎↓𝑎 for all 𝑎 ∈ 𝐴;

(ii) (𝑡𝑡′)↓𝑎 if and only if there exists 𝑏, 𝑐 ∈ 𝐴 such that 𝑡↓𝑏, 𝑡′↓𝑐 and 𝑏𝑐 = 𝑎.

If there exists an element 𝑎 ∈ 𝐴 such that 𝑡↓𝑎, we simply say that 𝑡 denotes and write
𝑡↓. We write 𝑡↑ if 𝑡 is undefined. Strict equality on closed terms is such that 𝑡 = 𝑡′ if and
only if 𝑡, 𝑡′ are both defined and denote the same element. Clearly, if 𝑡↓𝑎 and 𝑡↓𝑏 then
𝑎 = 𝑏. The Kleene equality 𝑡 ≃ 𝑡′ says that if either 𝑡 or 𝑡′ denote then 𝑡 = 𝑡′. Let 𝑡, 𝑡′ be
terms with variables in 𝑥1, … , 𝑥𝑛. Then in general, we write

𝑡↓ if 𝑡[𝑎/𝑥]↓;
𝑡 ≃ 𝑡′ if 𝑡[𝑎/𝑥] ≃ 𝑡′[𝑎/𝑥]

(2.3.1)

for all substitution instances 𝑎1, … , 𝑎𝑛 ∈ 𝐴.

Definition 2.3.4. A pas 𝐴 is combinatory complete if for any 𝑛 ∈ ℕ and any term
𝑡(𝑥1, … , 𝑥𝑛+1) there exist an 𝑎 ∈ 𝐴 such that for all 𝑎1, … , 𝑎𝑛+1 ∈ 𝐴

(i) 𝑎𝑎1…𝑎𝑛↓;

(ii) 𝑎𝑎1…𝑎𝑛+1 ≃ 𝑡[𝑎/𝑥].

A pas 𝐴 is called a partial combinatory algebra (pca) if 𝐴 is combinatory complete.

Proposition 2.3.5. If A is a pca then there exist element 𝑠, 𝑘, 𝑖 ∈ 𝐴 such that for all
𝑎, 𝑏, 𝑐 ∈ 𝐴

(i) 𝑘𝑎𝑏 = 𝑎

(ii) 𝑠𝑎𝑏↓

(iii) 𝑠𝑎𝑏𝑐 ≃ 𝑎𝑐(𝑏𝑐).

(iv) 𝑖𝑎 = 𝑎

Proof. Suppose 𝐴 is combinatory complete. Take for 𝑘, 𝑠 and 𝑖 an element of 𝐴 satisfying
the conditions of definition 2.3.4 for the terms 𝑡(𝑥1, 𝑥2) ≡ 𝑥1, 𝑡(𝑥1, 𝑥2, 𝑥3) ≡ 𝑥1𝑥3(𝑥2𝑥3)
and 𝑡(𝑥1) ≡ 𝑥1 respectively. Then we have that for all 𝑎, 𝑏 ∈ 𝐴 𝑘𝑎𝑏 ≃ 𝑎, but 𝑎 always
denotes. Conditions (ii), (iii) and (iv) follow in much the same way. ■

It is entirely natural to require an identity element, albeit (iv) in proposition 2.3.5 is
superfluous. Indeed 𝑖 and 𝑠𝑘𝑘 are extensionally equal as for all 𝑎 ∈ 𝐴, 𝑠𝑘𝑘𝑎 ≃ 𝑘𝑎(𝑘𝑎) = 𝑎
and 𝑎↓ always. In fact, one can take 𝑠𝑘𝑋 for an arbitrary 𝑋 ∈ 𝐴 as long as 𝑋𝑎↓ [20].

38

Typed combinatory logic corresponds to Hilbert-style axiomatic system. Curiously, this
gives another natural reason to choose 𝑘. For regard

𝐴𝑘 ∶ (𝜑 ⟹ (𝜓 ⟹ 𝜑));
𝐴𝑠 ∶ (𝜑 ⟹ (𝜓 ⟹ 𝜒)) ⟹ ((𝜑 ⟹ 𝜓) ⟹ (𝜑 ⟹ 𝜒));

as axiom schemes and function application as modus ponens, then 𝑠𝑘𝑘 corresponds
exactly to a proof of an instance of the identity with

𝑠 ∶ (𝐴 ⟹ ((𝐴 ⟹ 𝐵) ⟹ 𝐴)) ⟹ ((𝐴 ⟹ (𝐴 ⟹ 𝐵)) ⟹ (𝐴 ⟹ 𝐴));
𝑘 ∶ (𝐴 ⟹ ((𝐴 ⟹ 𝐵) ⟹ 𝐴));
𝑘 ∶ ((𝐴 ⟹ (𝐴 ⟹ 𝐵));

𝑠𝑘𝑘 ∶ (𝐴 ⟹ 𝐴).

From now on we will use 𝑖 and 𝑠𝑘𝑘 interchangeably.

Lemma 2.3.6. Properties of 𝑠 and 𝑘 extend to corresponding facts about terms just when
terms denote.

Proof. Follows from definition of 𝑠, 𝑘 and (2.3.1). ■
Lemma 2.3.7. Suppose 𝐴 satisfies the conditions of the proposition 2.3.5. For any term
𝑡 ∈ 𝑇 (𝐴) there exist a term Λ𝑥.𝑡 ∈ 𝑇 (𝐴) whose variables are those of 𝑡 excluding 𝑥 such
that (Λ𝑥.𝑡)↓ and (Λ𝑥.𝑡)𝑎 ≃ 𝑡[𝑎/𝑥] for all 𝑎 ∈ 𝐴.

Proof. Define for every 𝑥 ∈ 𝑉 and every 𝑡 ∈ 𝑇 (𝐴) a termΛ𝑥.𝑡 inductively on the structure
of t as follows:

(i) Λ𝑥.𝑡 ≡ 𝑘𝑡 if 𝑡 is a constant, 𝑎 ∈ 𝐴 or a variable different from 𝑥;

(ii) Λ𝑥.𝑥 ≡ 𝑖;

(iii) Λ𝑥.𝑡𝑡′ ≡ 𝑠(Λ𝑥.𝑡)(Λ𝑥.𝑡′).

The base case follows immediately by definition and the conditions of the proposition.
For the inductive step, suppose (Λ𝑥.𝑡)↓, (Λ𝑥.𝑡′)↓ and (Λ𝑥.𝑡)𝑎 ≃ 𝑡[𝑎/𝑥], (Λ𝑥.𝑡′)𝑎 ≃ 𝑡′[𝑎/𝑥].
Then it follows by lemma 2.3.6 that

Λ𝑥.𝑡𝑡′ ≡ 𝑠(Λ𝑥.𝑡)(Λ𝑥.𝑡′)↓;

(Λ𝑥.𝑡𝑡′)𝑎 ≡ 𝑠(Λ𝑥.𝑡)(Λ𝑥.𝑡′)𝑎 ≃ (Λ𝑥.𝑡)𝑎(Λ𝑥.𝑡′)𝑎 ≃ 𝑡[𝑎/𝑥]𝑡′[𝑎/𝑥] ≡ 𝑡𝑡′[𝑎/𝑥]. ■

Lemma 2.3.8. If 𝑡′↓ and 𝑥 is not among the variables of 𝑡′, then (Λ𝑥.𝑡)𝑡′ ≃ 𝑡[𝑡′/𝑥].

Proof. Follows by structural induction on 𝑡 and lemma 2.3.6. ■

39

Remark 2.3.9. Notice that Λ is merely a meta-syntactic sugar. It is itself not part of the
formal expressions, 𝑇 (𝐴). Λ-abstraction is used as a way to avoid writing long terms
involving 𝑘 and 𝑠. We write Λ𝑥𝑦.𝑡 to abbreviate Λ𝑥.(Λ𝑦.𝑡). This can formally be done
by first translating Λ𝑦.𝑡 to a term 𝑡′, then taking Λ𝑥.𝑡′ to a term 𝑡′′.

On the level of substitution, Λ-terms and terms may not agree, viz. that (Λ𝑦.𝑡)[𝑡′/𝑥]
and Λ𝑦.𝑡[𝑡′/𝑥] are different, even if the pca is total. For instance, take 𝑡 ≡ 𝑥 and 𝑡′ ≡ 𝑠𝑠,
then while (Λ𝑦.𝑥)[𝑠𝑠/𝑥] ≃ 𝑘(𝑠𝑠), we have that Λ𝑦.𝑥[𝑠𝑠/𝑥] ≃ 𝑠(𝑘𝑠)(𝑘𝑠) . The point is
that Λ distinguishes between the term and the constant the term denotes. It is the case,
however, that Λ is functorial with respect to substitution for constants and unbounded
variables, as long as we stay in the realm of Λ-terms. That is, given a term with variables
in 𝑥 and 𝑦, by construction we get that

Λ𝑦.𝑡[𝑎/𝑥] = (Λ𝑦.𝑡)[𝑎/𝑥]. (2.3.2)

just when Λ𝑦.𝑡[𝑎/𝑥] denotes, but by lemma 2.3.7 it always does.
We will use lambda abstraction readily as it allows us to go to the level of terms

which always denote regardless of the terms denoting.

