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Abstract

Bacterial outbreaks of Campylobacter caused by chicken consumption are becoming more
frequent in Sweden during the hot season. Quantitative Microbiological Risk Assessment
(QMRA) applied to Campylobacter contamination related to consuming chicken uses
multiple models covering different stages ranging from primary food production to con-
sumption. In this thesis a prevalence and concentration model is used and it covers the
contamination of Campylobacter during the primary production. Another stage models
is the Consumer Phase Models (CPM) which estimates the risk of cross-contamination
when handling chicken in kitchen resulting in a dose bacteria being ingested. This dose
can then be fed into a dose-response model to estimate the risk of illness from Campy-
lobacter due to the ingested dose.

QMRA opens up for an explicit treatment of uncertainty, which can be divided into two
types: aleatoric, due to inherent randomness in the system or heterogeneity e.g. within
human populations, and epistemic, due to lack of knowledge or insufficient knowledge
about the system or some part of it itself. In 2018, the European Food Safety Agency
(EFSA) endorsed a new guideline addressing uncertainties which should be taken into
consideration in all EFSA scientific assessments and in which as many as possible of iden-
tified sources of uncertainty should be communicated in a transparent manner. Overall,
the guideline advocated for uncertainty analysis that, among other, takes both aleatory
and epistemic uncertainty into consideration. Omne way to do this is to embed a risk
assessment model in a fully Bayesian framework, characterising epistemic uncertainty
in model parameters with probability distributions and opening up for propagation of
uncertainty through the model. For a QMRA, the models for the different stages from
contaminated meat at retail to illness need to be linked into a single model and to
characterise uncertainty in parameters by a joint probability distribution.

The aim of this thesis is to evaluate an approach to perform Bayesian calibration of
multiple models used in a QMRA with the purpose to quantity uncertainty in parameters
and model predictions. Uncertainty in parameters is being characterised by Bayesian
calibration of published models covering the different mentioned stages. This is first
done on the individual models, and then jointly, but using the posterior as priors in the
linked model. Bayesian calibration of multiple linked models allows for quantification
of uncertainty in parameters, including those parameters linking the models together.
Data for the calibration is taken from the publications used in this thesis and the Finnish
public Campylobacter cases statistics which is used for a case study to evaluate the linked
model alongside with an uncertainty analysis of the model. Bayesian model calibration
is demonstrated as an useful approach to quantify uncertainty within an assessment
model.



Popularvetenskaplig sammanfattning

Utbrott av Campylobacter haller pa att bli mer aterkommande speciellt under varma
sisonger i Sverige. Det finns olika modeller som anvénds i kvantitativa mikrobiologiska
riskbedémning (Quantative Microbiological Risk Assessment, QMRA) av kontamination
av Campylobacter vid kycklingskonsumtion och som representerar olika fas i matproduk-
tion och konsumtion. Consumer Phase Models (CPM) anvénds for att berikna risken
av korskontamination under hantering av kyckling som leder till en viss koncentration
av bakterier vilket fortars av en person. Koncentrationen kan dérefter matas in en dos-
responsmodell for att uppskatta risken att bli sjuk av Campylobacter pa grund av den
dosen som upptas, antingen for sig sjalv eller i kombination med andra faktorer.

Med kvantitativ riskbedémning far man méjligheter att behandla osédkerhet i modellen
pa ett explicit satt. Osékerheten kan delas i tva olika typer: aleatorisk osédkerhet som
hénger ihop med systemets inneboende slumpmaéssighet och epistemisk osékerhet vilket
ar forknippad med begransad eller brist av kunskap. Under 2018 godkénde Europeiska
byran for livsmedelssékerhet (EFSA) en ny végledning for osiikerhetsanalys som bland
annat uppmanar att man ska inkludera sa manga som maojligt identifierbara osdkerheter
i en riskbedomning. Ett sitt att gora detta &r att biddda in en riskbedémningsmodell
i ett Bayesianskt ramverk som karakteriserar osidkerhet i modellparametrar med san-
nolikhetsfordelningar och som tillater spridning av osékerhet genom modellen. For en
QMRA kraver detta att man kopplar de modeller fér de olika stadier fran foérorenat
kott i detaljhandeln till sjukdom och att osdkerhet i parametrar karakteriseras genom
en gemensam sannolikhetsférdelning.

Syftet med detta arbetet ar att validera en Bayesian Evidence Synthesis-modell (BES)
for osdkerhetsanalys pa en QMRA. Osédkerhet i parametrar kommer att karakteris-
eras baserat pa tillgdngliga data fran redan publicerade modeller for prevalens och
dos-respons och pa tilldelade fordelningar vid behov for parametrar i CPM-modeller.
Osékerhet i parametrarna kommer spridas till osékerhet i output for bedomning under
olika riskbedomningsscenarier. BES valideras genom att karakteriseringen av epistemisk
osidkerhet forblir stabil efter att modellerna kopplats, vilket ar en del av en oséker-
hetsanalys. Vidare genomfors ett studiefall i syfte att jamfora modellens resultat med
existerande data pa utbrottsintensitet for utvardering av modellen. Bade osékerhetsanal-
ysen och fallstudien visar att BES-modellen under en QMRA var gangbar och ddarmed
lyckad.
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Thank you!

... It’s like this. Sometimes, when you've a very long street ahead of you, you think
how terribly long it is and feel sure you’ll never get it swept. And then you start to
hurry. You work faster and faster and every time you look up there seems to be just
as much left to sweep as before, and you try even harder, and you panic, and in the
end you're out of breath and have to stop—and still the street stretches away in front
of you. That’s not the way to do it.

You must never think of the whole street at once, understand? You must only
concentrate on the next step, the next breath, the next stroke of the broom, and the
next, and the next. Nothing else.

That way you enjoy your work, which is important, because then you make a good
job of it. And that’s how it ought to be.

And all at once, before you know it, you find you’ve swept the whole street clean,
bit by bit. What’s more, you aren’t out of breath. That’s important, too...”

—Michael Ende, Momo

”Yes, that’s true”, admitted Rhyme, ”but it’s not just learning things
that’s important. It’s learning what to do with what you learn and
learning why you learn things at all that matters.”

—Norton Juster, The Phantom Tollbooth
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Abbreviations
BES Bayesian Evidence Synthesis.

CFU or cfu Colony-Forming Unit.
CPM Consumer Phase Model.

DAG Directed Acyclic Graph.
JAGS Just Another Gibbs Sampler.

MC Monte Carlo.
MCMC Markov chain Monte Carlo.

QMRA Quantitative Microbial Risk Assessment.

TPCM Temporal-Prevalence-Concentration Model.



1 Introduction

1.1 Background

Decision makers are sensitive to knowledge-based (epistemic) uncertainty and therefore it is im-
portant to evaluate the impact of uncertainty on an assessment of risk [5, 4, 15]. Quantifying
uncertainty in parameters by subjective probability makes it possible to implement the assess-
ment model in a Bayesian framework which allows the integration of multiple sources of data
and quantification and propagation of uncertainty in a transparent way. Although Bayesian
analysis (or inference) is increasingly being used for statistical modelling and is being applied on
quantitative uncertainty analysis in risk assessment [13, 23], there is a need to demonstrate its
use and to tackle challenges when implementing it on real assessment problems. Quantitative
uncertainty analysis may be demanding when the ambition is to implement big and complex as-
sessment models in a Bayesian framework, which may require computational resources. Bayesian
updating can be done sequentially, e.g. when new information becomes available. An assessment
model can be big because it is an integration of several sub-models. Here it can be relevant to
explore the possibilities of using sequential (or partial) updating of models, one model at a time.
I explore this using an example from quantitative risk assessment.

Campylobacter, a microbial pathogen, is one of the most common bacterial cause of stomach
illness in Sweden [30]. Campylobacteriosis is an infectious disease caused by Campylobacter that
could be found in, among others, raw chicken meat [2, 24]. Campylobacteriosis is becoming an
increasing problem in Sweden and there is a need to assess the risk associated with the exposure
of campylobacteriosis [7, 6, 17].

