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Abstract

In this master thesis, a broad theoretical description is done of a novel
quantum state tomography protocol called KRAKEN. This protocol is
meant for the determination of the density matrix of an electronic state
created by absorption of XUV radiation in the vicinity of a Fano res-
onance. At first, a description of the KRAKEN protocol is provided.
Then, the theory of Fano resonances is discussed. After that, the physics
of two-photon transitions is presented. Finally, possible expansions of
KRAKEN using chirped or broadband IR probe pulses, are examined.

1 Introduction

Quantum state tomography (QST) is a process by which one reconstructs the
density matrix of a quantum system. This is analogous to the classical case,
in which tomography means reconstructing a three-dimensional image of an
object by measuring the two-dimensional cross-section many different times and
piecing together these measruements into a three-dimensional image. Hopefully
this image then approximates the original object in question. In the quantum
mechanical case, each of these cross-sectional measurements then corresponds to
a measurement in a certain basis, i.e. a projection of the object on the basis[1].
We have a ground state from which we have electronic transitions from photon
absorption. We end up with an electron wavepacket in an energy continuum.
By changing appropriate parameters for the photons, we can get the density
matrix of the photoelectron, and we have a QST protocol.

Figure 1: A schematic of the kind of transitions considered in this thesis. The
red arrows correspond to electronic transitions due to photon absorption. The
blue oval represents an electron wave packet in the continuum.

This thesis, then, aims to examine a new proposed method of quantum state
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tomography called KRAKEN, which currently is only theoretically robust. This
method is based on attosecond optics.

Previous measurements using attosecond pulses (for example RABBIT) have
been used for the reconstruction of the wave function of the photoelectron (as-
suming perfect coherence).

This thesis will be separated into roughly four parts. The first part will
focus on introducing the KRAKEN protocol and explain how it works. The
case study for KRAKEN in our case will be the Fano resonances, which provide
a specific instance of entanglement relevant to quantum optics. Essentially we
apply the KRAKEN protocol to a photoelectron with an energy close to that of
an autoionizing state. For these states, Fano resonances can occur[4]. After this,
we need to perform an in-depth study on the physics of two-photon transitions,
since KRAKEN is based on a two-photon transition pump-probe scheme (two
photons since we have interaction with both an XUV and IR photon). This
will be done perturbatively to the lowest necessary order, and the aim of this
section will be to derive the transition amplitude of the transitions relevant to
KRAKEN. Special care will be given to the two-photon transition matrix ele-
ment, and a dipole approximation will be used to ground the theory in standard
quantum optics.

Once the theoretical background and basic simulations have been presented,
we will move on to potential expansions of KRAKEN that were examined over
the course of this master thesis. Several topics were examined, but the two
main ones are as follows: one is regarding the possibility of using a chirped
pulse to significantly shorten the time of the KRAKEN measurements. The
idea is straightforward: since KRAKEN QST requires us to use several (ap-
proximately) monochromatic pulses to perform all of the cross-sectional mea-
surements required, one could for example use a chirped pulse to cover all of
these frequencies within one single pulse. Essentially, having one pulse which is
capable of scanning through all the frequencies necessary for performing quan-
tum state tomography. Emphasis will be placed on how the presence of chirp
affects the theory of the physics involved, essentially studying how the equations
and derivations are affected by it. Simulation results with chirp added will be
discussed as well.

The second possible expansion of KRAKEN that will be discussed is regard-
ing the use of broadband radiation. The original protocol assumes monochro-
matic light, which of course is not consistent with experimental reality. The
possibility of recovering the result for bichromatic fields, when using broadband
radiation, is discussed. Again, emphasis was placed on the theoretical aspect
of this data analysis, with some simulation results being included as a proof of
concept, though the method needs to be further developed in order to actually
be of use scientifically.

In summary, the aim of this thesis is primarily to serve as a theoretical
description of KRAKEN and the theory required to understand it, coming from
a range of papers from different research groups. Finally, some possible and
original expansions of the protocol will be discussed.
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2 KRAKEN protocol

Now, the KRAKEN protocol [2] will be described. At first, the general prin-
ciples of the protocol will be discussed. Following this, a detailed derivation
of the protocol (i.e. how the density matrix subdiagonals are acquired) will be
presented. In order to understand why the KRAKEN protocol is being devel-
oped, consider the current state of attosecond interferometry. RABBIT and
streaking are very good at recovering the wavefunctions of attosecond electron
wavepackets. However, in order for this to fully characterize a quantum state,
said state must be pure. If it is not, a full characterization requires the density
matrix. This is what KRAKEN attempts to address, and so far the protocol
in the original article [2] is purely theoretical. Some useful experimental data
exists, however, and will be presented below.

First, as a reminder and to compare and contrast, consider RABBIT:

Figure 2: Energy levels of RABBIT to the left, where the two purple arrows
correspond to adjacent harmonics, and the two red arrows correspond to an IR
photon being absorbed and emitted, respectively. To the right is a scan with
harmonics and sidebands. Figure taken from [3].

In RABBIT, and attosecond pulse train is generated through HHG (high
order harmonic generation). In figure 2, the purple arrows denote two adjacent
harmonics of the pulse train. There is also an IR field present. As can be
seen in figure 2, if an IR photon is emitted and absorbed, respectively, by
two adjacent harmonics we can reach the same energy through two quantum
paths. This causes an interference phenomenon which can be seen as a beating
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frequency in the sideband (to the right in the figure). The idea is that one
can extract information on the phase and amplitude from the information in
the scan, which allows the reconstruction of the wave function. As will be seen
shortly, the interferometry of KRAKEN is very similar in principle but with
some key differences.

2.1 General principles

The main idea behind KRAKEN is to perform quantum state tomography on
electron wavepackets created by absorption of XUV pulses. In KRAKEN, an
XUV pulse (i.e. a pulse generated through HHG) interacts with the target
atom or molecule and ionizes it. Thus we have an EWP in the continuum.
Furthermore, a bichromatic IR field is interacting with the system and as such
couples different continuum states within the EWP bandwidth. The bandwidth
of the EWP can be called δΩ, and the bichromatic IR field has the frequencies
ω1 and ω2. In the KRAKEN protocol, the electron spectrum is measured as a
function of the time delay τ between the XUV pulse and the bichromatic IR field,
as well as the frequency difference δω = ω2 - ω1 between the two components of
the IR field. One of the components, say ω1 is fixed and kept close to δΩ, while
the other is varied from ω1 to ω1 + δΩ/2. This spectrum then, can be shown to
be proportional to the subdiagonals of the ionized electron’s density matrix.

The following schematic image illustrates the general physical situation at
hand:
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Figure 3: Energy diagram of transitions relevant to KRAKEN measurement.
∣g⟩ is the ground state, Ω is the harmonic (which is also the purple arrows), the
blue blob is the XUV electron wavepacket, ∣ε1⟩ and ∣epsilon2⟩ are the IR probe
energy levels and ω1 and ω2 are the energies of the two probes. ∣εf ⟩ is the final
energy. δω is the shear frequency and δΩ is the XUV bandwidth.

Consider the energy levels in figure 3. While there is still a pulse train
generated through HHG, much like in RABBIT, in this case the harmonics
are broad. The two purple arrows in figure 3 are both from the same broad
harmonic with central frequency Ω and bandwidth δΩ. So the blue oval in the
figure represents an EWP with different frequency components, due to the fact
that the broad harmonic itself has different frequency components. Similarly to
the RABBIT case, the interferometry is due to an IR field present, however in
this case the field is bichromatic (i.e., there are two monochromatic components
in the probe).

Now, consider the two energy levels ∣ε1⟩ and ∣ε2⟩ in the figure. The two IR
probes are going to ”hit” the EWP at different energies within the ionized gas,
however what remains consistent is the energy difference δω (which we call the
shear frequency) between the two probe fields. As will be shown shortly, this is
what is utilized to perform the KRAKEN measurement. Similarly to RABBIT,
there are two quantum paths that lead to the same final energy, corresponding
to the state ∣εf ⟩ in figure 3. We expect this to lead to interference effects that
we use for interferometry.

Now, consider what is actually measured when the above is perfomed. The
scan that is acquired can be considered in analogy with the one for RABBIT
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seen in figure 2:

(a) KRAKEN scan, with probe delay
in the horizontal axis and kinetic en-
ergy in the vertical axis. Note the
broad harmonics and the faint side-
bands.

(b) Zoomed in version of image (a)
showing a sideband.

Figure 4

To the left is the scan, which is from real experimental data. Similarly to
RABBIT, we have the harmonics (note that they are broad in this case) and in
between them we have the sidebands. The harmonics correspond to the broad
XUV light pulses generated through HHG, while the sidebands are what we
get from the interfering quantum paths leading to the state ∣εf ⟩. Figure b) is a
zoomed in image of one of the sidebands. It is there that we have the information
used for KRAKEN. The beating frequency corresponds to the shear frequency
δω, and as we will see it is the shear frequency we can change to extract all the
information we need. The data in the scan, specifically the figure to the right,
is a so-called electron spectrum, which we denote as S(ε, τ, δω).

The spectrum in question can be written as

S(ε, τ, δω) = ⟨ε∣ρxuv+ir ∣ε⟩ ,

where ρxuv+ir is the continuous variable two-photon density matrix for the
ejected electron. As will be shown below, the following holds:
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S(ε, τ, δω) ≈ ∣µε,ε1 ∣2 ⟨ε1∣ρxuv ∣ε1⟩ + ∣µε,ε2 ∣2 ⟨ε2∣ρxuv ∣ε2⟩
+ eiδωτµε,ε1µ∗ε,ε2 ⟨ε1∣ρxuv ∣ε2⟩ + e−iδωτµε,ε2µ∗ε,ε1 ⟨ε2∣ρxuv ∣ε1⟩

where µε,ε1,2 are the matrix elements for the dipole transitions and ε1,2
= ε - ω1,2. Note that the first two terms in the spectrum as written above
are populations and the remaining two are coherences. To acquire the density
matrix subdiagonals, we simply want the coherences and to get these we take
the Fourier transform over the spectrum with respect to the delay τ and then
filter out the δω component, which is the one we are after. This gives the
subdiagonals as functions of the Fourier transform variable, which we can then
have corresponding to the shear frequency δω, i.e. we vary this parameter to
”scan” over all the different subdiagonals we are interested in. Put another way,
we can choose the components oscillating at the frequencies ±δω. This assumes
that the dipole transition matrix elements are constant over the relevant energy
range, so that we simply get that the Fourier transform is proportional to the
subdiagonals and nothing else.

The density matrix in question is structured as seen in the figure below:

Figure 5: Structure of the matrix, as compared to the matrix elements derived
from equation 2.1. The main diagonal contains the populations.

One parameter that is of particular interest here is the purity. Given a
general density matrix ρ, the purity of the corresponding quantum system is
defined as

γ ≡ tr(ρ2).
One interpretation of the purity is that it tells us how much a state is mixed.
If the purity is 1, it means that the state is pure as opposed to mixed. The
purity is of interest since we can easily compare the theoretical purity of a given
quantum system with the purity of the reconstructed density matrix. Thus, the
purity is an indication of how good the protocol in question is. For example, the
2s2p resonance in helium theoretically corresponds to a pure state, and as such
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one would expect the purity to be 1. For the KRAKEN simulation performed in
the original paper [2], the purity of the reconstructed density matrix was found
to be 0.96. This indicates that KRAKEN is quite robust in simulations. The
error here was due to the small but finite bandwidth of the IR field employed
(about 3 nm).

