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Abstract

Planning safe paths in the presence of uncertainty is considered a central
challenge in enabling robots to successfully navigate in real-world environ-
ments. Assumptions about Gaussian uncertainty are rarely justifiable based
on real data and can lead to serious miscalculations of risk. Lately, it has
become increasingly common to consider distributionally robust uncertainty,
where the exact distribution of the uncertainty is unknown. Existing motion
planning algorithms that consider distributionally robust uncertainty gen-
erates more conservative paths then their Gaussian counterparts. The aim
of this thesis is to mitigate this conservatism by incorporating non-uniform
spatio-temporal risk allocation into existing frameworks for distributionally
robust motion planning, specifically the DR-RRT algorithm. To this end, a
novel motion planning algorithm called DR-RRT-ERA (DR-RRT with Exact
Risk Allocation) is proposed. This is a sampling based motion planning algo-
rithm that builds trees of state distributions while enforcing distributionally
robust chance constraints. Instead of allocating the risk uniformly over time
and space, the DR-RRT-ERA uses a novel concept called exact risk alloca-
tion (ERA). The principle of ERA is to allocate exactly as much risk needed
to enforce the distributionally robust risk constraints. Numerical simulations
illustrate that this approach leads to less conservative paths compared to
when uniform risk allocation is used.
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1
Introduction

1.1 Background and Motivation

The topic of this thesis is spatio-temporal risk allocation in path planning.
Consider a robot operating in an uncertain environment cluttered with ob-
stacles. The objective is to steer the robot to a specified goal location while
ensuring that the risk for collision with the obstacles does not exceed the user-
specified risk bound. The position of the robot and the obstacles are subject
to uncertainty. Many motion planning algorithms are based on assumptions
of Gaussian uncertainty, but these assumptions are rarely justifiable based
on real data and can lead to serious miscalculations of risk [1]. Lately, more
and more approaches that utilize a Distributionally Robust quantification of
the uncertainty have emerged [1–12]. In distributionally robust approaches,
the uncertainty is not assumed to belong to a specific distribution, but rather
an ambiguity set of distributions. Here we will consider moment-based ambi-
guity sets that include all distributions with a specified mean and covariance.

Since distributionally robust approaches make weaker assumptions about the
uncertainty distribution, they are inherently more conservative than their
Gaussian counterparts. In the context of this thesis, conservatism is defined
according to how close to the obstacles the robot can venture. When a high
degree of conservatism is present, the robot is forced to take large detours
around the obstacles. Since we want the robot to take a more direct path
to the goal whenever possible, it is beneficial to invent ways to reduce the
conservatism of distributionally robust motion planning algorithms. One way
to achieve this is through the use of non-uniform spatio-temporal risk allo-
cation. The aim of this thesis is to develop an algorithm for this that can
be effectively incorporated into existing path planning algorithms, such as
distributionally robust rapidly exploring random tree (DR-RRT) [1].

For risk allocation to be possible, the user-specified risk constraint for the
entire path to goal must be decomposed into individual risk constraints for
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Chapter 1. Introduction

all obstacles and timesteps. This can be done with Boole’s inequality, as pro-
posed by [8] and [9]. Each obstacle at each timestep is then assigned an indi-
vidual risk bound. And, as long as the sum of all the individual risk-bounds
does not exceed the total allowed risk for the entire path, the risk constraint
for the entire path will hold. The individual risk-bounds are referred to as
risk allocations and can be fixed in a number of ways. A common approach
is to allocate the risk uniformly over all obstacles and timesteps, so that all
individual risk-bounds are assigned the same value. However, this approach
often results in overly-conservative paths, which is why a non-uniform risk
allocation can be preferable. The main objective of this thesis is to find a way
to fix the risk allocations in a non-uniform way that reduces the conservatism
of the generated paths while still enforcing the distributionally robust risk
constraint for the entire path.

1.2 Related Work

Path planning approaches that utilize a non-uniform risk allocation in the
presence of Gaussian uncertainty have been considered in [13–17]. The ma-
jority of these papers have used a two-stage optimization that alternates
between optimizing the risk allocation and the feedback control. While this
approach reduces the conservatism, it also requires additional computation
since the risk allocations need to be updated iteratively through successive
optimizations. Luders [17] proposed an alternative approach in which the
risk bounds were computed online, effectively removing the need for multiple
iterations. In online risk allocation, the exact risk of violating each individ-
ual constraint is calculated and used to check the probabilistic feasibility of
a path. The Exact Risk Allocation (ERA) method proposed in this thesis
uses a similar principle by allocating the exact risk for individual constraint
violations. However, there are two major distinctions: ERA allocates risk
based on distributionally robust uncertainty whereas online risk allocation
was proposed for Gaussian constraints. The other difference lies in how the
risk allocations are incorporated into the motion planning algorithm to de-
termine which paths are probabilistically feasible.

1.3 Contribution

The main contribution of this thesis is a novel motion planning algorithm
called DR-RRT-ERA (Distributionally Robust Rapidly Exploring Random
Tree with Exact Risk Allocation), which is an extension of the DR-RRT
algorithm proposed in [1]. We show that DR-RRT-ERA generates less con-
servative paths while still enforcing the same distributionally robust risk
constraints as DR-RRT with uniform risk allocation.
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1.4 Thesis Structure

1.4 Thesis Structure

The rest of the thesis is divided into the following chapters: Background,
Problem Formulation, DR-RRT with Exact Risk Allocation, Simulation re-
sults and Conclusions & Future Outlook.

• 2. Background: Notations, probability theory, DR-RRT and chance con-
strained path planning with Gaussian and distributionally robust con-
straints are presented.

• 3. Problem Formulation: Specifies the model dynamics and risk con-
straints for the path planning problem considered in this thesis and
provides a formal problem statement.

• 4. DR-RRT with Exact Risk Allocation: Describes the tree expansion,
ERA-procedure and feasibility check for the proposed DR-RRT-ERA
algorithm.

• 5. Simulation Results: Numerical simulations of DR-RRT with ERA
and uniform risk allocations are shown and the results are discussed.

• 6. Conclusion & Future Outlook: The thesis and main conclusions are
summarized, followed by a discussion about limitations and future re-
search topics.
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2
Background

In this chapter, notations and probability theory that are used throughout
the thesis are presented. Then, chance constrained path planing with Gaus-
sian and distributionally robust constrains are introduced and compared to
each other. This is followed by a brief description of the sampling based path
planning algorithm DR-RRT. The probability theory covers Gaussian dis-
tributions and Cantelli’s inequality, which provides an upper bound on the
probability that a random variable exceeds a specified threshold for a general
probability distribution with known mean and covariance, as well as Fréchet
and Boole’s inequalities which upper-bound the probability of a conjunction
and a disjunction, respectively. The presented theory is then used to convert
Gaussian and distributionally robust probabilistic chance constraints into
deterministic linear constraints that can be effectively used in path planning.

2.1 Notations

The set of real and natural numbers are denoted by R and N, respectively.
The subset of natural numbers between and including a and b with a < b
is denoted by [a : b]. The operator | · | denote set cardinality. The operators
⊕ and \ denote set translation and set subtraction respectively. An identity
matrix of dimension n is denoted by In. For a vector x ∈ Rn and a ma-
trix P ∈ Sn++ (set of positive definite matrices), let ∥x∥P =

√
x⊤Px. The

Euclidean norm of a vector x is denoted as ∥x∥2 or simply ∥x∥. A binary
condition being true or false is denoted by ⊤ and ⊥, respectively. The Borel
σ−algebra on Rd is denoted by B(Rd) and the space of probability measures
on (Rd,B(Rd)) is denoted by P(Rd). A probability distribution with mean
µ and covariance Σ is denoted by P(µ,Σ), and specifically Nd(µ,Σ) if the
distribution is normal (Gaussian) in Rd. Given a constant q ∈ N≥1, the set
of probability measures in P(Rd) with finite q−th moment is denoted by
Pq(Rd) :=

{
µ ∈ P(Rd) |

∫
Rd ∥x∥q dµ < ∞

}
.
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2.2 Probability Theory

2.2 Probability Theory

Formally, a probability space is defined using the triple (Ω,F ,P) consisting
of the following elements:

1. A sample space Ω which is the set of all possible outcomes.

2. An event space F which is a set of events where an event is a set of
outcomes in the sample space.

3. A probability function P that assigns a probability [0, 1] to each event
in the event space.

A random variable X is a measurable function X : Ω → E that maps a set of
possible outcomes Ω to a measurable space E. The probability that X takes
on a value in a measurable set S ⊆ E is written as

P(X ∈ S) = P ({ω ∈ Ω | X(ω) ∈ S}) . (2.2.1)

Any random variable can be described by its cumulative distribution func-
tion, which describes the probability that the random variable will be less
than or equal to a certain value. The probability distribution of a random
variable can be characterized by a small number of parameters with a practi-
cal interpretation instead of a known probability distribution. In this thesis,
we characterize the distribution of a random variable using its moments,
specifically the first and the second central moments (mean and covariance),
which can be defined for real-valued functions of random variables. Interested
readers are referred to [18] for more details.