Quantitative Microbiological Risk Assessment (QMRA) of Campylobacter contamination use
several models to describe the exposure and the paths from exposure to effect during different
stages in food production and food consumption and there are QMRA made specifically for
campylobacteriosis in Sweden [18]. Prevalence and concentration models, for short prevalence
model, explain the prevalence of Campylobacter in retail meat and in what concentration they
occur. To estimate the contamination of Campylobacter during consumption, for example in
the kitchen, some different consumer phase models (CPM) are used. Finally, there is a dose-
response model that estimates the probability of becoming infected respective falling ill with
Campylobacteriosis. A practical challenge is to integrate the different models into one model
and update parameters within individual models including parameters linking models together.
Sometimes data can support calibration of an individual model. In other cases, such as for
the CPM models, calibration is only possible when a model has been integrated with the other
models, since data is related to inputs and outputs of the assessment and only partly available
to inform the parameters of the individual CPMs. Linking several models together would enable
a complete probabilistic uncertainty analysis and the possibility to calibrate and evaluate the
assessment model, or part of the assessment model.

1.2 Aim of the Thesis

The aim of this thesis is to evaluate an approach to perform Bayesian calibration of multiple
models used in a QMRA with the purpose to quantity uncertainty in parameters and model
predictions.



In this study, the two models for assessment of prevalence and concentration (prevalence model)
and the likelihood of being ill given a certain dose (dose-response model) for which uncertainty
has been quantified in a Bayesian framework, will be integrated with two models for the transfer
rate in the consumer phase (the CPM models) which, as different from the other individual
models, are not supported by published quantitative characterisation of uncertainty in their
parameters, partly because it is difficult to inform them from data without access to a joint
model.

In order to achieve the aim, I will

1. Identify different models for a QRMA
2. Implement these models into a common framework to quantify epistemic uncertainty

3. Find a way to combine the models while preserving characterisation of epistemic uncer-
tainty in each model

4. Perform an uncertainty analysis asking what parameters contribute the most to the un-
certainty in the output of the combined model (for example the probability of becoming
ill after handling raw chicken in the kitchen.)

5. Use a case study with Finish health data to compare accuracy and precision of predictions
based on different CPMs.

The structure of this thesis is as follows. Section 2 brings up the theory with further details
of the ideas. Section 3 explains the methods used in this thesis. Section 4 presents the result.
Discussion is then followed up in Section 5. Finally, conclusions are made in Section 6.



2 Theory

2.1 Uncertainty Analysis

The purpose of uncertainty analysis is to identify and characterise uncertainty in decision relevant
quantities from an assessment [4]. Epistemic uncertainty is conditional on the knowledge available
at the time of the assessment. Epistemic uncertainty that are dealt with here can be attributed
to the value of model parameters (which in this context are seen as fixed but uncertain) or the
validity about the model itself (also called structural uncertainty) [29]. Aleatory uncertainty is
an inherent attribute in a system and is naturally taken into account by stochastic and statistical
modelling. The influence of sources to uncertainty can be evaluated by sensitivity analysis, which
can give an indication on which parameters it is worth while to collect more knowledge to at
best reduce their uncertainty.

2.2 Bayesian Analysis

A Bayesian analysis begins with expressing uncertainty in parameters within a model by prob-
ability and use probabilistic models for data (likelihood) and Bayes rule to update parameters
based on new information (data) [10, 14, 27, 16, 11]. In Bayesian analysis, it is possible to in-
tegrate expert knowledge and data and to quantify uncertainty using probability. The updated
uncertainty about parameters is referred to as the posterior distribution, and is a joint probability
distribution over all parameters.

Bayesian analysis is useful to support probabilistic uncertainty analysis [23]. Uncertainty is
quantified in any part of the model by propagating uncertainty in parameters to the quantities
of interest. Care must be taken to ensure the assessment model includes the relevant parts of
aleatory uncertainty [13], and that, when needed, epistemic uncertainty is distinguished from
aleatory uncertainty when propagating.

2.3 Bayesian updating using MCMC sampling

Bayesian updating can be obtained by sampling from the posterior. More specifically, a sampling
or a simulation during which the posterior (or any distribution) is being sampled extremely
many times is called Monte Carlo simulation. Together with Markov chain, which is a random
walk where each step is independent of the previous step, the simulation becomes a process
called Markov chain Monte Carlo, MCMC. A MCMC process makes it possible to sample from
complicated distributions or models, while ensuring convergence in the models. There are several
different versions of MCMC sampling and one of them is so called Gibbs sampling [14].

The procedure of Gibbs sampling is as follows: at each step in the walk, one of the parameters is
selected and then be compared to a new value drawn from the conditional probability distribution,
conditioning on the rest of the parameters and data. This process is repeated cycledly through
all the parameters many times.

For example, call the parameters, or component parameters, 6, 6o, 6s..., and for a selected
parameter 6;, a value is drawn from its conditional probability, P(6;|0;.;, D), where D is the
data. Then we get the new position or step consisting of the new value 6; along with the other
unaltered values 6;.;. Now we repeat this with another selected parameter and draw from its



corresponding conditional probability given the new value of 6;. This is repeated while cycling
through all the parameters 601, 02, f5... many times, creating a long chain.

BUGS and JAGS are two software built for Gibbs sampling (which is an example of MCMC
sampling) [25, 20]. BUGS and JAGS use the graphical representation of a Bayesian model,
which means the code consists of nodes for variables and parameters and marginal or conditional
probability distributions over these. There are other software for MCMC sampling but these two
are mentioned here as these were used in the published studies.

2.4 Bayesian model calibration

An assessment model is in a sense a computer model specified to approximate the system under
study. Model calibration is the process of learning about unknown parameters of a computer
model by fitting model predictions to physical observations of the system, which can be done in
a Bayesian framework (Kennedy and O’Hagan 2001). Bayesian model calibration has the ad-
vantage of allowing for prior specification of parameters and results in uncertainty in parameters
quantified by probability.

Bayesian Evidence Synthesis (BES) is a term used when Bayesian model calibration consider mul-
tiple sources of evidence on parameters that are shared between statistical models for data/ev-
idence and the assessment model. Bayesian model calibration and BES are ideal for informing
assessment models by providing a framework to integrate different sources of evidence, e.g di-
rectly and indirectly relevant data or information, and propagate the uncertainty through an
assessment model to the assessment outputs [1, 12, 29].

The Bayesian framework allows for one-step simulation, i.e. a single analysis where the resulting
posterior distribution (output from data analysis) could be feed directly into another model
without using an ”intermediate summary step” [29]. In this way, the analysis derives the joint
posterior distribution of all unknown parameters from a Bayesian probability model and run
both evidence synthesis and the linked models simultaneously. In this integrated approach, the
resulting uncertainty is propagated through the predictive model. Since the evidence from the
data has to be propagated backwards to update the parameters, or to propagate the uncertainty
backwards, and then forwards through the linked models, MCMC is needed (rather than only
Monte Carlo method).

This is in contrast to the two-stage process, i.e. carrying out the parameter estimation in one
step and then feeding the resulting summary of the joint posterior distribution into the separate
probabilistic sensitivity analysis (of the second model) [29].

Advantages of Bayesian model calibration are as follows:
e It is not necessary to make any assumption about ”parametric distributional shapes for

the posterior probability distributions”. Also, sometimes closed-form expectations may
not exists.

e Instead of making assumptions about the dependence/independence between different
quantities, the probabilistic dependencies between parameters are being propagated in
the analysis.

e [t is possible to continue to update the model when new data are available.



2.5 Directed acyclic graphs

Bayesian models (including an assessment model embedded in probabilistic uncertainty analy-
sis) are probabilistic graphical models that are specified from directed acyclic graphs, DAGs.
Quantities at the start of an arrow in the graph give rise to the quantities at the end of the
arrow. They are called parents respective children. The quantities are also called nodes and in
this study we are going to use four different kinds of nodes:

Q Variable or parameter Model

Q Data @ Variable or parameter with prior

2.6 QMRA models

2.6.1 Overview of the QMRA models

Four models have been identified and selected for the QMRA. One model is for contamination of
Campylobacter in retail meat, two consumer phases models and one dose-response model. What
follows is a short description of the selected models covering different stages:

e Contamination of retail meat: prevalence and concentration model, which estimates the
prevalence and concentration of Campylobacter in retail meat

e From retail meat to human exposure: consumer phase model, CPM, which describes the
contamination of food during preparation and handling of raw chicken meat in kitchen.
The output of this model is the amount of ingested Campylobacter

e From human exposure to health effect: dose-response model which estimates the probabil-
ity of becoming infected or ill after consuming the contaminated meat (i.e. a given amount
of Campylobacter)

In the following sections, all the different models will be individually presented in detail, including
the different CPMs.