Lemma 2.3.10. Given a term 𝑡(𝑥1, … , 𝑥𝑟 , 𝑥𝑟+1, … , 𝑥𝑛+1), there exists a denoting term
𝑡 ≡ Λ𝑥𝑟+1…𝑥𝑛+1.𝑡 with variables in 𝑥1, … , 𝑥𝑟 such that (Λ𝑥1…𝑥𝑟 .𝑡)𝑎1…𝑎𝑟 denotes and

((Λ𝑥1…𝑥𝑟 .𝑡)𝑎1…𝑎𝑟)𝑎𝑟+1…𝑎𝑛+1 ≃ 𝑡[𝑎/𝑥].

Proof. By our construction in remark 2.3.9 and lemma 2.3.7 it follows that the term 𝑡
with variables in 𝑥1, … , 𝑥𝑟 denotes. Again, by repeated application of lemma 2.3.7 and
(2.3.2) we get that

(Λ𝑥1…𝑥𝑟 .𝑡)𝑎1…𝑎𝑟 ≃ ((Λ𝑥2…𝑥𝑟 .𝑡)[𝑎1/𝑥1])𝑎2…𝑎𝑟

= (Λ𝑥2…𝑥𝑟 .𝑡[𝑎1/𝑥1])𝑎2…𝑎𝑟

⋮

≃ 𝑡[𝑎1/𝑥1, … , 𝑎𝑟/𝑥𝑟]

≡ (Λ𝑥𝑟+1…𝑥𝑛+1.𝑡)[𝑎1/𝑥1, … , 𝑎𝑟/𝑥𝑟]

= Λ𝑥𝑟+1…𝑥𝑛+1.𝑡[𝑎1/𝑥1, … , 𝑎𝑟/𝑥𝑟]

denotes and thus

((Λ𝑥1…𝑥𝑟 .𝑡)𝑎1…𝑎𝑟)𝑎𝑟+1 …𝑎𝑛+1 = (Λ𝑥𝑟+1…𝑥𝑛+1.𝑡[𝑎1/𝑥1, … , 𝑎𝑟/𝑥𝑟])𝑎𝑟+1…𝑎𝑛+1

≃ 𝑡[𝑎/𝑥]. ■

40

Proposition 2.3.11 (Feferman). Let A be a pas. Then A is a pca if there exist elements
𝑠, 𝑘 ∈ 𝐴 satisfying the properties (i)–(iii) in 2.3.5.

Proof. Take 𝑡 ≡ Λ𝑥1…𝑥𝑛+1.𝑡, say with no free variable. Hence all these Λ-abstractions
must denote an element, now that all the free variables are exhausted. It follows by
lemma 2.3.10 that it is precisely this element 𝑡 we want for the converse of proposi-
tion 2.3.5. ■

Proposition 2.3.12. There exist constants 𝑝, 𝑝0, 𝑝1 ∈ 𝐴 such that for all 𝑎, 𝑏 ∈ 𝐴,

𝑝𝑎𝑏↓, 𝑝0(𝑝𝑎𝑏) = 𝑎, 𝑝1(𝑝𝑎𝑏) = 𝑏.

Proof. Let 𝑝 ≡ Λ𝑥𝑦𝑧.𝑧𝑥𝑦. It is clear by lemma 2.3.7 and (2.3.2) that 𝑝𝑎𝑏 ≃ Λ𝑧.𝑧𝑎𝑏
denotes. Have 𝑘 denote 𝑘𝑖 so that 𝑘𝑎𝑏 = 𝑘𝑖𝑎𝑏 = 𝑖𝑏 = 𝑏. Then define 𝑝0 ≡ Λ𝑣.𝑣𝑘 and
𝑝1 ≡ Λ𝑣.𝑣𝑘. It follows by lemma 2.3.8 that

𝑝0(𝑝𝑎𝑏) ≃ 𝑝𝑎𝑏𝑘 ≃ (Λ𝑧.𝑧𝑎𝑏)𝑘 ≃ 𝑘𝑎𝑏 = 𝑎;
𝑝1(𝑝𝑎𝑏) ≃ 𝑝𝑎𝑏𝑘 ≃ (Λ𝑧.𝑧𝑎𝑏)𝑘 ≃ 𝑘𝑎𝑏 = 𝑏

for all 𝑎, 𝑏 ∈ 𝐴. ■

We can therefore take 𝑝, 𝑝0 and 𝑝1 as a code for our pairing and projection operators.
We can further take 𝑘 or likewise Λ𝑦𝑧.𝑦 and 𝑘 or likewise Λ𝑦𝑧.𝑧 to act as our Booleans,
true and false. From here we can create ’if-else’ statements by identifying an element if
by Λ𝑥𝑦𝑧.𝑥𝑦𝑧 with the property that for all 𝑎, 𝑏 ∈ 𝐴 if𝑎𝑏↓, if true𝑎𝑏 = 𝑎 and if false𝑎𝑏 = 𝑏.
We can also simulate the natural numbers in a pca.

Definition 2.3.13. The Curry numerals in a pca 𝐴 are defined as follows:

0 ≡ 𝑝𝑘𝑖;
𝑛 + 1 ≡ 𝑝𝑘𝑛,

where 𝑝 is the pairing operator.

The succ operator is thus described by Λ𝑥.𝑝𝑘𝑥 and the first projection, 𝑝0 simply
gives a code for an iszero test. From which, we obtain a code Λ𝑥.if (iszero 𝑥)0(𝑝1𝑥) for
the pred operator.

Proposition 2.3.14 (Fixed point operators). There exist elements 𝑦, 𝑧 ∈ 𝐴 such that for
all 𝑎, 𝑓 ∈ 𝐴,

𝑦𝑓 ≃ 𝑓 (𝑦𝑓), 𝑧𝑓 ↓, (𝑧𝑓)𝑎 ≃ 𝑓 (𝑧𝑓)𝑎.

41

Proof. Let 𝑤 ≡ Λ𝑥𝑢.𝑢(𝑥𝑥𝑢) and define 𝑦 ≡ 𝑤𝑤, then we get the desired result:

𝑦𝑓 ≡ 𝑤𝑤𝑓 ≡ (Λ𝑥𝑢.𝑢(𝑥𝑥𝑢))𝑤𝑓 ≃ (Λ𝑢.𝑢(𝑤𝑤𝑢))𝑓 ≃ 𝑓 (𝑤𝑓).

Similarly, let 𝑣 ≡ Λ𝑥𝑦𝑢.𝑦(𝑥𝑥𝑦)𝑢 and 𝑧 ≡ 𝑣𝑣 so that

𝑧𝑓 ≡ (Λ𝑥𝑦𝑢.𝑦(𝑥𝑥𝑦)𝑢)𝑣𝑓 ≃ (Λ𝑦𝑢.𝑦(𝑣𝑣𝑦)𝑢)𝑓 ≃ Λ𝑢.𝑓 (𝑧𝑓)𝑢,

which always denotes. By another application of lemma 2.3.7 we have

(𝑧𝑓)𝑎 ≃ (Λ𝑢.𝑓 (𝑧𝑓)𝑢)𝑎 ≃ 𝑓 (𝑧𝑓)𝑎.■
Proposition 2.3.15. The primitive recursive operator 𝑟𝑒𝑐 is in 𝐴 with the property that
for all 𝑎, 𝑓 ∈ 𝐴

𝑟𝑒𝑐 𝑎 𝑓 0 = 𝑎, 𝑟𝑒𝑐 𝑎 𝑓 𝑛 + 1 ≃ 𝑓 𝑛 (𝑟𝑒𝑐 𝑎𝑓 𝑛).

