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Abstract

The goal of this thesis was to, from several randomly selected patients with diagnosed ma-

lignant and benign tumors, record optimal lambdas and respective Renyi entropies for each

lambda, run a basic statistical analysis of the results and see if there is any significant dif-

ference between lambdas/Renyi entropies of malignant and benign lesions.

The results showed no significant difference.

The reassignment technique is a method that moves the signal energy to the center of grav-

ity, giving higher energy concentration at the instantaneous frequency of the signal. The

novel matched reassigned spectrogram method (MRS) was recently invented, with the goal

to localize and classify transient functions of arbitrary shape. It was tailored for very short os-

cillating transients, which, theoretically, gives perfect reassignment localization to one single

point in the time-frequency (TF) plane. Renyi entropy was used as concentration measure,

where λ is its minimizing parameter.

MATLAB algorithm for matched reassigned spectrogram was run on the OASBUD dataset

that contains the raw radio-frequency echoes of breast lesions, recorded in two scan planes,

along with their respective regions of interest (ROI), and classification of malignancy of the

lesion for each patient.
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1 Introduction

Breast cancer is the most common cancer in women [7], and ultrasound plays and impor-

tant role in its diagnosis, especially in differentiating between malignant and benign tumors.

Nowadays, quantitative ultrasound (QUS) is becoming an important tool in breast lesion

classification. It enables the estimation of tissue specific properties contained in the received

echoes from the tissue under examination. However, the raw radio-frequency (RF) ultrasonic

echoes are difficult to obtain in clinical practice, since the acquisition demands a dedicated

ultrasound scanner. The Open Access Series of Breast Ultrasonic Data (OASBUD), is a

set of radio-frequency signals which were recorded from breast lesions and are available for

studying the specificity of the ultrasonic backscattered echoes from malignant and benign

breast lesions. For each lesion, two individual longitudinal and transverse scan planes, radial

scanning around the nipple, and antiradial scan planes were done. Two perpendicular scans

(longitudinal and transverse) were recorded for every breast lesion, using the ultrasound

scanner with centre frequency of 10 MHz.

Each scan consists 510 RF echo lines. The number of samples in every RF signal depended

on the chosen penetration depth, and signals were digitized with 40 MHz sampling frequency.

For each scan, the ROI logical matrix has exactly the same size as the matrix which contains

the RF signals. The array multiplication of the RF file and the ROI file (value one within

the ROI and zero outside) removes from the resulting array any data corresponding to the

surrounding tissues and leaves only the echoes related to the pathological region

The specific region of interest (ROI) was specified by the radiologist for each lesion scan.

In this thesis we will attempt to examine the RF signals using the matched reassigned spectro-

gram method, which gives reassignment localization to one single point in the time-frequency

(TF) plane. We will use Renyi entropy (defined in the next section) as the concentration

measure, with λ being its minimizing parameter. Four patients were randomly selected, two

diagnosed with malignant tumor, and two with benign. The following process was applied for

each separate patient: ROI and RF matrices were multiplied to leave us with only relevant

echoes related to the pathological region. For each echo line, the optimal lambda was com-
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puted and saved in a vector. Same was done for the corresponding Renyi entropies. Then

we ran a basic statistical analysis (standard measures of location and spread). Same process

was repeated on reduced datasets, where only 15 consecutive echo lines were selected for each

patient, with the addition of computed correlation coefficients. This was done for both scan

planes, RF1 and RF2, and the results were compared in an attempt to see whether or not

there exist differences between malignantly and benignly classified lesions.

The ultrasonic RF echoes contained in the OASBUD file were recorded in the Department

of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Science.
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2 Matched Reassigned Spectrogram

The reassignment method is a technique that moves the signal energy to the center of gravity,

giving higher energy concentration at the instantaneous frequency of the signal. The matched

reassigned spectrogram (MRS),theoretically gives perfect instantaneous time and frequency

localization, i.e. reassignment localization to one single point in the TF plane.