2.2 Detailed description of protocol

Here we describe a more detailed description of the KRAKEN protocol, which
itself is an abbreviated version of the supplementary material to the original
KRAKEN paper [2]. This treatment is based on the fact that the density
matrix of the electron wave packet, following its interaction with the IR probe,
is given by

ρxuv+ir = U(τ, δω)ρxuvU †(τ, δω)
where U(τ, δω) is a unitary matrix given by

U(τ, δω) = exp(− i
h̵
∫ dt Hir(t)) .

What we also need to establish is the Hamiltonian of the system, which is given
by

Hir(t) = −
h̵√

2πσ2
e−t

2
/2σ2

e−i(ω−ω0)(t+τ) (Πω + e−iδω(t+τ)Πω+δω) + h.c. (1)

Here, Πω is the transition operator, which describes the transition driven by
dipole radiation between the energy state ∣ε⟩ to the energy ∣ε + ω⟩. We can
write this operator as

Πω = ∫ dε µε+ω,ε ∣ε + ω⟩ ⟨ε∣ ,

where in the above, µ denotes the dipole transition matrix elements such as
µε+ω,ε = ⟨ε + ω∣d ∣ε⟩. Here d is the dipole operator. Analogously, we also have

Πω+δω = ∫ dε µε+ω+δω,ε ∣ε + ω + δω⟩ ⟨ε∣ .

Inserting these into the integral expression for U(τ, δω) we arrive at the follow-
ing:

U(τ, δω) = exp( i√
2πσ2

(∫
∞

−∞

dt e−t
2
/2σ2

e−i(ω−ω0)(t+τ) (Πω + e−iδω(t+τ)Πω+δω) + h.c.))

= exp (i (e−i(ω−ω0)τe−
1
2 (ω−ω0)

2σ2

Πω + e−i(ω+δω)τe−
1
2 (ω+δω)

2σ2

Πω+δω + h.c.) ) .

In order to simplify the remaining steps we introduce the following:

gω = e−i(ω−ω0)τe−
(ω−ω0)

2σ2

2 , (2)
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gω+δω = e−i(ω+δω)τe−
(ω+δω)2σ2

2 , (3)

Π = gωΠω + gω+δωΠω+δω. (4)

Using the above, we can then write the unitary matrix U(τ, δω) as

U(τ, δω) = exp (i [Π +Π†]) (5)

We can make the following approximation, since we have that the coupling
constants g are small and satisfy ∣gω ∣ ≈ ∣gω+δω ∣ ≡ gc:

U(τ, δω) ≈ 1 + i [Π +Π†] +O(g2c). (6)

Now, what we want to do is consider the energy of the electron after interaction
with both the pump and probe field. In order to do this, we take the following:

⟨ε∣ρxuv+ir ∣ε⟩ = ⟨ε∣U(τ, δω)ρxuvU †(τ, δω) ∣ε⟩
= ⟨ε∣ (1 + i [Π +Π†] +O(g2c))ρxuv (1 − i [Π +Π†] +O(g2c)) .

Doing the above, we get 9 terms, but some of them we can immediately see are
zero. This is because we have that ω > ∆Ω, where ∆Ω is the spectral width of
the XUV pulse. We then get

⟨ε∣Πρxuv ∣ε⟩ = ⟨ε∣ρxuvΠ ∣ε⟩ = ⟨ε∣Π†ρxuv ∣ε⟩ = ⟨ε∣ρxuvΠ† ∣ε⟩ = 0,

as well as
⟨ε∣ΠρxuvΠ ∣ε⟩ = ⟨ε∣Π†ρxuvΠ† ∣ε⟩ = 0.

Thus, the expression for the energy becomes

⟨ε∣ρxuv+ir ∣ε⟩ = ⟨ε∣ρxuv ∣ε⟩ + ⟨ε∣ΠρxuvΠ† ∣ε⟩ + + ⟨ε∣Π†ρxuvΠ ∣ε⟩ +O(g4c). (7)

We now end up with a large number of overlap integrals to compute, and all
of these can be seen computed in the supplementary material to the KRAKEN
paper. We will consider one of these, and because the rest will be very similar
we will move directly to the final result and the way we treat it.

One of the overlap integrals we end up with is the following:

⟨ε∣ΠωρxuvΠ†
ω ∣ε⟩ = ∫ dε′dε′′µε′+ω,ε′µ

∗

ε′′+ω,ε′′ ⟨ε∣ε′ + ω⟩ ∣ε′⟩ρxuv ∣ε′′⟩ ⟨ε′′ + ω∣ε⟩

= ∣µε,ε−ω ∣2 ⟨ε − ω∣ρxuv ∣ε + ω⟩ ,

and similarly for all the other overlaps. Doing this, we eventually end up
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with the following:

⟨ε∣ρxuv+ir ∣ε⟩ = ⟨ε∣ρxuv ∣ε⟩
+ ∣gω ∣2∣µε,ε−ω ∣2 ⟨ε − ω∣ρxuv ∣ε − ω⟩
gωg

∗

ω+δωµε,ε−ωµ
∗

ε,ε−ω−δω ⟨ε − ω∣ρxuv ∣ε − ω − δω⟩
gω+δωg

∗

ωµε,ε−ω−δωµ
∗

ε,ε−ω ⟨ε − ω − δω∣ρxuv ∣ε − ω⟩
+ ∣gω+δω ∣2∣µε,ε−ω−δω ∣2 ⟨ε − ω − δω∣ρxuv ∣ε − ω − δω⟩
g∗ωgω+δωµ

∗

ε,ε+ωµε,ε+ω+δω ⟨ε + ω∣ρxuv ∣ε + ω + δω⟩
gωg

∗

ω+δωµε,ε+ωµ
∗

ε,ε+ω+δω ⟨ε + ω + δω∣ρxuv ∣ε + ω⟩
+ ∣gω+δω ∣2∣µε,ε+ω+δω ∣2 ⟨ε + ω + δω∣ρxuv ∣ε + ω + δω⟩
+O(g4c).

Since the above expression is a population we know we can measure it experi-
mentally (it is in fact an energy expectation value). What we want to do is take
a Fourier transform of this data such that it depends on the shear frequency
δω. If this gives us the subdiagonals of the density matrix of the photoelectron,
we know that we have a protocol for quantum state tomography. We introduce
the following to simplify the expression:

gω = hωe−i(ω−ω0)τ ≡ e−i(ω−ω0)τe−
1
2 (ω−ω0)

2τ2

Doing this, it can be shown that we get

SF = gωg∗ω+δωµε,ε−ωµ∗ε,ε−ω−δω ⟨ε − ω∣ρxuv ∣ε − ω − δω⟩
+ gωg∗ω+δωµε,ε+ωµ∗ε,ε+ω+δω ⟨ε + ω + δω∣ρxuv ∣ε + ω⟩

We thus get two components, and can choose to filter out one of them so we are
left with the final result:

SF = gωg∗ω+δωµε,ε−ωµ∗ε,ε−ω−δω ⟨ε − ω∣ρxuv ∣ε − ω − δω⟩

Thus, if we take this measurement for different δω, we can reconstruct the
density matrix ρxuv to good approximation. This protocol thus is a theoretically
valid quantum state tomography.

2.3 Case study

Now that the general principles of KRAKEN have been laid out, the next ques-
tion to consider is what EWP we should study. There are two general criteria to
consider here, we want a wave packet with structure, so that there is something
to actually study that we understand well. And we also want a wave packet
that exhibits entanglement, to necessitate the use of QST to fully characterize
it. In our case, the structure will come from Fano resonances and the entangle-
ment will come from spin-orbit interactions. More specifically, the transition to

12



be considered which exhibits these properties will be the 3s−14p transition in
argon.

Aside from that, another transition that will be studied (and contrasted with
that of argon) is the 2s2p transition in helium, which is a pure state as will be
seen shortly.

In the following sections, the Fano resonances and the effects of spin-orbit
interactions will be discussed in more detail. After that, the density matrix for
said argon EWP will be shown and discussed.

3 Fano resonances

The Fano resonance is a physical phenomenon that shows up in many areas of
physics (for example atomic physics, nuclear physics, optics, condensed matter
physics, engineering applications in electrical circuits, microwave engineering,
some materials science and so on) and has a wide variety of applications. For
this master thesis, the Fano resonances will show up in a manner very close to
how they were originally discussed, namely during electron transitions within
atomic systems due to interaction with dipole electric fields. It is central to this
thesis, since the transitions studied will be subject to said resonances. The res-
onance phenomenon was originally studied because the absorption cross-section
of photons on a target atom exhibited asymmetries which were not properly
explained by the quantum physics at the time. As such, Fano presented in
his paper a rigorous mathematical description of how this asymmetry came to
be. In this section, we will begin by recollecting the important parts of this
derivation to lay the mathematical foundation for understanding the Fano pro-
file. Said profile will then be discussed in more detail. Once that is done, we
will conclude by considering the phase properties of the Fano transitions. The
most important aspect of this final discussion is the expression for the transi-
tion amplitudes, which will be central to the next section where we derive the
transition amplitudes used in the simulations of the KRAKEN protocol.

3.1 Theory of Fano resonances

Fano resonances occur because electrons changing energy levels in atoms can
access both bound states and continuum states. This interaction causes an
interference effect.
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3.1.1 One bound state and one continuum

Figure 6: Energy diagram showing the transitions. We have a ground state ∣g⟩,
and the red arrows show the two paths we can go during transition. We have
the bound state ∣ϕ⟩ and a set of continuum states ∣ψε⟩. The blue double-ended
arrow denotes the Fano resonance between the states.

As can be seen in figure 6, we have a discrete bound state ∣ϕ⟩ and a set of
continuum states we denote by ∣ψε⟩. When we have a transition from the ground
state ∣g⟩, we get an interference between the bound state and the continuum
states (different possible pathways for the electron will be superposed with each
other, as is typical of quantum physics). The photoelectron, i.e. the electron
excited by light such that it transitions as described in the energy diagram, can
then be represented as an electronic state that is a superposition of the possible
states it can end up in, as follows:

∣ΨE⟩ = a ∣ϕ⟩ + ∫ dε bε ∣ψε⟩ (8)

with the two terms corresponding to the aforementioned different sets, where
∣ϕ⟩ are bound states and ∣ψε⟩ are continuum states. The coefficients a and bε
are functions of E and are to be determined in order for us to understand how
Fano resonances work. In order to do this we need to consider the following
transition matrix elements [4]:

⟨ϕ∣H ∣ϕ⟩ = Eϕ,
⟨ψε∣H ∣ϕ⟩ = Vε,
⟨ψε′ ∣H ∣ψε⟩ = εδ(ε′ − ε).

