
SELF-SUPERVISED LEARNING

LAND CLASSIFICATION OF SATELLITE IMAGERY

ROBERT SKOGLUND

Bachelor’s thesis
2022:K19

Faculty of Science
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Bachelor’s Theses in Mathematical Sciences 2022:K19
ISSN 1654-6229

LUNFMS-4067-2022

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

Abstract

The rise of self-supervised learning has granted a deeper level of generalized machine learning,
capable of learning semantic representations without any use of labelling. With 700 satellites orbiting
Earth and generating terabytes of unlabelled data daily, satellite imagery serves as a particularly en-
ticing data set for self-supervised learning, containing rich information with many applicable domains,
such as agriculture. Could one, for example, train a model to predict harvest yields on farmland based
on representations learnt with self-supervised learning?

To explore the capacity of self-supervised learning in the context of agriculture and remote sensing,
i.e. studying phenomena from a distance using technology such as drone and satellites, we attempt to
build a simple binary classifier classifying satellite images as farmland or not-farmland using the self-
supervised visual representation learning algorithm SimCLR developed by Google. The dataset used
was the BigEarthNet-S2 dataset captured by the Copernicus Sentinel-2 satellites. For comparison, a
multi-class classifier was trained using an identical procedure on the visual object recognition dataset
TinyImageNet. Self-supervised training of the network and supervised training of linear classifier were
performed simultaneously, as the SimCLR authors report that this achieves similar performance as
sequential self-supervised and supervised training.

TinyImageNet training metrics revealed successful self-supervised learning, however it was evident
that the model would benefit from longer training and further experimentation with hyperparameters.
The highest top-1 accuracy achieved was 41.66%. As for BigEarthNet-S2 : after training the linear
classifiers, the evaluation metrics revealed poor predictive accuracy and generalization capacity, ob-
taining sensitivities of approximately 60%. The poor evaluation metrics were however not attributed
to poor training or choice of hyperparameters, but rather to the poor pairing of the classification task
and dataset. Namely, the multi-labelled BigEarthNet-S2 dataset contained too semantically diverse
information with regards to the binary classification problem. This problem is intrinsic to the nature
of multi-labelled data, containing overlapping classes and an arbitrary level of relevance for each la-
bel. After the analysis, improvements and methodological changes are proposed, such as utilizing a
dataset with semantically distinct classes or fine-tuning with another niched dataset for a specialized
downstream task.

i

Acknowledgements

I would like to express my sincere gratitude to Alexandros Sopasakis for his unending support and
supervision during my thesis, as well as introducing me to an exciting domain of research I had not
yet discovered.

I would also like to thank my beloved family for their unwavering support and motivation throughout
my studies.

ii

Contents

1 Introduction 1
1.1 Aim . 2
1.2 Context . 2

2 Background & Theory 3
2.1 Machine Learning . 3

2.1.1 Self-Supervised Learning . 3
2.2 Artificial Neural Networks . 4

2.2.1 Linear regression . 4
2.2.2 Perceptron . 5
2.2.3 Multilayer Perceptron . 6
2.2.4 Classification . 8
2.2.5 Convolutional Neural Networks . 10
2.2.6 Residual Networks . 12

2.3 Optimization . 14
2.3.1 Gradient Descent . 14
2.3.2 Stochastic Gradient Descent . 14
2.3.3 Minibatch Stochastic Gradient Descent . 15
2.3.4 Momentum . 15
2.3.5 Adaptive Learning Rate . 15
2.3.6 Layer-wise Adaptive Rate Scaling . 16

2.4 Image Processing . 16
2.5 SimCLR . 18

3 Method 21
3.1 Data . 21
3.2 Evaluation . 22

3.2.1 Data partitioning . 23
3.3 Model & Training . 23

4 Results 24
4.1 TinyImageNet Results . 25
4.2 BigEarthNet Results . 29

iii

5 Discussion 31
5.1 Results Discussion . 31
5.2 Conclusion and Further Research . 33

A Appendix 35
A.1 TinyImageNet: Further Training . 35

A.1.1 Batch size N = 256 . 35
A.1.2 Batch size N = 1024 . 37
A.1.3 Tabular Summary . 38

iv

Chapter 1

Introduction

Machine learning has proved its ability to solve many high-level problems, such a distinguishing
between cats and dogs or learning how to drive a car. Humans are still however superior in one
sense: we seem to learn faster. For example, children can distinguish between cats and dogs within
a few instances of exposure, while machines need thousands of examples to complete the same task.
Humans can also learn to drive a car in under 50 hours but autonomous cars need thousands of hours
of training data in order to drive. This comparison however fails to highlight the innate components
of human intelligence: common sense. It is unfair to assume that humans do not have previously
acquired knowledge, either innate or experienced, that contributes to our ability to learn quickly.
For this reason, the problem of forming generalised intelligence or common sense is significant within
artificial intelligence research.

The demonstrated success of machine learning is particularly high in specialized tasks with large
amounts of labelled data. Learning through such a supervised approach has an inherent bottleneck:
it requires too much labelling. Labelling demands many resources, be it time, expertise or money, and
is very inefficient. By developing some sort of common sense in machines, could machines learn with
as few examples and as quickly as humans?

Self-supervised learning is considered one of the most promising areas to develop such a common
sense in machines. The defining principle in self-supervised learning is that it constructs a supervised
learning task from unlabelled data, where the supervised task is often chosen to leverages the underly-
ing data structure of the data. To evaluate the ability of the self-supervised system, one has to define
a supervised task, known as the downstream task.

The field of remote sensing, studying objects and phenomena from a distance often using satellite
imagery, generates a massive amount of data. Over 700 satellites currently orbit Earth and generate
terabytes of data daily [8]. Since labelled satellite imagery is limited, one can utilize self-supervised
learning to leverage the massive amounts of unlabelled data to develop intelligent systems. Such
systems could solve interesting problems within remote sensing, and in particular: agriculture.

With the rise of Internet of Things (IoT) and autonomous vehicles, the agricultural sector has
become exceedingly more automated. For example, soil nutrition/moisture is measured in fields with
sensor technology, tractors are equipped with self-driving and intelligent irrigation systems, etc. By
further utilizing satellite imagery, measuring a wide range of the electromagnetic spectrum, farmers
can obtain valuable insights of their fields, such as potential yields or harvest.