The short-time Fourier transform (STFT) of the oscillating transient signal

x(t) = a(t− t0)e
−ω0t+Φ

using the window h(t) is

F h
x =

∫ ∞

−∞
x(s)h∗(s− t)e−iωsds

where ∗ is the complex conjugate and Φ is a phase. The corresponding spectrogram is found

Sh
x(t, ω) = |F h

x (t, ω)|2.

The reassigned spectrogram, where the spectrogram values are relocated to the corresponding

t̂x and ω̂x, is defined as

RSh
x(t, ω) =

∫∫
Sh
x(s, ξ)δ(t− t̂x(s, ξ), ω − ω̂x(s, ξ))ds

dξ

2π

with
∫∫

f(t, ω)δ(t − t0, ω − ω0dtdω/2π) = f(t0, ω0), all integrals being from −∞ to ∞. As

the quadratic class of distributions obey TF shift-invariance, all analysis can be restricted to

x(t) = a(t), with time- and frequency center t0 = ω0 = 0. The reassignment vectors for the

matched window case, h(t) = a(−t), are computed as

t̂x(t, ω) = t+ ctR

(
F th
x (t, ω)

F h
x (t, ω)

)
= t− ct

t

2

ω̂x(t, ω) = ω + cωI

(
F

dh
dt
x (t, ω)

F h
x (t, ω)

)
= ω − cω

ω

2

whereR(·) and I(·) represent the real and imaginary parts, and F h
x (t, ω), F

dh
dt
x (t, ω) are STFTs

of the signal x(t), with t · h(t) and dh(t)/dt as window functions. The scaled reassignment,

ct = cω = 2, reassigns all signal energy to t̂x(t, ω) = 0, (t0) and ω̂x(t, ω) = 0, (ω0).
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Renyi entropy measure, used as the concentration measure of the MRS, of order α is de-

fined as

RSh
x(λ) =

1

1− α
log2

∫ t1

t0

∫ ω1

ω0

(RSh(λ)
x (t, ω))αdtdω,

using α = 3.

3 Ultrasound Data and Analysis

We will explain the process of algorithm implementation and obtaining the results. The

whole process is repeated for both of the scan planes, RF1 and RF2. For every patient se-

lected, the RF matrix was multiplied by the ROI logical matrix to clean the data and leave

us only with the data relevant for analysis. The region of interest was then ”combed” to find

the beginning and the end of the region of interest for each line. That was saved in the Ysig

matrix. Fast Fourier transform length was set at 1024, and the sampling frequency at 40

MHz, according to [2]. Frequency range is chosen to be 3 MHz to 7 MHz. According to [2]

it should be 10 MHz, but it doesn’t match the observations, and 3 to 7 MHz is the region

where things ”seem to happen”, so that was the reason for choosing it. Then the time and

frequency bins were computed, and they decide the time and frequency limits for finding a

peak. Time bins were selected to be the whole region of interest, just so we’re able to capture

the strongest possible peak and not risk the strongest peak being outside of the region. That

region, illustratively shown for Patient 1, RF1, line 300 is shown in Figure 1, as the red box.
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Figure 1: MRS with time and frequency bins (Patient 1, RF1 echo, line 300)

That is the region where the Renyi entropy is calculated for each lambda.

Next, we computed the matched reassigned spectrogram (MRS) with parameters described

above. Although the MRS is very sensitive to the choice of lambda, in the interest of getting

the best possible estimate of the optimal lambda for each line, lambdas in the range of 1 to

30 have been tested. For each optimal lambda the Renyi entropy is computed. Both lambdas

and the corresponding Renyi entropies are then saved in their respective vectors on which

the classification was performed later.

And finally, the spectrogram and matched reassigned spectrogram images are produced (sin-

gle line example shown in Figure 1). The same process was repeated for all four selected

patients.

Patients were selected randomly, two with diagnosed malignant tumors (Patient 4 and Patient

69), and two with diagnosed benign tumors (Patient 1 and Patient 23). Only four patients

were selected to shorten the computation time. The idea was to see if there is an observable

difference in distributions, means, variances and standard deviations of optimal lambdas and

their corresponding Renyi entropies, for both scan planes RF1 and RF2, between malignant
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and benign lesions.