Here H is the hamiltonian of the system. What we want to do now is consider
the time-independent Schrödinger equation,

H ∣ΨE⟩ = E ∣ΨE⟩ . (9)
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Taking the Schrödinger equation and multiplying by ⟨ϕ∣ and ⟨ψε∣ from the left,
respectively, we end up with the system of equations from which we can get the
coefficients we are interested in:

Eϕa + ∫ dε bεV
∗

ε = Ea, (10)

Vεa + εbε = Ebε. (11)

Solving the above system of equations requires quite a bit of algebra, as well
as the assumption that the electrons behave as plane waves when they are far
enough removed from the atomic nucleus. The most important steps will be
outlined here, as well as where the physical assumptions become relevant.

The first thing we do is that we try to express bε in terms of a, i.e. simply
get rid of one of the two unknowns. If one considers equation 11, we see that
we can rewrite it as follows:

bε =
Vεa

E − ε . (12)

However, the expression in equation 12 has a pole for some of the energy values
we might expect to get in a physical scenario. As such, we need to employ a
trick to get around this issue. We introduce the following solution, which was
formalized by Dirac:

bε = [ 1

E − ε + z(E)δ(E − ε)]Vεa. (13)

To be more specific, the trick is to consider quantization in a finite box, so
that one ends up working with a discrete spectrum as opposed to a continuous
one. This case can then be considered for the limit case of an infinite box. The
procedure will not be outlined in detail here though, and the reader is advised to
take the above result as given. What z(E) actually is will be discussed shortly.

Now we consider how to proceed with equation 13. What we note is that
when integration is taken over the term with the pole, we take the principal
value of the integral. What we then do is consider the approximation that the
ejected electron is a plane wave.

ψε ∝ sin(k(ε)r + δ), (14)

where δ is some phase. The reason this approximation is valid is that we assume
we are far away from the atomic nucleus when the electron is in the continuum,
which is a standard approximation in this type of atomic physics. With this
form for ψε, we then consider what happens with the integral in equation 8. We
get in the integral two terms, which will be the sine expression multiplied by our
expression for bε. The first term will be the integral taken over the product of the
sine function and the term (E−ε)−1, and using contour integration, one can show
that the contribution from this first term is −πcos(k(E)r+δ)VEa for sufficiently
large r, and similarly for the second term we get z(E)sin(k(E)r+δ)VEa. What
this means is that we can write the following for the sum of the two terms, using
elementary trigonometry:
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∫ dεψε ∝ sin(k(E)r + δ +∆)VEa, (15)

where we now also have the term ∆ = −arctan(π/z(E)) which corresponds to
the phase shift we get due to the interaction between the ψε and the ϕ states.

Now that we have an approximation for ψε (making it a known variable,
essentially) as well as having used equation 8, we can also determine z(E) by
substituting the expression for bε (in equation 13) in equation 10. Note that if
we do this, we get the coefficient a on all terms, so we get rid of it and what
remains is

Eϕ + F (E) + z(E)∣VE ∣2 = E, (16)

where

F (E) = P ∫ dε
∣Vε∣2
E − ε , (17)

where P denotes the principal value of the integral. z(E) can then immediately
be recovered from equation 16:

z(E) = E −Eϕ − F (E)
∣VE ∣2 . (18)

Now, we have enough information to determine a to a satisfactory degree. In or-
der to actually compute this we need to use a normalization condition ⟨ΨE ∣ΨE⟩
= δ(E −E):

⟨ΨE ∣ΨE⟩ = a∗(E)a(E) + ∫ dεb∗ε(E)bε(E) = δ(E −E). (19)

Since we have already expressed bε in terms of a in equation 13, and we have
already arrived at an expression for z(E), we can substitute the expression for
bε into the above expression and use that to solve for a. This part is pure
algebra, with the exception of the following result one can use to perform the
computations [4]:

1

(E − ε)(E − ε)
= 1

E −E
( 1

E − ε −
1

E − ε
)

+ π2δ(E −E)δ(ε − 1

2
(E +E)).

Considering the above, we end up with

∣a(E)∣2∣VE ∣2(π2 + z2(E))δ(E −E) + a∗(E)

× (1 + 1

E −E
(F (E) − F (E) + z(E)∣VE ∣2 − z(E)∣VE ∣2))a(E) = δ(E −E).

Now, we can finally arrive at an expression for a. The above expression can
be simplified by considering the relation F (E) = −Eϕ − z(E)∣VE ∣2 +E that we
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derived above, and the analogous relation for F (E). Namely, the fact that we
have

F (E) − F (E) + z(E)∣VE ∣2 − z(E)∣VE ∣2

= −Eϕ − z(E)∣VE ∣2 +E +Eϕ + z(E)∣VE ∣2 −E + z(E)∣VE ∣2 − z(E)∣VE ∣2

= E −E.

Insert this relation into the brackets of the expression we derived earlier, we can
see that the expression inside the brackets disappears and we are left with

∣a(E)∣2 = 1

∣VE ∣2(π2 + z2(E)) (20)

We can get a more useful expression for a than the one above, and in fact we
find that a oscillates as a function of the energy. In order to show this, one can
consider the fact that we have the following

a(E) = 1

πVE

1√
1 + (z(E)/π)2

(21)

We can therefore write a as a sinusoidal function of ∆ using the following argu-
ments: we know from before that we have ∆ = −arctan(π/z(E)), which means
that we can write π/z(E) = tan(−∆) = y/x for some trigonometrically relevant
y and x on the unit circle. This means that we have

sin(∆) = y√
x2 + y2

= 1√
1 + (x/y)2

= 1√
1 + (−x/y)2

= 1√
1 + 1/tan2(−∆)

= 1√
1 + (z(E)/π)2

,

which means that we can rewrite our expression for a(E) as

a(E) = 1

πVE

1√
1 + (z(E)/π)2

= sin(∆)
πVE

, (22)

which is our final expression for the coefficient a. Using this, we can then arrive
at a similar expression for our coefficients bε. Performing this algebra, one can
arrive at an expression for bε that also oscillates with respect to ∆. The results
for the two coefficients are collected below, and are the main result of this rather
lengthy mathematical derivation:

a = sin∆

πVE
, (23)

bε =
Vε
πV ∗

E

[ sin∆

E − ε − πcos(∆)δ(E − ε)] , (24)

as well as
z(E) = −π cot∆. (25)
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From this we can then get the Fano profile. In order to proceed with our
mathematical treatment, we must first understand what is interesting about
what we have arrived at. Of course, the results in equations 23 and 24 allows
us to describe the eigenvector ΨE , but the point of deriving the equations on
this particular form (i.e. oscillations of ∆) is that what we are really interested
in is the variation in the probability of excitation of the stationary state ΨE .
In order to formalize this further, we want to introduce a transition operator
T describing the transition from an initial state ∣i⟩ and the final state ∣ΨE⟩.
Using the form of the final state we see in equation 8 in combination with the
expressions seen in equations 23 and 24 we get the following matrix element
representation for the transition operator:

⟨ΨE ∣T ∣i⟩ = 1

πV ∗

E

⟨ϕ∣T ∣i⟩ sin∆

+ 1

πV ∗

E

P ∫ dε
V ∗

ε ⟨ψε∣T ∣i⟩
E − ε sin∆ − ⟨ψE ∣T ∣i⟩ cos∆

= 1

πV ∗

E

⟨φ∣T ∣i⟩ sin∆ − ⟨ψE ∣T ∣i⟩ cos∆

where we introduced φ as simply being the following combination of states:

∣φ⟩ = ∣ϕ⟩ + P ∫ dε
Vε ∣ψε⟩
E − ε . (26)

Now that we have arrived here we are ready to discuss the famed Fano profile,
which is the goal of this section of the thesis. What we want to consider is the
following ratio:

∣ ⟨ΨE ∣T ∣i⟩ ∣2
∣ ⟨ψE ∣T ∣i⟩ ∣2 . (27)

Note that we have ΨE in the numerator and ψE in the denominator. If one
takes a look at the expression for ∆, it can be seen that it varies extremely
sharply as the variable E passes through the resonance at E = Eϕ + F . This
behaviour will, in turn, cause a very sharp variation of the transition matrix
element ⟨ΨE ∣T ∣i⟩. That is to say, we expect some interesting sharp behaviour
for the transition probability from our initial to final state as we approach this
resonance. If one examines the above expression even closer, one can note that
sin∆ is an odd function of ∆ and cos∆ is an even function of ∆. As such,
we have two terms ⟨φ∣T ∣i⟩ and ⟨ψE ∣T ∣i⟩ that interfere with each other with
opposite phase. This interference is consistent with what we outline previously,
where the physical interpretation is that we have continuum and bound states
that interfere when we consider an electron being taken from its ground state by
absorption of a photon (represented by the transition operator T ). Note that
φ has an extra integral term with it, which corresponds to the bound states
being modified by the fact that Vε and ψε are both dependent on ε (there are
theoretical treatments in some papers where this is not the case and in those
instances the integral term vanishes and we are left with just the original bound
state).
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One thing that is interesting about expression 27 is that the numerator is
proportional to the absorption cross section for a photon. What we can now
use is that expression 27 can be parametrized as

∣ ⟨ΨE ∣T ∣i⟩ ∣2
∣ ⟨ψE ∣T ∣i⟩ ∣2 = (q + ε)2

1 + ε2 = 1 + q
2 − 1 + 2qε

1 + ε2 , (28)

where

q = ⟨φ∣T ∣i⟩
πV ∗

E ⟨ψE ∣T ∣i⟩ . (29)

and ε here is the so-called reduced energy variable

ε = −cot∆ = E −Eϕ − F (E)
π∣VE ∣2 = E −Eϕ − F

Γ/2 . (30)

Note that ε here is not the same as ε. The latter is the continuum variable, and
not the reduced energy. This distinction is notationally subtle but will be crucial
for understanding the later parts of this thesis. For the energy variable above,
we have that Γ = 2π∣VE ∣2 corresponds to the spectral width of the autoionized
state ϕ. More specifically this is the spectral width of the resonance. One can
plot this ratio, then, for different values of q, and this is what is discussed below
while anchored in a less abstract and more physical interpretation than the one
outlined above.

Now, we want to consider the special case where the transition operator T
is, specifically, that of a dipole transition. For this case, we can call it O, where
O = O⃗ ⋅ ε̂, where O⃗ is the dipole operator and ε̂ is the polarization direction of
the light in question. Using the above result, we immediately find

⟨ΨE ∣O ∣i⟩ = q + ε
ε − i ⟨ψE ∣O ∣i⟩ (31)

which is important for this thesis, since it expresses the dipole transition
from the first state ∣i⟩ to the final state ∣ΨE⟩ for the case where the final state is
subject to a Fano resonance. We thus have, on the right-hand side of equation
31, the transition to the continuum but modified by the Fano resonance. This
expression will be used later when constructing the theory for the simulations.

Taking the absolute square of the above transition matrix element, we get
something that is proportional to a cross-section of the absorption, as follows:

σ(E) = σbg(E)(ε + qãg)
2

ε2 + 1
(32)

where σbg is the background cross-section, which corresponds to direct photoion-
ization. This cross-section is then multiplied by the Fano profile. Note that in
the limit of ε going to infinity we get only the background cross-section since the
Fano profile factor is unity. This is consistent with our physical understanding
of the phenomenon, where a sufficiently large energy should correspond to us
having gone far beyond the energy interval of the Fano resonance.
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Now, what we have here is going to unfortunately be incomplete when con-
sidering the case for argon [7]. This is because here we assume that we have one
continuum channel (as well as one set of bound states). However, when we do
experiments with Argon we must take into account that we have two continuum
channels for the Fano resonance we want to study. So we get one extra term
that is added to the above expression for the cross-section.