Proof. Let 𝑅 ≡ Λ𝑟𝑥𝑓 𝑚.if (iszero 𝑚)(𝑘𝑥)(Λ𝑦.𝑓 (pred 𝑚)(𝑟𝑥𝑓 (pred 𝑚)𝑖)) and use the fixed
point operator 𝑧 to define rec ≡ Λ𝑥𝑓 𝑚.(𝑧𝑅)𝑥𝑓 𝑚𝑖. We get,

𝑟𝑒𝑐 𝑎𝑓 0 ≡ (Λ𝑥𝑓 𝑚.(𝑧𝑅)𝑥𝑓 𝑚𝑖)𝑎𝑓 0
≃ (𝑧𝑅)𝑎𝑓 0 𝑖
≃ 𝑅(𝑧𝑅)𝑎𝑓 0 𝑖
≃ if (iszero 0)(𝑘𝑎)(Λ𝑦.𝑓 (pred 0)((𝑧𝑅)𝑎𝑓 (pred 0)𝑖))𝑖
≃ 𝑘𝑎𝑖 = 𝑎;

and

𝑟𝑒𝑐 𝑎𝑓 𝑛 + 1 ≡ (Λ𝑥𝑓 𝑚.(𝑧𝑅)𝑥𝑓 𝑚𝑖)𝑎𝑓 𝑛 + 1
≃ (𝑧𝑅)𝑎𝑓 𝑛 + 1 𝑖
≃ 𝑅(𝑧𝑅)𝑎𝑓 𝑛 + 1 𝑖
≃ if (iszero 𝑛 + 1)(𝑘𝑎)(Λ𝑦.𝑓 (pred 𝑛 + 1)((𝑧𝑅)𝑎𝑓 (pred 𝑛 + 1)𝑖))𝑖
≃ (Λ𝑦.𝑓 (pred 𝑛 + 1)((𝑧𝑅)𝑎𝑓 (pred 𝑛 + 1)𝑖))𝑖
≃ 𝑓 𝑛((𝑧𝑅)𝑎𝑓 𝑛𝑖)
≃ 𝑓 𝑛(𝑟𝑒𝑐 𝑎𝑓 𝑛)

as desired. ■
Addition can now be easily expressed as 𝑎𝑑𝑑 ≡ Λ𝑥𝑦.𝑟𝑒𝑐 𝑥 (𝑘 𝑠𝑢𝑐𝑐)𝑦. There is nothing

inherently unique about the representation of the operators we have identified so far.
Rather, objects are determined by their relative behaviour.

Proposition 2.3.16. Suppose there are elements 0′, 1′, … ∈ 𝐴 and 𝑠𝑢𝑐𝑐′, 𝑟𝑒𝑐′ ∈ 𝐴 with the
properties that for all 𝑎, 𝑓 ∈ 𝐴

𝑠𝑢𝑐𝑐′ 𝑛′ = 𝑛 + 1′, 𝑟𝑒𝑐′ 𝑎𝑓 0′ = 𝑎, 𝑟𝑒𝑐′ 𝑎𝑓 𝑛 + 1′ ≃ 𝑓 𝑛′(𝑟𝑒𝑐′ 𝑎𝑓 𝑛′).

Then there exists elements 𝑐, 𝑑 ∈ 𝐴 such that for all 𝑛 𝑐𝑛 = 𝑛′ and 𝑑𝑛′ = 𝑛.

42

Proof. The elements 𝑐 ≡ 𝑟𝑒𝑐 0′(𝑘 𝑠𝑢𝑐𝑐) and 𝑑 ≡ 𝑟𝑒𝑐′ 0(𝑘 𝑠𝑢𝑐𝑐′) do the job. ■
Proposition 2.3.17. A pca A is trivial if and on if

(i) the application map is associative;

(ii) the application map is commutative;

(iii) k = s.

Proof. For (i), let 𝐴 = { 𝑎 } be a trivial pca. Then either 𝑎𝑎↓𝑎 or 𝑎𝑎↑. In either case,
(𝑎𝑎)𝑎 ≃ 𝑎(𝑎𝑎). Conversely, associativity would imply that 𝑘 = 𝑘𝑘𝑘 = 𝑘(𝑘𝑘) so that for
all 𝑎 ∈ 𝐴, 𝑎 = 𝑘𝑎𝑘 = 𝑘(𝑘𝑘)𝑎𝑘 = 𝑘.

Commutativity is evident for (ii) in the case that A is trivial. It follows by commuta-
tivity that 𝑠𝑘𝑘 = 𝑘𝑠𝑘 = 𝑠 so that for all 𝑎 ∈ 𝐴, 𝑎 = 𝑠𝑘𝑘𝑎 = (𝑠𝑘𝑘)𝑘𝑘𝑎 = 𝑘𝑘𝑎 = 𝑘.

For part (iii) it is obvious that 𝑘 = 𝑠 if the pca is trivial. If 𝑘 = 𝑠, then 𝑠𝑘𝑘 = 𝑘𝑘𝑘 = 𝑘
from which it follows that for all 𝑎 ∈ 𝐴, 𝑎 = 𝑠𝑘𝑘𝑎 = 𝑠𝑘𝑘(𝑠𝑘𝑘)𝑎 = 𝑘𝑘𝑎 = 𝑘. ■
Proposition 2.3.18. Suppose A is non-trivial and that the application map is not total.
Then there exist an element 𝑒 ∈ 𝐴 such that for all 𝑎 ∈ 𝐴, 𝑒𝑎↑.

Proof. As the application map is not total, there exist elements 𝑏, 𝑐 ∈ 𝐴 such that 𝑏𝑐↑.
Then Λ𝑥.𝑏𝑐 does the job: for all 𝑎 ∈ 𝐴, (Λ𝑥.𝑏𝑐)𝑎 ≡ 𝑠(𝑘𝑏)(𝑘𝑐)𝑎 ≃ 𝑘𝑏𝑎(𝑘𝑐𝑎) = 𝑏𝑐. ■

Recognise that this is the everywhere divergent function. Our model of computation
will be Kleene’s first model 1 in which we take 𝐴 = ℕ and application 𝑒.𝑛 ≡ 𝜙𝑒(𝑛),
where the 𝜙𝑒 are precisely the partial recursive functions we studied in Chapter 1.

2.4 Category of assemblies and modest sets
In computers every datatype has a binary representation, but we might as well have
taken a different representation such as the natural numbers. Here, we use the Schön-
finkel algebras as abstract machines on which various datatypes are implemented. We
will see that these form a bicartesian category with non-standard truth-values. Our
references are again from [18, 15].

Definition 2.4.1. Let 𝐴 be a pca. An A-valued assembly 𝑋 is a set |𝑋 | together with a
function 𝐸∶ |𝑋 | → ∗(𝐴) assigning to each 𝑥 ∈ 𝑋 a nonempty subset 𝐸𝑥 of 𝐴.

In the setting of recursive realizability, we think of 𝐸𝑥 as the set of proofs for 𝑥 .

Definition 2.4.2. Suppose (|𝑋 |, 𝐸), (|𝑌 |, 𝐹) are two 𝐴-valued assemblies. A function
𝑓∶ |𝑋 | → |𝑌 | is said to be tracked by an element 𝑡 ∈ 𝐴 if for all 𝑥 ∈ 𝑋 and for all 𝑎 ∈ 𝐸𝑥 ,
𝑡𝑎↓ and 𝑡𝑎 ∈ 𝐹𝑓 (𝑥).

Proposition 2.4.3. Assemblies on 𝐴 form a category 𝐴𝑠𝑠(𝐴).

43

Proof. Let amorphism 𝑓∶ 𝑋 → 𝑌 of assemblies be a function 𝑓∶ |𝑋 | → |𝑌 | that is tracked
by some element 𝑡 ∈ 𝐴. Clearly, 𝑖 tracks 1𝑋∶ 𝑋 → 𝑋 . Suppose 𝑠 tracks 𝑓∶ 𝑋 → 𝑌 and
𝑡 tracks 𝑔∶ 𝑌 → 𝑍 , then Λ𝑥.𝑡(𝑠𝑥) tracks their composition. That assmeblies and their
morphisms form a catgeory follows now from the underlying function satisfying the
identity laws and associativity. ■

By abuse of notation we will sometimes refer to the assembly and the underlying set,
and the morphism and the underlying function by the same name. Assemblies are one
way of categorising pcas [18, 1.2.1]. They can intuitively be thought as data types with
an underlying set of values |𝑋 | whose elements are given machine-level representations,
or in our setting, realisers 𝐸𝑥 [15]. Then morphisms between assemblies are precisely
the functions that can be simulated, in our case, by a partial recursive function acting
on the realisers instead of elements.

Proposition 2.4.4. 𝐴𝑠𝑠(𝐴) is cartesian closed.

Proof. The terminal object 1 is given by the assembly (|{ ∗ }|, 𝑇), where 𝑇 ∗ ≡ 𝐴 and
every morphism into 1 is tracked by 𝑖. Products of assemblies 𝑋 and 𝑌 are given by
(|𝑋 | × |𝑌 |, 𝑃), with 𝑃𝑥,𝑦 ≡ { 𝑝𝑎𝑏 | 𝑎 ∈ 𝐸𝑥, 𝑏 ∈ 𝐹𝑦 }. It is easy to see that the following
diagram commutes and that the construction is unique.

