
Real-time unsupervised log event anomaly
detection in public transportation

Felicia Segui
Andreas Timürtas

Department of Automatic Control

MSc Thesis
TFRT-6184
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Felicia Segui & Andreas Timürtas. All rights reserved.
Printed in Sweden by Tryckeriet i E-huset
Lund 2022

Abstract

Detecting log data anomalies in real-time is useful since it makes it possible to
apply logic that corrects the anomalies when they happen. This project presents
a method for detecting public transportation bus event log data anomalies in real-
time, without having a labeled data set. Initially, each unique bus trip is represented
by the event frequencies, a representation that is not suitable for real-time. With a
data set assumed to only contain normal data, an autoencoder, a PCA model and
a clustering algorithm label each data point in the frequency domain, as normal or
anomalous. The labeled data is split into sequences of events with a rolling window,
a representation that is suitable for detecting anomalies in real-time. To separate the
anomalous event sequences from the normal event sequences that occur, during the
same bus trip as an anomalous event sequence, the event sequences together with
their labels are grouped and counted. By comparing the frequency for each event se-
quence in anomalous trips with the frequency of the corresponding event sequence
in normal trips, the sequences that are overrepresented in anomalous trips are de-
tected and receive a final label being normal or anomalous. These labeled sequences
are further used in the real-time detector. With the three base labeling models (au-
toencoder, PCA and clustering algorithm), different combinations of models are
created. These models are either created by applying the union or the intersection
of all anomalous labeled journeys. This results in 11 different models that are all
tested and evaluated. The evaluation is performed by calculating the recall, pre-
cision and F1-score of experiments performed with a data set of assumed normal
journeys, together with injected simulated anomalies. The evaluation is performed
at two places within the method; one after the initial labeling and another after the
real-time detector. The results obtained using this evaluation method show that the
combination using the autoencoder and the clustering algorithm together through
intersection is the best model combination, based on the F1-score calculated after
the real-time detection. This combination scores a median recall and precision of
0.89 respectively 0.72, which results in an F1-score of 0.79.

3

Acknowledgements

We would like to thank Hans Ekström and Sara Olsson at Gaia as well as Johan
Eker at the Department of Automatic Control, LTH, for continuously giving us
valuable help and guidance. Without their support this thesis would not have been
possible. Also, thank you to Linnea Mellblom at Gaia for providing us with detailed
information about the data, as well as contributing with ideas when we encountered
challenges. A special thanks to our opponents Isabelle Frodé and Viktor Sambergs
for reviewing our thesis and giving us suggestions for improvements. Finally, we
would like to thank our examiner Anton Cervin, for being very helpful whenever
we had questions.

5

Contents

1. Introduction 9
1.1 Background . 9
1.2 Outline of thesis . 10
1.3 Objective of project . 10
1.4 Related work . 11
1.5 Data . 14
1.6 Individual contributions . 16

2. Theory 17
2.1 Scaling and normalization of data 17
2.2 PCA . 19
2.3 Clustering algorithms . 20
2.4 Autoencoder . 29
2.5 Evaluation metrics . 30

3. Method 33
3.1 Problem formulation . 33
3.2 Pipeline . 34
3.3 Evaluation with simulated anomalies 49

4. Results 53
4.1 Precision, recall and F1-score 53
4.2 Result summary . 64

5. Discussion 65
5.1 Frequency-based representation versus sequence-based represen-

tation . 65
5.2 Metrics and parameters . 66
5.3 Result analysis . 67
5.4 Future work . 71

6. Conclusions 73
Bibliography 75

7

1
Introduction

In this chapter background information needed to understand the motivation and the
challenges of the thesis is presented, as well as previous work done within the field.

1.1 Background
Together with many other industries, public transportation is currently undergoing a
major digital transformation. The manual work of creating timetables, announcing
the next stop to the passengers and choosing suitable routes for the journeys is
replaced with advanced logistic systems, automatic systems that manage the vehi-
cle’s audio callouts and displays as well as optimization algorithms that in real-time
present the most efficient route to the next bus stop, for the driver. Together with the
implementation of new digital tools come large amounts of data in different forms
and for different types of use. Some data is almost static, such as available roads
and timetables, and some data is highly dynamical, for instance the actual arrival or
departure times to stops for an active vehicle.

The dynamical data is often stored in logs, in which a row corresponds to a certain
happening that took place at a certain time on a certain journey. These happenings
are called events, and when a new event occurs, a row is added to the log with in-
formation such as the time of occurrence, which journey it occurred on and varying
event specific information. An event could be anything from internal state changes,
to changing the displayed text at the front of the outside of the bus. This type of
real-time streaming of events opens up for having a continuous dialog with the ve-
hicle. One example of this could be that the vehicle automatically displays the next
stop after departing from the previous stop, based on the geographical position of
the vehicle, instead of changing display at a predetermined time based on the static
timetable. The latter example would cause confusion every time the bus is late or
early, in contrast to the first example of system which adapts to the current situation.

Another situation in which you want to be able to act directly during the trip is

9

Chapter 1. Introduction

when something does not go as expected. For instance, this could be a vehicle that
displays Not in traffic during a journey, or announcing the wrong next stop to the
passengers. If these faults are detected in short time after they happen, it would
be possible to fix the mistakes before they make any harm. Due to an increasing
complexity of these kinds of systems, it can be difficult to know exactly what the
root cause is and where in the software architecture it occurs. A natural first step
in the work towards minimizing faulty behavior of the system would be to develop
a model that notifies the user when something anomalous occurs. A challenge in
creating a such model is to define what an anomaly is. The perfect model would
be generic enough to capture anomalies that the user is not aware of, but not to the
point that it also starts to label normal data as anomalous. How to define an anomaly
for the model without specifying exactly what an anomaly is, makes the problem
not only mathematically and statistically hard to solve, but also philosophically
complex. A major part of contributing scientifically with something new is to be
able to evaluate it. However, designing a suitable evaluation method for an anomaly
detection model could feel like a paradox when the purpose of the model is to detect
anomalies that no one knows exist.

1.2 Outline of thesis
This thesis starts with an introduction in Chapter 1 that includes a brief background
of the project, what the authors aim to accomplish, the division of work as well as
a section with related work that should give an idea of how this project contributes
scientifically and how it relates to previous work. The chapter also includes the ob-
jective of the project together with the research questions that the thesis intend to
answer, as well as an overview of the data used in the thesis. In Chapter 2 the theory
behind the tools and algorithms used in the experiments is described. A thorough
description of the problem is included in the beginning of the Chapter 3. This chap-
ter also includes the method of the project and the problem formulation presented
in Section 3.1 describes why the method is especially important for this this the-
sis. In Chapter 4 the results from the experiments are presented, in Chapter 5 the
discussion and analysis are placed and Chapter 6 contains the conclusions.

1.3 Objective of project
As stated in Section 1.1, there is a need of detecting event log anomalies in real-
time for public transportation vehicles. Gaia is one of many companies that wishes
to find such anomalies in an early stage. This thesis aims to develop a method for
real-time event log anomaly detection, with having access to a very limited amount
of known anomalous event sequences. As mentioned earlier, a consistent and trans-
parent evaluation of such a method is crucial. Consequently, the suitable choices

10

1.4 Related work

that appear along the way of developing a method for this problem are constrained
by the ability to evaluate the method as a whole. Within the limits for valid evalua-
tion, we intend to develop, compare and analyze different variations of the method
and finally present the optimal one.

1.3.1 Questions at issue
The thesis primarily aims to answer the following research questions:

• How can a real-time detector for sequences of log events be defined?

• How well does the above mentioned real-time detector perform, when only
having access to an unlabeled data set?

• How can a small data set of known anomalous trips be used for tuning, in the
pipeline belonging to the real-time detector, while keeping a generic nature
of the detector where it also detects anomalies outside the known anomalies?

1.4 Related work
It is easy to find research articles considering one of the subjects of public trans-
port, event logs, anomaly detection, real-time models and unsupervised learning.
Even the majority of combinations of two of the subjects is earlier researched and
written about. However, projects including three or four of the fields are definitely
less common and no project considering all areas, as this thesis does, has been
found while researching. In the following sections a selection of relevant articles is
presented, with comments on how they differ and relate to this thesis.

1.4.1 What defines an anomaly?
An anomaly can be defined in a range of different ways, and in most cases it needs
to be defined in context of the surrounding data. In the paper On the nature and
types of anomalies: a review of deviations in data by [Foorthuis, 2021] an extensive
literature study is presented and the different types of anomalies are categorized
and analyzed. The paper defines an anomaly as "occurrences in a data set that are in
some way unusual and does not fit the general patterns". Important in the definition
is the lack of an interesting detail; anomalies does not have to be constructed from
an underlying faulty structure, as long as the occurrence is either unusual or does
not fit the normal pattern. However, an anomaly detector meant for applications
similar to the one in this thesis aspires to detect anomalies originating from faulty
systems. Therefore, an anomaly in this project is defined similarly to the definition
of Foorthuis with the addition that the occurrence also needs to be unwanted, not
only an outlier within the representation of the data. This leaves room for interpre-
tation of what unwanted means and it is something that needs to be specified by the

11

Chapter 1. Introduction

users that aim to develop an anomaly detector.

1.4.2 Log anomaly detection for streaming data in real-time
In the paper Unsupervised real-time anomaly detection for streaming data [Agha,
2017] a model is presented that is able to detect anomalies in real-time streaming
data using unsupervised methods. The detector uses an algorithm called Hierar-
chical Temporal Memory, which is a type of online sequence memory algorithm.
The paper also presents a novel benchmark used for anomaly detectors specified on
streaming data called the Numenta Anomaly Benchmark. The main difference be-
tween the problem described in the paper and the problem described in this project
is that our data is naturally divided into journeys. The data in the paper is fully
streaming, meaning that no natural sub-sequences can be assigned. In our problem
the data can be separated through the natural journeys a vehicle performs, a for-
mat that is incompatible with the previously mentioned benchmark. Unsupervised
real-time anomaly detection on streaming data for large-scale application deploy-
ments [Jernbäcker, 2019] is another article within the same field that uses the Nu-
menta Anomaly Benchmark for evaluating the detector. For detecting anomalies in
both real and simulated data, a combination of Hierarchical temporal memory, Re-
stricted Boltzmann machines and Autoregressive integrated moving average is used.
The detectors were chosen because each one of them is specialized to detect a cer-
tain type of anomaly. With a similar intention, this thesis also combines, as well as
compares, three different detector algorithms. However, due to the lack of labels in
the thesis’s data, as well as the data structure that is incompatible with the bench-
mark, the detector used in this thesis is supplemented with other tools that enable
evaluation as well as detection in real-time.

1.4.3 Anomaly detection for sequence data
In the paper Comparative Evaluation of Anomaly Detection Techniques for Se-
quence Data [Kumar, 2008] different anomaly detectors are presented. These
detectors are implemented to work on a range of different data sets. Similar to the
problem in this thesis the data used in the paper has a sequential structure, where
each sequence consists of a number of consecutive logs. The paper brings forth
different techniques that are implemented to solve the problem. These techniques
are divided into three different categories; kernel based, window based and Marko-
vian. The kernel based techniques build on the idea that anomalies can be detected
by comparing the similarities between sequences. Window based techniques how-
ever calculate an anomaly score for fixed length windows, in a sequence. The last
category, the Markovian, calculates a probabilistic anomaly score for each event
given the previous events. Connecting this article to our thesis, a sequence would
correspond to an event log for a bus journey, and a window in a sequence would

12

1.4 Related work

correspond to a number of consecutive events within a bus journey. The pipeline
presented in this thesis includes a model similar to the kernel based algorithms
as well as a model with a similar approach as the window based algorithms. The
thesis’s pipeline could be seen as an ensemble model, since the two previously
mentioned models, in contrast to the algorithms described in the paper, operate
after each other and are both necessary for the solution as a whole.

1.4.4 Evaluation of unsupervised models on unlabeled data
A common problem with unsupervised models when used on unlabeled data is that
an evaluation of the model can be unreliable and difficult. One approach that is of-
ten used when a novel unsupervised model is presented is to train the model on
unlabeled data and then evaluate the model using existing labels. An example of
this is found in the article Clustering-based real-time anomaly detection—A break-
through in big data technologies [Ariyaluran Habeeb et al., 2019] that proposes a
real-time framework for detecting anomalies in big data, with clustering algorithms.
Although the clustering algorithms handle unlabeled data, the performances of the
algorithms are evaluated by comparing the predicted labels with the actual labels.
However, to do this, the original data needs to be labeled, something that can not
be assumed to be the case in real world applications. To manually label a data set is
often very time-consuming, and the person that does the job needs to have a knowl-
edge about the data as good as the ground truth. The paper A Large-scale Study
on Unsupervised Outlier Model Selection: Do Internal Strategies Suffice? [Akoglu,
2017] investigates how accurate different existing evaluation approaches for unla-
beled data performs on anomaly detector tasks. The paper compared 297 different
models based on 8 different detectors on 39 detection tasks using 7 unrelated strate-
gies to compare and evaluate the models. The 7 strategies can be divided into to
two categories; stand-alone and consensus-based. Stand-alone strategies only re-
quire a single model and the corresponding output while consensus-based strategies
rely on multiple models and the agreement between the models. The conclusion
reached in the paper is that no strategy performs significantly better than to sim-
ply use the state-of-the-art detector with a random configuration. Furthermore, the
stand-alone strategies did not perform significantly better than simply choosing a
random model from the existing pool of models. The problem with evaluating a
model with unlabeled data is present in the problem described in this thesis. While
evaluation strategies utilizing internal and inherit data information are used in our
thesis, the returned metrics are not enough for presenting how the model performs
in a trustworthy way. To be able to present trustworthy results the final models are
evaluated by using simulated anomalies.

13

Chapter 1. Introduction

1.5 Data
The provided data from Gaia consists of historical event logs from buses operating
under the public transportation service Östgötatrafiken. The data of a journey is
stored in a JSON file. There is a lot of information included in the logs, in addition
to the trip ID, timestamp and event name. A screenshot of a small proportion of the
nestled data can be seen in Figure 1.1.

Figure 1.1 Small proportion of the nestled log data, accessed from JSON files.

In Table 1.1 and Table 1.2 below the information fields used for this project are
presented. Since the raw structure of the data is nestled, the parent field is included
in the name when the child field is explained. For the project, data from 14th to 20th
October 2021 was extracted and used.

14

1.5 Data

Table 1.1 A collection of the data fields used in this project. e[x] represents the x:th event
in a journey and s[x] represents the x:th stop in a journey.

Field Description
e The log events for one bus trip. Each entity of e contains

a nestled numbered list of the events in the bus trip.
kpis Statistics obtained after the journey ended.

s The journey’s bus stops, with information about the
scheduled and actual arrival and departure times.

tripInfo General information about the trip.
tripInfo.trId Also called trip ID, which is an ID for the journey that is

unique for each bus line and time of the day. This means
that every journey on the same line and time of the day
have the same trip ID, even when the journeys take place
on different dates.

tripInfo.rtId Also called route ID, which is unique for each bus line.
kpis[0].referenceValue Also called CallOutRefValue, which is the expected num-

ber of times of callout executions. The callout is the
sound announcement that notices the passengers about
the next bus stop.

kpis[0].value Also called CallOutValue, which is the actual number of
times that a callout is executed during a trip. The callout
is the sound announcement that notices the passengers
about the next bus stop.

e[x].val.metresToNextStop The distance to next stop, only available for events that
are related to the next stop.

kpis[4].value Also called TripDurationMinutes, which is the time in
minutes from the beginning of the logging of the jour-
ney, to the last log message of the journey.

kpis[3].value Also called PosPerMin, which is the number of position
updates of the bus per minute.

e[x].t The timestamp of event number x.
e[x].n The event name of event number x.
e[x].m The event message for event number x.