σ(E) = σbg(E)(ε + qãg)
2

ε2 + 1
+ σb, (33)

where σb is this extra term. What this contribution actually is, more mathe-
matically, will be discussed in-depth a bit later in this thesis.

3.1.2 One bound state and two continua

Now, we look at the case where we have one bound state and two continua.
The reason for considering this case is due to the fact that it is relevant for the
case of argon, just like how the previous discussion is of relevance to the case of
helium.

The total electronic state, in this case, then becomes

∣ΨhE⟩ = a ∣ϕ⟩ + ∫ dε [bε ∣ψε⟩ + cε ∣χε⟩] (34)

where we now have two sets of continuum states ∣ψε⟩ and ∣χε⟩, and the bound
state is represented by ∣ϕ⟩ once again. The index h refers to any other parameter
required to characterize the final state ∣Ψε⟩ since we have a degeneracy in E
now that we have two continua. Similarly to before, we consider the time-
independent Schrödinger equation and the matrix elements that emerge when
we project on the relevant states from the left.

⟨ϕ∣H ∣ϕ⟩ = Eϕ, (35)

⟨ψε∣H ∣ϕ⟩ = Vε, (36)

⟨χε∣H ∣ϕ⟩ =Wε, (37)

⟨ψε′ ∣H ∣ψε⟩ = ⟨χε′ ∣H ∣χε⟩ = εδ(ε′ − ε), (38)

⟨ψε′ ∣H ∣χε⟩ = 0. (39)

Treating the Schrödinger equation as before, we end up with a system of three
equations:

Eϕa + ∫ dε [V ∗

ε bε +W ∗

ε cε] = Ea, (40)

Vεa + εbε = Ebε, (41)

Wεa + εcε = Ecε. (42)

We can construct two equations by considering 41 and 42, respectively. Using
that Vεa + εbε −Ebε = Wεa + εcε −Ecε = 0, we have:

V ∗

ε (Vεa + εbε −Ebε) +W ∗

ε (Wεa + εcε −Ecε) = 0, (43)
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which can be rewritten as

( ∣Vε∣2 + ∣Wε∣2)a + ε( V ∗

ε bε +W ∗

ε cε) = E( V ∗

ε bε +W ∗

ε cε). (44)

Taking a similar linear combination, but instead with coefficients Wε and −Vε,
one arrives at

Wε(Vεa + εbε −Ebε) − Vε(Wεa + εcε −Ecε) = 0, (45)

which can be rewritten as

ε(Wεbε − Vεcε) = E(Wεbε − Vεcε). (46)

What we do now is consider equation 40 and 44. These two together form an
analogue to equations 10 and 11. Employing the same method that was used to
solve for a and bε for the two latter equations, we solve for a and V ∗

ε bε +W ∗

ε cε
in the two new equations.

In the new case for 40 and 44, by generalizing equations 17, 18 and 25 we
have

∆ = −arctan
π(∣VE ∣2 + ∣WE ∣2)
E −Eϕ −G(E) , (47)

for which

G(E) = P ∫ dε
∣Vε∣2 + ∣Wε∣2

E − ε . (48)

The coefficients then become, in analogy with equations 23 - 25,

a1 =
sin∆√

π(∣VE ∣2 + ∣WE ∣2)
, (49)

b1ε =
Vε√

∣VE ∣2 + ∣WE ∣2
[ 1

π

sin∆

E − ε − cos∆δ(E − ε)] , (50)

c1ε =
Wε√

∣VE ∣2 + ∣WE ∣2
[ 1

π

sin∆

E − ε − cos∆δ(E − ε)] = Wε

Vε
b1ε (51)

Once again, note how these coefficients are completely analogous to the case of
one continuum. Also note the indexing for b1ε and c1ε. There is another set of
coefficients to be found by considering equations 40 and 46:

a2 = 0, (52)

b2ε =
W ∗

E√
∣VE ∣2 + ∣WE ∣2

δ(E − ε), (53)

c2ε = −
V ∗

E√
∣VE ∣2 + ∣WE ∣2

δ(E − ε). (54)
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Note that a2 = 0 comes from the fact that equation 46 does not couple to a.
Now, if we want to consider how dipole transitions behave, we simply get

the following:

∣ ⟨ΨE ∣O ∣i⟩ ∣2 = ∣ ⟨Ψ1E ∣O ∣i⟩ ∣2 + ∣ ⟨Ψ2E ∣O ∣i⟩ ∣2 + ... (55)

In equation 55 above, only the first term on the right-hand side (∣ ⟨Ψ1E ∣O ∣i⟩ ∣2)
actually has the Fano profile. The remaining terms simply form a constant
background. This is consistent with what was said regarding equation 33, and
we can identity these constant terms as contributing to the σb term.

3.2 Fano profile

In order to understand how the Fano resonances actually affect the transitions
at hand, consider the fact that we have dipole transitions. This is because we
have an electric field inducing a transition from lower to higher energy levels,
and we model this with dipole transitions of the form ⟨f ∣O ∣i⟩ where ∣i⟩ is an
arbitrary (bound) initial state and ∣f⟩ is an arbitrary (continuum) final state.
The transition amplitude, which corresponds to the probability of transition, is
then ∣ ⟨f ∣O ∣i⟩ ∣2. Now, the way that Fano resonances, i.e. the presence of the
bound state, affects this amplitude is simply through the multiplication of the
factor (q + ε)2/(1 + ε)2. This factor plotted against the variable ε can be seen,
for different q parameters, in figure 7:
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Figure 7: The absorption plotted as a function of the reduced energy, with three
different plots for different values of q. The blue, symmetric, graph corresponds
to q = 0, the green graph corresponds to q = 1, and the red graph corresponds
to q = 2. Figure from [11].

In the case of argon, the q parameter is very nearly 0, which means that we
approximately have the blue graph in our case (a so-called window resonance).
The most important thing to consider here is the zero that the graph has. As
will be seen shortly, this is what gives the desired structure to the EWP.

4 Spin-orbit interactions and entanglement

Next, there needs to be an explanation of how the case of argon introduces
entanglement that justifies the use of QST. In order to undersand this, first
consider the energy level diagram of the argon transitions in question, as seen
in figure 8.
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Figure 8: Energy level diagram describing the relevant transitions in the argon
case study. Figure taken from [2].

The two sets of continuum energy states are separated by the spin-orbit split-
ting, by the energy εso. Spin-orbit splitting like this occur due to the electron
experiencing a magnetic field due to its movement relative to the charged and
stationary atomic nucleus (in this sense it is a relativistic effect). This magnetic
field induces an interaction between the electron’s spin (i.e. its intrinsic angular
momentum) and the orbital angular momentum. In this case, the energy level
of interest is split into the two levels corresponding to quantum numbers j = 1/2
and j = 3/2, respectively.

Consider the quantum state which describes both the photoelectronic state
and the ionic state, namely:

∣Ψatom⟩ = c1/2 ∣ j = 1/2⟩⊗ ∣ψ1/2⟩ + c3/2 ∣ j = 3/2⟩⊗ ∣ψ3/2⟩ (56)

Here the ∣j = 1/2,3/2⟩ states are the ionic states and the ∣ψ1/2,3/2⟩ states are
the photoelectron states. When we perform measurements we only measure the
photoelectron. As such, we do not interrogate ionic degrees of freedom, and this
is where mixing comes in.

Mixed states can occur due to several causes. Some examples include de-
coherences (for example, in the light pulse used for ionization) or incomplete
measurements of entangled particles [2]. In this case, we assume that the latter
is the only reason for the mixing. In other words, the light pulse is assumed
to be completely coherent (i.e. a pure state) and interactions with the envi-
ronment are neglected. The latter of these points is motivated by the fact that
we are observing processes at the attosecond time scale. For physics that fast,
environmental interactions will not affect measurement results of the processes
at hand.

Consider what it means to interrogate only the electronic states of ∣Ψatom⟩.
The following then holds:
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ρelectron = TrI(ρatom) =∑
j

⟨j∣ρatom ∣i⟩ , j = 1

2
,
3

2
(57)

where
ρatom = ∣Ψatom⟩ ⟨Ψatom∣ (58)

and TrI(ρatom) denotes the trace over the ionic degrees of freedom. Using equa-
tion 56 and 58, and inserting them in the trace seen in equation 57, we get:

ρelectron = ∣c1/2∣2 ∣ψ1/2⟩ ⟨ψ1/2∣ + ∣c3/2∣2 ∣ψ3/2⟩ ⟨ψ3/2∣ , (59)

which is just a weighted sum of two density matrices, for the two respective
photoelectrons. Denote these by ρ1/2 = ∣ψ1/2⟩ ⟨ψ1/2∣ and ρ3/2 = ∣ψ3/2⟩ ⟨ψ3/2∣.
Both of these density matrices are identical, but shifted in energy by the spin-
orbit splitting such that ρ1/2(ε1, ε2) = ρ3/2(ε1 − εso, ε2 − εso). Writing the sum
with the correct coefficients [9], one ends up with:

ρelectron =
1

3
ρ1/2 +

2

3
ρ3/2 (60)

When we speak of mixing in this case, what we are interested in is whether
or not these two components are spectrally resolvable. If they can both be fully
resolved, there is entanglement, since a measurement on the photoelectron will
tell us something about the ionic state. However, when they are not spectrally
resolvable, measuring the electron does not tell us anything about the ion and
we have no entanglement.

Whether or not the components are spectrally resolvable depends on the
XUV bandwidth δΩ. When we have δΩ < εso we have fully resolvable compo-
nents, which can be understood intuitively as the XUV bandwidth not ”cover-
ing” both continua such that we cannot resolve the two. In the limit δΩ >> εso
however, we lose entanglement and get a pure state.

In short, the mixing is due to the incomplete measurement of only the elec-
tron degree of freedom but not the ionic degree of freedom. The entanglement
is due to the spin-orbit interaction.

5 Density matrix of photoelectron wave packet

In section 3 and 4, the structure and entanglement of the EWP was discussed
(Fano resonances and spin-orbit splitting, respectively). Now, it is instructive
to present the actual density matrix of said EWP (for the argon transition as
discussed). It is shown in figure 9 below:
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Figure 9: Amplitude of the density matrix of the argon EWP.

Note the ”crosses” of zeros that can be see in the density matrix. This is
the result of the Fano resonances, and gives the structure we were referring to
before. Consider once again figure 7, and the zero of the curve. For each energy
axis, there is going to be some energy for which the dipole transition becomes
zero. This holds for every other energy on the other axis, hence the zeroes
forming right angles in the density matrix.

The second thing of note is th elliptic shape of the density matrix, which is
due to the entanglement. For a pure state, the density matrix would have been
disk shaped, but since there is entanglement the matrix becomes elliptical. In
other words, there will be less coherence between larger energy differences.