(|𝑋 |, 𝐸)

(|𝑍|, 𝐺) (|𝑋 | × |𝑌 |, 𝑃)

(|𝑌 |, 𝐹)

𝑠 ⊩ 𝑓1

𝑡 ⊩ 𝑓2

𝑝1 ⊩ 𝜋′

Λ𝑥.𝑝(𝑠𝑥)(𝑡𝑥) ⊩ ⟨𝑓1, 𝑓2⟩

𝑝0 ⊩ 𝜋

It remains to show that the functor − × 𝑌∶ 𝐴𝑠𝑠(𝐴) → 𝐴𝑠𝑠(𝐴) has a right adjoint (−)𝑌 .
Let exponential objects be given by

|𝑍 𝑌 | ≡ { 𝑓∶ |𝑌 | → |𝑍| | f is tracked by some 𝑡 ∈ 𝐴 }
𝐻𝑓 ≡ { 𝑡 ∈ 𝐴 | 𝑡 tracks 𝑓 }.

Suppose 𝑡 tracks 𝑓∶ |𝑋 | × |𝑌 | → |𝑍|, then Λ𝑥𝑦.𝑡(𝑝𝑥𝑦) tracks the exponential transpose
𝑓 . Similarly, if 𝑠 tracks 𝑔 ∶ |𝑋 | → |𝑍 𝑌 | then Λ𝑥.𝑠(𝑝0𝑥)(𝑝1𝑥) tracks 𝑔 . In particular,
the evaluation map 𝜀∶ 𝑋 𝑌 × 𝑌 → 𝑋 is realised by Λ𝑥.(𝑝0𝑥)(𝑝1𝑥). We show that the
universal property (2.2.1) is satisfied. Given 𝑓 ∶ |𝑋 | × |𝑌 | → |𝑍| define 𝑓 such that
𝑓 (𝑥)(𝑦) = 𝑓 (𝑥, 𝑦) so that 𝜀(⟨𝑓 𝜋, 𝜋′⟩)(𝑥, 𝑦) = 𝜀(⟨𝑓 (𝑥), 𝑦⟩) = 𝑓 (𝑥)(𝑦) = 𝑓 (𝑥, 𝑦) as
desired. Also, 𝜀(⟨𝑔𝜋, 𝜋′⟩)(𝑥)(𝑦) = 𝜀(⟨𝑔𝜋, 𝜋′⟩)(𝑥, 𝑦) = 𝑔(𝑥)(𝑦). ■

44

Remark 2.4.5. Indeed, terminal objects are unique up to a unique isomorphism, but
what is interesting is the choice of 𝑇 ∗. It can be any nonempty subset of 𝐴 with the
unique map tracked by a constant operator Λ𝑥.𝑎 for some 𝑎 ∈ 𝑇∗.

The representations of the elements in the underlying set is not unique as the set of
realisers are not necessarily disjoint. We therefore ask for those datatypes for which
the codes uniquely determine each value. The following definition captures this idea.

Definition 2.4.6. An assembly is said to be a modest set if for all 𝑥, 𝑥′ ∈ |𝑋 |,

𝑥 ≠ 𝑥′ ⟹ 𝐸𝑥 ∩ 𝐸𝑥′ = ∅.

Let 𝑀𝑜𝑑(𝐴) denote the category of modest sets. It is easy to see that it is a full
subcategory of 𝐴𝑠𝑠(𝐴), for the morphisms between two modest sets are precisely those
that are tracked. The following lemma states that 𝑌 𝑋 is modest whenever 𝑌 is modest.

Lemma 2.4.7. Suppose 𝑡 ⊩ 𝑓 , 𝑓 ′∶ 𝑋 → 𝑌 and 𝑌 modest, then 𝑓 = 𝑓 ′.

Proof. We have that for all 𝑥 ∈ 𝑋 and for all 𝑎 ∈ 𝐸𝑥 , 𝑡𝑎↓ with 𝑡𝑎 ∈ 𝐹𝑓 (𝑥) and 𝑡𝑎 ∈ 𝐹𝑓 ′(𝑥)
so that 𝐹𝑓 (𝑥) ∩ 𝐹𝑓 ′(𝑥) ≠ ∅. It follows that 𝑓 (𝑥) = 𝑓 ′(𝑥) for all 𝑥 as 𝑌 is modest, hence
𝑓 = 𝑓 ′. ■

Proposition 2.4.8. The category 𝑀𝑜𝑑(𝐴) is cartesian closed and the obvious inclusion
𝐽∶ 𝑀𝑜𝑑(𝐴) ↪ 𝐴𝑠𝑠(𝐴) preserves the structure.

Proof. The terminal object 1 is clearly modest. Let 𝑋, 𝑌 be modest sets, then 𝑋 × 𝑌 is
modest. For suppose 𝑟 ∈ 𝑃𝑥, 𝑦 ∩ 𝑃𝑥′, 𝑦′ then 𝑝0𝑟 ∈ 𝐸𝑥 ∩ 𝐸𝑥′ and 𝑝1𝑟 ∈ 𝐸𝑦 ∩ 𝐸𝑦′ so that
𝑥 = 𝑥′ and 𝑦 = 𝑦′. It follows from lemma 2.4.7 that 𝑀𝑜𝑑(𝐴) is cartesian closed. ■

Proposition 2.4.9. Both 𝐴𝑠𝑠(𝐴) and 𝑀𝑜𝑑(𝐴) are finitely complete (and finite limits are
preseved under 𝐽).

Proof. It suffices to show that 𝐴𝑠𝑠(𝐴) has equalizers [14, 5.1.38]. Given morphisms
𝑓 , 𝑔∶ 𝑋 → 𝑌 , take 𝑋 ′ = { 𝑥 ∈ 𝑋 | 𝑓 (𝑥) = 𝑔(𝑥) } and let 𝐸′ be the restriction of 𝑋 to 𝑋 ′

so that 𝐸′𝑥 = 𝐸𝑥 with 𝑖 ⊩ 𝑒∶ 𝑋 ′ → 𝑋 . It is clear from the definition that the equaliser
𝑋 ′ is modest whenever 𝑋 is. ■

Proposition 2.4.10. Both 𝐴𝑠𝑠(𝐴) and 𝑀𝑜𝑑(𝐴) are bicartesian closed and finitely cocom-
plete (and 𝐽 preserves the structure).

Proof. The initial object 0 is given by (∅, ∅) which is trivially modest. The coproduct of
two assemblies is the object with { 0 } × |𝑋 | ∪ { 1 } × |𝑌 | as the underlying set and existence
𝐺𝑧 ≡ { 𝑝0𝑎 | 𝑎 ∈ 𝐸𝜋′(𝑧) } ∪ { 𝑝1𝑏 | 𝑏 ∈ 𝐹𝜋′(𝑧) }. The coproduct is modest whenever both

45

are by definition. The universal property is easily checked from the following diagram.

(|𝑋 |, 𝐸)

(|𝑋 | + |𝑌 |, 𝐺) (|𝑍|, 𝑄)

(|𝑌 |, 𝐹)

Λ𝑦.𝑝1𝑦 ⊩ 𝜅′

Λ𝑥.𝑝0𝑥 ⊩ 𝜅

𝑠 ⊩ 𝑔2

𝑡 ⊩ 𝑔1

Λ𝑢.𝑖𝑓 (𝑖𝑠𝑧𝑒𝑟𝑜 𝑢)(𝑡(𝑝1𝑢))(𝑠(𝑝1𝑢)) ⊩ [𝑔1, 𝑔2]

For finite colimits, it dually suffices to show that we have coequalizers. Given the
maps 𝑓 , 𝑔∶ (|𝑋 |, 𝐸) → (|𝑌 |, 𝐹) the coequalizers is given by (|𝑌 |/∼, 𝐹 ′), where ∼ is the
equivalence relation { (𝑓 (𝑥), 𝑔(𝑥)) | 𝑥 ∈ |𝑋 | } = { (𝑦, 𝑦′) | ∃𝑥 ∈ 𝑋(𝑓 (𝑥) = 𝑦 ∧ 𝑔(𝑥) = 𝑦′) }
and 𝐹 ′[𝑦] ≡ ⋃

𝑦∼𝑦′
𝐹𝑦. Then 𝑖 ⊩ 𝑝∶ (|𝑌 |, 𝐹) → (|𝑌 |/∼, 𝐹 ′). Note that the quotient is modest

whenever 𝑌 is, for [𝑦] ≠ [𝑦′] then 𝑦 ̸∼ 𝑦′ and so 𝐹 ′[𝑦] ∩ 𝐹 ′[𝑦′] = ∅. ■
Proposition 2.4.11. 𝑀𝑜𝑑(𝐴) and𝐴𝑠𝑠(𝐴) have a natural number object (and it is preserved
under 𝐽).