The analysis was done on two different datasets. The full dataset, containing the optimal

lambdas and corresponding Renyi entropies for every RF echo line in the region of interest,

and the shortened dataset, where, observing the mesh grids of the data, 15 lines per scan

plane per patient were selected in such a way that they capture the strongest peak of the

grid.

Important thing to mention is that when optimal lambda equals 1, it is treated as an outlier.

Due to inability to effectively deal with those outliers equally in both full and shortened

datasets, because of the reasoning for taking specific lines in shortened datasets, they have

been left in. There is a possibility that they skew the results, but we don’t know by how much.

Figure 2: Mesh grid for cleaned up data of patient 1

8



3.1 KS density, mean, variance and standard deviation

(a) KS density of lambdas, patient 1, RF1 (b) KS density of Renyi entropies, patient 1, RF1

Figure 3: KS densities of lambdas and Renyi entropies for patient 1 (benign)

(a) KS density of lambdas, patient 4, RF1 (b) KS density of Renyi entropies, patient 4, RF1

Figure 4: KS densities of lambdas and Renyi entropies for patient 4 (malignant)

Kernel smoothing (KS) function estimate for univariate and bivariate data is used to produce

probability density estimates of optimal lambdas and corresponding Renyi entropies.

The following is the description of the function from [8]. MATLAB function

[f,xi] = ksdensity(x) returns a probability density estimate, f, for the sample data in the

vector or two-column matrix x. The estimate is based on a normal kernel function, and

is evaluated at equally-spaced points, xi, that cover the range of the data in x. ksdensity

estimates the density at 100 points for univariate data, or 900 points for bivariate data.
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To preface the analysis, ksdensity produced graphs where, in some cases, the density function

crossed into negative values, which cannot be the case. Since we couldn’t find a better

MATLAB function to estimate densities of optimal lambda and Renyi entropy vectors, we

stuck with using ksdensity.

We will first observe the results of the analysis on the full dataset.

As seen in the Figure 3 and Figure 4, KS distributions of optimal lambdas look fairly similar,

for both the patient with a malignant tumor and the one with benign tumor. They have

roughly the same mean and shape, with variance of optimal lambdas of patient 4 being

observably larger than that of patient 1.

KS densities of corresponding Renyi entropies, however, look noticeably different, despite

having a very similar mean, with that of patient 1 being more centered and broad, and of

patient 4 being narrow and slightly left-skewed.

Table 1: Mean, variance and standard deviation for optimal lambda for the full dataset

PATIENT mean var std Classification
Patient 1 RF1 11.6349 50.1328 7.0805 Benign
Patient 1 RF2 13.0155 46.3055 6.8048 Benign
Patient 4 RF1 13.3427 62.1813 7.8855 Malignant
Patient 4 RF2 12.4068 58.0722 7.6205 Malignant
Patient 23 RF1 12.2362 56.1342 7.4923 Benign
Patient 23 RF2 11.3462 58.2123 7.6297 Benign
Patient 69 RF1 11.9259 51.7328 7.1926 Malignant
Patient 69 RF2 11.9259 50.9808 7.1401 Malignant

The observation is corroborated by the data in Table 1 and Table 2. When we observe the

means of optimal lambdas, the means for patient 4 (malignant) are slightly higher than for

patients 1 and 23 (both benign), but for patient 69 (malignant) means are the lowest of the

whole group, so it implies that the mean of optimal lambda can’t be a useful metric, given

the discrepancy. Same conclusion can be drawn for standard deviations as well, since they

follow the same pattern. The only significant difference can be observed in variance, where

the variance of optimal lambdas for patients with benign tumors is significantly lower than

for those with malignant tumors, so studying variance of optimal lambdas could be a step in

the right direction.
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As for Renyi entropies, the difference in KS densities between the patient 1 and patient

4 is easily observable in Figures 2 and 3, and could point out to narrower and more skewed

KS densities indicating malignancy of the lesion, but the data for patient 69 throws this

conclusion off, because KS densities in both RF1 and RF2 echo planes are pretty even and

centered, without prominent tails on any end. For that reason, we won’t conclude that the

distribution of Renyi entropies gives us a good indication of lesion’s malignancy.