Another way of conceptualizing the elliptical appearance of the matrix is
through equation 60.
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(a) ρ1/2 (b) ρ3/2

(c) ρelectron

Figure 10: The argon EWP density matrix amplitude (bottom figure) as a sum
of two contributions (two upper figures) due to spin-orbit splitting.

As can be seen above, the figures show the two respective spin-orbit compo-
nents ρ1/2 and ρ3/2, which are shifted in energy relative to each other and added
through a weighted sum to give the final result ρelectron. If one views the final
result as two discs being added together, but shifted relative to each other, it
becomes intuitive that the end result would be elliptic.

6 Implementation of KRAKEN

Now, our task is to write an expression for the transition amplitude. Since
we have two-photon interactions in the KRAKEN protocol, we want to begin
by deriving a general expression for the transition amplitude of a two-photon
transition. We use a perturbative approach. Doing this, we encounter a matrix
element which requires special attention. We will finish this section by using
our treatment of the two-photon matrix element to derive the two expressions
for the transition amplitudes used in the simulations. These simulation results
will then be presented and discussed.
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What we have in this case can be seen by considering the following figure:

Figure 11: Energy diagram over the transitions considered in this section of
the thesis. The red and green arrows correspond to the two photons in the
process. The blue arrow denotes the Fano resonance between the intermediate
continuum state and the bound state.

In figure 11 the physical case considered here can be seen. Note that what
we are doing now is observing exclusively the two-photon transition to the con-
tinuum, i.e. the right side of the figure with the red and green arrow. The goal
is to write an expression for the transition amplitude of this two-photon transi-
tion, when the intermediate state ∣ψαε⟩ is resonant. Note the subtle difference
in notation between ∣ψαε⟩ and ∣ψβE⟩. The indices α and β correspond to the
two different channels. ε is the same energy variable seen before, correspond-
ing to the continuum of energies. Meanwhile, E simply represents an energy
reached by two-photon absorption. It is thus not to be confused by the energy
eigenvalue E discussed in the Fano formalism.

6.1 Transition amplitude

Since KRAKEN employs a two-photon interaction with an XUV and IR photon,
respectively, we need to consider the physics of two-photon transitions in order
to derive expressions for the transition amplitudes.

We will approach this by considering an appropriate perturbative expression
for a two-photon transition amplitude with finite pulses. And we will especially
derive the expression for both time and frequency representation.

Using a dipole approximation, one can consider the standard quantum me-
chanical case of a target atom (or molecule) interacting with a dipole field. The
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Hamiltonian will be a sum of the field-free Hamiltonian of the target as well as
an interaction term, as follows [6]:

H(t) =H0 + F (t)O,
O = ε̂ ⋅ O⃗

where H(t) is the total Hamiltonian of the system as a function of time t,
H0 is the field-free time-independent component and F (t) is a function that
essentially describes the temporal profile of the light pulse (could be a Gaussian
pulse, for example). The light field is described by F⃗ (t) = F (t)ε̂, where ε̂ is
a unit vector denoting the polarization direction of the light. O⃗ is a dipole
operator corresponding to the light pulse.

Assuming the system outlined above is initially in a ground state ∣g⟩, such
thatH0 ∣g⟩ = ωg ∣g⟩. The wave function ∣ψ(t)⟩ is then given, using the interaction
picture, as

∣ψ(t)⟩ = ∣g⟩ − i∫
t

−∞

dt′F (t′)OI(t′) ∣ψ(t′)⟩ (61)

where
OI(t) = eiH(t)Oe−iH(t). (62)

Note that we will use atomic units throughout this derivation. Perturbative
expansion to abritrary order then gives us:

∣ψ(t)⟩ =
∞

∑
n=0

∣ψ(n)(t)⟩ , (63)

∣ψ(0)(t)⟩ = ∣g⟩ , (64)

∣ψ(n+1)(t)⟩ = −i∫
t

−∞

dt′F (t′)OI(t′) ∣ψ(n)(t′)⟩ . (65)

We take a close look at equations 64 and 65 and consider n=1 and n=2. For
n=1 we have

∣ψ(1)(t)⟩ = −i∫
t

−∞

dt′F (t′)OI(t′) ∣g⟩ . (66)

Moving on to n=2 we get, by substituting the above expression, the following:

∣ψ(2)(t2)⟩ = −i∫
t2

−∞

dt′2 F (t′2)OI(t′2) ∣ψ(1)(t′2)⟩ (67)

= −∫
t2

−∞

dt′2 F (t′2)OI(t′2)∫
t′2

−∞

dt′1 F (t′1)OI(t′1) ∣g⟩ (68)

What we note here, is that for n=2, we get contribution from two pulses, i.e.
pulses F centered around different times t2 and t1. What we can state, then,
is that the lowest order for which we can describe a two-photon state using the
interaction picture in a perturbative expansion is n = 2. Now, we consider how
to mathematically write the transition amplitude. This is done by:

A(n)
fg = ⟨f ∣ψ(n)(∞)⟩ . (69)
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Here we have a transition to a final state ∣f⟩, such that H0 ∣f⟩ = Ef ∣f⟩. Using
equation 62 we get the following:

⟨f ∣ eiH(t2) = eiωf t2 ⟨f ∣ (70)

e−iH(t1) ∣g⟩ = e−iωgt2 ∣g⟩ (71)

Here, ωf and ωg are equivalent to the energies of the final and ground electronic
states, respectively. This is because we use atomic units, and as such angular
frequency and energy are equal up to h̵ which is set to unity. Inserting equations
70 and 71 into equation 68, we end up with

− ∫
∞

−∞
∫

t2

−∞

dt′2dt′1 F (t′2)F (t′1) ⟨f ∣OI(t′2)OI(t′1) ∣g⟩

= −∫
∞

−∞
∫

t2

−∞

dt′2dt′1 F (t′2)F (t′1) ⟨f ∣ eiH(t′2)Oe−iH(t′2)eiH(t′1)Oe−iH(t′1) ∣g⟩

= −∫
∞

−∞
∫

t2

−∞

dt′2dt′1 F (t′2)F (t′1)eiωf t
′

2e−iωgt
′

1 ⟨f ∣Oe−iH(t′2−t
′

1)O ∣g⟩ .

In order to treat the above, we pay some special attention to e−iH(t2−t1), which
can be rewritten by considering the following Green function:

G+(t2 − t1) = −iθ(t2 − t1)e−iH(t2−t1), (72)

where θ is the Heaviside step function. This allows us to include the time-
ordering in the integrand. Inserting this expression for the Green function into
the transition amplitude, we then end up with:

A(2)
fg = −i∫

∞

−∞
∫

t2

−∞

dt′2dt′1e
iωf t

′

2e−iωgt
′

1F (t′2)F (t′1) ⟨f ∣OG+(t′2 − t′1)O ∣g⟩ (73)

Note that since we have atomic units, we can write out photon energies as being
the same as their corresponding angular frequencies.

Now, we want to look at equation 73 and write its frequency representation.
This will be the central mathematical expression in this section of the thesis:

A(2)
fg = −i∫

∞

−∞

dωF̃ (ωfg − ω)F̃ (ω)Mfg(ω) (74)

where F̃ is the Fourier transform of the electric field, ωfg = ωf − ωg is the
energy difference in atomic units between the final and ground state, and Mfg

is a two-photon transition matrix element which we can write as:

Mfg = ⟨f ∣OG+(ωg + ω)O ∣g⟩ (75)

Here the so-called retarded resolvent G+(ω) is the Fourier transform of G+ and
can be written as:

G+(ω) = (ω −H + i0+)−1 (76)

In order to reach the final expression, we consider how to treat a pump-probe
scheme. During a pump-probe process, the total external field is the sum of the
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pump and the probe. This is written by considering the pump as F1(t) and the
probe as F2(t; τ) = F2(t−τ). That is, the probe field has a certain delay τ from
the probe. What we end up with is a physical situation where the total field
can be written as the following [6]:

F (t) = F1(t) + F2(t − τ), (77)

with the frequency representation of the above being simply given by

F̃ (ω) = F̃1(ω) + F̃2(ω)eiωτ (78)

Using this, the following follows directly from equation 74 that one can write:

Afg = −i∫
∞

−∞

dωF̃1(ωfg − ω; τ)F̃2(ω; τ)Mfg(ω) (79)

We reiterate again that the above describes a pump-probe scheme, and it is
only the probe that is of interest to us in practice. After all, it is only the probe
excited electron that the KRAKEN protocol aims to study. In short, the pump
is the XUV pulse which is sent into the atomic gas in question. The pump
excites electrons such that photoelectrons are ejected. The IR fields then probe
the system in question, according to the above scheme. Keep in mind, however,
that the above only takes one probe into account. Whereas for the previously
described KRAKEN protocol there are two probe fields.

6.2 Two-photon transition matrix element M
What we want to do now is examine how we can write the expression in equation
75. Here we consider the case of a Fano resonance.

6.2.1 Some general properties

Before moving on, we will examine some general properties of the matrix ele-
ment M. Indeed, this matrix element will require the lengthiest mathematical
treatment in this thesis, and as such we will start with an overview. What we
want to do is make an expansion in terms of the eigenstates ∣ψαε⟩, by using
the completeness relation on Mfg [6]. Using the fact that α corresponds to a
discrete set of states and ε is our continuous energy variable,

∫ dε ∣ψαε⟩ ⟨ψαε∣ = 1. (80)

Note that we here only consider one channel α, as opposed to summing over
many different such channels. We also do not consider any additional bound
states below the continuum, in which case using the symbol ⨋ would be more
appropriate than the integral sign. These approximations will be discussed
shortly. Inserting the completeness relation in equation 80 into the expression
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for M seen in equation 75, we get

Mfg = ∫ dε ⟨f ∣O ∣ψαε⟩ ⟨ψαε∣G+(ωg + ω)O ∣g⟩

= ∫ dε ⟨f ∣O ∣ψαε⟩ ⟨ψαε∣
1

ω + ωg −H + i0+O ∣g⟩ .

Now, we can use the fact that H ∣ψαε⟩ = ε ∣ψαε⟩ as well as ⟨f ∣O ∣ψαε⟩ = Of,αε
and ⟨ψαε∣O ∣g⟩ = Oαε,g to arrive at

Mfg(ω) = ∫ dε
Of,αεOαε,g

ωg + ω − ε + i0+
. (81)

6.2.2 M for one continuum

What we want to do now is consider how the matrix element M behaves for
our specific cases, i.e. helium and argon, respectively. We start by considering
helium, in which case we only need to consider one continuum.

Writing the general expression for M for this case we get:

MβE,g(ω) = ∫ dε
⟨ψβE ∣O ∣ψαε⟩ ⟨ψαε∣O ∣g⟩

ωg + ω − ε + i0+
(82)

Now, our task is to rewrite equation 82 to a more manageable form, which
can be done using equation 31, since the dipole transition is subject to Fano
resonances:

⟨ψαε∣O ∣g⟩ = εεa + qãg
εεa + i

Oαε,g, (83)

where, just like in our original discussion of Fano resonances, we have the dipole
transition matrix element to the continuum states of the α channel (Oαε,g)
modified by the bound state. This gives the rational expression, containing the
q parameter, as a factor. Substitution of this expression in equation 82 gives us

MβE,g(ω) = ∫ dε
⟨ψβE ∣O ∣ψαε⟩
ωg + ω − ε + i0+

εεa + qãg
εεa − i

Oαε,g (84)

Now, what we need to do is consider what happens with the dipole transition
⟨ψβE ∣O ∣ψαε⟩. Unlike expression 31, here we have a transition from a continuum
state to another continuum state. The derivation of this dipole transition matrix
element is complicated, and we refer to the original paper by J́ımenez-Galán for
a more complete treatment [6].