Gaussian distributions
Gaussian distributions are abbreviated by N (µ,Σ), where µ is the mean and
Σ is the covariance. The probability density function (pdf) ϕ, the cumulative
distribution function (cdf) Φ and the error function (erf) of the standard
Gaussian distribution, with µ = 0 and Σ = I, are given by

ϕ(x) =
1√
2π

e−
x2

2 , (2.2.2)

Φ(b) =
1√
2π

∫ b

−∞
e−

x2

2 dx = P(x ≤ b), (2.2.3)

erf(b) =
2√
π

∫ b

0

e−
x2

2 dx = P(−b ≤ x ≤ b). (2.2.4)

The cdf Φ and erf are related to each other according to

Φ(b) =
1

2

[
1 + erf

(
b√
2

)]
. (2.2.5)
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Chapter 2. Background

Any Gaussian distributed random variable can be expressed in terms of the
standard Gaussian distributed random variable (with zero mean and a vari-
ance of 1) as follows

x = x̂+
√
Σxz, (2.2.6)

where x ∼ N (x̂,Σx) and z ∼ N (0, 1).

Cantelli’s inequality
Cantelli’s inequality is an improved version of Chebyshev’s inequality that
provides a bound for the one-sided tail of general probability distributions
with known mean and covariance. For a random variable x with zero-mean
and variance Σ, it holds that

sup P(x ≥ b) ≤ Σ

Σ+ b2
. (2.2.7)

Fréchet inequalities
Fréchet inequalities are rules that can be used to bound probabilities of logi-
cal conjunctions or disjunctions without any assumptions about dependence.
For logical propositions or events, Ai, the Fréchet inequalities for logical con-
junctions are as follows,

P

[
n∧

i=1

Ai

]
≤ P [Ai] , i = 1 : n. (2.2.8)

The proof for this is elementary. Since P(A ∧ B) = P(A | B)P(B) = P(B |
A)P(A) and P(A | B), P(B | A) ≤ 1, it follows that P(A ∧ B) ≤ P (A) and
P(A ∧B) ≤ P(B).

Boole’s inequality
For a finite set of events Ai, Boole’s inequality states that the probability
of at least one of the events occurring is upper bounded by the sum of the
individual probabilities of the events according to

P

[
n∨

i=1

Ai

]
≤

n∑
i=1

P[Ai]. (2.2.9)

Boole’s inequality can be proven with induction. When n = 1 it follows that
P[A1] ≤ P[A1]. Since P(A∨B) = P(A) +P(B)−P(A∧B) and P(A∧B) ≥ 0
(according to the first axiom of probability), it follows that P(A ∨ B) ≤
P(A)+P(B). Using this inequality and the fact that conjunction is associative,
we get

P

[
n+1∨
i=1

Ai

]
≤ P

[
n∨

i=1

Ai

]
+ P[An+1] ⇒ P

[
n+1∨
i=1

Ai

]
≤

n+1∑
i=1

P[Ai]. (2.2.10)
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2.3 Chance Constrained Path Planning

The objective of chance constrained path planning is to find a control se-
quence that generates a path that minimizes a given cost function while not
violating the probabilistic chance constraints specified by the user. Consider
a discrete-time linear system with uncertainty, where the states at timestep
k, xk, evolve according to

xk+1 = Axk +Buk + wk, (2.3.1)

where A is the dynamics matrix, B is the input matrix and uk is the con-
trol input at timestep k. The uncertainty is represented by the process noise
wk. In this section, two types of uncertainties are considered: Gaussian and
distributionally robust uncertainty. In the case of Gaussian uncertainty, we
assume wk ∼ N (0,Σw), whereas in the distributionally robust case, the dis-
tribution of wk is consider unknown. Instead, wk belongs to a moment-based
ambiguity set that includes all distributions with zero mean and covariance
Σw. If the input is a fixed affine function uk = Kkxk + gk, the mean state x̂
and the covariance Σx evolves according to

x̂k+1 = (A+BKk)x̂k +Bgk, (2.3.2)

Σxk+1
= (A+BKk)Σxk

(A+BKk)
⊤ +Σw. (2.3.3)

In this thesis, the chance constraints will be expressed in terms of obstacle
avoidance, where the risk of colliding with an obstacle O given an uncertain
state x is upper bounded by a risk parameter δ, according to

sup Px (x ∈ O) ≤ δ. (2.3.4)

When the obstacle is a convex polytope, it can be expressed as a conjunction
of linear constraints. That is,

O = {x| ∧n
j=1 a

⊤
j x ≤ bj}. (2.3.5)

Accordingly, the probabilistic constraint (2.3.4) can be rewritten as

sup Px

 n∧
j=1

a⊤j x ≤ bj

 ≤ δ. (2.3.6)

This constraint is handled by enlarging the obstacle with a tightening pa-
rameter β > 0 (figure 2.1) and requiring that the mean state x̂ lies outside
of the enlarged obstacle. The tightening parameter β depends on the risk
parameter δ and the covariance and is different for Gaussian and distribu-
tionally robust uncertainty. Constraint tightening will be explored further in
the next section.

15



Chapter 2. Background

Figure 2.1 Tightening of a convex polytopic obstacle. The obstacle (left) is a
conjunction of linear constrains ∧5

j=1 a
⊤
j x ≤ bj and the tightened obstacle (right) is

a conjunction of the tightened linear constraints ∧5
j=1 a

⊤
j x ≤ bj + β, where β > 0.

If the position of the obstacle is also subject to the same type of uncer-
tainty, the probabilistic constraint has to be slightly adjusted. The uncertain
obstacle location can be expressed as

O = O0 ⊕ ĉ⊕ c, (2.3.7)

where O0 represents the known shape of the obstacle and ĉ represents a
known nominal translation. The location uncertainty and unpredictable mo-
tion of the obstacle is represented by c. The chance constraint with incorpo-
rated obstacle-uncertainty is stated as

sup Px

 n∧
j=1

a⊤j x ≤ a⊤j cj

 ≤ δ. (2.3.8)

where cj = ĉj + c is a point on the jth constraint of obstacle O, with first
and second central moments ĉj and Σc. The same kind of uncertainty as the
states are considered for obstacle uncertainty, i.e., Gaussian or distribution-
ally robust uncertainty.

2.4 Constraint Tightening

In this section, we will show how the chance constraint in (2.3.8) can be
converted into a deterministic linear constraint on the state mean in the case
of Gaussian and distributionally robust uncertainty. Then, the tightening
parameters for the two cases will be compared.
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2.4 Constraint Tightening

Gaussian chance constraints
Using obstacle tightening to handle Gaussain chance constraints was pro-
posed and motivated in [19] and this framework was extended in [17] to also
include obstacle uncertainty. The presented proof is based on the same princi-
ples as mentioned in chapter 3.2 of [17] but the approach was slightly adjusted
to achieve coherency with the corresponding proof for distributionally robust
constraint tightening.

Theorem 2.1 (Gaussian chance constraint tightening):

The Gaussian chance constraint

Px

 n∧
j=1

a⊤j x ≤ a⊤j cj

 ≤ δ, (2.4.1)

x ∼ N (x̂,Σx),

cj ∼ N (ĉj ,Σc),

is fulfilled if

∨n
j=1

(
a⊤j x̂ ≥ a⊤j ĉj + βGauss

)
,

βGauss =
√
2 erf−1(1− 2δ)

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥ = −Φ−1(δ)
∥∥∥(Σx +Σc)

1
2 aj

∥∥∥ .
Proof
Using the Fréchet inequality (2.2.8), the probability in 2.4.1 can be upper
bounded according to

Px

 n∧
j=1

a⊤j x ≤ a⊤j cj

 ≤
n∨

j=1

Px

[
a⊤j x ≤ a⊤j cj

]
.

Now we want to express the probabilistic safety constraint

Px

[
a⊤j x ≤ a⊤j cj

]
≤ δ

as a deterministic linear constraint in terms of mean and covariance. The
variables x and cj can be expressed in terms of their mean and error as
x = x̂ + e and cj = ĉj + c, where e ∼ N (0,Σx) and c ∼ N (0,Σc). This
results in

Px

[
a⊤j x ≤ a⊤j cj

]
= Px

[
a⊤j (x̂+ e) ≤ a⊤j (ĉj + c)

]
= Px[a

⊤
j e− a⊤j c︸ ︷︷ ︸

=y

≤ a⊤j ĉj − a⊤j x̂]

17



Chapter 2. Background

A new random variable is defined as y = a⊤j e−a⊤j c, where y ∼ N (0,Σy)

and Σy = a⊤j (Σx + Σc)aj . Since y is Gaussian, it can be represented in
terms of the standard Gaussian distribution as

y = ŷ +
√

Σyz =
√
Σyz, z ∼ N (0, 1)

The probability can then be expressed as

Px

[√
Σyz ≤ a⊤j ĉj − a⊤j x̂

]
= Px

[
z ≤

a⊤j ĉj − a⊤j x̂√
Σy

]

= Φ

(
a⊤j ĉj − a⊤j x̂√

Σy

)

=
1

2

[
1 + erf

(
a⊤j ĉj − a⊤j x̂√

2Σy

)]
.

