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Abstract

Within the telecommunications industry, a positioning system for estimating user
equipment (UE) location using information already available at the basestation
(BS) has an enormous number of potential uses. The link between physical posi-
tion and the network channel state enables potential positioning systems to function
by understanding the network channel state dependency on location, using a model-
based, data-based, or a combined approach.

A key exploitable phenomenon linked to position is that of multi-path propa-
gation, wherein transmissions can arrive from multiple directions to the BS, with a
unique propagation pattern corresponding to a unique environment. In fifth gen-
eration wireless technology (5G), multi-path components are already exploited
for beamforming with massive multiple-input multiple-output (MIMO) technol-
ogy. Basestations therefore have a preexisting pipeline for obtaining beamformed
channel matrices from channel state information (CSI) transmitted by the UE. A
data-driven approach using multi-path propagation phenomena for positioning is
possible through utilizing the already available beamformed channel matrix in the
basestation.

In this thesis the practical data-driven deep-learning approach for UE posi-
tioning in 5G using beamformed channel matrices is examined. Real-world data
is utilized to judge the applicability of the approach, with measurements done on
a commercial-grade Ericsson 5G testbench in both non-line-of-sight (NLoS) and
line-of-sight (LoS) scenarios. Using a similar approach as other papers in the field,
a supervised deep-learning approach is used for instantaneous position estimation.
For improving positioning accuracy through trajectory estimation, a novel approach
of using particle filtering with network ensemble outputs for kernel density estima-
tion of an observation probability density function is proposed. The results show
that using the outlined methods position is possible to estimate in real-world pedes-
trian tests with a mean accuracy of 2-5 meters, even with NLoS conditions and poor
underlying GNSS training data quality.
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1
Introduction

1.1 Background

Positioning in 5G
Wireless communications have in the past decades become a ubiquitous part of
everyday life. Most recently, fifth generation wireless technology - 5G - has seen
large-scale adoption worldwide. Further developments in this field can be seen as
crucial as applications requiring higher data-rates and/or better latency stability such
as autonomous driving and augmented reality reach maturity. One avenue to achieve
these goals is to enable more efficient use of existing resources through the utiliza-
tion of AI for ’smart’ devices. More specifically, machine-learning has become a
widespread focus area for the telecommunications industry, enabling a multitude of
potential use-cases.

The research areas for utilizing machine learning on 5G include - but are not
limited to - user equipment (UE) localization [Burghal et al., 2020a], line-of-sight
or non-line-of-sight identification, communication scenario identification, channel
modelling and prediction with machine learning, beamforming, anomaly prediction,
and more [Huang et al., 2021a] [Huang et al., 2021b] [Santos et al., 2020].

Of the listed use-cases, positioning is one with a great deal of industry interest. A
viable positioning system in wireless telecommunications where the 5G gNb has an
estimate for the position of every user in a Multi-user MIMO scenario would enable
a large number of commercial improvements in 5G networks. These can include
e.g. location-aware communications, predictive network resource allocation, better
handover management, demand prediction, and more [Björnson et al., 2019].

Furthermore, speculating on the future of IoT, using UEs as proxies for position
and device density detection and sending privacy-preserving general device-density
data to cloud data-centers has a huge potential for unlocking commercial and public
uses [Traboulsi, 2022] [Mogyorósi et al., 2022], e.g. ’smart’ real-time automated
public transport allocation and traffic redirection using real-time population density
estimates.
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Chapter 1. Introduction

In prior work, among several other references, research in 5G positioning in-
clude using ML for high-precision indoor positioning in well-controlled environ-
ments [Bast et al., 2020], positioning in simulated environments [Guo et al., 2020],
multi-anchor and Dense 5G Network positioning [Koivisto et al., 2017] [Guerra
et al., 2018], fused approaches [Yang et al., 2020], and smartphone-based sensor
fusion [Davidson and Piché, 2016].

Many of the approaches for positioning are theoretical and method-driven, with
restricted access to commercial-grade 5G access-points set up such that experiments
can be run in real-world conditions. This gives a window of opportunity for this
thesis to contribute to the field with a data- and application-driven approach. Eric-
sson Lund has a commercial-grade 5G basestation set up with proper experimental
equipment to conduct research in a real-world setting, which will become the goal
of this thesis.

In summary, a full basestation-side positioning pipeline driven by analysis of
measured real-world data will be proposed in this thesis. The work will thereby fit
into an under-explored niche in industry and academia.

Initial approach
No matter the objective of the ML algorithm on wireless data, the feature(s) used are
of importance. There are multiple methods widely used in literature, some model-
driven some data-driven, and some a combination of the two. The utilized network
features commonly include e.g. various signal energy and delay features such as
received signal strength, power delay profile [Gante et al., 2018], time of arrival and
angle of arrival and others [Burghal et al., 2020b] [Wen et al., 2019]. The common-
ality between these is that the quantities and/or the models are themselves derived
from physics assumptions underlying the network channel. Information on more
’raw’ channel quantities utilized within the e.g. basestation hardware for beamform-
ing are seldom used due to difficulty of access, as to obtain them the information
stored directly in Channel State Information (CSI) feedback messages must be ex-
tracted.

CSI is defined as information describing the radio propagation channel between
user equipment (UE) and the network base-station. For MIMO radio systems, such
as in 5G, CSI data includes channel properties extracted from the Sounding Refer-
ence Signal (SRS), including complex-valued multidimensional data structures de-
scribing the impulse response matrix between the UE and the beam-domain bases-
tation, where dimensions correspond to the frequency and spatial beam domains.
The expectation is that the SRS data contains more information about the state of
the network than many other more derived quantities, though at the cost of being
high-dimensional and unreadable w.r.t. human intuition [Li et al., 2017].

The goal then with channel impulse response matrices obtained from SRS CSI
data is that as the directional beam-information within them correlates extremely
well with user position. As a user moves, the channel state changes according to
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which beams provide a good transmission link between the UE and the basestation.

1.2 Prior Work

Considering the enormous range of research for positioning using various wireless
signal phenomena, only literature that this thesis builds on directly in application
and data domain are covered in this section - in other words, non-Line of Sight
(nLoS) non-simulated CSI for a single basestation with beam-data in a realistic
environment preferably not taken indoors.

By filtering for the above mentioned aspects, from a wide literature survey only
three papers were selected as direct citations. For a brief but more broad overview
of the field outside these three papers, see surveys [Wen et al., 2019], [Mogyorósi
et al., 2022], [Davidson and Piché, 2016] [Burghal et al., 2020b] along with the
discussion covered in the introduction Section 1.1.

Direct comparison on an 5G Ericsson testbench
The paper [Malmström et al., 2019] is the one with the most directly comparable
experiment setup to the one available for this thesis. In it, they investigate the use
of neural networks and random forests to estimate UE position for a non-line-of-
sight urban outdoors scenario. For features, they had access to beam-data with 48
beams while and extracted the best received reference signal beam power. They also
collected data outdoors on a 5G testbed provided by Ericsson, at a carrier frequency
of 15 GHz and using a 8x8 antenna array with 56 directional beams.

Their best results in NLoS using data selected subsequently or consecutively as
test data - therefore with some level of domain seperation - gave them a mean error
of around 7 meters with the random forest and 12 meters with their neural network
architectures. They also used a car driven at walking-speed with an antenna as their
positioning vehicle, along with a high-accuracy GPS receiver sampling at 10 Hz.

CSI data from a 5G Huawei testbench
The paper [Decurninge et al., 2018], an analogue in terms of output data domain,
used a Huawei 5G testbed on the University of the Chinese Academy of Science
campus in Huairou. CSI data was measured for a single-antenna UE with a MIMO
32 dual-polarized antenna array at the BS, with 56 resulting antennas due to the
loss of 8 from hardware issues. Instead of directly obtaining beamforming channel
matrices from the testbench, they obtain raw CSI data and calculate channel covari-
ance. They used a standard GPS receiver sampling at 1 Hz as their ground-truth
data, and measured over a large outdoors area with mostly LoS with some minor
NLoS parts.

They then applied a shallow neural network and k-nearest neighbor, giving them
their best result of around 8 meters mean accuracy.
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Chapter 1. Introduction

Practical indoors positioning
The paper [Widmaier et al., 2019] does not use 5G, and instead uses a 64-antenna
universal transmitter with 1024 subcarriers to accomplish indoor positioning. Their
paper is one of the few that examines the generalizability of their method to data
taken over several days. Though their data was collected indoors, they used a real-
istic office environment with obstructions and people walking around.

Their achieved mean error of around 1 meter in the NLoS scenario by using
a relatively deep neural network demonstrates the viability of this approach. The
neural-network method used in this thesis will therefore be derived from the idea
used in the third paper [Widmaier et al., 2019] of using deep-learning. Despite a
similar machine-learning approach, due to their different wireless network setup
and transmission environment, their results will not be directly comparable to that
of this thesis.

1.3 Objectives and thesis structure

Objectives
The primary objective of this thesis is to create a positioning pipeline on beam-
formed channel matrix data obtained from a 5G Ericsson testbench, and hopefully
build upon the papers mentioned in the prior section to hopefully obtain superior
results. In more detail, the objectives of this thesis can be viewed as follows:

1. Set up a CSI beamformed channel matrix data measurement and data extrac-
tion process using a real commercial-grade 5G testbench supplied by Erics-
son.

2. Execute the measurement process to collect usable data and then analyze the
obtained data for viability with machine learning.

3. Formulate a pipeline to obtain position estimates from the beamformed chan-
nel matrix data in both LoS and NLoS scenarios.

Thesis Structure
The main part of the thesis, Chapters 2-9, can be approximately divided into three
sections. The first part, Chapter 2-5, covers all the necessary theory background
and understanding of the methodology. Chapter 6-7 is then the data acquisition and
analysis part of the thesis, with Chapters 7-9 then introducing the specific used
methods and their positioning results.

1.4 Platforms and tools

The platforms and tools needed for this thesis include:
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1.5 Limitations

• A proprietary commercial-grade 5G basestation set up at Ericsson, Lund, re-
ferred to as just the basestation with 64 directional beams.

• A proprietary 5G test-UE using a Qualcomm 8350 chip, referred to as just
the ’UE’

• 4K video stream for ensuring network activity on the 5G-connected UE

• A OnePlus Nord 5G AC2003 GNSS-capable android device

• A computer with an AMD Ryzen 4800H, 16GB of RAM and a CUDA-
capable RTX 2060 with 6GB of VRAM for all processing done to obtain
results

• C++ with boost::interprocess and pybind11 to create the log-extraction soft-
ware

• A Python environment with algorithms primarily running using Numpy, Py-
Torch, Scikit-learn, Pandas, scipy, matplotlib, and pymap3d - used for all ma-
chine learning, visualizaiton, and higher-level data processing

Note that for this thesis almost all results will be in root-Mean Squared Error
(rMSE) or Mearn Squared-error (MSE). If not written otherwise, assume the quan-
tity for rMSE is in meters and meters-squared for MSE.

1.5 Limitations

The primary limitations in this thesis are the GPS data and the computation power
available to process machine learning results. The obtained GPS ground truth accu-
racy is around 3 meters, which is insufficient and will prove to be the limiting factor
in the LoS results later in this thesis. Note that more advanced GPS algorithms exist
to reduce the error - but the time needed to implement such systems falls outside of
the scope of this thesis.

Another limitation is the lack of man-hours to do measurements and the high
failure rate thereof. With the current setup at Ericsson Lund, two people are re-
quired to obtain any measurements, and the basestation might reset or otherwise
be interrupted during the measurement process, making results useless. In addition,
only a limited form of the channel beam data could be achieved; instead of whenever
it was updated, it was logged whenever it was used. This proved to be a detriment,
leading to data ’clumping’.

One more issue was with the 137 potential frequency channels - only three could
be successfully extracted for the channel matrix: the highest, lowest, and middle
band. This greatly limited the analysis doable on the frequency-diverse aspect of
the data, and also made the usage of e.g. convolutional neural networks unviable.
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2
Basics of Wireless
Communication and 5G

2.1 Brief history of telecommunications - 1G to 5G

As of 2022, there have been five industry-acknowledged generations of mobile com-
munications adopted worldwide. The first generation, termed 1G, first arose around
the 70s. In following decade, the governments of the Nordic countries jointly de-
ployed the NMT (Nordic Mobile Telephony), joining other standards such as TACS
(Total Access Communication System) and AMPS (Advanced Mobile Phone Sys-
tem). Overall, 1G technologies were based on analog transmission, and were limited
to audio - voice - services [Jia et al., 2018], [Dahlman et al., 2018].

In the 90s, the necessity of developing digital data transmission led to the in-
troduction of what was termed 2G, the second generation of wireless telecommuni-
cations. This era was characterized by the spread of SMS and digital voice. Of the
systems developed, Global System for Mobile communication (GSM) spread the
widest, becoming the first semi-global standard [Jia et al., 2018].

Originally created in Europe, the success of multinational cooperation for GSM
led to a push for global standardization. In 1998 a global partnership termed the
Third-Generation Partnership Project (3GPP) for the development of the third gen-
eration of mobile telecommunications (3G) was created. Due to its success, 3GPP
would outlast 3G itself and now continues to determine telecommunications stan-
dards [Jia et al., 2018] [Dahlman et al., 2018].

3G was developed in part to enable e.g. video calling, email and basic mobile
internet, dominating in the 2000s. By the end of the generation, datarates could the-
oretically peak in the dozens of Mbits/s. These speeds were enabled by the 3G evo-
lution known as HSPA (High-Speed Packet Access) and HSPA+ [Jia et al., 2018].

The 2010s saw the introduction and domination of the fourth generation (4G)
of wireless communication, globally standardized by 3GPP as LTE (Long Term
Evolution) [Jia et al., 2018]. An evolution of HSPA, LTE is built on OFDMA tech-
nology - see Section 2.3 for more details. Another technology with mass-adoption
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in 4G was MIMO, turning multi-path component echoes from a source of noise to
a way to increase datarates and reliability - see Sections (2.3, 2.4, 2.8).

Alongside 4G came the global mass adoption of smartphones, necessitating ex-
tended mobile broadband, with 4G reaching mobile speeds of hundreds of Mbits/s.
Usecases enabled and developed alongside 4G include smartphone apps, media
streaming, mobile gaming, and even initial forays into emerging technologies e.g.
augmented reality (AR), and Internet of Things (IoT).

Discussions on fifth generation (5G) of wireless telecom, termed 5G NR (Next
Radio), began after the release of 4G LTE. Generally, three loose usecase categories
can be identified for 5G. First is enhanced mobile broadband, with speeds reach-
ing several Gbits/s. Secondly, massive machine-type communication, with ultra-low
power and power-consumption. Finally, ultra-reliable low latency communication,
for critical applications necessitating extremely high reliability. Significant tech-
nologies introduced for 5G include e.g. massive-MIMO with intelligent beamform-
ing and broad-spectrum mmWave. [Dahlman et al., 2018].

Overall, in the past decades through five generations of wireless telecom-
munications, the technical advances and the mass-adoption of global standards
have brought with it ubiquitous accessibility of the internet through mobile data.
Datarates have gone from Kbits/s to Gbits/s and mobile coverage in many countries
has become near-ubiquitous. Developments on future telecommunication standards
are underway, with the industry on the path to ’6G’. These future developments will
continue unlocking more advanced usecases, with current trends showing no signs
of slowing down.

2.2 Fundamentals of Wireless Transmission

As EM spectrum available for the purposes of wireless transmission is limited, effi-
cient usage is required. Large frequency bands are regulated by international agree-
ments and national laws, with bands allocated either for a specific use-case, as a
free spectrum, or to specific operators. The latter is the case for bands used in 4G
LTE and 5G, with the limited and expensive spectrum available to the operators ne-
cessitating advanced scheduling and multiplexing. This is covered in more detail in
Section 2.7.

In addition to frequency, adequate physical coverage is also fundamental to
modern wireless communications systems. By assuming that signal quality and
strength are only maintained to an adequate level within a set area near an antenna
3G, 4G network operators accomplish this by splitting geographic areas into hexag-
onal ’cells’. Within each cell, network access is ensured by (one or more) transmit-
ting basestations (BS), with directional antennas ensuring minimal interference and
optimal power efficiency. This hexagonal pattern allows for cellular towers to be
placed on sites at the intersection of three cells, with every 120 degree interval and
specific frequency band servicing a cell with a basestation. A graphical representa-
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Chapter 2. Basics of Wireless Communication and 5G

tion of this can be seen in Figure 2.1.

Figure 2.1 A representation of an ideal hexagonal-grid cell network, with cellular
towers containing basestations transmitting signal directionally into the cells.

In reality, environmental considerations lead to the cells being only a rough
approximation. Electromagnetic waves, depending on their frequencies, experience
reflection, scattering, and diffraction. This causes large-scale fluctuations in signal
quality, known as large-scale fading. [Tse and Viswanath, 2005] An example of this
can be seen in shadowing, where geography can lead to regions physically ’close’
to a transmitter being hidden from the transmitter. For a visualization of how this
can impact the ’idealized’ network cell layout, see Figure 2.2.

Figure 2.2 In a representation of an ideal hexagonal-grid cell network, an obstacle
causes shadowing, leading to a receiver being connected to a transmitter of a network
cell that the UE geographically is not physically in.
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2.3 The Wireless Channel and Multipath propagation

2.3 The Wireless Channel and Multipath propagation

In wireless communications, the transmission link between the transmitter (TX) and
receiver (RX) is through a wireless propagation channel. This can be defined as the
medium linking the TX and RX, where the properties of the medium largely deter-
mine theoretical information capacity and transmission behavior [Molisch, 2010].

A time-domain signal transmitted through the wireless propagation channel ex-
periences reflection, scattering and diffraction and signal travel time. This leads to
propagation delay, noise, and distortion for the signal. Overall, many of these can be
viewed as multipath propagation phenomena in an environment with user mobility,
EM noise, shadowing, and more.

Focusing in on multipath propagation, it is used to refer to signals propagating
from a transmitter being able to reach a receiver through multiple pathways. From
the receiver, the different travel lengths lead to the same signal traveling through
different multipath components (MPC) varying in phase. Therefore, when adding
up at the receiver, the signal can either constructively or destructively interfere with
itself. See Figure 2.3 for a representation of this. The self-interference causes small-
scale fluctuations in signal quality, leading to what is known as small-scale fading
[Molisch, 2010].

Figure 2.3 A multipath wireless propagation scenario from a transmitter (TX) and
receiver (RX) involving two pathways. The different pathways lead to the same sig-
nal arriving with different phase at the RX, leading to constructive/destructive inter-
ference and small-scale fading.

The differing geographic lengths of the propagation paths and the relatively
constant speed of electromagnetic waves mean the signal from the transmitter to
the receiver arrives ’spread out’ in time. The impact of this on the impulse response
model is covered in Chapter 2.5.
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2.4 Line-of-sight

Multipath propagation means the transmitter can be connected not only with line-
of-sight (LoS) on the receiver, unobstructed by physical geometry or other phenom-
ena, but also maintain with no direct line-of-sight (nLoS) - when obstructions exist.
These two scenarios have different channel behaviors, with the LoS having a dom-
inant secular component from the direct LoS MPC. Visual examples for NLoS and
LoS scenarios in multipath propagation can be seen in Figure 2.4.

Figure 2.4 Potential NLoS (in subfigure A) and LoS (in subfigure B) propagation
pathways from a TX and RX. LoS scenarios have a dominant specular component.

In a naive positioning scenario using simple triangulation for a NLoS case, mea-
suring the received power and signal direction in the RX to derive TX angle and
distance would lead to detecting a misleading TX position. E.g. Figure 2.5.

Figure 2.5 An NLoS scenario with a dominant reflection, where a naive position-
ing using network parameters would give misleading results.
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2.5 Input/Output Impulse response model

2.5 Input/Output Impulse response model

Examining the transmission link as a system with an input signal from the transmit-
ter and the output signal from the receiver, a statistical input-output model can be
formulated from physical models (See Chapter 2 in [Tse and Viswanath, 2005] and
Chapter 6 from [Molisch, 2010]).

The impact of multipath propagation is of particular importance for the input-
output model, and can be understood intuitively by considering the time-domain
of multipath propagation. The differing geographic lengths of the MPCs and the
near-constant speed of electromagnetic waves mean the signal from the transmitter
to the receiver arrives ’spread out’ in time. Therefore, an input-to-ouput impulse
response would no longer be a delta function [Molisch, 2010], and is modellable as a
convolution of the input time-signal with the channel-specific time-varying impulse-
response. Mathematically, this simplified input-output model can be expressed as in
(2.1), giving a standard form of a linear time-varying system.

y(t) =
∫

∞

−∞

h(τ, t)x(t− τ)dτ, (2.1)

where y(t) is the output signal, x(t) the input signal, and h(τ, t) the time-varying
impulse response of the channel (See Section 2.2.1 in [Tse and Viswanath, 2005]).
To define the time-varying impulse response of a channel two useful assumptions
for a statistical characterization of a channel can be introduced. The first is that the
channel is Wide-Sense Stationary (WSS) and the second is that the channel’s MPCs
come from Uncorrelated Scatterers (US).

The WSS assumption is that the statistical properties - though not the fading
realizations - of the examined wireless channel between the RX and TX are time
invariant. Over a small enough area - around ten times the signal wavelength - the
change can be considered small enough for WSS to hold [Molisch, 2010]. From
this, with RX movement leading to changing position in time, one can define time
intervals over which the WSS property can be assumed to hold as statistical proper-
ties experience only minor real change [Molisch, 2010].

With the WSS assumption, the time dependency of the impulse-response is due
to the environment, receiver, and/or transmitter being non-stationary. In the special
case where they are stationary, the impulse response becomes time-invariant.

The US assumption is that the phase of one MPC is uncorrelated with the phase
of another MPC arriving with a different delay. Practically, the scatterers that lead
to the MPCs for the RX have a random spatial distribution. The US and WSS as-
sumptions together form the WSSUS assumption, with which the impulse response
can be considered the result of a sum of the effect of N groups of MPCs.

The WSSUS assumption can be mathematically described as in (2.2), where
hi(t,τ) is the ’i’ tap belonging to the MPC ’i’, and ci(t) is the time-varying (if the
system is nonstationary) complex coefficient corresponding to the MPC ’i’.
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h(τ, t) =
N

∑
i=0

hi(τ, t) =
N

∑
i=0

ci(t)δ (τ− τi) (2.2)

Applying a Fourier transform to the impulse response h(τ, t), as shown in (2.3),
shows that the effect of multipath propagation is that the transfer function of the
channel changes with the channel frequency - meaning the subcarriers have different
transfer-functions. See Section 2.7 for more on frequency-division.

H( f , t) =
∫

∞

−∞

h(τ, t)e2π jτ f dτ =
N

∑
i=0

∫
∞

−∞

hi(τ, t)e2π jτ f dτ (2.3)

In the special case where the system can be considered stationary, the h(τ, t)
impulse response simplifies down to a time-invariant impulse response h(τ), as de-
scribed in (2.4). This is particularly relevant for channel estimation, where the sys-
tem impulse response can be considered time-invariant until a new sample is taken.
This is covered in more detail in Section 2.9.

h(τ) =
N

∑
i=0

hi(τ) =
N

∑
i=0

ciδ (τ− τi) (2.4)

As a next step, environmental noise can be modelled as additive to this input-
output model. In the simplest case, as a circular symmetric complex Gaussian. This
gives us the continuous-time time-varying impulse response model from one trans-
mitter to one receiver in (2.5), where w(t) is the noise component.

y(t) =
∫

∞

−∞

h(τ, t)x(t− τ)dτ +w(t) (2.5)

This can be generalized to discrete time with a tap-delay spread Td , for example
with a number of l channel filter taps hl . This gives us (2.6) in familiar form, with
discrete time points m [Tse and Viswanath, 2005].

y[m] = ∑
l

hl [m]x[m− l]+w[m] (2.6)

Giving a simple example, assuming a limited number L of taps l in a chan-
nel, transmitting some instantaneous signal x[0] at time 0 without followup trans-
missions will result in the reciever y observing the output as seen in (2.7), with a
discrete-time impulse response at time l [Tse and Viswanath, 2005].

y[l] = hl [l]x[0]+w[l], l = 0,1,2, . . . (2.7)

For discrete-time narrowband channels, meaning when for a given signal x with
a bandwith of W and a tap-delay spread of Td where Td <<W−1, (2.6) can then be
approximated, as in (2.8). The approximation follows from the assumption that the
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transfer function from (2.3) changes slowly, meaning that at any carrier frequency
fc, within a small enough frequency-band region around it the differences are neg-
ligible and the frequency transfer function can be considered to have only one ’tap’.
This only holds in explicitly narrowband channels, or cases where the wideband
can be viewed as a collection of distinct narrowband channels - e.g. the signals sent
through the channel are orthogonal.

y[m]≈ h[m]x[m]+w[m] (2.8)

In Section 2.8 on MIMO in 5G networks, this single receiver to single transmit-
ter model will be generalized to multiple transmitters and multiple receivers, allow-
ing for direction to be discriminated. For this, one can generalize the time-varying
impulse response to take MPC directionality as additional input parameters. The
two directions definable for a directional RX and TX are the Direction of Depar-
ture (DOD) Ω and the Direction of Arrival (DOA) Ψ. Directional components vary
slowly compared to the phase, which due to fading changes rapidly.