What we will do here is simply state that the expression in equation 84 can
be written as follows

MβE,g(ω) =
εEa + qãg
εEa + i

OβαOα,g
ωg + ω −E + i0+ (85)

+ (βa −
1

εEa + i
) (qãg − i)

OβαOα,g
ω − ωãg

, (86)
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where we have introduced the parameter βa = πOβ,aVaα/Oβα. The above can
now be inserted into the integral expression 74 which gives us our final expression
for the transition amplitude. But before that, we need to look at a special
function that needs to be employed here [6].

In the above expressions, we have introduced Oβα(E), which we define as the
integral of the actual transition amplitude OβE,αε over a small energy interval:

Oβα(E) = ∫
E+δ

E−δ
dε ⟨ψβE ∣O ∣ψαε⟩ (87)

For a deeper understanding of this, we once again refer to the J́ımenez-Galán
paper [6]. For the purposes of this thesis, the form with the overline (on the
left-hand side of equation 87) is the only one that needs to be considered.

6.2.3 Faddeeva function formalism

Now that we have arrived at a useful expression forM, we need to examine one
more aspect of the transition amplitude A before the final expression can be
presented. For the purpose of manageable numerics, special functions were em-
ployed, and the formalism will be discussed here. We begin by writing equation
74 on the following form [6]:

Afg = −i∫
∞

∞

dωF̃2(ωEg − ω; τ)F̃1(ω)MβE,g(ω) (88)

The physical interpretation of equation 88 above is that we have a two-photon
transition from an initial state ∣g⟩ with energy ωg, to a final state ∣βE⟩ with
energy E. This process occurs through an absorption/emission of a photon (here
labeled 1) which we consider as a Gaussian pulse of shape F1, with frequency
ω1, centered around t1 = 0, and a subsequent absorption/emission of a photon
labeled 2, as a Gaussian pulse of shape F2 (with frequency ω2) centered around
t2 = t1 + τ = τ . We proceed by considering the following treatment of the
matrix element M, as seen in the Appendix of the J́ımenez-Galán paper [6]:

MβE,g(ω) ∼
1

ω − ωag
(89)

In order to continue, one can rewrite equation 88 in a more general form without
the integral. The fields in question are assumed to be Gaussian, so one ends up
with the following (n = 1,2):

F̃n(ω) = ∫ Fn(t)eiωt dt

= Fn ∫ e−σ
2
n(t−tn)

2
/2 cos [ωn(t − tn)]eiωt dt

= Fn ∫ e−σ
2
n(t−tn)

2
/2 1

2
[ei[ωn(t−tn)] + e−i[ωn(t−tn)]]eiωt dt,

where Fn is the amplitude of the field (the n:th pulse), ωn is the central fre-
quency, tn is the starting time and σ is the temporal pulse width. Note especially
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that the expression substituted for Fn(t) is simply a standard representation of
a Gaussian pulse in the time domain. The integral above splits into two terms,
which correspond to absorption and emission, respectively. The exponent with
the negative sign corresponds to absorption and the one with the positive sign
corresponds to emission. Since we are only interested in absorption, we choose
to study the negative term exclusively. Thus we only consider the following
contribution:

F̃n(ω) =
Fn
2
∫ e−σ

2
n(t−tn)

2
/2e−i[ωn(t−tn)]eiωt dt. (90)

We perform a variable substitution by shifting the integration variable by +t0,
which gives a more manageable form of the above expression. We will also
perform yet another substitution. All of this is done as follows:

F̃n(ω) =
Fn
2
eiωtn ∫ exp{−σ2

nt
2/2 − iωnt − iωt} dt. (91)

Using the substitution u = σnt/
√

2 we get

F̃n(ω) =
Fn
2

√
2

σn
eiωtn ∫ exp{− [u2 + i

√
2

σn
(ω − ωn)u]} du (92)

= Fn
2

√
2

σn
eiωtn ∫ exp

⎧⎪⎪⎨⎪⎪⎩
−
⎡⎢⎢⎢⎢⎣
(u + i 1√

2σn
(ω − ωn))

2

+ 1

2σ2
n

(ω − ωn)2
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
du

(93)

=
√
π

2

Fn
σn
eiωtnexp{− 1

2σ2
n

(ω − ωn)2} (94)

By inserting equation 94 and 89 into 88 we arrive at one of the key expressions
of this thesis:

Afg = −i∫
∞

−∞

dω F̃2(ωfg − ω; τ)F̃1(ω)
1

ω − ωag
(95)

= − iπ
2

F2F1

σ2σ1
∫

∞

∞

dω
e−i(ωEg−ω)τ

ω − ωag
e
−
(ωEg−ω−ω2)

2

2σ2
2 e

−
(ω−ω1)

2

2σ2
1 (96)

What is done in the Jiménez-Galan paper, then, is rewriting equation 96 so
that we can employ special functions for the purpose of easier numerical treat-
ment. Specifically we use the Faddeeva function, which can be written with the
following integral form [6]:

w(z) = i

π
∫

+∞

−∞

dt
e−t

2

z − t , Im(z) > 0 (97)

So we want to rewrite the integral expression using 97. The following form is
from the J́ımenez-Galan paper [6], and will be presented here without further
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explanation:

Afg = −
iπ

2

F2F1

σ2σ1
exp(− δ2

2σ2
− τ2

2σ2
t

− iσ2
σ1

τ

σt

δ

σ
+ iω2τ)

× ∫
∞

∞

dω
exp [− 1

2
(σtω + σ1

σ2

δ
σ
+ i τ

σt
)
2
]

ω1 + ω − ωag

Here we have introduced some new variables defined by σ =
√
σ2
1 + σ2

2 , σt =√
σ−21 + σ−22 and δ = ωg + ω1 + ω2 - E. Note that E here is not the same as ω.

The latter is our integration variable and the value E denotes the continuum
state energy corresponding to the state ∣βE⟩. This rewrite is performed in the
paper by J́ımenez-Galán [6], and will not be demonstrated in detail in this thesis.
By comparing the above to the expression in equation 97, we find the following:

za =
σt√

2
[ω1 −

σ2
1

σ
δ − i τ

σ2
t

− ωag] (98)

Again, we refer to the J́ımenez-Galán paper for this result [6]. So we have
the Faddeeva function formulation of the integral expression for the transition
amplitude, and we thus finally arrive at the following:

Afg = −
π2

2

F2F1

σ2σ1
e−iω2τ

× exp(− δ2

2σ2
− τ2

2σ2
t

− iσ2
σ1

τ

σt

δ

σ
+ iω2τ)w(za)

= F(τ)w(za)

where we in F(τ) collect all of the terms in front of the Faddeeva function.

6.2.4 Final expression

We now insert equation 86 into equation 74 to arrive at the final expression of
the transition amplitude:

Afg = −i∫
∞

−∞

dωF̃ (ωfg − ω)F̃ (ω)M(2)
fg (ω)

= −i∫
∞

−∞

dωF̃ (ωfg − ω)F̃ (ω)

× [εEa + qãg
εEa + i

OβαOα,g
ωg + ω −E + i0+ + (βa −

1

εEa + i
) (qãg − i)

OβαOα,g
ω − ωãg

]

= −i εEa + qãg
εEa + i

OβαOα,g ∫
∞

−∞

dωF̃ (ωfg − ω)F̃ (ω) 1

ωg + ω −E + i0+

− −i(βa −
1

εEa + i
) (qãg − i)OβαOα,g ∫

∞

−∞

dωF̃ (ωfg − ω)F̃ (ω) 1

ω − ωãg
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Thus one gets two terms, and each of these can be rewritten using the Faddeeva
function, except with zE being dependent on a different E for the two terms,
due to the differences in their respective integrands’ denominators. The final
expression for the transition amplitude then becomes

AβE,g = F(τ)eiω2τOβαOαE,g

× [εEa + qãg
εEa + i

w(zE) + (βa −
1

εEa + i
) (qãg − i)w(zẼa)]

We want to employ some approximations to further simplify the above expres-
sion, which will give us the final expression we consider. The approximation we
consider is simply that we have εEa >> i as well as εEa >> qãg. This gives us

AβE,g = F(τ)eiω2τOβαOαE,g [w(zE) + (βe − ε−1Ea)(qãg − i)w(zẼa)] , (99)

which is the final expression that will be considered for the transition amplitude,
and the one to be used in the simulations.

6.3 Simulations

Here we present the result of simulations performed using equation 99. The
code was written by David Busto, and the input parameters in question are
chosen as follows: the resonance energy is set to 26.6 eV, the q parameter is set
to -0.25, Γres = 0.076 eV, and an IR wavelength of 790 nm, as well as an IR
bandwidth of 7 nm. For the XUV pulse we have a detuning of 0.05 eV and a
bandwidth of 0.1 eV.

We then get:

Figure 12: Simulation results for the parameters discussed above. The most in-
teresting part here is the blue graph, which shows the modules of the amplitude.
The orange graph, in contrast, shows the phase.

In figure 12 we see the amplitude modules for the absorption as blue graph,
and the phase as an orange graph.
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7 Simulations and limitations of KRAKEN

In this section the KRAKEN simulations will be examined in more detail, before
the possible extensions of KRAKEN are discussed. At first, we will demonstrate
that simulating KRAKEN actually does give the desired density matrix to a
very high fidelity. After that, the limitations of KRAKEN will be discussed. In
particular, the effects of the IR bandwidth on the sampling will be examined.

7.1 KRAKEN simulations

Now that the theory of two-photon transitions has been presented, and the
expression for the transition amplitude derived, we are ready to see how the
results of actual KRAKEN simulations.

Consider the case of Helium, where we have no entanglement due to the
absence of spin-orbit splittings and as such no state mixing occurs when mea-
suring the photoelectron state. The result is a pure state, but the principles of
recovering the density matrix remains the exact same.

Figure 13: Constructing the density matrix from a KRAKEN simulation. Figure
taken from [2].

Consider figure 13 above. In the top left, we have at first the sideband of a
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scan, compare with the experimental data in figure 4 b). This data corresponds
to S(ε, τ, δω), and in the top right figure we can see the Fourier transformed
data. From this the desired frequency component is extracted, and performing
this over and over one recovers the subdiagonals seen in the bottom left of figure
13. This data is then interpolated to give a clearer picture of the density matrix,
which can be seen in the bottom right.

In order to examine the fidelity of this simulation, the end result can be
compared with a density matrix acquired through a direct calculation. That is,
simply computing 58 directly and plotting the resulting matrix. The result of
this can be seen in figure 14 below. The top figure is the one from the direct
calculation and the bottom figure is from the KRAKEN simulation. As can be
seen, the two are near identical which indicates that the KRAKEN simulation
is indeed quite robust.