Since the probability should be upper bounded by δ, we get the following
deterministic linear constraints:

1

2

[
1 + erf

(
a⊤j ĉj − a⊤j x̂√

2Σy

)]
≤ δ

−erf

(
a⊤j ĉj − a⊤j x̂√

2Σy

)
≥ 1− 2δ

a⊤j x̂− a⊤j ĉj√
2Σy

≥ erf−1(1− 2δ)

a⊤j x̂ ≥ a⊤j ĉj +
√

2Σyerf−1(2δ − 1).

Furthermore,

Φ

(
a⊤j ĉj − a⊤j x̂√

Σy

)
≤ δ

a⊤j ĉj − a⊤j x̂ ≤
√
ΣyΦ

−1(δ)

a⊤j x̂ ≥ a⊤j ĉj −
√
ΣyΦ

−1(δ).

Inserting
√
Σy =

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥, we get

∨n
j=1

(
a⊤j x̂ ≥ a⊤j ĉj +

√
2erf−1(1− 2δ)

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥) ,
∨n
j=1

(
a⊤j x̂ ≥ a⊤j ĉj − Φ−1(δ)

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥) . □

18



2.4 Constraint Tightening

Distributionally robust chance constraints
Here, we present a theorem for handling distributionally robust risk con-
straints with obstacle tightening, which was used in [1]. The approach is a
modification of Theorem 3.1 in [20] tailored to risk bounded path planning
in the presence of state and obstacle-uncertainty.

Theorem 2.2 (Distributionally robust chance constraint tightening):

The Distributionally robust chance constraint

sup
Px∈Px

Px

 n∧
j=1

a⊤j x ≤ a⊤j cj

 ≤ δ, (2.4.2)

x ∼ Px ∈ Px =
{
Px | E[x] = x̂,E[(x− x̂)(x− x̂)⊤] = Σx

}
cj ∼ Pcj ∈ Pc =

{
Pcj | E[cj ] = ĉj ,E[(cj − ĉj)(cj − ĉj)

⊤] = Σc

}
is fulfilled if

∨n
j=1

(
a⊤j x̂ ≥ a⊤j ĉj + βrobust

)
,

βrobust =

√
1− δ

δ

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥ .
Proof
Using the Fréchet inequality (2.2.8), the probability in 2.4.2 can be upper
bounded according to

sup
Px∈Px

Px

 n∧
j=1

a⊤j x ≤ a⊤j cj

 ≤
n∨

j=1

sup
Px∈Px

Px

[
a⊤j x ≤ a⊤j cj

]
.

Now we want to express the probabilistic safety constraint

sup
Px∈Px

Px

[
a⊤j x ≤ a⊤j cj

]
≤ δ

as a deterministic linear constraint in terms of mean and covariance. The
variables x and cj can be expressed in terms of their mean and error as
x = x̂+ e and cj = ĉj + c, where e and c are zero-mean random variables
with covariance Σx and Σc, respectively. This results in

sup
Px∈Px

Px

[
a⊤j x ≤ a⊤j cj

]
= sup

Px∈Px

Px

[
a⊤j (ĉj + c) ≥ a⊤j (x̂+ e)

]
= sup

Px∈Px

Px[a
⊤
j c− a⊤j e︸ ︷︷ ︸

=y

≥ a⊤j x̂− a⊤j ĉj ].
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Chapter 2. Background

A new random variable is defined as y = a⊤j c − a⊤j e, where y has zero
mean and covariance Σy = a⊤j (Σx+Σc)aj . Since y is zero-mean, Cantelli’s
inequality (2.2.7) can be used to upper bound the probability according
to

sup
Px∈Px

Px

[
y ≥ a⊤j x̂− a⊤j ĉj

]
≤ Σy

Σy + (a⊤j x̂− a⊤j ĉj)
2 .

Since the probability should be upper bounded by δ, we get the following
deterministic linear constraint:

Σy

Σy + (a⊤j x̂− a⊤j ĉj)
2 ≤ δ

Σy + (a⊤j x̂− a⊤j ĉj)
2 ≥ Σy

δ

(a⊤j x̂− a⊤j ĉj)
2 ≥ Σy

(
1

δ
− 1

)
a⊤j x̂− a⊤j ĉj ≥

√
Σy

√
1− δ

δ

a⊤j x̂− a⊤j ĉj ≥
√
a⊤j (Σx +Σc)aj

√
1− δ

δ

a⊤j x̂ ≥ a⊤j ĉj +

√
1− δ

δ

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥ . □
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2.4 Constraint Tightening

Comparison: Gaussian and distributionally robust tightening
As previously mentioned, the tightening parameter for Gaussian and distri-
butionally robust chance constraints are

βGauss =
√
2 erf−1(1− 2δ)

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥ , (2.4.3)

βrobust =

√
1− δ

δ

∥∥∥(Σx +Σc)
1
2 aj

∥∥∥ . (2.4.4)

Figure 2.2 shows a comparison between the Gaussian scaling constant
√
2 erf−1(1 − 2δ) and the distributionally robust scaling constant

√
1−δ
δ for

different values of δ. Note that both scaling constants are a decreasing func-
tion of the risk parameter δ, which means that a higher risk leads to a smaller
tightening of the obstacle and vice versa. Aside from the scaling constants,
the tightening parameter is the same for both Gaussian and distributionally
robust chance constraints. The larger scaling constant for distributionally ro-
bust uncertainty leads to a stronger tightening of the obstacle and therefore
a higher degree of conservatism when the same risk parameter is used.

Figure 2.2 Scaling constants for Gaussian and distributionally robust constraint
tightening for different values of δ.
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Chapter 2. Background

2.5 DR-RRT

DR-RRT (Distributionally Robust Rapidly Exploring Random Tree) [1] is a
sampling-based motion planning algorithm that builds trees of state distri-
butions while enforcing distributionally robust chance constraints. The tree
is expanded by attempting to steer from an existing point in the tree to a
randomly sampled point xs in a specified number of timesteps. The gener-
ated path is then checked for distributionally robust constraint satisfaction
before being added to the tree. Figure 2.3 illustrates the principle of DR-
RRT with an example using individual risk bounds δ = 0.05 for all obstacles
and timesteps. The lines show the trajectory of the mean state x̂ while the
ellipses represent the covariance Σx at the end of a generated path. The
steering is obtained from finite horizon linear quadratic dynamic program-
ming and accordingly, the generated trajectories can have some curvature.
This happens when the robot is steered from a point in the tree where the
velocity goes in another direction than towards the sampled point xs. In
that case, the steering must turn the robot towards the sample which leads
to curved trajectories.

Figure 2.3 DR-RRT with individual risk bounds δ = 0.05 in an [0, 1]2 environ-
ment with 5 randomly located deterministic obstacles.
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3
Problem Formulation

3.1 Introduction

In this chapter, we formulate the chance constrained path planning problem
considered in this thesis. The chance constraints are distributionally robust
and expressed in terms of obstacle avoidance. The main objective is to find
a control sequence that generates a path that minimizes the finite-horizon
cost function while not exceeding the total risk budget specified by the user.
Allocating the risk for different timesteps and obstacles in a non-uniform way
has the potential to minimize the cost function and generate less conservative
paths. We begin by specifying the model dynamics considered. Then, a for-
mal problem statement with a specified risk budget for the entire path from
start to goal is formulated. Using Boole’s inequality, the chance constraint is
decomposed into individual chance constraints for each obstacle and timestep
in the path, enabling risk allocation.

3.2 Model Dynamics

Consider a robot operating in an uncertain environment, X ⊆ Rn, cluttered
with obstacles. The set of obstacles is denoted as B with |B| = N . The robot
is modeled as a stochastic discrete-time linear time invariant system where
the state of the robot evolves according to

xk+1 = Axk +Buk + wk, (3.2.1)

where xk ∈ Rn and uk ∈ Rm is the system state and input at timestep k,
respectively. A is the dynamics matrix and B is the input matrix. The process
noise wk ∈ Rm is a random vector with zero-mean that is independent and
identically distributed across all timesteps. The distribution of wk, Pwk

, is
unknown but belongs to a moment-based ambiguity set of distributions, Pw,
defined as

Pw =
{
Pwk

| E[wk] = 0,E[wkw
⊤
k ] = Σw

}
. (3.2.2)
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Chapter 3. Problem Formulation

The initial state x0 is subject to a similar uncertainty model as the noise,
with the distribution belonging to a moment-based ambiguity set, Px0 ∈ Px0 ,
where

Px0 =
{
Px0

| E[x0] = x̂0,E[(x0 − x̂0)(x0 − x̂0)
⊤] = Σx0

}
. (3.2.3)

The shape and orientation of the obstacles are known, but their position is
subject to uncertainty, such that