1

1.1 Aim

The aim of this thesis is to investigate the performance of self-supervised learning in the context of
agriculture and remote sensing. Specifically, the performance of the SimCLR self-supervised learning
algorithm by Google will be tested on satellite imagery, namely the BigEarthNet-S2 dataset captured
by the Copernicus Sentinel-2 satellites, and compared to the performance when trained on the visual
object recognition dataset TinyImageNet.

1.2 Context

The thesis is a small contribution to the agricultural AI project AI i klimatets tjänst, a collaboration
between Lund University and companies Hush̊allningssällskapet, T-kartor and Sensative. The hope
is that by using feature representations of the satellite imagery, processed through the trained self-
supervised network, one can predict crop yields. With accurate yield predictions, farmers are able to
optimize the business operations such as pricing and storaging.

2

Chapter 2

Background & Theory

This section is an introduction to self-supervised learning and relevant domains leveraged in the
SimCLR algorithm.

2.1 Machine Learning

Machine learning is the study of algorithms that learn from data with the objective to perform a some
sort of decision-making task, such as prediction or classification. Machine learning is typically catego-
rized into two mainstream approaches: supervised and unsupervised, which are defined by their usage
of labelled and unlabelled data sets respectively [9]. The focus of this paper, self-supervised learning,
is a newer approach commonly thought to be an intermediate of the supervised and unsupervised
machine learning.

2.1.1 Self-Supervised Learning

Self-supervised learning (SSL) is a machine learning approach composed of two phases or tasks: the
pretext and downstream task. The pretext task uses unlabelled data to encode feature representations,
which are later utilized for the main problem at hand, namely the downstream task [1]. In order to
produced semantically meaningful features, the pretext task needs very be carefully designed [7]. For
this reason, a common theme in many pretext tasks is to leverage the inherent properties of the
data, such as predicting a hidden property of the data, or solving a puzzle-like problem. Examples of
pretext task include masked word prediction in natural language processing and patch arrangement
in computer vision [1]. In practice, training on the pretext task is often followed by further training
on a smaller data set more relevant to the downstream task. For this reason, training via the pretext
task is referred to as pretraining whilst the latter is called fine-tuning.

The unique advantage of SSL is its ability to utilize unlabelled data. Directly annotating data is
time-consuming, requiring human labour and become particularly costly when needing expert knowl-
edge. By leveraging transfer learning in SSL, i.e. knowledge transfer from the pretext to downstream
task, one can generate a robust model despite having limited data in the objective task.

3

Figure 2.1: Pretraining and fine-tuning schema

2.2 Artificial Neural Networks

Within machine learning artificial neural networks (ANNs) are powerful tools for modelling tasks such
as classification and prediction. In supervised learning, neural networks are used to train network
parameters with respect to a data set with the hope of being able to predict a relevant set of features.
Supervised machine learning problems can be divided into four components [11]:

• Data: the data we want to our model to learn from.

• Model: the model that we are training with respect to the labelled data.

• Objective function: a performance metric comparing our model prediction to the ground
truth data set. Also known as cost function.

• Optimization Algorithm: the algorithm determining how to adjust out model’s parameters
to optimize the objective function.

This sub-chapter will attempt to introduce ANN theory from a bottom-up approach, beginning
with linear regression single-layer neural networks and ending with deep neural networks with more
complex architectures.

2.2.1 Linear regression

Let f(x) be an unknown function of interest defined on an unknown domain D and {(x(i), y(i))}ni=1 a
set of n observations of f(x), where x(i) ∈ Rd is a column vector,

x(i) =
[
x
(i)
1 x

(i)
2 . . . x

(i)
d

]T
,

4

that is independently and identically distributed (i.i.d.) for i = 0, . . . , n, and y ∈ R a scalar. A
linear regression model assumes an affine relationship between the explanatory variables {xi}ni=0 and
response variable {y(i)}ni=0, explaining the individual variability with a disturbance ε such that,

y = w0 + x1w1 + x2w2 + · · ·+ xdwd + ε = xTw + ε, E(ε) = 0, V ar(ε) <∞,

where w ∈ Rd+1 is the column vector of weights. The model can also be written in matrix form,

y = Xw + ε,

where,

y =


y(1)

y(2)

...

y(n)

 , X =


1 —x(1)T—

1 —x(2)T—
...

...

1 —x(n)T—

 =


1 x

(1)
1 . . . x

(1)
d

1 x
(2)
1 . . . x

(2)
d

...
...

. . .
...

1 x
(n)
1 . . . x

(i)
d

 , ε =


ε(1)

ε(2)

...

ε(n)

 .

In the context of machine learning, the constant w0 is referred to as the bias whereas the set {wi}ni=1

are referred to as the weights. We distinguish between the weights and bias, denoted b, by omitting
the bias from the weight vector w, reducing its dimension to Rd.

The goal of linear regression is to find a function h(x,w, b) that best approximates f(x) over D.
We denote our model-based predictions ŷ, having the form,

ŷ = x1w1 + x2w2 + · · ·+ xdwd + b = xTw + b =: h(x,w, b).

A common objective function for linear regression is the mean square error (MSE),

L(w, b) = MSE(w, b) :=
1

n

n∑
i=1

(
ŷ(i) − y(i)

)2
=

1

n

n∑
i=1

(
x(i)Tw + b− y(i)

)2
The optimal parameters for the weight and bias (w∗, b∗) of the model can be found by minimizing the
MSE. The optimal parameters are therefore,

w∗, b∗ = argmin
w,b

L(w, b).

2.2.2 Perceptron

A perceptron is a binary classifier with a structure corresponding to that of a neuron in a neural
network. The perceptron’s structure is analogous to that of a linear regression model, being composed
of data, weights, a bias, and an output. The output of a perceptron i, denoted oi, is defined as,

oi =

{
1, if xTw + b ≥ 0,

0, if xTw + b ≤ 0.

A visual scheme of a perceptron is provided in Figure 2.2. When counting the depth or amount of
layers in a neural network, we count the number of layers with tunable weights. Since the perceptron
only has one layer with tunable weights, it’s depth is one. Single-layer neural networks can also have
several outputs, as shown in Figure 2.3.