Figure 14: Comparison of KRAKEN simulation and direct calculation for the
amplitude of the density matrix of a helium EWP. The upper figure is the direct
calculation and bottom figure is the KRAKEN simulation. Figure taken from
[2].

7.2 Limitations of KRAKEN

Now, consider the effects of IR bandwidth on the KRAKEN simulations. Again,
the case of Helium is considered. Initially in the simulations, both of the IR
probes have IR bandwidths of 1.5 nm, which is approximately monochromatic.
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Then, one of the two IR probes is increased to 5, 10 and 20 nm, while the other
is kept at 1.5 nm. The results can be seen n figure

(a) Both probes with bandwidth 1.5
nm.

(b) One IR probe with bandwidth 1.5
nm and the other with bandwidth 5
nm.

Figure 15

(a) One IR probe with bandwidth 1.5
nm and the other with bandwidth 10
nm.

(b) One IR probe with bandwidth 1.5
nm and the other with bandwidth 20
nm.

Figure 16

As can be seen here, as the bandwidth of one of the IR probes increases, there
is an increasing region of information loss around the main diagonal. In order to
understand this behaviour, consider what it means for the pulses to be Fourier
limited. In this case, the most important consequence of the pulses being Fourier
limited is that the bandwidth is inversely proportional to the pulse duration. So
the broader the IR pulse becomes spectrally, the shorter its temporal duration.
Recall how the simulations are actually performed: in order to acquire the
transition amplitude A, a convolution between the two pulses (and also the M
dipole transition matrix element) has to be computed. Consider the coherences
around the main diagonal (which is where the information loss occured). There
the energy differences considered, i.e. between ε1 and ε2 are small (they are
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zero on the main diagonal). A small energy difference corresponds to a long
time. I.e. when taking the autocorrelation there is a longer time required to
actually recover the information. However, if the pulse duration is short (due
to the longer IR bandwidth) there is a possibility that the pulse is too short in
duration to scan over the energy difference. I.e. the pulse is too short to capture
all the information needed. This leads to information loss, and as the IR pulse
becomes broader the more coherences it becomes unable to recover. Hence the
growing information gap.

It is also important to understand that this is not a component of the physics
itself, but rather the sampling. This is lost information, which is impossible to
recover due to the sampling theorem. As such, this is a fundamental limitation
of the data analysis that KRAKEN requires to work.

8 Single-pulse KRAKEN

The second limitation of KRAKEN we consider is the fact that it is very ex-
perimentally demanding. What is meant by this is that KRAKEN takes a very
long time to perform (the order of magnitude here is dozens of hours). This
is because one scan is performed for each bichromatic IR pulse, to acquire one
subdiagonal at a time. The idea here is to examine if KRAKEN could be made
much quicker by employing a single IR pulse that could allow us to recover all
subdiagonals, as opposed to each IR pulse corresponding to the acquisition of
only one subdiagonal.

Two approaches to this idea were investigated. The first was to have a
chirped IR pulse, and the other was to employ an IR pulse with a square spec-
trum. Both of these will be discussed in detail here.

8.1 Chirped pulse

The first extension of KRAKEN that we examine in this thesis is adding a chirp,
i.e. a temporal variation of the frequency, to one of the IR probe fields. The main
idea here is, as we outlined before, to examine whether the scan of frequencies
can be replaced by the use of a chirped pulse. The mathematical treatment
presented here will be analogous to sections 6.2.3 and 6.2.4. We examine how
adding chirp changes the final expression for the transition amplitude that is to
be employed numerically.

In figure 17 below the situation at hand can be seen, with the previous case
for KRAKEN discussed in section 2 contrasted with the chirped case to be
studied here.
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Figure 17: Time-frequency graphs describing the bichromatic IR probe field.
In the left figure, we have two monochromatic pulses represented by constant
frequencies in time. To the right we have added linear chirp to one of the pulses,
so it becomes a straight line in the time-frequency plane. The other probe pulse
remains unchirped.

So we have two IR pulses above and give one of them a chirp, i.e. the
instantaneous frequency is a straight line with an incline specified by a chirp
parameter.

8.1.1 Implementation of chirp

To understand the effect of adding a chirp to the pulse, the derivations and
results acquired in the paper by J́ımenez-Galán were studied in detail. We start
by writing the chirped Gaussian in the following form [10], where we analogously
to the previous discussion have the two pulses denoted by n = 1,2:

Fn(t) = Fne−σ
2
n(t−tn)

2
/2 cos [ωn(t − tn) + βn(t − tn)2], n = 1,2. (100)

and also
β1 = 0, β2 ≠ 0, (101)

since only one of the probe fields is chirped.
This is simply the expression for a Gaussian pulse profile but with a chirp

added, as seen by the extra phase term βn(t−tn)2. Similarly to before, Fn is the
amplitude of the pulse, σn is the temporal width, ωn is the central frequency of
the pulse, tn is a constant time and βn is the so-called chirp parameter. This
means that we get an instantaneous angular frequency given by (here φn(t) is
the phase)

dφn
dt

= ωn + 2βn(t − tn),

such that a straight line of slope 2βn specifies how quickly the instantaneous
angular frequency changes as a function of time. In order to find the transition
amplitude, we simply use this new chirped Gaussian to perform a derivation
analogous to the one in section 3.
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Considering only the absorption term:

F̃n(ω) =
Fn
2
∫ exp{−σ2

n(t − tn)2/2 − i[ωn(t − tn) + βn(t − tn)2] + iωt} dt

(102)
We then perform substitutions of the same kind as was done to compute the in-
tegrals for the Faddeeva function. We thus end up with an expression analogous
to the one we have seen before:

Fn
2
e−iωtn ∫ exp{−σ2

nt
2/2 − i[ωnt + βnt2] + iωt} dt

= Fn
2

√
2

σn
e−iωtn ∫ exp{−(1 + i2βn/σ2

n)u2 + i
√

2

σn
(ω − ωn)u} du

= Fn
2

√
2

σn
e−iωtn ∫ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(1 + i2βn/σ2

n)
⎡⎢⎢⎢⎢⎣
u2 −

i
√

2
σn

(ω − ωn)
1 + i2βn/σ2

n

u

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
du

We treat the above by performing completion of the square for the expression
inside the exponential. Doing this we get

Fn
2

√
2

σn
eiωtn ∫ exp

⎧⎪⎪⎨⎪⎪⎩
−(1 + i2βn/σ2

n)
⎡⎢⎢⎢⎢⎣
(u − i(ω − ω0)√

2σn(1 + i2βn/σ2
n)

)
2

+ (ω − ωn)2
2σ2

n(1 + i2βn/σ2
n)2

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
du

= Fn√
2σn

eiωtn exp{ −(ω − ωn)2
2σ2

n(1 + i2βn/σ2
n)

}
√
π√

1 + i2βn/σ2
n

.

We introduce gn = σ2
n(1+ i2βn/σ2

n) so that we can rewrite the above as follows:

Fn√
2
eiωtnexp{−(ω − ωn)

2

2gn
}
√

π

gn
(103)

Now, we can finally consider equation 79 since we have arrived at an expression
for the integrand. We get the following:

AβE,g =
πF2F1

4
√
g1g2

∫
1

ω − ωag
ei(ωEg−ω)τe−(ωEg−ω+ω2)

2
/2g2e−(ω+ω1)

2
/2g1dω (104)

Note that equation 104 is on the same form as equation 96, except σn has been
substituted with

√
gn. This allows us to immediately consider the Faddeeva

function formalism, as long as the substitution of σn is made. Doing this we
arrive at the following:

AβE,g = −
iπ

2

F2F1

4
√
g2g1

exp(− δ2

2σ2
− τ2

2σ2
t

− i
√

g2
g1

τ

σt

δ

σ
+ iω2τ) (105)

× ∫
∞

∞

dω
exp [− 1

2
(σtω +

√
g1
g2

δ
σ
+ i τ

σt
)
2
]

ω1 + ω − ωag
(106)

= π
2

2

F2F1

4
√
g2g1

exp(− δ2

2σ2
− τ2

2σ2
t

− i
√

g2
g1

τ

σt

δ

σ
+ iω2τ)w(za) (107)

= F(τ)w(za) (108)
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where we have that

za =
σt√

2
[ω1 −

g1
σ2
δ − i τ

σ2
t

− ωag] , Im(za) > 0

as well as σ =
√
g1 + g2 and σt =

√
g−11 + g−12 . Now we can simply follow the

same steps as demonstrated in section 4, since the matrix element M is not
affected by the pulse shape Fn(t). And it is the pulse shape that is actually
affected by the chirp.

So we simply end up with

AβE,g = F(τ) (w(za) + (βe − ε−1Ea)(qãg − i)w(zẼa)) ,

8.1.2 Outlook on the chirp method

While the above mathematics are deemed to be robust, there still has not been
enough work done on simulations for any results to be presented on the matter.
More work thus needs to be done.

8.2 Square spectrum

Now the effects of bandwidth, and how to treat the data given these effects, are
to be examined. To start, consider what happens to the interaction Hamiltonian
when we take into account that we do not have monochromatic light, but rather
broadband radiation centered around our frequency of interest.

Consider the previously shown derivation of the KRAKEN protocol. If one
observes just one of the two probe fields, the interaction Hamiltonian due to the
IR field can be written as

Hir(t) =
h̵√

2πσ2
f(t)eiω(t+τ)Πω. (109)

where the Gaussian pulse shape has been replaced with a more general f(t).
Moving forward, f(t) will be chosen so that we have a rectangular pulse in
the frequency domain, which would imply a sinc function in temporal repre-
sentation, though the specifics of the temporal shape are not of interest here.
The reason for this choice of pulse shape will become clear in the following
derivations. It should also be noted that rectangular pulse shapes are a decent
approximation of the kind of pulses employed, perhaps even more so than the
Gaussian shape.

The pulse shape in frequency representation is

f(ω) = θ(ω − ω0 + σω/2) − θ(ω − ω0 − σω/2),

where ω0 is the central frequency and σω denotes the spectral width.
Considering an analogue to the derivation of the KRAKEN protocol, we

have the following:
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⟨ε∣ρxuv+ir ∣ε⟩ = ⟨ε∣ρxuv ∣ε⟩ + ⟨ε∣ΠρxuvΠ† ∣ε⟩ + ⟨ε∣Π†ρxuvΠ ∣ε⟩ +O(g4c) (110)

In this case, we have Π = gωΠω, because we only have one IR pulse, with a
square profile in the frequency plane (which is why we don’t also have an ω+δω
term).