Oik = O0
i ⊕ ĉik ⊕ cik, ∀i ∈ B, (3.2.4)

where Oik denotes obstacle i ∈ B at timestep k. The known shape of the
obstacle is represented by O0

i ⊂ Rn while ĉik represents a known nominal
translation. The location uncertainty and unpredictable motion of obstacle
i ∈ B is represented by cik ∈ Rn which is a random vector with unknown
distribution Pcik that belongs to a moment-based ambiguity set Pcik , defined
as

Pcik =
{
Pcik | E[cik] = ĉik,E[(cik − ĉik)(cik − ĉik)

⊤] = Σcik

}
. (3.2.5)

Collision with the obstacles should be avoided. The state and input are nom-
inally subject to the following constraints:

xk /∈
⋃
i∈B

Oik, uk ∈ U . (3.2.6)

The environment X ⊂ Rn, obstacles Oik ⊂ Rn and input constraints U ⊂ Rm

are assumed to be convex polytopes and can therefore be represented by a
conjunction of linear inequalities:

U =

uk |
nu∧

ju=1

a⊤ujuxk ≤ bukju

 , (3.2.7)

X =

xk |
n0∧

j0=1

a⊤0j0xk ≤ b0kj0

 , (3.2.8)

Oik =

xk |
ni∧
j=1

a⊤ijxk ≤ bikj

 . (3.2.9)

Note that the environmental bounds are not considered in the state constraint
as they will not be treated probabilistically. The initial state x0 is subject
to uncertainty but assumed safe and will therefore not be included in the
probabilistic chance constraint. Because distributionally robust constraints
are of infinite dimension, solving the chance constrained problem exactly is
practically impossible which is why we will seek an approximate solution.
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3.3 Problem Statement

3.3 Problem Statement

Problem 1. We seek to (approximately) solve the following chance con-
strained path planning problem. Given an uncertain initial state x0 ∼ Px0

and a set of goal locations Xgoal ⊂ Rn, find a feedback control policy
π = [π0, ..., πT−1] such that applying the control inputs uk = πk(xk),∀k =
0, . . . , T − 1 yields a probibalistically feasible path from the initial state to
the goal that minimizes the finite-horizon cost function. The distributionally
robust control problem is formulated as

minimize
π

T−1∑
k=0

ℓt(x̂k,Xgoal, uk) + ℓT (x̂T ,Xgoal) (3.3.1a)

subject to xk+1 = Axk +Buk + wk, (3.3.1b)
x0 ∼ Px0 ∈ Px, (3.3.1c)
wt ∼ Pw ∈ Pw, (3.3.1d)
uk ∈ U , (3.3.1e)

sup
Pxk

∈Px

Pxk

[
T∨

k=1

xk ∈
⋃
i∈B

Oik

]
≤ ∆, (3.3.1f)

Oik = O0
i ⊕ ĉik ⊕ cik, ∀i ∈ B, (3.3.1g)

cik ∼ Pcik ∈ Pcik , (3.3.1h)

where ℓt(.) is the stage cost function that quantifies the distance to the goal
set and actuator effort. The stage cost is expressed in terms of the mean
state of the robot, x̂k, so that all uncertainty comes from the constraints. ∆
represents the user-prescribed risk constraint for the entire planning horizon
from k = [1 : T ], such that the worst-case probability of colliding with any of
the N obstacles over the planning horizon should be at most ∆. The chance
constraint in Problem 1 (3.3.1f) can be decomposed into individual chance
constraints for each obstacle at each timestep. The individual risk bound for
obstacle i at timestep k is then fixed to a value δik, such that

T∑
k=1

N∑
i=1

δik ≤ ∆. (3.3.2)

For convenience, we define a vector of all individual risk bounds, δ =
[δ11, ..., δNT ]. By fixing δ in a non-uniform way, the conservatism can be re-
duced while still enforcing the same chance constraint (3.3.1f). Accordingly,
Problem 1 can be reduced to Problem 2 (proof in Section 3.4).
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Problem 2. We seek to (approximately) solve the following distributionally
robust path planning problem with individual risk bounds:

minimize
π, δ

T−1∑
k=0

ℓt(x̂k,Xgoal, uk) + ℓT (x̂k,Xgoal) (3.3.3a)

subject to (3.3.1c)− (3.3.1e), (3.3.1g)− (3.3.1h), (3.3.3b)

sup
Pxk

∈Px

Pxk
(xk ∈ Oik) ≤ δik,

∀i∈B,
∀k∈[1:T ], (3.3.3c)

T∑
k=1

N∑
i=1

δik ≤ ∆. (3.3.3d)

Note that the only difference between Problems 1 and 2 is that Problem 2
is expressed with individual chance constraints and that the risk allocations,
δ, are used to minimize the conservatism alongside the control policy π.
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3.4 Decomposition of Chance Constraint

In this section, we seek to prove that Problem 1 can in fact be reduced to
Problem 2 by decomposing the chance constraint for the entire planning hori-
zon into individual chance constraints using Boole’s inequality, as proposed
in [8, 9]. Hence, we seek to prove the following theorem:

Theorem 3.1 (Decomposition of chance constraint in Problem 1):
The chance constraint in Problem 1 (3.3.1f) can be decomposed into in-
dividual chance constraints for all obstacles i at all timesteps k (3.3.3c,
3.3.3d), i.e.,

sup
Pxk

∈Px

Pxk
(xk ∈ Oik) ≤ δik,

∀i ∈ B, ∀k ∈ [1 : T ],

T∑
k=1

N∑
i=1

δik ≤ ∆.


=⇒ sup

Pxk
∈Px

Pxk

[
T∨

k=1

xk ∈
⋃
i∈B

Oik

]
≤ ∆.

Proof

The constraint xk ∈
⋃
i∈B

Oik is equivalent to
N∨
i=1

xk ∈ Oik. Accordingly,

the chance constraint in (3.3.1f) can be written as

sup
Pxk

∈Px

Pxk

[
T∨

k=1

N∨
i=1

xk ∈ Oik

]
≤ ∆.

where xk ∈ Oik is the event of colliding with obstacle i at timestep k.
According to Boole’s inequality (2.2.9), the probability of at least one of
the events xk ∈ Oik occurring is no greater than the sum of the individual
probabilities for the events. This means that the worst-case probability
of at least one collision occurring is upper-bounded by the sum of the
worst-case probabilities of the individual collision-events, i.e.,

sup
Pxk

∈Px

Pxk

[
T∨

k=1

N∨
i=1

xk ∈ Oik

]
≤

T∑
k=1

N∑
i=1

sup
Pxk

∈Px

Pxk
(xk ∈ Oik).

Applying (3.3.3c) and (3.3.3d) on the right hand side yields

T∑
k=1

N∑
i=1

sup
Pxk

∈Px

Pxk
(xk ∈ Oik)︸ ︷︷ ︸

≤δik

≤
T∑

k=1

N∑
i=1

δik ≤ ∆. □
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3.5 Risk Treatment

Since the obstacles Oik are convex polytopes they can be represented by the
intersection of ni halfspaces defined by hyperplanes in the form a⊤ijx = bikj ,
where j = 1, . . . , ni. Collision with obstacle i at timestep k occurs if the
position of the robot lies inside the obstacle, xk ∈ Oik. This can be expressed
as a conjunction of ni linear constraints on the robots position;

ni∧
j=0

a⊤ijxk < bikj . (3.5.1)

According to the individual chance constraints (3.3.3c), the worst-case prob-
ability of colliding with obstacle i at timestep k should be at most δik. This
can be stated as

sup
Px∈Px

Pxk

 ni∧
j=1

a⊤ijxk < a⊤ijcikj

 ≤ δik, (3.5.2)

where cikj = ĉikj + cik is a point on the jth constraint of obstacle Oik,
with first and second central moments ĉikj and Σcjk . Using Theorem 2.4,
the distributionally robust chance constraint in (3.5.2) can be handled by a
disjunction of linear constraints on the state mean x̂k, such that

∨ni
j=1

(
a⊤ij x̂k ≥ a⊤ij ĉikj +

√
1− δik

δik

∥∥∥(Σxk +Σcjk )
1
2 aij

∥∥∥) . (3.5.3)

This represents a deterministic constraint tightening where the mean position
of the robot is required to lie outside of the tightened obstacle in order to fulfill
the distributionally robust chance constraint. For convenience, we denote the
tightening of the jth constraint of obstacle Oik as

βikj =

√
1− δik
δik

∥∥∥(Σxk
+Σcjk)

1
2 aij

∥∥∥ . (3.5.4)

We define Boolean variables hikj and hik that represents the mean state
being outside the tightened jth constraint of Oik and outside the tightened
obstacle Oik, respectively.

hikj =

{
⊤, a⊤ij x̂k ≥ a⊤ij ĉikj + βikj

⊥, otherwise
(3.5.5)

hik =

{
⊤, ∨ni

j=1hikj

⊥, otherwise
(3.5.6)

The distributionally robust chance constraint for obstacle i at timestep k in
(3.5.2) is then fulfilled if hik = ⊤. Now the question becomes how to fix the
risk allocations δik in order to minimize the conservatism while still enforcing
the chance constraints (3.3.3c–3.3.3d).
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3.6 Summary