5

Figure 2.2: Perceptron

Figure 2.3: Single-layer neural network

2.2.3 Multilayer Perceptron

The multilayer perceptron (MLP) is a development of the perceptron, introducing more layers and non-
linear activation functions. These properties are characteristic in deep learning, where one utilizes deep
ANNs with many layers.

Layers

In MLPs, hidden layers are incorporated between the input layer and output layer. Often, all layers
in an MLP are fully-connected, meaning that each node is one layer is connected to every node in the
subsequent layer.

Nonlinearity & Activation Functions

An activation function defines the output of a neuron given the input, weights and bias. Since the
perceptron is a binary classifier, the activation function is a binary step function. Denote each node
in a hidden layer hi = xTw(i) + b(i). In vector form, we can express the hidden layers {hi}ni=1 as

h = xTW (1) + b(1),

where W ∈ Rd×q and b ∈ Rq represents the weights and biases of the hidden layers respectively, with
q denoting the number of nodes in the hidden layer. Similarly, the outputs {oi}ni=1 can be defined in
vector form as,

o = hTW (2) + b(2).

6

Figure 2.4: Multilayer Perceptron (MLP)

We can thus express the outputs linearly,

o = (xTW (1) + b(1))W (2) + b(2)

= xTW (1)W (2) + b(1)W (2) + b(2)

= xTW + b

where,

W = W (1)W (2), b = b(1)W (2) + b(2).

Being able to express the outputs linearly causes the hidden layers to become redundant. To realize
the full potential of the hidden layers, MLPs use non-linear activation functions. Denote σ(·) as
multivariate function containing the activation functions for h. By applying non-linear activation
functions to the hidden layers h, we can no longer express o linearly, but instead as

o = hTW (2) + b(2), h = σ(xTW (1) + b(1)).

To build deeper MLPs, we stack the hidden layers, for example,

h1 = σ1(x
TW (1) + b(1)), hi = σi(hi−1W

(i) + b(i)), i = 2, 3, . . .

One of the most common activation functions is the rectified linear unit (ReLU) function, defined as,

ReLU(x) = max(0, x). (2.1)

Others popular non-linear activation functions include the sigmoid functions such as the logistic func-
tion and hyperbolic tangent function.

7

2.2.4 Classification

In practice, many problems strive to classify inputs into a set of predefined categories, rather than
predict. Given the observations (X,Y) = {(x(i), y(i))}ni=0 and a class set C = {ci}mi=1, the goal of
classification is to classify a new input into one of classes in the class set C. To create such a classifier,
one can train an ANN designed such that it has m outputs, each output corresponding to one class.
The output oi represents the probability of the input x belonging to class ci, denoted P (y = ci |x).
In order for the outputs o = {oi}mi=1 to represent probabilities, they must be non-negative and sum to
one. To guarantee these properties, the softmax function is applied, defined as,

softmax(o)i =
eoi∑m
k=1 e

ok
.

When applied to output o, the result is a vector ŷ = [ŷ1, . . . , ŷm]T such that,

ŷi = softmax(o)i.

To represent the true class of a particular input x, we use a so-called one-hot encoding, a m-vector
where m is the number of classes. The one-hot encoding contains zeroes at all entries except the kth
entry, where k corresponds to the true class ck, which contains a one, i.e.

onehot(k)j =

{
1 if k = j,
0 if k 6= j.

(2.2)

Maximum Likelihood Estimation

A common objective function within logistic regression and classification is the maximum likelihood
estimator, where the objective is to maximize the likelihood of observing the training data (X,Y) given
some model parameter(s) θ.

Definition 2.2.1. Let X be a discrete random variable X with outcome x. The likelihood function
of the parameters θ = (θ1, . . . , θd) given the outcome x of random variable X is defined as,

L(θ |x) = P (x | θ) = pθ(x),

where pθ(x) is a probability mass function dependent on model parameters θ.

Given many observations X = {xi}ni=1 that are conditionally independent, the likelihood can be
represented as a product,

L(θ |X) = P (x1, x2, . . . , xn, | θ) =

N∏
i=1

pθ(xi) =
∏
x∈X

pθ(x)Nq(x) ,

where q(x) denotes the relative frequency of outcome x in the observation set X. By taking the negative
log-likelihood, i.e. the negative of the natural logarithm of the likelihood L(θ |X), and dividing by N
one gets,

− 1

N
logL(θ |X) = − 1

N

∑
x∈X

log pθ(x)Nq(x) = −
∑
x∈X

q(x) log pθ(x).

8

The last expression is known as the cross-entropy of p relative to q, denoted H(p, q), and is a common
loss function used in the training of classification models [11]. It is evident that maximizing the
likelihood is equivalent to minimizing the cross-entropy and negative log-likelihood since the logarithm
is a monotonically increasing function.

Cross Entropy Loss

Cross-entropy originates from field of information theory, the study of transmission and processing of
digital information. Before delving directly to cross-entropy, relevant terms from information theory
are introduced along with some intuition.

Definition 2.2.2. Given a discrete random variable X and probability mass function pX(x), the
information content or surprisal of measuring X as outcome x is defined as

IX(x) = log

(
1

pX(x)

)
= − log(pX(x)).

The surprisal of an outcome x is meant to quantify the amount of surprise upon observing the outcome
x, a basic quantity intrinsically related to probability that provides particular mathematical advantage
within information theory. In information theory, surprisal encodes the amount of information pro-
vided by an event x, using the unit bit and nat when the logarithm has base 2 and base e respectively.
In digital communications, for example, one can effectively use memory by encoding common events
to messages containing less information.

Figure 2.5: Probability vs. surprisal. Probabilities tending towards zero and one have surprisals
tending to infinity and zero respectively.

Definition 2.2.3. Given a discrete random variable X with possible values x1, x2, . . . , xi and proba-
bility mass function pX(x), the entropy H(X) is defined as

H(X) = E log

[
1

pX(x)

]
= −

∑
x

pX(x) log pX(x),

where E denote the expectation.

Intuitively, the entropy quantifies the expected surprisal of a random variable.