15

Chapter 1. Introduction

Table 1.2 A collection of the data fields used in this project. e[x] represents the x:th event
in a journey and s[x] represents the x:th stop in a journey.

Field Description
e[x].val.metresToNextStop The time to next stop, only available for events that are

related to the next stop.
e[x].val.fromState A field that contains the state that the bus changes from.

Only available for events that represents changes of the
state, for instance when a bus changes state from Arriving
(to the bus stop) to Departing (from the bus stop).

e[x].val.toState A field that contains the state that the bus changes to.
Only available for events that represents changes of the
state, for instance when a bus changes state from Arriv-
ing (to the bus stop) to Departing (from the bus stop).

e[x].val.onShape A boolean field that tells if the bus deviates from the
planned geographical route or not.

e[x].val.VehicleState A field with the current state of the bus, in relation to the
previous or next bus stop.

e[x].val.stopId A unique ID of the bus stop, only available for events that
are directly related to a bus stop.

e[x].val.isFinalDestination A boolean field that is true when the bus reached the final
destination, only available for events that are directly re-
lated to a bus stop.

e[x].val.EventStopName The name of the stop, only available for events that are
directly related to a bus stop.

e[x].val.signage_v1.text A field for the display message shown at the display out-
side the bus. Only available for events related to that dis-
play.

s[x].aDeptDt The timestamp for the actual departure for the x:th bus
stop.

s[x].gid The ID for the x:th bus stop.
s[x].n The name of the x:th bus stop.

1.6 Individual contributions
In this thesis both authors have contributed equally to the majority of the parts of
the project. Since both authors started the project with a similar background of
studying Machine Intelligence, the most natural way of working was side by side.
In the development part Andreas was responsible for the autoencoder, while Felicia
was responsible for the clustering algorithms.

16

2
Theory

The intention with this chapter is to give the reader background information and
theory that is valuable for the research as well as for the experiment part of this
thesis. In Section 2.1 the data scaling and normalization are presented, while the
model algorithms are presented in Section 2.2, 2.3 and 2.4. The last section, Section
2.5, describes the evaluation metrics used in the thesis.

2.1 Scaling and normalization of data
When working with a data set that has multiple columns it is often beneficial to
standardize or normalize the values, before training a Machine Learning model
[Yildirim, 2022] or performing data analysis such as PCA [Scikit-learn, 2022a].
If the data is not scaled, the value range of the individual columns will affect the
result of the Machine Learning model or data analysis, as a column with a larger
value range will generally have a bigger impact on the model or analysis than a
column with a smaller value range [Yildirim, 2022]. This is especially intuitive
with the PCA case, as the most important columns are those that best represent the
overall variance of the data set. As soon as one column varies more than the other,
it will be considered as more essential for the data set. Without scaling the result
will therefore be misleading, as columns with larger value ranges not necessarily
represents the variance of the data set best [Scikit-learn, 2022a].

Note that a row of the input data set x is written as xi, while a column of the
input data set x is written as x j, in the following definitions.

17

Chapter 2. Theory

2.1.1 Unit Norm Scaling
With Unit Norm Scaling, the data is scaled to have a norm of 1. The most common
norm used in this scaling is the L2 norm.

xi′ =
xi

∥xi∥
(2.1)

In Equation 2.1 the calculation needed for Unit Norm Scaling is presented, where
the values of the i:th row xi are divided by the norm of the i:th row ∥xi∥, which
results in the norm scaled xi′ [Scikit-learn, 2022e].

2.1.2 Minmax Scaling
Minmax scaling is used to push the data into a range between a lower limit a and a
higher limit b. The often used default range is having a = 0 and b = 1. In Equation
2.2 below, the Minmax Scaling calculations are presented.

x′j = a+
(x j −min(x j))(b−a)

max(x j)−min(x j)
(2.2)

Each column in a data set is scaled independently according to Equation 2.2 above,
where x j is the values for the j:th column, min(x j) is the minimum value of the j:th
column, max(x j) is the maximum value of the j:th column and x′j is the resulting
scaled values of the j:th column [Scikit-learn, 2022d].

2.1.3 Standard Scaling
By scaling with a Standard Scaler the resulting data set will have a mean value of
0 and a unit variance. This is achieved by performing the calculations presented in
Equation 2.3 below.

x′j =
x j −µ j

σ j
(2.3)

The mean value µ j and the standard deviation σ j are calculated for each column j.
After calculating the statistics for the columns independently, the mean is subtracted
from the values of the j:th column, x j, and the standard scaled value x′j is obtained
by dividing with the standard deviation [Scikit-learn, 2022g].

2.1.4 Robust Scaling
The scaling of data containing outliers with methods that uses the mean, variance or
the whole data range, will be affected by the outliers. To prevent the outliers from
influencing the scaling, a Robust Scaler can be used. Instead of scaling with the
mean and a fixed range or the complete data range, a Robust Scaler uses the median
together with the range between the 25:th percentile and the 75:th percentile.

18

2.2 PCA

x′j =
x j −median(x j)

Q3 j −Q1 j
(2.4)

Robust Scaling is performed column wise. In Equation 2.4 above, Q3 j and Q1 j
represent the 75:th percentile and the 25:th percentile, for the j:th column in the
data set. Following, median(x j) is the median of the j:th column of the data set and
x′j is the scaled values of column j [Scikit-learn, 2022f].

2.2 PCA
Large data sets are commonly represented in higher dimensions. This can be prob-
lematic when the data is analyzed, since you can not plot the data in more than
three dimensions. One method to tackle this problem is the Principal Component
Analysis (PCA), a technique that reduces the dimension of a data set while still
keeping as much information as possible. It is done by finding new variables that
maximizes the variance at the same time as they are uncorrelated.

Given a data set X with p dimensions and n observations where x j is the j:th
column of X. We aim to define the linear transformation

p

∑
j=1

a jx j = Xa

that maximizes the variance with a vector of constants a. The variance is then equal
to var(Xa) = a′Sa, as any such linear transformation, where S is the covariance
matrix of the observations. Our aim is then to maximize the expression a′Sa but
to make sure that the solution is well defined we need another restriction. Here
different variants of PCA can be created, the normal restriction of choice is that the
vector a needs to be unit-norm, meaning that a′a = 1. To maximize the expression
under the restriction we can define the Lagrange function L(a,λ) as

L(a,λ) = a′Sa−λ (a′a−1) (2.5)

where λ is the Lagrange multiplier. Maximizing function 2.5 can be done by dif-
ferentiating, with respect to a, the expression and setting the result equal to the
zero-vector. Doing this gives us the expression

Sa−λa = 0 ⇐⇒ Sa = λa.

The problem is now reduced to finding the eigenvectors of the covariance matrix S.
Due to the restriction that a should have unit-norm, an interesting relation between
the variance and the eigenvalues can be found:

var(Xa) = a′Sa = λa′a = λ .

19

Chapter 2. Theory

This means that the largest eigenvalue λ1 will maximize the variance, and therefore
the corresponding eigenvector a1 is the vector that we are searching for. The con-
stant vector a1 can then be used to transform the data set X from a dimension of
p to a dimension of 1, while keeping the maximal variance. Due to the covariance
matrix S being symmetric and positive semi-definite the eigenvectors will be or-
thogonal, we can therefore show that the projections, or principal components Xa j,
are uncorrelated. We show this by calculating the correlation between two principal
components

corr(Xai,Xa j) = a′iSa j = λ ja′ia j = 0

if i ̸= j.

The projection Xa j is called the j:th Principal Components or PC j. The Princi-
pal Components can be used to visualize the data in lower dimensions by plotting
with the first PC:s. For example if you want to visualize the data in two dimensions
the first two Principal Components, PC1 and PC2, can be used. Because the eigen-
vectors a are ordered based on the which can represent the most variance of the data
the first Principal Components are most suited for lower dimension visualization.
[Jollife and Cadima, 2016]

2.3 Clustering algorithms
The overall idea for clustering algorithms is grouping data with respect to the sam-
ples’ feature values. How the groupings are made differs between the algorithms
and chosen hyperparameters. To perform clustering, at least a data set with objects
O and a belonging distance function d : O×O −→ R+, for instance Euclidean or
Manhattan, are needed. Usually each object O is d-dimensional containing real
valued points, O ⊂ Rd , where the points are sampled from p(x), an unknown prob-
ability density function.

The majority of the clustering algorithms aim to minimize the dissimilarity within
the clusters while maximizing the dissimilarity between different clusters, by using
the distance function d. These kinds of clustering algorithms assume that the den-
sity of the data set as a whole is the result of data points sampled from k number
of probability density functions pi that each belongs to one of the clusters and
mathematically to a parametric family such as a Gaussian distribution. The number
of clusters, k, needs to be set before the clustering starts. During the clustering the
variable parameters related to pi are tuned to represent the density of the belonging
cluster as good as possible.

Another group of clustering methods that are non-parametric, in contrast to the
clustering algorithms described above, is called density-based clustering. When us-

20

2.3 Clustering algorithms

ing density-based clustering algorithms the number of clusters, k, is not predefined
and the algorithms are not based on assumptions about the density function p(x).
The goal for this type of clustering algorithms does not include having the lowest
dissimilarity with respect to the distance function d, within the clusters. Instead,
clusters form at the high density areas of p(x), which allow clusters with a big
variety of appearances to be found. In contrast to the parametric clustering algo-
rithms a point assigned to a cluster with a density-based clustering algorithm can
be much closer to points that are assigned to another cluster, than to points within
its own cluster. The intuitive explanation for this is that the density within the
clusters respectively is higher, than the density in the areas between them. Because
of the distinction between high- and low-density areas, density-based clustering
algorithms label points as noise when they occur between the clusters. [Sander,
2010]

2.3.1 DBSCAN
Density-Based Spatial Clustering of Applications with Noise, DBSCAN, is a well-
known density based clustering algorithm designed for finding clusters of arbitrary
shape in large spatial data sets, without demanding the user to have much knowl-
edge about the data domain.

For explaining the DBSCAN clustering method the Euclidean distance function
will be used and denoted as d(p,q), and for simplifying the visualization p and
q will be two arbitrary points in the 2D-space. In Figure 2.1 DBSCAN clustering
applied on a small data set is presented, with the two detected clusters marked.

Figure 2.1 An example of a clustering with DBSCAN where two clusters are found. The
green points represent the core points, the red points represent the border points and the black
points represent the noise. The minimal number of neighboring points for a core point is 4.

21

Chapter 2. Theory

Before the DBSCAN clustering begins, there are two parameters that need to be set:
MinPts and Eps. In the figure MinPts = 4 and Eps = ε . Both these parameters are
used to calculate the neighborhood NEps(p) of each point p, which is a central part
of this clustering method and defined in Equation 2.6 below.

NEps(p) = {q ∈ D|dist(p,q)≤ Eps} (2.6)

The neighborhood NEps(p) for the point p, is the set of points q that come from the
same data set D as p and lie within a distance of Eps from p. If |Nε(q)| ≥ MinPts,
i.e. the number of the neighboring points are greater than or equal to MinPts, the
point is considered to be a core point. All core points that can be reached from
going from one neighboring core point to another are assigned to the same cluster.
A point that lies in the neighborhood of at least one core point, without having
enough neighboring points to reach the requirement for being a core point itself, is
considered to be border point. The border point is assigned to the same cluster as its
neighboring core point. It is possible for a border point to have several core points
in its neighborhood that belong to different clusters. To avoid soft clustering, the
default in DBSCAN clustering is to assign that border point to the first approaching
cluster, as the algorithm iterates from point to point starting with a core point. The
points that do not reach the requirement for either a core point or a border point
is labeled as noise. In Figure 2.1 core points are green, border points are red and
noise points are black. Because of the condition of having at least MinPts number
of neighboring points to be a core point, it is also required that the data set has more
than MinPts for a cluster to be formed by the algorithm. [Xu, 1996]

2.3.2 OPTICS
Ordering Points To Identify the Clustering Structure, OPTICS, is a clustering al-
gorithm that can be seen as an extension of the DBSCAN clustering algorithm.
In comparison with DBSCAN, the OPTICS clustering algorithm does not require
the clusters within a data set to have similar densities. As the OPTICS algorithm
considers the intrinsic clustering structure, the information obtained from one run
corresponds to many runs with different input parameters when using other den-
sity based clustering algorithms. This is often helpful as a set of real-data clusters
coming from the same data set seldom fit under fixed global input parameters, for
instance because the local densities can differ a lot. In Figure 2.2 below an example
of a data set containing clusters with different densities is visualized. For a clus-
tering algorithm that uses a global fixed density condition it could be difficult to
both discover the three smaller high density clusters, encircled by green lines, and
the two bigger low density clusters, encircled by blue lines, in the same run. If the
clustering algorithm with a fixed global density condition manages to capture the
three smaller clusters and define them as separate, there is a risk that the samples
belonging to the bigger clusters will be labeled as noise. However, if the bigger
clusters are found by the clustering algorithm with a fixed global density condition,

22

2.3 Clustering algorithms

it is possible that the density limit is too low to distinguish the empty area between
the smaller high density clusters and instead are seen as one cluster, which in the
figure is encircled by a pink line.

Figure 2.2 An example that shows a data set containing clusters with different densities.

To explain OPTICS, a suitable density based clustering algorithm that can dis-
tinguish clusters with different densities within the same data set, the DBSCAN
approach will first be extended. In the previous section the parameters MinPts and
Eps were defined, together with the neighborhood NEps(p) of a point p. In sum-
mary each point has a number of samples in its neighborhood, see Equation 2.6,
and if the number of points in its neighborhood is equal to or exceeds MinPts, the
requirement for a cluster is fulfilled and the point together with its neighboring
points are assigned to the same cluster. These kinds of points are considered to be
core points, while points with at least one core point as neighboring point but a
neighbor number less than MinPts are border points. The points that do not fulfill
the conditions for being a core point or a border point are labeled as noise. The first
step of extending DBSCAN towards being capable of finding clusters with different
densities is allowing exploration of multiple values for Eps in the same run. All
points in a high density neighborhood will be captured in a cluster both with their
corresponding, smaller, Eps as well as with a bigger Eps. In contrast, the points in
lower density neighborhoods will be labeled as noise for values of Eps that corre-
sponds to high density areas. For producing consistent results with the extended
approach, an infinite number of different Eps values are explored, from the smallest
possible value for a cluster to be defined by the algorithm, to the maximum limit
specified by the user, according to expression 2.7 below.