Combining the DOA and DOD components with a generalized WSSUS con-
dition in which MPC components from different directions fade independently, a
system impulse response using MPC components similar to that described in (2.2)
can be defined. This is again generalizable as the sum of MPC taps, and is described
in (2.9) [Molisch, 2010].

h(τ, t,Ω,Ψ) =
N

∑
i=0

hi(τ, t,Ω,Ψ) =
N

∑
i=0

ci(t)δ (τ− τi)δ (Ψ−Ψi)δ (Ω−Ωi) (2.9)

In certain cases if only the DOA is available and if assuming a stationary envi-
ronment, TX and RX, then the double-directional time-variant impulse response in
(2.9 can be simplified to a time-invariant single-direction impulse response as seen
in (2.10). Additionally, the Ψ DOA, when viewing the RX sensor as a 2D surface,
can be further broken down into longitude λ and latitude φ .

h(τ,Ψ) =
N

∑
i=0

hi(τ,Ψ) =
N

∑
i=0

ciδ (τ− τi)δ (Ψ−Ψi) (2.10)

With a narrowband channel discrete model from (2.8) and using discretization
of the DOA in latitude and longitude, the discrete-time DOA-dependant narrowband
channel transfer function can be approximated as a single complex number, with the
mathematical model described in (2.11).

y[m,Ψλ ,Ψφ ]≈ h[m,Ψλ ,Ψφ ]x[m]+w[m,Ψλ ,Ψφ ] (2.11)

Note that in this thesis the details of baseband conversion are not covered, for
more details on that see the books [Molisch, 2010] and [Tse and Viswanath, 2005].
All definitions of the impulse response in this chapter have been made without base-
band conversion or notation.
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2.6 Received signal power falloff with distance

As the goal of this thesis is a positioning system, one aspect worth investigating is
how the received power falls with distance. This is because assuming a positioning
system benefits from fewer nonlinearities and utilizes some sort of estimation based
on per-beam received ’beam-energy’, viewing the distance a beam ’travels’ is a
better proxy for position than just beam energy on its own.

On short distances, the free-space travel law holds and it makes intuitive sense
that beam energy is inversely correlated with the second power of distance. How-
ever, the radio environment is not a ’clean’ energy propagation environment due to
obstructions and other physical phenomena, and on longer distances the free-space
travel law does not accurately describe energy propagation - e.g., in NLoS scenarios,
the effective distance travelled for a radio wave to reach the UE from the basestation
might be much longer than a straight line through all the obstructions. Past a certain
threshold distance the received signal power is thus proportional to anywhere from
the 1.5-th to the 5.5-th power of distance [Molisch, 2010].

From empirical measurements, a decent statistical approximation of the received
power falloff with distance for most environments a two-stage model, with an initial
decay exponent of n=2 and after a break-point starting to fall off with a decay ex-
ponent of n=4 [Molisch, 2010]. This radio propagation model arises from the two-
ray model, with one approximate LoS wave and one ground-reflected wave. The
resulting approximate model can be seen in Figure 2.6. Note that more advanced
statistical approximations exist, but this simple model will work for this thesis.

Figure 2.6 The statistical description of received signal power with the two-ray
model with a RX height hr and a TX height ht. The different lines shows power
falloff with distance in different TX height scenarios and in free-space. Taken from
Fig 1. in [Omariba and Masese, 2019].
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2.7 Multiple access transmission structure

For wireless systems, multiple devices - users - often communicate simultaneously
in the same cell, requiring multiple access. More specifically within a network cell,
time, frequency and space are shared between users. This is in addition to outside-
cell transmissions potentially causing interference. With the limited time and fre-
quency resources available for transmission, optimal usage of available space is
critical. Furthermore, the uplink and the downlink - the transmissions from and to
the UE and basestation - must also be distributed efficiently. In essence, multiplex-
ing must be used to allocate resources precisely.

In past cellular systems, devices would communicate on for example differ-
ent frequencies, with each user assigned a frequency (sub)band. This is known as
Frequency-division multiple access (FDMA), and is an old and simple multiaccess
method. FDMA is often used with Frequency Division Duplexing (FDD), where
two (sub)bands are assigned to for each device, one for downlink transmissions and
one for uplink transmissions. Another method was to assign timeslots to different
users, known as time-division multiple access (TDMA) [Molisch, 2010]. Simplified
representations of these are shown in Figure 2.7.

Figure 2.7 A visual representation of FDMA (left) and TDMA (right), with the
filled-in areas of a specific shade representing a communication channel reserved for
one user

For wireless networks in the 4G and 5G era, Orthogonal Frequency-Division
Multiple Access (OFDMA) with its suptype of linearly precoded OFDMA (LA-
OFDMA) is used to allocate resources. These methods use Orthogonal frequency-
division multiplexing (OFDM), a specialized frequency-division multiplexing
method using orthogonal (sub)carriers to minimize inter-carrier and inter-symbol
interference [Molisch, 2010].
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OFDMA combines the principles of FDMA with TDMA such that users are
scheduled to use specific combinations of frequency bands to be orthogonal over a
symbol duration, optimally utilizing the time-frequency grid. The subcarriers for a
transmission can then be mathematically approximated as narrowband channels.

Scheduling in OFDMA is accomplished by subdividing the frequency-time grid
into so-called resource elements, which are defined as one subcarrier for the du-
ration of one OFDM symbol. [Molisch, 2010] These resource elements are then
grouped into resource blocks, which are twelve subcarriers over the duration of one
OFDM symbol. The symbol length itself is determined by subcarrier spacing and
a required Guard Interval (GI), also called the Cyclic Prefix (CP). The GI/CP is a
lengthening of the symbol length to ensure that the multipath components arriving
delayed from the neighboring symbol do not interfere with the current symbol.

In summary, OFDMA transmissions to any single user are done with OFDM
modulation on a scheduled number of resource blocks on orthogonal subcarriers.
This can be seen on the time-frequency grid in Figure 2.8.

Figure 2.8 A visual representation OFDMA on the time-frequency grid. In this
specific example, the filled-in resource elements are occupied by pilots.

Within a resource element, data is modulated using traditional modulation tech-
niques such as Quadrature-Phase Shift Keying (QPSK) and Quadrature Amplitude
Modulation (QAM). Bitrates then depend on the SNR of the user-specific channel.

With the advent of MIMO and directional beamforming - see Section 2.5 and the
following Section 2.8 for more details - spatial division on top of OFDMA is also a
possibility. The same resource block can be assigned to multiple spatially seperate
users in a single cell such that their transmissions would minimally interfere. See
Figure 2.9 for a visualization of MIMO-enabled spatial multiple-access.
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2.8 MIMO and beam-centric design

In prior sections, Single-Input Single-Output (SISO) antennas have generally been
assumed. Multiple-Input and Multiple-Output - abbreviated as MIMO - is the con-
cept of having multiple antennas both on the RX side and the TX side for wireless
transmission. Other combinations include single-input multiple-output (SIMO) and
multiple-input single-output (MISO). These, when coupled with proper communi-
cation and statistical techniques, allow for more advanced transmission structures.
The goal of this is generally to improve overall performance in wireless communi-
cation, though at the cost of increasing complexity.

To introduce MIMO methods in more detail, the concept of beamforming is crit-
ical. Beamforming refers to using various methods to direct wireless transmission
energy; one example is by using several TX antennas to constructively interfere
in specific ways. The ’beams’ being formed can be thought of as location-aware
constructive interference using MPC [Hampton, 2013].

Exploiting MIMO and beam-targeting, so-called spatial diversity and spatial
multiplexing are possible. Spatial diversity refers to utilizing MIMO techniques to
compensate for problems caused by different multipath components, essentially to
improve wireless reliability and range. Spatial multiplexing refers to using multi-
ple beams to transmit different information over multiple so-called ’beams’, mini-
mizing interference [Hampton, 2013]. A non-mathematical visualization of spatial
multiplexing for multiple access can be seen in Figure 2.9.

Figure 2.9 Abstract representation of spatial multiple access enabled by beam-
forming with a TX array, allowing parallel datastreams to multiple distinct UE.

To mathematically describe MIMO systems, an extension of the discrete-time
narrowband impulse response/transfer function model from Section 2.5 in 2.8 can
be introduced. With a generic MIMO setup consisting of NT X number of TX an-
tennas transmitting a single symbol over a narrowband (or equivalent) channel and
NRX number of RX antennas, the channel impulse responses h[m] for the symbol
transmission at time m from any TX antenna to any RX antenna have to be defined.
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More specifically, for any given i∈ {RX} antenna at symbol time m, the symbol
transmissions from all j ∈ {T X} antennas are summed, each after being multiplied
by their j TX to i RX antenna-to-antenna hi j[m] channel impulse responses. The
result is (2.12) - where yi[m] is the output signal for any given i RX at symbol time
m given all the x j[m] transmitted time m symbols. In addition, every RX antenna
i has a noise wi[m] at symbol time m - this is often modelled as complex circular
Gaussian.

yi =
NT X

∑
j=1

(hi j[m]x j[m])+wi[m] (2.12)

To describe the whole wireless channel from every TX antenna to every RX
antenna at a given symbol time m in a single equation, introducing matrix notation
is useful. The channel can then be described at symbol time m as in (2.17), with
Hm channel matrix defined in (2.13), Rm recieved symbols defined in (2.14), Sm
transmitted symbols defined in (2.15), and transmit antenna noise Wm in (2.16).

Hm :=


h11[m] h12[m] · · · h1NT X [m]
h21[m] h22[m] · · · h2NT X [m]

...
...

. . .
...

hNRX 1[m] hNRX 2[m] · · · hNRX NT X [m]

 (2.13)

Rm :=


y1[m]
y2[m]

...
yNRX [m]

 (2.14)

Sm :=


x1[m]
x2[m]

...
xNT X [m]

 (2.15)

Wm :=


w1[m]
w2[m]

...
wNRX [m]

 (2.16)

Finally, with the full MIMO wireless channel equation at symbol time m being
defined as:

Rm = HmSm +Wm (2.17)

Importantly, the channel matrix Hm describes the MIMO wireless channel, de-
termining channel properties. Often the symbol time m is removed for brevity, so
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matrices from (2.17) are denoted H,S,R,W. Additionally, the channel matrix H is
often replaced by the normalized channel matrix Hnorm :=

√
ρH, where ρ is the

signal-to-noise power ratio at the RX. For brevity, in the rest of this section ρ = 1
is assumed, giving us Hnorm = H.

To understand beamforming through the channel matrix, a spatial multiplexing
method called eigenbeamforming is an intuitive example. An important assumption
for closed-loop eigenbeamforming is that either the RX or TX has enough informa-
tion about the rank-r H channel matrix to obtain the precoding matrix VNT X×NT X

on the TX side and a decoding matrix UNRX×NRX on the RX side. V and U relate to
the Channel Matrix H through (2.18). Eigenbeamforming then gives r independent
SISO channels to transmit through - in short, spatial multiplexing.

Mathematically underpinning eigenbeamforming is the singular value decom-
position (SVD) of complex matrices. First, as H is a NRX ×NT X complex matrix of
rank r, it is possible to apply SVD, where the singular values are denoted as {σi},
with 1 ≤ i ≤ r, and σ1 ≥ σ2 ≥ ...σr. Using the Hermitian operator H, we then get
the SVD relation in (2.18), using the unitary matrices UNRX×NRX , VNT X×NT X and the
diagonal matrix Dr×r = diag(σ1,σ2, ...,σr).

H = UNRX×NRX

[
Dr×r 0

0 0

]
VH

NT X×NT X
(2.18)

All matrices in (2.18) can be computed using H. The transmitter can precode
the symbol transmit vector S from (2.15) using the precoding matrix V, giving the
precoded transmit vector Sp as seen in (2.19).

Sp =V S (2.19)

At the RX, the received signal can be multiplied using the U matrix, giving the
decoded recieved signal vector Rp, as seen in (2.20) through substituting (2.17).

Rp =UHR (2.20)

=UHHS+UHW

Bringing in transmit vector precoding from (2.19) and substituting in the SVD of H
for (2.20), we get (2.21).

Rp =UHUDV HV S+UHW (2.21)

= DS+UHW

Importantly, (2.21) gives r independent SISO channels from each of the transmitted
symbols S to each of the recieved Rp, accomplishing effective spatial multiplexing
through MIMO.
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2.9 Channel estimation

With the transmission structure defined in Section 2.7 and the concept of the impulse
response model covered in Section 2.5, the final general concept to cover is how the
TX/RX of any specific uplink and downlink transmission can estimate the channel
properties in real-time.

Knowledge of channel properties - or the channel matrix H - is important for
beamforming in MIMO (see Section 2.8). The concept of channel estimation is
therefore to use various statistical methods and channel models to estimate the time-
(in)variant channel impulse response of a wireless channel between the TX and RX
[Apelfrojd, 2018].

One method for estimating the channel is through reserving some resource
blocks in the channel for the user equipment and/or the basestation to transmit so-
called pilot signals, which are known to both sides of the wireless communication
channel. See Figure 2.8 for an example of how pilot signal resource usage could
appear for an OFDMA communication system. Using pilot data for channel esti-
mation is known as training-based channel estimation. The disadvantage of using
training data is that resources have to be used for channel estimation. An alternative
would be blind estimation, where no pilot sequences are used and instead channel
state is statistically estimated using received data. In practice a blind approach has
worse performance, and is seldom used [Hampton, 2013].

In the simplest of cases with no noise and a time-invariant channel, knowing the
input and the output of a signal is sufficient to estimate the complex-valued time-
invariant channel impulse response. In a more realistic scenario where the channel
is time-variant and noise is non-negligible, the channel can never be perfectly esti-
mated. Instead, at specific times, a statistical estimate can be made with or without
priors on the channel and the noise appearance. The outdated channel can be com-
pensated for by various channel estimate prediction methods [Apelfrojd, 2018].

A way to mathematically approximate the pilot-measurement equation for
SISO channel estimation with data only at time τ , using the familiar discrete-time
impulse-response model from Section 2.5, can be seen in (2.22).

yK [τ] = hK [τ]Φ[τ]+w[τ] (2.22)

, where yK [τ] is a row vector with K elements and is the output signal at sampled
time τ with K time-frequency measurement-location points. hK [τ] is the channel
impulse response, a K-element vector for the K time-frequency measurement loca-
tions. ΦK×K [τ] is a matrix consisting of the known pilot signals transmitted at the
K time-frequency (resource) measurement locations. As this is channel behavior,
all values are complex. The noise w[τ] has identical dimensionality to yK [τ], and
is often modelled as a circular symmetric complex Gaussian. Assuming orthogo-
nal time-frequency measurement locations with no inter-channel interference and a
single antenna RX/TX, Φ[τ] is a diagonal matrix [Apelfrojd, 2018].
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Introducing MIMO from Section 2.8 into (2.22) using NT X transmitters and NRX
receivers, the result is (2.23). yK [τ] becomes the RNRX×K [τ] complex matrix, where
each RX antenna has a dedicated time-frequency-resource row. ΦK×K [τ] gains an
increased dimensionality, becoming the matrix Φ(K·NT X )×K [τ], with the pilot signal
transmitted from each antenna over each resource. hK [τ] becomes a complex chan-
nel matrix HNRX×(K·NT X )[τ] - the MIMO channel matrix on each of the K resources
[Apelfrojd, 2018].

RNRX×K [τ] = HNRX×(K·NT X )[τ]Φ(K·NT X )×K [τ]+W[τ] (2.23)

In practice, when measuring the downlink channel from the basestation TX to
the UE RX for MIMO arrays, the ’true’ NRX is transformed from multiple RX an-
tennas NRX to discretized direction of arrivals Ψi. There are then NΨ number of
discrete detectable direction-of-arrivals.

With directionality, the estimated H[τ] channel matrix can be described as
two-dimensional or three-dimensional. The two-dimensional case is similar to that
specified previously, but with HNΨ×(K·NT X ). With three-dimensions, the MIMO an-
tenna array is viewed as a 2D surface with discrete vertical and horizontal anten-
nas, giving NΨ,h number of discrete horizontal directions-of-arrival and NΨ,v dis-
crete vertical directions-of-arrival. The H[τ] channel matrix in this case becomes
HNΨ,h×NΨ,v×(K·NT X ). If the channel is MISO, then HNΨ,h×NΨ,v×K can be considered
analogous to h(τ,Ψ) seen in Section 2.5.

In the above Equations (2.22, 2.23), we can see both that the number of un-
knowns can outnumber the number of equations, and that the noise at any time
interval τ can distort the channel estimate. Therefore, measurements from multi-
ple time intervals before τ and prior knowledge of the statistical properties of the
channel must be used to obtain usable results. The purpose of channel estimation
is therefore using the known pilot signal(s) Θ and the resulting received signal y at
all resources and antennas for all time points up to the current τ , and estimating a
current channel impulse response matrix hK [τ], and/or a given integer-time-shifted
channel impulse response matrix hK [τ +m] [Apelfrojd, 2018].

The most common form of channel estimation is the family of linear estimators.
Linear estimators allow for the estimation of any arbitrary hK [τ +m] using a simple
vector multiplication with a weight vector W , where every element is a matrix of
the required dimensionality, and the vectorized notation for the y at all times up to
τ . Different sub-types of linear estimators use different methodology to calculate
the weight vector. Mathematically, linear estimators are described in (2.24), using
elements W [i] of the general weight vector W [Apelfrojd, 2018].

ĥK [τ +m] =
τ

∑
i=0

W [i]yK [i] (2.24)

The specifics of linear estimators and pilot design are not covered in this thesis
for brevity, to read more see [Apelfrojd, 2018], [Hampton, 2013], [Molisch, 2010].
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2.10 Channel State Information

The broadcasting of pilot reference signals from the basestation when combined
with channel estimation techniques from e.g. Section 2.9 enables the usage of
closed-loop beamforming, modulation, code rate, etc...

Specifically, in 5G NR the basestation sends a reference signal termed the Chan-
nel State Information Reference Signal (CSI-RS). Once the downlink channel -
termed Physical downlink Data Shared Channel (NR-PDSCH) - from the bases-
tation to the UE is established, other reference signals such as the Demodulation
Reference Signal (DM-RS) and the Phase Tracking Reference Signal (PTRS) are
sent downlink. As a seperate downlink transmission, the Physical Broadcast Chan-
nel and with it the primary and secondary synchronization signals enable a UE to
initially detect and then synchronize with a new cell.

In summary, once connection with the basestation is established, all the refer-
ence signals, but especially the CSI-RS are combined with channel sounding and
estimation techniques to then acquire channel properties and Channel State Infor-
mation (CSI). 5G NR specific CSI is termed CSI-NR. The UE then reports CSI-NR
and other channel properties back to the base-station through reference signals on
the uplink channel (PUSCH). Uplink reference signals include uplink DM-RS and
PTRS along with the Sounding Reference Signal (SRS). For this thesis, the SRS
is the most significant, and contains most general CSI, including the effect of mul-
tipath components, scattering, fading, signal power loss, etc. Through the uplink-
transmitted CSI-NR, the basestation can close the transmission feedback loop, and
ensure high-quality transmission. A visual summary of CSI feedback can be seen
in Figure 2.10

Figure 2.10 Representation of CSI-RS downlink transmission from a basestation;
a UE obtains CSI-NR data through channel estimation, then reports the CSI back
uplink through SRS and other reference signals.
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The information contained in the CSI-NR includes, among others, the Channel
Quality Indicator (CQI), the Precoding Matrix Indicator (PMI), and the Rank Indi-
cator (RI). The specifics of the reported indicators and their contents depend on the
codebook used and the details thereof are not covered in this thesis for brevity.

As an example of a CSI-NR use-case, the reported indicators can give a sugges-
tion to the basestation of what according to the UE’s internal state estimate would
be a good suggested precoding matrix. As shown by the example in Section 2.8, a
transmitted precoding matrix to the base-station enables beamforming. The bases-
tation will then use the suggested precoding matrix and the and allocate resources
according to the needs of the other users in the system to calculate a suitable precod-
ing matrix. Due to the other users, the used precoding matrix might not be identical
to what the UE suggested through its CSI-NR reporting.

As beamforming requires a good knowledge of the channel matrix H, as shown
in Section 2.8, the SRS report provides the basestation with a per-UE and per-
resource-block channel estimate. In 5G there are 273 physical resource blocks
(PRB) along the spectrum (see resource blocks in Section 2.7), in practice and on
commercial-grade basestation hardware from Ericsson AB, only a subset of PRB
channel estimates are updated per SRS report.

The significance of CSI and channel estimates for positioning, as per the topic of
this thesis, comes from the dependence of the channel matrix estimate on position.
This correlation, as explored briefly in Section 2.3, is due in part to the multipath
phenomena, radio propagation pathways through the environment, and on travel
distance. Such dependence on location invites speculation on using the CSI-NR
feedback system to determine the position of each UE from their reported channel
estimate. Furthermore, as on varying channel frequencies radio waves propagate in
different ways, channel estimates on high MIMO beam/antenna counts spanning
the entire 5G spectrum provide enormous amounts of data to use in a positioning
algorithm. An outline of a positioning system can be seen in Figure 2.11

Figure 2.11 Theoretical positioning feedback-loop for determining UE position
using SRS feedback of CSI-NR
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3
Coordinate Systems, GPS
Positioning

3.1 UE Positioning and GNSS

Positioning and localization refers to determining the position of a body in relation
to a known fixed reference point within a defined coordinate system. Optionally,
other qualities such as direction of motion, orientation, velocity, acceleration can
also fall under the category of positioning, such as when positioning is used for
navigation. Exploiting different physical phenomena, a large variety of positioning
systems have been developed. A trivial example of using wireless communications
as a positioning system is by taking the location of the connected basestation as an
approximate for the UE in question.

Overall, positioning systems can be categorized three ways as mentioned in
[Groves, 2013]: Real-time or post-processed, static or mobile positioning, and self-
positioning and remote positioning. Ideally, 5G wireless systems would be us-
able for remote basestation-based real-time positioning of mobile UE devices. In
essence, to track the location of individual non-static UEs through their transmitted
channel matrices.

A necessary component to evaluate and training machine learning-based posi-
tioning systems is to use a prior known ground truth position. An example of this
could be to use predetermined fixed positions in a well-controlled measured envi-
ronment, or to use another existent positioning system. Constraining data recording
to fixed locations might limit real-world applicability of a positioning system, as
characteristics originating from natural movement can be lost.

In the case for using an existent positioning system for data collection of out-
doors positioning, satellite navigation is the most practical choice. Satellite naviga-
tion systems are widely available, and provide decent accuracy in realistic con-
ditions. A subtype of these systems, termed Global navigation satellite systems
(GNSS) are freely available for civilian use and widespread in networked devices,
serving as the basis for most civilian navigation software available. Usage of GNSS
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necessitates careful selection of measurement environment, as system precision
varies heavily from environmental factors. [Zhu et al., 2018]

The principle of satellite navigation and GNSS specifically is to have at least
four satellites detectable by a device at any point on earth. The satellites are on in-
clined orbits known as ’constellations’, where calibration is done through onboard
atomic clocks and on-ground stations. For a visualization of how GNSS constella-
tions appear from space-based and ground-based observer, see Figure 3.1.

Figure 3.1 A representation of a GNSS constellation of 4 satellites transmitting to
a ground-based reciever from space-view (left) and ground-view (right)

GNSS satellites transmit radio signals which can be picked up by equipment
on earth that use passive ranging and do not transmit any information back to
the satellites [Groves, 2013]. The information transmitted by the satellites include
highly-accurate timing parameters and orbital position information, enabling high-
precision positioning from the UE. For more reading on the specifics of satellite
navigation and of navigation more generally, see [Groves, 2013].