9

Definition 2.2.4. Given a discrete random variable X with possible values x1, x2, . . . , xi, and two
probability distributions (p.d.’s) p(x) and q(x), the cross-entropy of p relative to q is defined as

H(p, q) = Ep log

[
1

q(x)

]
= −

∑
x

p(x) log q(x),

where Ep denote the expectation with respect to p.d. p. Note that H(p, q) 6= H(q, p).

Let ŷ and y represent an empirical and true p.d. respectively. In the context of training an ANN
classification model with m classes {ci}mi=1, ŷ would represent softmax layer output as an m-vector,
where,

ŷi = softmax(o)i =
eoi∑m
j=1 e

oj
,

represents the probability that input x belongs to class ci. If the input x belongs to class ck, the true
p.d. y would be a one-hot encoding of size m with the one placed at position k. Since the all weight
is put on class ck in the true p.d. y, one can simplify the cross entropy of the true relative to the
empirical p.d. H(y, ŷ) to,

H(y, ŷ) = −
m∑
i=1

yi log ŷi = − log ŷk = − log
eok∑m
i=1 e

oi
,

which will be a reoccurring representation in the contrastive loss function defined in Section 2.5
SimCLR. In practice, an objective function will calculate the average over many samples,

1

n

n∑
k=1

H(y(k), ŷ(k)) = − 1

n

n∑
k=1

(m∑
i=1

y
(k)
i log ŷ

(k)
i

)
,

where n is the number of samples. Let the predicted label of a feature x with label y be denoted as
ŷ = fθ(x). Given the feature-label pairs {(x(i), y(i))}ni=0, the optimal parameter vector θ∗ for a model
optimized with cross-entropy loss can then be defined as,

θ∗ = argmin
θ

1

n

n∑
k=1

H(y(k), ŷ(k)) = argmin
θ

1

n

n∑
k=1

H(y(k), fθ(x
(k)))

2.2.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) is a type of ANN designed mainly for applications within
computer vision. CNN architectures can be split into to sections containing different types of layers:
the feature learning and classification section. The feature learning section consists of two types of
layers: convolutional and pooling layers.

• Convolutional layers: applying convolutions across image using kernel filters with a prede-
termined size, stride and padding. Note that filters can have more than two dimensions, as in
for example filters for RGB images. The term kernel refers to the convolution applied to each
channel, whereas the term filter refers to the full set of kernels applied to all channels. Several
convolutions can be applied in one layer, outputting an array of ’feature maps’.

10

• Pooling layers: reducing the dimension of an image or feature map by pooling batches of pixels
together. This is often done either by taking choosing the maximum pixel of the batch (max
pooling) or averaging the pixels of the batch (average pooling).

After a number of convolutional and pooling layers, the classification section begins with a flattening of
the feature maps, i.e. consecutively storing the rows of the feature maps as one column. With the data
now being in vector form, an MLP is applied to classify the original input image in a predetermined
set of class. This is often done by outputting a vector with elements corresponding to probabilities of
the image belonging to a certain class, classifying the image to the class with the highest probability
after a (softmax) layer.

Definition 2.2.5. Given an image f and a kernel g, the 2D discrete convolution is defined as,

(f ∗ g)[i, j] =
∑
a

∑
b

f [a, b] · g[i− a, j − b].

Figure 2.6: Convolution operation displayed visually

Figure 2.7: CNN Architecture Example

11

2.2.6 Residual Networks

The intention of stacking layers in deep ANNs is to enrich the features of the model, however stacking
layers can also lead to the degrade features. This problem, known as the degradation problem, causes
model accuracy to become saturated and eventually rapidly decrease. The cause of this problem is
not a result of overfitting, but is rather attributed to poor weight initialization, a poor optimization
function, or the notorious the problem of vanishing/exploding gradients.

One solution to the degradation problem are residual blocks. Residual blocks utilize skip-connections,
which work by propagating activations to a layer two or three layers ahead in addition to the subse-
quent layer [5]. Skip-connections counteracts the degradation problem in two ways:
(i) alleviating the vanish gradient problem by providing shortcuts during back-propagation, and (ii)
allowing the model to learn an identity function, making sure that higher layers do not perform worse
than lower layers. Neural network architectures utilizing residual blocks are referred to as residual
networks or ResNets.

Figure 2.8: Left: Residual block. Right: Bottleneck residual block.

ResNet-50

The ResNet-50 is a particular ResNet variant with 50-layers using a modified residual block referred
to as a bottleneck residual block. Bottleneck residual blocks skips three layers (instead of two as in
regular residual blocks), where the three intermediate layers are convolution layers with kernel sizes:
1x1, 3x3, and 1x1 from beginning to end respectively. The bottleneck variant was implemented to
deeper ResNet archictectures due concerns of training time. Findings show that the deeper ResNet
variants (maximum 152-layer) perform better on top-1 and top-5 error rates on ImageNet relative to
shallower variants.

12

Layer name Output size Layer contents

conv1 112x112 7x7, 64, stride 2

3x3 maxpool, stride 2 1×1, 64
3×3, 64
1×1, 256

 ×3

conv3 14x14

1×1, 128
3×3, 128
1×1, 512

 ×4

conv4 7x7

 1×1, 256
3×3, 256
1×1, 1024

 ×6

conv5 7x7

 1×1, 512
3×3, 512
1×1, 2048

 ×3

1x1 5

56x56conv2

Table 2.1: ResNet-50 Architecture for ImageNet [5]. Matrices represent the bottleneck residual blocks,
where each entry consists of the the kernel size followed by the number of kernels. The multiple after
the matrix, say n, means that the block is repeated n times.

13

2.3 Optimization [11]

Given an objective function L and a training set (X,Y) = {(x(i), y(i))}ni=1, the optimal parameters of
the hypothesized model is found by solving the optimization problem,

θ∗ := argmin
θ

L(θ).

In words, the optimal parameters are the parameters that minimize the objective function. In this
chapter, we introduce the most common optimization algorithms used in practice as well as the LARS
optimizer, an optimizer particularly useful for self-supervised learning.