3.6 Summary

In this chapter, the distributionally robust chance constrained path planning
problem considered in this thesis was formulated. The problem is solved
by finding a feedback control policy that steers a robot to its goal in a
way that minimizes the finite-horizon cost function while not violating the
user-specified risk constraints. The risk constraints are expressed in terms
of obstacle avoidance in the presence of distributionally robust uncertainty,
where the distribution belongs to a moment-based ambiguity set. First, the
problem was formulated with a chance constraint for the entire planning
horizon. Then, using Boole’s inequality, the chance constraint was decom-
posed into individual chance constraints for each obstacle and timestep. The
problem statement was then reformulated to consider the individual chance
constraints instead. Since the obstacles are assumed to be convex polytopes,
the individual chance constraints for obstacle avoidance can be handled by
requiring that the mean state of the robot lies outside of the tightened ob-
stacle, where the tightening is a deterministic function of the allocated risk
and the covariance. The question then becomes how to allocate risk to the
individual chance constraints in a way that reduces the conservatism while
still assuring probabilistic constraint fulfillment. A potential solution to this
problem will be explored in the next chapter.
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4
DR-RRT with Exact Risk
Allocation

4.1 Introduction

In this chapter, Distributionally Robust Rapidly Exploring Random Tree
(DR-RRT) with Exact Risk Allocation (ERA) is described. DR-RRT is a
sampling-based algorithm that grows trees of state distributions while enforc-
ing distributionally robust chance constraints. Usually, uniform risk alloca-
tion, where each obstacle and timestep are assigned the same risk δik = ∆

T ·N ,
is used to check the probabilistic feasibility of the generated path. In this
case, the sum of all risk allocations δik over the time horizon k = [1 : T ]
is equal to ∆, thus fulfilling the inequality in (3.3.3d). Each timestep in the
path is then checked for probabilistic feasibility according to the constraint
in (3.5.3). With ERA, the problem is tackled in the opposite direction by
first assigning risks δik that fulfill the chance constraints in (3.5.3) and then
checking if the sum of all δik exceeds the specified risk budget.

The rest of the chapter is structured as follows. First, the tree expansion
algorithm is described, then the ERA and feasability check procedures are
outlined. This is followed by a motivation of why ERA leads to less conser-
vative paths being generated.

4.2 Tree Expansion

Algorithm 1 outlines the DR-RRT tree expansion with Exact Risk Allocation
incorporated. First, a sample xs is taken randomly from the feasible state
set. The nearest M ≥ 1 tree nodes, Nnear, are then identified according to
a specific distance metric. A distance metric based on dynamic-control, such
as the optimal cost-to-go function, is often better than one based solely on
geometric distance [21]. Trajectories from all the near nodes to the sample
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4.3 Exact Risk Allocation

are generated using a steering-function. In this case, the steering-function
uses an unconstrained optimal feedback control policy obtained from finite
horizon linear quadratic dynamic programming. The steering is done in a
specified number of timesteps Tsteer ≤ T . The state mean and covariance
matrix is propagated using the control policy, uk = Kkxk + gk, and thus
evolves according to (2.3.2) and (2.3.3). The entire path, with both mean
states and covariance matrices, from the near node to the sample, is returned
by the steering-function. Note that the generated path does not depend on
the risk allocations δik. In the next step, Exact Risk Allocation is applied to
the generated path, as outlined in Algorithm 2. The ERA-function returns
risk allocations δik for all obstacles i at all timesteps k in the path. The
risk allocation is done so that the linear constraint in (3.5.3) is fulfilled. The
ERA-procedure will be described further in Section 4.3.

In the next step, the total risk leading up to each timestep is calculated.
This is done by summing up all risk allocations δik up to a certain timestep,
denoted as k∗. The entire path from Nnear up to timestep Tsteer is then
checked for distributionally robust feasibility, as outlined in Algorithm 3. If
the path is feasible, the total cost J and the residual risk δres is calculated
and used to assign a score to the path from node Nnear. When paths from
all near nodes that are DR-feasible have been assigned a score, the path with
the best score is chosen and a new node and edge is added to the tree. The
exact construction of the scoring algorithm is not covered in the scope of
this thesis, but the reasoning behind it will be discussed in Section 6.2. The
residual risk δres is also added to the node, which can in turn be reallocated
when steering from this node to a new sample. The reallocation to future
paths will be described in Section 4.4. Feasible portions of the path is also
added to the tree in the same manner.

4.3 Exact Risk Allocation

The purpose of Exact Risk Allocation (ERA) is to allocate as little risk δik as
possible for all obstacles i at all timesteps k that fulfills the chance constraint
in (3.3.3c). As previously mentioned, the chance constraint for obstacle i at
time step k is fulfilled if hik = ⊤ (3.5.5). Accordingly, we wish to solve the
following problem for all obstacles and timesteps in the path:

Problem 3.
minimize δik

subject to hik = ⊤
(4.3.1)

Note that Problem 3 cannot be solved if the mean state x̂k is inside the
obstacle. Such paths will therefore immediately be dismissed as non-feasible.
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Chapter 4. DR-RRT with Exact Risk Allocation

Since hik is a disjunction of Boolean variables, ∨ni
j=1hikj , we formulate a new

problem for the jth constraint:

Problem 4.
minimize δik

subject to hikj = ⊤
(4.3.2)

Then, the minimum solution to Problem 4 for j = 1, . . . , ni is also the solution
to Problem 3. Note that Problem 4 can only be solved when the mean state
x̂k lies on the outside of the untightened jth constraint, i.e., when

a⊤ij x̂k ≥ a⊤ij ĉikj . (4.3.3)

Thus, we wish to solve Problem 4 for all constraints j = 1, . . . , ni that fulfills
(4.3.3) and then identify the minimum of these solutions. For hikj = ⊤, the
following condition must be fulfilled:

a⊤ij x̂k ≥ a⊤ij ĉikj + βikj . (4.3.4)

Theorem 4.1:

The solution to Problem 4 is found from

βikj = a⊤ij x̂k − a⊤ij ĉikj . (4.3.5)

Proof

Since Σxk
and Σcjk are known and

√
1−δik
δik

is a decreasing function of δik,
maximizing βikj minimizes δik. The solution to Problem 4 is thus found
from maximizing βikj while still enforcing hikj = ⊤, i.e., from (4.3.5).

□

Rearranging (4.3.5) gives the solution to Problem 4 as

δik =

1 +

 a⊤ikj x̂k − a⊤ikj ĉikj∥∥∥(Σk +Σc
jk)

1
2 aikj

∥∥∥
2

2


−1

. (4.3.6)

Accordingly, the ERA-procedure allocates risk δik given by the minimum
solution to Problem 4 and subsequently the solution to Problem 3, for all
obstacles i at all timesteps k in the path.
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4.4 Feasibility Check

The feasibility check is based on the total risk allocated up to timestep k;
δtot(k). The risk constraints (3.3.3c–3.3.3d) has to hold for the entire planning
horizon T and not just over the steering horizons Tsteer. To assure this is
the case, we begin by distributing the total risk budget ∆ uniformly over all
steering horizons according to

∆steer =
∆ · Tsteer

T
, (4.4.1)

where ∆steer is the risk budget for each steering horizon Tsteer. An entire
path, from a near node to a sample, is deemed feasible if the total risk
allocated over the steering horizon δtot(Tsteer) fulfill

δtot(Tsteer) ≤ ∆steer. (4.4.2)

A similar reasoning can be applied to assure the feasibility of a portion of the
steered path, from a near node up to a certain timestep k. Then, the total
risk allocated up to that time step, δtot(k), has to fulfill

δtot(k) ≤ ∆k, (4.4.3)

where ∆k is the uniformly allocated risk budget up to time step k, such that

∆k =
k ·∆steer

Tsteer
. (4.4.4)

This means that a path, or a portion of a path, is considered feasible only
when the total allocated risk (using ERA) does not exceed the corresponding
total uniformly allocated risk.