23

Chapter 2. Theory

0 ≤ εi ≤ ε (2.7)

The OPTICS algorithm works like the extended DBSCAN algorithm, except that
it does not assign the points to the clusters directly. Instead, two new values are
introduced and stored together with the data point. The first value is the core-
distance, see definition 2.8 below. When |Nε(p)| ≥ MinPts, i.e. when the num-
ber of neighboring points is greater than, or equal to MinPts, the point’s core-
distance is the smallest Eps value that is needed for the point to be a core point,
hence MinPts-distance = Eps where Eps corresponds to the value needed for
|Nε(p)|= MinPts to be fulfilled.

core-distance(p) =

{
UNDEFINED if |Nε(p)|< MinPts
MinPts-distance(p) otherwise

(2.8)

In addition to the core-distance, reachability-distances are also calculated, see defi-
nition in Equation 2.9 below. When the resulting value is not UNDEFINED which
happens under the same circumstances as for the core-distance, the reachability-
distance is the greatest value of the point’s core-distance and the distance between
the point and another neighboring point, o.

r-distance(p,o) =

{
UNDEFINED if|Nε(p)|< MinPts
max(core-distance(p),distance(p,o)) otherwise

(2.9)
Furthermore, a cluster-ordering is performed by an iterative process where
reachability-distances are calculated, ordered and stored. In this paper, the ex-
act pseudo code will not be presented or explained, since it will not contribute
to the understanding of why OPTICS is a suitable and interesting algorithm for
the experimental part of this thesis. After producing a cluster-ordering with the
reachability-distances, a reachability plot is made. An example of a such plot can
be seen in Figure 2.3 below.

24

2.3 Clustering algorithms

Figure 2.3 An example, retrieved from the article OPTICS: ordering points to identify the
clustering structure [Ankerst et al., 1999] that shows a reachability plot, where the y-axis
values are the reachability-distances and the x-axis values are the cluster-order of the objects.

In Figure 2.3 above only data points with defined core-distance and reachability-
distance values are shown, i.e. data points that are assigned to clusters. The samples
with UNDEFINED core-distance and reachability-distance need a bigger value
for E ps than the max value set by the user (ε in the figure) to not be labeled as
noise. Each valley in the reachability plot represents a cluster and each cluster gets
separated from the next one when there is a sharp decline in reachability-distance,
as you move along the cluster-ordering axis. [Ankerst et al., 1999]

2.3.3 HDBSCAN
Hierarchical Density-Based Spatial Clustering of Applications with Noise or HDB-
SCAN is a clustering algorithm that extends DBSCAN, where the parameter Eps is
not required to be specified. The algorithm can be divided into 5 parts where the first
step is to define a new space. Similar to DBSCAN the algorithm distinguishes noise
from in-cluster samples, an ability that makes an important difference in a situation
where noise risk to be seen as a connection between clusters. The HDBSCAN al-
gorithm will in the first step distance low-density areas further from high-density
areas. This is done by defining a core distance for each point in the database. The
core-distance(p), see Equation 2.8, for the point p is defined as the distance to the
k:th nearest neighbor for the point p. With this a new metric the mutual reachability
distance, dmreach−k(p,q), is defined as

dmreach−k(p,q) = max{core-distance(p),corek(q),d(p,q)} (2.10)

where d(p,q) is the previously mentioned distance function which should be chosen
to the most suitable for the data, for instance the Euclidean or Manhattan distance.

25

Chapter 2. Theory

The result of this transformation is a new space where highly dense areas remain
highly dense while low-density areas are separated.

When the mutual reachability distances are calculated the algorithm proceeds
to the next part: the creation of a minimum spanning tree. In this part the highly
dense areas are located, taking into account that the concept of highly dense areas
varies between data sets. This is done by connecting all data points, with weights at
the edges equal to the mutual reachability distance of the connected points. Further,
the optimal process is to create a hierarchy of connected points, from iteratively
looping through a range of thresholds and dropping every edge with a weight larger
than that threshold. The hierarchy would span from having all points connected
by edges, to having no edges at all. Unfortunately this is an operation demanding
high computational power and is unreasonable to implement. What instead is done
is defining a minimum spanning tree where every point is reachable from every
other point, while no edge can be replaced to lower the sum of mutual reachability
distances. In Figure 2.4 an example of a minimum spanning tree is presented with
the mutual reachability distance as weights.

Figure 2.4 An example that shows a minimum spanning tree with weights defined by the
mutual reachability distance. The figure is retrieved from the article How HDBSCAN works
[McInnes et al., 2017].

With the minimum spanning tree the algorithm continues to the third part; creating
a hierarchy of connected points. This is done by connecting the edges, one at a time,
starting with the lowest weighted edge and increasing through the edges ordered by

26

2.3 Clustering algorithms

the weights. This creates a cluster hierarchy and an example is plotted in Figure
2.5. A main difference between DBSCAN and HDBSCAN is that the former would
use the input parameter Eps to cut the cluster hierarchy. Everything above the cut is
considered noise while the separated branches created under the cut are considered
clusters. In HDBSCAN however, the cut is more data driven and varies depending
of the look of the hierarchy.

Figure 2.5 Example of a cluster hierarchy with y-axis representing the mutual reachability
distance and the color as number of points in a branch. The figure is retrieved from the article
How HDBSCAN works [McInnes et al., 2017].

In the fourth part of the algorithm, the parameter MinPts, i.e. minimum cluster size,
which is specified when running HDBSCAN, is used. With a larger value of MinPts,
the cluster hierarchy is simplified to larger but fewer clusters, similar to how the
Eps parameter would affect the result for DBSCAN. In HDBSCAN this is done by
iterating through all the splits, from top to bottom of the hierarchy, and applying
a logic to the splits. The logic returns one of two cases; either the split results in
a new cluster or the branch is considered a part of the current cluster. The logic
investigates if the branch in question contains less than the MinPts, if the answer is
yes then that branch will be considered a part from the parent cluster. If in the other
hand all the branches from a split contain more than the MinPts, the parent cluster
will end and each branch will form new clusters. The resulting tree has fewer nodes
with more points in each node. An example is seen in Figure 2.6, retrieved from the
same example as Figure 2.5.

27

Chapter 2. Theory

Figure 2.6 Example of a dendrogram where the hierarchy from Figure 2.5 has been used
with the logic. The figure is retrieved from the article How HDBSCAN works [McInnes et al.,
2017].

In the last step of the algorithm the final clusters are extracted. To do this a new
metric called stability is defined, as well as a new measurement λ = 1

distance . For
each cluster the λ where the cluster start is also calculated and called λbirth. The
following formula is used for calculating the stability:

∑
p∈cluster

(λp −λbirth) (2.11)

where λp is the λ -value where the point p drops out from the cluster. The stability
is increasing if a cluster is lasting longer before a split, while a high amount of
points is included in the cluster. To decide which clusters should be considered to
become the final clusters, the leaf nodes start off as the first clusters. The algorithm
moves up along the tree and continuously checks if the sum of stability from the
child nodes is greater than the parent stability. If this is the case, the parent stability
is set to the sum of the stability from the children and the child nodes are kept as the
current clusters. If in the other hand the parent stability is greater, the child nodes
are discarded as the current clusters, and the parent node is chosen as the current
cluster. This selection process is performed until we reach the root and the current
clusters will be considered the final clusters. [McInnes et al., 2017]

28

2.4 Autoencoder

2.4 Autoencoder
An autoencoder is an artificial neural network with a specific type of architecture.
The network contains three parts; an encoder network, a decoder network and a
latent vector. In Figure 2.7 an example of a simple autoencoder is presented. The
example network has an input and output size of 20 each, with first and third hidden
layers of size 10. The hidden layer in the middle has a size of 5 and this layer is
called the latent vector. An autoencoder aims to reproduce the input sample, mean-
ing that an ideal autoencoder returns a sample that is identical to the input. Between
the input and output stage, the sample is reduced to a smaller dimension: the latent
vector. The intelligence in an autoencoder lies in the ability to keep as much infor-
mation of the sample as possible while reducing its dimension and then being able
to reproduce the sample in the decoder network, where the sample is transformed
back to the original dimension.

Figure 2.7 Example of an fully connected autoencoder with the latent vector with dimen-
sion 5 as the second hidden layer.

The metric used for optimization is called loss and the goal is to minimize it. Given
the j:th input sample x j and the corresponding predicted output y j, the loss for that
sample, l j, is calculated with the equation

l j = ∥x j −y j∥mse

where ∥ · ∥ is the mean squared error, calculated with the equation

∥x∥mse =
1
n

n

∑
i=1

x2
i .

29

Chapter 2. Theory

After the autoencoder is trained with only normal data, the idea is that it will per-
form well on new normal data, i.e. that the corresponding loss is low. In contrary the
autoencoder will reproduce abnormal data poorly and hence return a large loss. By
setting a threshold for the loss, the autoencoder can be used as an anomaly detec-
tor. For instance if the threshold is set to one standard deviation of all losses in the
input data set, all input samples that return a loss greater than that threshold will be
labeled as anomalous. The poor reconstruction of an abnormal sample is a result of
that the autoencoder does not know how to decode the corresponding latent vector.
As mentioned earlier, the training of the autoencoder needs to be done with data
containing close to no anomalies. Except for demanding a data set of normal data
no labels are necessary, which makes the approach semi-supervised. [Kuo, 2019]

2.5 Evaluation metrics
For evaluating the performance of a model in a representable and consistent way it is
important to choose suitable metrics. In the binary classification field the majority of
the metrics is derived from four values; true positives, true negatives, false positives
and false negatives. In Figure 2.8 below a chart of the four values is presented. It is
meant to show the relationship between the values and the data set’s actual labels
and predicted labels.

Figure 2.8 A chart that explains where true positives, false, negatives false positives and
true negatives come from, in relation to the actual labels and the predicted labels, when
performing binary classification.

For simplifying the explanation of the values presented above and at the same time
relate to the values that will be used in the thesis, an Actual Positive sample will
correspond to an anomaly and an Actual Negative sample will correspond to a nor-
mal data point. Consequently, a true positive is an anomalous sample that is labeled
as an anomaly while a true negative is a normal sample labeled as normal. A false

30

2.5 Evaluation metrics

positive is therefore an actual normal sample, labeled as anomalous and a false neg-
ative is an actual anomalous sample, labeled as normal. Henceforth these values
will be referenced to as the count of all samples within each of the four categories
and denoted as TP, TN, FP and FN respectively. [Dilmegani, 2019]

2.5.1 Precision
The precision is a measurement of a model’s ability to not label an actual negative
sample as positive. In Equation 2.12 below the calculation needed to retrieve this
metric is presented.

Precision =
T P

T P+FP
(2.12)

The maximum and optimal value is 1 which corresponds to only having actual pos-
itives labeled as positives. The minimum value is 0, which corresponds to only hav-
ing actual negatives labeled as positives, or no samples at all labeled as negative.
[Scikit-learn, 2022b]

2.5.2 Recall
How well a model finds all the actual positive samples and labels them as posi-
tives can be measured by a metric called recall. In Equation 2.13 below the recall
expression is presented.

Recall =
T P

T P+FN
(2.13)

The maximum and optimal recall score is 1 and it corresponds to having all actual
positive samples labeled as positive. Contrarily, a value of 0 is the smallest possible
recall value, which corresponds to a model that does not label any actual positive
sample correctly. [Scikit-learn, 2022c]

2.5.3 Accuracy
Classification accuracy is a commonly used metric when evaluating a classifying
Machine Learning model. It is calculated by dividing the number of correctly la-
beled samples with the number of total samples, as shown in Equation 2.14 below.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.14)

This metric is preferable to use when having balanced classes, i.e. when there is
equal, or close to equal, number of samples in each class. A high accuracy score for
a data set with unbalanced classes does not by itself imply that the model performs
well. [Mishra, 2018]

31

Chapter 2. Theory

2.5.4 F1-score
Precision, recall and accuracy are valuable metrics for evaluation but each alone
does not paint the whole picture. A model can obtain a great score with the recall
metric and still be an incapable model for a given task. This could happen if the
model predicts a great part of the data as positive, making sure that it captures all the
actual positives and classifying a great part of actual negative samples at the same
time. Similarly, a model can achieve a high score in precision by prediction a few
but certain samples as positive while ignoring the rest of the actual positive samples.

Accuracy can be a great metric in certain types of data sets but in cases where
the number of actual positive and negative samples is skewed the metric holds
minimal information. For example in cases where the actual positive samples are
a fraction of the data set, a high accuracy can easily be obtained by labeling all
samples as negative. To overcome these problems a different metric can be used;
the F1-score. In Equation 2.15 the formula to calculate the metric can be seen. This
metric ranges between 0 and 1, where 1 is the optimal score and is reached when
both recall and precision are at their optimal. [Korstanje, 2021]

F1 = 2 · Precision×Recall
Precision+Recall

(2.15)

32

3
Method

In this chapter the problem formulation and the method are presented. Because of
the absence of data labels, a big part of the scientific contribution of this thesis lies
within the method. The way of using different data representations for extracting
as much information as possible, is a novel suggestion for handling unlabeled data.
With this in mind, the method should not only be seen as a manual that can be used
for reproducing the experiment, but also as the actual result of the thesis. Firstly
in the method part, the pipeline is presented, which includes everything from pre-
processing of the data to the real-time anomaly detection model. After comes an
explanation of the evaluation used in the thesis.

3.1 Problem formulation
The problem this thesis aims to solve is to detect event log anomalies in real-time
for public transportation bus data, without having access to a labeled data set. As
earlier described, in 1.1 Background, each bus journey, has an event log that is
extended every time an event occurs during the trip. Occasionally the bus produces
sequences of events that are not expected and are caused by faulty behavior of the
bus, external disturbances or a bug in the software. The challenge is to detect these
faulty sequences using the event logs, and to detect them during the journey instead
of after. One of the first questions that arises is; What defines an anomalous event
sequence? As mentioned in Section 1.4.1, an outlier is not necessarily an anomaly,
as an anomaly also needs to be unwanted. This definition makes the problem more
complex than just finding abnormalities in the data set with respect to the represen-
tation of the data.

Because the data set provided for this thesis is unlabeled and no specification
about the characteristics of a faulty sequence exists, the solution has to be versatile
and implemented for unsupervised data. What is nevertheless provided is a subset
of journeys that are anomalous, since they satisfy the conditions for at least one
out of three known anomaly types. The known anomalous trips can be used in the

33

Chapter 3. Method

implementation of the solution. However, we can not assume that the anomalous
subset are the only anomalies, due to the generic nature of the method and the aim
of creating a method with abilities of detecting unknown anomalies. Therefore, the
method has to be able to not only detect the specific anomalies but also anomalies
unfamiliar to both the method and the company Gaia.

The specifications surrounding the problem that the thesis aims to solve can be
presented as following; A trip T can be described as a sequence of events ei, T =
{e1, e2, e3, . . . , en}, that varies in length n. The events belonging to the trip T can be
partitioned into sub-sequences. Thus, a sub-sequence S = {ei, ei+1, ei+2, . . . , ei+ j},
with length j and starting at event ei, contains a varying number of consecutive
events. In a data set of trips, M, we assume that 10% of the trips contain anomalies,
denoted as Ma, where Ma ⊂ M. An anomalous trip is denoted Ta and Ta ∈ Ma. These
anomalies come from anomalous underlying structures that result in sub-sequences
of events that are not to be expected in normal behavior. The project aims to cre-
ate a real-time detector D(S) that, given a belonging sub-sequence from a trip T ,
determines if the sub-sequence S is anomalous and therefore deciding if T ∈ Ma.
Since the model uses the event sub-sequences of a trip for identifying anomalous
behavior, it can operate in real-time while the bus runs. Except for a small subset
of known anomalous trips Tknown_a ∈ Mknown_a, where Mknown_a ⊂ Ma, no prior
information about the anomalous underlying structures is available. Due to the
desired generic nature of the model, Mknown_a does not represent the whole subset
of anomalous trips, i.e. Mknown_a ̸= Ma. Instead, it is a subset of the anomalous trips
where |Mknown_a|< |Ma|.