Proof. Given the modest set 𝑁 ≡ (ℕ, 𝐸) with 𝐸𝑛 ≡ { 𝑛 } and morphisms
0

1 → 𝑁 ,
𝑠

𝑁 → 𝑁

tracked by Λ𝑥.0 and succ respectively, if 𝑌 is an assembly with morphisms
𝑦

1 → 𝑌 ,
𝑓

𝑌 → 𝑌
then there is a unique morphism

𝑥
𝑁 → 𝑌 such that

𝑁 𝑁

1 𝑌 𝑌

Λ𝑥.0 ⊩ 0

𝑠𝑢𝑐𝑐 ⊩ 𝑠

𝑟 ⊩ 𝑦 𝑡 ⊩ 𝑓

𝑟𝑒𝑐(𝑟𝑖)(𝑘𝑡) ⊩ 𝑥𝑟𝑒𝑐(𝑟𝑖)(𝑘𝑡) ⊩ 𝑥

commutes. For define 𝑥 recursively by 𝑥(0) = 𝑦, 𝑥(𝑠(𝑛)) = 𝑓 (𝑥(𝑛)). We then have that
𝑟𝑒𝑐(𝑟𝑖)(𝑘𝑡)0 ≃ 𝑟𝑖, with 𝑖 ∈ 𝐴 so that 𝑟𝑖↓ and 𝑟𝑖 ∈ 𝐹𝑦. Now suppose 𝑟𝑒𝑐(𝑟𝑖)(𝑘𝑖)𝑛 ∈ 𝐹𝑦′

with 𝑓 (𝑥(𝑛)) = 𝑦′, then 𝑟𝑒𝑐(𝑟𝑖)(𝑘𝑖)𝑛 + 1 ≃ 𝑡(𝑟𝑒𝑐(𝑟𝑖)(𝑘𝑖)𝑛) denotes and is in 𝐹𝑓 (𝑦′). ■
In 𝐴𝑠𝑠(1) and 𝑀𝑜𝑑(1) we can take the natural numbers to represent themselves.

The internal language of a cartesian closed category is simply typed 𝜆-calclulus, where
the objects of the category 𝐴 serve as basic types and morphisms as basic terms [11].
We also have product types 𝐴 × 𝐵 and the internal homs 𝐵𝐴 serve as function types. For
1 𝑥−→ 𝐴 we write 𝑥∶𝐴 to mean 𝑥 has type 𝐴. Then if 𝑓 ∶𝐵𝐴 and 𝑎∶𝐴, in terms of (2.1.5)
𝑓 ≀𝑎∶𝐵 is just internal function application. We will use a suitable internal language
without much reference hereafter.

46

Chapter 3

Synthetic Computability Theory

The first steps in synthetic computability theory in the effective topos have been taken by
Bauer [1]. In this chapter, we take a few extra steps in this direction. Now the following
is a nice fact: modest sets𝑀𝑜𝑑(1) can be regarded as a category internal to assemblies
𝐴𝑠𝑠(1) which is internally complete [6]. For what this kind of internalization means in
a more general context see [4]. We will use this fact in order to carry on our investigation
in 𝑀𝑜𝑑(1) and 𝐴𝑠𝑠(1).

3.1 Preliminaries

While Ω itself is not an object of 𝐴𝑠𝑠(1), two of its subobjects of interest 2 and Σ are.
We explore their basic properties in this section.

Definition 3.1.1. The set of decidable truth-values is described as

2 ≡ { 𝑝 ∈ Ω ∣ 𝑝 ∨ ¬𝑝 }.

The morphism 2 ↣ Ω is a subobject of Ω and 𝑝 ∈ Ω refers to the global elements
1

𝑝
↣ Ω regarded as truth-values. Here, these are precisely the truth-values that satisfy

the law of excluded middle. Up to isomorphism it is the set ({ 1, 0 }, 𝐸), where 𝐸1 = { 1 }
and 𝐸0 = { 0 }, which is clearly modest [18, 3.2.7]. The object 2 is called the decidable
subobject classifier and indeed there is a one-to-one correspondence between the decid-
able subobjects of 𝑋 and morphisms 𝑋 → 2. In particular, 2𝑁 is the object of decidable
subobjects of 𝑁 . Recall that these are precisely the subsets of ℕ that posess a recursive
characteristic function.

Definition 3.1.2. The Cantor space 2𝑁 is described by the assembly (𝑅, 𝐸) with

𝑅 ≡ { 𝑓∶ ℕ → 2 | 𝑓 is recurisve }
𝐸𝑓 ≡ { 𝑒 | 𝑒 is Gödel number for 𝑓 }.

47

Definition 3.1.3. The space of functions 𝑁 𝑁 is described by the assembly (𝑅𝑒𝑐, 𝐸) with

𝑅𝑒𝑐 ≡ { 𝑓∶ ℕ → ℕ | 𝑓 is recursive }
𝐸𝑓 ≡ { 𝑒 | 𝑒 is Gödel number for 𝑓 }.

Fact 3.1.4. [18, 3.2.26] In 𝑓𝑓 , the objects 2𝑁 and 𝑁 𝑁 are isomorphic.

Definition 3.1.5. The set of semidecidable truth-values is described as

Σ ≡ { 𝑝 ∈ Ω | ∃𝑓∶𝑁 𝑁 (𝑝 ↔ (∃𝑛(𝑓 (𝑛) = 0))) }.

The category of partial functions over sets 𝐏𝐭𝐥(𝐒𝐞𝐭) is quivalent to the category of
pointed sets 𝐒𝐞𝐭⊥ with a distinguished element ⊥, under the canonical mapping

𝐴 ↦ 𝐴⊥ = 𝐴 ⊔ { ⊥ }; (disjoint union) (3.1.1)

𝑆
(𝑆,𝑓)
−−−→ 𝐵 ↦ 𝐴⊥

𝑓⊥−→ 𝐵⊥; 𝑎 ↦

{
𝑓 (𝑎) if 𝑎 ∈ 𝑆;
⊥ otherwise,

(3.1.2)

where 𝑆 ⊆ 𝐴 [14, 2.3.12]. This is part of a more general construction called lifting
monads [2]. In the effective topos Σ = 1⊥, here however, ⊥ gives an undefined element
that is not-so-distinguished from the others. We can understand this peculiarity based
on our intuition from the classical world. Recall that 𝐾 denotes the diagonal halting set,
which possesses a partial recursice characteristic function. The following fact shows
that truth and falsehood are not quite seperated.

Fact 3.1.6. [18, 3.2.27] In 𝑓𝑓 , the object Σ is up to isomorphism the assembly ({ 1, 0 }, 𝐸)
with 𝐸1 = 𝐾 and 𝐸0 = 𝐾 .

In technical terms, truth and falsehood are recursively inseperable, that is there is
no recursive set 𝐶 ⊆ ℕ such that 𝐾 ⊆ 𝐶 and 𝐾 ⊆ 𝐶. A good intuition for what goes on
in the 𝑓𝑓 is to revisit the topological view and consider the analogous object to Σ in
the category of topological spaces 𝐓𝐨𝐩. There the Sierpinski space 𝑆, the space with two
points and three open sets, plays the role of the object Σ. For in the same way that there
is a one-to-one correspondence between continous maps from any topological space
𝑋 → 𝑆 and open subsets of 𝑋 in 𝐓𝐨𝐩 [14, 4.1.30], there is a one-to-one correspondence
between semidecidable subobjects of𝑁 and tracked maps𝑁 → Σ. The subobject Σ ↣ Ω
is called the semidecidable or r.e subobject classifier because of the following reason.

Fact 3.1.7. [18, 3.2.28] The object Σ𝑁 is isomorphic to the assembly (𝑅𝐸,𝑊) with

𝑅𝐸 ≡ { 𝑅 ⊆ ℕ | 𝑅 is recursively enumerable }
𝑊𝑅 ≡ { 𝑒 | 𝑅 = 𝑊𝑒 }.

48

The analogy is pretty good and indeed we could consider Σ𝑁 as the lattice of ‘open’
sets of 𝑁 , albeit r.e subsets are only closed under countable join, see proposition 1.3.18.
Many of the p.r functions informally defined in Chapter 1 had a similar form to the
mapping in eq. (3.1.2), but unlike there, the membership problem was semidecidable.
The Σ-partial functions𝑁 → 𝑁⊥ are the synthetic analogue of partial recursive functions
in the effective topos whose domains are precisly the semidecidable subobjects of 𝑁 , for
details see [1, 4]. It is now clear that 2 ⊆ Σ ⊆ Ω with equality in 𝐒𝐞𝐭, and thus 2𝑁 ⊆ Σ𝑁 .

Definition 3.1.8. An object 𝑃 in a topos  is called internally projective if the exponential

object functor (−)𝑃∶  →  preserves epis. That is, given an epimorphism
𝑓

𝑋 ↠ 𝑌 then
𝑓 𝑃

𝑋 𝑃 → 𝑌 𝑃 is also epic.

Definition 3.1.9. Let  be a locally small category. An object 𝑃 is said to be projective
if the hom-functor (𝑃, −)∶  → Set preserves epis.

Fact 3.1.10. [18, 3.2.3] The terminal object 1 in 𝑓𝑓 is projective and the natural number
object 𝑁 in 𝑓𝑓 is internally projective.

Putting the above two facts together we can deduce the following neat result.