While this method has less conservatism than uniform risk allocation, there
are still a lot of conservatism present from allocating the total risk budget
uniformly over all steering horizons. This conservatism can be mitigated by
reallocating the residual risk of a horizon to the subsequent steering. If the
entire risk budget ∆steer or ∆k is not used, such that δtot(Tsteer) < ∆steer

or δtot(k) < ∆k, a residual for the newly generated node at timestep k or
Tsteer can be created according to

δres = ∆steer − δtot(Tsteer) or (4.4.5)
δres = ∆k − δtot(k). (4.4.6)
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The residual risk can then be reallocated to new paths generated from
this node. When a new point xs is sampled, the residual of the near node
δres[Nnear] can be allocated to the path generated by steering from Nnear to
the new sample. The total risk budget for the new path or path portion is
then ∆steer + δres[Nnear] or ∆k + δres[Nnear], respectively. The constraints
in (4.4.2) and (4.4.3) are relaxed to

δtot(Tsteer) ≤ ∆steer + δres[Nnear] or (4.4.7)
δtot(k) ≤ ∆k + δres[Nnear], (4.4.8)

and the residual of Nnear is added to the residual of newly created nodes
originating from Nnear. That is,

δres = ∆steer + δres[Nnear]− δtot(Tsteer) or (4.4.9)
δres = ∆k + δres[Nnear]− δtot(k). (4.4.10)

Note that even when reallocating residual risks to future paths, the method
still has some conservatism. First of all, the decomposition of the chance
constraint in (3.3.1f) into individual chance constraints has inevitable con-
servatism. Secondly, the paths that are not feasible according to (4.4.9) are
immediately dismissed, even though some of these path could potentially be
made feasible by reallocating the residual risk from future paths. This con-
servatism could easily be reduced by also storing infeasible nodes in the hope
that they become feasible when new paths are generated from the infeasi-
ble node. In this case, the infeasible paths would not be added to the tree
until they are connected with new paths such that the combination of the
paths becomes feasible. However, this would increase the computational ex-
pense since a number of infeasible branches would be generated and stored.
It could also hinder the generation of feasible branches when infeasible nodes
are identified as near nodes to a sample instead of feasible ones. Because of
this, we decided not to use this approach and only reallocate risk to future
horizons. However, in situations where computational expense is not an issue
and M is large, reallocation from future paths could be used.

In the online risk allocation approach proposed in [17], the risk budget for the
entire planning horizon was used to check the feasibility of a generated path.
Incorporating this solution for distributionally robust chance constraints with
the ERA-method could reduce the conservatism in a similar way as reallo-
cating risk from future horizons. However, this would also increase the com-
putational expense in the same way since early paths that use up a lot of the
total risk budget, and is therefore much harder to expand, would be stored.
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Algorithm 1 DR-RRT: Tree Expansion
Inputs: current tree T , timestep k
xs =sample(X free

k )
Nnear =NearestNodes(xs, T ,M)
for all Nnear do

(x̂path,Σpath) =steer(Nnear, xs, Tsteer)
δik =ExactRiskAllocation(x̂path,Σpath)

δtot(k
∗) =

∑k∗

k=1

∑N
i=1 δik

if DRFeasible(δtot(Tsteer), δres[Nnear]) then
J = J [Nnear] + J(x̂path,Σpath)
δres = δres[Nnear] + ∆steer − δtot(Tsteer)
score(Nnear) =assignScore(J, δres)

Select path (x̂path,Σpath) from Nnear with best score
T .AddNode(x̂path(Tsteer),Σpath(Tsteer))
T .AddEdge(Nnear, x̂path(Tsteer))
T .AddResidual(δres)
for k = 1 : Tsteer − 1 do

if DRFeasible(δtot(k), δres[Nnear]) then
δres = δres[Nnear] + ∆k − δtot(k)
T .AddNode(x̂path(k),Σpath(k))
T .AddEdge(Nnear, x̂path(k))
T .AddResidual(δres)

Algorithm 2 ExactRiskAllocation
Inputs: Path x̂path,Σpath

Output: Risk allocation matrix δik ∈ RN×Tsteer

for k = 1 : Tsteer do
for i = 1 : N do

Assign δik according to (4.3.6)
return δik

Algorithm 3 DRFeasible

Inputs: total risk δtot(k) and residual of Nnear, δres[Nnear]
Output: true if DR-feasible, otherwise false
if δtot(k) satisfies (4.4.8) then

return true
else

return false
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Chapter 4. DR-RRT with Exact Risk Allocation

4.5 Reducing Conservatism with ERA

In this section, we prove that using ERA generates less conservative paths
than using uniform risk allocation. Accordingly, we wish to prove the follow-
ing:

1. All paths that are feasible with uniform risk allocation are also feasible
with ERA.

2. Not all paths that are feasible with ERA are feasible with uniform risk
allocation.

Theorem 4.2:

If a path x with Tpath timesteps, mean x̂, N obstacles and risk budget
∆path is feasible with uniform risk allocation it is also feasible with ERA.

Proof
With ERA, the risk allocations δik are set such that

∨ni
j=1 (a⊤ij x̂k − a⊤ij ĉikj = βikj),

∀i∈[1:N ],
∀k∈[1:Tpath].

With uniform risk allocation, all risk allocations are assigned the same
value δuni =

∆path

N ·Tpath
. Since the path is feasible with uniform risk alloca-

tion it must fulfill:

∨ni
j=1 (a⊤ij x̂k − a⊤ij ĉikj ≥ βuni),

∀i∈[1:N ],
∀k∈[1:Tpath].

Accordingly, the following holds for all i ∈ [1 : N ] and k ∈ [1 : Tpath]:

βuni ≤ βikj =⇒
√

1− δuni
δuni

≤
√

1− δik
δik

=⇒ δik ≤ δuni.

The sum of all exact risk allocations can be upper bounded according to

Tpath∑
k=1

N∑
i=1

δik ≤
Tpath∑
k=1

N∑
i=1

δuni ≤
Tpath∑
k=1

N∑
i=1

∆path

N · Tpath
≤ ∆path.

Which means that the path is also feasible with ERA. □
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4.6 Summary

Theorem 4.3:

If a path x with Tpath timesteps, mean x̂, N obstacles and risk budget
∆path is feasible with ERA it can still be infeasible with uniform risk
allocation.

Proof
With ERA, the risk allocations δik are set such that

∨ni
j=1 (a⊤ij x̂k − a⊤ij ĉikj = βikj),

∀i∈[1:N ],
∀k∈[1:Tpath].

Since the path is feasible with ERA it must fulfill:

Tpath∑
k=1

N∑
i=1

δik ≤ ∆path.

For the path to be infeasible with uniform risk allocation, the following
statement must hold for at least one obstacle i and timestep k:

∧ni
j=1 (a⊤ij x̂k − a⊤ij ĉikj > βuni).

Since these statements do not contradict each other, it is possible for a
path to be feasible with ERA but not with uniform risk allocation. □

4.6 Summary

In this chapter, the proposed path planning algorithm DR-RRT-ERA was
described. This is an extension of DR-RRT that grows trees of state dis-
tributions while enforcing distributionally robust chance constraints and in-
corporating exact risk allocation (ERA). The tree is expanded by taking
random samples and generating paths to them, but before the path is added
to the tree it must be checked for distributionally robust feasibility. This is
where ERA comes in. The ERA procedure allocates exactly as much risk
that is needed to fulfill the individual chance constraints for all obstacles and
timesteps. The sum of the individual risk allocations can then be used to
determine the feasibility of the generated path. The ERA approach has been
proven to generate less conservative paths compared to when uniform risk
allocation is used. In the next chapter, the reduction in conservatism will be
illustrated further using simulation examples.
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5
Simulation Results

To evaluate the effectiveness of Exact Risk Allocation (ERA), we present
simulation examples of Distributionally Robust RRT (DR-RRT) with ERA
and uniform risk allocation. First, the principle is illustrated with a simula-
tion of a single steering horizon where the tightened obstacles are plotted.
This simulation will depict a path that is feasible with ERA but not with
uniform risk allocation. Next, we illustrate how residual risk from one path
can be reallocated to the next when using ERA. The path from the previ-
ous simulation is expanded by steering to a new sample in the environment
and thus generating a second path. While the new path is not feasible in
itself, it is made feasible by reallocating the residual risk from the previous
path. Finally, simulations of entire DR-RRT-trees with uniform and exact
risk allocations are shown.

5.1 Simulation Setup

In all simulations, a unit-mass robot with discrete-time stochastic double
integrator dynamics is considered. The robot moves in a two-dimensional
environment cluttered with obstacles. The set of obstacles is denoted by B
with |B| = N and the dynamics and input matrices are

A =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 , B =


dt2

2 0

0 dt2

2
dt 0
0 dt

 (5.1.1)

where dt = 0.1s. The state of the robot is a two-dimensional position and
velocity with two-dimensional force inputs. The covariance matrices of the
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5.2 Simulation of a Single Steering Horizon

initial state x0 and the disturbance w are

Σx0 = 10−3


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Σw = 10−3


0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

 . (5.1.2)

From Σx0, we can see that only the position of the initial state is subject
to uncertainty and not the velocity. For Σw, it is the opposite as only the
velocity of the disturbance is subject to uncertainty and not the position.

All obstacles are static and treated as deterministic, so that all uncertainty
comes from the unknown state of the robot. The robot is treated as a point
mass (without loss of generality as a known geometry can be easily handled
by adding a fixed tightening to all obstacles) and the environmental bounds
are not treated probabilistically.

The steering from a near node to a sample xs is done by solving a discrete-
time linear quadratic optimal control problem to compute the affine state
feedback policy that minimizes the cost function

Ts−1∑
k=0

(x̂k − xs)
⊤Q(x̂k − xs) + u⊤

k Ruk + (xTs − xs)
⊤Q(x̂Ts − xs) (5.1.3)

=

Ts−1∑
k=0

∥x̂k − xs∥Q
2
+ ∥uk∥R

2
+ ∥x̂Ts − xs∥Q

2 (5.1.4)

where Ts = Tsteer, Q =

[
40I 0
0 40I

]
and R = 0.1I. The quadratic optimal

cost-to-go function is also used as the distance metric in the selection of
the nearest tree nodes. In all simulations, the trajectories of the mean state
x̂k is represented by lines and the uncertainty is represented by ellipses of
one standard deviation, derived from the covariance Σxk

. Note that in the
simulations of entire DR-RRT-trees, the ellipses are too small to be visible.