3.2 Pipeline
The central part of the method presented for the Master’s thesis is the pipeline, vi-
sualized in figure 3.1. With the unlabeled data a supervised model was not feasible.
Instead, an unsupervised method was implemented that used techniques that are
most commonly used in semi-supervised applications. To be able to use models
that depended on having a data set of normal data available, a heavy filtration of the
original data set was required. After the filtration the data left was the previously
mentioned data set M. Thereafter, M was sorted into two data sets; clean data and
residue data. As a consequence of the sorting, residue data contained all anoma-
lous trips, i.e. Ma ∈ residue data. To represent a single journey a frequency-based
representation was implemented where each journey was mapped to a single vector.
The goal with the pipeline was to implement a detector that detected anomalies in
real-time, D(S), with a sub-sequence of events, S, as input. However, no restrictions
for including the corresponding finished historical journey, T , in the training of
the detector existed. The pipeline contained two different labeling processes where
the first process used complete journeys, T , while the last worked as a real-time

34

3.2 Pipeline

detector using sub-sequences of events included in T . As mentioned above, the
complete journeys used in the first labeling process were represented by their event-
frequencies. In the first part, three different models were implemented to perform
the labeling; clustering, PCA and autoencoder. Each of the models labeled every
journey T as either normal or anomalous. The methods were implemented using the
two data sets, clean data and residue data, obtained by the filtering. In addition to
comparing the performance of the three labeling models one by one, combinations
of them were also explored.

Figure 3.1 Illustration of the different steps in the pipeline. The data is first preprocessed
before it is represented using the frequency of each event. The process proceeds to the part
where the three labeling models are used. Before the real-time detector, sequences are ex-
tracted from the journeys and tuning of the three parameters (Window Size, Step Size and
TopAnom) is performed.

After the labeling was performed by the three models, the real-time detector part
came next. Because of the real-time aspect of the detector, complete journeys could
not be used here. Instead, the trips were divided into sequences of events, each called
S, that were classified as normal or anomalous one by one. The sequence-based rep-
resentation was obtained by using a sliding window. Length of window as well as
step size were determined by a tuning where specific anomalies (i.e. Mknown_a), a
subset of known anomalous trips, were used to compare the performance of differ-
ent window lengths and step sizes. Added to each event sequence S was the label
retrieved from the frequency-based labeling, corresponding to the journey T that
the event sequence was included in. For each unique event sequence, the ratio be-
tween the number of anomalous labeled journeys that contained the sequence and
the number of normal labeled journeys that contained the sequence, was calculated.
The sequences were sorted based on the ratio and a top percentage of the sequences
were marked as the final anomalies. This enabled real-time alarming, as the detector
got the possibility to alarm about an anomalous event sequence as soon as it was
extracted from the logs and exposed to the detector. In Figure 3.1 an overview of
the pipeline can be seen.

35

Chapter 3. Method

3.2.1 Preprocessing of data
Before models were trained, the data needed to be transformed, filtered and cleaned.
These processes are explained in detail in the following section. The first step in the
data preprocessing was to extract the data relevant for this project, M, from the event
logs. Thereafter, the data set was divided into two; the clean data and the residue
data. This was necessary as the models used in the first labeling process were eval-
uated with methods that required a data set that was close to non-anomalous. In
addition, an autoencoder can only be used as an anomaly detector if it is trained
with only normal data, i.e. the clean data. The deriving of the specific anomalies,
Mknown_a, previously mentioned in Section 3.2, is also explained in this section.

3.2.1.1 Filtering of data

Before using the data, the relevant data M needed to be extracted. In the fol-
lowing section the filters that were applied to the whole data set are presented.

Vehicle type
Within public transportation several types of vehicles are operating. The event pat-
terns differ a lot between the different types of vehicles, why it is preferable to have
separate models for each vehicle type. As mentioned earlier in the report, this thesis
focuses on the buses and the data was filtered accordingly. The resulting data set
consisted of event logs only from bus journeys.
Events
Not all vehicles were capable of providing event logs with all events, since some
events came from devices that not all buses had. All events belonging to the devices
were removed, since it was desirable to only use samples of data that came from the
same circumstances. In addition, some events were copies of other events, but with
a different name. The reason was that the system transitioned into a new way of for-
matting the events. All the events in the new format were removed to avoid having
redundant events. Out of the 58 unique original events, the 25 events presented in
Figure 3.2 were kept:

Figure 3.2 The 25 events that are used for the real-time detector.

CO_diff
After a journey is finished, statistics are obtained and added to the kpis field in the
event log. Two of the values are kpis[0].referenceValue, further called CallOutRe-
fValue and kpis[0].value, further called CallOutValue. These values correspond to
the total number of times that the calloutsent event is expected to occur during the

36

3.2 Pipeline

journey and the total number of times it actually occurs. Equation 3.1 below shows
a calculation made in the preprocessing that extracts the absolute value of the dif-
ference between the expected and actual number of calloutsent during a journey.

CO_diff = |CallOutRefValue−CallOutValue| (3.1)

The CO_diff value was added to all journeys, as an extreme such value possibly
indicated anomalous behavior. An important note is that this value was only added
to data used in the part of the pipeline where the data was represented in a frequency
manner. Since it is impossible to know the CallOutValue before the journey is fin-
ished, this addition of entity cannot be made in a real-time situation, in contrast to
the operations described previous in this section.

3.2.1.2 Cleaning of data

To retrieve a data set that corresponded to bus trips that only contained normal
event data, a harsh filtering was applied. In addition to the resulting data set, which
is called clean data, the filtering process also returned a data set that contained the
data that did not pass one or more of the filtering steps, called residue data. To
maximize the percentage of normal data in the clean data, it was expected that the
residue data consisted of both anomalies, Ma, and normal data, due to the harsh
filtering applied. The division of the data set M is depicted in figure 3.3 below.

Figure 3.3 The data set M is splitted into two subsets; clean data and residue data.

Following, the filtering steps used are presented.

Calloutsent
The calloutsent event is the event that is logged when the bus passengers are noticed

37

Chapter 3. Method

about the next stop with an audio announcement. The callout should be executed
either 30 seconds before the predicted arrival time to the next bus stop, or 200
meters before the next bus stop. To exclude journeys with callouts executed too
early or too late from clean data, only journeys with calloutsent values that fulfill
expression 3.2 below, were included.

100 ≤ MetresToNextStop ≤ 300
20 ≤ TimeToNextStop ≤ 40 (3.2)

Journeys that included at least one calloutsent event that either had a Metre-
sToNextStop value or a TimeToNextStop value that did not satisfy the above ex-
pression, were included in the residue data.

PosPerMin
After finishing each journey a PosPerMin value is added to the kpis field. This value
corresponds to the mean of number of position updates per minute that has been
made during the journey. Usually the position of the vehicle is updated every other
second. Since the aim was to create clean data, a data set with as few abnormalities
as possible, all journeys with a PosPerMin value that did not satisfy expression 3.3
below, were excluded from clean data and included in residue data.

25 ≤ PosPerMin (3.3)

A low PosPerMin value indicates that the vehicle has lost connection which possi-
bly could have caused disturbances in the logs. Hence, the journeys that potentially
had log disturbances were excluded from clean data.

TripDurationMinutes
The majority of all journeys took between 10 and 50 minutes. Since logs that contin-
ued logging after the bus arrived to the last stop existed, as well as logs that stopped
logging before the journey was over, only logs that corresponded to journeys within
the range of 10 to 50 minutes from first log event to last were included in clean data.
After each journey is finished the time from the first log event to the last is saved
as TripDurationMinutes in the kpis field. Only journeys with TripDurationMinutes
values that satisfy condition 3.4 below were included in clean data. The rest were
included in residue data.

10 ≤ TripDurationMinutes ≤ 50 (3.4)

CO_diff
When a journey has a non-zero CO_diff value it has either been too few or too
many callouts, i.e. audio announcements, during the journey. The number of callouts
is predetermined as one callout should be executed ahead of each bus stop. Only

38

3.2 Pipeline

journeys with a CO_diff value that satisfied expression 3.5 below were included in
clean data.

CO_diff = 0 (3.5)

Journeys with a non-zero CO_diff value were included in residue data.

Not in traffic
During a journey with passengers, which is the type of journey analyzed in this
thesis, the bus should never display Ej i trafik, Not in traffic in English. When
this happens the event destinationsignagesent is logged together with a value sig-
nage_v1.text that says Ej i trafik. All journeys that included a such event, with a
value of Ej i trafik were excluded from clean data. Journeys that only contained
values that satisfy Equation 3.6 below were included in clean data.

signage_v1.text != "Ej i trafik" (3.6)

Wrong callout
In addition to the event log, all actual arrivals and departures to bus stops along
the journey are logged separately. The event log and stop log were partitioned by
tr_dt_id, the unique journey ID, and concatenated row by row. After they were
ordered by time, each bus stop ID in rows originating from the stop logs was com-
pared with the most previous bus stop ID belonging to a calloutsent event. If the
IDs matched, the belonging callout had announced the correct bus stop. Journeys
that contained at least one mismatch of these entities were included in residue data,
while journeys with no mismatches, i.e. journeys where relationship 3.7 was satis-
fied for all bus stops, were included in clean data.

stop_log.stop_id j = calloutsent.stop_id j (3.7)

3.2.1.3 Specific anomalies

For deciding value of window size, step size and top percentage of anomalous
sequences to label as anomalous, different combinations of such values were com-
pared by evaluation metrics based on specific anomalies. During the initial data
analysis, different structural abnormal behaviors emerged in some journeys. With-
out extracting specific anomalous sequences, a subset of anomalous trips were
formed, Mknown_a, and confirmed by the company Gaia. Mknown_a are also called
specific anomalies, and they were considered anomalous because of at least one
out of the following three reasons: having extremely many Ej i trafik-values or
TripActivated-events or having an extreme CO_diff value. T ∈ Mknown_a if any of

39

Chapter 3. Method

the trip’s corresponding, and previously mentioned, values were in the highest top
1% out of all such values.

3.2.2 Frequency-based representation
As mentioned earlier, the first labeling part used the whole journey, T , repre-
sented by its event frequencies. Below, the method for transforming the data into a
frequency-based structure is presented.

The data for a single trip is stored in a nestled JSON file, where each logged
event is stored as a dictionary with information such as eventName and eventMes-
sage. Each journey was transformed into a frequency-based representation, where a
single trip was mapped to a vector of integers. The length of the vector was equal to
the number of unique events. Each integer in the vector was equal to the number of
times that the event, belonging to that column, occurred in the journey. In Figure 3.4
an example of how a trip was represented with this approach is displayed. Included
in the vector was the trId combined with the date of the journey, as they together
formed a unique ID for the current trip.

Figure 3.4 Example of how a frequency-based representation looked like. The data from
the example journey is stored in a JSON file, and the resulting representation is an vector with
a column for each unique event with an additional column for the unique ID of the journey.

The last step of the creation of a frequency based representation, was scaling with
the Scikit-learn Robust Scaler. As mentioned in the 2.1.4 Background subsection,
the Robust Scaler is suitable for data sets containing outliers. The scaling of normal
data points is unaffected by the outliers, since the median is used together with the
range between the 25:th and 75:th percentile of the vector. In an early stage of this
project the Unit Norm Scaling, Minmax Scaling and the Standard Scaling were also
analyzed with a result that confirmed that the Robust Scaler was the most suitable.

40

3.2 Pipeline

3.2.3 Labeling
After the frequency-based calculations for each trip, T , were made the resulting
representation was used to label the journey as either normal or anomalous. This
was done using three different models; a clustering algorithm, an analysis of a PCA
result and an autoencoder model. These three models were then tested individually
and by combining them together. The combination was tested both by choosing the
union of the results and the intersection. By testing all combinations and individual
models the optimal one was obtained. If each labeling model would find different
kinds of anomalies, we argued that the union of the models would probably perform
well as it would include all detected anomalies. The intersection of the models on
the other hand, would possibly perform well if the individual models labeled too
many trips as anomalous, but agreed on the actual anomalies.

For selecting the best model, metrics to compare with needed to be defined. Due
to the fact that our data was unlabeled simple metrics like accuracy or F1-score
were not suitable and instead we relied on the filtering of the data, i.e. the clean
data. With the assumption that close to no anomalies were included in the clean
data a first condition for choosing the optimal model was defined, see expression
3.8 below. CDLN is short for Clean Data Labeled Normal and can be interpreted
as the recall value for clean data. With that said, there was probably a significant
amount of normal data in residue data as well, so no conclusions about the actual
recall value for normal data could be made.

CDLN ≥ 0.90 (3.8)

In accordance with the expression above, only models that labeled at least 90% of
the clean data as normal were considered. An equivalent value as CDLN, was cal-
culated for the residue data and called RDLN, standing for Residue Data Labeled
Normal. To further distinguish the best model from the remaining candidates with
a CDLN value of at least 0.90, another metric had to be used. With the assumption
that close to no anomalies existed in the clean data, a consequential assumption fol-
lowed: that close to all anomalies were in the residue data. As mentioned earlier, the
filtering applied for creating the clean data, was enough strict to ensure that clean
data only contained non-anomalous data, hence the residue data contained all the
anomalous samples, Ma. A new metric was created, the ratio CDLN/RDLN, and
the best model was extracted by choosing the one with the highest such ratio among
the models that passed the filtering presented in Equation 3.8 above. The usage of
that metric was motivated with that we already had extracted all models that per-
formed well on classifying clean data as normal. By using the ratio CDLN/RDLN
the CDLN value was maximized while the RDLN value was minimized. The reason
for wanting to minimize the RDLN, after extracting the models with high CDLN
values, was that the proportion of normal data within residue data, was less than the
proportion of normal data in clean data.

41

Chapter 3. Method

3.2.3.1 Clustering

The cluster labeling of finished journeys represented by their event frequencies
was made with the best performing clustering algorithm of DBSCAN, OPTICS
and HDBSCAN, together with the most suitable hyperparameters. Due to the aim
of creating a generic model that detects a broad variety of anomalies, rather than
creating a model that recognizes a certain predetermined anomaly, clustering algo-
rithms that separate noise from "in-cluster-data" were used. Clustering algorithms
that assign every data point to a cluster are more suitable when the anomalies are
expected to follow a certain pattern, as the most intuitive approach would be to label
whole clusters as anomalous. Instead, we assumed that the majority of the data was
normal and that the anomalies would be classified as noise.