2.3.1 Gradient Descent

Gradient descent, also called batch gradient descent, is a first-order iterative optimization algorithm.
Once a starting point θ0 is initialized, gradient descent searches for the minimum by iteratively taking
steps in the opposite direction of the gradient at a point with a set step size, also known as learning
rate η. Mathematically, the iteration i can expressed as,

θi+1 = θi − η∇L(θi),

where the objective function L is defined as a sum over each observation in the dataset, i.e.

L(θ) =
1

n

n∑
i=1

l(i)(θ) =
1

n

n∑
i=1

l(h(x(i), θ), y(i)) =
1

n

n∑
i=1

l(ŷ(i), y(i)).

The function l(·, ·) is called the loss function and defines an error metric between a prediction ŷ =
h(x, θ) and its true value y.

Gradient descent has several drawbacks. For large datasets, the calculation of the gradient ∇L(θ)
is very costly and redundant when data points are similar. Limited computer memory can also pose a
problem with large datasets. Lastly, gradient descent doesn’t allow us to add new data to our dataset
during training, characterizing the algorithm as offline.

2.3.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a variant of gradient descent where each iteration evaluates the
gradient of one observation at a time, rather than the gradient of the whole dataset/batch,

θi+1 = θi − η∇L(θi),

L(θ) = l(ki)(θ) = l(h(x(ki), θ), y(ki)),

where ki ∈ {1, . . . , n} is an uniformly-random chosen index number at iteration i. It can be shown
that the gradient for SGD is unbiased, that is,

E[∇l(ki)(θ)] =
1

n

n∑
i=1

∇l(i)(θ).

The variance, however, is n times larger for SGD estimate compared to the estimate for batch gradient
descent.

14

2.3.3 Minibatch Stochastic Gradient Descent

Minibatch stochastic gradient descent (minibatch-SGD) is another variants of gradient descent which
addresses the problems in the aforementioned variants. In minibatch-SGD, a minibatch B of uniformly
random sample of data points from the training data X = {(x(i), y(i))}ni=0 are utilized in the objective
function. The size of the minibatch, denoted |B|, is a predetermined hyperparameter. The objective
function L therefore has the form,

L(θ) =
1

|B|
∑
i∈B

l(h(x(i), θ), y(i)).

It can be shown that the gradient estimate is unbiased, i.e.

E
[1

|B|
∑
i∈B
∇ l(h(x(i), θ), y(i))

]
=

1

n

n∑
i=1

∇l(i)(θ),

and has a variance |B| times smaller than that of the SGD estimate.
By using |B| data points per iteration, the gradient calculation is significantly less computation-

ally expensive and the demand on memory is minimized. SGD also grants online learning, meaning
that we can add new data to our dataset during training. When utilizing graphical processing units
(GPUs) and parallelization, minibatch-SGD has a particularly high computational efficiency.

Note: To guarantee the convergence to an global or local minimum of gradient descent algorithms,
one has to demand criteria such as convexity. In practice, these criteria are typically not fulfilled yet
still demonstrate success.

2.3.4 Momentum

Adding momentum to the optimization is a common way of accelerating learning and gradient descent.
Momentum implements an exponential moving average of the gradient terms from previous iterations,
thereby preventing large oscillations in valley-like surfaces and increasing the rate of descent. With
momentum implemented, one iteration of gradient descent is defined as,

vi+1 = γvi + η∇L(θi),

θi+1 = θi − vi+1,

where v0 = 0 and γ ∈ (0, 1) is a hyperparameter specifying the window of the exponential moving
averages. The larger γ chosen, the larger the affect of previous steps on the current step.

2.3.5 Adaptive Learning Rate

In the previous optimization algorithms, the learning rate is kept the same for each iteration and for
each of the individual parameters inside the parameter vector θ. When too large, constant learning
rates will cause the algorithm to diverge from the minimum, whereas when too small, can substantially
slow the learning process. By making learning rates adaptive, the learning rate can change for each
iteration as well as for each individual parameter.

15

2.3.6 Layer-wise Adaptive Rate Scaling [4]

Layer-wise Adaptive Rate Scaling (LARS) is an optimizer specifically designed to facilitate large batch
training of deep neural networks. Large batch training allows fewer number of iterations per epoch,
and by parallelizing the workload, training becomes very effective. A common observation for large-
batch training is however poor generalization error, attributed to the fact larger-batches favour sharper
minima relative to smaller batch sizes. The LARS optimizer has proven to enable large-batch training
of deep ANNs up to batch sizes of 32K. It manages to achieve this by scaling the learning rate for
each layer of the neural network separately based on the ratio of the Euclidean norm of the weights
to the Euclidean norm of the gradients for that layer.

2.4 Image Processing

Gaussian Blur

The Gaussian blur is a common blurring technique in image processing which convolves the image
with a Gaussian kernel [10]. The Gaussian kernel has a predetermined integer size (odd, to ensure
a center) and variance σ2. The continuous isotropic (i.e. circularly symmetric) Gaussian function
G(x, y) with variance σ centered at (x, y) = (0, 0) is defined as,

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 .

To generate a Gaussian filter, the continuous Gaussian function needs to be discretized. This can be
done by a number of different ways, such as picking the midpoint of each pixel or integrating over all
values through each pixel, where the pixels have with some predetermined dimensions.

(a) Continuous (b) Discrete

Figure 2.9: Continuous vs. discrete Gaussian functions. Centered at (x, y) = (0, 0) with variance
σ2 = 1 and pixel size (l, w) = (0.5, 0.5). Discretized by choosing midpoint of pixel.

The values of a discrete Gaussian distribution can also be approximated by binomial coefficients [3],

B(n, p) =
n!

(n− p)!p!
, n, p ∈ N, 0 ≤ p ≤ n.

Such an approximation can be visualised in Figure 2.10. An example of a Gaussian kernel approxi-
mated by binomial coefficients is:

16

Figure 2.10: Normalized binomial coefficients B(n, p), n = 20, p = 0, 1, . . . , 20.

1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 =
1

256


1
4
6
4
1

 [1 4 6 4 1
]
.

With a given Gaussian kernel and image, the image is blurred by applying a 2D discrete convolution.