Corollary 3.1.11. The axiom of countable choice (ACC),

∀𝑛∶𝑁∃𝑥∶𝑋𝑅(𝑛, 𝑥) → ∃𝛼∶(𝑋𝑁)∀𝑛∶𝑁𝑅(𝑛, 𝛼(𝑛))

holds for any object 𝑋 in 𝑓𝑓 .

Proof. Given an epimorphism 𝑋
𝑓
↠ 𝑁 then we have that 𝑋𝑁 𝑓

↠ 𝑁 𝑁 is also epic. Now as
𝑓𝑓 (1, −) preserves epis we have that 𝑓𝑓 (1, 𝑋𝑁) → 𝑓𝑓 (1, 𝑁 𝑁) is surjective and thus
there exists a morphism 𝑁

𝑔
→ 𝑋 such that (𝑁

𝑔
→ 𝑋

𝑓
→ 𝑁) = (𝑁

1𝑁→ 𝑁). That is, every
epimorphism to 𝑁 splits. Given a relation 𝑅, the above internally reads as the desired
statement. ■
Fact 3.1.12. We take for granted a pairing and an unpairing

𝑁 × 𝑁 → 𝑁; (𝑎, 𝑏) ↦ ⟨𝑎, 𝑏⟩,
𝑁 → 𝑁 × 𝑁 ; 𝑛 ↦ (𝑛0, 𝑛1),

that are an isomorphism.

Fact 3.1.13. There exists an enumeration 𝜙∶ 𝑁 ↠ 𝑁 𝑁
⊥ such that ∀𝜓∶𝑁 𝑁

⊥ ∃𝑒∶𝑁𝜙(𝑒) = 𝜓.

Using pairingwe get an enumeration𝜙2∶ 𝑁 ↠ 𝑁 (𝑁 2)
⊥ such that𝜙2(𝑒)(𝑎, 𝑏) = 𝜙(𝑒)(⟨𝑎, 𝑏⟩).

We can continue the pattern to get a epimorphism 𝜙𝑘 for any natural number 𝑘.

Fact 3.1.14. There exists an enumeration 𝑊∶ 𝑁 ↠ Σ𝑁 such that ∀𝐴∶Σ𝑁 ∃𝑒∶𝑁𝑊𝑒 = 𝐴.

49

3.2 Basic synthetic results

The various results in the two coming sections emerged in discussion with Professor
Martin Hyland. Unless otherwise stated, to the best of our knowledge these results
have not appeared in the literature.

Theorem 3.2.1. In 𝑓𝑓 , the s-m-n theorem holds:

∃𝑠𝑚𝑛 ∶𝑁
(𝑁𝑚+1)∀𝑒, 𝑦1, … , 𝑦𝑚∶𝑁𝜆𝑥.𝜙𝑚+𝑛(𝑒)(𝑦, 𝑥) = 𝜙𝑛(𝑠(𝑒, 𝑦))

Proof. We give a proof for the case 𝑠11 , the general case follows by pairing. Take 𝑒, 𝑦∶𝑁
so that 𝜆𝑥.𝜙2(𝑒)(𝑦, 𝑥)∶𝑁 𝑁

⊥ . By fact 3.1.12 and 3.1.13,

∀(𝑒, 𝑦)∶𝑁 2∃𝑑∶𝑁𝜆𝑥.𝜙2(𝑒)(𝑦, 𝑥) = 𝜙(𝑑).

Then the desired result follows by ACC ,

∃𝑠∶𝑁 (𝑁 2)∀(𝑒, 𝑦)∶𝑁 2𝜆𝑥.𝜙2(𝑒)(𝑦, 𝑥) = 𝜙(𝑠(𝑒, 𝑦)). ■

Theorem 3.2.2. In 𝑓𝑓 , the Fixed point theorem holds cf. [1, 4.23]:

∀𝑓∶𝑁 𝑁 ∃𝑛∶𝑁𝜙(𝑓 (𝑛)) = 𝜙(𝑛)

Proof. Take 𝑓 ∶𝑁 𝑁 , which gives a map 𝜆𝑢.𝑓 (𝑠(𝑢, 𝑢))∶ 𝑁 → 𝑁 . Composing with 𝜙 we
get 𝜆𝑢.𝜙(𝑓 (𝑠(𝑢, 𝑢)))∶ 𝑁 → 𝑁 𝑁

⊥ or equivalently a map 𝜆𝑢𝑥.𝜙(𝑓 (𝑠(𝑢, 𝑢)))(𝑥)∶ 𝑁 2 → 𝑁⊥.
By surjection of 𝜙2, there exists a 𝑣∶𝑁 such that for all 𝑢, 𝑥∶𝑁 ,

𝜙2(𝑣)(𝑢, 𝑥) = 𝜙(𝑓 (𝑠(𝑢, 𝑢)))(𝑥). (3.2.1)

Now let 𝑛 = 𝑠(𝑣, 𝑣), then for all 𝑥∶𝑁

𝜙(𝑓 (𝑛))(𝑥) = 𝜙(𝑓 (𝑠(𝑣, 𝑣)))(𝑥)
= 𝜙2(𝑣)(𝑣, 𝑥) by eq. (3.2.1)
= 𝜙(𝑠(𝑣, 𝑣))(𝑥) by theorem 3.2.1
= 𝜙(𝑛)(𝑥).

■
Theorem 3.2.3. In 𝑓𝑓 , the Second recursion theorem holds:

∀𝑓∶𝑁 (𝑁 2)∃𝑛∶𝑁 𝑁∀𝑥∶𝑁𝜙(𝑓 (𝑛(𝑥), 𝑥)) = 𝜙(𝑛(𝑥))

Proof. Take 𝑓 ∶𝑁 (𝑁 2), which gives a map 𝜆𝑢𝑥.𝑓 (𝑠21(𝑢, 𝑢, 𝑥), 𝑥) ∶ 𝑁 2 → 𝑁 . Then we
compose with 𝜙 to get a map 𝜆𝑢𝑥.𝜙(𝑓 (𝑠21(𝑢, 𝑢, 𝑥), 𝑥))∶ 𝑁 2 → 𝑁 𝑁

⊥ or equivalently a map

50

𝜆𝑢𝑥𝑦.𝜙(𝑓 (𝑠21(𝑢, 𝑢, 𝑥), 𝑥))(𝑦)∶ 𝑁 3 → 𝑁⊥. By surjection of 𝜙3, there exists a 𝑣∶𝑁 such that
for all 𝑢, 𝑥, 𝑦∶𝑁 ,

𝜙2(𝑣)(𝑢, 𝑥, 𝑦) = 𝜙(𝑓 (𝑠21(𝑢, 𝑢, 𝑥), 𝑥))(𝑦). (3.2.2)

Now let 𝑛 = 𝜆𝑥.𝑠21(𝑣, 𝑣, 𝑥), then for all 𝑦∶𝑁

𝜙(𝑓 (𝑛(𝑥), 𝑥))(𝑦) = 𝜙(𝑓 (𝑠21(𝑣, 𝑣, 𝑥), 𝑥))(𝑦)
= 𝜙2(𝑣)(𝑣, 𝑥, 𝑦) by eq. (3.2.2)
= 𝜙(𝑠21(𝑣, 𝑣, 𝑥))(𝑦) by theorem 3.2.1
= 𝜙(𝑛(𝑥))(𝑦).

■

3.3 Synthetic Myhill’s theorem
In this section we establish our main theorem, namely that creativeness and complete-
ness conincide in the effective topos. We will also show that 𝐾 ∶Σ𝑁 is undecidable
in the strong sense that it is creative. This version is even stronger than its classical
counterpart as we shall see. We begin by showing the weak version, which is well
known.

Proposition 3.3.1. In 𝑓𝑓 , the set 𝐾 is undecidable, that is

∀𝑅∶2𝑁𝑅 ≠ 𝐾.

Proof. The argument mimics the classical one. Suppose towards a contradiction that
𝐾 = 𝑅∶2𝑁 , consider 𝑅∶2𝑁 . By fact 3.1.14 there exists an 𝑒 such that 𝑅 = 𝑊𝑒, but then

𝑒∶𝑅 ⟷ 𝑒∶𝑊𝑒 ⟷ 𝑒∶𝐾 ⟷ 𝑒∶𝑅,

which is impossible as 2𝑁 is the object of decidable subobjects. ■
Let us first consider Myhill’s characterisation, see proposition 1.3.27 in our setting.

The statement that 𝐾 is creative would read as follows,

∀𝐴∶Σ𝑁 [∃𝑛∶𝐴 ∩ 𝐾 ∨ ∃𝑛(𝑛∶𝐴 ∪ 𝐾 → ⊥)]. (3.3.1)

Now consider 𝐴 = ∅, then first assertion of the disjunction is false and the second is
true, while if 𝐴 = 𝑁 then the situation is reversed. Recall, however, that Σ truth-values
are recursively inseperable. Thus the above statement is asking us to do too much
‘work’, and in fact the standard characterisation is not valid in 𝑓𝑓 .