As described in the Background and Theory section, see Section 2, all the three
different clustering algorithms have a parameter called MinPts, i.e. minimum clus-
ter size. In addition, DBSCAN and OPTICS also have the Eps parameter which
is mandatory to predetermine for the DBSCAN algorithm but optional for the
OPTICS algorithm, for which infinity is the default Eps value. For deciding which
parameters to use together with each of the clustering algorithms, we systematically
trained the models with all suitable parameters and possible combinations of them
and saved the results in a table. A data point assigned to a cluster was labeled as
normal and a data point that was, by the clustering algorithm, classified as noise
was labeled as an anomaly. In Figure 3.5 below, the labeling by a DSBCAN clus-
tering algorithm is visualized. Since the data naturally has the same dimension as
number of unique events, PCA is used in the visualization to reduce the dimension
to the first and second principal components. As mentioned above, the journeys
classified as noise were labeled as anomalous and the journeys assigned to a cluster
were labeled as normal. The clustering algorithm presented below distinguished
one cluster, marked in blue with False. Even if more clusters had been found, all
data within different clusters would have been labeled the same; as normal.

42

3.2 Pipeline

Figure 3.5 The labeling with one DBSCAN clustering algorithm, visualized with the first
and second principal components.

During the systematic search for the optimal clustering algorithm and hyperparam-
eter values, a range of values between 10 and 10 000 was used as MinPts, where the
value was increased with 10 between 10 and 100, with 100 between 100 and 1000
and with 1000 between 1000 and 10 000. The values that were used for Eps ranged
between 0.01 and 3, where the value was increased with 0.01 between 0.01 and 0.1
and with 0.1 between 0.1 and 3. Larger values for both MinPts and Eps were tested
while the project was still in the experiment phase, however the result was conse-
quently poor with either a CDLN value less than 90% or a CDLN/RDLN ratio way
below the top results. Each row of the stored result table corresponded to a unique
combination of clustering algorithm and hyperparameter values. An example of a
result table is shown in Table 3.1 below.

Table 3.1 An extract from the result table for the OPTICS clustering algorithm.

Algorithm NumberClusters Noise% RDLN% CDLN% CDLN/RDLN MinPts Eps

OPTICS, RobustScaler 27 0.976411 0.019704 0.026476 1.343715 10 0.01

OPTICS, RobustScaler 2 0.997110 0.002995 0.002812 0.938786 20 0.01

OPTICS, RobustScaler 0 1.000000 0.000000 0.000000 0.000000 30 0.01

OPTICS, RobustScaler 0 1.000000 0.000000 0.000000 0.000000 40 0.01

OPTICS, RobustScaler 0 1.000000 0.000000 0.000000 0.000000 50 0.01

...

The first two columns, Algorithm and NumberClusters, are self-explanatory, where
Algorithm is only used for marking each row with the corresponding algorithm.
NumberClusters, which is the number of clusters that the algorithm finds, was used

43

Chapter 3. Method

to filter the result table before extracting the run with largest CDLN/RDLN ratio
and a CDLN value of at least 90%. Only combinations of clustering algorithms
and parameters with NumberClusters > 0 were considered as suitable, since having
zero clusters is equal to only having noise. Although, that filtering was redundant as
there was also a limit of maximum 30% noise, which corresponds to the Noise% col-
umn. After this filtering, only the clustering represented by the second row in Table
3.1 would get through. The rest of the columns; RDLN%, CDLN%, CDLN/RDLN,
MinPts and Eps correspond to the metrics and parameters already described. As
written earlier, the final decision of the optimal algorithm and parameters was made
by choosing the combination with a CDLN value of at least 90% and the highest
CDLN/RDLN ratio.

3.2.3.2 PCA

PCA is commonly used as a visualization tool when the data is represented in
a higher dimension. In the pipeline however, the tool was used differently. The
idea of including PCA in one of the base models for labeling the journeys arose
when anomalies were found after analyzing the most extreme samples, that became
visible when plotting the principal components of the frequency-based vectors.

By extracting the first three principal components of each sample, the journeys
were classified as either normal or anomalous, in the labeling part of the pipeline.
This was done by finding two borders for each component axis, creating a six-
faced cuboid. For the j:th sample the classification was performed according to the
following logic,

L j =

{
Normal if S j ∈ {(b−1 ≤ S ≤ b+1)∩ (b−2 ≤ S ≤ b+2)∩ (b−3 ≤ S ≤ b+3)}
Abnormal otherwise

(3.9)
where b+i and b−i were the positive and negative borders for the i:th component and
S was the set of samples. To find the optimal borders, the previously mentioned
CDLN, CDLN/RDLN and the percentage labeled as anomalies (Noise) were used.
The optimal borders were found by optimizing each border separately, saving the
5 best borders and then testing each combination of borders together. The single
border searches were done by iterating through each clean data point and calcu-
lating the CDLN, RDLN and Noise values. The reason for only iterating through
clean data points is that an optimal border would exclude every residue data point
of possible to obtain a better ratio. Noise was used in the condition that a maximum
of 10% of the data set should be considered anomalous, a border that classifies
more as anomalous was discarded. Similarly, CDLN was used to discard borders
where more than 5% of clean data were labeled anomalous. These two conditions
secured the search to only consider reasonable borders. Lastly the different values
of a single border was ordered in descending order by the ratio CDLN/RDLN and

44

3.2 Pipeline

the five best were used in the combination search.

After all single searches were performed the CDLN/RDLN was calculated for
each combination of borders. The borders with the highest ratio were considered
the final borders. In Figure 3.6 an example of how the borders looked like, is visible
in two dimensions. Anomaly labeled data points are marked in orange and normal
labeled data points are marked in blue. The red box represents the borders obtained
from the previously described border search, for the first and second principal
components. The orange dots inside the borders have third principal components
outside the corresponding borders, and if the visualization had considered the third
dimension as well, the orange samples would have been outside the border box in
the plot.

Figure 3.6 A plot over the journeys using PCA to visualize in 2 dimensions. The red square
is the border that the labeling model produces.

3.2.3.3 Autoencoder

As explained in Section 2.4, an autoencoder can be used to detect anomalous
samples by comparing the input vector with the output vector. If the difference is
larger than a certain threshold the sample is labeled as anomalous. In our pipeline
the autoencoder had a similar role, with the previous described frequency-based
vectors as input vectors. The data set used for autoencoder training was clean data,
in which close to no anomalies existed. The idea here is that when an anomalous
sample passes through the model, the network will not be able to reconstruct the
input as good as it reconstructs normal data. With this approach a labeling system
was created where a loss was calculated for each sample passing the model. If the

45

Chapter 3. Method

loss exceeds a certain threshold, the corresponding sample was labeled anomalous.
In Figure 3.7 a flowchart of the labeling procedure for the autoencoder is displayed.

Figure 3.7 Flowchart of the labeling procedure with the autoencoder. Given a input vector
the autoencoder tries to reconstruct the initial vector after first reducing the dimension. The
difference between the two vectors is obtained and the Mean Square Error is calculated. If
the resulting error is higher than a given threshold the journey is labeled as an anomaly,
otherwise as normal.

For our autoencoder we chose to use two hidden encoder layers and two hidden
decoder layers with a latent vector of size 8. The activation function used for all
layers was the ReLU function and the loss function was the mean square error.
The tunable hyperparameters were the number of neurons in each hidden layer,
the number of epochs as well as the learning rate. These parameters were selected
using a hyperparameter-tuning job with a Bayesian search. The values allowed for
the search ranged for the neurons in the hidden layers between 20 and 500 and
considered only integers. The values for the number of epochs ranged between 50
and 300 and the learning rates considered were 0.01, 0.005, 0.001 and 0.0001. The
metric used to optimize the hyperparameters was the mean-square error for clean
data.

The optimal threshold was found by using CDLN and the ratio CDLN/RDLN.
CDLN was used for the condition that at least 90% of clean data should be labeled
normal. From the remaining thresholds the optimal value was chosen as the one that
maximized the ratio CDLN/RDLN. In Figure 3.8 an example of labeled journeys
done by the autoencoder using this procedure can be seen. The multi-dimensional
journeys are visualized in two dimensions using PCA.

46

3.2 Pipeline

Figure 3.8 A plot over the journeys using PCA to visualize in 2 dimensions. The colors
represent the labeled anomalies an autoencoder detects where orange dots represent anoma-
lies and blue dots normal journeys.

3.2.4 Sequence-based representation
After labeling the journeys with the models and combination of models described
above, the part where the data is represented by event sequences comes. The reason
for using sequences instead of whole trips was, as mentioned earlier, that the se-
quences can be sent to the detector while a journey is ongoing and works therefore
as input to the real-time detector, D(S). This is not possible for the frequency-based
representation, as a fair representation only can be made when a journey is finished.
A sequence S consists of j consecutive events where j is the size of our sliding win-
dow. Included in the sequence was the unique key tr_dt_id, which connected the
sequence S with the journey T that it is included in and further also the label, that
the journey received from the frequency-based model. The sequencing method used
two adjustable parameters; the window size with value j and the step size with value
s, to partition the journey T = {e1,e2, ...,en}, into sequences {S1, S2, ..., Sk}, where
k ≤ j and Si = {es(i−1)+1,es(i−1)+2, ...,es(i−1)+ j}. In other words, the window size
value was used to define how many consecutive events e a sequence should contain
while the step size value defined how many events to skip before extracting a new
sequence, after extracting the previous sequence. In Figure 3.9 an example of how
the sliding window works can be seen. Notice that the last sequence did not take a
step of 2, but instead only one step. This is due to the length of the journey. When
the window does not fill all positions with the sequence it moves backwards until
the sequence reaches a length of n.

47

Chapter 3. Method

Figure 3.9 Example of how sequences can be constructed from a journey with the window
size 3 and step size 2.

The optimal sizes were found by performing a grid search, using the real-time de-
tector, described in the next section. The window size ranged between 2 and 9,
while the step size depended on the size of the window. For a single step the min-
imum length allowed was 1 while the maximum was equal to the current window
size value. This ensured that no events in the journey was skipped. To be able to
compare different combinations of the two parameters and the real-time detector,
a way to evaluate the models was implemented. The real-time detector D(S) is ex-
plained in detail in Section 3.2.5, but in short it labeled each event sequence S as
normal or anomalous. To evaluate, the F1-scores for the journeys containing spe-
cific anomalies, Mknown_a described in Section 3.2.1.3, were used. A true positive
classification represented a journey that both included at least one specific anomaly
and at least one event sequence labeled as anomalous by the real-time detector. The
combination that returned the highest score was used as the final combination. If
two or more combinations returned the same F1-score, the combination that labeled
the least number of journeys as anomalies was chosen, to prevent retrieving many
false positives.

3.2.5 Real-time detector
The final step of the pipeline is the real-time detector itself, D(S). Here we used
the sequences extracted from the previous part to detect anomalies, as we needed to
know where in the trip the anomalies occur. The idea is that an actual anomalous
journey, Ta, will contain some sequences that are not common or non-existing in

48

3.3 Evaluation with simulated anomalies

normal trips that are the reason for, or an indication of, that the journey is anomalous
as a whole. To find sequences that were overrepresented among the anomalous trips,
a new metric was introduced. It is a ratio calculated for each unique event sequence
called Ratio Estimation on Anomaly Share Over Normal Share or simply REA-
SONS. The expression for REASONS is presented in Equation 3.10 below, where
S represents a unique event sequence. The numerator is the number of trips the
unique sequence S is found in that are labeled anomalous, |{T | S ⊂ T ∈ Mlabel_a}|,
plus one, divided by the total number of anomalous labeled trips, |Mlabel_a|. The de-
nominator is the number of trips the unique sequence S is found in that are labeled
normal, which can be expressed as |{T | S ⊂ T ∈ (Mlabel_a ∩M)C)}|, plus one, di-
vided by the total number of normal labeled trips, |(Mlabel_a∩M)C|. By adding ones
we avoided division by zero, as well as getting a REASONS value of zero. This was
done to be able to compare the different values, percentage wise.

REASONSS =
(|{T | S ⊂ T ∈ Mlabel_a}|+1)/|Mlabel_a|

(|{T | S ⊂ T ∈ (Mlabel_a ∩M)C)}|+1)/(|(Mlabel_a ∩M)C|)
(3.10)

A sequence that overwhelmingly occurred in anomalous labeled journeys com-
pared to normal labeled journeys returns a high ratio. The unique sequences were
ordered in descending order of their REASONS value, so that the event sequences
that occurred the most in anomalous trips compared to their occurrence in normal
trips, came first. The detector chose a top percentage and marked them as the final
anomalies. These were then used in the real-time detector D(S) where an alarm is
sent when one of these anomalous sequences is detected.

Important to note is how the top percentage was chosen. In the grid search de-
scribed in the previous section, 3.2.4 Sequence-based representation, the top per-
centage value was also determined. The tuning of top percentage was performed
simultaneously as the tuning of the window parameters and the optimal value was
returned together with belonging window parameters. The values tested for the pa-
rameter TopAnom in the grid search ranged between 5% and 30% with 5 percentage
point steps, which gave the search 6 alternatives to try.

3.3 Evaluation with simulated anomalies
Due to the fact that the pipeline used unlabeled data and therefore alternative met-
rics for tuning the models, the evaluation of the whole method differed from a con-
ventional machine learning evaluation. As in other unsupervised problems, labels
were only used for an observational evaluation and not for tuning the models. To
produce an evaluation data set five simulated anomalous event sequences were pro-
vided from Gaia, which were randomly injected into 10% of a data set of clean
data, hereafter denoted as Ma_eval . As anomalous event sequences can occur several

49

Chapter 3. Method

times during the same trip, each randomized injection was independent of the other
injections. This means that the same trip could be randomly chosen for an injec-
tion of a simulated anomaly multiple times. The simulated and injected anomalous
sequences are presented in Figure 3.10 below.

Figure 3.10 The five simulated anomalous event sequences, numbered from 1 to 5.

The simulated event sequences above can be divided into three different categories:
having multiple calloutsent events close to each other, having multiple destina-
tionsignagesent events close to each other and having events that usually occur in
the beginning of a trip, after a bus stop. Event sequence number 1 and 2 belong
to the category of having several calloutsent events closely, with number 1 being
more extreme than number 2. Both are anomalies as the event is logged when an
audio callout notices the passengers that the bus is soon at a bus stop, which only
should be done once before each bus stop. Event sequence number 3 and 4 be-
long to the category of having multiple destinationsignagesent event closely, with
number 3 being more extreme than number 4. This is an anomaly as the destina-
tionsignagesent event is logged when the bus changes display name on the outside,
which should not be done many times during a short amount of time. The last
event sequence, number 5, is anomalous as the setblock event comes after an event
sequence that is logged when the bus approaches a bus stop, stops at the bus stop
and then departures from the bus stop. The normal occurrence of the setblock event
is in the beginning of the journey, before any bus stops have been approached.

To evaluate pipeline runs that are true to the real case, a data set with residue data
was created, called residue dataeval , that included the trips with injected anomalies,

50

3.3 Evaluation with simulated anomalies

called Ma_eval . In addition to the trips within Ma_eval , normal trips were added to the
residue dataeval so that the proportion of clean dataeval and residue dataeval was
the same as for the real case. In Figure 3.11 the data set partitioning is presented. M
is the data set that included all the trips and by the earlier described heavy filtering,
it was divided into residue data that included all anomalous trips, Ma, and clean
data, that contained only normal trips. The just mentioned process of injecting
anomalies into the data set and further creating clean dataeval and residue dataeval
is depicted to the right in the sketch.

Figure 3.11 A sketch over the origin of the evaluation data set. The data marked with eval
belong to the final evaluation data set.