Color Distortion

This subsection describes color distortion in the context of relevant framework, SimCLR, detailed in
the next chapter.
Color distortion is composed of two transformations:

• Color jitter: defined by four consective random augmentations, manipulating: brightness,
contrast, saturation and hue of the image. The augmentations have no particular order, and are
shuffled upon each call in practice.

• Color drop: converting the RGB image to gray-scale.

(a) Normal (b) Gaussian blur

Figure 2.11: Blur comparison

17

2.5 SimCLR

SimCLR is an algorithmic framework developed by Google for learning visual representations using
contrastive learning [2]. Contrastive learning, a common theme within self-supervised learning, is an
approach to learning based on the premise that similar data samples should have similar representa-
tions and dissimilar data samples should have dissimilar representations in the latent feature space.
The SimCLR framework, visualized in Figure 2.12 and detailed in pseudocode in Algorithm 1, is
composed of fours major components:

1. Stochastic Data Augmentation:
The learning process begins with an image x which is augmented in two ways, denoted x̃i and
x̃j , by applying a sequence of random transformation from a predefined family of augmentations
T . The operators t, t′ ∼ T represent the two different augmentations. The sequence of random
transformations consists of: random cropping followed by resize back to the original size, random
color distortions and random Gaussian blur.

2. Base Encoder:
A neural network base encoder f(·) that transforms that augmented images into vector repre-
sentation, denoted h. Thus, hi = f(x̃i) and hj = f(x̃j). The encoding function f(·) is the
ResNet-50 neural network, as in Table 2.1.

3. Projection Head:
The projection head g(·) is a MLP with one-hidden layer, analogous to the MLP in Figure 2.4,
mapping h to the space where contrastive loss is taken place. The output of the projection head
is z, defined as z = w(2)σ(hTw(1)), where σ is the ReLU function (Def. 2.1) and wi, i = 1, 2
represents the weights of the layers.

4. Contrastive Loss Function:
Since N images are augmented in two ways we are left with 2N images. During the training of
the ANN model, an objective function L(·) looping through all 2N images is used,

L =
1

2N

N∑
k=1

[
l(2k − 1, 2k) + l(2k, 2k − 1)

]
, (2.3)

l(i, j) = − log
exp (si,j/τ)∑2N

k=1 1k 6=i exp (si,k/τ)
, si,j =

zTi zj
||zi||||zj ||

,

where l(·, ·) is called the normalized temperature-scaled cross entropy loss, abbreviated to NT-
Xent, and si,j is the cosine similarity of zi and zj . Note the similarity between l(i, j) and
equation (2.2.4) representing the simplified cross entropy, with the most prominent difference
being the addition of a temperature factor τ in l(i, j). This contrastive loss function is chosen
due to its correspondence to the contrastive pretext task: classifying the augmented images as
having the same or different origins.

18

Figure 2.12: SimCLR Framework.

Comparison

SimCLR considerably outperforms other self-supervised and semi-supervised methods on classification
on the ImageNet dataset, achieving a 76.5% and 93.2% accuracy for top-1 and top-5 classification
respectively. The previous state-of-the-art was CPCv2 with a 52.7% and 77.9% accuracy for top-1
and top-5 respectively. SimCLR even manages to match the performance of a supervised ResNet-50
classifier. A summary of the result is provided in Figure 2.13.

Figure 2.13: ImageNet Top-1 accuracy of linear classifiers trained on representations learned with
different self-supervised methods (pretrained on ImageNet). Gray cross indicates supervised ResNet-
50.

19

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N , constant τ , structure of f, g, T .
for sampled minibatch {xk}Nk=1 do

for all k ∈ {1, . . . , N} do
draw two augmentation functions t ∼ T , t′ ∼ T

the first augmentation
x̃2k−1 = t(xk) # representation
h2k−1 = f(x̃2k−1) # projection
z2k−1 = g(h2k−1)
the second augmentation
x̃2k = t′(xk) # representation
h2k = f(x̃2k) # projection
z2k = g(h2k)

end for
for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do

si,j = zTi zi/||zi|| ||zi|| # pairwise similiarity
end for
define l(i, j) as l(i, j) = − log

exp si,j/τ∑2N
k=1 1k 6=i exp si,j/τ

L = 1
2N

∑N
k=1[l(2k − 1, 2k) + l(2k, 2k − 1)]

update networks f and g to minimize L
end for
return encoder network f(·) and throw away g(·)

20

Chapter 3

Method

3.1 Data

Two datasets will be used in this thesis: TinyImageNet and BigEarthNet-S2.

TinyImageNet

TinyImageNet is a dataset of 200 generic generic classes, such as tractor, fur coat, barrel, with each
image having the dimensions 64× 64. Two dataset splits are used: the train and test split. The train
split contains 200 images per class, corresponding to 100,00 images, whereas the test split contains 50
images per class, corresponding to 10,000 images. Example images/labels are shown in Figure 3.1

(a) Bus (b) Penguin (c) Pretzel

Figure 3.1: TinyImageNet examples

BigEarthNet

The dataset utilized in this thesis is the RGB-configured BigEarthNet-S2 captured by the Copernicus
Sentinel-2 satellites. The original dataset contains satellite imagery of over 10 countries in Europe
which are divided into 590326 non-overlapping image patches. Each image has the dimensions 120×120
pixels, corresponding to 1.2×1.2 km on the ground, thereby each pixel corresponding to 10 meters. The
dataset is multi-labelled with 43 imbalanced labels. This implies that each image contains several labels
and that the dataset cannot be divided into clearly divided into non-overlapping classes. Examples of
images and their corresponding labels are in Figure 3.2.

21

(a) Construction sites, Vineyards, Pastures, Complex cultivation patterns,
Broad-leaved forest, Transitional woodland/shrub, Water courses.

(b) Discontinuous urban fabric, Mineral extraction sites, Pastures, Sea and
ocean.

(c) Non-irrigated arable land, Permanently irrigated land, Agro-forestry areas,
Coniferous forest, Mixed forest.