As previously mentioned, local environmental factors can serve to increase un-
certainty in exclusively GNSS-based positioning systems. Obstructions can block
or distort signals, reflections can give false path lengths. For this reason, modern
outdoors positioning and navigation systems use a combination of positioning sys-
tems to provide a more reliable position estimate. Additionally, signals from dif-
ferent GNSS systems, such as GPS and Gallileo can be fused to further increase
reliability.

With their wide array of sensors and GNSS compatibility, smartphones provide
an ideal tool for obtaining position data. Conveniently, tracking the position of such
GNSS-capable UE devices through their channel state information is the very goal
of this thesis. Therefore, the use of GNSS-based outdoors positioning as ground
truth for testing and training wireless network and ML-based outdoors positioning
is pertinent, with both the position estimate and uncertainty obtainable along with
corresponding data time-stamps.

33



Chapter 3. Coordinate Systems, GPS Positioning

3.2 The coordinate frame

To position an object, one must construct a pair of coordinate frames. First, an
arbitrary point on the object must be selected as the origin. A set of non-planar
axes corresponding to the positional degrees of freedom must also be defined on
the origin, e.g. with direction of motion of the object being the first axis. Finally, a
reference gives relative position for the origin and its fixed axes. The reference is
also a point with a set of non-planar axes. A coordinate frame can also be understood
as a coordinate system with an associated set of measurements that can be used to
described objects within that coordinate system. The selection of which coordinate
frame in a positioning pair is the origin and which is the reference is arbitrary and
trivially interchangeable. The reference and the tracked object’s origin with their
corresponding axes comprise the coordinate frame pair defining the position of an
object. If the axes of both the origin and the reference are orthogonal, then they are
termed orthogonal coordinate frames [Groves, 2013].

For positioning of an object in 3D space to a reference point within a given
orthogonal coordinate frame, there are six degrees of freedom; three for object po-
sition and three for orientation. E.g. in Cartesian coordinates x, y, z determine posi-
tion while the Tait–Bryan angles of ψ , θ , φ determine orientation. A simplified 2D
representation of UE positioning in a coordinate frame can be seen in 3.2, with four
degrees of freedom.

Figure 3.2 Positioning of an object in a 2D space using a 2D coordinate frame.
The object origin is the center of mass of a UE, and the first axis of the origin is the
direction of motion of the UE.
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3.3 Local Tangent Plane Coordinate System

Commercially available GNSS systems output curvilinear coordinates as seen in
the Appendix Figure 11.1, using different global ellipsoid models for the coordi-
nate frame, such as the World Geodetic System 1984 (WGS84) or the International
Terrestrial Reference Frame (ITRF) [Groves, 2013].

Curvilinear coordinates are well suited for global positioning but bring with
them redundant mathematical complexities for local positioning. On small-enough
scales the interest is more in the position from some local reference point in terms
of Cartesian coordinates, rather than a global state in Geodetic coordinates. If mea-
surement noise is larger than the modelling errors from treating the surface of earth
as non-curved, a transformation onto a local Cartesian frame brings only minimal
distortion. By convention, local Cartesian coordinate frames have orthogonal axes
on the tangent plane pointing East-North-Up (ENU) [Drake, 2002]. The ENU real-
ization of the local tangent plane coordinate frame can be seen in Figure 3.3.

Figure 3.3 East-North-Up (ENU) local tangent plane coordinate system

To convert small changes from curvilinear coordinates to a local tangent, an
intermediary conversion into small changes in earth-centered earth-fixed (ECEF)
coordinates is needed, done by applying Taylor expansion about latitude, longi-
tude and height on (11.2). This can be seen in (11.1). Having brought the tangent-
projected small changes on the ellipsoid into ECEF coordinates, a rotation matrix
as seen in (3.1) brings the coordinates from ECEF (dx, dy, dz) to ENU (de, dn, du)
coordinates [Drake, 2002].de

dn
du

=

 −sinλ cosλ 0
−sinΦg cosλ −sinΦg sinλ cosΦg
cosΦg cosλ cosΦg sinλ sinΦg

dx
dy
dz

 (3.1)
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4
Particle Filtering

4.1 Bayesian filtering of underlying states

While developing a positioning system using 5G channel matrix feedback, viewing
position as an isolated observation purely based off any single obtained channel ma-
trix is a naïve approach. In a more realistic case, each UE will be moving through the
world according to some underlying kinematic system dynamic, with the position
snapshots obtained by processing the channel matrix H.

Assuming meaningful position information is contained within the channel ma-
trix and partially extracted, the processed position estimates can almost be viewed
as noisy observations of the underlying position state. It is therefore pertinent to
utilize state behavior and prior observations in addition to the current observation to
filter for a more accurate estimate of the true current state. Filtering in this context
refers to using observations up-to and including the current observation to find the
underlying state at the current time.

The family of approaches for recursively obtaining an estimate of an unknown
state probability density function using past observations is known as Recursive
Bayesian estimation. For system state estimation in a Markovian process with no
inputs, state and measurement noise, and uneven sample-times, a system can rep-
resented using the state equations as seen in (4.1), where xk is the process state
at time t, ∆tk is the elapsed time between sample k+ 1 and sample k, vk the state
noise, f (xk,vk,∆tk) the system dynamics, ek the measurement noise, and yk the mea-
surement. A Markovian system is one in which the probability of a state in step k
depends only on the state in step k−1, with the general Markov model and obser-
vation model seen in (4.2)

xk+1 = f (xk,vk,∆tk) (4.1)
yk =h(xk)+ ek

xk+1 ∼p(xk+1|xk) (4.2)
yk ∼p(yk|xk)
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4.1 Bayesian filtering of underlying states

If the assumption is made that the system behavior and state xk is Markovian (or
is approximately Markovian), then according to Bayesian estimation principles the
prior of xk can be obtained through the Chapman-Kolmogorov equation, as seen in
(4.3) [Papoulis, 1984]. Note that an irregular sampling rate in an otherwise Marko-
vian system does not break the Markovian property.

p(xk|y1:k−1) =
∫

p(xk|xk−1,y1:k−1) p(xk−1|y1:k−1)dxk−1 (4.3)

=
∫

p(xk|xk−1) p(xk−1|y1:k−1)dxk−1

Using (4.3) for the state prior update step when combined with (4.4) as the posterior
updates and with the posterior update (4.5) forms the basis of recursive Bayesian
estimation algorithms.

p(xk|y1:k) =
p(xk|y1:k−1) p(yk|xk)

p(yk|y1:k−1)
(4.4)

p(yk|y1:k−1) =
∫

p(yk|xk) p(xk|y1:k−1)dxk (4.5)

For linear or linearizable system dynamics with known near-zero-mean-Gaussian
noise vt ,ek, Kalman filters or related Extended Kalman Filters and Unscented
Kalman filters are optimal and commonly used [Julier and Uhlmann, 2004]
[Gustafsson, 2010]. This is because the minimum mean square estimate and its
covariance can be calculated through an analytic calculation using the linear state
dynamics and the known noise characteristics, giving a finite-dimensional represen-
tation of the posterior distributions.

For positioning using 5G channel matrices with machine learning as per the
process outlined in Section 2.9, Kalman Filtering is unfeasible. Though the kine-
matics of movement have well-known dynamics that are suitable for linearization
and therefore Extended Kalman filters, the observations from machine learning sys-
tems generally end up having extremely non-zero-mean-Gaussian and time-varying
noise characteristics.

Modelling the state changes in a system with highly-non-Gaussian noise can
instead be done through numerical approximations, e.g. point mass filters where
a discretized state-space is used to numerically estimate the prior, enabling arbi-
trary non-Gaussian and non-linear systems to be approximated. However, point
mass filters suffer from quadratic complexity in grid size, and do not enable higher-
resolution grids in the parts of the state-space where more information is contained.
Another more common numerical approximation method that enables a sort of ’dy-
namic grid’ are Sequential Monte Carlo methods - also known as Particle Filters
(PF) [Gustafsson, 2010].
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Chapter 4. Particle Filtering

4.2 Particle Filters

Particle filters create an evolving posterior estimate through sampling a large set Np

of simulated particles
{

Pi
}Np

i=1 that each have a time-evolving internal state repre-
sentation xi

k and an associated weight wi
k|k, where the weight represents the poste-

rior: wi
k|k = p

(
xi

1:k|y1:k
)

and ∑
Np
i=1 wi

k|k = 1. The posterior probability p(x1:k|y1:k) can
then be approximated with Np particles as shown in (4.6) [Gustafsson, 2010].

p(x1:k|y1:k)≈
Np

∑
i=1

wi
k|kδ

(
x1:k− xi

1:k
)

(4.6)

When viewed over time, the set of
{

Pi
}Np

i=1 particles form a set of Np state-
trajectories. The particles, the observations, and the system dynamics then approxi-
mate the probability distribution of the state xk at time k. The advantage of particle
filters is that the state probability distribution can have any form, all that is required
is knowledge of system dynamics, vk and ek - to calculate p

(
yk|xi

k

)
and p

(
xi

k+1|xi
k

)
.

The basic mathematical description of the update process for a particle in a particle
filter can be seen in (4.7), with the measurement update step in (4.8) where ck is the
normalization weight [Gustafsson, 2010].

p
(
xi

1:k+1|y1:k
)
= p

(
xi

k+1|xi
1:k,y1:k

)
p
(
xi

1:k|y1:k
)

(4.7)

= p
(
xi

k+1|xi
1:k
)

wi
k|k

wi
k|k =

1
ck

wi
k|k−1 p

(
yk|xi

k
)

(4.8)

ck =
Np

∑
i=1

wi
k|k−1 p

(
yk|xi

k
)

Then, sampling with importance using a proposal distribution q, chosen to re-
flect the ’value’ of a sample as shown in (4.9) gives the ability to adjust the posterior
according to the importance, as shown in (4.10) [Gustafsson, 2010]

xi
k+1 ∼ q

(
xk+1|xi

k,yk+1
)

(4.9)

p(xk+1|y1:k) =
N

∑
i=1

p
(
xi

k+1|xi
k

)
q
(
xi

k+1|xi
k,yk+1

)wi
k|kδ

(
x1:k+1− xi

1:k+1
)

(4.10)

=
N

∑
i=1

wi
k+1|kδ

(
x1:k+1− xi

1:k+1
)
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4.3 Particle filter in practice

4.3 Particle filter in practice

Resampling, Stratified resampling
Particle filters also suffer from the curse of dimensionality; constant coverage of
more states requires exponentially more particles. This requires a minimal number
of states to be kept track of per particle. Intelligent resampling techniques enable the
particles with more importance to be duplicated, and particles with less importance
to be destroyed - thereby decreasing the computational complexity of the PF, though
the number of states must still be kept relatively low. One common resampling
technique is stratified resampling [Kitagawa, 1996].

Stratified resampling aims select samples in a fairly uniform way - between 0
and 2/N apart, where N is the number of samples. This is done by dividing the
cumulative sum of the weights into N parts, then randomly sampling one particle
from every part, according to which weight it would belong to. Stratified sampling
is fairly common in literature, and it will be used in this thesis.

Algorithm
With a brief overview of the mathematics in Section 4.1, a practical implementation
of a particle filter with a changing sample-time can be seen in Algorithm 1.

Algorithm 1: A basic implementation of a particle filter
Result: time-vector of state estimates x̂1:M
Input: Particle count Np
Input: Observed state extractor from particle: Px()
Input: Observation model and noise (vector) meas1:M()
Input: State noise and dynamics(vector) simulator sim1:M()
Input: Resample indexing algorithm Resample()
Data: Observation vector y1:M , sample time vector ∆t1:M

Initialize: particles: Pk :=
{

Pi
}Np

i=0← initialize(y0) ;
Initialize: weights: w1:k← 1

Np
;

Initialize: output vector: x̂0:M ← 0 ;
for k = 1 to M do

Simulate particle motion with noise: Pk← simk (Pk−1,∆tk);
Update weights from measurement model: wk← meask (yk,Pk);

Normalize weights: wi
k←

wi
k

∑i wi
k

;

Obtain state estimate: x̂k← 1
Np

∑
Np
i=0 wi

kPx(Pi) ;

Resample particles: Pk← Pk [Resample(wk)]. ;
end
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5
Machine Learning with CSI

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E. [Mitchell, 1997]

5.1 Introduction to Machine Learning

Machine learning (ML) can be viewed as the study of algorithms that can ’learn’
approximations of the underlying systems using interaction, or generated/recorded
data, even if the underlying systems are highly complex and/or nonlinear. The idea is
that for simpler systems mathematical or physical modelling and simulations work
well, more complex real-world problems often do not have an elegant solution, or
have a solution too time-intensive to exactly calculate. In such cases, assuming suffi-
cient quantities of good-enough quality data can be obtained, approximate solutions
generated by machine-learning algorithms can fill the gap.

The relation of the Channel matrix with regards to relative position of the UE
and the basestation is highly complex and nonlinear. Considering this, for position-
ing from CSI-NR data, as shown in Figure 2.11, ML algorithms seem pertinent.

ML algorithms most often take the form of an over-parameterized function,
where the parameters are optimized through some iterative algorithm over a func-
tion that measures how well the ML model is performing. A very general description
of this function is shown in Figure 5.1, where: E is the measured performance, PT

m
is an instantiation of the performance measuring function P for task T with hyper-
parameters m, f is the ML model, D is the measured dataset or environment.

E = PT
m ( f ,D) (5.1)

The desired final result is a system that can generalize from the training envi-
ronment into real-world applications. In summary, ML can be considered as a way
for systems to ’intelligently’ learn an environment, find underlying mathematical
structures, and to be able to meaningfully extend the rules learned from the training
process to the real-world [Géron, 2019].
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5.2 Supervised learning

5.2 Supervised learning

Considering the breadth of the field, the first concept to explore in ML with regards
to CSI positioning is the specific category within which positioning algorithms can
belong to. There are several ways to categorize ML systems. The definitions and cat-
egories vary in literature, with different criteria leading to different categorizations
that can be combined at-will to specify ML behavior [Géron, 2019]. For positioning
in CSI data, the task is to use known pairs of CSI data and corresponding location
at time of recording, and learn how to predict a continuous position for future CSI
data. The format of the training data means that CSI-based positioning would be
considered a form of supervised regression.

In supervised learning, input datapoints are given along with known labels for
each datapoint. The ML system is then set to ’learn’ associations between the input
data and their known labels - or some other rule requiring information about both.
Regression means that some continuous information associated with each datapoint
is the desired output from the ML algorithm. In literature, the data is usually de-
noted as X, with the first dimension corresponding to the number of datapoints. The
associated labels/values are then denoted as Y, with an identical first dimension.
The performance metric (5.1) most commonly used for supervised regression is the
loss-function, with a smaller ’loss’ output corresponding to a better fit to the data.
This takes the form of (5.2), where l is the loss, Jm the loss-function instantiated
with meta-parameters m, the ML supervised regression model f with parameters θ ,
the unvalued data X , and the associated data values Y .

l = Jm ( f (X ,θ),Y ) (5.2)

Therefore, a supervised regression algorithm will seek to minimize the loss
function Jm over the dataset D = X∪Y through iterating over the parameters θ

during training. Mathematically, the training procedure for regression to obtain op-
timal ML parameters can be described as in (5.3).

θ = argmin
θ

[Jm ( f (X,θ),Y)] (5.3)

Mean squared error (MSE) and various derived errors functions is one of the
most common of the error functions used for supervised regression in literature.
The simplest form of mean-squared error can be seen in (5.4), which shows the
optimization procedure using MSE for a supervised regression model f with pa-
rameters θ , where Xi and Yi denote the i-th element of the unvalued part of the
dataset X and associated values data Y.

θ = argmin
θ

[MSE ( f (X,θ),Y)] = argmin
θ

[
1
n

n−1

∑
i=0

( f (Xi,θ)−Yi)
2

]
(5.4)
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Chapter 5. Machine Learning with CSI

5.3 Optimization for Machine Learning

Looking at (5.3), it is clear that training machine learning for regression becomes a
sort of optimization problem, where a ML model with behavior set by parameters
θ is optimized to minimize a loss function with training data X ,Y . For simple op-
timization problems such as linear regression (Section 5.6), a closed-form solution
can be found that exactly determines the optimal parameters. In most cases how-
ever, the optimum can not be exactly calculated. Instead, iterating parameters using
local gradients on the cost function result in a step-by-step descent in loss, which
after some number of steps gets arbitrarily close to a local or global minimum. This
is known as gradient descent, e.g. in Figure 5.1 using local gradients of some ar-
bitrary non-convex function. For convex optimization, the minima found is always
the global minimum. However, as most ML models are non-convex, generally some
local minimum is found instead.

Figure 5.1 An example of a gradient descent algorithm on an arbitrary non-convex
loss-function with two separate initializations. One ends up settling at the global
minimum, while the other at a local minima.

As long as the data used for training is representative of the future use-case, and
assuming highly unrepresentative local minima are rejected, ML models finding
local minima is not necessarily a problem. The goal of ML is to create a model that
generalizes outside the data used for building the model. Therefore, obtaining the
optimized regression model on CSI data as described in Section 5.2 is in truth using
the loss-function as a surrogate optimization problem to hopefully approximate the
wider unknown problem. Especially for ML models with high complexity, most
local minima are good approximates of the overall global minimum [Goodfellow
et al., 2016].
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5.3 Optimization for Machine Learning

Stochastic Gradient descent
Of the gradient descent algorithms used in practice for ML, one of the simplest
is known as Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951]. The
idea behind SGD is twofold. First, it is computationally faster to calculate an ap-
proximate gradient using a randomly selected small subset of independent samples
from the data than using the full dataset. Next, it introduces a stochasticity to the
system, enhancing generalizability through functioning as a sort of regularization -
see Section 5.5. The algorithm for SGD can be seen in Algrithm (2), and serves as
an example of a stochastic optimization algorithm [Goodfellow et al., 2016].

Algorithm 2: Stochastic Gradient Descent
Result: Optimal parameter vector θ

Input: Learning rate ε , with some epoch-based update rule U (ε,epoch)
Input: number of epochs Nepochs, number of batches per Epoch Nbatch
Data: Training dataset Xtraining,Ytraining, minibatch size Mbatch
Data: Initialized parameter vector θ

for e = 0 to
(
NepochsNbatch

)
do

Sample elements X (i)
t ,Y (i)

t from Xtraining,Ytraining;

Calculate estimated gradient: ĝ← 1
Mbatch

∇θ Jm

(
f (X (i)

t ,θ),Y (i)
t

)
;

Update parameters: θ ← θ − ε ĝ;
Update learning rate: ε ←U (ε,e);

end

ADAM
Though SGD is still widely used in practice, many other stochastic optimization
algorithms build upon SGD - of which one of the more popular ones is ADAM
[Kingma and Ba, 2014]. ADAM belongs to a family of adaptive learning rate opti-
mization algorithms, combining advances from prior algorithms such as RMSProp
and Momentum-SGD [Goodfellow et al., 2016]. Momentum methods can be de-
scribed as taking the moving averages of past gradients of iterations to obtain a
’velocity’ term that moves the iterations forward in some direction at some speed -
thereby speeding convergence. Adaptive learning rate algorithms dynamically ad-
just the learning rate ε through calculations on the gradient. Adaptive learning there-
fore reduces the number of hyperparameters to tune.

The performance of ADAM is not necessarily superior to that of SGD [Choi et
al., 2019]. Improvements, such as in the method ’AdamW’ [Loshchilov and Hutter,
2017] combined with AMSGrad [Reddi et al., 2018] close the performance gap of
ADAM compared to SGD, while remaining advantageous w.r.t convergence and
hyperparameter tuning. Therefore AdamW-AMSGrad is sufficient for this thesis,
and will be the utilized algorithm. See the Appendix, Algorithm (5) for more details.
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Chapter 5. Machine Learning with CSI

5.4 Dataset management

In addition to the optimization procedure, the full training procedure is also impor-
tant to briefly consider. In most supervised ML models, there are two sets of pa-
rameters to tune: the parameters within the ML algorithm proper, and the so-called
meta-parameters, which determine the architecture of the ML algorithm, along with
its training behaviour. To obtain accurate information on the performance of an ML
algorithm, a dataset must be used that has not been used to optimize the parameter or
metaparameter set. Therefore, the training process of any given supervised-learning
algorithm requires at the very least three different sets of data [Géron, 2019]:

• The training dataset, on which the ML optimizes its training parameters
through the appropriate loss-function.

• The validation dataset, on which the performance of a ML algorithm is
tested, for any arbitrary instantiation of hyperparameters. Therefore, the vali-
dation dataset is then used to find an optimal combination of hyperparameters.

• The test dataset, which is used to judge the performance of the final ML
model. The test dataset is left untouched until the final performance measure-
ment.

A training process for supervised regression ML can be seen on Figure 5.2. The
models are trained on the training dataset and evaluated on the validation dataset for
hyperparameter adjustment. The training-validation cycle iterates until satisfactory
validation performance is achieved. Thereafter, the algorithm is optionally retrained
on the combined validation and training datasets, and evaluated on the test dataset.

Figure 5.2 The usage of training, validation, and test data in ML
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5.4 Dataset management

Critically, though the test dataset is a less-optimistic estimate for real-world
performance than the validation or training datasets are, certain data acquisition
conditions - such as identical measurement setups - can still lead to the results from
a test dataset being non-representative of real-world performance. Though there are
at a minimum three required datasets, if desired additional datasets can be defined
to get a further refined measure of true performance. For example, there can be
multiple validation datasets, each optimizing a certain set of hyperparameters.

With regards to CSI positioning, using channel matrices, as seen in Chapter 2
to regress for position obtained through UE-based GPS signals converted to local
relative ENU coordinates, as seen in Chapter 3, requires at minimum a training, a
test, and a validation dataset. The form and dimensionality of these can be seen in
Equations (5.5) With position denoted as Y . The first dimension in both sides of the
data pair is the number of measurements, denoted M.

Training dataset: [
HTraining

MTraining×(K·NT X )×NΨ,h×NΨ,v

]
∪
[
(YENU )

Training
MTraining

]
Validation dataset: [

HValidation
MValidation×(K·NT X )×NΨ,h×NΨ,v

]
∪
[
(YENU )

Validation
MValidation

]
(5.5)

Test dataset: [
HTest

MTest×(K·NT X )×NΨ,h×NΨ,v

]
∪
[
(YENU )

Test
MTest

]
To simplify the underlying system the ML algorithm must approximate, and to

reduce training times, for the purposes of this thesis ENU local coordinates from
a nearby relative frame can simply be viewed as EN coordinates (east-north). This
holds if within the datasets minimal elevation differences are present - for the ref-
erence point, the mean elevation of the ENU position training data could serve as a
good zero-point.

Another consideration to make is the complex-valued nature of the input data for
Channel matrix estimates. Existing implementations of ML algorithms are seldom
made with complex values in mind; therefore, to keep development time low, initial
experiments will use only the amplitude of the complex data. Additionally, when
transitioning from antenna-space to beam-space, part of the phase is already used to
reconstruct directionality. Therefore, even if only using amplitude in beam-space,
complex phase is still used in the pre-processing step.

In summary, using a separated training-validation-test datasets with the ex-
tracted channel matrices and the corresponding GPS EN measurement of a local
coordinate frame to feed into ML algorithm is the framework for ML-enabled 5G
CSI positioning. If needed, additional datasets for further iteration on e.g. trajectory
smoothing could be created.
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Chapter 5. Machine Learning with CSI

Cross-validation
One extremely common and simple method for getting the same data to ’go further’
with regards to finding the ideal ML model hyperparameters is to not just split the
data into training validation and test datasets, but to do several training and vali-
dation splits. Essentially, the training and validation datasets are combined, usually
shuffled, and then split to create N folds - or data sub-sets. Each fold then contains
1
N -th of the original data.

After splitting the data, each individual fold is designated as a validation set in
its own iteration, with the rest of the non-validation folds in a given iteration used
to train the model for that iteration. The performance of the model is then evaluated
on the fold designated for the given iteration as the validation set. The final model
cross-validation score can then be put to be the mean of each iterations’ validation
losses. A visual example of the N = 5-fold cross validation process-flow can be seen
in Figure 5.3.