51

Definition 3.3.2 (Hyland). In 𝑓𝑓 , a set 𝐴∶Σ𝑁 is creative if ∃𝑢∶𝑁 𝑁
⊥ ∀𝑒∶𝑁

(i) ∃𝑛∶𝑊𝑒 ∩ 𝐴 ∨ 𝑢(𝑒)∶𝑁 ;

(ii) 𝑢(𝑒)∶𝑊𝑒 ∪ 𝐴 → ∃𝑛∶𝑊𝑒 ∩ 𝐴.

Remark 3.3.3. We have that 𝑁 is regarded as a Σ-subobject of 𝑁⊥ via the pullback

𝑁 1

𝑁⊥ Σ

so that 𝑢(𝑥)∶𝑁 means 𝑢(𝑥)↓.

Note that our definition implies the standard one and is classically equivalent to it.
Constructively it is a version, which has as much constructive information as possible.

Proposition 3.3.4. A set 𝐶 is creative if and only if there exists a unary partial function
𝑢 such that for all 𝑥 ,

(i) ∃𝑛 ∈ 𝑊𝑥 ∩ 𝐴 ∨ 𝑢(𝑥)↓;

(ii) 𝑢(𝑥) ∈ 𝑊𝑥 ∪ 𝐴 ⟹ ∃𝑛 ∈ 𝑊𝑥 ∩ 𝐴.

Proof. It is a matter of fiddling around with the logic. Suppose 𝐶 is creative, that is

(∀𝑥)[𝑊𝑥 ∩ 𝐶 = ∅ ⟹ [𝑢(𝑥)↓ ∧ 𝑢(𝑥) ∉ 𝑊𝑥 ∪ 𝐶]];
(∀𝑥)[¬[𝑢(𝑥)↓ ∧ 𝑢(𝑥) ∉ 𝑊𝑥 ∪ 𝐶] ⟹ ¬[𝑊𝑥 ∩ 𝐶 = ∅]];
(∀𝑥)[[¬𝑢(𝑥)↓ ∨ 𝑢(𝑥) ∈ 𝑊𝑥 ∪ 𝐶] ⟹ ¬[∀𝑛(𝑛 ∉ 𝑊𝑥 ∩ 𝐶)]];
(∀𝑥)[[¬𝑢(𝑥)↓ ⟹ ∃𝑛(¬(𝑛 ∉ 𝑊𝑥 ∩ 𝐶))] ∧ [𝑢(𝑥) ∈ 𝑊𝑥 ∪ 𝐶 ⟹ ∃𝑛(¬(𝑛 ∉ 𝑊𝑥 ∩ 𝐶))]];
(∀𝑥)[[𝑢(𝑥)↓ ∨ ∃𝑛 ∈ 𝑊𝑥 ∩ 𝐶] ∧ [𝑢(𝑥) ∈ 𝑊𝑥 ∪ 𝐶 ⟹ ∃𝑛 ∈ 𝑊𝑥 ∩ 𝐶]];

as desired.
Conversely, fix an 𝑥 and suppose 𝑊𝑥 ∩ 𝐶 = ∅, then 𝑢(𝑥)↓ by (i) and 𝑢(𝑥) ∉ 𝑊𝑥 ∪ 𝐴

by (ii). ■
Proposition 3.3.5. In 𝑓𝑓 , the set 𝐾 is creative.

Proof. Take 𝑢 in definition 3.3.2 to be the identity morphism. Then (i) is trivially realised
and note for (ii) that 𝑒∶𝑊𝑒 if and only if 𝑒∶𝐾 . ■

Note that 𝑓 −1(𝐴)∶Σ𝑁 whenever 𝐴∶Σ𝑁 with characteristic morphism 𝐴 ◦ 𝑓 .

Definition 3.3.6. In 𝑓𝑓 , the set𝐴∶Σ𝑁 is complete if and only if ∀𝐵∶Σ𝑁 ∃𝑓∶𝑁 𝑁𝐵 = 𝑓 −1(𝐴).

52

Theorem 3.3.7. (Synthetic Myhill’s theorem) In 𝑓𝑓 , a set 𝐴 is creative if and only if 𝐴 is
complete.

Proof. Suppose 𝐴 is creative with 𝑢 as in definition 3.3.2 and fix 𝐵∶Σ𝑁 . Construct 𝑅∶Σ(𝑁 3)

by { (𝑥, 𝑦, 𝑧) | 𝑦∶𝐵 ∧ 𝑢(𝑥) = 𝑧 }. Apply the Second recursion theorem 3.2.3 to get 𝑛∶𝑁 𝑁

such that ∀𝑥∶𝑁 𝑊𝑛(𝑥) = { 𝑧 | 𝑥 ∈ 𝐵 ∧ 𝑢(𝑛(𝑥)) = 𝑧 }. We claim that 𝑓 ≡ 𝑢 ◦ 𝑛 is total.
To this end apply (i) to 𝑒 = 𝑛(𝑥) for a fixed 𝑥∶𝑁 . Then either ∃𝑧∶𝑊𝑛(𝑥) ∩ 𝐴, and that
𝑧 has to be 𝑢(𝑛(𝑥))∶𝑁 or 𝑢(𝑛(𝑥))∶𝑁 outright. That proves our claim. Now suppose
𝑥∶𝐵, we know that 𝑢(𝑛(𝑥))∶𝑁 so that the definition gives 𝑢(𝑛(𝑥))∶𝑊𝑛(𝑥). By (ii) we
have 𝑢(𝑛(𝑥))∶𝑊𝑛(𝑥) → ∃𝑧∶𝑊𝑛(𝑥) ∩ 𝐴 means 𝑧 = 𝑢(𝑛(𝑥)) = 𝑓 (𝑥)∶𝐴. On the other hand,
suppose 𝑓 (𝑥)∶𝐴 and apply 𝑢(𝑛(𝑥))∶𝐴 → ∃𝑧∶𝑊𝑛(𝑥) ∩ 𝐴, but 𝑧∶𝑊𝑛(𝑥) only if 𝑥∶𝐵. Deduce
𝐵 = 𝑓 −1(𝐴) as desired.

Conversely, suppose 𝐴 is complete. Given a 𝐵∶Σ𝑁 and an 𝑓∶𝑁 𝑁 as in definition 3.3.6,
we claim that 𝐴 is creative whenever 𝐵 is. Consider the following diagram:

𝑁 Σ𝑁

𝑁 Σ𝑁

𝑊

Σ𝑓

𝑊

𝑔

We assert that it commutes. The upper right corners reads

∀𝑒∶𝑁∃𝑒′∶𝑁𝑊𝑒′ = 𝑓 −1(𝑊𝑒)

and thus by ACC applied to 𝑁

∃𝑔∶𝑁 𝑁∀𝑒∶𝑁𝑊𝑔(𝑒) = 𝑓 −1(𝑊𝑒).

Now suppose 𝐵 is creative with a creative morphism 𝑣 as in definition 3.3.2. We assert
that 𝑢 ≡ 𝑓⊥ ◦ 𝑣 ◦ 𝑔 is a creative morphism for 𝐴. Pick 𝑟∶𝑁 and look at 𝑔(𝑟). From (i) in
definition 3.3.2 for 𝐵 it follows that

∃𝑛∶𝑊𝑔(𝑟) ∩ 𝐵 ∨ 𝑣(𝑔(𝑟))∶𝑁 ;

by completeness of 𝐴 and the above argument

∃𝑛∶𝑓 −1(𝑊𝑟) ∩ 𝑓 −1(𝐴) ∨ 𝑣(𝑔(𝑟))∶𝑁 ;

or equivalently

∃𝑛∶𝑓 −1(𝑊𝑟 ∩ 𝐴) ∨ 𝑣(𝑔(𝑟))∶𝑁 .

Thus 𝑓⊥(𝑛)∶𝑊𝑟 ∩ 𝐴 or 𝑓⊥(𝑣(𝑔(𝑟)))∶𝑁 , establishing (i) of definition 3.3.2 for 𝐴. Now
suppose 𝑢(𝑟)∶𝑊𝑟 ∪ 𝐴. Then 𝑣(𝑔(𝑟))∶𝑓 −1(𝑊𝑟 ∪ 𝐴) or equivalently 𝑣(𝑔(𝑟))∶𝑊𝑔(𝑟) ∪ 𝐵.
Applying (ii) for 𝐵 gives that ∃𝑛∶𝑊𝑔(𝑟) ∩ 𝐵 and repeating the same argument establishes
∃𝑛∶𝑊𝑟 ∩ 𝐴. This proves our claim. Now in particular, for 𝐾∶Σ𝑁 there exists 𝑓∶𝑁 𝑁 such
that 𝐾 = 𝑓 −1(𝐴) and the desired result follows from proposition 3.3.5. ■

53

3.4 Conclusion and future work
The s-m-n theorem while being an important result in the classical world, has turned
out to be a simple application of the axiom of countable choice in the effective topos.
This structure was previously not present in the classical informal or formal proof.
We showed that 𝐾 being creative is a straightforward fact, despite the fact that our
definition of creativeness is constructively stronger. Indeed, we have demonstrated
that non-trivial facts about computability theory find their home in the effective topos.
Synthetic Myhill’s theorem is such an example. In general, the synthetic results made
no explicit reference to Gödel encoding or Turing machines. As Andrej Bauer puts it
“we just [did] ordinary math–in an extraordinary universe” [1].