Table 2: Mean, variance and standard deviation for optimal Renyi entropy for the full dataset

PATIENT mean var std Classification
Patient 1 RF1 7.4115 1.3297 1.1513 Benign
Patient 1 RF2 7.8007 1.0545 1.0269 Benign
Patient 4 RF1 7.7879 1.7740 1.3319 Malignant
Patient 4 RF2 7.5829 1.0518 1.0256 Malignant
Patient 23 RF1 7.5813 7.4923 1.0036 Benign
Patient 23 RF2 7.2200 1.1186 1.0576 Benign
Patient 69 RF1 7.5325 0.6041 0.7772 Malignant
Patient 69 RF2 7.5325 0.9917 0.9959 Malignant

We will also present KS densities of optimal lambdas/Renyi entropies plotted together.

(a) KS density of optimal lambdas, RF1 (b) KS density of Renyi entropies, RF1

Figure 5: KS densities of lambdas and Renyi entropies for full dataset of patients 1 and 4

Now we will look at shortened datasets, where lines were selected in such a way to capture

11



the strongest peak of the mesh grid of the original data.

(a) KS density of lambdas, patient 1, RF1 (b) KS density of Renyi entropies, patient 1, RF1

Figure 6: KS densities of lambdas and Renyi entropies for selected lines of patient 1

(a) KS density of lambdas, patient 4, RF1 (b) KS density of Renyi entropies, patient 4, RF1

Figure 7: KS densities of lambdas and Renyi entropies for selected lines of patient 4

Although, initially, the decision to select fewer lines was made because of the computa-

tional heavyness of the full dataset, it turned out serving as a valuable exercise in how much

a proper selection of the data can actually matter, and how many different observations we

can get.
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(a) KS density of lambdas, patient 23, RF1 (b) KS density of Renyi entropies, patient 23, RF1

Figure 8: KS densities of lambdas and Renyi entropies for selected lines of patient 23

(a) KS density of lambdas, patient 69, RF1 (b) KS density of Renyi entropies, patient 69, RF1

Figure 9: KS densities of lambdas and Renyi entropies for selected lines of patient 69

Focusing on the area around the strongest peak on the mesh grid, KS densities of optimal

lambdas and their corresponding Renyi entropies change shape significantly, but, for optimal

lambdas, the shapes are fairly similar, again indicating no strong difference between a malig-

nant and benign lesion. The shape of the KS distributions for Renyi entropies, however, is

very much different from the previous case, where now the RE for the malignant lesion has

a more rounded shape with stronger variance, and significantly different means. All of that

pertains to patients 1 (benign) and 4 (malignant).
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Table 3: Mean, variance and standard deviation for optimal lambda for the selected lines of the dataset

PATIENT mean var std Classification
Patient 1 RF1 7.1333 25.5524 5.0549 Benign
Patient 1 RF2 10.6667 49.8095 7.0576 Benign
Patient 4 RF1 9.7333 67.9238 8.2416 Malignant
Patient 4 RF2 11.6667 55.5238 7.4514 Malignant
Patient 23 RF1 13.2000 55.4571 7.4470 Benign
Patient 23 RF2 13.6000 22.9714 4.7929 Benign
Patient 69 RF1 12.800 77.7429 8.8172 Malignant
Patient 69 RF2 12.8000 12.6952 3.5630 Malignant

Looking at KS densities for patients 23 and 69, we observe a much cleaner look for densities

of optimal lambdas, both more centered and with larger variance than the previous benign/-

malignant pair. KS densities of their respective Renyi entropies have now switched, with RE

for patient 23 having a significantly larger variance than RE for patient 69. This kind of

inconsistency in between patients suggests, again, that those are not good enough metrics to

conclude which patient is diagnosed with a malignant tumor, and which one with a benign

one.