After creating the two data sets, the pipeline proceeded exactly as in the real case,
with additional evaluation, first after the initial classification with the clustering,
PCA and autoencoder and secondly with the real-time detector. Recall, precision
and F1-score were used for evaluating. In addition, the recall value for each simu-
lated anomaly was calculated to enable further analysis of the method’s strengths
and weaknesses. In Figure 3.12 an overview of the pipeline is displayed that also
marks where the evaluations are performed. As can be seen, the initial evaluation
was done after the first labeling while the second evaluation was performed after
the real-time detector.

51

Chapter 3. Method

Figure 3.12 The same pipeline presented in Figure 3.1 with further illustrations on where
the two evaluations are performed.

Which model combination that was evaluated depended on the performance of all
model combinations in the initial labeling. For each new data set, tuning of the PCA
border values as well as the autoencoder’s and cluster algorithms’ hyperparameters
needed to be done. As described in Section 3.2.3, every intersection and union com-
bination of the three models were tested as well as the base models on their own.
This resulted in 11 different models to evaluate: 3 single models, 6 combinations
of two of the models and 2 combinations of all models. Each combination was also
tested on 10 different randomly injected data sets.

52

4
Results

In the following chapter, results from evaluation of 10 experiments are presented. In
Section 4.1, the evaluation metrics for the frequency-based labeling as well as the
real-time detector are presented. Throughout the chapter, the results from different
combinations will be presented. The name for each combination follows a structure;
for the base models the names PCA, Cluster and Autoencoder are used. For the
combinations with all three models the names Union and Intersection refer to the
combination where either union or intersection was used to combine the models.
The remaining combinations are created using two base models through either union
or intersection.

4.1 Precision, recall and F1-score
As described in Section 3.3 the evaluation was performed using simulated anoma-
lies provided by Gaia. During the injection of the simulated anomalies only clean
data was used, to ensure that all samples except the simulated anomalies were nor-
mal. Totally 10% of all trips in clean data received one or more simulated anoma-
lies, forming the subset Ma_eval . Two data sets, clean dataeval and residue dataeval ,
with the same proportions as the original clean data and residue data were then cre-
ated by splitting the anomaly injected clean data. The whole Ma_eval was included
in the residue dataeval , together with normal data, similar to the real-life case.

This randomized injection was performed 10 times producing 10 different data
sets. The evaluation was performed on each data set with each model. As described
in Section 3.3, the models tested were the autoencoder, PCA and clustering algo-
rithm by themselves, as well as all combinations of intersection and union of them.
This means that in total 110 evaluations were performed. The metrics used for the
evaluation were recall, precision and the F1-score where a true positive classifi-
cation mapped to an actual anomaly, labeled as an anomaly. The evaluation was
performed both after the initial frequency-based labeling, where complete journeys
were labeled, and also after the real-time detector, D(S), where sequences of events,

53

Chapter 4. Results

S, were labeled. As the thesis aimed to develop a real-time anomaly detector, the
latter evaluation was of highest priority.

The results are presented in boxplots, in which the data is displayed as a box
with whiskers. The box represents where 50% of the data is located and has its
edges at the first and third quartile. The whiskers represent the highest and lowest
value. The median score from the 10 experiments for each combination is also
presented in two tables, on for the initial evaluation and another for the real-time
evaluation.

4.1.1 Evaluation of initial labeling
The results from the initial frequency-based evaluation can be seen in the figures
4.1, 4.2 and 4.3 using the metrics F1-score, recall and precision. The figures have
the evaluation score on the y-axis and the corresponding model combinations at
the x-axis. All metrics range between 0 and 1, where 1 indicates optimal model
performance. In general higher values of the three metrics are desirable, however as
mentioned in Section 2.5.4, the F1-score is suitable as primary metric for a problem
using data with unbalanced classes. Precision and recall do not separately give a
fair picture of the overall performance of a model. Nevertheless, they are valuable
for the analysis of the models, as they give the user more insight in the weaknesses
and strengths of the models. In Table 4.1 the mean scores from the 10 evaluation
runs for each combination can also be seen.

The experiment tested how well the initial labeling, meaning the PCA model,
autoencoder and clustering algorithm, labeled the simulated injected samples as
anomalies. Each box in the figures represent one of the 11 different combinations
the three initial labeling models form.

In Figure 4.1 below, the recall is presented for the different model combinations
tested. As mentioned in Section 2.5.2, the recall is the fraction of actual anomalies
that are correctly labeled as anomalies. PCA, Intersection, Intersection - Auto/PCA
as well as Intersection - Cluster/PCA did all receive a similar recall value distribu-
tion, both considering the median values of between 0.16 and 0.17, as seen in Table
4.1, and the variances shown by the whiskers and quartile makers that are plotted
at the same places. Cluster, Intersection - Auto/Cluster and Union - Cluster/PCA
did all receive a mean recall value between 0.69 and 0.73 as seen in Table 4.1.
However, the variances differ, with the smallest belonging to Union - Cluster/PCA
while the largest belongs to Intersection - Auto/Cluster. The rest of the models
all have a median recall value close to 0.98, although the variance is greatest for
Autoencoder and Union - Auto/PCA, while the tests belonging to Union and Union
- Auto/Cluster resulted in a smaller range of recall values.

54

4.1 Precision, recall and F1-score

Figure 4.1 Boxplot with the different combinations evaluated on the initial frequency-
based experiment using the recall metric. The y axis ranges between 0 and 1 while each
box represent a combination.

Displayed in Figure 4.2 is the precision, calculated for the 10 experiments and 11
combinations of models, after the initial frequency-based labeling. Compared to the
recall plotted above, the precision values are generally lower. As described in Sec-
tion 2.5.1, precision measures the fraction of anomaly labeled samples, that actually
are anomalies. All of the tests done with only Cluster resulted in precision values
just above 0.45, which gives the box the appearance of a line. The variance of the
precision value for PCA and Intersection - Cluster/PCA is very similar, however the
distribution belonging to the latter combination is located at greater precision val-
ues. Intersection - Auto/Cluster has the largest median precision value of 0.61, seen
in Table 4.1. Intersection has the second largest median precision value of 0.51. The
values belonging to Union and Union - Auto/PCA are similarly distributed, while
the remaining combinations have closely located median values, yet differing vari-
ances.

55

Chapter 4. Results

Figure 4.2 Boxplot with the different combinations evaluated on the initial experiment
using the precision metric. The y axis ranges between 0 and 1 while each box represent a
combination.

In Figure 4.3 below, the F1 values for all combinations and experiments are pre-
sented. As the F1-score both considers the precision and recall and at the same
time works well with data sets containing unbalanced classes, it is suitable for de-
termining the overall performance for the combination models in this thesis. Ac-
tually, no new information needs to be gathered to calculate the F1-score, yet it is
useful as it would be difficult to, in a systematic way, manually rank the models
taking both precision and recall into account. The best performing combination, re-
garding the F1-score, was Intersection - Auto/Cluster with a median score of 0.65.
Both distributions of F1-scores belonging to PCA and Cluster have small variances,
although the median values differ significantly. Intersection - Auto/PCA, Union -
Cluster/PCA and Intersection - Cluster/PCA all have boxes with whiskers of sim-
ilar appearances, where the median for Intersection - Auto/PCA and Intersection -
Cluster/PCA are 0.19 respectively 0.21, while Union - Cluster/PCA scores a me-
dian value of 0.41. The rest of the combinations all have values that span over an
approximately equally big range, measuring from the lowest to the largest values,
with median F1-scores between 0.23 and 0.35.

56

4.1 Precision, recall and F1-score

Figure 4.3 Boxplot with the different combinations evaluated on the initial experiment us-
ing the F1-score. The y axis ranges between 0 and 1 while each box represent a combination.

Recall Precision F1-score
PCA 0.17 0.13 0.14

Cluster 0.71 0.45 0.55
Autoencoder 0.98 0.21 0.35

Union 0.99 0.18 0.31
Intersection 0.16 0.51 0.23

Union - Auto/Cluster 0.99 0.20 0.33
Intersection - Auto/Cluster 0.69 0.61 0.65

Union - Auto/PCA 0.98 0.19 0.32
Intersection - Auto/PCA 0.16 0.23 0.19

Union - Cluster/PCA 0.73 0.29 0.41
Intersection - Cluster/PCA 0.16 0.30 0.21

Table 4.1 Median scores for the initial labeling on each combination. The metric presented
are recall, precision and F1-score and can be seen in three separate columns.

4.1.2 Evaluation of real-time detector
The results from the evaluation of the real-time detector are presented in three
boxplot figures; one for the recall score, see Figure 4.4, one for the precision score,

57

Chapter 4. Results

see Figure 4.5, and one for the F1-score, see Figure 4.6. Each box represents the
score obtained on 10 different randomized data sets on one of the 11 combination
of initial labeling models. The median scores for each metric on each combination
can also be seen in Table 4.2.

The recall values for injected anomalies, after the detection performed by the
real-time detector, are plotted in Figure 4.4 below. All intersection combinations
including PCA, i.e. Intersection, Intersection - Auto/PCA and Intersection Clus-
ter/PCA, as well as PCA itself, did not manage to produce any true positives.
Hence, the corresponding recall scores are all zero. All the other combinations pro-
duced at least one test which labeled all injected anomalies as anomalies. Among
those combinations, tests with Union - Auto/Cluster resulted in the recall score dis-
tribution with the least variance and tests with Union returned the second-smallest
variance. The Autoencoder, Intersection - Auto/Cluster, Union - Auto/PCA and
Union - Cluster/PCA have a larger span of recall values, from around 0.50 to 1.0.
Yet, the largest span of recall values belongs to the tests using Cluster. In Table 4.2
we can see that all union combinations including Cluster, as well as Cluster itself,
reaches a median score of 1.0.

Figure 4.4 Boxplot with the different combinations evaluated using the recall metric with
the real-time detector. The y axis ranges between 0 and 1 while each box represent a combi-
nation.

As in the evaluation of the initial frequency-based labeling, the precision values are

58

4.1 Precision, recall and F1-score

in general less than the recall values for the real-time detector. The precision scores
are displayed in Figure 4.5 below. Similar as for the recall values, PCA and all inter-
section combinations including PCA, i.e. Intersection, Intersection - Auto/PCA and
Intersection Cluster/PCA, did not manage to label one injected anomaly correctly,
resulting in zero valued precision scores. The undoubtedly highest median precision
value was given by Intersection - Auto/Cluster with a median score of 0.72 as seen
in Table 4.2. Autoencoder’s tests gave many different precision scores, resulting
in the largest span measuring from lowest to highest value. Union - Auto/Cluster,
Union - Auto/PCA and Union - Cluster/PCA all got precision values with a median
between 0.20 and 0.25, but having slightly different variances. The test correspond-
ing to Union returned one high precision score of around 0.60, nevertheless, the
other tests resulted in a median score of 0.11. Lastly the tests for Cluster resulted in
the secondly highest median value of 0.51, seen in Table 4.2.

Figure 4.5 Boxplot with the different combinations evaluated using the precision metric
with the real-time detector. The y axis ranges between 0 and 1 while each box represent a
combination.

As mentioned previously, the F1-score is a combination of precision and recall
and it does not consider any other information. In Figure 4.6 the F1-scores for
the real-time model, using injected anomalies, are presented. The same combina-
tions that result in zero valued precision and recall scores; PCA, Intersection, In-

59

Chapter 4. Results

tersection - Auto/PCA and Intersection Cluster/PCA, consequently return zero val-
ued F1-scores. F1-score distributions belonging to Union - Auto/Cluster, Union -
Auto/PCA and Union - Cluster/PCA show median values that all lie between 0.33
and 0.34, seen in Table 4.2, as well as ranges that only differs slightly. Intersection
- Auto/Cluster has the highest F1-score, with a median value of 0.79, while the box
belonging to Cluster contains the second greatest F1-score with a median value of
0.67, both values seen in Table 4.2. As for the precision plot above, Autoencoder
has a score distribution with the largest range among the combinations, measuring
from the smallest to the highest value. One of the tests performed with the Union
combination returned an F1-score of almost 0.80, however the rest of the tests did
not return as good scores with a median score of 0.20, seen in Table 4.2.

Figure 4.6 Boxplot with the different combinations evaluated using the F1-score with the
real-time detector. The y axis ranges between 0 and 1 while each box represent a combination.

60

4.1 Precision, recall and F1-score

Recall Precision F1-score
PCA 0.0 0.0 0.0

Cluster 1.0 0.51 0.67
Autoencoder 0.90 0.42 0.51

Union 1.0 0.11 0.20
Intersection 0.0 0.0 0.0

Union - Auto/Cluster 1.0 0.20 0.33
Intersection - Auto/Cluster 0.89 0.72 0.79

Union - Auto/PCA 0.91 0.22 0.34
Intersection - Auto/PCA 0.0 0.0 0.0

Union - Cluster/PCA 1.0 0.25 0.34
Intersection - Cluster/PCA 0.0 0.0 0.0

Table 4.2 Median scores for the real-time detector on each combination. The metric pre-
sented are recall, precision and F1-score and can be seen in three separate columns.

4.1.3 Evaluation on single injected anomalies
In Section 3.3 the five types of simulated anomalies were presented. In Figure 4.7
the recall scores for both the initial frequency-based labeling and the final real-time
detection, D(S), are presented, for each model combination on every simulated
anomaly, S ⊂ T ∈ Ma_eval . As mentioned earlier in the report, the recall is the
percentage of the correctly labeled actual anomalies. Since we in this section are
interested in each anomaly by itself, recall is the fraction of actual single injected
anomalies of type number X , that actually are labeled as anomalous. The reason
for using recall and not precision is that the precision does not say anything about
how many of the actual anomalies that are labeled correctly, just the percentage of
anomaly labeled samples that were correctly labeled. Using precision here would
probably result in very low values as all the anomalies except for number X would
be counted as false positives.

In the figure the blue bars represent the initial labeling using the frequency-based
representation while the orange bars represent the real-time detection. The figures
are meant to enable a deeper understanding of how the labeling and the detector,
together with the different model combinations, perform on the different simulated
anomalies.

As seen in the plots the model combination using only PCA or the intersection
combinations containing PCA, all return a recall of 0 for the real-time detector.
The corresponding precision is the second-lowest recall value for all anomalies and
model combinations, with a large gap to the third-lowest value. The Autoencoder,
Union, Union - Auto/Cluster and Union - Cluster/PCA all returns recall values of
1 for all injected anomalies, except for the fourth, for both the frequency-based

61

Chapter 4. Results

labeling and the real-time detector. All simulated anomalies return similar looking
recall bars for Cluster, Intersection - Auto/Cluster and Union - Cluster/PCA, where
the recall values for the initial frequency-based labeling are lower than the recall
values for the real-time detector. The exceptions among the recall values corre-
sponding to the just mentioned model combinations and injected anomalies are the
values returned by evaluating the performance of Intersection - Auto/Cluster on the
fourth injected anomaly, that are significantly lower than the other recall values for
that model combination, as well as the values for Cluster and Union - Cluster/PCA
for the forth anomaly. Except for the values belonging to PCA, the recall values
for the frequency-based labeling is equal to or lower than the same experiment’s
recall value for the real-time detector. The injected anomaly number 4 produces the
lowest overall recall values with a good margin to the injected anomaly number 2
that produces the second overall recall values.