2.6.2 Prevalence and Concentration Model

The model by Mikkela et al [21] is used as the prevalence and concentration model (prevalence
model in short). The objective of the particular prevalence model was to estimate prevalence and
concentration in retail meat using Bayesian methods while the data is censored and clustered.

Their study was done on Campylobacter concentration sample data obtained from grocery stores
and from different months in the Helsinki area, Finland. The Helsinki area represents the whole
country, since the companies deliver the poultry meat all over Finland. Moreover, those compa-
nies cover over 90 % of the total production in Finland.
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The meat samples are of two types, chicken meat respective turkey meat. Furthermore, several
samples could be taken from one same food batch (hence clustered data) and the number of one
sample varies, as well as does the size of one batch.

The model predicts seasonal prevalence (% for each month) and concentration of Campylobacter
(cfu/g) in retail meat, for both chicken meat and turkey meat.

The detection and quantitative data was used separately in the model. With the detection data,
the percentage of contaminated retail foods or prevalence (pf) could be estimated. This was done
by estimating the prevalence within food batches respective (seasonal) prevalence between food
batches. The percentage, pf, is a product of the these two different kinds of prevalence: within-
batches prevalence, pw, and seasonal between-batches prevalence, pb,,,. Since the between-batch
prevalence is seasonal, it is modelled as a Markovian time serie:

Logit(pb,,) = Logit(pby,—1) + €m, m=2,..,12, (1)

where the parameter e,, represents the changes between consecutive months. The within-batch
prevalence is not seasonal, due to insufficient data.

In their study, they used two different hierarchical models for concentration estimation based
on the quantitative data (enumeration data), of which only one will be used in this study. The
hierarchical log-normal model was better supported by data (both chicken and turkey) than the
alternative model (hierarchical gamma model), and is hence chosen to be included in this study.

In detection and quantitative determination of Campylobacter in meat samples, the positive
concentrations that are below 0.5 cfu/g were not being quantified, due to the ”limit of determi-
nation of the microbiological methods”. So these data was treated as censored data, so called
left-censored (NA in the data). In the study, the data set contains a high amount of censored
data. Furthermore, it is assumed that the minimum concentration for positive samples was 1
cfu/ws, where ws denotes the weight of one test portion which is 25 gram. This resulted in a
censored interval between 0.04 (= =) cfu/g and 0.5 cfu/g. This assumption was kept intact in
this study.

The fully detailed model of the prevalence model, including priors on different parameters, is
simply presented as a directed acyclic graph, DAG (Figure 1). The prevalence has been published
with code in OpenBUGS [21].
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Logit(pb1) ~ N(0, 0.001)
i Logit(pbm)=Logit(pbm-1) + €m
|

~ T'(0.001, 0.001)

e1 ~ N(0, 0.001) and ey |7e ~ N(0,7¢)

P(I;=1|pb)=pb

Bin(I; - pw,N;) ~ Number of samples from one food batch

I'(0.001,0.001) ~ ~ LogN (p1j,Tw)

oy ~ U(0,100) where sza%
b

~ N(0,0.001)

Figure 1: The prevalence model estimates both prevalence, pf,,, and predicted con-
centration, Crep. €, represents changes between consecutive months. The indicator
I; yn, which is a binary latent variable, describes the "true” contamination status of a
batch and is either 1 if at least one of the units in a batch ¢ is contaminated, and is 0
otherwise, with P(I; = 1|pb) = pb. ¢; is the quantitative data (enumeration data).
o ~ U(0,100) means that po is sampled from U (0, 100).

Indices: m = 2,...,12; ¢ = 1, ..., B where B is the total number of studied batches per
meat type; j = 1,...,J where J is the number of detected contaminated batches and
k =1,...,t; where t; is the number of detected contaminated samples in a batch j.
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2.6.3 Consumer Phase Models

A Consumer Phase Model (CPM) covers the part of the food chain between buying at retail and
exposure, when the consumer purchased, transports, stores, prepares and finally consumes the
retail food. It is the part where authorities or professionals often aren’t able to control, and the
only possibility for control is via education and other information provision for the consumers.

Nauta et al. [22] has conducted a study where they compare several existing CPMs for Campy-
lobacter in chicken meat. These CPMs describe various cross-contamination during preparation
of the raw meat, by identifying different transfers in kitchen, for example from a cutting board
to salad. Eight CPMs, from different studies, were included in their study. Finally, they put the
dose output of these CPMs into a dose-response model for the final comparison. Their objective
was to study the different CPMs and their impact on QMRA (quantitative microbiological risk
assessment, see Section 2.6.1), by using different scenarios and comparing the predicted relative
risk reductions.

In this study we adopted two out of the eight CPMs, which is described in the two next sections.
Uncertainty in parameters of the CPMs is being expressed by probability distributions. The
choice of distribution is here based on data from Luber et al. [19]. The data on some of the
transfer rates, which will be described in the next following sections, was collected by Luber et
al. [19] and which will also be used to calibrate the parameters for the transfer rates. The CPM
models are then linked with a dose-response model as well (Figure 2). Here their dose-response
model was excluded since another model (Section 2.6.6) is chosen to be used here. In the article
by Nauta et al. [22], it was assumed that portion sizes of consumed meat, w,, are distributed
as a lognormal distribution with mean 189 gram and a standard deviation of 127 gram, with
maximum of 1000 g. The assumption is retained in this study.

10g(Cyet) ~ N(1.5,1.2), with Pprey = 0.25
Cret =0, otherwise

~ N(189,127), with maxz(W.)=1000 g.

@ @ Different CPM
%s a function of different transfer rates,
Po(Cree - We) w @ depending on the choice of CPM.

a ~ Bin(NpOTtiD’VLthT)

Figure 2: The model with CPM used by nauta et al. [22]. Npoption is the number
of Campylobacter on one portion of chicken meat (cfu) and Cyp, is the Campylobacter
concentration in retail meat. W, represents portion sizes, for example the mean is 189
g. P, is a function of different transfer rates and other variables describing the cross-
contamination, depending on choice of CPM. It describes the probability of a single cfu
from the portion to end up in the consumed or ingested dose, d.
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2.6.4 Christensen CPM

We follow the approach by Nauta et al. and use a simplified version of the CPM by Christensen
et al. [22]. The probability of a single cfu from the portion to end up in the dose, py,, is as
follows:

Pir = toe(tec X foco + (1 —tpe X foo) X tps X fes), (2)

with the transfer rates as described in Table 1 and Table 2.

‘ Chicken, C Equipment, E  Salad, S

Chicken, C | fco tce fos
Equipment, E | tgc - tes
Salad, S | - - -

Table 1: The transition matrix illustrates the contamination of Campylobacter in
kitchen, using Christensen CPM model. For example, top is the transfer rate of Campy-
lobacter from raw chicken to equipment (board or knife) in kitchen and foo is the
frequency of contamination from a piece of chicken to another piece.

Parameter | Explanation Prior Data
tor transfer rate raw chicken to equipment Beta Luber et al.
tec transfer rate equipment to cooked chicken Beta -
fee frequency of chicken to chicken contamination =1 -
trs transfer rate equipment to salad Beta Luber et al.
fes frequency of chicken to salad contamination =1 -

Table 2: Prior and whether there is data for each of the parameters. The frequencies
are set to one and all the transfer rates have a Beta distribution as prior. The data used
here came from a study by Luber et al. [19].

The choice of prior distributions for the transfer rates are altered and simplified here, compared
to the ones used by Nauta et al. [22] and the hyperparameters are transformed due to practical
reasons:

tcg ~ Beta(ttcg - sitcp, (1 —tilcg) - stor)
tEC ~ Beta(t.tEc . S.tEc, (1 - t.tEc) . S.tEc) (3)
tgs ~ Beta(t.tEs -s.tgs, (1 — t.tEs) . S.tEs)

The hyperpriors for the transformed hyperparameters are described in Table 3.