Observing the data in Table 3, and Table 4 we can see those inconsistencies displayed across

both RF1 and RF2 for both sets of patients.

Table 4: Mean, variance and standard deviation for optimal Renyi entropy for the selected lines of the
dataset

PATIENT mean var std Classification
Patient 1 RF1 5.7678 0.7180 0.8473 Benign
Patient 1 RF2 6.5176 2.2181 1.4893 Benign
Patient 4 RF1 6.2653 3.8621 1.9652 Malignant
Patient 4 RF2 7.6799 0.4422 0.6650 Malignant
Patient 23 RF1 7.3461 1.6187 1.2723 Benign
Patient 23 RF2 7.1411 1.7567 1.3254 Benign
Patient 69 RF1 7.5894 0.2027 0.4503 Malignant
Patient 69 RF2 7.5894 1.3240 1.1507 Malignant

14



(a) KS density of optimal lambdas, RF1 (b) KS density of Renyi entropies, RF1

Figure 10: KS densities of lambdas and Renyi entropies for selected lines of all selected patients

3.2 Correlation

Selecting fewer lines, as well as selecting the equal amount of lines for each patient and RF

echo plane, allowed us to look at the correlation between optimal lambdas/Renyi entropies

within and across both scan planes.

Table 5: Correlation coefficients between RF1’s for lambda

PATIENT 1 PATIENT 4 PATIENT 23 PATIENT 69 Classification
PATIENT 1 1 -0.1500 -0.3613 0.4317 Benign
PATIENT 4 1 -0.3983 -0.4018 Malignant
PATIENT 23 1 0.3749 Benign
PATIENT 69 1 Malignant

Table 6: Correlation coefficients between RF2’s for lambda

PATIENT 1 PATIENT 4 PATIENT 23 PATIENT 69 Classification
PATIENT 1 1 0.5899 -0.1922 0.1884 Benign
PATIENT 4 1 -0.4580 0.1946 Malignant
PATIENT 23 1 -0.1514 Benign
PATIENT 69 1 Malignant

Table 7: Correlation coefficients between RF1’s for Renyi entropy

PATIENT 1 PATIENT 4 PATIENT 23 PATIENT 69 Classification
PATIENT 1 1 0.7601 0.6854 -0.1368 Benign
PATIENT 4 1 0.8113 -0.3054 Malignant
PATIENT 23 1 -0.1073 Benign
PATIENT 69 1 Malignant
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Table 8: Correlation coefficients between RF2’s for Renyi entropy

PATIENT 1 PATIENT 4 PATIENT 23 PATIENT 69 Classification
PATIENT 1 1 -0.2660 0.3943 0.6977 Benign
PATIENT 4 1 -0.2187 0.1780 Malignant
PATIENT 23 1 -0.0370 Benign
PATIENT 69 1 Malignant

(a) Correlation of Renyi entropies between patients 1 and
4, RF1

(b) Correlation of Renyi entropies between patients 4 and 23,
RF1

Figure 11: Correlations of Renyi entropies between patients with malignant and benign lesions in RF1

Observing the correlation coefficients in Tables 5 to 8, we see the confirmation of trends no-

ticed in the previous section, that is that there is very little correlation, positive or negative,

between optimal lambdas/Renyi entropies of patients with malignant and benign tumors.

There are, however, some noticeable exceptions, all pertaining to the Renyi entropy. Corre-

lation between patients 1 and 4 in RF1 is 0.7601, between patients 4 and 23 in RF1 is 0.8113,

and between patients 1 and 69 in RF 2 is 0.6977. All three have been plotted and presented

in Figure 11 and Figure 12.
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Figure 12: Correlation of Renyi entropies for patients 1 and 69 in RF2
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4 Conclusions