Now, consider the contribution from one of the above terms with Πω oper-
ators. One ends up with

⟨ε∣ΠωρxuvΠ
†
ω ∣ε⟩ = ∫ dωdε′dω′dε′′ gωg

∗

ω′µε′+ω ,ε′µ
∗′

ε′+ω ,ε′

× ⟨ε∣ε′ + ω⟩ ⟨ε′∣ρxuv ∣ε′′⟩ ⟨ε′′ + ω′∣ε′′⟩ ,

where we now have

gω = eiωτ(θ(ω − ω0 + σω/2) − θ(ω − ω0 − σω/2)) = eiωτhω, (111)

We rewrite the above by using ⟨ε∣ε′ + ω⟩ = δ(ε′ + ω − ε) = δ(ε′ − (ε − ω)) and
equivalently for the other braket expression. This gives us the following integral
expression:

S1 = ∫ dωdε′dω′ gωg
∗

ω′µε′+ω ,ε′µ
∗′

ε′+ω ,ε′δ(ε′ − (ε − ω)) ⟨ε′∣ρxuv ∣ε − ω′⟩

which can be rewritten as

S1 = ∫ dωdω′ gωg
∗

ω′µε′+ω ,ε′µ
∗′

ε′+ω ,ε′ ⟨ε − ω∣ρxuv ∣ε − ω′⟩ (112)

Now, consider the contribution from the other term, and call it S2, such that
we get the complete lowest-order contribution S = S1 + S2. This second term,
i.e.

⟨ε∣Π†
ωρxuvΠω ∣ε⟩ (113)

is extremely similar to the one we already saw, in fact it is purely a complex
conjugate of the contribution from the other term. As such we can ignore its
contribution when simulating the results.

Now, we consider which oscillation frequency we have in expression 112. By
considering equation 111, the dependence on the shear frequency can be seen
from the following:

gωg
∗

ω′ = eiδωτhωh∗ω′ , (114)

where δω = ω − ω′. To arrive at the final expression, we Fourier transform the
integral expression in equation 112. The important thing to note is

F(ei(ω−ω
′
)τ)∝ δ(ω − ω′ − x) (115)

Where x is the transform variable, which is a frequency since we transform from
the time domain (specified by τ) to the frequency domain (specified by x). We
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set x as δω. Also keep in mind that in the simulation we set the µ terms to
unity, and for that reason those are excluded from this treatment. The Dirac
delta function we get by performing this transform turns equation 112 into the
following:

SF ∼ ∫ dω hωh
∗

ω−δω ⟨ε − ω∣ρxuv ∣ε − (ω − δω)⟩ , (116)

where

h∗ω−δω = hω−δω = θ(ω − δω − ω0 + σω/2) − θ(ω − δω − ω0 − σω/2) (117)

and x is δω as previously used. Considering the overlap between the two rect-
angular pulses we get the following:

SF ∼ ∫
ω0+σω/2

ω0−σω/2+δω
ρxuv(ε − ω + δω, ε − ω)dω, (118)

Here we have used the product of rectangular functions to simply cut off the
integration interval. Note the new notation for the integrand. ρ(a, b) here is
simply ⟨a∣ρ ∣b⟩ written in a more compact form. Taking the gradient of this in
the ω direction we get the following:

∂SF ∼ ρxuv(ε−ω0−σω/2+δω, ε−ω0−σω/2)−ρxuv(ε−ω0+σω/2, ε−ω0+σω/2−δω).
(119)

Thus there are two terms which contribute to this gradient. When applying this
to data analysis, the goal would be to isolate one of the terms. This is because
each of these terms is, individually, a density matrix element (just evaluated for
different arguments). The attempts at solving this problem numerically will be
outlined in the next section.

8.2.1 Protocol applied to data

What we now want to do is to examine what happens when the above protocol is
applied to simulation data. We start by considering the case of an IR bandwidth
of 500 nm. This number was somewhat arbitrarily chosen, but the main idea
is that the two terms in equation 119 are completely separated. Recall that
while bandwidth in question is the IR bandwidth, the two terms of the density
matrix correspond to the XUV pulse. So a sufficiently large IR bandwidth
corresponds to an essentially complete separation of the two XUV density matrix
components.

Now, consider the part of the delay scan from which we acquire the infor-
mation used in KRAKEN, as in the case of figure 4 b). This part of the scan
can be seen in figure 18 below:

As outlined in the theoretical description of the KRAKEN protocol, the
above scan is Fourier transformed to extract the desired frequency component,
which can be seen in figure 19 below:
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Figure 18: The oscillating part of the scan, which has the pump-probe delay on
the vertical axis and energy on the horizontal axis. Equivalent to figure 4 b).

Figure 19: Fourier transform of the scan seen in figure 18.

Now, as outlined in the theoretical description of the square spectrum proto-
col, we take the gradient of the Fourier transformed scan seen in figure 19 above.
Doing this, as predicted one gets two components for which one provides the
desired density matrix.
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Figure 20: The gradient of the Fourier transform of the spectrum plotted. This
matrix is thus equivalent to what we have in equation 119.

In the above figure, we see the plotted equivalent of equation 119, and as ex-
pected we see the two terms distinguished clearly with this choice of bandwidth.
What we want to do is to focus on just one of these terms, and perform some
appropriate Matlab operations to get the axes to match the simulation result
used in the original KRAKEN paper [2]. In more specific terms, the circshift
function was used to ”straighten out” the elements in the left matrix, to align
it with the axes in such a way as to match the density matrix discussed in the
previous sections. Doing this, we get the following result:

Figure 21: The data in figure 20 reworked so that we see half and have prepared
the left side to reconstruct the density matrix (hence the new angles).
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Here we have circshifted one of the components to get a result which more
closely matches the one we see in the original KRAKEN paper [2]. We can see
that the left part is exactly the desired density matrix, except it’s only half of
it and the scale is slightly off. Dealing with these two things, we end up with
the following:

Figure 22: The data in figure 21 treated such that we take the left one of the
two contributions and rework the axes such that we recover the density matrix.
Note that the result in that figure is now mirrored and conjugated across a
diagonal, as should be done to construct a density matrix.

Which we can see is exactly the density matrix that was recovered through
quantum state tomography through simulations in the original paper [2]. Now,
consider the phase. The phase can be recovered from the interference between
the two components that give the coherences.
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Figure 23: Phase corresponding to the density matrix in figure 22.

The above figure is also very consistent with the results found in the original
paper [2]. Now, the above results are for a very ideal case. Having an extremely
spectrally broad and flat IR pulse is an ideal case, which is extremely difficult to
actually achieve experimentally (and literally not possible with any experimental
equipment available for this research). This result is simply an indication that
equation 119 is consistent with the same kinds of simulations as the ones used
in the KRAKEN paper [2]. So the next step is to study what happens when
we actually decrease the IR bandwidth. We start by considering half of the
above IR bandwidth, i.e. 250 nm. Since 500 nm gave us more or less complete
separation, we expect that when we take 250 nm we have that the two terms in
equation 119 overlap such that for each of them, half is isolated from the other,
but the remaining half is overlapping with it. Where this overlap occurs, we see
a loss of information that we want to work around.

The solution for this case is, in principle, very simple. We can simply choose
to take the information from the two isolated halves and combine them into one
to reconstruct the above density matrix. Doing this, we end up with the figure
below:
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Figure 24: Attempt at reconstructing the density matrix for an IR bandwidth
of 250 nm. Notice where the two halves meet, we have a loss of information,
as evident by the inconsistency between this result and the one seen in figure
22, not to mention the evident discontinuity which is also inconsistent with the
physics at hand.

As can be seen in figure 24, we have recovered essentially the same matrix as
the density matrix we are looking for, except a slight loss of information occur-
ring near the middle, where the two halves are ”cut off”. One can suspect that
a further decrease of the IR bandwidth is going to lead to further loss of infor-
mation until the protocol is no longer usable for analyzing actual experimental
data.
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Figure 25: Attempt at reconstructing the density matrix for an IR bandwidth of
125 nm. Notice that the loss of information is quite significant, when compared
to figure 22, much more so than in figure 24. At this point, the protocol is no
longer robust enough to be usable in experiments.

Indeed, as can be seen in figure 25, the loss of information has become quite
significant. Not only is the matrix thinner across the anti-diagonal (representing
the main diagonal of the density matrix), but the distortion of the picture around
the middle is much more significant. At this stage, as we approach values for
bandwidth more similar to the ones used in the lab, the protocol falls apart and
is no longer usable for real experiments. This means that while equation 119
seems to be powerful, at least when considering simulation results, there is yet
a robust method for using this to actually deal with broadband contributions
to experimental data. One should take equation 119 as being the main result
of this section, with the simulation result for 500 nm being the indication of its
validity. The remaining discussion regarding the shortening of the IR pulse’s
spectral width is a negative result as is.

8.2.2 Two square pulses

The case considered here is one for which we only have one IR pulse, and where
both the single IR pulse and the XUV pulse are square in the frequency domain.
By having a large IR bandwidth of 500 nm, we can easily examine the feasibility
of the above square pulse protocol.

Direct calculation gives the following density matrix:
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Figure 26: Direct calculation of density matrix for two square pulses, with IR
bandwidth 500 nm.

Taking the gradient of the fourier transformed spectrum, as described in the
protocol, one gets the following result:

Figure 27: Gradient of the spectrum for two square pulses, with the same pulse
parameters as for the direct calculation case.

Comparison with the theoretical protocol tells us that we have two terms
and what to isolate one of them. Taking exclusively the left part of the above
figure, and rearranging in Matlab, one ends up with the following result:
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Figure 28: Left side of the gradient of the spectrum, with circshift employed to
make the angles closer to the direct calculation case.

As can be seen here, we can acquire the density matrix for this case using
this method. The same information is contained here as was seen in figure 26.

9 Summary and conclusions

In this work the proposed KRAKEN protocol has been discussed. This dis-
cussion has been separated into roughly two parts. One of them is aimed at
explaining the protocol in question, with special attention being given to provid-
ing the necessary theoretical background to understanding not only the protocol
in principle, but also how it was implemented numerically in simulations.

To this end, we began by describing the principles of the KRAKEN protocol.
In short, it is a form of quantum state tomography (QST), which means that it
aims to provide a way of reconstructing a density matrix by changing a frequency
variable in measurements. Specifically a pump-probe scheme was considered
where the probe is a bichromatic IR field. Having the transitions driven by two
IR pulses and one XUV pulse respectively, one finds that the Fourier transform
with respect to delay (and evaluated at the shear frequency) is proportional
to the subdiagonals of the density matrix. This means that varying the shear
frequency allows us to reconstruct the density matrix of the photoelectron and
thus KRAKEN is a QST protocol.

Special care was taken to motivate a choice of electron wave packet (EWP) to
study. The two requirements were that it needed to have an interesting enough
structure, and that it needed to exhibit entanglement to justify the use of a
QST protocol over, for example, RABBIT. The case study chosen was argon.
The structure came from Fano resonances, and the entanglement came from
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the spin-orbit splitting of the energy level under consideration. Following that,
the amplitude of the density matrix of the EWP in question was studied (from
direct calculation).

KRAKEN simulations were then discussed, starting with a theoretical de-
scription of two-photon transitions, to show the theory underlying the code.
After that, a comparison was made between direct calculation and KRAKEN
simulation for the case of an EWP from helium ionization.

The next part of the thesis is a discussion of the limitations and extensions
of the KRAKEN protoco. As for limitations, special attention was given to
the limitation given by the IR bandwidth, and its effects were demonstrated
through simulation.

The extension was focused on overcoming the issue of KRAKEN being exper-
imentally very demanding. The possible solution investigated was a so-called
single pulse KRAKEN, for which two variants were suggested. The first was
the use of a chirped IR pulse, and the second was the use of a square spectrum
IR pulse. Neither of these were fully extended into a functioning KRAKEN
simulation.
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