14



Hyperparameter | Hyperprior
ttop Beta(1,1)
t.itec Beta(1,1)
t.tgs Beta(1,1)
s.top Gamma(1,1)
s.tec Gamma(1,1)
s.tes Gamma(1,1)

Table 3: Hyperpriors for the transformed hyperparameters in the Christensen CPM.

2.6.5 Mylius CPM

The Mylius CPM is another CPM used by Nauta et al [22]. The model includes washing as a
part of cross-contamination. The probability, p;,., is as follows:

Doy = (tC,H Xty Xtys+top XtpB X tB,S) X ts s, (4)

with the transfer rates as described in Table 4 and Table 5.

Chicken, C Board, B Hand, H Salad, S

Chicken, C | - ton tcn -
Board, B | - tBB - tBs
Hand, H | - - tgg tgs
Salad, S | - - - tss

Table 4: The transition matrix illustrates the contamination of Campylobacter in
kitchen, using Mylius CPM model. For example, tcp is the transfer rate of Campy-
lobacter from chicken to board and tpp is the persistence after hand washing.

15



Parameter | Explanation Prior Data
ton Transfer rate chicken to hand Beta Luber et al.
th.s Transfer rate hand to salad 10~ Normal(1.90,0.606) -
toB Transfer rate chicken to board Beta Luber et al.
tB,s Transfer rate board to salad 10~ Normal Luber et al.
tuH The persistence after hand washing:

1. no washing (20%) =1 -
2. washing (80 %)  Beta(0.24,6.67) -
tB,B The persistence after board washing:
1. other side of board (33 %) =0 -
2. same board, no washing (5%) =1 -
3. washing (62%) Beta(0.25,400) -
ts.s The persistence after salad washing;:
1. no salad washing (40%) =1 -
2. salad washing (60%) Beta(3.25,4.7) -

Table 5: Prior and whether there is data for each of the parameters. Some of the
parameters have different persistence depending on the case. For example the persistence
of Campylobacter after hand washing, tg g, is 100 % if there was no washing, which
occurs to 20 % of the meals. Otherwise, the persistence follows a Beta distribution. The
data from a study by Luber et al. [19] was used here.

Similarly, the prior distributions are altered and the hyperparameters are transformed as given
in Equation (8) and hyperpriors are described in Table 6.

to,g ~ Beta(t.teg - stem, (1 — t.tc,H) -ston)
tc,B ~ Beta(t.tCB -s.top, (1 — t.tc)B) - s.tcB) (5)
tg.g ~ 107N0Tmal(p,tBS,‘rtBS)

Hyperparameter | Hyperprior
titcy Beta(1,1)
tton Beta(1,1)

Pt s Normal(0,1)
s.tom Gamma(1,1)
s.top Gamma(1,1)
Tips Gamma(1,1)

Table 6: Hyperpriors for the transformed hyperparameters in the Mylius CPM.

2.6.6 Dose-Response Model

In QMRA (see Section 2.6.1), a dose-response model is included to estimate the response (i.e.
becoming infected or ill) given an amount dose of Campylobacter. For this study, we use the
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dose-response model from Teunis et al. [31].

The dose-response model used by Teunis et al. [31] is conducted as a meta-analysis, using
multilevel model. They categorize data from several studies into three different host species
groups: controlled human infection model, i.e challenge experiments with human; outbreaks
involving contaminated raw milk; and challenge studies in non-human primates.

Furthermore, strain varies from one study to another study and in total there are eight different
strains, including unidentified outbreak strains. Overall, the data consists of host species, strain,
ingested dose, number of exposed, number of infected (i.e. shedding or seroconverting) and
numbers with symptoms (i.e. symptoms of acute campylobacteriosis).

One of the objectives with the study by Teunis et al. [31] was to study the variation in dose-
response with strain and host effect. They did this by comparing different dose-response models
based on different strain and host. They also made a comparison of infectivity and pathogenicity
(which is represented as two parameters in their models) across the different strain and host.
It was shown that for infection, the hosts do not have different effects. As for illness, it was
observed that there are difference between human/primates and outbreak (i.e. the pathogenicity
parameter is shown to be higher for all outbreaks than for the human/primate challenges, that
results in a steeper curve).

In this study, we are going to use the dose-response model for infection (Figure 3), which is the
same for all host species, and two different dose-response models for illness (Figure 4), which
represents human challenge respective outbreak. The dose-response model has been published
with code in JAGS along with its data. For more details of the model, see the reference [31].
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Figure 3: The infection dose-response model with 95% posterior credible interval by
Teunis et al. [31]. The curve shows the relationship between the ingested campylobacter
dose (logit-transformed scale) and the likelihood of becoming infected. The curve is the
same for both human challenge and outbreak.
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Figure 4: The illness dose-response models with 95% posterior credible interval by Te-
unis et al. [31]. The curves shows the relationship between the ingested campylobacter
dose (logit-transformed scale) and the likelihood of becoming ill, i.e. acute campy-
lobacteriosis. They were modelled with the data from human challenge (left) respective
outbreaks (right).
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3 Method

The first step is to build a modelling environment which successfully reproduce the identified
models and data for QMRA. The second step is to verify the models are reproduced even after
they have been combined. The third step is to perform a probabilistic uncertainty analysis, use
a case study to quantify uncertainty in relevant output variables and use sensitivity analysis
to analyze whether there are parameters which give largest contribution to uncertainty of the
output variables and to identify them. Since this study integrates different kind of data from
different sources and uses priors based on earlier information, Bayesian evidence synthesis is
suitable to be the approach for uncertainty analysis.

3.1 Reproduction and combination of models

Two of the assessment models were implemented with MCMC sampling, one in JAGS and the
other in BUGS. Here, JAGs was chosen for the combined model. Reproduction of individual
models were done to by implementing them in JAGS, and verify the code by running them with
original priors and compare results those in the corresponding publications. In practice, it means
reproduction of existing code of the individual models and to make sure that the code works,
i.e. for example that the values of parameters are in accordance with the existing result and to
check whether the MCMC chains converge.

First, it is noted that both the prevalence model and the dose-response model are already well-
adjusted, based on data used by Mikkeld et al. [21] respective Teunis et al [31]. To avoid the
possibility of (high) uncertainty to be propagated from consumer phase model, CPM, to the
prevalence and dose-response models, we restraint the possibility by using informed priors for
the parameters in prevalence and dose-response parts in the combined model. The informed
priors are based on the posterior from the individual models, i.e. from when the models are run
individually and then fitted to a distribution in R (i.e. calibration of the individual models).

The next step is to combine the models into a model for the contamination during the whole
process from retail to consumption and the risk of becoming ill after consuming contaminated
meat. The combined model would also make predictions about campylobacteriosis. The com-
bined model (Figure 5) consisted of the prevalence model used by Mikkeld et al. [21], two CPMs
used by Nauta et al. [22] and the dose-response model used by Teunis et al. [31]. In this study,
the two chosen CPMs are named Christensen CPM and Mylius CPM. This combination resulted
in two different combined models.
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Prevalence model | Mikkela et al.

CPM | Nauta et al.

Dose-response model | Teunis et al.

\ 4
Probability of becoming ill or infected

Figure 5: The combined model consists of the the prevalence model used by Mikkela et
al. [21], two CPMs used by Nauta et al. [22] and the dose-response model used by
Teunis et al.[31] (represented as rectangles). The models are linked by the output/input
variables Crep/Crer and d/cV (ellipses).

The purpose of the combined model was primarily to do joint sampling from all models in a
one-step approach (see BES). To ensure parameters in each model stayed close to the posterior
when running them individually, informed priors were used in the combined model. The informed
priors were in general derived by fitting distributions to marginal posterior, and sometimes other
solutions were sought (see results).

The reproducibility of the individual models was checked when run with informed priors first
individually and then the combined models was run along with the updated informed prior (i.e.
the marginal posterior from the individual models). This was done by, for a set of relevant pa-
rameters, comparing with the obtained marginal posteriors from the individual model respective
the combined model, to the original priors respective informed priors.

The suggested approach to compare the posterior of parameters in the combined model to cor-
responding posterior of the individual models is a simple way to verify that the combined model
is valid, i.e. that the model produce similar results as in the individual models.