Although some interesting observations can be made regarding the differences in Renyi en-

tropy between the malignant and benign lesions, both on the full dataset, and on the short-

ened one, we would be slightly apprehensive about making definitive claims that it’s a proper

indicator of malignancy of a lesion. Mainly because of the outliers in the data and our inabil-

ity to properly deal with them in this context, and their stronger impact on smaller number

of RF echo lines. That also applies to optimal lambdas, who’s variance between malignant

and benign lesions is easily observable, and could potentially be an interesting metric to

explore further. The random choice of patients could have also played a role in the obtained

results. Study of larger number of patients, as well as dealing with outliers, should provide

a better insight.
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5 MATLAB code

load OASBUD.mat

%%

%rf1

%Extract patient data, all data lines

n=69; %patient number

m=190; %starting line

pat1_neg_rf1 = data(n).rf1;

pat1_rf1_clean = data(n).rf1 .* data(n).roi1;

roi_min=zeros(510,1);

roi_max=zeros(510,1);

for k=1:15

if mean(data(n).roi1(:,k+m))>0

roi_min(k)=min(find(data(n).roi1(:,k+m)));

roi_max(k)=max(find(data(n).roi1(:,k+m)));

Ysig(:,k)=pat1_rf1_clean(:,k+m);

end

end

%%

%rf2

n=69;

m=293; %starting line

pat1_neg_rf2 =data(n).rf2;

pat1_rf2_clean = data(n).rf2 .* data(n).roi2;

roi_min2=zeros(510,1);

roi_max2=zeros(510,1);

for k=1:15

if mean(data(n).roi2(:,k+m))>0

roi_min2(k)=min(find(data(n).roi2(:,k+m)));

roi_max2(k)=max(find(data(n).roi2(:,k+m)));

Ysig2(:,k)=pat1_rf2_clean(:,k+m);

end

end

%%

FFTL=1024; % FFT-length

Fs=40; % 40 MHz

%%

%rf1

f_min=3; % MHz

f_max=7; % MHz

19



fbin_min=round((f_min)/Fs*FFTL)

fbin_max=round((f_max)/Fs*FFTL)

%%

%rf2

f_min2=3;

f_max2=7;

fbin_min2=round((f_min2)/Fs*FFTL)

fbin_max2=round((f_max2)/Fs*FFTL)

%%

%rf1

lambdavect=[1:30]; % Parameter of the spectrogram window and scaled reassigned spectrogram

optimal_lambdavect=NaN(k,1); % Preallocated vector in which optimal lambdas will be stored

for k=1:15 % added another for loop to go through all of the lines

if roi_max(k)-roi_min(k)~=0

delta_t=2; % microsec

tbin_min=roi_min(k);

%tbin_max=roi_min(k)+round(delta_t*Fs);

tbin_max=roi_max(k); % or roi_max

for i=1:length(lambdavect)

[MRS1,SS1,TI,FI]=crossMRS(Ysig(:,k),Ysig(:,k),lambdavect(i),FFTL,0,1);

% Renyi for this lambda

p=3;

MRSc=MRS1([fbin_min:fbin_max],[tbin_min:tbin_max]);

Stest=MRSc./sum(sum((MRSc)));

Renyivect(i)=(1/(1-p)*log2(sum(sum(((Stest)).^p))));

close all; %remove to produce all spectrogram images

end

[R,indmin]=min(Renyivect);

’Optimal lambda’

lambdavect(indmin)

optimal_lambdavect(k)=lambdavect(indmin); %optimal lambdas appended one by one for each data

line k

k

end

optimal_Renyivect(k)=min(Renyivect);

end

%%

%rf2

lambdavect2=[1:30]; % Parameter of the spectrogram window and scaled reassigned spectrogram

optimal_lambdavect2=NaN(k,1); % Preallocated vector in which optimal lambdas will be stored

for k=1:15

if roi_max2(k)-roi_min2(k)~=0

delta_t=2; % microsec
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tbin_min2=roi_min2(k);

%tbin_max=roi_min(k)+round(delta_t*Fs);

tbin_max2=roi_max2(k); % or roi_max

for i=1:length(lambdavect2)