62

4.1 Precision, recall and F1-score

Figure 4.7 Recall for the initial and the real-time evaluations for each combination on each
single simulated anomalies. The blue bars represent the initial labeling with the frequency
vectors while the orange bars uses the real-time detector. The plots are ordered according to
the five different simulated anomalies described in Section 3.3.

63

Chapter 4. Results

4.2 Result summary
The evaluation was performed with 10 runs for each of the 11 combinations. In the
tables 4.1 and 4.2 the combination Intersection - Auto/Cluster can be seen scoring
the highest F1-score, both after the initial labeling and the real-time detector D(S).
The median F1-score for the initial labeling reached a score of 0.65 and for the
real-time detector a median F1-score of 0.79. In Figure 4.6 we can also see that the
variance, measured with the range from the minimum and maximum score, for the
combination Intersection - Auto/Cluster is relatively low compared to the remaining
combinations (excluding the combinations that scored 0 in every evaluation run).
This indicates that the combination is stable and reliable in scoring similarly to
previous runs.

In Figure 4.7 the recall scores from the initial labeling and the real-time detec-
tor for each combination on each of the five simulated anomalies can be seen. The
figure indicates that the first, second, third and fifth simulated anomaly are similarly
difficult to detect while the fourth is significantly more difficult to detect. Every
combination including the clustering algorithms with union scores 1.0 with the
real-time detector D(S) on each anomaly. However, the combinations with the PCA
model using intersection scores 0.0 on the real-time detector on every anomaly.

64

5
Discussion

In the following chapter an analysis of the thesis’s method and results is presented,
as well as suggestions for future work. Firstly, the two different data representations
are discussed, see Section 5.1 Frequency-based representation versus sequence-
based representation, followed by a discussion about the metrics and tuning pa-
rameters, see Section 5.2. Thereafter, in Section 5.3 the results are analyzed and
lastly, in Section 5.4, our suggestions for future work are presented.

5.1 Frequency-based representation versus sequence-
based representation

To represent the journey’s event logs by their event frequencies was an attempt to
give the detector as much knowledge about the data set as possible, in a situation as
this where labels were nonexistent. Since creating a detector that works in real-time
is usually a greater challenge than providing it all historical and future data, it is
intuitive to believe that first having access to all data would be advantageous. As
mentioned in the method, see Chapter 5, the frequency-based representation was
incompatible with real-time anomaly detection, as the journey needed to be finished
for a fair calculation of each event frequency to be made. As the first classification
was performed by giving the autoencoder, cluster algorithm and PCA model the
event logs represented by the event frequencies per journey, the labeling was based
on the number of times a certain event e occurred during a journey T , in relation
to the number of times the other events occurred. In that phase, the models did not
have the possibility to consider the order of the events.

Next, the labeled journeys were partitioned into sequences that were counted
with respect to the event order and if they originated from anomalous or normal
labeled journeys. Hence, the order of events had a significant role in that phase.
The inability to discover fine event order deviations in the frequency-based labeling
process and the limitation of not having access to future event occurrences in the

65

Chapter 5. Discussion

real-time detector led to a discrepancy between which kind of anomalies that could
be detected in the two stages. A journey that was easily labeled as anomalous in
the frequency domain, probably also contained anomalous event sequences that
the real-time detector could detect, for instance multiples of an event that usually
occurred by itself. On the other hand, there was no indication of an anomaly for
the frequency-based models when the order was shifted, if the total count of each
event stayed the same. Theoretically, the event log for a journey could be reversed
without being noticed by this detector. It is of high importance to be aware of
that the real-time detector intelligence originates from a frequency-based labeling.
Consequently, it should be approached as a detector that alerts about journeys that
probably will deviate in terms of event frequencies, before the actual frequencies
can be calculated. In contrary, the detector, or method as a whole, should not be
approached as a model that detects small event order deviations.

5.2 Metrics and parameters
In the following section thoughts about the metrics and tuning parameters used in
the method are presented. First comes Section 5.2.1 CDLN and RDLN, where the
benefits and drawbacks regarding the metrics created specifically for this thesis are
discussed. Thereafter, the Section 5.2.2 Metrics used for tuning parameters comes,
which presents an analysis regarding that topic. Lastly the window size, step size
and TopAnom are discussed in Section ?? Window size and step size and in Section
?? Top Anomaly percentage.

5.2.1 CDLN and RDLN
The metrics CDLN, Clean Data Labeled Normal, and RDLN, Residue Data Labeled
Normal, were created to enable a solid sorting process when the most suitable model
was to be chosen. Probably, the optimal metric would have been the F1-score, as it
is suitable for classification problems with unbalanced classes. However, that met-
ric was not accessible as the method of creating clean data needed residual data to
both include normal and anomalous data (Ma), for ensuring that the clean data only
included normal data. As a consequence, true positives, true negatives, false posi-
tives and false negatives, were not available. With the recall metric as inspiration,
the fraction of clean data labeled normal was calculated, as well as the fraction of
residue data, labeled normal. For the same reason as the recall by itself is not enough
for representing the overall performance of a model, only using CDLN for extract-
ing the most suitable model needed to be complimented with another metric. If not,
a model that classified all samples as normal would achieve the highest score. Since
the residue data included both normal and anomalous data, the F1-score was out of
the question and instead the fraction CDLN

RDLN was used, after extracting all models with
a CDLN of at least 90%. As stated in Section 3.2.1.3 Labeling, that metric was used

66

5.3 Result analysis

because it benefited maximization of CDLN and minimization of RDLN. This was,
for the models with a CDLN > 0.90, wanted since we could assume that clean data
only, or close to only, included normal data, while we also could assume that residue
data included the existing anomalous trips Ma and therefore should CDLN >RDLN.
A problem with having multiple conditions for extracting the best model could be
that it is difficult to apply the same method on other, but similar problems. After the
creation of clean data and residue data, which already demands the user to know a
lot about the data, the user needs to set a limit for the lowest CDLN value, which
also demands the user to know the data well. Possibly a metric that is more suitable
than this combination of conditions can be created, nevertheless, it is not something
that has been developed during this project.

5.2.2 Metrics used for tuning parameters
In the Sections 3.2.4 and 3.2.5 the process for tuning the three parameters, window
size, step size and TopAnom, is described. The trips including specific anomalies,
Mknown_a, presented in Section 3.2.1.3 were used to find the optimal values. In the
tuning search the F1-score of Mknown_a was used, where a higher score was favor-
able. However, with this approach, a potential problem may occur. Because the
F1-score was calculated by having the trips in Mknown_a that were correctly labeled,
as true positives, and a precision value that also only considered trips in Mknown_a
when dividing the true positives with all positives, it handled all other actual anoma-
lies as actual normal data samples. Hence, an F1-score of this type that gets a value
of 1 will probably not correspond to the most desirable result. The reason is that the
result would correspond to having all actual specific anomalies labeled as anoma-
lous, but not having any other samples labeled as anomalies. This would be the
optimal result if no other anomalies existed, yet we are most certain that they did,
as we could not expect the specific anomalies to represent every possible anomaly
in the data set, i.e. Mknown_a ⊂ Ma and Mknown_a ̸= Ma holds. Because the problem
described in this thesis has a prerequisite of not knowing what kind of anomalies
the data set contains, the optimal parameters with an F1-score of 1 are consequently
not desirable. This concern was not considered in the implementation and could
therefore be a realistic problem that may occur in some runs, when used in the fu-
ture. However, during the evaluation the F1-score used in the tuning did not reach a
problematic high value.

5.3 Result analysis
In the following section the results are discussed and analyzed. In particular, the
result plots will be in focus. Firstly, Section 5.3.1 Result on the evaluation from the
initial labeling, comes. Thereafter an analysis of the real-time detector comes, see
Section 5.3.2 and lastly the Section 5.3.3 is presented.

67

Chapter 5. Discussion

5.3.1 Result on the evaluation from the initial labeling
From the results in Section 4.1.1 a clear observation can be made. The best combi-
nation after the evaluation runs was the intersection between the autoencoder and
the clustering algorithm using the F1-score, that represents the overall performance
best. While both models performed above average individually, the intersection of
them elevated the score. This can be explained by the precision plot, see Figure 4.2,
where the individual models show a lower score in comparison with the intersection
of both. Meanwhile, the recall for the intersection combination seen in Figure 4.1 is
lower than the recall for the individual models, especially compared to the autoen-
coder’s score. However, the increase in precision contributed to produce a greater
F1-score, enough to become the best result. This means that the intersection op-
eration proportionally excluded more wrongly labeled normal trips, than correctly
labeled anomalous trips, Ta ∈ Ma_eval , from the subset of anomaly labeled journeys.

In further inspection concerning the combinations another observation is made.
Focusing on the recall plot seen in Figure 4.1 we observe that combinations using
union correlates strongly with the highest scoring individual model included in the
combination. In the same plot we can similarly see that the combinations using in-
tersection correlate strongly, with the individual model included in the combination
that scores the lowest. For instance, the union of the autoencoder and the clustering
algorithm scored similarly to the autoencoder, while the intersection between the
PCA model and the clustering algorithm scored similarly to PCA individually. Fur-
thermore, we can observe that combinations using union in general always scored
higher compared to the individual models the combination originated from.

A similar looking pattern can be seen in Figure 4.2, for the combinations using
either union or intersection. Given a combination of models, we observe that the
precision presented in the plot is always higher for the intersection combinations,
compared to the corresponding union combinations. This indicates that the journeys
labeled as anomalies by two or all models often were true anomalies, i.e. Ta, and
therefore the precision increased. In Figure 4.1, showing the recall values, we see
that the union of combinations is always higher than the corresponding intersection
combinations. Although the recall values are greater for the union combinations
than for the intersection combinations, the intersection with the autoencoder and
clustering algorithms received a median value of 0.69, indicating that it caught a
majority of the simulated anomalies, Ta ∈ Ma_eval .

5.3.2 Result on the real-time detector
In the figures in Section 4.1.2, the results from the evaluation runs for the real-time
detector D(S) are presented. As described in Section 3.2.5, the detector labeled
sub-sequences of events S as normal or anomalous. When evaluating, all journeys
that contained anomaly labeled sub-sequences were considered anomalous, i.e. if Sa

68

5.3 Result analysis

is a sub-sequence in the trip T then T is expected to belong to Ma_eval . The journeys
that totally lacked anomaly labeled sequences of events, were considered normal.
Consequently, the labeled journeys, and not the sub-sequences, were used for calcu-
lation of evaluation metrics. In the figures concerning the real-time detector a larger
variety of metric values are seen, in comparison to the corresponding values coming
from the evaluation of the initial labeling. Possibly, this could be an indication of
that the detector either performed different on the different randomized data sets or
that it was dependent of the tuning parameters’ values.

In Figure 4.4 the recall scores for each combination are visualized. An obser-
vation can be made that the union is superior to the intersection for every pair of
models. This is expected for the recall score, as the definition of union makes a re-
call value decrease impossible. However, the intersection between the autoencoder
and the clustering algorithm reached a sufficiently good recall score, compared
to the other intersection combinations. The explanation seems to be that both the
clustering algorithm and the autoencoder reached good recall scores, which gave
the intersection of the models a good chance of performing well. Furthermore,
every combination using intersection with the PCA model produced a recall score
of 0. This is due to the PCA model that did not classify a single simulated anomaly
correctly. It is unexpected that the PCA model performs very poorly, however, it
can be explained by the initial labeling results seen in the figures 4.1 and 4.2. In
these figures, we observe that not only does the PCA model had difficulties finding
the simulated anomalies, but also it classified a significant amount of normal data
as anomalies. As seen in the figures, the poor performance could be suspected
already in the initial frequency-based labeling since both the recall and precision
scores are low. The combination of low scores on both recall and precision, together
with the fact that sufficiently many samples were labeled anomalous in that phase,
resulted in a large amount of false positives. Hence, the real-time detector’s poor
performance for PCA. An interesting analysis would be to investigate what kind of
data the PCA model instead labeled as anomalies. The possibility still remains that
the false positives somehow were anomalies, and that with a further data analysis,
we would discover new types of anomalies that has not been acknowledged yet.
Although, from the current point of view they are outliers data representation-wise
but not anomalies, i.e. unwanted outliers.

In Figure 4.5 the precision for the real-time detector is displayed and we can
again see that every combination with PCA through intersection got a score of 0.
This followed from the recall for the same combinations being 0. However, a more
interesting observation is the precision reached by the combination with the autoen-
coder and the clustering algorithm using intersection. This combination was the
most capable in not incorrectly classifying normal data as anomalies and reached
therefore the highest precision score. At the same time the combination reached a
high recall score, even though it is not the best. These two values resulted in the

69

Chapter 5. Discussion

best F1-score by all combinations, seen in Figure 4.6.

5.3.3 Result on evaluation of individually simulated anomalies
Presented in Figure 4.7 the recall values for each simulated anomaly on each com-
bination are visualized. This illustrates the ability of correctly label the simulated
anomalies individually, for the frequency-based labeling and for the real-time de-
tector. As seen in the figure; the model combinations and real-time detector per-
formed similar with all simulated anomalies except the fourth. With these individ-
ual anomalies, i.e the first, second, third and fifth, the model combinations follow
an interesting logic. While inspecting the recall values corresponding to PCA, Clus-
ter and Autoencoder, we observe that the recall values intersection combinations
are always similar to the model with the lowest recall value. This holds true for
both the initial labeling and the real-time detection. Furthermore, if the models are
combined through union the resulting recall values are always close to the highest
scoring base model. This could be an indication that the classified anomalies from
the lowest scoring model, l, was a subset of the classified anomalies from the sec-
ond highest, m, and highest, h, scoring models. Moreover, this also indicates that the
classified anomalies from the second-highest model was a subset of the classified
anomalies from the highest model. An approximation of this idea could be written
as

Mal ∈ Mam ∈ Mah .

One simulated anomaly, presented in Figure 5.3.3, that differentiates itself from
the remaining anomalies is the fourth one. It is especially clear that it has been
harder to detect that anomaly, when analyzing the results corresponding to the
autoencoder. The poor performance resulted in limited recall scores for the com-
binations containing the autoencoder. A particularly interesting observation can
be made when we take a closer look at the combination Union - Auto/PCA and
Intersection - Auto/PCA. In the previous cases the union between two models have
resulted in the same score as the highest scoring of the two models. Similarly, the
intersection of two models have produced a similar score to the worst model. Here
we can instead observe that the union between the autoencoder and the PCA model
returned a score higher than the scores from the two separated models, both for the
initial labeling and the real-time detector. Likewise, the intersection of the two base
models scored worse than both models separately. This indicates that the two sets
of classified true anomalies from the two models did not fully overlap, but instead
had some true positives outside the intersection of both sets.

70

5.4 Future work

5.4 Future work
During the project alternative ideas and approaches were discussed that did not fit
within the scope of this Master’s thesis, but could be interesting future work. One
main part in the pipeline is the frequency-based representation that was used as the
input for the three labeling models. The representation in the current implementa-
tion include only the value CO_diff, outside the frequencies. However, including
more information about each completed journey in the representation, could pos-
sibly lead to an improvement of the detector. Important to remember is that the
representation in the labeling phase does not have to be functional in real-time,
why complete journeys as well as meta information about the journeys could be
integrated.