3.2 Case-study

The purpose of the case-study was to have a realistic situation for which the QMRA could
be evaluated against. Monthly data on campylobacteriosis cases were downloaded from the
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website of the Finnish National Institute for Health and Welfare [9]. This data covers whole
Finland, as the prevalence model is calibrated with data that comes from detecting and measuring
concentration of Campylobacter in the poultry meat, of which companies are responsible for over
90 % of the total Finnish production. Both the Finnish campylobacteriosis data and the data
used in the prevalence model by Mikkeld et al. [21] cover same time period, years 2012-2014.

3.3 Sensitivity analysis

In order to study the impact of some sources of uncertainty on the assessment output, sensitivity
analysis can be seen as a part of uncertainty analysis.

To perform a global sensitivity analysis, we use the variance-based sensitivity analysis, which
uses decomposed variances due to main effects, two-way interactions, and so on. Sensitivity in
output to a specific input is summarised by two global sensitivity indices, or Sobols’ indices. The
first order index is the ratios between the variance due to the input’s main effect and overall
variance of the model. This tell us how sensitive the output is when varying one parameter
alone. The total index is the ratio between variance explained by all types of interactions with
the input and all other inputs and the overall variance of the model. This informs us how the
model is affected by all its variables and their interactions. These indices corresponds to the
ANOVA decomposition for linear models [28, 26]. Sensitivity analysis was done using the R-
package BASS, which fits a response surface on a sample from inputs and corresponding model
output values, before decomposing the variances [3, 8].
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4 Results

4.1 Reproducibility of individual models

The prevalence model was given in OpenBUGS, so a BUGS-JAGS conversion of this model
was needed. An issue during the conversion was that BUGS respective JAGS treats censored
data in different ways. In BUGS, the function I() does not distinguish between truncation and
censoring. However, in JAGS there are T() for truncation respective dinterval () for censoring.

Another issue with the prevalence model was that some of the reproduced result (in JAGS) was
at first not in accordance with the result given in the article by Mikkel4 et al. [21]. After having
been in touch with the authors, it was realized that the identical result was produced if the
turkey part was removed from the code. This is believed to be due to some computational issues
related to time series in JAGS and wasn’t further investigated.

The prevalence model was reproduced in JAGS and the estimation of the between-batch preva-
lence and the within-batch prevalence were in accordance with the result by Mikkela et al.
(Figure 6). Similarly, the seasonal prevalence and predicted concentration of Campylobacter
were reproduced in JAGS (Figure 7).
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Figure 6: The reproduction of the prevalence model. Seasonal prevalence between food
batches, pb,,, and prevalence within food batches, pw, of retail chicken meat.
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Figure 7: The reproduction of the prevalence model. Seasonal overall prevalence and
predicted concentration of Campylobacter (cfu/g) in retail chicken meat. The seasonal
overall prevalence is the product of the seasonal between-batch prevalence, pb,,, and the
within-batch prevalence, pw.

The two chosen CPMs (Christensen CPM and Mylius CPM) were written in JAGS according to
the model given in the article by Nauta et al. [22] with some changes in the distributions of the
parameters for convenient reasons (for example the distribution based on Pert distribution were
changed to some suitable Beta distribution, see Equation 2.6.4 and Table 10).

Some of the reproduced results for the dose-response model by Teunis et al. are not entirely
consistent with the ones in their published article [31] (Appendix A). The given code, which
was provided in their article, was here slightly adjusted to get the same graphs dose-response
curves in their article (see Figures 3 and 4). The last code line in their code, that estimates
the likelihood function of becoming ill, contains an unnecessary iteration. When removing the
iteration, their dose-response graphs became reproducible.

After making the above adjustments, all the individual models were successfully run in JAGS
with convergence in MCMC in all the individual models. The results of the models are reproduced
and some of the results are used in this report, as a part of the description of the models (for
example, see Figures 3 4, 6 and 7). Finally, the result from calibrating each individual models
are later used as informed priors for the parameters in the combined model (Appendix B).

4.2 Reproducibility in the Combined Model

One of the purpose with this study is to find a way to combine the models. The resulted
model would explain contamination all the way from retail to consumption and to what degree
Campylobacter would cause infection respective illness.

To validate the combined model using informed priors on parameters in the prevalence and
dose-response parts, the posterior of parameters in the combined models will be compared to
the posterior of parameters in the individual models. Since the different individual models were
combined into one model, it might be more clear to call these individual models submodels when
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talking about the combined models. The submodels were linked accordingly to the description
provided in Figure 5.

Upon comparing the respective posteriors of the combined models (both the model with Chris-
tensen CPM respective Mylius CPM) and the submodels with informed priors, they follow the
same distribution (Appendix C). Posteriors of the parameters for the original submodels, i.e. with
non-informed priors, were also added to the plots for an illustration of the difference between
distributions of parameters in the model with informed priors respective non-informed priors.
With the plots it was shown that the combined model is valid in the sense that it produces
similar results as the submodels individually.
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4.3 Uncertainty analysis of the combined models

The uncertainty analysis consists of three parts. Firstly, a quantification of uncertainty of the
outputs of the combined models was made to get a picture of the uncertainty. This was done with
five chosen outputs reflecting the performance of the combined model. Secondly, a case study
with Finnish health data was carried out to compare accuracy and precision of the predictions
using the combined models. Here the predictions will be compared with the Finnish data. Finally,
a sensitivity analysis is performed in order to study the impact of parameters on the uncertainty
in the output of the combined models.

4.3.1 Quantification of uncertainty in output

As a part of the uncertainty analysis, the quantification of uncertainty in different outputs
(or inputs) of the combined models in different stages are investigated. The outputs from the
combined models are chosen to be the prevalence from the prevalence submodel; the predicted
dose from the CPMs; and the predicted probabilities of becoming infected and the predicted
probabilities of becoming ill (campylobacteriosis) associated with human challenge and outbreak,
see Teunis et al. [31] for more details.

In this uncertainty analysis, 200 cases or persons per month were simulated and the monthly
mean of the 200 predicted doses is used (which is named Predicted mean dose in Figure 8).
Likewise, the monthly predicted probabilities are actually the mean over the 200 corresponding
predicted probabilities per month.

While comparing the combined Christensen model with the combined Mylius model, the uncer-
tainty (upper 95 % limit) in the monthly mean predicted prevalences are the same (Figures 8 and
9). The uncertainty in the monthly mean predicted doses from the two combined models differ by
a hundredfold (the red right axes in Figures 8 and 9). Furthermore, there are wider uncertainty
intervals in the combined Christensen model compared to the combined Mylius model regarding
the likelihood of of infection and the predicted probabilities of illness under both human challenge
and outbreak.
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Figure 8: Quantification of uncertainty in the outputs of the combined model with
Christensen CPM for every month. The predicted mean dose is on the right axis (red
line). The rest is on the left axis. The predicted mean dose is the mean over 200 predicted
dose under the simulation of 200 persons each month. Likewise, Likelihood of of infect
is the mean over 200 predicted probabilities per month (blue line). As for the likelihood
of becoming ill, there are two different predictions: one is based on the data collected
from human challenges (green line) and the other is based on the outbreak data (purple
line). The seasonal overall prevalence of Campylobacter is also added to the plot (black
line).
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kylius
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Figure 9: Quantification of uncertainty in the outputs of the combined model with
Mylius CPM for every month. The predicted mean dose is on the right axis (red line).
The rest is on the left axis. The predicted mean dose is the mean over 200 predicted
dose under the simulation of 200 persons each month. Likewise, Likelihood of of infect
is the mean over 200 predicted probabilities per month (blue line). As for the likelihood
of becoming ill, there are two different predictions: one is based on the data collected
from human challenges (green line) and the other is based on the outbreak data (purple
line). The seasonal overall prevalence of Campylobacter is also added to the plot (black
line).

4.3.2 The case study on Finnish campylobacteriosis Data

To evaluate how well the two combined models (one with Christensen CPM and one with Mylius
CPM) behave compared to reality, the Finnish campylobacteriosis data will serve as a case study.
To be able to make predictions about the trend of reported campylobacteriosis cases (i.e. the
monthly trend of people become ill and report) using the posterior distributions of probability of
becoming ill after eating chicken, the number of how many times the Finnish people eat chicken
needs to be known. Since this number or data of how many times Finnish people eat chicken is
unknown, we estimate this number under the assumption that the number is a constant, i.e. it
doesn’t depend on time (year or month) nor on CPM.