Figure 3.2: BigEarthNet-examples

3.2 Evaluation

To evaluate the quality of the representations learnt by SimCLR a downstream task needs to be
established. We choose to use the common linear evaluation protocol, where a linear classifier is
used as an evaluation metric. The linear classifier is a single-layer neural network with a softmax
function applied at the output layer. Training the linear classifier is relatively straight-forward for
TinyImageNet since it has distinguished, non-overlapping classes, however BigEarthNet-S2 it is a
multi-labelled. Therefore each image needs to be categorized from a chosen set of non-overlapping
classes. Categorizing semantically-diverse images with many labels into distinct classes requires a
significant amount of generalization. To maintain simplicity, we choose to build a binary classifier
classifying images as farmland or not-farmland. We define farmland as any image containing any of
the following labels:

• Complex cultivation patterns

• Land principally occupied by agriculture, with significant areas of natural vegetation

• Non-irrigated arable land

These labels were chosen as they appear semantically similar when observing samples from the dataset.

22

3.2.1 Data partitioning

The SimCLR algorithm provided by Google gives the option to train the ResNet-50 base encoder
and conduct supervised training of the linear classifier simultaneously, since this achieves similar
performance as sequential training of base encoder and linear classifier [2]. Therefore only one data
split is needed for training and another to evaluate the trained network, the testing set. One quarter
of the BigEarthNet-S2 dataset is partitioned with a 3:1 training to testing ratio.

Training Testing

109830 36610

Table 3.1: BigEarthNet-S2 : number of images in each split

TinyImageNet has the following pre-determined splits.

Training Testing

100000 10000

Table 3.2: TinyImageNet : number of images in each split

3.3 Model & Training

Training occurs in two ways simultaneously: self-supervised pretraining and supervised training of the
linear classifier. Pre-training will train the ResNet-50 base encoder and projection head as detailed in
Algorithm 1. The training of the linear classifier has no influence on the base encoder and only trains
the the parameters of the single-layer neural network according to the downstream classification task.
The two datasets have different purposes: TinyImageNet is used to verify that learning via SimCLR
indeed works, whereas BigEarthNet-S2 is experimental with the hope of confirming that contrastive
learning is effective within remote sensing.

Training will be run for 50 epochs with a learning rate η = 1.0 for both datasets. We choose to
train the model in six variations for TinyImageNet, with three and two distinct values of the batch
size and the contrastive learning temperature respectively. BigEarthNet-S2 on the other hand was
trained with four variations, changing both the batch size and the contrastive learning temperature
twice.

Batch size N 256 1024 - / 2048

Temperature τ 0.25 0.5 -

Table 3.3: Hyperparameter values to be tested

After the initial results, the most successful hyperparameters for TinyImageNet are chosen for
further testing into training length, where the number of epochs trained are increased to 100, 200, 400
epochs.

As the original SimCLR paper warns that training may be unstable when using standard SGD/Momentum
optimizers for large batch sizes, we opt to use the recommended LARS optimizer.

23

Chapter 4

Results

In this section, model training and evaluation metrics are presented. Training metrics consist of
contrastive and supervised accuracies and loss, with definitions provided below.

• Contrastive accuracy: the accuracy of the the contrastive prediction task of SimCLR’s pretext
task.

• Contrastive loss: the loss contrastive function as defined in equation (2.3), facilitating the
contrastive self-supervised learning.

• Supervised accuracy: the accuracy of the base encoder in the downstream classification task:
classifying farmland.

• Supervised loss: the cross-entropy loss of the true classes with respect to the predicted classes,
as detailed in equation (2.2.4).

For TinyImageNet the evaluation metrics consist of the top-1 and top-5 classification accuracy and a
per-class top-1 accuracy bar chart. For BigEarthNet-S2 the evaluation metrics consist of the classifi-
cation accuracy as well as an normalized confusion matrix, displaying the relative predictive accuracy
for farmland vs. not-farmland classes. Along with this, the final accuracy, sensitivity and specificity
of the classifier are presented in a table for BigEarthNet-S2. Since the behaviour of the training and
evaluation metrics appear very similar for many of the training variations, a cohesive analysis sum-
marizing all the variations is performed, rather than analysing each training variation separately.

Note:

• The bar chart of top-1 accuracy per class in TinyImageNet is sorted in order from highest
accuracy to lowest accuracy, meaning that the indices do not correspond to a common class
throughout the results.

• A few of the plots begin at training epoch 10 due since training began from a checkpoint from
a saved model.

24

4.1 TinyImageNet Results

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Top-1 accuracies per class

Top-1 Accuracy 32.26%

Top-5 Accuracy 58.08%

(d) Predictive metrics

Figure 4.1: Learning with batch size N = 256 and temperature τ = 0.25 for 50 epochs

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Top-1 accuracies per class

Top-1 Accuracy 26.38%

Top-5 Accuracy 52.41%

(d) Predictive metrics

Figure 4.2: Learning with batch size N = 256 and temperature τ = 0.5 for 50 epochs

25

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Top-1 accuracies per class

Top-1 Accuracy 29.10%

Top-5 Accuracy 54.65%

(d) Predictive metrics

Figure 4.3: Learning with batch size N = 1024 and temperature τ = 0.25 for 50 epochs

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Top-1 accuracies per class

Top-1 Accuracy 18.05%

Top-5 Accuracy 39.62%

(d) Predictive metrics

Figure 4.4: Learning with batch size N = 1024 and temperature τ = 0.5 for 50 epochs

26

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Top-1 accuracies per class

Top-1 Accuracy 26.47%

Top-5 Accuracy 51.02%

(d) Predictive metrics

Figure 4.5: Learning with batch size N = 2048 and temperature τ = 0.25 for 50 epochs

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Top-1 accuracies per class

Top-1 Accuracy 18.85%

Top-5 Accuracy 40.73%

(d) Predictive metrics

Figure 4.6: Learning with batch size N = 2048 and temperature τ = 0.5 for 50 epochs

27

(a) Top-1 accuracy (b) Top-5 accuracy

Figure 4.7: Accuracies for different batch sizes and temperatures after 50 training epochs

(a) Top-1 (b) Top-5

Figure 4.8: Accuracies for different number of training epochs and batch sizes with temperature
τ = 0.25

28

4.2 BigEarthNet Results

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Confusion matrix

Sensitivity 61.06%

Specificity 95.09%

Accuracy 88.89%

(d) Predictive metrics

Figure 4.9: Learning with batch size N = 256 and temperature τ = 0.25

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Confusion matrix

Sensitivity 58.51%

Specificity 96.44%

Accuracy 89.72%

(d) Predictive metrics

Figure 4.10: Learning with batch size N = 256 and temperature τ = 0.5.