Another alternative to represent a journey as a vector could be using techniques
from the field of Natural Language Processing, NLP. As language is build on sen-
tences constructed of words, an allegories could be made with the trips’ event logs.
The sentences in our case would then be the complete journeys and the words
would be the events. A possible representation of the trips could be created using
embedding techniques commonly used in NLP, where a sentence is mapped to a
vector. The advantage with this approach is that the order of the events would have
a significant impact on the labeling process, in comparison to the frequency-based
labeling currently used.

In addition, an exciting analysis for future work would be to include other simulated
anomalies to test the limits of the different combinations. The new anomalies would
preferably originate from different structures. This would increase the understand-
ing of which types of anomalies are better detected by the different combinations
and models. In the future the pipeline could also be tested on newly discovered
anomalies, giving an understanding if the detector is capable for similar anomalies.

The clustering algorithm used for the initial labeling uses the inherit ability of
defining samples as outliers for the labeling. This technique however depends on
the anomalies being isolated outliers, otherwise the clustering algorithms often
recognizes a set of anomalies as a cluster. The problematic aspect of this is that
systematic anomalies can occur in the data set without being labeled as anomalies.
A possible improvement for this problem could be using a fourth base model that
is specified in finding structural anomalies.

In addition to only testing intersection and union one by one, as done in this thesis,
combinations of them could also be tested. An example can be made with three
example sets: A, B and C. Currently we combine the sets either through A∩B∩C
or A∪B∪C. The sets could however also be combined using both methods, for

71

Chapter 5. Discussion

instance by the combination A∪ (B∩C). If we then find a fourth base model that
is specified for systematic anomalies, a combination can be constructed using the
currently best combination Intersection - Auto/Cluster and the union with the fourth
base model.

During the initial labeling in the pipeline some limits were set to be able to find
the optimal PCA borders, clustering algorithm and threshold for the autoencoder.
For the clustering algorithms any model that resulted in a value of CDLN less than
90% was discarded as well as models with more than 30% noise. The PCA model
discarded borders with a CDLN value less than 95% and the autoencoder also had
a limit of a CDLN value of 90% for the threshold. These limits where tested and
chosen based on ideas on how we desired the method to work and with trial and er-
ror. Future work could however focus on finding a more careful tuning of the limits.
This would enable the models to better label the journeys correctly and therefore
increase the probability that the real-time detector detects actual anomalies.

5.4.1 Real-world applications
A model is only as good as the application the model will be used in. The real-
time detector has great potential for improving public transportation applications
that contain logs. With more confidence in that the data collected does not include
anomalies, even more reliable models can be created. By implementing capabilities
for handling the mistakes detected by the real-time detector, the application would
both detect and correct anomalies when they happen. This would improve the over-
all passenger experience and make public transportation a more attractive choice.

In Section 1.1 the desired real-world application for the detector is discussed.
With the results from the 10 evaluation runs we can confidently say that the detec-
tor with the combination Intersection - Auto/Cluster performed acceptable for the
application. By studying the recall and precision results we see that almost every
anomaly was detected while few false alarms occurred.

The detector can be implemented both as a model in the vehicles or in the cloud,
since it does not require any heavy calculations to run in real-time. The implemen-
tation will simply be done by only include events used in the detector, as the stream
of events is received. Continuously the stream of events is divided into suitable
sequences according to the window size and then looked up in the detector table, to
determine if the sequence is anomalous. However, an implementation for unknown
sequences have to be made. The model could either mark the sequence with a third
label, for example New Sequence or simple label the sequence as an Anomaly, de-
pending on what Gaia finds as the best approach. The New Sequence labeling could
also be an indication that the detector should be retrained and that a new underlying
structure have been implemented in the logging of the events.

72

6
Conclusions

In this section summaries of findings related to the questions at issue, stated in
Section 1.3.1, are presented.

How can a real-time detector for sequences of log events be defined?
We chose to create a real-time detector that relied on a labeling made with a data
set containing log event frequencies of historical journeys. The use of event logs for
whole trips instead of only sequences of events in the first phase, made it possible
for the detector to make a final classification by comparing the individual event
sequences’ occurrences in normal labeled journeys versus anomalous labeled jour-
neys. However, this would probably not have been the natural approach if the event
sequences originally were labeled, hence the answer to this question is primarily
applicable for problems including unlabeled data sets.

How well does the above mentioned real-time detector perform, when only
having access to an unlabeled data set?
As presented in Section 4.1.2, Evaluation of the real-time detector, the model com-
bination of the autoencoder and the clustering algorithm performed best, with a
median F1-score of 0.79. In the method we motivated using union and intersection
of the base models (PCA, autoencoder and clustering algorithm), with that the
union combinations would perform best if the individual base models found dif-
ferent types of anomalies, while the intersection combinations would perform best
if the actual anomalies were the anomalies that the base models agreed on. When
comparing the clustering algorithm, the autoencoder and the combinations of them,
the intersection statement holds; to label only their mutual anomalies, as anoma-
lies, gives the best overall result. The combinations including PCA performed very
poorly, as PCA did not manage to label any simulated anomalies correctly.

How can a small data set of known anomalous trips be used for tuning, in
the pipeline belonging to the real-time detector, while keeping a generic nature
of the detector where it also detects anomalies outside the known anomalies?
The tuning in question, regarded the window size value, the step size value and the

73

Chapter 6. Conclusions

TopAnom percentage value. For deciding the best set of values, the metric used was
the F1-score for Mknown_a; the small data set with known anomalous trips. As dis-
cussed in 5.2.2 Metrics used for tuning parameters, despite the lack of a constraint,
an F1-score of 1 would not be desirable as that would mean that no other anomalies
except for the specific anomalies would be detected. However, the F1-score was
never close to 1 in reality, probably because the labeling performed by the model
combinations ensured to capture a suitable amount of varying anomalies, together
with that the specific anomalies represented the distribution of actual anomalies
well. We will not be able to grade the generality of the model, more than saying
that the best model combination; intersection of the autoencoder and the clustering
algorithm, performed well on four out of five simulated anomalies. However, what
we can state with certainty, is that the real-time detector is generic in some sense,
as it manages to to detect trips including the four simulated anomalies, even though
the tuning is made with the specific anomalies.

74

Bibliography

Agha, S. A. A. L. S. P. Z. (2017). “Unsupervised real-time anomaly detection for
streaming data”. Neurocomputing 262, pp. 134–147. DOI: https://doi.org/
10.1016/j.neucom.2017.04.070.

Akoglu, M. Q. M. Y. Z. X. Z. L. (2017). “A large-scale study on unsupervised
outlier model selection: do internal strategies suffice?” DOI: https://arxiv.
org/pdf/2104.01422.pdf.

Ankerst, M., M. M. Breunig, H.-p. Kriegel, and J. Sander (1999). “Optics: ordering
points to identify the clustering structure”. In: ACM Press, pp. 49–60.

Ariyaluran Habeeb, R. A., F. Nasaruddin, A. Gani, M. A. Amanullah, I. Hashem,
E. Ahmed, and M. Imran (2019). “Clustering-based real-time anomaly de-
tection—a breakthrough in big data technologies”. Transactions on Emerging
Telecommunications Technologies, e3647. DOI: 10.1002/ett.3647.

Dilmegani, C. (2019). “Machine learning accuracy: true vs. false positive/negative”.
URL: https : / / research . aimultiple . com / machine - learning -
accuracy/.

Foorthuis, R. (2021). “On the nature and types of anomalies: a review of deviations
in data.” Int J Data Sci Anal 12, pp. 297–331. DOI: https://doi.org/10.
1007/s41060-021-00265-1.

Jernbäcker, C. (2019). Unsupervised real-time anomaly detection on streaming data
for large-scale application deployments. MA thesis. KTH Royal Institute of
Technology.

Jollife, I. T. and J. Cadima (2016). “Principal component analysis: a review and re-
cent developments”. Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 374 (2065). ISSN: 1364503X. DOI:
10.1098/RSTA.2015.0202. URL: https://royalsocietypublishing.
org/doi/abs/10.1098/rsta.2015.0202.

Korstanje, J. (2021). “The f1 score”. URL: https://towardsdatascience.com/
the-f1-score-bec2bbc38aa6.

75

https://doi.org/https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/https://arxiv.org/pdf/2104.01422.pdf
https://doi.org/https://arxiv.org/pdf/2104.01422.pdf
https://doi.org/10.1002/ett.3647
https://research.aimultiple.com/machine-learning-accuracy/
https://research.aimultiple.com/machine-learning-accuracy/
https://doi.org/https://doi.org/10.1007/s41060-021-00265-1
https://doi.org/https://doi.org/10.1007/s41060-021-00265-1
https://doi.org/10.1098/RSTA.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2015.0202
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6

Bibliography

Kumar, V. C. V. M. V. (2008). “Comparative evaluation of anomaly detection techn-
niques for sequence data”. Eighth IEEE International Conference on Data Min-
ing.

Kuo, C. (2019). “Anomaly detection with autoencoders made easy”. URL: https:
//towardsdatascience.com/anomaly-detection-with-autoencoder-
b4cdce4866a6.

McInnes, L., J. Healy, and S. Astels (2017). “Hdbscan: hierarchical density based
clustering”. The Journal of Open Source Software 2:11. DOI: 10.21105/joss.
00205. URL: https://doi.org/10.21105%2Fjoss.00205.

Mishra, A. (2018). “Metrics to evaluate your machine learning algorithm”. URL:
https://towardsdatascience.com/metrics- to- evaluate- your-
machine-learning-algorithm-f10ba6e38234.

Sander, J. (2010). “Density-based clustering”. In: Sammut, C. et al. (Eds.). Ency-
clopedia of Machine Learning. Springer US, Boston, MA, pp. 270–273. ISBN:
978-0-387-30164-8. DOI: 10.1007/978-0-387-30164-8_211. URL: https:
//doi.org/10.1007/978-0-387-30164-8_211.

Scikit-learn (2022a). “Importance of feature scaling” (). URL: https://scikit-
learn.org/stable/auto_examples/preprocessing/plot_scaling_
importance.html (visited on 2022-03-07).

Scikit-learn (2022b). sklearn.metrics.precisionscore. Scikit-learn. URL: https://
scikit-learn.org/stable/modules/generated/sklearn.metrics.
precision_score.html (visited on 2022-04-07).

Scikit-learn (2022c). sklearn.metrics.recallscore. Scikit-learn. URL: https : / /
scikit-learn.org/stable/modules/generated/sklearn.metrics.
recall_score.html (visited on 2022-04-07).

Scikit-learn (2022d). sklearn.preprocessing.MinMaxScaler. Scikit-learn. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.MinMaxScaler.html (visited on 2022-03-04).

Scikit-learn (2022e). sklearn.preprocessing.Normalizer. Scikit-learn. URL: https:
/ / scikit - learn . org / stable / modules / generated / sklearn .
preprocessing . Normalizer . html # sklearn . preprocessing .
Normalizer (visited on 2022-03-07).

Scikit-learn (2022f). sklearn.preprocessing.RobustScaler. Scikit-learn. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.RobustScaler.html (visited on 2022-03-04).

Scikit-learn (2022g). sklearn.preprocessing.StandardScaler. Scikit-learn. URL:
https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html (visited on 2022-03-04).

Xu, M. E. H.-P. K. J. S. X. (1996). “A density-based algorithm for discovering
clusters in large spatial databases with noise”. URL: https://www.aaai.org/
Papers/KDD/1996/KDD96-037.pdf.

76

https://towardsdatascience.com/anomaly-detection-with-autoencoder-b4cdce4866a6
https://towardsdatascience.com/anomaly-detection-with-autoencoder-b4cdce4866a6
https://towardsdatascience.com/anomaly-detection-with-autoencoder-b4cdce4866a6
https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205
https://doi.org/10.21105%2Fjoss.00205
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://doi.org/10.1007/978-0-387-30164-8_211
https://doi.org/10.1007/978-0-387-30164-8_211
https://doi.org/10.1007/978-0-387-30164-8_211
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html#sklearn.preprocessing.Normalizer
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf

Bibliography

Yildirim, S. (2022). “Data preprocessing with scikit-learn: standardization and scal-
ing”. Towards Data Science (). URL: https://towardsdatascience.com/
data- preprocessing- with- scikit- learn- standardization- and-
scaling-cfb695280412 (visited on 2022-03-07).

77

https://towardsdatascience.com/data-preprocessing-with-scikit-learn-standardization-and-scaling-cfb695280412
https://towardsdatascience.com/data-preprocessing-with-scikit-learn-standardization-and-scaling-cfb695280412
https://towardsdatascience.com/data-preprocessing-with-scikit-learn-standardization-and-scaling-cfb695280412

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name
MASTER’S THESIS
Date of issue
May 2022
Document Number
TFRT-6184

Author(s)

Felicia Segui
Andreas Timürtas

Supervisor
Hans Ekström, Gaia System Aktiebolag
Sara Olsson, Gaia System Aktiebolag
Johan Eker, Dept. of Automatic Control, Lund
University, Sweden
Anton Cervin, Dept. of Automatic Control, Lund
University, Sweden (examiner)

Title and subtitle

Real-time unsupervised log event anomaly detection in public transportation

Abstract
Detecting log data anomalies in real-time is useful since it makes it possible to apply logic that
corrects the anomalies when they happen. This project presents a method for detecting public
transportation bus event log data anomalies in realtime, without having a labeled data set. Initially,
each unique bus trip is represented by the event frequencies, a representation that is not suitable for
real-time. With a data set assumed to only contain normal data, an autoencoder, a PCA model and
a clustering algorithm label each data point in the frequency domain, as normal or anomalous. The
labeled data is split into sequences of events with a rolling window, a representation that is suitable
for detecting anomalies in real-time. To separate the anomalous event sequences from the normal
event sequences that occur, during the same bus trip as an anomalous event sequence, the event
sequences together with their labels are grouped and counted. By comparing the frequency for each
event sequence in anomalous trips with the frequency of the corresponding event sequence in normal
trips, the sequences that are overrepresented in anomalous trips are detected and receive a final label
being normal or anomalous. These labeled sequences are further used in the real-time detector. With
the three base labeling models (autoencoder, PCA and clustering algorithm), different combinations
of models are created. These models are either created by applying the union or the intersection
of all anomalous labeled journeys. This results in 11 different models that are all tested and evaluated.
The evaluation is performed by calculating the recall, precision and F1-score of experiments
performed with a data set of assumed normal journeys, together with injected simulated anomalies.
The evaluation is performed at two places within the method; one after the initial labeling and another
after the real-time detector. The results obtained using this evaluation method show that the
combination using the autoencoder and the clustering algorithm together through intersection is the
best model combination, based on the F1-score calculated after the real-time detection. This
combination scores a median recall and precision of 0.89 respectively 0.72, which results in an F1-
score of 0.79.
Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280-5316

ISBN

Language
English

Number of pages
1-77

Recipient’s notes

Security classification

http://www.control.lth.se/publications/

	Introduction
	Background
	Outline of thesis
	Objective of project
	Related work
	Data
	Individual contributions

	Theory
	Scaling and normalization of data
	PCA
	Clustering algorithms
	Autoencoder
	Evaluation metrics

	Method
	Problem formulation
	Pipeline
	Evaluation with simulated anomalies

	Results
	Precision, recall and F1-score
	Result summary

	Discussion
	Frequency-based representation versus sequence-based representation
	Metrics and parameters
	Result analysis
	Future work

	Conclusions
	Bibliography
	Tom sida