The number of how many times Finnish people eat chicken could be calibrated with the Finnish
campylobacteriosis data combined with the posterior probability of becoming ill (campylobac-
teriosis) after eating chicken, which is the outputs from the two combined models. Note that
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instead of fitting the posterior probability to a distribution, the sampled values from the MCMC
chains (from the two combined models respectively) are being used as the input data alongside
with the Finnish campylobacteriosis data from years 2012-2014 (Figure 10).

Model k

pi,jk 18 the posterior probability
of becoming ill. The values from the
MCMC chains are used as input data.

~ U(100000,7000000)

@ ~ Bin(pj,i,k,Nk)

The Finnish data

Figure 10: With the Finnish data, Y; ;, the number of how many times Finnish people
eat chicken could be calibrated, given the posterior probability of becoming ill after
eating chicken calibrated for CPM model k, Nj (only for human, i.e. outbreaks are
ignored). Instead of fitting the posterior, p; jx, to a distribution, the 1000 values from
the MCMC sampling are used as the input data. i=1, ..., 1000 (MCMC-values), j =
1,..., 12 (month) and k = 1, 2 (Christensen CPM respective Mylius CPM).

Upon estimating the number of how many times Finnish people eat chicken, the estimated num-
ber from the combined model with Christensen respective Mylius CPM was 2 143 859 respective
5 120 741. For example, the combined model with Christensen CPM estimates that there are
2 143 859 times the Finnish people eat chicken regardless of month. With the values from the
MCMC sampling of the posterior probability of becoming ill and for the estimation of number
of how many Finnish people eat chicken, the predictive posterior for the amount of (reported)
campylobacteriosis cases was easily ”sampled”, i.e. calculated given the sampled values.

Since there are two different CPMs (which results in two different probabilities of becoming ill
based on human challenge data), there are two different predictions of amount of (reported)
campylobacteriosis cases. Furthermore, since there are uncertainty both in the probability of
becoming ill and in the number of how many Finnish people eat chicken, the uncertainty is
naturally propagated to the predictions as well. The predictions are to be compared with the
Finnish campylobacteriosis data [9].

While the uncertainty intervals of the monthly predicted numbers of (reported) campylobacte-
riosis cases often fail to cover the Finnish campylobacteriosis data, the predictions clearly follow
the same trend as the data with a peak in July. This could be seen in both cases of combined
models with Christensen CPM respective Mylius CPM (Figure 10).
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Figure 10: Monthly predictions of number of reported campylobacteriosis cases for the
combined model (empty circles). For comparison, the data from the Finnish Institute
for Health and Welfare [9] is added to the plot. The data came from the years 2012-2014,
corresponding to the data used by Mikkela et al. The blue squares represent the data
from the year 2012. The blue triangles represent data from the year 2013. Lastly, the

Predicted number of campylobacteriosis cases vs the Finnish data

o model Christensen CP#
m data 2012 .
4 data 2013
o gataz0l4 JF
N
° L]
S
: <)
sy 0
¢ + 8 4
F'y ry s
&

f T T \ T T \ T T T T 1
Jan Feb har Ao May  Jun Jul ALg Sep Qct Moy Dec
honth
(a) Combined model with Christensen.

Predicted number of campylobacteriosis cases vs the Finnish data

o model Myliug CPR
= data 2012 .
4 data 2013
e data 2014 +
‘o
M L]
F
+ f
F Y
&
"I ‘
¢ 0 ¢ -
i Fy
b &
f T T T T T \ T T T T 1
Jan Feb har Apr o May  Jun Jul Aug  Sep Cct Moy Dec
Month

(b) Combined model with Mylius CPM.

2014 data are represented by blue circles. 29



4.3.3 Sensitivity analysis

As a part of the uncertainty analysis, a sensitivity analysis is needed in order to investigate and
identify the sources that contribute to uncertainty. The aim of sensitivity analysis is to evaluate
the effect of model uncertainty on uncertainty in output. This is done by two sensitivity analyses.
The first to identify which parameter that has the largest contribution to uncertainty in output.
Sensitivity is evaluated on six model outputs for the month of July. July is chosen since this is
the month with most cases of infection with Campylobacteriosis.

The second sensitivity analysis is done to see how model output changed depending on the
choice of consumer phase model: the Christensen CPM and the Mylius CPM. The approach for
sensitivity analysis for a given CPM is as follows:

e Six model outputs are chosen as representative of different stages of the infection pro-
cess: the seasonal prevalence (pf), the average dose (dose_pred_mean), the mean predicted
probability of becoming infected under human challenge respective outbreak, and the mean
predicted probability of becoming ill under human challenge respective outbreak.

e A suitable group of parameters is chosen and will be used as the predictors.

e In order to perform a sensitivity analysis, we create adaptive spline surface model (R-
package BASS) using the chosen parameters and one of the six chosen outputs. This is
repeated six times for each of the six outputs.

e A sensitivity analysis is then performed on each of the six adaptive spline surface models.

The R-package BASS is used for the sensitivity analysis. In total, the sensitivity analysis was
carried out twelve times (six times for each of the two combined models) and ten parameters or
variables with the highest first order indices respective total indices are included in the results.
This produced in total 24 plots illustrating the sensitivity analyses (Figures 11, 12, 13 and 14).

Overall, there is no prominent parameter that turns up in the analyses in terms of first order
indices, i.e. proportion variance, with most of the indices fall below 0.2 in the cases of combined
Christensen model (Figure 11) and below 0.1 in the ones with combined Mylius model (Figure
13). With the output being prevalance (pf) the variable prevalence within food batches (pw)
has a first order index higher than 60 % respective 30 % in the combined Christensen model
respective combined Mylius model. This is no surprise since the prevalence is the product of
the within-batch prevalence and between-batch prevalence. Similar result regarding the output
being prevalence could also be seen in the case of total indices.

As for total indices, no clear overall pattern could be observed though there are some parameters
with a higher uncertainty impact on the outputs. One example is that in the case of output
of predicted mean dose the hyperparameter for the predicted concentration (sbd) was shown to
have a higher impact on the output in both cases with Christensen respective Mylius (Figures
12 and 14).

Regarding predictions of infection and illness using the combined Mylius model as the output
the following parameters could be shown to have higher impact: within-batch prevalence (pw),
the hyperparameter for the predicted concentration (7, ), hyperparameters for the transfer rate
of chicken to hand respective to board (s.tcy respective t.tcp), the strain mean respective host
mean of measure of infectivity respective pathogenicity as well as the variation of infectivity
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respective pathogenicity (mu.w, zI and 22. See Teunis et al. [31] for more details) (Figures 12
and 14).

31



Sobol's First order sensitivity, dose_pred_mean Sobol's First order sensitivity, pf

0.5+
040 param param

A B lositobi, 11 B lositebr, 1

B oot ER muwesn

% B munn g : B muwn,a

El BR muwizn § 0 . BE muwiza

5 3 T BE nuve,n S BE nuaeo

£ H 2 )

5 : B3 oz : B oriorstes
Eo X BS prionttce g B prionttes

B o :

=] 1
0.1-

g T

m++i*+ | | L ilj+i LT

=
=
=R

.
0.o-
loaitpbe1, 1 HBOI MU MUET UG, mo zeopronttce o sdb e loaitobI1, IUAIE T MUAELZ MUMIZ2) M_zeroprorstepriorttes ow  sdb  fawe
Parameter Parameter
Sohol's First order sensitivity, prinf_pred_human_tot Sohoal's First order sensitivity, prinf_pred_outbreak_tot
.
.
.
03 4
. 0.5

.
' param T param
= B nuwrt, 1 B muwi,
BR nuwe,n B muwn,2

B muna ES munza

= B e
=T (=
o1 =R 019 - B3 2ma

+ -’- i L J_ 4 e 4' -‘- E‘a

@ 5
£ £

E E .