Figure 5.3 A visual demonstration of obtaining a validation performance of an ML
model using 5-fold cross-validation

A disadvantage of CV is that while it does allow a larger dataset to be effectively
used as a validation dataset, it also results in a model requiring far more processing
time to train than with a simple training-validation split. For this reason, in this
thesis CV will only be used on the ’classical’ machine learning models described
in Section 5.6. Neural nets are too compute-intensive to cross-validate using the
resources available to write this thesis.
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5.5 Overfitting and regularization

5.5 Overfitting and regularization

Considering the oftentimes over-parameterized nature of ML algorithms, some of
the lack of generalizablility in ML systems come from finding patterns in the train-
ing data that are not representative of the wider dataset. This leads to a dilemma
of ML; higher-complexity systems can potentially model more elaborate systems,
but also can find ’false’ patterns in the data. This phenomenon is termed overfitting,
in which a mathematical/physical model of a system optimized for found data uti-
lizes variance/patterns inherent to the data, but not to the underlying model [Géron,
2019]. A simple example of overfitting can be seen in Figure 5.4, where polynomial
regression of a higher order fits better with the training data, but with the resulting
model being a poor fit to the true underlying model.

Figure 5.4 A polynomial regression of degree 11 overfits to data, while a lower-
degree polynomial scales better outside the training data.

Overfitting leads to decreased predictive power on data outside the domain of the
training data, especially if the new data is obtained through slightly different mea-
surement/simulation setups. See also Occam’s razor, which is a principle that for
two models of differing complexities but identical known predictive performance,
the model with less complexity is generally preferable.

To detect overfitting, and to tune the model to improve real-world performance
while decreasing training performance, the separated datasets in Section 5.4 can be
used. They provide a more realistic indication of ML performance. Reserving data
for validation and testing means that less data available for training, which decrease
the final network performance - assuming no further adjustments are done. How-
ever, it enables the tuning of model hyperparameters, including those that control
regularization, a term for strategies that tackle overfitting.

There are many regularization methods, some specific to certain algorithms,
others applicable across different ML fields. In this section, some of the more gen-
eralizable ones will be covered, while model-specific regularization methods will be
covered in the relevant (sub)sections. A selection of methods for reducing overfit-
ting and improving performance in ML will be discussed in the below subsections.
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Early stopping
One of the simplest methods to reduce overfitting for iteratively optimized ML mod-
els, it consists of stopping the parameter optimization loop over the training data
before a (local) minima is found for the loss-function - the number of training it-
erations can be considered as a hyperparameter inherent to the training process.
The assumption behind this method is that a local minimum in the loss-function
over the training dataset does not exactly correspond to the local minimum over the
’real-world’ task.

During the training process, the mismatch in the training and validation sets
appears as after the error initially falls dramatically along with the training data
error, the validation error appears to reach a ’plateau’, after which it slowly begins
to rise again - even as the training data error falls further.

A trivial example of an early-stop algorithm is to set the training to stop some
empirical number of iterations away. In practice, the most common form of early
stopping is to simply record the parameters associated with the lowest validation
error, and return those instead of the final model parameters.

Data-based regularization
• More data: Increasing the amount of training data from the same domain can

greatly reduce the possibility of overfitting. Even outside improving overfit-
ting, simply obtaining more data is unreasonably effective at improving re-
sults [Géron, 2019].

• Task Sharing: Widening the domain of the training dataset by increasing the
number of related but different ’tasks’ a model must optimize for can intu-
itively lead to the ML model to find the underlying data structures, rather
than learn just noise. However, bringing in data that falls too far out the
predicted use-case can instead lead to the opposite problem of underfitting,
where model complexity is too low to accurately capture the behavior of a
larger underlying system [Géron, 2019].

• Data preprocessing, feature selection: Manipulating the data before feed-
ing it through the training proceedure can also be a tool to reduce overfitting.
Filtering out outliers, applying proper normalization, reducing noise charac-
teristics, selecting/creating/merging known useful features, etc.

• Data augmentation: While more data is the best way to get better results,
obtaining more data is also one of the hardest parts of ML. However, a way
around this is to artificially ’create’ data from existing points. For certain
applications of ML, such as image recognition, this is trivial - a flipped image
of a bird still shows a bird. For others, there might be no obvious solution.
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Noise injection
A simple alternative and arguably a sub-type of data augmentation, noise injection
consists of artificially injecting noise at various parts of the model [Goodfellow et
al., 2016]. There are, depending on the algorithm, different parts of the data pipeline
that noise injection can be done to, and are the next discussed points.

• Output noise injection: At times, the output/label value Y in the dataset is
not the ’real’ ground truth. All measurement systems have error, and therefore
even if the X input from the dataset is a good representation, maximizing with
respect to Y might not be optimal for the ’real’ underlying system. One way
to model this is to inject noise modelling the uncertainty in the Y values. E.g.
for training an outdoors positioning system using GPS data as ground truth,
output noise injection would seem a conducive setup, as GPS is a known
imperfect measurement of position.

• Input and hidden variable noise injection: Similar to output noise injec-
tion, modelling the probability distribution of input variables can be done by
injecting noise. In addition, certain ML methods (such as deep learning) uti-
lize hidden variables that feed from one part of the model to another; these
variables can also have noise injected.

Explicit regularization
A term for a family of regularization methods, explicit regularization adds a so-
called ’regularization term’ to the loss-function. This regularization term can ’pun-
ish’ certain scenarios indicative of overfitting. An example regularization term can
be seen for a generalized loss-function in supervised ML in (5.6), where J̃α denotes
the regularized loss-function with the α ∈ [0, inf) hyperparameter weighing the im-
portance of the norm penalty function Ω. The size of the weights in a weight-based
ML model is then typicall penalized by Ω [Goodfellow et al., 2016].

min
θ

[
J̃α ( f (X,θ),Y)

]
= min

θ
[J ( f (X,θ),Y)+αΩ(θ)] (5.6)

The two most common forms of explicit regularization are L1 and L2 regular-
ization. As only weight-based models are covered in this thesis, for brevity L1 and
L2 regularization will only be shown for weight-based models, and ignoring bias.

• L2 regularization: In literature L2 is also commonly known as Tikhonov reg-
ularization or weight decay. For weight-based ML models, the regularization
consists of penalizing the loss according to the square of the L2-norm of a
vector containing the weights, meaning: Ω(θ) = 1

2∥w∥
2
2. The resulting regu-

larized loss-function can be seen in (5.7), where the weight-based supervised
regression model is denoted f , with the vector w denoting weights. The over-
all result of L2 is a shift of the optimal minima during optimization, decreas-
ing the effect of weights that contribute little to the reduction of loss.
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J̃(L2)
α ( f (X,w),Y) = J ( f (X,w),Y)+α

1
2
∥w∥2

2 (5.7)

• L1 regularization: Less common than L2 regularization, L1 for weight-based
ML models consists of penalizing the loss according to the L1-norm of a vec-
tor containing the weights, meaning: Ω(θ) = |w|i. The resulting regularized
loss-function can be seen in (5.8). The overall result of L1 is different than
that of L2, and is that weights that contribute little are shifted towards 0 -
leading to a sparse weight vector.

J̃(L1)
α ( f (X,w),Y) = J ( f (X,w),Y)+α ∑

i
|w|i (5.8)

Ensemble methods
Ensemble methods are another way to tackle overfitting. The concept behind en-
semble methods is simple; a group of well-performing but dissimilar models, if they
have their results aggregated in some way to create an ensemble model, may often
outperform any single of its constituent models in the validation and test results. The
background behind this is that model errors, if they are somewhat uncorrelated, can
’cancel out’ if a sufficiently large number of models are aggregated [Goodfellow
et al., 2016].

Therefore, for an effective ensemble method, the models used must be trained
separately and with enough differences in their training outcome for errors to be un-
correlated. This can be achieved by e.g. using models with different architectures or
hyperparameters, a different loss function, or simply where the optimization proce-
dure does not always converge to one (or a few) solution points, leading to differing
final models even if the hyperparameters are identical [Goodfellow et al., 2016].

Notably, neural networks (see Section 5.7) do not tend to converge to identical
solution points [Goodfellow et al., 2016]; stochastic elements to the learning pro-
cess along with high model complexity result in a large variety in model outcome.
Stochastic elements include e.g. randomized initial states, minibatch randomiza-
tion, SGD, stochastic data augmentation, etc... From this, neural network-based al-
gorithms can utilize ensemble methods on identical architectures, so long as they
are trained separately and in a non-deterministic manner.

Due to the effectiveness of ensemble methods, in published academic papers on
neural networks ML models are generally compared according to their performance
when not in an ensemble [Goodfellow et al., 2016].
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5.6 Non-Neural Network Machine-Learning algorithms
for regression

Literature on positioning using CSI data often use various forms of neural networks
(See Section 1.2), but for tests on data viability and to sanity-check results from
machine-learning, a few common regression methods will also be examined.

• Linear Regression: The Ŷ predicted values are obtained by multiplying X
with a weight matrix θ and adding a bias - shown for a multivariate Ŷ in
(5.9). θ is found by optimizing over the training dataset Ytraining,Xtraining for
the MSE (5.4). Linear regression has a closed-form solution for the weights
θ , shown in (5.10) - where Xtr,Ytr := Xtraining,Ytraining.

Ŷ =


ŷ1
ŷ2
...

ŷNy

= θ
T X =


θ0,1 θ1,1 · · · θNx,1
θ0,2 θ1,2 · · · θNx,2

...
...

. . .
...

θ0,Ny θ1,Ny · · · θNx,Ny




1
x1
x2
...

xNx

 (5.9)

θ =
(
XT

tr Xtr
)−1

XT
trYtr (5.10)

• Nonlinear regression: Expanding on linear regression, the same algorithm
can be used to create a nonlinear model. A simple way to accomplish this is
by using nonlinear operations on the input features X , then applying linear re-
gression on the resulting expanded feature vector. E.g. polynomial regression
of order n consists of taking up to the n-th polynomial of every input feature
as a new feature.

• LASSO regression: Short for Least Absolute Shrinkage and Selection Oper-
ator Regression, LASSO regression consists of introducing the L1 regulariza-
tion to (linear) regression [Géron, 2019]. The resulting optimization equation
can be seen in (5.11), replacing the MSE (5.4).

∀e ∈
{

1,2, · · · ,Ny
}

: θe = argmin
θe

[
MSE

(
θ

T
e X ,Ye

)
+α ∑

i
|θe|i

]
(5.11)

• Elastic-Net Regression: Similar to LASSO regression, Elastic-Net regres-
sion introduces regularization to the MSE loss of regression. In the case of
Elastic-net regression, both L1 and L2 regularization is applied [Géron, 2019].
The resulting optimization equation can be seen in (5.12), which holds for
∀e ∈

{
1, · · · ,Ny

}
elements of Ye, and where r is the mix ratio controlling the

relation between L1 and L2.

θe = argmin
θe

[
MSE

(
θ

T
e X ,Ye

)
+α

1− r
2
∥θe∥2

2 +αr∑
i
|θe|i

]
(5.12)
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5.7 Introduction to Deep Learning

Artificial Neural Networks (ANN), underlay much of machine learning. ANNs are
directed graphs where nodes are artificial neurons (AN), with values flowing across
graph edges. ANs generally consist of an activation function with a weighted sum
of input values and a bias term. An example AN can be seen in Figure 5.5, where
xk is the k-th input, wk the corresponding input weight, b the bias, a the activation
function input, φ the activation function, and Y the output. During optimization the
weights, bias, and occasionally the activation function is fitted.

a =b+
Nx

∑
k=1

xkwk

y =φ (a)

Figure 5.5 An artificial neuron and the corresponding equation

A common graph architecture for ANNs is to arrange the ANs in ’layers’. A
common example of this arrangement is feedforward ANNs with each layer neuron
inputs originating from data of previous layer outputs. The result is information
propagating forward through the ANN. For optimization the gradient of the loss-
function of the entire ANN propagates backwards from the output, in a process
known as backpropagation - see [Mitchell, 1997] for more on backpropagation.

When there are more than two layers in layer-based architecture, the term Deep
Learning is commonly used, e.g. for the deep feedforward ANN in Figure 5.6.

Figure 5.6 A deep feedforward ANN, where the notation is generalized from Fig-
ure 5.5 to layers, e.g. Wln is the weight vector for the n-th neuron in the l-th layer.
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5.8 Deep learning

Due to the universal approximation theorem (e.g. for rectified linear unit feedfor-
ward networks, see [Sonoda and Murata, 2017]), ANs with nonlinear activation
functions in a large-enough network of the right architecture can approximate any
arbitrary function. This partially explains the applicability of deep-learning for ML,
making them a favorable choice to approximate complex models.

Complex underlying physical phenomena, high feature numbers and large quan-
tities of data lead to CSI data being inherently favorable for deep-learning. The
question then becomes the optimal architecture to use for CSI data. Due to the com-
plexity of finding an optimal architecture, a certain amount of intuitive reasoning
is necessary. The specific chosen architectures are discussed in Chapter 8. For this,
certain pre-defined layer, cell, and activation function types that are applied in this
thesis for positioning in CSI are discussed in this section.

Fully connected layer: The simplest layer, the fully connected layer means that
all neuron outputs from the previous layer feed into every neuron on the current
layer. The matrix output of a fully connected layer can be seen in (5.13), where
l is the current layer number, hl is the output vector of layer l, ωl is the matrix
containing all input weights of all neurons in layer l, φl is the activation function of
all neurons in layer l, and bl is the bias term. The layer indication can also be placed
in the vector/matrix exponent with parentheses, e.g. hl can also be labeled as h(l)

hl = φl
(
ω

T
l hl−1 +bl

)
(5.13)

ωT
l =


(ωl)1,1 (ωl)1,2 · · · (ωl)1,Nl−1
(ωl)2,1 (ωl)2,2 · · · (ωl)2,Nl−1

...
...

. . .
...

(ωl)Nl ,1 (ωl)Nl ,2 · · · (ωl)Nl ,Nl−1

, hl =


(hl)1
(hl)2

...
(hl)Nl


The fully connected layers, when chained together, form a fully connected block.
The equation for a fully connected block is simply (5.13) nested within itself k
times, where k is the number of layers in the given block. E.g, (5.14) has the equa-
tion of a 3-layer fully-connected feedforward block.

hout = φ3
(
ω

T
3 φ2

(
ω

T
2 φ1

(
ω

T
1 hin +b1

)
+b2

)
+b3

)
(5.14)

Within a single fully-connected block, the primary considerations when defining the
architecture then become the neuron counts of each layer, the depth (layer count) of
the block, and the type of activation function used.

Partially connected layer: Similar to the fully connected layer, only some weights
are set to zero - meaning the variables are blocked from propagating down a certain
number of graph edges.
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Activation Function - ReLU An exceedingly simple but effective nonlinear ac-
tivation function, Rectified Linear Units (ReLU) output the maximum of either a
linear function of the inputs multiplied by weights plus the bias or 0, whichever is
bigger. The node equation and graph is shown in Figure 5.7.

a =b+
Nx

∑
k=1

xkwk

ye =φ (a) = max(0,a)

Figure 5.7 A ReLU node and the corresponding equation

Dropout regularization Dropout is a regularization method through network node
manipulation. During training, a layer labeled to have a ’dropout’ with a p ∈ [0, inf)
will, for each neurons/nodes in the layer, have a p probability of dropping out.
In SGD and similar optimization procedures where data is fed in small batches
during the training process, the dropped neurons from dropout are re-randomized
every batch. In summary, randomly selected neurons in the layer will output 0 for
that mini-batch, thereby creating random permutations of partially connected layers
from fully connected layers during the training process. An example of dropout can
be seen in Figure 5.8.

Figure 5.8 Dropout of p = 0.25 on the deep feedforward ANN from Figure 5.6
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5.9 Fingerprinting and data collection

The general thought behind positioning with CSI channel matrix estimates is that
a location roughly corresponds to a specific CSI channel matrix. In other words,
locations in space have an approximate ’fingerprint’. The data collection process
for fingerprinting can be done through two different methods: either designating
locations in space on a grid and collecting data on these gridpoints, or a more natural
’continuous’ position can be recorded through emulating the natural positioning
scenario - in summary, assigning continuous position to datapoints recorded through
natural movement. See Figure 5.9 for a visual explanation of the two categories.

Figure 5.9 Location data collection for fingerprinting in an office environment: left
for grid-based location collection on the green points, right for continuous position
data collection along walking pathways.

The advantage of the continuous data collection approach over grid-based train-
ing data is that a dataset containing continuous trajectory data is more true to how
data will be collected in a practical use-case, and how real-world UE positioning
will look like. In addition, collecting continuous position data based on realistic
navigation scenarios enables the usage of time-series position/trajectory estimation
methods integrated into the training loop.

There are a number of advantages of the grid-based approach, leading to why
it is often used in literature. Firstly, it allows for easier automation of data collec-
tion during training. Furthermore, unlike for the continuous position data collection
approach, grid-based collection can compensate for the issue of position data bias:
discrete grid points are easier to measure in a way that no region is disproportion-
ately weighted in terms of number of datapoints. Another disadvantage of contin-
uous position estimation is that of ground truth accuracy - With gridded points, it
is easy to know the ’true’ ground truth of positions, even with a flawed positioning
system. This does not hold for continuous position measurement.

Despite the advantages of grid-based data collection, for this thesis continuous
datapoint collection was chosen specifically to try to mirror realistic navigation con-
ditions - and to integrate the time-element into the training process.
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6.1 Measurement location and route planning

The location of the 5G proprietary commercial-grade basestation operated by Er-
icsson for research purposes is on the roof of the Ericsson office at Mobilvägen
12, Lund. Its sector antenna faces approximately north, though the exact details of
where it faces is unknown. The area is shown in Figure 6.1, with the approximate
location of the basestation and its sector direction shown.

Figure 6.1 Geographic location of the Ericsson office in Lund on openstreetmaps,
with basestation location and sector direction shown.
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To decide a region within the geographic area to do measurements in, a few
aspects have to be considered. First and foremost, as the training process is based
on GPS data, GPS signal has to be relatively strong throughout the route to gen-
erate training data. To investigate the validity of the proposed ML approach, both
LoS and NLoS scenarios should be investigated, with optimally minimum location
difference of the two.

Additionally, two kinds of data is desired for the two types of potential posi-
tioning scenarios: one ’path’ data for large-area positioning investigation on known
pathways, and one ’dense-data’, with the location for the dense-data having very
high measurement density for a non-path-like region. This area data is to investi-
gate the ability of the algorithm to handle arbitrary random-walks - the training data
in this scenario will consist of a systematic dense walk covering the area, while
the validation and training data will consist of a non-comprehensive ’directionless’
walk in the covered region.

Of the places within the region, an obvious contender is the parking garage in
the east, as shown by the pink circle in Figure 6.2. The roof of the parking garage
has visual LoS on the basestation, even if it is not in the ’best-case’ scenario, as it
is outside the center of the beam. Furthermore, a direct comparison between LoS
and NLoS scenarios can be made by moving around the edge of the roof for a LoS
pathway and on the ground around the garage for an NLoS scenario. The distance
between the two cases is fairly small, giving an ideal comparison dataset.

Figure 6.2 Selected measurement area - an open-topped parking garage - within
the geographic area of the Ericsson office in Lund, as seen on openstreetmaps. The
parking garage area allows for LoS and NLoS measurements in close proximity
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In summary, a minimum of three datasets are desired: an area-covered dense-
walk training set with a ’natural’ random-walk validation and test dataset, a LoS
path training set for positioning in a large area along a predictable path, and a NLoS
path data nearby to compare LoS and NLoS effects. For the route direction two
possibilities emerge: either looping around with only a single direction recorded, or
turn around at a certain point to cover both to-and-from scenarios. The latter was
chosen, in part to have a more general scenario for the ML model.

The plan for recording the chosen route and path-data can be seen in Figure 6.3,
with both the rooftop LoS scenario in purple and the ground-level NLoS scenario in
blue, each respectively henceforth referred to as LoS-A and NLoS-A.The approxi-
mate area to densely record data is then labeled with the vivid green geometry on
the roof, and the datasets will be termed ’LoS-D’. Due to the time of data recording
(July), the rooftop of the garage was mostly unpopulated by cars, lowering the num-
ber of obstructions. The dense area was specifically chosen as it had no obstructions
to the freedom of motion, thereby enabling relatively even dense coverage.

Figure 6.3 The collection plans for the three datasets: the blue path is the approx-
imate NLoS predictable path, the purple path on the top of the garage is the approx-
imate LoS pathway, and the vivid green geometry shows the approximate region for
the dense-walk dataset.
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6.2 Obtaining GPS data

For a theoretical real-world system based on similar principles, the used training
GPS position would be based on either commercial UE-based sensor-fused EMU
and internal GPS antenna position outputs or using some more accurate positioning
system. The latter scenario falls outside the domain of the thesis, however.

As a commercial UE, a commercial Android-based smartphone device with
specifications given in Table 6.1 was used to record GPS data with the open-source
android app ’gpstest’ [Barbeau, 2022], which uses the Android GnssCapabilities
API to obtain postion at 1 [Hz] sample-rate from the dual-frequency GNSS systems:
GPS, GLONASS, QZSS, BeiDou, Galileo, NavIC, along with various satellite-
based augmentation systems (SBAS).

Phone model: OnePlus Nord 5G AC2003
Processor: Qualcomm SM7250 Snapdragon 765G 5G (7 nm)

GNSS support: Yes, Dual-band A-GPS, GLONASS,
GALILEO, BDS, SBAS, NavIC

Operating System: OxygenOS 11 (Android 11 variant)

Table 6.1 Smartphone and GNSS specifications used for GNSS recording

The ’gpstest’ app outputs a data file containing raw satellite data, NMEA data,
and position fix from the UE’s internal GNSS module - utilizing UE IMU sensor fu-
sion to increase accuracy. As position is the desired ground truth, not pure GPS, the
position fix output is extracted from the text file by filtering for specific keywords.

Figure 6.4 An example of extracted GPS data, showing a small section of the
garage-top LoS path training dataset.
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6.3 Logging SRS from a 5G Ericsson basestation

The outdoors commercial-grade 5G basestation set to the 100 MHz bandwidth con-
figuration with the antenna panel on the roof of Ericsson was used with propri-
etary 5G-capable Android-based Ericsson testbed UEs. Using the CSI feedback
loop structure from Section 2.10, the aim is to then extract the UE-specific SRS
data (in the form of a channel matrix estimate) from the internal processes.

In the proprietary Ericsson baseband hardware, the internal beam-space repre-
sentation of the channel matrix can be extracted either when it is updated or when it
is used to transmit data. Though it would suit positioning better, obtaining the chan-
nel matrix whenever it is updated was unsuccessful due to software issues. As a
fallback, the alternative logging tap is used for measurements in this thesis, wherein
channel matrices are extracted when data is sent to the UE. Measurement stability
and sample-size was encouraged by ensuring the UE had high data-rate require-
ments throughout the channel matrix measurements - specifically by continuously
streaming 4k YouTube video streams.

The channel matrices for the specific proprietary UE and 5G testbed sce-
nario support a 1/2/4-antenna UE and 32/64 basestation directional antennas
(beams/directions). Furthermore, the 100 MHz configuration in 5G supports 273
PRBs, which in this specific case are themselves allocated in 2, 4, and 8 PRB
’blocks’. This means that there can be 35, 69, or 137 frequency channels. Together,
this means that theoretically each full channel estimate H SRS data extraction con-
sists of 35072 complex values, as shown in (6.1).

Max [Capacity(H)] = Max [NChannelsNtxNDirection] = 137 ·4 ·64 (6.1)

With 35072 complex values extracted potentially every few milliseconds, hard-
ware bandwidth becomes a major concern. Logging proceeded by streaming the
data over a network connection to a .log text file, with each SRS written with 8 di-
rections per line, with large redundancies in e.g. UE identification and other meta-
data. This large redundancy vastly increases the network datarates required for log
streaming. Furthermore, unused features add additional bandwidth overhead. Over-
all, due to the bandwidth limitation of logging, only three of the 137 potential fre-
quency channels could be reliably retrieved, leaving 768 input features, or in other
words 12 H8×8 sub-channel matrices. The resulting single-measurement datapoint,
with the dimensionality definition of H(K·NT X )×Nψ,h×Nψ,v , is: H12,8,8.

To maximize the differentiability in the data, the three frequency bands chosen
were the lowest, highest, and middle in the frequency band. The reasoning behind
this is that nearby frequency bands behave similarly, with the inverse also holding.