5.2 Simulation of a Single Steering Horizon

In this section, a simulation of a single steering horizon from a node N to
a new sample xs is shown. The steering is done in Tsteer = 4 timesteps and
the risk budget for the steering horizon is ∆steer = 0.1. The environment
[0, 1.5]2 contains two obstacles; Obstacle 1 (in the bottom left corner) and
Obstacle 2 (in the top right corner). In this example, we imagine that the
robot has previously been steered to the node N in three steering horizons,
as the covariance is more unstable in the first few timesteps. Accordingly, the
covariance of the node N , denoted as ΣN , is approximately
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Chapter 5. Simulation Results

ΣN ≈ 10−3


0.23 0.12 0.67 0.34
0.12 0.23 0.34 0.67
0.67 0.34 6.22 3.11
0.34 0.67 3.11 6.22

 (5.2.1)

Furthermore, we assume that the residual of node N is zero, meaning that
there are no residual risk to reallocate to the generated path. The mean state
and covariance of the path from N to xs generated by the steering-function is
shown in Figure 5.1. Before this path can be added to the (hypothetical) tree,
it must be checked for distributionally robust feasibility. It is in this step that
risk allocation comes in. Figure 5.2 shows a timestep-by-timestep comparison
between exact and uniform risk allocation for the path in Figure 5.1. At each
timestep, the tightened obstacles are plotted using different shades of red,
where a darker shade indicates a higher risk allocation δik. When uniform
risk allocation is used, all δik have the same value: δik = ∆steer

Tsteer·N , which is
why all tightened obstacles at all timesteps have the same shade of red. Note
that in this case, the slight variation in the size of the tightened obstacles is
due to covariance and not risk allocation. When ERA is used, the value of
δik differs for the obstacles and timesteps, leading to different shades of red
and varying sizes of the tightened obstacles.

Figure 5.1 Simulation of a single steering horizon, Tsteer = 4, from a node N to
a sample xs with risk budget ∆steer = 0.1 in a [0, 1.5]2 environment.
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5.2 Simulation of a Single Steering Horizon

Figure 5.2 Timestep-by-timestep comparison of uniform (left) and exact (right)
risk allocation for the same path with risk budget ∆steer = 0.1. The shades of the
tightened obstacles correspond to the risk allocations δik.
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Chapter 5. Simulation Results

For the path to be feasible, the following conditions must be fulfilled:

Condition 1.
Tsteer∑
k=1

N∑
i=1

δik ≤ ∆steer

Condition 2. hik = ⊤, ∀i ∈ B, ∀k = 1 : Tsteer (see 3.5.6)

When uniform risk allocation is used, the first condition is automatically
fulfilled, meaning that the distributionally robust feasibility check is based
on fulfillment of the second condition. For Condition 2 to be fulfilled, the
mean state of the robot has to lie outside of the tightened obstacles at all
timesteps. As can be seen in Figure 5.2, the mean state is outside of all
tightened obstacles in the 1st and 2nd timestep but not in the 3rd and 4th
timestep. This means that the entire path would not be considered feasible
with uniform risk allocation and would therefore not be added to the tree.

When exact risk allocation is used, the risk allocations are made so that the
second condition is always fulfilled. Accordingly, the feasibility check is based
on fulfilling the first condition instead. The fulfillment of the first condition
cannot be seen in the figure and has to be explored numerically. Table 5.1
shows the risk allocations δik for all obstacles and timesteps in the path for
both exact and uniform risk allocation as well as the sum of all risk allocations
Tsteer∑
k=1

N∑
i=1

δik. As can be seen in the table, the sum of all risk allocations in

the steering horizon is = 0.0816. Since this is less than the risk budget for
the steering horizon, ∆steer = 0.1, the first condition is fulfilled and thus, the
path is feasible with exact risk allocation and would be added to the tree. If
the sum had exceeded the risk budget, the path would not have been feasible
even with exact risk allocation.

Table 5.1 Risk allocations for all obstacles and timesteps in the path when using
exact and uniform risk allocation as well as the sum of all risk allocations over the
steering horizon.

Timestep k
Exact Risk Allocation δik Uniform Risk Allocation δik
Obstacle 1 Obstacle 2 Obstacle 1 Obstacle 2

1 0.0106 0.0013 0.0125 0.0125
2 0.0114 0.0013 0.0125 0.0125
3 0.0147 0.0015 0.0125 0.0125
4 0.0361 0.0047 0.0125 0.0125

Sum: 0.0816 0.1000
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5.3 Simulation of Two Steering Horizons

We can conclude that the same path that was not feasible with unifrom risk
allocation was feasible with ERA.

In the tree expansion algorithm (see Algorithm 1), feasible portions of the
path is also added to the tree. As described in Section 4.4, the path-portion
up to a timestep k is feasible if the sum of risk allocations up to that timestep,
δtot(k) does not exceed the risk budget ∆k. This condition can be formally
stated as

δtot(k) ≤ ∆k (5.2.2)

where

δtot(k) =

k∑
k∗=1

N∑
i=1

δik∗ (5.2.3)

∆k =
k ·∆steer

Tsteer
. (5.2.4)

Table 5.2 shows the total allocated risk δtot(k) and risk budget ∆k for
all timesteps in the path. Since the condition in (5.2.2) is fulfilled for all
timesteps, all path-portions are feasible and can be added to the tree.

Table 5.2 Total allocated risk and risk budget for all timesteps in the path and
the feasibility of the path-portions up to that timestep when using ERA.

Timestep Total risk Risk budget DR-feasible
k δtot(k) ∆k δtot(k) ≤ ∆k

1 0.0119 0.0250 ⊤
2 0.0247 0.0500 ⊤
3 0.0408 0.0750 ⊤
4 0.0816 0.1000 ⊤

5.3 Simulation of Two Steering Horizons

In this simulation, the path in Figure 5.2 is expanded by steering to a new
sample xs in Tsteer = 4 timesteps. The environment and risk budget ∆steer =
0.1 is the same as in the previous simulation. The newly generated path has
to be checked for distributionally robust feasibility in the same way.. Figure
5.3 shows the exact risk allocations for all timesteps in the new path. Just as
before, the shades of the tightened obstacles indicate the risk allocation δik.
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Chapter 5. Simulation Results

Figure 5.3 Exact risk allocations for each timestep in the new path with risk
budget ∆steer + δres = 0.1184. The shades of the tightened obstacles correspond to
the risk allocations δik.
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5.3 Simulation of Two Steering Horizons

Table 5.3 shows the risk allocations δik for all obstacles and timesteps in the
new path as well as the sum of all risk allocations up to a certain timestep.

Table 5.3 Exact risk allocations for all obstacles and timesteps in the new path
as well as the sum of all risk allocations over the steering horizon.

Timestep k
Exact Risk Allocation δik
Obstacle 1 Obstacle 2

1 0.0144 0.0026
2 0.0264 0.0024
3 0.0441 0.0012
4 0.0207 0.0014

Sum: 0.1132

In this case, the sum is 0.1132 which exceeds ∆steer = 0.1. Because of this,
the new path is not feasible on its own. However, as described in Section
4.4, residual risk from previous steering horizons can be reallocated to a
subsequent steering. Since the entire risk budget ∆steer for the previous path
(see Figure 5.2, Table 5.1) was not used, we get a residual

δres = ∆steer − δtot(Tsteer) = 0.1000− 0.0816 = 0.0184 (5.3.1)

which can be reallocated to the new path. The risk budget for the new
path then becomes ∆steer + δres = 0.1184, which means the new path has
become feasible (when combined with the previous path). The feasibility of
the combined path can also be motivated by summing up the risk allocations
for both paths: 0.0816 + 0.1132 = 0.1948 ≤ 2 ·∆steer.

The next step is to determine which portions of the new path are feasible.
When we have a residual risk, the path-portion up to timestep k is feasible
if the following condition is fulfilled:

δtot(k) ≤ ∆k + δres. (5.3.2)

Table 5.4 shows the total allocated risk δtot(k) and risk budget ∆k + δres for
all timesteps in the new path. Since the condition in (5.3.2) is fulfilled for all
timesteps, all path-portions are feasible and can be added to the tree.
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Table 5.4 Total allocated risk and risk budget for all timesteps in the new path
and the feasibility of the path-portions up to that timestep when using ERA.