There are various directions we can explore from here. One thing we want to
investigate next is how Roger’s admissable numbering would look like in the effective
topos. Originally, the project started with looking at a paper by Moschovakis [17],
where Myhill’s theorem appeared among the applications of the Second recursion
theorem. Another interesting result there concering partial recursive functionals is the
Kreisel-Lacombe-Shoenfield-Ceiten theorem. As we did not use the full force of the
effective topos, such a translation would show how higher-order computability results
appear here.

54

Bibliography

[1] A. Bauer. “First Steps in Synthetic Computability Theory”. In: Electronic Notes
in Theoretical Computer Science 155 (2006). Proceedings of the 21st Annual
Conference on Mathematical Foundations of Programming Semantics (MFPS
XXI), pp. 5–31. issn: 1571-0661. doi: https://doi.org/10.1016/j.
entcs.2005.11.049. url: https://www.sciencedirect.com/
science/article/pii/S1571066106001861.

[2] A. Bucalo, C. Führmann, and A. Simpson. “Equational lifting monads”. In: CTCS
’99: Conference on Category Theory and Computer Science (Edinburgh). Vol. 29.
Electron. Notes Theor. Comput. Sci. Elsevier Sci. B. V., Amsterdam, 1999, Paper
No. 29004, 32.

[3] D. van Dalen. Logic and structure. Fifth. Universitext. Springer, London, 2013,
pp. x+263. isbn: 978-1-4471-4557-8; 978-1-4471-4558-5. doi: 10.1007/978-1-
4471-4558-5. url: https://doi.org/10.1007/978-1-4471-
4558-5.

[4] E. Ghiorzi. Complete internal categories. 2020. doi: 10.48550/ARXIV.2004.
08741. url: https://arxiv.org/abs/2004.08741.

[5] J. M. E. Hyland. “The effective topos”. In: The L.E.J. Brouwer Centenary Sympo-
sium (Noordwijkerhout, 1981). Vol. 110. Studies in Logic and the Foundations of
Mathematics. North-Holland, Amsterdam-New York, 1982, pp. 165–216.

[6] J. M. E. Hyland. “A small complete category”. In: Ann. Pure Appl. Logic 40.2 (1988),
pp. 135–165. issn: 0168-0072. doi: 10.1016/0168-0072(88)90018-8.
url: https://doi.org/10.1016/0168-0072(88)90018-8.

[7] P. T. Johnstone and E. P. Robinson. “A note on inequivalence of realizability
toposes”. In: Math. Proc. Cambridge Philos. Soc. 105.1 (1989), pp. 1–3. issn: 0305-
0041. doi: 10.1017/S0305004100001304. url: https://doi.
org/10.1017/S0305004100001304.

[8] S. C. Kleene. Introduction to metamathematics. D. Van Nostrand Co., Inc., New
York, N. Y., 1952, pp. x+550.

55

https://doi.org/https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/https://doi.org/10.1016/j.entcs.2005.11.049
https://www.sciencedirect.com/science/article/pii/S1571066106001861
https://www.sciencedirect.com/science/article/pii/S1571066106001861
https://doi.org/10.1007/978-1-4471-4558-5
https://doi.org/10.1007/978-1-4471-4558-5
https://doi.org/10.1007/978-1-4471-4558-5
https://doi.org/10.1007/978-1-4471-4558-5
https://doi.org/10.48550/ARXIV.2004.08741
https://doi.org/10.48550/ARXIV.2004.08741
https://arxiv.org/abs/2004.08741
https://doi.org/10.1016/0168-0072(88)90018-8
https://doi.org/10.1016/0168-0072(88)90018-8
https://doi.org/10.1017/S0305004100001304
https://doi.org/10.1017/S0305004100001304
https://doi.org/10.1017/S0305004100001304

[9] S. C. Kleene. “Realizability: a retrospective survey”. In: Cambridge Summer School
in Mathematical Logic (Cambridge, 1971). 1973, 95–112. Lecture Notes in Math.,
Vol. 337.

[10] J. Lambek. “Functional completeness of cartesian categories”. In: Ann. Math. Logic
6 (1973/74), pp. 259–292. issn: 0003-4843. doi: 10.1016/0003-4843(74)
90003-5. url: https://doi.org/10.1016/0003-4843(74)
90003-5.

[11] J. Lambek and P. J. Scott. Introduction to higher order categorical logic. Vol. 7.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, 1986, pp. x+293. isbn: 0-521-24665-2.

[12] F. W. Lawvere, ed. Toposes, algebraic geometry and logic. Lecture Notes in Mathe-
matics, Vol. 274. Partial Report on a Conference on Connections between Category
Theory and Algebraic Geometry & Intuitionistic Logic, Dalhousie University,
Halifax, Nova Scotia, January 16–19, 1971. Springer-Verlag, Berlin-New York,
1972, pp. v+189.

[13] F. William Lawvere and Stephen H. Schanuel. Conceptual mathematics. Second.
A first introduction to categories. Cambridge University Press, Cambridge, 2009,
pp. xviii+390. isbn: 978-0-521-71916-2. doi:10.1017/CBO9780511804199.
url: https://doi.org/10.1017/CBO9780511804199.

[14] T. Leinster. Basic category theory. Vol. 143. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2014, pp. viii+183. isbn:
978-1-107-04424-1. doi: 10.1017/CBO9781107360068. url: https:
//doi.org/10.1017/CBO9781107360068.

[15] John R Longley. “Realizability toposes and language semantics”. In: (1995).

[16] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Universitext. A first
introduction to topos theory, Corrected reprint of the 1992 edition. Springer-
Verlag, New York, 1994, pp. xii+629. isbn: 0-387-97710-4.

[17] Y. N. Moschovakis. “Kleene’s amazing second recursion theorem”. In: Bull. Sym-
bolic Logic 16.2 (2010), pp. 189–239. issn: 1079-8986. doi: 10.2178/bsl/
1286889124. url:https://doi.org/10.2178/bsl/1286889124.

[18] J. van Oosten. Realizability: an introduction to its categorical side. Vol. 152. Studies
in Logic and the Foundations of Mathematics. Elsevier B. V., Amsterdam, 2008,
pp. xvi+310. isbn: 978-0-444-51584-1.

[19] H. Rogers Jr. Theory of recursive functions and effective computability. Second.
MIT Press, Cambridge, MA, 1987, pp. xxii+482. isbn: 0-262-68052-1.

[20] M. Schönfinkel. “Über die Bausteine der mathematischen Logik”. In: Math. Ann.
92.3-4 (1924), pp. 305–316. issn: 0025-5831. doi: 10.1007/BF01448013.
url: https://doi.org/10.1007/BF01448013.

56

https://doi.org/10.1016/0003-4843(74)90003-5
https://doi.org/10.1016/0003-4843(74)90003-5
https://doi.org/10.1016/0003-4843(74)90003-5
https://doi.org/10.1016/0003-4843(74)90003-5
https://doi.org/10.1017/CBO9780511804199
https://doi.org/10.1017/CBO9780511804199
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.2178/bsl/1286889124
https://doi.org/10.2178/bsl/1286889124
https://doi.org/10.2178/bsl/1286889124
https://doi.org/10.1007/BF01448013
https://doi.org/10.1007/BF01448013

[21] D. Scott. “Extending the topological interpretation to intuitionistic analysis”. In:
Compositio Math. 20 (1968), 194–210 (1968). issn: 0010-437X.

[22] R. I. Soare. Turing computability. Theory and Applications of Computability.
Theory and applications. Springer-Verlag, Berlin, 2016, pp. xxxvi+263. isbn: 978-
3-642-31932-7; 978-3-642-31933-4. doi: 10.1007/978-3-642-31933-4.
url: https://doi.org/10.1007/978-3-642-31933-4.

57

https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1007/978-3-642-31933-4

	Introduction
	Classical Computability Theory
	Formal characterisations of algorithms
	Some standard results
	Undecidability of the halting problem

	Crossing Over to the Effective Topos
	Intuitionistic logic in the language of categories
	Categories with an internal logic
	Partial combinatory algebras
	Category of assemblies and modest sets

	Synthetic Computability Theory
	Preliminaries
	Basic synthetic results
	Synthetic Myhill's theorem
	Conclusion and future work

	References