The final logging aspect is that of time. In this case, two timestamps are logged:
the frame number corresponding to the actual network time, and the UTC time-
stamp corresponding to the time a given line was written to the log. The delay
between the two is small, with inaccuracies from GNSS leading to this delay having
a negligible effect on the results from this thesis.
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6.4 Channel matrix extraction from the SRS log

With the log obtained, the next step is that of data extraction, to retrieve the
H12,8,8 matrix from the log file. The format of the log is such that at down to sub-
millisecond intervals, a number of (from 1 to all 12) Channel/UE antenna pair sub-
channel matrices are written into the file, with every 8 directions corresponding to
one line. The directions themselves are stored as 4 hex-digits for both the real (RE)
and the imaginary (IM) component, along with the per-line exponent to decode the
Imaginary/real numbers.

Alongside the SRS data, a large number of other metadata and miscellaneous
information is written per-line, which for the purposes of data extraction can be
ignored. An additional important datapoint is the UE identifier enabling filtering
the logging for the desired UE as during recording other measurement activities
could occasionally also take place. A representation of the log file format can be
seen in Figure 6.5.

Figure 6.5 The format of a single logging instance, containing the SRS channel
estimate for a single frequency channel and UE antenna, with timekeeping done
with both UTC logging time and network System Frame Numbers (SFN). Not shown
datapoints include the UE identifier, the sub-frame number, and more.

To understand the timing (frame numbers) aspect, a brief introduction is neces-
sary. In 5G, the UE and the BS must maintain time-synchronization. For this, they
have a ticking internal clock, with the two highest levels being the System Frame
Number, which is stored as a 10-bit integer. Every tick on the SFN corresponds to
10 milliseconds of passed time. The sub-frame number goes from 0 to 9, and ticks
every millisecond. From this, the maximum amount of time that can pass before
the system clock resets is around 10.24 seconds. For data collection, this presents
an issue: e.g. if the connection drops for over 20.48 seconds. In such a case, falling
back on the UTC timestamp to see how many 10.24 second instances passed during
the connection loss in the log gives an approximate solution to the number of SFN
that passed, working well enough in practice.

61



Chapter 6. Measurement Setup

To extract the logs into a usable data-format a C++ regex-based parser was de-
veloped as a python module for this thesis. The module takes every SFN with valid
logging data, and combines all logging instances in that SFN into a sparse repre-
sentation of the H12×8×8 channel matrix. If the same sub-channel matrix H8×8 is
sampled multiple times in a single SFN, the newest one is chosen. The parser also
ignores incomplete sub-channel matrices, e.g. if the logging only outputted 32 of
the 64 directions. The process flow for extracting sparse channel matrices from the
logging can be seen in Figure (6.6).

Figure 6.6 The process flow of extracting the (potentially sparse) channel matrices
H12×8×8[SFN] = H12×64[SFN] for each valid SFN from the log file. Not shown is
the UTC time and SFN time synchronization procedure.

The parser also unpacks the SFN numbers from a repeating sequence of 0
to 1023 into a timer counting upwards throughout the measurement. The series
of channel matrices H12×8×8[SFN] = H12×64[SFN] is then stored in a 3D matrix
H f ull

Ndata×12×64, where Ndata is the number of unique (unpacked) SFN numbers con-
taining a new measurement of at least one sub-channel matrix.

For a list of measurements taken, see in the Appendix under Tables (11.1). Some
associated properties examining data quality are also shown.
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7.1 Data preparation for regression

Using the time-series sparse channel matrix HNdata×12 obtained through the mea-
surement and log extraction process detailed in Chapter 6 as input for position re-
gression requires further processing in the form of de-sparsifying and normalizing
H, then interpolating GPS position onto the data using UTC timestamps.

De-sparsifying H is the first step in data pre-processing. The simplest temporally
valid method for de-sparsifying data without known priors is forward-filling latest
known values. Forward-filling for the channel matrix H is visualized in Figure 7.1.

Figure 7.1 Using forward-filling on sparse channel matrices H12×8×8[SFN].
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The number of updated channel matrices are also recorded, and can be used
for update weighting during particle filtering. Resampling to ensure only datapoints
with a significant difference between channel matrices from one time-point to the
next are kept is an optional step. However, considering the consensus on data quan-
tity being a powerful regularization tool, resampling is best kept to a minimum.

The normalization step can be tuned with more sophisticated statistics, but in
this thesis due to time constraints only linear scaling was utilized. Accordingly, the
minimum value was scaled to 0+0i, and the absolute of the maximum value of all
datasets would be scaled to somewhere around 1. For this normalization, only train-
ing data was used to obtain the scaling factor, thereby preventing the contamination
of the validation and test datasets with future information.

To assign positioning ’ground truths’ to the channel matrix data H12, the UTC
timestamp of both the Channel matrix data and the GPS is used. First, the two
datasets are synchronized, then linear time-interpolation from the GNSS data is
used to create interpolated trajectories, through which the ’ground truth’ YEN co-
ordinate pairs for each channel matrix are generated. Finally, all channel matrices
that fall outside the bounds of the GPS measurement are discarded. The position
interpolation process is shown in Figure 7.2.

Figure 7.2 Assigning position to channel matrices H12×8×8[SFN] using shared
UTC timestamps with the GNSS dataset and simple linear interpolation. Also shown
is the ’real’ path the data was taken on, demonstrating that though GNSS might serve
as an approximate for position, it is imperfect.

GNSS inaccuracy can be modelled during the training process by injecting
Gaussian noise of similar magnitude as the GNSS measurement onto the training re-
gressor Ytrain every epoch during the training process. This also functions as output
regularization as mentioned in Section 5.5.

64



7.2 Data analysis and discussion - data coverage

7.2 Data analysis and discussion - data coverage

To examine the validity of data obtained through the measurement and processing
pipeline, a brief analysis of the channel matrix data is pertinent. An often repeated
phrase in the field of data-science is "Garbage in, garbage out"; Machine Learning
without good data can not obtain good results.

Two aspects to the input data for ML are of particular significance: the coverage,
and the quality. The data must have good-enough coverage of the area to allow an
ML model to generalize, and the data must also contain enough information for an
ML to find meaningfully patterns. Furthermore, redundant information should be
reduced if possible to reduce the possibility of overfitting.

Large-scale data behavior
A proxy for data coverage w.r.t. positioning using SRS channel estimates is to ex-
amine the length of the time-delay between matrix updates and the number of layers
updated on average. Using the dataset names as defined in Table 11.1, per-datasets
results for the sample-number data analysis are shown in Table 7.1 below. Note that
unfortunately as the Ericsson basestation underwent a system update that made col-
lecting data problematic after 2022 August 18, separate test datasets for the LoS
scenarios were not capturable - instead the LoS-Dv and the LoS-A2 were separated
into validation and test parts.

Name UEnum Ndata updMSM avgSD stdSD MaxSD [s]
NLoS-A1 4032 54996 6.539 32.303 251.90 14.180
NLoS-A2 6624 55305 6.003 32.306 281.00 11.21

NLoS-T_(a) 320 12169 5.386 26.663 152.14 3.40
NLoS-T_(b) 448 6887 5.662 27.494 175.64 3.46
NLoS-T_(c) 576 4449 5.702 27.290 177.91 3.30

LoS-A1 1216 48908 6.175 64.001 388.20 12.26
LoS-A2 5152 19634 5.937 84.211 426.31 4.76
LoS-Dtr 1280 29778 6.066 111.614 540.41 13.68
LoS-Dv 1344 19884 6.066 98.189 498.85 9.819

Table 7.1 Some derived quantities to check the quality of the data with regards
to the sample rate, the number of samples, and the density of layers. ’updMSM’
refers to the Mean sub-channel matrix updates per point, ’avgSD’ refers to the Mean
Sample Delay (in [ms]), ’stdSD’ refers to the standard deviation of the sample delays
(in [ms]), and finally ’MaxSD’ refers to the Max Sample Delay (in [s]). The NLoS-T
dataset lost connection two times, leaving three sub-datasets - _a, _b, _c - with long
interrupted connection gaps.

Every 30-120 milliseconds, around 6 of the 12 discussed H1 sub- channel matri-
ces are updated. The update-rate seems to vary, with LoS scenarios having a notice-
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ably longer delay between samples, even if the average of approximately 6 updates
per sample holds. This disparity can be seen visually by comparing the sub-channel
matrix update rates in Figure 7.3 for the LoS dense dataset and Figure 7.4 for the
NLoSpath dataset. Visible in the figure are also the occasional gaps and potential
connection losses, usually in the range of a dozen seconds or so. Another impor-
tant empirical result of layer-update analysis is that despite the nonLoSA2 database
consisting of repeated walks over the same path, there is no immediately visible
repeating pattern in connection losses.

Figure 7.3 The sum total of independent sub-channel matrix H8×8 updates over 5
second intervals for the LoS-Dtr dataset

Figure 7.4 The sum total of independent sub-channel matrix H8×8 updates over 5
second intervals for the NLoS-A2 dataset
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With consistency generally holding in the overall update rate, the question re-
mains if all individual sub-channel matrices H1 are updated at a useful rate, and
hopefully at an even relative rate. Extending Figures 7.3, 7.4 into three dimensions,
the sampling behaviour for every UE RX antenna at every frequency band can be
examined: as seen in Figure 7.5 for the LoS-Dtr dataset and Figure 7.6 for the NLoS-
A2 dataset.

Figure 7.5 The sub- channel matrix H8×8 updates over 5 second intervals for each
UE RX antenna in three frequency bands in the LoS-Dtr dataset

Figure 7.6 The sub- channel matrix H8×8 updates over 5 second intervals for each
UE RX antenna in three Frequency bands in the NLoS-A2 dataset
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From the above, it is immediately visible that the individual sub- channel ma-
trices seem to be updated in groups, but roughly at similar update rates throughout,
though with the occasional dip visible in e.g. UE antenna RX2 in the NLoS-A2
dataset from Figure 7.6. Overall, the examined data demonstrate that the domain
coverage of the examined datasets is both even across time and across the sub-
channel matrices - properties needed to confirm data validity for the utilization of
ML.

Furthermore, the examined datasets seem to confirm the expectation that worse
transmission conditions generally result in a higher frequency of channel estimate
updates. The underlying assumption being that maintaining a poorer quality channel
at identical datarates requires more channel overhead. Channel quality in the NLoS
scenario also seems to be relatively consistent, even when datasets were taken days
apart.

Extrapolating from the previous statement on the relation between channel qual-
ity and the mean sample delay, it appears that the LoS Dense-grid data was collected
under better channel conditions than the LoS path-data. This holds with the observa-
tion during measurement that the video stream during the recording of the LoS-A1
dataset ran into datarate limitations. No problems with the video stream originat-
ing from datarate limitations was apparent while recording the LoS-Dtr or LoS-Dv
datasets. Furthermore, the LoS-A2 dataset seems to have mildly different channel
characteristic, albeit with a still relatively high mean sample delay.

Figure 7.7 The sub- channel matrix H8×8 updates over 5 second intervals for every
Frequency band and UE RX antenna pair in the LoS-A1 dataset

Investigating the discrepancy in the LoS-A1 dataset further, Figure 7.7 shows
the per-layer number of updates every 5 seconds having two stages: one pseudo-
NLoS stage lasting until 8:40, and one LoS phase, more similar in form to the dense
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dataset seen in the LoS-Dtr dataset. The reason behind the channel quality discrep-
ancies for the different sub-sections of the LoS scenarios is unclear. One cause that
can be probably be ruled-out is that of differing environmental conditions. When
recording the ’LoS-A1’ path dataset, nothing visibly shifted in the environment
from the first half to the second half. The switch from the low channel quality (and
long video buffer times) to good channel quality and LoS behavior happened at an
arbitrary point.

Further testing is required to pinpoint behavioral specifics behind the lack of
consistency in the around LoS scenario. Potential causes can include e.g. interfer-
ence by another unnoticed ongoing experiment, connection to a secondary (suppos-
edly disabled) antenna array, more cars around the edge of the garage roof leading
to more NLoS sub-scenarios, or just some other unknown phenomena. Due to data
being recorded on Ericsson testbenches, certain issues would require a deep dive
into protected behavior or using in-house diagnostics.

The last anomaly in the obtained data w.r.t. consistency is that of the NLoS-T
dataset, more specifically the connection loss. The reasons behind it are unknown,
but the sample refresh rate of the resulting dataset can be seen in Figure 7.8. How-
ever, since this dataset is a test dataset, there is no worry with the resulting gap in
coverage for the training and validation process. Instead, the lost connections will
prove as an excellent test for the performance of the tracking algorithm with regards
to more realistic conditions.

Figure 7.8 The sum total of independent sub-channel matrix H8×8 updates over 5
second intervals for the NLoS-T dataset, showing the two connection losses. Despite
the long connection gaps, the connected sections appear to have similar connection
patterns.
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Small-scale data behavior
With data regularity demonstrated on the scale of minutes to hours, it is also worth
looking at the small-scale regularity of data. While large-scale coverage of the mea-
surement domain is a necessary condition for ML to generalize well, fluctuations
or irregularities in sample-rates on the smaller scales may be an aspect for particle
filtering.

As a first pass, using the per- sub-channel matrix visualizations from before but
zoomed-in on a sub-second scale shows a sort of uneven ’clustering’ in both the
NLoSand the LoS scenarios, as seen in Figure 7.9 for the NLoS-A2 dataset and
Figure 7.10 for the LoS-Dtr dataset. The data ’clusters’ arrive at semi-regular inter-
vals, though with visible variance, and with the occasional sample or two arriving
between the clusters.

The clusters occur every few seconds - and at around 1 m/s pedestrian walking
speed, this would lead to up to a few meter ’gaps’ in the regressed position data.
With a measured GNSS positioning accuracy at around 3 meters, the data ’cluster-
ing’ phenomenon could be a minor but not dominant source of inaccuracy in the
final ML process.

Figure 7.9 The sub- channel matrix H8×8 updates over 100 millisecond intervals
for every Frequency band and UE tx antenna pair in the NLoS-A2 dataset, showing
’clustering’ behavior. The NLoSscenario appears to lead to larger data ’clusters’ as
compared to the LoS scenario.
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The ’size’ of the clusters appears to be the source of the difference between
the LoS and NLoSscenarios with regards to mean sample delay. The LoS scenario
as seen in Figure 7.10 shows far smaller number of samples per ’cluster’ than the
NLoSscenario as shown in Figure 7.9.

Figure 7.10 The sub- channel matrix H8×8 updates over 100 millisecond intervals
for every Frequency band and UE tx antenna pair in the LoS-Dtr dataset, showing
’clustering’ behavior. The LoS scenario appears to lead to smaller data ’clusters’ as
compared to the NLoSscenario.

To systematically investigate the sample delay behavior of an entire dataset,
binning all the datasets into a histogram visualization is possible. The result for the
LoS-Dtr dataset can be seen in Figure 7.11, while the result for the NLoS-A2 dataset
can be seen in Figure 7.12.

The results correspond to what is expected - after an initial spike of around 100×
incidence rate, the sample-delay density tapers off such that with a log-increase in
bin-size, the number of delays falling into the bin stays constant. The initial spike
then corresponds approximately to the ’clusters’ of data, while the slow logarithmic
fall of sample delay density comes from both the variability in ’cluster’ frequency
and from the stochastic lone sample or two between the clusters.
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Figure 7.11 Linear-start log-scale histogram of the sample delays in the LoS-Dtr
dataset. The number of delays of 1, 2, ..., 25 [ms] are shown in the linear binning
section, with log-incidence rate on the Y-axis. Above 25 [ms], the bins are log-scale.

Figure 7.12 Linear-start log-scale histogram of the sample delays in the NLoS-A2
dataset. The number of delays of 1, 2, ..., 25 [ms] are shown in the linear binning
section, with log-incidence rate on the Y-axis. Above 25 [ms], the bins are log-scale.
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The obtained data consists of complex-valued H12×8×8 matrices, with Section
7.2 demonstrating relatively good data coverage where at constant data-rates the
sample-delay is proportional to the channel quality. In this section, the information
content of the data is confirmed, and basic feature selection is investigated.

With regards to feature selection, there are three distinct ’feature’ classes easily
identifiable: Frequency channels, UE RX antennas, and the phase/amplitude of the
complex numbers. Of these three features classes, the easiest to discard for this
thesis is the phase of the complex numbers.

Phase data
The suspicion from Section 5.4 using the material covered in Chapter 2 is that from
the complex matrices per-element phase is not very useful. To give a visual exam-
ple of phase containing little valuable information, Figure 7.13 shows the relative
uselessness of phase w.r.t. the positioning task using GNSS positional ground-truth.

Figure 7.13 A snapshot of the phase in radians of a single direction h[8,6] in a sub-
channel matrix H1 of the LoS-Dtr database. The phase rapidly and stochastically
oscillates between -π and π , with GNSS inaccuracy around 3.5 meters leaving phase
useless for positioning. The red curve shows the moving average of complex phase
over 30 samples.

The explanation for the lack of useful information in phase requires an explo-
ration of the underlying physics. Phase generally contains information on three as-
pects: the angle of arrival to the RX, the angle of departure from the TX, and move-
ment under a wavelength, especially for LoS scenarios. Of the three above aspects,
the angle of departure from the basestation is already extracted from the phase infor-
mation by the built-in beam-domain transformation within the basestation, before it
reaches the ML model. The angle of arrival to the UE contains information about
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the orientation of the UE, but in practice for most positioning setups the orientation
of the UE is uncorrelated with the direction of movement and position of the UE.

Determining the orientation of the phone through phase might become useful
for future applications such as for when the UE is fixed to a vehicle - but for pedes-
trian tracking, which is the dataset created for this thesis, it is useless. Furthermore,
small-scale movement and sub-wavelength position is too noisy to reliably utilize,
especially since the positioning accuracy of the ground-truth GNSS is an order of
magnitude greater than the utilized 5G radio wavelengths are.

Amplitude data
The amplitude of outputs changes far more slowly than the phase, with longer trends
containing information on large-scale fading rather than on small-scale fading. The
assumption is that even in NLoScases, the amplitude of a beam depends on environ-
mental geometry enabling MPCs to reach the UE, thereby acting as a slowly-varying
correlate to position. To give an example of this, see Figure 7.14 for the complex
amplitude with the phase data shown in Figure 7.13

Figure 7.14 A snapshot of the unitless complex amplitude output of a single di-
rection h[8,4] in a sub-channel matrix H1 of the NLoS-T database. The amplitude
varies relatively slowly, potentially correlating with position. The red curve shows
the moving average of the amplitude over 30 samples.

To confirm that the position correlates with beam amplitude, analyzing the path
datasets is pertinent. As there is a periodicity of position as the path is walked back-
and-forth on, it is expected the output complex amplitude will show a similar be-
havior. On the NLoS-A1 dataset for example, there are 5 back-and-forth cycles on
the NLoS path seen in Figure 6.3. The expectation is then that certain outputs will
have very visible periodicity to their energies, e.g. as confirmed in Figure 7.15.
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Figure 7.15 A snapshot of the unitless complex amplitude output of a single direc-
tion h[8,5] in a sub-channel matrix H1 of the NLoS-A1 database. The red curve shows
a moving average value over 100 samples. The amplitude varies over 5 periods with
the periodicity expected from the path dataset.

The periodicity becomes more clear when the mean of the amplitude for all the
outputs in a single sub-channel matrix are taken, as shown in Figure 7.16.

Figure 7.16 The mean unitless complex amplitude of all the outputs in the low-
frequency UE RX 0 sub-channel matrix H1 of the NLoS-A2 database. The amplitude
of the outputs vary over 5 periods with the periodicity expected from the path dataset.
The blue curve shows the moving average over 100 samples.
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In summary, despite prior work on simulated data showing improvements in
positioning accuracy from utilizing complex values (See Section 1.2), the benefits
of phase diminish on meter-scales after angles of departure are taken into account.
Therefore, for the purposes of this thesis complex phase is disregarded and only
amplitude is used.

UE RX antenna and frequency-band information content
The next two collections of features are the different sub-channel matrices on the
different frequency bands and the different UE RX antennas. For an initial ex-
amination of the utility of both UE layers and different frequency bands, Figures
(7.17,7.18) show the mean amplitude across all directions in each sub- channel ma-
trix H1 in the LoS-Dtr dataset and NLoS-A2 datasets respectively.

Figure 7.17 The mean complex amplitudes for each sub- channel matrix H8×8 in
the LoS-Dtr dataset

W.r.t UE RX antennas, as direction of arrival is ignored it is not clear if there
is a significant benefit in terms of MPC information through taking dependency on
UE RX antennas into account. However, as the exact functions of the systems at the
Ericsson basestation are not fully known, there is the possibility of some form of
positional correlate from e.g. antenna prioritization or orthogonal multiplexing. For
this reason, an empirical analysis of the information content of the UE RX antennas
is pertinent. If no significant information is gained by handling the different UE
antenna layers separately, then instead the multiple antenna layers might instead be
utilizable for noise suppression.
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Figure 7.18 The mean complex amplitudes for each sub- channel matrix H8×8 in
the NLoS-A2 dataset

For frequency bands on the other hand, the intuition as per the physics described
in Chapter 2 is that the different frequency bands show slightly different MPC be-
haviors. The expectation is then that for positioning scenarios substantially benefit-
ing from MPCs, increased frequency resolution could lead to better results, assum-
ing the frequency bands are far enough apart to see significant difference in MPC
behavior. Should the frequency bands be too close, then MPC behavior can become
negligible and a higher resolution in the frequency-band can only be used for noise
suppression in data pre-processing.

In practice, using Figures (7.17,7.18) it can be seen that both UE antenna di-
versity and different frequency bands appear to give differing behaviors w.r.t. mean
complex amplitudes. Despite the visible differences however, what is more striking
is the high level of correlation visible across all sub-channel matrix mean ampli-
tudes. Therefore, while the utility of using the different sub- channel matrices H1
can not be ruled out, neither can the consideration that the minor increase in infor-
mational quantity from keeping the UE RX antenna and/or the frequency band fea-
tures is not proportional to the potential for overfitting that introducing 3-12 times
the data features may bring. The consequence of this is that different combinations
of ML input features will be investigated, to empirically examine the consequences
of vastly increasing data dimensionality to gain non-substantial amounts of data.

The investigated input types will then be: the full channel matrix H f ull , UE-
averaged channel matrix HmUE

3 , frequency-averaged channel matrix HmFr
4 and fi-

nally the fully-averaged channel matrix HFA
1 .
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7.4 Data pre-processing

Before applying ML models onto the data, it is worth considering what - if any -
preprocessing steps could improve results. Looking at the form of the data extracted,
in theory being the beam amplitude transfer function but for this basestation probe
appearing to be beam energy, gives a hint towards a simple processing change. As
mentioned in Section 2.6, wireless transmission energy initially falls at distance
squared, and at a certain distance, due to scattering and MPC behavior, energy falls
by a power of four. Therefore, there are two relevant transforms: taking one or more
nth-roots of the input, from square-root to 6th-root of the input channel matrix data
H. For this thesis, the square- and fourth- root are tested to see if they improve UE
positioning accuracy by hopefully making distance more linearly correlated with
the input data.

To further improve upon linearity, the data should mostly remain linear when
scaling it before input. The easiest method for this is to just divide it with a scalar
number, and keep the minimum at 0. Optionally, outlier detection could be used to
reduce the effect of high individual input complex amplitudes on the linear scaling,
thereby making it semi-linear but without outliers. Such outlier detection requires
further characterization of the input data however.

Another discussed aspect in Section 5.6 are polynomial kernel methods, un-
der the umbrella of polynomial regression. In it, the input feature vector is taken
and turned into an n-factor polynomial using polynomial coefficients. E.g, a fea-
ture vector x̂lin

1×3 will, using a 2-factor polynomial transformation, be turned into the
feature vector x̂pol−2

1×9 as per (7.1).

[ x1 x2 x3 ] (7.1)
↓

[ 1 x1 x2 x3 x2
1 x2

2 x2
3 x1x2 x1x3 x2x3 ]

Due to memory and processing-time constraints, only the fully-averaged chan-
nel matrix will have polynomial features. The polynomial transform used is of factor
2, as feature counts explode past any reasonable point of computation for anything
above that. To give an example, a feature size of 64 results in 2049 features with
polynomial regression of factor 2, and increasing to factor 3 will result in 131073
features; completely unfeasible to compute. Even if only the per-sub- channel- ma-
trix interaction features are generated, taking all 12 layers would lead to over 24000
features. Finally, intuition suggests minimal potential gains and a greater degree of
overfitting considering the sheer number of features when applying a polynomial
transform greater than factor two.

For splitting the LoS-A2 and the LoS-Dtr validation datasets into validation and
test sets respectively, the first approximate 12000 datapoints of the datasets were
designated the validation data, with the rest designated as the test dataset.