[MRS1,SS1,TI,FI]=crossMRS(Ysig2(:,k),Ysig2(:,k),lambdavect2(i),FFTL,0,1);

% Renyi for this lambda

p=3;

MRSc=MRS1([fbin_min2:fbin_max2],[tbin_min2:tbin_max2]);

Stest=MRSc./sum(sum((MRSc)));

Renyivect(i)=(1/(1-p)*log2(sum(sum(((Stest)).^p))));

close all; %remove to produce all spectrogram images

end

[R,indmin]=min(Renyivect);

’Optimal lambda’

lambdavect2(indmin)

optimal_lambdavect2(k)=lambdavect2(indmin); %optimal lambdas appended one by one for each data

line k

k

end

optimal_Renyivect2(k)=min(Renyivect);

end

%%

lambda=lambdavect(indmin); % Parameter of the spectrogram window and scaled reassigned spectrogram

% MRS for the optimal lambda

[MRS1,SS1,TI,FI]=crossMRS(Ysig,Ysig,lambda,FFTL,0,1); %test with different lambdas

if max(max(SS1))>min(min(SS1))

figure

TI=TI/Fs;

FI=[0:FFTL/2-1]’/FFTL*Fs;

subplot(211)

cv=[min(min(SS1)) max(max(SS1))]

pcolor(TI,FI,SS1)

shading interp

caxis(cv)

ylabel(’Frequency (MHz)’)

xlabel(’Time (microsec)’)

title(’Spectrogram’)

subplot(212)

cv=[min(min(MRS1)) max(max(MRS1))/50]

pcolor(TI,FI,MRS1)

hold

plot(tbin_min*[1 1]/Fs,[0 0.5]*Fs,’r-’)

plot(tbin_max*[1 1]/Fs,[0 0.5]*Fs,’r-’)

plot([TI(1) TI(end)],f_min*[1 1],’r-’)

plot([TI(1) TI(end)],f_max*[1 1],’r-’)
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hold

shading interp

caxis(cv)

ylabel(’Frequency (MHz)’)

xlabel(’Time (microsec)’)

title(’MRS’)

% Renyi for this lambda

p=3;

MRSc=MRS1([fbin_min:fbin_max],[tbin_min:tbin_max]);

Stest=MRSc./sum(sum((MRSc)));

Renyi=(1/(1-p)*log2(sum(sum(((Stest)).^p))))

else

’Signal is zero’

end

%%

lambda2=lambdavect2(indmin); % Parameter of the spectrogram window and scaled reassigned

spectrogram

% MRS for the optimal lambda

[MRS1,SS1,TI,FI]=crossMRS(Ysig2,Ysig2,lambda2,FFTL,0,1); %test with different lambdas

if max(max(SS1))>min(min(SS1))

figure

TI=TI/Fs;

FI=[0:FFTL/2-1]’/FFTL*Fs;

subplot(211)

cv=[min(min(SS1)) max(max(SS1))]

pcolor(TI,FI,SS1)

shading interp

caxis(cv)

ylabel(’Frequency (MHz)’)

xlabel(’Time (microsec)’)

title(’Spectrogram’)

subplot(212)

cv=[min(min(MRS1)) max(max(MRS1))/50]

pcolor(TI,FI,MRS1)

hold

plot(tbin_min*[1 1]/Fs,[0 0.5]*Fs,’r-’)

plot(tbin_max*[1 1]/Fs,[0 0.5]*Fs,’r-’)

plot([TI(1) TI(end)],f_min*[1 1],’r-’)

plot([TI(1) TI(end)],f_max*[1 1],’r-’)

hold

shading interp

caxis(cv)

ylabel(’Frequency (MHz)’)

xlabel(’Time (microsec)’)

title(’MRS’)

% Renyi for this lambda

p=3;

MRSc=MRS1([fbin_min2:fbin_max2],[tbin_min2:tbin_max2]);

Stest=MRSc./sum(sum((MRSc)));
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Renyi=(1/(1-p)*log2(sum(sum(((Stest)).^p))))

else

’Signal is zero’

end
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