Timestep Total risk Risk budget DR-feasible
k δtot(k) ∆k + δres δtot(k) ≤ ∆k + δres
1 0.0170 0.0434 ⊤
2 0.0458 0.0684 ⊤
3 0.0910 0.0934 ⊤
4 0.1132 0.1184 ⊤

5.4 Simulation of DR-RRT

In these simulations, we consider an environment [0, 50]2 cluttered with N =
10 randomly located rectangular obstacles. The initial position is [0, 0] and
the initial velocity is zero. The planning horizon is T = 1000 and the steering
horizon is Tsteer = 10. The risk budget for the entire planning horizon T
is denoted as ∆. Three trees with 1000 samplings each and M = 1 are
simulated:

• DR-RRT with Uniform Risk Allocation and risk budget ∆ = 0.1
(Figure 5.4)

• DR-RRT with Exact Risk Allocation and risk budget ∆ = 0.1
(Figure 5.5)

• DR-RRT with Exact Risk Allocation and risk budget ∆ = 0.02
(Figure 5.6)

Besides from the risk allocation and risk budget, everything in the trees and
environment are exactly the same, including the random sampling points.
This is to get a fair comparison of the different trees.

With uniform risk allocation, the same risk is allocated for all obstacles and
timesteps, such that δik = ∆

T ·N = 0.1
1000·10 = 10−5.

With exact risk allocation, the risk budget for a steering horizon is ∆steer +
δres, where δres is the residual of the node from which the steering is done
and

∆steer =
∆ · Tsteer

T
=

0.1 · 10
1000

= 10−3 (with ∆ = 0.1) or (5.4.1)

∆steer =
∆ · Tsteer

T
=

0.02 · 10
1000

= 2 · 10−4 (with ∆ = 0.02). (5.4.2)
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5.4 Simulation of DR-RRT

Figure 5.4 DR-RRT with Uniform Risk Allocation and risk budget ∆ = 0.1.

Figure 5.5 DR-RRT with Exact Risk Allocation and risk budget ∆ = 0.1.
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Figure 5.6 DR-RRT with Exact Risk Allocation and risk budget ∆ = 0.02.

5.5 Results and Discussion

From Figures 5.4 and 5.5 it can easily be seen that DR-RRT with ERA
generates less conservative paths than DR-RRT with uniform risk allocation
when the same risk budget ∆ = 0.1 is used. This coincides with the numer-
ical proof presented in Section 4.5. Additionally, Figure 5.6 illustrates how
DR-RRT with ERA can be used with lower risk budget ∆ = 0.02 and still
generate paths with a similar degree of conservatism as DR-RRT with uni-
form risk allocation and a higher risk budget ∆ = 0.1. This means that by
switching from uniform risk allocation to ERA it is possible to give stronger
risk guarantees while maintaining a similar level of conservatism.
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6
Conclusion & Future
Outlook

This chapter will begin with a summary of the thesis and the main conclu-
sions, followed by a discussion about limitations and future outlooks.

6.1 Summary and Conclusions

The purpose of this thesis was to design a method for spatio-temporal risk
allocation that reduces the conservatism of the distributionally robust path
planning algorithm DR-RRT. For risk allocation to be possible, the user-
specified risk constraint for the entire path must first be decomposed into
individual risk constraints for all obstacles and timesteps. The individual
risk bounds can then be assigned different values with the sole requirement
that their sum does not exceed the total risk budget. A common approach is
to use uniform risk allocation where all obstacles and timesteps are assigned
the same risk, but this approach often results in a high level of conservatism.
In this thesis, a new approach called exact risk allocation (ERA) was in-
troduced. The principle of ERA is to allocate exactly as much risk that is
needed to fulfill the distributionally robust chance constraints. Accordingly,
the risk allocations are only set after a path-suggestion has been generated
and not in advance like with uniform risk allocation. ERA can be effectively
incorporated into the DR-RRT framework to form a new motion planning
algorithm called DR-RRT-ERA. Here, the risk budget for a generated path is
first established by allocating the total risk budget uniformly over all steering
horizons. Then, whenever a new path is generated, ERA is used to assign risk
allocations that fulfills the individual chance constraints. The sum of all risk
allocations is then compared to the risk budget to determine if the generated
path is feasible. In cases where the entire risk budget for the generated path
is not used, the residual risk can be reallocated to future paths.
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Chapter 6. Conclusion & Future Outlook

The use of ERA has been proven to generate less conservative paths compared
to when uniform risk allocation is used and the effectiveness in reducing the
conservatism has been illustrated by simulation examples. Accordingly, we
can conclude that the proposed motion planning algorithm DR-RRT-ERA
has the potential to generate less conservative paths than its predecessor
while still enforcing the same distributionally robust chance constraints.

6.2 Limitations and Future Outlook

Below we list the main limitations of the proposed DR-RRT-ERA algorithm
and suggestions on how variations that treat these limitations can be pursued
in future research. Some of the variations are straightforward to implement.

Planning horizon: In order to distribute the risk over all steering horizons,
the planning horizon T has to be set in advance. The risk constraints are only
specified for the planning horizon, which represents the number of timesteps
we are allowed to use to get to the specified goal location. The selection of
T has a strong influence on the conservatism since choosing a large T means
that the risk budget must be distributed over a higher number of timesteps.
At the same time, selecting a small T could make it impossible to reach the
goal in the specified number of timesteps while maintaining distributionally
robust constraint fulfillment. The use of ERA could enable an expansion of
the steering horizon while still maintaining the same risk constraint, since
any residual risk at timestep T could be reallocated to an expanded time
horizon. Accordingly, ERA could enable a more flexible approach where a
small planning horizon can be selected initially and expanded if necessary.
This variation has the potential to further reduce the conservatism and can
be explored in future research.

Probabilistic completeness: The DR-RRT-ERA algorithm is not proba-
bilistically complete. This means that even if there exists a path that would
be feasible with a certain risk allocation, the algorithm is not guaranteed to
find that path even as the number of samples approaches infinity. A feasible
(theoretical) path that requires a lot of risk in its early steering horizons
and less risk in its later steering horizons may not be generated if the first
steering horizons are deemed unfeasible. The algorithm could likely be made
probabilistically complete by storing infeasible paths in the hope that they
could later become feasible by reallocating risk from future steering horizons,
but as previously mentioned, this would require a lot more computation. The
algorithm is however guaranteed to find all solutions that are feasible with
uniform risk allocation since the standard DR-RRT algorithm is probabilis-
tically complete and all paths that are feasible with uniform risk allocation
are also feasible with exact risk allocation, as proven in Section 4.5.
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Assigning scores: The algorithm for assigning scores to paths based on
their cost J and residual risk δres (see Algorithm 1) can be composed in a
number of ways. It should, however, always be constructed in a way that re-
wards low cost and high residual. Normally, when performing tree expansion
with uniform risk allocation, the minimum-cost path from a near node to the
sample is selected. This would be equivalent to a scoring algorithm that only
depends on the cost. In the case of ERA, the path selection becomes more
complicated since residual risk is involved. Selecting a low-cost path with a
low residual could prevent the generation of future low-cost paths that could
have been feasible with a higher residual risk. In cases where the same path
has the lowest cost and highest residual, the choice is simple. In other cases,
the benefit of a low-cost path has to be weighed against the future prospect
of generating paths with low cost. What should be prioritized will likely dif-
fer for different environments and risk budgets. In highly risky environments
it could make sense to prioritize the residual and vice versa. Designing a
universal scoring algorithm that always makes the (statistically) best choice
is therefore seemingly impossible. In the simulation examples, there was no
need to consider the scoring function since the simulations were done with
M = 1, meaning that only the nearest node was selected. As previously men-
tioned, the exact composition of the scoring algorithm is not covered in the
scope of this thesis, but could be a topic for further research.

Asymptotic optimality: Just as the standard RRT and DR-RRT algo-
rithms, DR-RRT-ERA is not asymptotically optimal. This means that a
feasible solution generated by the algorithm will in general not minimize the
cost function even as the number of samples approaches infinity. An asymp-
totically optimal version of DR-RRT called DR-RRT* can be obtained by
rewiring the tree to find paths with lower costs [2]. A similar approach could
be taken to create a DR-RRT*-ERA algorithm. Achieving asymptotic op-
timally when ERA is used could however be challenging and may require
storing infeasible paths in the hope that they could later become feasible by
reallocating residual risk from future steering horizons.

Propagating higher moments: In this thesis, we have used moment-based
ambiguity sets based on first and second moments. Propagating higher mo-
ments can sharpen the risk estimates and lead to less conservatism than only
using first and second moments [1].

Environmental constraints: In this thesis, the environmental bounds are
not treated probabilistically. The algorithm could however easily be adjusted
to consider a problem formulation with a chance constraint that also incor-
porates the environmental bounds.
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Chapter 6. Conclusion & Future Outlook

Steering methods: ERA can only be applied after a path has been gener-
ated and therefore requires that the steering can be done without prior knowl-
edge of the risk allocations. The DR-RRT-ERA algorithm would, in its cur-
rent state, not work when more sophisticated steering methods that explicitly
incorporate the constraints are used. Model Predictive Control (MPC) is an
example of such a steering method. In future variations it could be beneficial
to use a more advanced steering that incorporates mild constraints, for in-
stance a small deterministic tightening of the obstacles. The paths generated
by this steering algorithm would then have to be checked for distributionally
robust feasibility using the real constraints, for which ERA could be used.
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