78



7.5 Regression using non-deep-learning ML

7.5 Regression using non-deep-learning ML

In this chapter so far both sufficient coverage and informational content of the in-
put data has been confirmed to a reasonable extent. It is then worth examining the
intuition that a highly-complex ML model such as a Deep ANN is required for use-
ful positioning, instead of something along the line of Elastic-Net regression - see
Section 5.6. As a comparison, two ’naive’ positioning approaches are also included:
random-guess, where position is guessed randomly somewhere in the measurement
area, and mean-guess, where position is always guessed at the mean position of all
the samples. The ’results’ of these are shown in Table 7.2.

Dataset Input type Model type tr. MSE val. MSE test MSE
LoS-D N/A Mean-guess 67.2 50.7 53.8
LoS-A N/A Mean-guess 518.1 570.3 560.4

NLoS-A N/A Mean-guess 724.8 770.5 713.7
LoS-D N/A Random-guess 185.8 168.2 172.3
LoS-A N/A Random-guess 971.8 1005.5 1021.4

NLoS-A N/A Random-guess 1403.4 1453.5 1407.4

Table 7.2 Baseline scores; ’mean guess’: points are at the mean training position.
’random-guess’: points are scattered in the area spanned by the training data.

As the non-deep-learning ML models, Linear Regression (Lin.Regr.), Lin-
ear Regression with Polynomial Features (Lin.Regr. P.), Elastic-Net regression
(EN.Regr.), Elastic-Net regression with polynomial features (EN.Regr. P.) are ap-
plied to the LoS-Dense, the LoS-path, and the NLoS-path scenarios. The differ-
ent Elastic-Net regression models have their hyperparameters tuned through 3-fold
Cross-Validation on the training data, then the different model types are compared
using the validation dataset. The different combinations of averaged sub-channel
matrices as detailed in Section 7.3 are also examined using the various different
non-deep-learning methods.

The expectation from the underlying physics (See section 2.4) is that linear re-
gression should be able to make a reasonable prediction for the LoS scenario, as
it should present a dominant specular component w.r.t. direction, where in shorter
ranges beam energy depends on distance. However, the NLoSscenario should not
perform nearly as well through linear regression.

Furthermore, it is expected that taking the square root of the input dataset for
LoS scenarios and combine it with the 4-th root of the input dataset for NLoSs-
cenarios should improve results for well-behaved datasets. For a demonstration of
the importance of taking the square root of the input data, a selection of models
and a LoS and NLoSdataset are regressed for using without taking the square root
first, with results shown in Table 7.3. For comparison, similar results on the full
square-rooted channel matrix are shown in Table 7.4.
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Dataset Input type Model type tr. MSE val. MSE test MSE
LoS-D H f ull Lin.Regr. 24.0 26.7 27.4

NLoS-A H f ull Lin.Regr. 337.4 461.0 366.9
LoS-D H f ull EN.Regr. 25.5 23.3 25.3

NLoS-A H f ull EN.Regr. 394.8 394.2 385.3

Table 7.3 Scores for basic ML algorithms using the Full channel matrix without
taking the square root first.

Dataset Input type Model type tr. MSE val. MSE test MSE

LoS-D
√

H f ull Lin.Regr. 17.9 19.8 20.3
LoS-A

√
H f ull Lin.Regr. 113.9 252.6 245.8

NLoS-A
√

H f ull Lin.Regr. 244.4 336.3 261.2
LoS-D 4√H f ull ∪

√
H f ull Lin.Regr. 14.0 19.3 27.4

LoS-A 4√H f ull ∪
√

H f ull Lin.Regr. 74.4 281.3 233.1
NLoS-A 4√H f ull ∪

√
H f ull Lin.Regr. 181.9 293.3 223.2

LoS-D
√

H f ull EN.Regr. 18.9 17.4 18.9
LoS-A

√
H f ull EN.Regr. 124.9 246.5 237.0

NLoS-A
√

H f ull EN.Regr. 289.5 286.1 263.6
LoS-D 4√H f ull ∪

√
H f ull EN.Regr. 15.7 17.9 25.4

LoS-A 4√H f ull ∪
√

H f ull EN.Regr. 96.6 241.4 225.4
NLoS-A 4√H f ull ∪

√
H f ull EN.Regr. 218.1 279.4 221.5

Table 7.4 Scores for basic ML algorithms using the Full channel matrix

From just the first results on using regression with the full channel matrix, it is
immediately obvious that the LoS-D is well-behaved, with significantly improved
results over random guessing. Unexpectedly, even NLoSand the misbehaving LoS-
A datasets gave better-than-random results, though still vastly underperforming the
proper LoS scenario.

Furthermore, taking the square root input greatly improves results on all scenar-
ios: LoS-D, LoS-A and NLoS. Furthermore, also shown from these early results is
that the 4-th root does not improve results for the well-behaved LoS scenario, but
does consistently improve results for the NLoSscenario.

The misbehaving LoS-A datasets also appear to be more ’NLoS’ in character
than ’LoS’, further reinforcing the intuition from before. The result is, however, that
the original stated goal of using the LoS-A dataset to have a direct comparison to the
NLoS-A dataset is not possible. Due to time and access restrictions, re-recording the
NLoS-A data is not possible. Instead, the dataset will be viewed as a performance
test in the case of misbehaving data.

In the next Tables (7.5 - 7.6), the combinations of different dataset pre-
processing methods are examined.
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Dataset Input type Model type tr. MSE val. MSE test MSE

LoS-D
√

HmUE
3 Lin.Regr. 21.3 19.3 19.3

LoS-A
√

HmUE
3 Lin.Regr. 131.1 232.3 205.3

NLoS-A
√

HmUE
3 Lin.Regr. 265.8 299.6 260.4

LoS-D 4√HmUE
3 ∪

√
HmUE

3 Lin.Regr. 17.4 17.4 27.4
LoS-A 4√HmUE

3 ∪
√

HmUE
3 Lin.Regr. 103.1 227.8 186.1

NLoS-A 4√HmUE
3 ∪

√
HmUE

3 Lin.Regr. 254.2 254.2 220.1

LoS-D
√

HmUE
3 EN.Regr. 21.5 18.3 19.0

LoS-A
√

HmUE
3 EN.Regr. 133.9 228.9 198.7

NLoS-A
√

HmUE
3 EN.Regr. 294.7 277.8 264.5

Table 7.5 Scores for basic ML algorithms using the UE-averaged channel matrix

Dataset Input type Model type tr. MSE val. MSE test MSE

LoS-D
√

HFA
1 Lin.Regr. 23.3 20.6 20.6

LoS-A
√

HFA
1 Lin.Regr. 134.6 226.5 195.4

NLoS-A
√

HFA
1 Lin.Regr. 271.7 287.8 262.7

LoS-D 4√HFA
1 ∪
√

HFA
1 Lin.Regr. 19.5 18.4 27.4

LoS-A 4√HFA
1 ∪
√

HFA
1 Lin.Regr. 108.0 217.2 174.28

NLoS-A 4√HFA
1 ∪
√

HFA
1 Lin.Regr. 206.7 237.2 220.4

LoS-D
√

HFA
1 Lin.Regr. P 8.6 19.5 16.8

LoS-A
√

HFA
1 Lin.Regr. P 34.5 218.7 141.3

NLoS-A
√

HFA
1 Lin.Regr. P 112.5 332.1 193.7

LoS-D
√

HFA
1 EN.Regr. 26.4 18.8 21.7

LoS-A
√

HFA
1 EN.Regr. 135.6 224.9 191.7

NLoS-A
√

HFA
1 EN.Regr. 291.9 272.5 267.2

LoS-D
√

HFA
1 EN.Regr. P 25.3 18.6 20.6

LoS-A
√

HFA
1 EN.Regr. P 97.9 211.4 163.2

NLoS-A
√

HFA
1 EN.Regr. P 321.3 308.6 276.1

Table 7.6 Scores for basic ML algorithms using the fully-averaged channel matrix
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Dataset Input type Model type tr. MSE val. MSE test MSE

LoS-D
√

HmFr
4 Lin.Regr. 20.43 19.97 20.25

LoS-A
√

HmFr
4 Lin.Regr. 126.85 237.53 236.1

NLoS-A
√

HmFr
4 Lin.Regr. 308.94 256.99 264.44

LoS-D 4√HmFr
4 ∪

√
HmFr

4 Lin.Regr. 16.50 18.90 27.40
LoS-A 4√HmFr

4 ∪
√

HmFr
4 Lin.Regr. 96.229 263.49 220.02

NLoS-A 4√HmFr
4 ∪

√
HmFr

4 Lin.Regr. 199.24 254.20 220.09

LoS-D
√

HmFr
4 EN.Regr. 20.91 18.62 19.93

LoS-A
√

HmFr
4 EN.Regr. 131.17 234.83 229.23

NLoS-A
√

HmFr
4 EN.Regr. 279.42 292.39 267.54

Table 7.7 Scores for basic ML algorithms on the Frequency-averaged ch. matrix

From the above results, the following can be reasoned:

• Polynomial features do not significantly effect validation results, and any
small benefits come at a cost of greatly increasing the possibility of overfitting
without regularization. For NLoS especially, overfitting becomes a bigger is-
sue, but the gains in test MSE from having more data (as both the training
and validation datasets are used to obtain test results in regression) show that
nonlinear ML has potential. Regularization also seems to unduly penalize the
NLoS scenario.

• Reducing the amount of data available does not seem to greatly effect per-
formance, except for reducing the possibility of overfitting. Validation and
test results seem to be at most slightly reduced, even if both the UEs and the
Frequencies are averaged out. In fact, for the NLoS scenario, by far the best
validation result snf the best training:validation proportion came from simple
linear regression on the combined square and 4-th root datasets.

Overall, this analysis with linear and EN.Regr. indicates the following: positioning
is possible in both LoS and nLoS, taking the square root of the input data improves
all results, taking the fourth-root is advisable for NLoS beam-paths, and polynomial
features are of minimal benefit due to overfitting. Furthermore, using the different
sub- channel- matrices as features does not meaningfully effect validation results as
compared to averaging them out to create a lower-dimensional input.

The above results aid in finding a compromise between low feature-counts and
data-utility for ML. Due to the 4x higher dimensionality at minimal performance
benefit and with no underlying physical intuition, the full channel matrices and
Frequency-averaged channel matrices will not be utilized. The two investigated in-
put data-types will therefore be the fully-averaged 2× 8× 8 dimensional XFA

H :=√
HFA

1 ∪
4√HFA

1 and a higher 6×8×8 dimensional XmUE
H :=

√
HmUE

3 ∪ 4√HmUE
3 .
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8.1 Architecture

The optimal found structure for deep-learning consists of three discrete ’blocks’ of
fully-connected layers with ReLU nodes. To ensure scalability of the system to a
more general system applicable to a larger area, network architecture was mostly
unchanged between the ML models for the different datasets. Though in reality
analyzing the exact function different layers in a deep ANN w.r.t. information pro-
cessing is an entire research field, and for this thesis an exercise in futility. However,
it is often convenient to ’assign’ a designated task each block of layers is intended
to fulfill. The three blocks are, along with their intended approximate purpose:

1. Data Input block: The idea behind the data input block is that it serves to
take the input data and narrow it down to a small number of dimensions (20-
40) for an intermediary latent-space. Through empirical experimentation, the
narrowing seems doable through three layers, of which the first’s output is 2-3
times the dimensionality of the input data, the second layer’s output is half
the dimensionality of the first layer, and finally the third layer outputs into the
desired reduced dimensionality. When the input datatype is changed between
XFA

H and XmUE
H , only the input block is changed.

2. Process block: The expectation is that the process block takes the reduced
dimensions generated through the data input block and with minimal or no di-
mensional reduction feeds it through 1-3 layers to process nonlinear relations
for the data in the lower-dimensional latent space. Optionally, a small contin-
uous decrease of 0-20% for layer output dimensionality can be introduced to
further squeeze the data.

3. Positioning block: The expectation is that the positioning block takes the
process block’s output latent-space and through 2-4 layers rapidly narrows it
down to two dimensions to regress for position. Note that the last layer has
two outputs corresponding to position.
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Chapter 8. Applied Deep Learning

A visualization of the intended three blocks with only one part of the input data
can be seen in Figure 8.1.

Figure 8.1 A visualization of the 3-block deep neural network architecture used in
this thesis along with the intended input and output. In this example, the Data input
consists of 3 fully-connected layers, the process block 4 fully-connected layers, and
the positioning block 3 fully-connected layers. Note that though in this visualization
layers are shown as a 2-dimensional plane, in reality all dimensions are flattened.

The final models can be seen in Table (8.1). A much wider hyperparameter-
space than shown in Appendix Table (11.2) was explored in general trial-and-error
to find a smaller subset of viable hyperparameters, with the space spanned by the
narrowed set of hyperparameters then randomly sampled-from during the training-
validation loop using a uniform distribution to find the final models.

Dataset Input Ninput
max Dproc. N proc.

max Aproc Dpos. N pos.
max Apos

LoS-D XFA
H 329 1 33 1 4 19 0.95

LoS-A XFA
H 365 1 35 1 2 21 1

NLoS-A XFA
H 360 1 35 1 2 19 1

LoS-D XmUE
H 432 1 28 1 2 28 0.8

LoS-A XmUE
H 494 3 35 0.9 2 21 1

NLoS-A XmUE
H 546 2 27 0.9 2 17 1

Table 8.1 Found optimal single-ML deep-learning models. Nblock
max refers to the

number of neurons in the largest layer in the block, Dlayers refers to the depth of
the block in terms of layer number, and Alayers refers to the Nblock

min /Nblock
max ratio, with

each block having the maximum layer be the first, and the minimum layer the last.
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8.2 Applied Regularization and training hyperparameters

Dropout
Utilizing dropout regularization (see Section 5.8) for most layers improved results
substantially. After fine-tuning it on validation data, a different per-layer and per-
block dropout was used.

1. Dropout for the data input block was set to 5% for the first input layer, and
10% to the other layers in the block.

2. Dropout for the Process block was set to an even 12%

3. Dropout for the Positioning block was set to 0% for the last and before-last
layer, and 10% for other layers should they exist.

Noise injection
Three types of noise injection were used. These were additive output noise, additive
input noise, and multiplicative input noise. The function and magnitude of each is:

• Additive output noise: The GNSS datasource used consistently obtained a
STD accuracy of around 3 meters. To both model this uncertainty in training
position and to prevent overfitting, an additive Gaussian noise with zero-mean
and an STD of 2.8 meters was added on to the training data, changing with
each iteration. The underlying assumption that GNSS inaccuracy can be mod-
elled with an additive Gaussian is of course a poor approximation, but without
more advanced GNSS data processing and information about the GNSS mea-
surement device IMU sensor fusion, no knowledge about noise characteristics
is possible other than the STD accuracy.

• Additive input noise: Due to a lack of time to properly investigate priors
on the input data, the per-direction noise is not well known. Instead, a sim-
ple model of Gaussian additive and multiplicative noise is used. The additive
noise w is sampled from a zero-mean normal distribution: w ∼ N (0, σ2).
The σ standard deviation of the additive noise is empirically 2 magnitudes
(10e-2) smaller than the smallest nonzero input feature for all datasets. There-
fore, additive noise is there to ’simulate’ roughness on the zero-value direc-
tions.

• Multiplicative input noise: The multiplicative noise is there to create
magnitude-dependent noise for the features, and consists of multiplying the
input features by (1−Z), where Z ∼N (0, σ2) with std σ of the same mag-
nitude as for the additive input noise.

One final processing step is to ensure that the input can not take negative values
by taking the noise-injected input feature’s absolute value as input. This is done as
even with noise, amplitude and derived quantities should never be negative.
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Early Stopping
The applied method of Early Stopping was slightly more complicated than the one
described in Section 5.5. The validation loss was tracked both with a moving aver-
age of the past 6 epoch’s validation errors and with the best previous loss. The model
scoring better than the previous retained best model w.r.t. validation accuracy but
was also part of a moving average better than the previous best moving average was
kept. This more complicated setup was to filter out the noise found in the validation
accuracy, and only keep models that were significantly better than earlier models -
thereby hopefully improving generalization to the final test dataset.

In summary, even if the model was trained for an extended amount of time, only
the epoch resulting in the model with the lowest general validation loss was kept.
The step-by-step of the early stopping can be seen in Algorithm 3.

Algorithm 3: The developed early-stop and training algorithm
Result: Trained best model Mbest, training Tk and validation Vk history
Input: Number of Epochs Ne, Minimum Validation Error Vmin
Input: Initialized ML model M0
Input: Training iterator Mk,Tk← Train(Mk−1,Xtr,Ytr)
Input: Validation function Vk←Valid (Mk,Xv,Yv)
Data: training dataset Ytr,Xtr, validation dataset Yv,Xv
Initialize: Empty Validation, training history vector: V0, T0 ;
Initialize: Model temporary storage vector: m6← 6× [NaN] ;
for k← 0 while k < Ne do

Train model for one epoch: Mk,Tk← Train(Mk−1,Xtr,Ytr);
Update validation error: Vk←Valid (Mk,Xv,Yv);
Epoch check: If {Vk >Vmin} then Ne ++ ;
Remove oldest element in model temporary storage: pop(m6) ;
if Vk <Vbest −0.1 then

Add model: append [m6]with [Mk] ;
else

Add empty element: append [m6]with [NaN] ;
end
if mean

(
Vmax(0,k−6):k

)
< vbest −0.1 and

min
(
Vmax(0,k−6):k

)
<Vbest −0.1 then

Update best validation: Vbest ←Vargmink(Vmax(0,k−6):k)
;

Update best model: Mbest ← margmink(Vmax(0,k−6):k)
;

Update best average validation: vbest ← mean
(
Vmax(0,k−6):k

)
;

end
k++

end
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Explicit regularization
Alongside the above regularization methods, weight decay - L2 regularization - is
implemented by the AdamW optimizer. For weight decay, a standard 0.001 per-
formed well enough, with other regularization methods overshadowing the contri-
bution of weight decay.

L1 regularization in its classic sense is uncommon in many models, as instead
other methods for introducing sparse weights (and/or pruning) for deep learning
give better results [Hoefler et al., 2021]. However, due to time-constraints on train-
ing times during the writing of this thesis, no such method was experimented with.

Training and optimization
For epoch selection, the epoch counter only began after validation loss fell signifi-
cantly below that of linear regression on the same dataset, with an epoch-start MSE
of 200 for the NLoS-A and LoS-A datasets, and 35 MSE for the LoS-D dataset.
This was to correct for a very occasional slow initial convergence. The models were
trained on a mobile RTX 2060 GPU, using CUDA and PyTorch.

Due to contamination of test results through early-stopping, unlike before in
(7.5) networks were not re-trained on combined validation and training data when
evaluating the test dataset. A secondary benefit to this is reduced training time,
which was already an issue due to the wide architecture-space to explore.

Each model was trained on each training dataset and tuned using the corre-
sponding validation dataset, with training going for 150 useful epochs at a learning
rate of 0.001 using the AdamW-amsgrad optimizer specified in Section 5.3. Due to
early-stopping, the actual epoch-model used was usually found below 150 epochs.
An example training graph of the LoS-D XFA

H model can be seen in Figure 8.2.

Figure 8.2 The training history of the 150-epoch LoS-D XFA
H model. The training

loss is much higher than shown in the result, as this includes all the injected noise.
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8.3 Single-model Machine-Learning Results

The MSE results of the best discovered models for each dataset and input feature-
pair using the architecture shown in Table (8.1) can be seen in Table (8.2). In ad-

Dataset Input Model tr.MSE val.MSE test.MSE

LoS-D XFA
H single 3.9 6.7 9.0

LoS-A XFA
H single 5.4 81.1 85.4

NLoS-A XFA
H single 7.7 41.6 66.7

LoS-D XmUE
H single 2.7 6.2 8.3

LoS-A XmUE
H single 6.5 89.3 99.2

NLoS-A XmUE
H single 14.8 46.1 65.7

Table 8.2 Results on found optimal single-ML deep-learning models. The model
column refers to applied regularization, where single is the baseline model.

dition to the standard 150 epoch model results shown in Table (8.2), also shown in
Table (8.3) are the results when the best found models are trained on 1500 epochs
with the learning rate halved after Epoch 150 with and without Early Stop. The ex-
pectation is then that there will be at most a minor improvement for validation MSE
and test MSE. The non-early-stopped results should show significant overfitting,
with good training MSE but no generalizability. E.g. The 1500 epochs training of
NLoS-A XmUE

H is shown in Appendix Figure 11.3.

Dataset Input Model Estop tr.MSE val.MSE testMSE
Eend

LoS-D XFA
H 1500E 155 3.0 6.7 9.2

1500 2.1 8.1 10.4
LoS-A XFA

H 1500E 109 5.4 81.1 85.4
1500 4.1 108.4 114.8

NLoS-A XFA
H 1500E 97 7.7 41.6 66.7

1500 2.0 47.8 67.1
LoS-D XmUE

H 1500E 241 1.9 7.3 9.2
1500 1.0 8.0 10.1

LoS-A XmUE
H 1500E 89 6.5 89.3 99.2

1500 2.1 128.1 129.1
NLoS-A XmUE

H 1500E 353 8.9 60.7 58.3
1500 6.3 76.6 59.8

Table 8.3 Results on found optimal single-ML deep-learning models after Early-
stop on 1500 epochs E. Also shown are the resulting models after 1500 epochs. All
regularization is used, and the Early Stop Epoch Estop is also shown.
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Discussion of single-ML results
The first noticeable aspect of the basic single-ML results is how much of an im-
provement the MSE rates are compared to the various regression models. Even in
the worst case on the test data, the achieved MSE was more than twice as good for
all scenarios than for even the best regression model. In meters (taking the square-
root of the MSE), the error radius on the test data seems to be around 2.8-3 meters
for the well-behaved LoS and around 8-10 meters for the poorly-behaved LoS and
NLoS models.

The well-behaved LoS dataset has errors roughly similar to what is expected
from the underlying ground-truth dataset. The suspicion is then that the ML model
is limited in truth by practicalities of obtaining more accurate positional training
data and not by the model or the underlying theory. A visual demonstration of the
validity of these result is in Figure 8.3, where a point-cloud shows the predictions
the single ML XmUE

H model made on the LoS-Dv test dataset.

Figure 8.3 The predictions (black crosses) made by a single ML XmUE
H model over

a subset of the test data for the LoS-Dv dataset. The GNSS path is shown in blue,
and shown in red is a non-causal median smoothing applied to the prediction data
(forward and backwards 17 elements).
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From just the MSE of the LoS-A2 results, the ML model appears to perform
alright, with an MSE of around 80-100 [m2] - a root-MSE of around 9-10 meters.
Though it vastly outperforms linear regression on the same dataset, it is far worse
than expected from a LoS dataset - which the training MSE values indicate it is.

Looking however at the results of the ML algorithm on the poorly behaved
LoS-A2 and comparing them to GNSS data, something interesting is immediately
visible. The GNSS data seems to ’think’ that we are not on the roof of the building
much of the time, giving an immediate almost 5-8 meter offset from the true location
the data was recorded on. In fact, just from looking at the results Figure 8.8 and the
route-plan from Figure 6.3, it is visible that in the case of the test data, the ML
actually sometimes outperformed the GNSS ’ground truth’ in predicting location.

Figure 8.4 The predictions (black crosses) made by a single ML XmUE
H model over

a subset of the test data for the LoS-A dataset. The GNSS path is shown in blue, and
shown in red is a non-causal median smoothing applied to the prediction data. Note
that GNSS veers way offroute, while the predicted location is more accurate to how
the ’true’ walk looked like. Therefore, the low error is a combined artifact of GNSS
data being poor and the LoS-A2 dataset having a different character as compared to
the training LoS-A1 dataset.
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For the NLoS-A test data, the test MSE results were 3-4 times better than for
any of the regression models used in Section 7.5, achieving a MSE of around 60-70
[m2]. This corresponds to a roughly 8 met root-MSE, which is already a fairly good
start for raw output for a positioning system - especially one where there is already
an intrinsic error while training. The resulting position prediction cloud for much of
a single iteration can be seen in Figure 8.5.

Also note how much worse the system is at predicting the user in the north-east
of the path. In that area the NLoS characteristics are exacerbated by foliage cover,
while in the south-west though the basestation does not have direct LoS, there is
more open-space and reflective surfaces for optimal MPCs. This shows that not all
NLoS scenarios are ’made equal’.