7 = YR F o2- RS B muwiza)

5 B priorsi_ce 5 B priors.Les
3 B oriorttce z B8 oriorttce
2 2

g T B priorttes o b

i &

MU, MUE, 1 ML) mzero priors b ceortt cerorttes pw  2iBA 2103 ML 1) MUALZ] MNIZ2) N ZIoHor st epriontt c o fane w2152
Parameter Parameter
Sohol's First order sensitivity, prill_pred_human_tot Sohol's First order sensitivity, prill_pred_outbreak_tot
.
. 0.3
0.3
param param

B muwrt,n B muwii, 1
(=] 0z~ BS muwrs, 1

i

% B muna g =R
] = R H . B nuwpsa
z B priorsice z B priorsice
] 1 B priorstes H H ER priorttce
g B prorttee B B ow
H B priorttes =
0.1 ' B sdb 014 BEH zimy
H B ana T : B3 zna

N +¢+*l . 4lii%+

U, MU, 1] M2 M Apriors b ceriorst esriortlcoriorttes sdb 22tz TN M MU, R Zorers b cpriortice pw 2iBA 2iBH a2d
Farameter Farameter

Figure 11: Sensitivity analysis on the combined Christensen model. The ten predictors
with the highest first order indices (proportion variance) are shown for each of the six
different responses. This was carried out with R-package BASS.
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Figure 12: Sensitivity analysis on the combined Christensen model. The ten predictors
with the highest total indices (proportion variance) are shown for each of the six different
responses. This was carried out with R-package BASS.
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Figure 13: Sensitivity analysis on the combined Mylius model. The ten predictors
with the first order indices (proportion variance) are shown for each of the six different
responses. This was carried out with R-package BASS.
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Figure 14: Sensitivity analysis on the combined Mylius model. The ten predictors with
the highest total indices (proportion variance) are shown for each of the six different
responses. This was carried out with R-package BASS.
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5 Discussion

5.1 Bayesian model calibration of multiple linked models

This thesis performs an uncertainty analysis on a QMRA. The QMRA assessment model was
created by combining a chicken meat contamination model in the primary production (prevalence
model), a CPM model and a dose-response model. Those models were identified and implemented
in a Bayesian framework to make it possible to quantify epistemic uncertainty by Bayesian model
calibration, which allows for uncertainty to be quantified using subjective probability. To avoid
slow convergence of MCMC chains, Bayesian model calibration was first done in each of the
models with associated data sets, and then by integrating the models into one combined model,
but using the posterior from the individual calibrations as priors. This was for the purpose
of preserving the characterisation of the already well-adjusted prevalence model and the dose-
response model. This approach allowed for estimation of parameters in the third model for which
no specific data set were available and it resulted in the assessment model in one probabilistic
framework from which it is possible to continue sampling from the posterior. Two different
CPMs were considered and therefore the work has resulted in two different combined models
which represents QMRA for Campylobacter in a probabilistic uncertainty analysis.

The step-wise approach taken for calibration resulted in a successful preservation of the parameter
distributions for the parameters of the individual calibrated models, i.e. the parameters follow the
same distribution as before in the individual stage models after combining the models (Figures
20 and 22). The preservation was kept for both CPMs (with Christensen CPM respective Mylius
CPM).

One could discuss whether it is good to use informed priors in the combined models and whether
it "locks down” the models too much. I used the informed priors because the prevalence and
dose-response models were considered as already calibrated by their respective data, and I am
not interested to let the uncertainty (both aleatory and epistemic) in the CPMs to be propagated
into those models. But had the models not been well-adjusted and there were lot of data available
for the CPMs, one might choose another approach, such as using flattened posteriors as priors.
The problem is then how and by how much to flatten the posterior. Without using the informed
priors while combining the stage models, there is a possibility that the uncertainty from the
CPM would flow into the prevalence and dose-response models but this has not been studied.

5.2 Comparing CPMs based on Finnish cases data

During the comparison of the predicted number of campylobacteriosis cases of both models to
the corresponding data provided by the Finnish National Institute for Health and Welfare, it is
observed that the predictions in the combined Christensen model respective Mylius model follow
the same trend as the Finnish data. The trend in the number of cases is highly correlated with
the trend in observed prevalences as slaughter houses, but still the change in predictions of the
number of cases is not always in the same direction. Thus, the different CPMs models adjusts
the probability of becoming infected upwards and downwards everything else equal. A reason
could be that they react differently to the observed concentration in chicken.

Although, in terms of accuracy, neither combined model produced satisfactory predictions with
uncertainty intervals that cover the reported cases of campylobacteriosis. The predictions are
made assuming that the number of people eating chicken every month is treated as fixed, where
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values were chosen to improve the fit between model predictions and data. Consequently the two
CPMs resulted in different estimates of the number of chicken eaters. Considering variability
and uncertainty about the number of consumers, uncertainty in predictions is expected to be
larger. The results just mentioned also might be a possible consequence of using both bottom up
and top down data where the top down (i.e. cases to exposure of Campylobacter) is very much
dependent of reporting system and multiple sources of infection which were not covered in this
thesis.

A limitation of this approach is also that the campylobacteriosis data includes all cases with
various sources of infection and different ways of contamination, i.e. not only cases associated
to raw chicken meat and the ways the meat being prepared in kitchen according to two CPM
models used in this thesis. Furthermore, underreporting, which is extensive in Sweden [30], was
not considered in this thesis. A way to improve the estimation of the consumption frequency
could be to use production data in combination with dietary surveys.

To limit the work in this thesis, two CPMs out the eight CPMs in the article by Nauta et al.
[22] were included. It would be interesting to include other CPMs in this analysis, especially if
there are CPMs with a lot of data for the transfer rates. The resulting posterior distributions
for the parameters of these two models (Tables 10 and 11 in Appendix B) can be used in future

QMRA.

5.3 Reproducing models

The prevalence and dose-response model were reproduced from code in the respective publication.
One model were transferred from bugs to JAGs, a process resulting in some modifications of the
code. In some cases, data generated errors. In other cases, there were errors in the published
material, which could be fixed. The turkey part of the prevalence model was omitted due to a
computational issue, which could not be solved within the limit of this thesis. The chicken part
and turkey part of the prevalence model is separated, it the turkey part is therefore not expected
to have any major impact on the results obtained in this thesis.

5.4 Challenges with sensitivity analysis

No conclusion could be drawn from the sensitivity analysis, since it is not clear whether there
are parameters with big impact on uncertainty in the outputs of the combined models. It is
difficult to make clear conclusions from the sensitivity analysis, and weather this was a result
from the chosen method (meta-model with Sobol indices) or because there were no most highly
influential parameters. More refined approaches are needed for sensitivity analysis to evaluate
influence of uncertainty, including ways to deal with aleatory uncertainty. The group of chosen
parameters could also be altered to include variables, for example, dose and prevalence which I
instead used as outputs in my analysis. Serving size and concentration might also be of interest
to be included in the analysis.
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6 Conclusion

In this thesis I demonstrate a way to combine models for risk assessment in a way that allows for
quantification of epistemic uncertainty and continuous learning from new data. A challenge has
been to combine the models, and I show that combining the different individual stage models,
using informed priors, was successful in the sense that parameters were not altered after linking
the individual stage models and the calibration of additional parameters were made possible. The
approach suggested here is based on principles of Bayesian model calibration and can contribute
to probabilistic uncertainty analysis in scientific assessments, where statistical models are used
to inform quantitative and realistic models of the system being studied. Finally, while sensitivity
analysis is important, it was also found that it is a difficult area in need of development.
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Appendix A