Figure 8.5 The predictions (black crosses) made by a single ML XmUE
H model over

a subset of the test data for the NLoS-A dataset. The GNSS path is shown in blue,
and shown in red is a non-causal median smoothing applied to the prediction data.
Note again that GNSS veers offroute. The ’true’ user position could be somewhat
reconstructed even by just the results of one ML algorithm.
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8.4 Ensemble methods, results, and discussion

Applied Ensemble methods for CSI
Discussed in Section 5.5, Ensemble machine learning is generally a far more ef-
fective use of the (limited) compute resources available than overtraining, as seen
in Table (8.3). As mentioned, in literature ensembles are not utilized when directly
comparing ML methods as performance improves with increased numbers of com-
ponent networks, thereby making it a function of compute power more-so than
method. The goal of this thesis is work on developing a positioning pipeline, for
which ensembles are a useful tool despite the latter statement.

Furthermore, Ensemble networks can be utilized for Particle Filtering to approx-
imate a probability density function when combined with kernel density estimates,
as discussed in Section 9.1. For this chapter, a simpler way of utilizing Ensemble
methods for regression is to average out the outputs of the component models for
every datapoints - which will be the method used in this section.

Deep Learning Ensembles do not necessarily require groups of networks with
different architectures, but it could possibly improve results. Therefore, two En-
sembles variants will be examined; uniform-architecture network ensembles and
diverse-architecture network ensembles. A relatively small ensemble of 10 networks
will be created for each type and then compared, each trained with early-stopping
for a maximum of 150 epochs - thereby giving an overall similar training time for
each ensemble as the more computationally inefficient 1500 epoch full-networks
shown in Table (8.3).

The parameter-space in which the component networks have their architectures
sampled from can be seen in Table (8.4). Any parameter not shown is kept identical
to those described in prior chapters.

Input Ninput
max Dproc. N proc.

max Aproc Dpos. N pos.
max Apos

[min] [256] [1] [24] [0.8] [2] [16] [0.6]
XFA

H ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
{max} {384} {3} {38} {1.0} {4} {22} {1.0}
[min] [392] [1] [24] [0.8] [2] [16] [0.6]

XmUE
H ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

{max} {768} {3} {38} {1.0} {4} {22} {1.0}

Table 8.4 Range of architectures sampled for the diverse-ML ensemble of deep-
learning models - where the ideal model from Table (8.1) is guaranteed to be one of
the samples. Nblock

max refers to the number of neurons in the largest layer in the block,
Dlayers refers to the depth of the block in terms of layer number, and Alayers refers to
the Nblock

min /Nblock
max ratio, with each block having the maximum layer be the first, and

the minimum layer the last.
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Mean-Ensemble method results
Both a diverse ensemble sampled from the parameters in Table (8.4) with 10 and 50
models along with an optimal-model-ensemble with 10 models using the optimal
parameters seen in Table (8.1) were run on the full dataset. The resulting MSE for
each of the models and datasets can then be seen in Table (8.5).

The expectation is then that the Optimal and Diverse ensembles both improve
results over the baseline model at a roughly equivalent level, but placing 50 models
instead of 10 will not meaningfully improve results. The 50 models will have a
larger diversity of ’guesses’ however, which will be utilized for particle filtering as
per Chapter 9.

Dataset Input Model tr.MSE val.MSE test.MSE

LoS-D XFA
H 10-Diverse 3.5 5.7 8.1

LoS-A XFA
H 10-Diverse 6.9 76.0 81.8

NLoS-A XFA
H 10-Diverse 10.8 38.9 63.4

LoS-D XmUE
H 10-Diverse 3.0 5.2 7.3

LoS-A XmUE
H 10-Diverse 8.4 79.4 91.6

NLoS-A XmUE
H 10-Diverse 10.1 43.4 61.6

LoS-D XFA
H 10-Optimal 3.9 5.7 8.2

LoS-A XFA
H 10-Optimal 5.5 73.9 79.8

NLoS-A XFA
H 10-Optimal 7.5 38.8 56.9

LoS-D XmUE
H 10-Optimal 2.7 5.7 7.7

LoS-A XmUE
H 10-Optimal 8.9 85.5 98.4

NLoS-A XmUE
H 10-Optimal 6.7 43.3 58.2

LoS-D XFA
H 50-Diverse 3.3 5.5 7.9

LoS-A XFA
H 50-Diverse 6.3 74.8 81.2

NLoS-A XFA
H 50-Diverse 11.4 41.8 59.8

LoS-D XmUE
H 50-Diverse 2.9 5.2 7.2

LoS-A XmUE
H 50-Diverse 7.9 80.7 92.1

NLoS-A XmUE
H 50-Diverse 10.6 43.8 60.4

Table 8.5 MSE results on the different datasets using the two 10-element ensem-
ble deep-learning models along with one 50-element ensemble model after Early-
stop on 150 epochs. The model column refers to the type of ensemble model, where
10-Diverse refers to the 10 random chosen architectures within the hyperparameter
bounds defined in Table (8.4) while also including a single instantiation of the op-
timal found model described in Table (8.1). The 10-Optimal then refers to training
the Optimal found model 10 times in an ensemble. The 50-Diverse model is a 50-
element variant of the diverse ensemble, and is also the same instantiation as the
ensemble that will be used for Particle Filtering.
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Discussion of Ensemble results
As expected, the MSE of the Training, Validation, and Test datasets were signifi-
cantly reduced, with an around 10% improvement, through even a 10-model ensem-
ble as compared to the ideal single-model result. This held for both the Diverse and
the Optimal Ensembles. The 10-optimal also seems to modertately outperform the
10-diverse in the NLoS-A dataset, while the reverse is true for the LoS-D dataset.

Looking visually at the predictions, the Ensembles for both the LoS-A and the
NLoS-A show visible improvement from using Ensembles as compared to the sin-
gle model results from before. See Figure 8.6 for one of the ensemble LoS-D test
results, and Figure 8.7 for one of the ensemble NLoS-A test results. Due to how
similar the results were in these instances, only one of the possible models had their
results shown.

Figure 8.6 The predictions (black crosses) made by the 10-Diverse ML XFA
H model

over a subset of the test data for the NLoS-A dataset. The GNSS path is shown in
blue, and shown in red is a non-causal median smoothing applied to the prediction
data (forward and backwards 17 elements).
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Figure 8.7 The predictions (black crosses) made by the 10-Diverse ML XFA
H model

over a subset of the test data for the NLoS-A dataset. The GNSS path is shown in
blue, and shown in red is a non-causal median smoothing applied to the prediction
data (forward and backwards 17 elements).

We speculate that the cause of the better performance in NLoS for the Opti-
mal and in LoS for the Diverse model might be that a more diverse set of mod-
els is needed to gain an ensemble advantage of averaging-out uncorrelated errors
when the task is simpler, while a more complicated task such as NLoS positioning
might be more sensitive to models having a well-performing architecture. Overall,
however, in both cases the end scores were fairly close and showed the expected
significant performance improvement MSE over just using a single model - with
the exception of the anomalous test result from the 1500 Epoch-trained and over-
fitted XmUE

H single-model, which scored a good test result despite the expected bad
validation result.

Interestingly, using the Fully-averaged XFA
H dataset also appears to bring con-

sistent improvements over the mean-UE XmUE
H dataset - with the exception of the

LoS-D dataset. Unexpectedly, this holds true even for the training error, despite
the greater potential for overfitting a large number of input parameters brings with
it. We speculate that the regularization techniques reduce the advantage of over-
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parameterization, while the small information advantage that introducing separate
frequencies brings with it is too complicated to properly parse with the relatively
small models and limited available data.

Interestingly, the model in which XFA
H outperformed the XmUE

H dataset the most
was in the LoS-A dataset - in training, but especially in the validation and test
results. We speculate that the fewer number of input parameters enable a much
more generalizable model which functions better to position points in a dataset with
a somewhat different character. The visual result is however still not a dramatic
improvement over using a single ML model, with the median-smoothed path still
showing a lot of jumping, as visible in Figure 8.8.

Figure 8.8 The predictions (black crosses) made by the 10-Diverse ML XFA
H model

over a subset of the test data for the LoS-A dataset. The GNSS path is shown in blue,
and shown in red is a non-causal median smoothing applied to the prediction data
(forward and backwards 17 elements).

Overall, the results from machine learning alone hold a lot of promise, and will
be further utilized through particle filtering in the following Chapter 9 to estimate
the underlying motion navigational pathways generating the independent samples.
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9.1 Kernel Density Estimation with Ensembles

Particle filtering for position using deep-learning
With a method for obtaining point guesses (or cluster-of-point guesses) developed
using deep learning in Chapter 8, a way of turning individual non-time-dependant
samples into position estimates is shown to be feasible. The next step is to then
integrate time-domain knowledge into the estimation model.

In literature, time-based models such as Recurrent Neural Networks are some-
times used - see Section 1.2. Due to computational limitations, this approach is
not feasible for this thesis. For navigation and positioning in most fields, the most
common choice is to go with a form of Bayesian Filtering, such as Kalman Filters,
Extended Kalman Filters, or Particle filters, or some hybrid of thereof - as discussed
in Section 4.1. The choice depends largely on the linearizability of the system model
and the observation noise characteristics.

In a hypothetical ideal positioning system for SRS channel matrices, the UE
state vector xk at time k is a markovian system with a known state evolution prob-
ability Move(xk+1|xk), where the act of observing the state xk through a chan-
nel matrix H can be viewed as akin to sampling from a probability distribution
Hi ∼ Hgen(H|xk). Then, assuming the markovian property, a chain of state obser-
vations x̂1:k from channel matrices H1:k can be created using Particle Filtering. The
only additional needed assumption is then that a PDFobs

k

(
x̃i|Hk

)
instantaneous Ob-

servation probability density function is known, giving the observation probability
for any arbitrary i state x̃i at time k.

The issue is then that deep-learning models M(Hk) create ŷEN
k point-

observations. In essence, they can be viewed as a way of non-randomly sampling
position observations yEN

k from from an underlying unknown probability distri-
bution Obsk (ŷk|Hk), which can be viewed as representing the distribution of the
possible outputs for an ideal position prediction system given the possible channel
matrices Hi generated by all the states x that are in position yEN .
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The task is then to find a way to approximate the PDF corresponding to the ideal
Obsk (ŷk|Hk). For this, a way of obtaining multiple samples from ML models is re-
quired. There are two primary ways of introducing randomness to hopefully obtain
multiple yEN

k samples from the unknown underlying Obsk (ŷk|Hk): by introducing
a series of N noise-injected H̃1:N

k to the input of the model M, or by using a single
channel matrix but sending it through a number of N different models M1:N , each
creating a different prediction. There are many ways of generating different models,
including taking trained models and applying dropout regularization on the valida-
tion/test results iteratively, re-training the same model using e.g. different training
conditions, different epochs of the same model, re-training different architectures,
etc...

As the noise prior for the input channel matrices is not well known, and since
ensembles of models were already trained to output point-clusters, the multiple-
model ensemble of networks method of obtaining N random samples of yEN

k was
convenient to use. For this, the diverse models were then chosen to improve diversity
of output points - the hope being that different models perform differently w.r.t.
accuracy and consistency for different parts of the dataset, leading to an overall
consistent prediction rate.

The final task is to then find a way to find an approximate observation PDF
Ôbsk (ŷk|Hk) using the set of ỹ1:N

k observations generated by the models M1:N (Hk).
This field is known as density estimation, and two extremely common and simple
methods for it are Gaussian Mixture Models and the non-parametric Kernel Density
Estimation.

Kernel Density Estimation
In Gaussian Mixture Models a number of multivariate Gaussian distributions are
fitted onto the discrete sample data such that entropy is minimized, while Kernel
Density Estimation - also known as Parzen’s window - consists of applying a vari-
able kernel onto the discrete sample data to ’smooth’ it out into a distribution [Chen,
2017]. Due to time-constraints while working on this thesis and with the assumption
that the underlying PDF does not necessarily fall into neat Gaussian-like clusters,
the chosen method for finding an approximate PDF was Kernel Density Estimation
(KDE). Furthermore, KDE is non-parametric, requiring no underlying assumptions
for the distribution other than the kernel type.

KDE for position estimation in the current context is defined as the density
estimation shown in Equation (9.1), where p̂k is the estimated density function of the
unknown observation distribution Pk, the observed samples Y 1

k , · · ·Y i
k , · · · ,Y N

k ∈ Rd

are machine-learning observations from the hypothetical distribution Pk, K : Rd →
R1 is the smoothing function (kernel) with a unit integral, and h is the bandwidth.

p̂k(z) =
1

Nhd

N

∑
i=1

K
(

z−Y i
k

h

)
(9.1)
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A common smoothing function (kernel) for KDE is the Gaussian kernel, which is
the one utilized for the implementation of the particle filter. The Gaussian Kernel
can be seen in Equation (9.2).

K(z) =
e
−||z||2

2

znorm
, znorm =

∫
e
−||z||2

2 dz (9.2)

Though there are methods to enable automatic bandwidth adjustment [Chen,
2017], for this thesis it seemed fairly obvious to use a similar bandwidth as the
GNSS data uncertainty, at around a 2.8-3.2 meter bandwidth. Through empirical
tuning of the bandwidth on the validation data, this number seemed optimal as well.

For an example of the generated approximate PDF using KDE on test data using
a diverse-ensemble of 50 XFA

H input-models, see Figures (9.1, 9.2). Shown are both
a fairly ideal scenario in the LoS-D test dataset and a very scattered LoS-A2 test
dataset point prediction.

Figure 9.1 The resulting PDF contour-plot of KDE on 50 observations done by 50
different models on a single XFA

H channel matrix datapoint in the well-behaved LoS-
Dtr test sub-dataset. The ’ground-truth’ GNSS-interpolated location is shown as a
blue point, with the past few seconds of movement shown by the blue path. The PDF
shown is extremely well-clustered, essentially indistinguishable from a gaussian.
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Figure 9.2 The resulting PDF contour-plot fitted using a KDE with a bandwidth
of 3 on 50 observations done by 50 different models on a single XFA

H channel matrix
datapoint in the poorly-behaved LoS-A2 test sub-dataset. The ’ground-truth’ GNSS-
interpolated location is shown as a blue point, with the past few seconds of movement
shown by the blue path. The PDF is very scattered, but with a distinct ’cluster’ of
detections near the actual position. The hope is that even in this very poorly behaved
dataset, the few models that ’get it right’ in each part coupled with the kinematics of
the filtered particles lead to an actual path being ’smoothed’ out of the data. Note the
fact that the GNSS path is ’going off the building’ - demonstrating the inaccuracies
inherent to using GNSS data for the ground-truth

Overall, even in the poorly-behaved LoS scenario, the poor accuracy conceals
the fact that different models perform better or worse w.r.t. accuracy. Therefore, if
a sufficient number of diverse-enough models are utilized, then the hope is that a
certain (changing) selection of models will be accurate, with the kinematics of the
particle filter smoothing out so that only the ’proper’ observations are retained for
most samples.

For this reason, choosing a proper system model to model state evolution of
the particles such that the ’poor’ guesses are filtered out without requiring large
compute overhead is important - as discussed in the following Section 9.2.
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9.2 System Motion Model

Ensuring an accurate-enough state simulation without keeping track of too many
states is critical for a well-functioning particle filter. To make the simplest possible
representation of the motion model for a particle moving in a 2D plane, one can
look at the coordinate frame from Section 3.2. It is quite visible that the UE has 3
degrees of positioning freedom: angle of motion α , and the X and Y coordinates
of the reference frame - corresponding to the East and North coordinates in the
EN reference frame. With this, movement on relatively small scales can be simply
modelled as a change in angle of the direction of motion and a vector displacement
of a certain size in the appropriate direction. This simple motion model is shown
in Figure (9.3), with the simple mathematics for a particle i described in Equation
(9.3).

Figure 9.3 A simple model of 2D motion of a particle i, with a ∆α shift in direction
of movement angle α from time-point k to k+ 1, along with a movement vector of
magnitude v in the new orentation’s direction, thereby giving the new E i

k+1,N
i
k+1

position through the simple trigonometry described in Equation (9.3).

Posi
k+1 =

 E i
k+1

Ni
k+1

α i
k+1

=

 E i
k + cos

(
α i

k

)
v

Ni
k + sin

(
α i

k

)
v

α i
k +∆α i

 (9.3)

As we want to keep states relatively low, and since the only other relatively consis-
tent quantity is that of velocity, we define the state vector xk for particle i at time
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k using East, North, Orientation, and Speed. The change in orientation ∆α and the
change is velocity ∆v was then modelled as additive zero-mean gaussian noise.

Adding velocity into the state-equation as a new state then gives the i-th par-
ticle the state vector xi

k at time k, as shown in Equation (9.2) with the zero-mean
Gaussians characterized with σv and σα .

xi
k+1 =


E i

k+1
Ni

k+1
α i

k+1
vk+1

=


E i

k + cos
(
α i

k

)
v

Ni
k + sin

(
α i

k

)
v

α i
k +∆α i

k
vi

k +∆vi
k

 (9.4)

Where: ∀i,∆vi
k ∼N (0, σ

2
v )

∀i,∆α
i
k ∼N (0, σ

2
α)

The above is a simple but effective movement model, but suffers from two de-
ficiencies: there are no limits on what values velocity can take, and the variable
sample-rate is not taken into account. Fixing both deficiencies is a relatively simple
affair. For the variable sample rate, measuring the elapsed time in milliseconds be-
tween samples is trivial. After that, the effective velocity (the change in position) is
multiplied by the second-normalized time ∆tk, while the change in angle δα i

k and
velocity δα i

k is sampled from a normal distribution with a width multiplied by the
second-normalized time. The time-adjustment then results in the system Equation
(9.2), where ∆tk refers to the time elapsed between samples k and k+1.

xi
k+1 =


E i

k+1
Ni

k+1
α i

k+1
vk+1

=


E i

k + cos
(
α i

k

)
v∆tk

Ni
k + sin

(
α i

k

)
v∆tk

α i
k +∆α i

k
vi

k +∆vi
k

 (9.5)

Where: ∀i,∆vi
k ∼N (0, ∆tkσ

2
v )

∀i,∆α
i
k ∼N (0, ∆tkσ

2
α)

Constraining the possible values the particle filter can take is also simple. Know-
ing that we are tracking a walking pedestrian and that ’going backward’ can be
modelled by changes in orientation instead of negative velocities, we can safely
constrain the velocity to take up values between 0 and 1.8 [m/s]. In a future system,
the type of user we are tracking can e.g. be modelled using hidden discrete states
characterizing different turn-rates, velocities and speed-limits. For this, a hidden
Markov Model would work. However, for this thesis, modelling a walking pedes-
trian was deemed sufficient as a proof-of-concept.

Furthermore, when observing the location of a particle, the East and North lo-
cation is simply extracted, without any additive noise or modelling of doppler shift.
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9.3 Particle Filter Adjustments

All components are in place for a standard particle filter implementation, but a few
more adjustments are advisable to tackle certain issues with Particle Filters in wire-
less positioning contexts. The two big issues that plague Particle Filters are that of
sample degeneracy and sample impoverishment [Li et al., 2013]. Tackling them in
this thesis required some unique adjustments: partial resampling and weight-inertia.

Partial resampling and Weight Inertia
Sample degeneracy is when only a few samples of high-weight exist, with most
having negligible or near-zero weights. This is generally countered by proper re-
sampling, as detailed in Section 4.3. However, overdoing resampling can lead to an
almost opposite problem: when particles with a high weight concentrate in a very
small area and converge to be almost point-like; the space of explored states there-
fore diminishes rapidly. Balancing the two has led to a huge number of advanced
techniques and research in the area, but due to the expanding scope of this thesis
only simple fixes were investigated.

A frequently applied simple technique to balance between sample degeneracy
and impoverishment is to only resample the particles if sample variance is high-
enough. However, for this thesis this is a (mostly) unsuitable form of gating. The
reason for this is due to the ’island cluster’ form the observation PDF can take, with
the extreme example seen in Figure (9.2). While the calculated variance of the sam-
ples might be quite high, in reality the particles could be in a few (e.g. up to a dozen)
particle ’clusters’, effectively leading to high-variance sample impoverishment.

While there are more complicated algorithms to combat high-variance sample
impoverishment with more advanced algorithms [Li et al., 2013], a much simpler
solution was also effective; in addition to a variance-threshold, when resampling
only a randomly selected subset of particles were resampled. Despite initial exper-
iments on the number of resampled particles varying depending on various quan-
tities such as sample-time, only small performance gains were found despite large
increases in algorithm complexity.

The other issue faced with particle weights is that of the observation PDF occa-
sionally having high precision but low accuracy. This would throw the weight-based
estimation step off along with increasing the number of particles in a less-useful
area, leading to induced temporary sample degeneracy.

A simple empirically substantiated fix to weight ’jumpiness’ is to use an expo-
nential moving-average on the weights, shown in Equation (9.6) where α ∈]0,1]
controls the behavior of the EMA filter. Not much has been found in literature on
applying an EMA filter to the weights, but it works for this thesis.

W 1:Np
k|k = α

{
1
ck

wi
k|k−1 p

(
yk|xi

k
)}1:Np

+(1−α)W 1:Np
k−1|k−1 (9.6)
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Resulting Algorithm
With all the steps taken and adapting the methods from Chapter 4, we can create the
final particle filtering algorithm, as shown in Algorithm 4. The parameters utilized
for the EMA was α = 0.5, N = 4000, and Rnum = 1200. To save CPU time the
particle filter was not tested on the training data results.

Algorithm 4: The implementation of a particle filter applied to positioning
Result: time-vector of position estimates ŷ0:K
Input: Particle count Np
Input: ML predictors M1:M()
Input: KDE bandwidth h
Input: number to resample Rnum, variance threshold varmin
Input: State dynamics sim()
Input: Stratified Resampling StratR()
Data: Channel matrices array H1:K , sample time vector ∆t1:K
Initialize: First position estimate: ŷ0← mean(M1:M(H0));
Initialize: particles: P1:Np :=

{
Pi
}Np

i=0← initialize(ŷ0) ;
Initialize: weights: W 1:Np ← 1

Np
;

for k = 1 to M do
Simulate particle motion with noise: Pk← sim(Pk−1,∆tk);
Create position ML output vector: ỹ1:M ←M1:M(Hk);
Create measurement model using KDE: meask← KDEh

(
ỹ1:M

)
;

Update temporary weights: w̃← meask (yk,Pk);

Normalize temporary weights: w̃i← wi

∑i wi ;

Update weights: W 1:Np ← αw̃1:Np +(1−α)W 1:Np ;

Obtain position estimate: ŷk← 1
Np

∑
Np
i=0 wi

k(P
i)EN ;

if variance(Pk)> varmin then
Get resample sub-indeces: I1:Rnum

rs ← argrand(W 1:Np)1:Rnum ;

Get sub-weights: W 1:Rnum ←W 1:Np [I1:Rnum ] ;

Normalize sub-weights: W i← W i

∑i W
i ;

Get Resample indeces: IStrat ← StratR
(

W i
)

;

Resample particles: Pk[I1:Rnum ]← Pk[I1:Rnum ] [IStrat ]. ;
Update weights: W 1:Np [I1:Rnum ]←W 1:Np [I1:Rnum ] [IStrat ];

Normalize updated weights:W i← W i

∑i W i ;

end
end
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9.4 Final Results and Discussion

Applying and tuning the algorithm above on the observations created by the 50-
Diverse ML model ensemble specified in Section 8.4, we get the MSE results com-
pared to the ’ground truth’ GNSS as shown in Table 9.1.

Dataset Input Model val.MSE test.MSE

LoS-D XFA
H 50-Diverse Particle Filter 3.3 4.9

LoS-A XFA
H 50-Diverse Particle Filter 22.6 25.1

NLoS-A XFA
H 50-Diverse Particle Filter 27.3 20.4

LoS-D XmUE
H 50-Diverse Particle Filter 3.0 4.5

LoS-A XmUE
H 50-Diverse Particle Filter 24.0 28.4

NLoS-A XmUE
H 50-Diverse Particle Filter 27.1 20.4

Table 9.1 Results on the 50-element ensemble deep-learning models with N =
4000 particles, weight EMA α = 0.5, and Rnum = 1200 resamples per iteration.
Training MSE is left out as scores were good enough as-is. For the motion model
σ2

α was set as 1.1 [ rad2

s ] while σ2
v was set to 0.5 [ m2

s3 ]. These values were found
through experimentation on the validation datasets.