Strain Host «@ 8

50%  2.5% 97.5% 50% 2.5% 97.5%
81-176  Primate 0.57 0.17 4.00 0.69 0.061 5.20
78-37 Primate 0.40  0.043 3.64 0.54 0.049 4.56
v212x Primate 0.47  0.093 3.80 0.60 0.053 4.87
81-176  Human 0.65 0.21 4.17 0.72 0.065 5.54
A3249 Human 0.098  0.052 0.15 0.38 0.055 1.95
CG8421 Human 0.78 0.27 4.50 0.80 0.067 6.12
- Outbreak  0.53 0.11 3.43 0.94 0.075 6.92
- Outbreak  0.27  0.058 2.63 0.49 0.049 3.87
81-176  Outbreak  0.22  0.044 2.51 0.50 0.052 3.84
- Outbreak  0.80 0.17 4.87 0.89 0.082 6.66
pred Challenge  0.37  0.029 3.44 0.51 0.047 4.29
pred Outbreak  0.37  0.029 3.55 0.51 0.046 4.28

r n

50%  2.5% 97.5% 50% 2.5% 97.5%
81-176  Primate 0.042  0.028 0.06 0.81 0.16 3.71
78-37 Primate 0.1 0.01 1.09 1.2 0.18 7.43
v212x Primate 0.062  0.024 0.14 0.92 0.17 4.67
81-176  Human 0.056  0.041 0.07 0.88 0.16 4.08
A3249 Human 0.019 0.0099 0.03 0.5 0.099 2.58
CG8421 Human 0.15 0.11 0.22 1.5 0.27 7.75
- Outbreak  0.73 0.14 5.48 0.11 1.2e-09 4.54
- Outbrea 0.59  0.097 5.35 0.079 1.4e-09 2.74
81-176  Outbreak  0.57  0.077 5.37 0.079 1.3e-09 2.72
- Outbreak 0.8 0.17 5.57 0.097 1.4e-09 3.81
pred Challenge 0.061 0.0032 0.98 0.89 0.12 6.49
pred Outbreak  0.68  0.048 5.66 0.083 1.2¢-09 2.84

Table 8: Reproduced result for the dose-response model by Teunis et al. ([31]). Statis-
tics of the parameters for infection («, ) and illness (r, 1), by C. jejuni strain and
hist, distinguishing human challenge studies from outbreaks. The bottom rows show
predictions based on challenge respective outbreaks.
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Appendix B

Parameter | Distribution 1 st parameter of the distri. 2nd parameter of the distr.
logit(pb;) | Normal mean = -2.914 sd = 1.775
Te LogNormal meanlog = -2.196 sdlog = 2.338
e1 Normal mean = -0.027 sd = 31.651
DPw Beta shapel = 59.765 shape2 = 40.599
Tw Gamma shape = 17.311 scale = 0.32
1o Normal mean = -0.348 sd = 0.122
Op Gamma shape = 25.007 rate = 45.258

Table 9: Informed priors for parameters from the prevalence model [21]. The choice of
informed priors are based on posterior from the model with original prior alongside with

data

Parameter ‘ Distribution 1 st parameter of the distri. 2nd parameter of the distr.

t.tee Beta
S.tee Gamma,
t.tes Beta
S.tes Gamma

shapel = 4.344

shape = 3.871
shapel = 5.37
shape = 4.924

shape2 = 40.468

rate = 1.042
shape2 = 29.326
rate = 2.413

Table 10: Informed priors for parameters from the Christensen CPM model [22]. The
choice of informed priors are based on posterior from the model with original prior

alongside with data.

Parameter Distribution 1 st parameter of the distri. 2nd parameter of the distr.
t.iten Beta shapel = 12.253 shape2 = 164.371
S.ten Gamma, shape = 8.989 rate = 1.39
t.tep Beta shapel = 4.598 shape2 = 42.579
S.tep Gamma shape = 3.996 rate = 1.092
mau.tps Norm mean = -0.205 sd = 0.886
precision.tps | Gamma shape = 5.25 rate = 34.358

Table 11: Informed priors for parameters from the Mylius CPM model [22]. The choice
of informed priors are based on posterior from the model with original prior alongside

with data.
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Parameter Distribution Mean sd
M strain Normal -1.606 3.225
1 host Normal -0.056 3.058
M2, strain Normal 2.996 3.531
12, host Normal 0.726 3.201
13, strain Normal -3.573 6.144
3, host Normal -0.411  2.998
z1 Normal 1.739 2.339
29 Normal 1.034 2.678
29, outbreak only | Normal 1.213  2.449
logconc Normal 4.512  2.576
logitpg Normal -2.914 2.011

Table 12: Informed priors for parameters from the dose-response model [31]. The choice
of informed priors are based on posterior from the model with original prior alongside
with data.
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Appendix C
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Figure 15: The posterior for the parameters in the prevalence model [21]. Black lines
displays posterior from individual models with original prior, blue lines for posterior from
individual models with informed prior, red lines for posterior from combined model with
informed prior and with Christensen CPM and green lines for posterior from combined
model with informed prior and Mylius CPM.
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Figure 17: The posterior for the parameters in the prevalence model [21]. Black lines
displays posterior from individual models with original prior, blue lines for posterior from
individual models with informed prior, red lines for posterior from combined model with
informed prior and with Christensen CPM and green lines for posterior from combined
model with informed prior and Mylius CPM.
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Figure 18: The posterior for the parameters in the prevalence model [21]. Black lines
displays posterior from individual models with original prior, blue lines for posterior from
individual models with informed prior, red lines for posterior from combined model with
informed prior and with Christensen CPM and green lines for posterior from combined
model with informed prior and Mylius CPM.
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Figure 19: The posterior for the parameters in the prevalence model [21]. Black lines
displays posterior from individual models with original prior, blue lines for posterior from
individual models with informed prior, red lines for posterior from combined model with
informed prior and with Christensen CPM, and green lines for posterior from combined
model with informed prior and Mylius CPM.
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Figure 20: The posterior for the parameters in the Christensen CPM model [22].
Dashed blue lines displays posterior from individual models with original prior, blue
lines for posterior from individual models with informed prior and red lines for posterior
from combined model with informed prior and with Christensen CPM.
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Figure 21: The posterior for the parameters in the Christensen CPM model [22].
Dashed blue lines displays posterior from individual models with original prior, blue
lines for posterior from individual models with informed prior and red lines for posterior
from combined model with informed prior and with Christensen CPM.
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Figure 22: The posterior for the parameters in the Mylius CPM model [22]. Dashed
blue lines displays posterior from individual models with original prior, blue lines for
posterior from individual models with informed prior and green lines for posterior from
combined model with informed prior and Mylius CPM.
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Figure 23: The posterior for the parameters in the Mylius CPM model [22]. Dashed
blue lines displays posterior from individual models with original prior, blue lines for
posterior from individual models with informed prior and green lines for posterior from
combined model with informed prior and Mylius CPM.
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Figure 24: The posterior for the parameters in the Mylius CPM model [22]. Dashed
blue lines displays posterior from individual models with original prior, blue lines for
posterior from individual models with informed prior and green lines for posterior from
combined model with informed prior and Mylius CPM.
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Figure 25: The posterior for the first half set of chosen parameters in the dose-response
model [31]. Dashed blue lines displays posterior from individual models with original
prior, blue lines for posterior from individual models with informed prior, red lines for
posterior from combined model with informed prior and with Christensen CPM and
green lines for posterior from combined model with informed prior and Mylius CPM.
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Figure 26: The posterior for the first half set of chosen parameters in the dose-response
model [31]. Dashed blue lines displays posterior from individual models with original
prior, blue lines for posterior from individual models with informed prior, red lines for
posterior from combined model with informed prior and with Christensen CPM and
green lines for posterior from combined model with informed prior and Mylius CPM.
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Figure 27: The posterior for the first half set of chosen parameters in the dose-response
model [31]. Dashed blue lines displays posterior from individual models with original
prior, blue lines for posterior from individual models with informed prior, red lines for
posterior from combined model with informed prior and with Christensen CPM and
green lines for posterior from combined model with informed prior and Mylius CPM.
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Figure 28: The posterior for the second half set of chosen parameters in the dose-
response model/submodel [31]. Dashed blue lines displays posterior from individual
models with original prior, blue lines for posterior from individual models with informed
prior, red lines for posterior from combined model with informed prior and with Chris-
tensen CPM and green lines for posterior from combined model with informed prior and
Mylius CPM.
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Figure 29: The posterior for the second half set of chosen parameters in the dose-
response model/submodel [31]. Dashed blue lines displays posterior from individual
models with original prior, blue lines for posterior from individual models with informed
prior, red lines for posterior from combined model with informed prior and with Chris-
tensen CPM and green lines for posterior from combined model with informed prior and

Mylius CPM.
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Figure 30: The posterior for the second half set of chosen parameters in the dose-
response model/submodel [31]. Dashed blue lines displays posterior from individual
models with original prior, blue lines for posterior from individual models with informed
prior, red lines for posterior from combined model with informed prior and with Chris-
tensen CPM and green lines for posterior from combined model with informed prior and

Mylius CPM.
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