To ensure that the particles are approximating physical behavior, the easiest
check is to examine weighted mean particle velocities over the entire dataset. Pedes-
trian walking speed vary between 0.8-1.5 [m/s], which means that a well-calibrated
particle filter should find out about this ’hidden’ state. Indeed, the results reflect this,
as shown in the Figure (9.4) for particles in the the LoS test dataset.

Figure 9.4 Mean particle velocities in the particle filter for the LoS test dataset.
The semi-transparent blue line is the actual mean velocity for each sample, while the
orange line shows the smoothed velocities.
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nLoS particle filter results discussion
The results for the NLoS scenario show even with a numerical comparison to the
flawed GNSS data shows a huge improvement over all prior results. The visual
result is also striking, with e.g. even the difficult NLoS-A test data having clear,
accurate, and time-coherent position tracking, as per Figure (9.5).

Even for the connection interruptions in the test data, the scenario is handled
adequately, as after dropping connetion for 20 seconds the Particle Filter is reset,
and convergence w.r.t. position is rapidly achieved. See Appendix Figure (11.5) for
a visual demonstration of this.

Figure 9.5 A part of the output of feeding the particle filter algorithm from Algo-
rithm 4 the Diverse-50 ensemble outputs on the XFA

H NLoS-A test. The small block
smudges show the ML prediction density. The ability of the Particle Filter to gen-
erally discern the correct position is at times better than that of GNSS, even if the
individual ML predictions are scattered.

Within the NLoS some locations still have major issues, e.g. the north-east cor-
ner of the garage under foliage. The expectation here is that the issue is apparent
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when there is no good open-space for NLoS reflections off reflective surfaces to
reach the UE.

With a visual investigation of some data in the northern region corner, we can
use the same KDE-visual as in Figure (9.2) of some points by looking at Figure
(9.6) of an example where the ML ensemble reports a point in the North to be at
the North-East corner instead. However, note that even under foliage sometimes
accurate guesses can be made, as in Figure (9.7). See also the Appendix Figures (),
which each show different NLoS guess-scatters.

Figure 9.6 The resulting PDF contour-plot fitted using a KDE with a bandwidth
of 3 on 50 observations done by 50 different models on a single XFA

H channel matrix
datapoint in the LoS-A2 test sub-dataset. The ’ground-truth’ GNSS-interpolated lo-
cation is shown as a blue point, with the past few seconds of movement shown by the
blue path. The figure shows how the ML algorithm sometimes has issues positioning
when in NLoS and under foliage, with few easy reflections. It seems to ’guess’ with
high precision but low accuracy in different spots.
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Figure 9.7 The resulting PDF contour-plot fitted using a KDE with a bandwidth
of 3 on 50 observations done by 50 different models on a single XFA

H channel matrix
datapoint in the LoS-A2 test sub-dataset. The ’ground-truth’ GNSS-interpolated lo-
cation is shown as a blue point, with the past few seconds of movement shown by
the blue path. The figure shows how in NLoS and under foliage with few easy reflec-
tions sometimes a good guess can be made, so long as there might be some amount
of free-space in an area.

To further speculate on the accuracy characteristics on the NLoS results, and to
give Figure (9.7) more context, there is a brief section roughly where the points are
clustered in the center of the northern garage with a potential free-space propagation
pathway that could allow for more NLoS direct reflections. Overall, more investi-
gation of NLoS positioning behavior in real-world scenarios is required to support
any conclusions made w.r.t. the results shown above - a topic for future research.

Basic functionality in terms of finding position and trajectory in NLoS scenarios
in near-real-time on datasets recorded at different times using the combination of
methods and data processing described in thesis has been demonstrated and hold a
great deal of promise for future refinement and analysis.
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LoS-A particle filter results discussion
Using the LoS-A test dataset, despite its poor MSE behavior for model-averaging
and single-model results, the particle-filtering accuracy is at the point where the
GNSS data inaccuracy as compared to ’true’ position is the most significant con-
tributing factor for the MSE - especially on the north side of the LoS-A data, where
the GNSS drift is most egregious. The average MSE in the northern section is over
40, which does not accurately reflect the true error - see Figure (9.8).

Furthermore, while the scattered nature of the data still causes the particle filter
to oscillate in certain regions on the LoS-A dataset, this is significantly diminished
even compared to e.g. median smoothing - despite the latter using information from
future data. Overall, despite the difference in data character from the training and
the validation and test set, the positioning pipeline can obtain a reasonable posi-
tion estimate. This indicates towards the positioning pipeline being viable beyond
controlled experimental conditions.

Figure 9.8 A part of the output of feeding the particle filter algorithm from Al-
gorithm 4 the Diverse-50 ensemble outputs on the XFA

H LoS-A test dataset. The
predicted path for the particle filter is better than that of the GNSS in some parts,
especially in the northern sections of the LoS-A test dataset.
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LoS-D particle filter results discussion
For the LoS-D dataset, the MSE is so low at 4-5 m2 that most of the error originates
from GNSS being used. It represents the sort of ’perfect’ conditions to test the
positioning pipeline, in which both the strong LoS component and other MPC can
be used to reconstruct position without much dataset domain shift interfering with
results. Therefore, to get a ’true’ ideal-scenario performance, a more accurate base-
truth position must be used.

Figure 9.9 A part of the output of feeding the particle filter algorithm from Al-
gorithm 4 the Diverse-50 ensemble outputs on the XFA

H LoS-D test dataset. The
predicted path for the particle filter is better than that of the GNSS in some parts,
especially in the northern sections of the LoS-A test dataset.

In summary, the particle filter works well to take the scattered position outputs of
an ensemble of ML network, and then generate proper and physically mostly feasi-
ble position trajectories - thereby more than halving the MSE of the overall pipeline
compared to simply taking the mean of the ensemble. The true error is likely much
lower, with much of the remaining error originating from the characteristics of the
GNSS data.
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10.1 Summary

The contents of this thesis document the theory, methods and the measurement re-
sults of a functioning positioning system using SRS matrices from CSI data using
a real-world 5G basestation and collected data. All significant steps in the devel-
opment process necessary to reconstruct the results were documented, in the order
listed below:

1. Necessary theory and basic underlying methodology in Chapters 2-5

2. The Measurement process to obtain raw logs in Chapter 6,

3. Processing the raw logs into the python environment in Chapter 6,

4. Pre-processing the data in the python environment in Chapter 7,

5. Pre-ML Data analysis in Chapter 7,

6. Viability analysis of data with classical ML in Section 7.5,

7. Architecture, methods and considerations with fully-connected deep learning
on both single and ensemble networks in Chapter 8

8. Applying particle filtering using basic KDE-based PDF estimation with En-
semble network outputs in Chapter 9.

To summarize the findings of this thesis work, the detailed process pipeline ob-
tained an approximate root-MSE around 2-6 meters as compared to the GNSS data
when evaluated on test data that had been set aside, with accuracy depending mostly
on data conditions. These results comparable favorably to results found in literature
on most outdoors (and sometimes indoors) positioning systems using similar qual-
ity and density real-world data - especially notable once the inaccuracies caused by
poor-quality GNSS position are considered. The accuracy on the NLoS data in par-
ticular indicates the viability of this method for positioning in a real-world system.
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10.2 Contributions and result comparison to prior work

Contributions to the field and Ericsson through this thesis are in four main areas:
The first contribution is mostly to work done at Ericsson, and it was the devel-

opment of a high-perfomance and high-data-throughput log-to-python channel es-
timate extraction package, written in C++. It could read log files into usable numpy
arrays at around 300-400 mb/s, and will prove useful for future work with the 5G
testbed in Ericsson, Lund.

The second contribution to Ericsson is an in-depth analysis on the behavior of
the beamformed channel data obtained from the 5G testbed. Furthermore, analysis
on the viability of using amplitude for outdoors positioning and how much pre-
diction results improve when taking energy-falloff with distance into consideration
improves results when using a data-based approach.

The third contribution is through utilizing a deeper neural network on beam-
formed channel matrix data in a practical scenario on collected data, also including
a large amount of regularization techniques that have not yet been seen in applica-
tions within this area.

The final and most novel approach was the combination of ensemble deep net-
works with KDE and a kinematic pedestrian model to apply tuned particle filtering
on deep-learning position outputs. This technique has not been seen elsewhere in
literature, and can be considered the most novel contribution to the field from this
thesis. The results improved dramatically from utilizing this model, demonstrating
the viability of it in future research.

Overall, this thesis has demonstrated the practical viability of positioning well
under 10 meters of mean error in an outdoors NLoS setting, even when datasets
are taken weeks apart and have significant behavioral differences. A conclusion
to draw is that including physical information about kinematics when tracking an
object is crucial, as is attempting to linearize the relation between distance and
beam-amplitude when using beamforming channel matrices.

Comparing results
Taking only the two papers [Malmström et al., 2019] and [Decurninge et al., 2018]
that have comparable problem domains into account, we can compare it with the
final test result of this thesis - that being around 4.5 meters mean error for the NLoS
and around 2.3-4.4 meters for the LoS scenario, with the ’real’ accuracies being
even better than that due to GNSS inaccuracies adding up to a few meters of error
to the results.

Comparing it to either of the two papers with 7 and 8 meters accuracy in
NLoS/semi-nLoS scenarios respectively, and the improvements are dramatic, es-
pecially for NLoS. This is even despite the paper [Malmström et al., 2019] written
on the Ericsson testbench having been recorded on a fixed car with a better GNSS
with better sample-rate and accuracy, giving it an inherent advantage in terms of
data repeatability.
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10.3 Future work

Data collection and feature preprocessing
Beyond just collecting more data, obtaining data of different character to get more
generalizable results would be an important step. E.g. collecting an NLoS equiva-
lent of the LoS-D dataset, collecting a proper LoS-A dataset, comparing channel
matrices of different connected UEs, getting higher accuracy GNSS data, etc. The
GNSS data accuracy in particular proved to be the greatest limiting factor, as exten-
sively discussed in Chapter 9.

The data ’grouping’ observed in Chapter 7 could most likely be solved by us-
ing an alternative to Youtube 4k streaming to load the channel, e.g. video calling.
Alternatively, implementing an algorithm or app to load the channel with synthetic
data at a constant rate would work as well. Another solution to getting more regular
data would be to utilize logging that extracts the channel matrices when they are
updated, not when they are used.

Feature preprocessing would also be an area in which a lot of possible ’easy’ im-
provements lie. In this thesis, no serious attempt at noise characterization or outlier
filtering was attempted on the channel matrices H, which alone could improve ML
results and give more information on the noise for particle filtering. Furthermore,
the used fourth-power statistical approximation for received energy is an extremely
simple approximation, and much more advanced versions exist. Using a sort of
’intelligent system’ to find which statistical approximation is appropriate for trans-
forming the channel matrices before ML positioning models are applied would be a
significant advancement beyond just ’dumping’ the square root and fourth-root into
a positioning system.

Furthermore, just ’discarding’ phase due to the poor accuracy of the GNSS data
was a necessary step to prevent scope-creep in this thesis, but it is also a possible
avenue to extract more features from. Finally, other CSI metrics could be utilized in
addition to the SRS channel estimate, even if they are derived quantites from it. An
example of this could be signal delays of signals arriving from each direction.

Another potential avenue for development would be to pre-train networks on
simulated data before finalizing training on real-world data, thereby enabling them
to learn physical models in a more ’friendly’ environment before adjusting the re-
sulting model to the lower-quality real-world environment.

One step that caused significant difficulties was actually assessing the final per-
formance of the algorithms. Even if a ’real’ system would have to utilize low-quality
GNSS positioning data for training ML models on every basestation, for system de-
velopment comparing model performance is a critical step in the research pipeline.
However, comparing MSE offset of the prediction to the GNSS position lead to
unrealistically pessimistic MSE performance ratings, which meant that the ’true’
model performance is still unkown.
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Further Developing ML models
On the ML side, this thesis was written without access to significant compute re-
sources. For that reason, only a narrow range of relatively shallow deep-learning
models and hyperparameters could be tested. Just tuning all the hyperparameters
of the fully-connected model could contribute a great deal, let alone building more
complex networks with more advanced architectures.

Furthermore, other models such as complex networks and Convolutional Neu-
ral Networks were thoroughly tested during the development of this thesis, though
not documented due to similar or worse results and an already too-expanded thesis
scope. However, other papers have utilized these methods - often on high-resolution
simulated data - and obtained improved results. This presents an avenue of improve-
ment for future systems, especially ones with more available data features or data
of higher quality.

Training generative models (generating channel matrices from position) could
also give a great deal of insight into the data that is currently not well known. In
general, as mentioned in the prior subsection, more proper analysis of the data is
needed before any further development can be done, as how exactly current ML
systems determine position is opaque.

An additional area of research could be to use multi-stage ML and statistical
models, where e.g. certain features are extracted such as whether there is currently
LoS/nLoS, which direction motion is occuring, velocity and direction of motion
for the user, etc. These could then give additional information about states, which
then could be combined in various ways to produce more advanced models while
reducing the possibility of overfitting.

Further Developing Particle Filtering
The utilized simple particle filter algorithm proved to improve results on its own,
and opens the door to further improvements in this area down-the-line.

One area that could be improved is the pedestrian state behavior. This can e.g.
include more accurate estimation of possible user movement states to constrain par-
ticle behavior, modelling of pedestrian walking behavior, using longer-term move-
ment trends to smooth trajectory, etc.

Another potential improvement area is the algorithm itself. A few improvements
of this form include using more advanced intelligent resampling techniques, apply-
ing quasi-random Monte Carlo principles to improve filtering.

Enhancing applicability
Though the investigated methods to produce position using channel matrices have
been done with practical application as a goal, of course the developed system as a
proof-of-concept does not take it all the way to the ’end-user’. Two distinct areas of
improvement have been thought to be necessary before this could be attempted.
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The first is to reduce the amount of labeled data needed. This can be done by
e.g. using principles of semi-supervised learning, such as pre-training parts of the
deep-learning models on CSI data that has no labeled position. For this, a different
approach is needed than what is shown in this thesis, such as e.g. in the unsupervised
training section turning the systems into auto-encoders.

The other area of improvement thought of but not implemented is to use a scale-
invariant positioning system. Within a cell, have different ’nested sets’ of ML al-
gorithms be trained over larger areas with less accuracy and precision, but with
more generalizability - then have ML algorithms on ever smaller areas with greater
accuracy and precision. The end result is that the ’coarse’ algorithms allocate posi-
tioning to the ’fine’ algorithms, enabling fine-position coverage across an entire cell
without needing a single ’universal’ ML model.

10.4 Closing words on limitations and setbacks

In this thesis the intended proof of concept pipeline for positioning in a practical
real-world 5G environment was successfully built, with results especially in the
NLoS scenario that were significantly better than initially hoped for.

Though the thesis could be said to have been successful at its stated goal, and
though the results of this thesis are highly competitive with other results found in
literature, many practical considerations caused significant setbacks to obtaining
further improved results.

As an example of a significant setback, getting data out of the basestation itself
took most of the allocated time for the thesis, with the first ’good’ measurements
only occurring a month and a half before the submission deadline. A significant
cause of this is the sheer volume of data and the poor logging format built for the
basestation, necessitating the use of a custom-built regex parser in C++, taking 2
months alone to develop. Furthermore, the probe used to obtain the SRS channel
matrices occasionally failed for no discernible reason, which could only be noticed
after the completion of the measurement. Only around half of the time spent mea-
suring actually produced usable data for this reason.

Even the data produced was an inferior reflection of the actual channel matrix
data available within the basestation, as only three of the possible 137 frequency
bands available for the specific basestation model were available - and logs were
outputted only when the transmission was used, instead of when the SRS channel
matrices were internally updated, thereby leading to the data clumping behavior
observed in Chapter 7.

Another significant setback was the machine used for model training and data
processing. Memory limitations on more advance processing techniques often hin-
dered development, and considering the limited timescale to obtain results on ob-
tained logs, a proper hyperparameter and architecture search became simply unfea-
sible using the designated machine with the time remaining.
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Chapter 10. Conclusions

Finally, GNSS inaccuracies proved to be a significant limitation when rating
the true performance of the models. In particular, comparing model performance to
models trained and tested on simulated data is simply not possible with any degree
of confidence. While GNSS data is superior for testing model viability in the real-
world, at the very least test-data for model development should be obtained with
precise measurement tools that were unavailable for this thesis.
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11
Appendix

Taylor expansion of Equation (11.2) about Φg → Φg+dΦg, λ → λ +dλ , and

h → h+dh. Ignoring terms of O(dΦ
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2) and higher.

Citation: [Drake, 2002], Equation (2).
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11.1 Global coordinates and curvilinear coordinates

For navigation on Earth, though inertial frames could be used in the intermedi-
ary calculations, the relation to a reference frame on a ’fixed’ earth is the goal. For
global positioning therefore an Earth-Centered Earth-Fixed (ECEF) non-inertial co-
ordinate system is used. The X-axis is set to point from the origin to the intersection
of the equator with the Conventional Zero Meridian, which defines the 0° longitude
line on Earth’s surface [Groves, 2013]. The Y-axis points 90° east from the X-axis,
still on the equatorial plane. An Earth-fixed frame can be seen in Figure 11.1.

Figure 11.1 Illustration of a ECEF coordinate system, where a coordinate can also
be given using two angles α and β along with distance from origin

The ECEF coordinate system enables positioning with respect to the origin at
the center of earth - meaning either at the exact center of mass or at the centroid of
the ellipsoid representation of Earth.

For practical applications, location relative to the surface of Earth is most ap-
propriate. Using an approximate modelling of the oblate spheroid Earth through an
oblate ellipsoid fit to the mean sea level overcomes the issues arising from an ir-
regular surface. The ellipsoid model has an equatorial radius Ro, the polar radius
Rp, and eccentricity e. The location of the center of this spheroid is not necessarily
precisely at the center of mass, and instead has been measured through a common
reference of satellite constellations.

The distance of an object from the surface of the ellipsoid model is the smallest
distance of that object to a point on the surface - this is also known as the altitude
of the point. It is then practical to define a point through its altitude and the point
on the surface it is closest to. Points on the surface of an ellipsoid can be uniquely
determined using two angles: longitude and latitude.

Longitude is the angle determining the east-west angular position of a point on
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the surface of the ellipsoid representation of Earth, as measured from the prime
meridian. Orthogonal to Longitude is the latitude, which determines the South-
North angular position of a point on the ellipsoid surface. More specifically, in
GNSS positioning Geodetic latitude is used [Groves, 2013]. Geodetic latitude is
obtained by extending the normal of each point on the surface of the ellipsoid until
it intersects the equatorial plane, then measuring the angle of intersection. Together,
Geodetic latitude, longitude, and altitude are known as the curvilinear position and
provide a set of orthogonal axes for positioning an object in a practical coordinate
frame. The conversion from Geodetic coordinates (Φg, λ , h) to ECEF coordinates
(X , Y , Z) can be seen in (11.2).

x =
(
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χ
+h
)

cosΦg cosλ

y =
(
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χ
+h
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cosΦg sinλ (11.2)
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(
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χ
+h
)
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Where χ =
√

1− e2 sin2
Φg

A representation of curvilinear coordinates on an ellipsoid representation of
Earth can be seen in Figure 11.2 [Groves, 2013].

Figure 11.2 Curvilinear coordinates for positioning a UE in an ECEF coordinate
system, with Geodetic latitude Φg and longitude λ
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Algorithm 5: Adam [Kingma and Ba, 2014] with decoupled weight decay
[Loshchilov and Hutter, 2017] combined with AMSGrad [Reddi et al.,
2018] (AdamW-AMSGrad)

Result: Optimal parameter vector θ

Input: Learning rate γ

Input: Numerical stability coefficient: ε

Input: Running average coefficients: β1, β2
Input: Weight decay λ

Input: number of epochs Nepochs
Data: Training dataset Xtraining,Ytraining, minibatch size Mbatch
Data: Initialized parameter vector θ

Data: Initialized first moment m← 0, Second moment: v← 0, ˆvmax← 0
for t = 0 to Nepochs do

Sample elements X (i)
t ,Y (i)

t from Xtraining,Ytraining;

Calculate estimated gradient: ĝ← 1
Mbatch

∇θ Jm

(
f (X (i)

t ,θ),Y (i)
t

)
;

Update parameters: θ ← θ − γλ ĝ;
Update first moment: m← β1m+(1−β1) ĝ;
Update second moment: v← β2v+(1−β2) ĝ2;
First moment cont.: m̂← m

1−β t
1
;

Second moment cont.:v̂← v
1−β t

2
;

AMSGrad step: ˆvmax← max
(

ˆvmax, v̂
)
;

Update learning rate: ε ←U (ε,e);
Update parameters using moments: θ ← θ − γ

m̂√
ˆvmax+ε

;

end
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Location, Start-date Filename (SRS log) Purpose
Data-name, UTC: (SRS, GNSS) (GNSS log) [Data_split]

NLoS-A 2022-07-13 SRS_log_noNLoS_A1.log Training
NLoS-A1 (12:27:57, 12:28:56) gnss_log_noNLoS_A1.txt
NLoS-A 2022-07-18 SRS_log_noNLoS_A2.log Val.
NLoS-A2 (11:51:47, 11:58:04) gnss_log_noNLoS_A2.txt
NLoS-A 2022-08-18 SRS_log_noNLoS_test.log Test
NLoS-T (08:16:12.5, 08:17:17) gnss_log_noNLoS_test.txt
LoS-A 2022-07-20 SRS_log_LOS_A1.log Training

LoS-A1 (08:16:10, 08:17:19) gnss_log_LOS_A1.txt
LoS-A 2022-07-13 SRS_log_LOS_A2.log Val. & Test

LoS-A2 (13:05:46, 13:01:58) gnss_log_LOS_A2.txt [12000]
LoS-D (Tr) 2022-07-20 SRS_log_LOS_D_T.log Training

LoS-Dtr (09:15:16, 09:16:30) gnss_log_LOS_D_T.txt
LoS-D (V) 2022-07-20 SRS_log_LOS_D_V.log Val. & Test,

LoS-Dv (10:16:33, 10:17:03) gnss_log_LOS_D_V.txt [12000]

Table 11.1 Measurement datasets collected for the three detailed locations. NLoS-
A refers to going around the garage, LoS-A refers to going around on the top of the
garage, LoS-D (TR) refers to the directed dense training data for the rooftop. LoS-
D (T) refers to the wandering dense validation data for the rooftop. Many further
dataset recordings were made, such as separate LoS-A and LoS-D test datasets and
re-measurements of all the LoS-A datasets. Unfortunately, data recording difficulties
made these datasets unusable. Instead, for testing the Validation-intended datasets
for LoS-A and LoS-D were split into testing and validation sets. [Data_split] refers
to the index at which the data was split into validation and test datasets in these cases.
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Chapter 11. Appendix

Figure 11.3 The training history of the 1500-epoch NLoS-A XFA
H model. Overfit-

ting is very clear, with the ideal validation plateau around 50-200 epochs.

Figure 11.4 The training history of the 1500-epoch NLoS-A XFA
H model. Overfit-

ting is very clear, with the ideal validation plateau around 50-200 epochs. This time
the Epoch-scale is logarithmic.
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11.1 Global coordinates and curvilinear coordinates

Input Ninput
max Dproc. N proc.

max Aproc Dpos. N pos.
max Apos

[min] [100] [1] [16] [0.6] [2] [8] [0.5]
XFA

H ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
{max} {800} {7} {48} {1.0} {6} {30} {1.0}
[min] [150] [1] [16] [0.6] [2] [8] [0.5]

XmUE
H ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

{max} {1000} {7} {48} {1.0} {6} {30} {1.0}

Table 11.2 The more thoroughly explored hyperparameter-space to find the final
model and narrow down the parameter-space to use for generating architectures for
the diverse-ensembles. Note that this is not the whole breadth of the explored archi-
tectures, only the one explored systematically. Nblock

max refers to the number of neurons
in the largest layer in the block, Dlayers refers to the depth of the block in terms of
layer number, and Alayers refers to the Nblock

min /Nblock
max ratio, with each block having

the maximum layer be the first, and the minimum layer the last.

Figure 11.5 A part of the output of feeding the particle filter algorithm from Algo-
rithm (4) the Diverse-50 ensemble outputs on the XFA

H NLoS-A test. The orange line
shows the GNSS path, the blue line the particle-filtered prediction. The large jump
in location corresponds to an approximately 40 second connection loss, which the
particle filter handles well by re-converging quickly to the new position
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