29

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Confusion matrix

Sensitivity 61.06%

Specificity 95.09%

Accuracy 88.89%

(d) Predictive metrics

Figure 4.11: Learning with batch size N = 1024 and temperature τ = 0.25.

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

(c) Normalized confusion matrix

Sensitivity 63.31%

Specificity 92.83%

Accuracy 87.91%

(d) Predictive metrics

Figure 4.12: Learning with batch size N = 1024 and temperature τ = 0.5.

30

Chapter 5

Discussion

5.1 Results Discussion

TinyImageNet

For all the training varieties, the contrastive and supervised accuracies generally increase, giving a
preliminary suggestion that the training is successful. The contrastive and supervised accuracies do
however exhibit unique behaviours: the contrastive accuracy seemingly converges to around 50− 70%
whereas the supervised accuracy fluctuates more heavily in an upwards direction. Particularly notable
in the supervised training is the large drop of training accuracy towards the end of training for batch
sizes 256 and 1024, potentially linked to the inherent noise granted from the gradient estimation in
smaller batch sizes [6], or from a larger learning rate enabling steps out of basins in the loss surface.

The contrastive and supervised loss functions also exhibit similar behaviour for all hyperparame-
ters. Whereas the contrastive loss converges, the supervised loss increases substantially followed by a
convergent decrease. This initial increase may be due to a too large learning rate, which is regularly
scaled to an appropriate amount during the training by the LARS optimizer. Other dynamics in the
learning rate, such as the linear warm up or weight decay may also be the cause, however further
experimentation would be needed to confirm this. Another feasible explanation is the simultaneous
training of the base encoder and linear classifier: the base encoder is still learning appropriate pa-
rameters for the pretext task, implying that that produced feature vectors are not yet semantically
valuable. Only once the base encoder is trained enough can the linear classifier begin to successfully
train with respect to the downstream task.

Based on the summary from Figure 4.7, it is evident that the lower batch sizes and contrastive
temperatures yield better results, with batch size N = 256 and contrastive temperature τ = 0.25
performing the best, acquiring a top-1 and top-5 accuracy of 32.26% and 58.07% respectively. This
may be evidence for a finding by Nitish et al. [6], that claim smaller batch sizes tend to find flatter
minima due to increased noise in gradient estimation, thereby generalizing better than larger batch
sizes. The success of smaller contrastive temperatures, on the other hand, may be explained by
multiplicative effect on the cosine similarity. This has the effect of amplifying the differences between
similar features and enabling the model to more easily distinguish hard-negatives, i.e. features that
are similar but correspond to another label [2].

In attempt to acquire higher accuracies, further training was performed for the temperature τ =
0.25 and the batch sizes 256 and 1024. The results showed a steady increase of accuracy when the
number of epochs of training increased. An interesting observation is that despite the batch size

31

N = 256 performing better than batch size N = 1024 when training for fewer epochs, batch size
N = 1024 performs better when training for 400 epochs. This may be linked to an observation of the
original SimCLR [2], namely that contrastive learning benefits more from larger batch sizes and more
training steps. Upon observing the training plots however (see Appendix A.1), the contrastive accuracy
is substantially higher for batch size N = 256 for all training-lengths, suggesting that contrastive
representation learning is more successful for the smaller batch size. The resulting classification
accuracies on the test split remain relatively similar for both batch sizes for training-lengths of 200
and 400 epochs. The best performing run models for top-1 and top-5 accuracy were the models with
batch size/training-length 1024/400 (41.66%) and 256/200 (68.17%) respectively. Since the supervised
accuracies still seems to fluctuate during training, it is presumed learning is still taking place. To
determine the better hyperparameters, training should be performed longer.

BigEarthNet

As the training progresses, the contrastive and supervised accuracies increase consistently, suggesting
that the model is learning successfully. The contrastive accuracy appears to converge steadily during
training whereas the supervised accuracy does not seem to converge and has stronger fluctuations.
The supervised accuracy is also substantially higher from the beginning of the training process, imply-
ing that the supervised binary classification task is easier than the pretext task. No clear differences
are seen in the accuracies amongst the different training variations with the exception of the training
with batch size N = 1024 and temperature τ = 0.5, which displayed considerably smaller contrastive
accuracy. This was unexpected as contrastive learning benefits from larger batch sizes, perhaps ex-
plained by the phenomena that larger batch sizes prefer sharper minimas in the parameter space which
provide worse generalization ability [6].

Both the contrastive and supervised loss plots show convergent behaviour, indicative of successful
optimization and training. Although the losses seemingly converge, longer training can most prob-
ably minimize the loss even more. No noticeable differences are seen between the different training
variations in terms of loss, except the training variation with batch size N = 256 and temperature
τ = 0.5, which features an initial increase but then proceeds to decrease steadily. This was also seen
in the TinyImageNet training, potentially a result of learning rate dynamics, simultaneous training of
the base-encoder and classifier, etc.

Upon observing the model accuracy during evaluation, valued at approximately 89% for all training
variations, one can be easily mislead. Although the accuracy is high, the sensitivity, i.e. the probability
of classifying an image as farmland given that it truly is farmland, lies at approximately 60%. The
specificity on the other hand, i.e. the probability of classifying an image as not-farmland given that
it truly is not-farmland, is very high, approximately valued at 95%. These results may be a result
of a imbalanced dataset; only 18% of the data contains farmland. With relatively fewer instances of
farmland, the model will have had less opportunity to learn the semantic representations found in
farmland. The poor sensitivity may also be attributed to an data intrinsic issue: the instances of the
classes are not semantically different enough. Although the satellite images may have contained the
pre-defined farmland labels, they may also have contained other labels which semantically dominated
the image. For example, a satellite image of an urban landscape with a small segment of farmland
will still be granted as the class farmland.

32

5.2 Conclusion and Further Research

In this thesis, the learning capacity of the self-supervised SimCLR algorithm was investigated in
the context of visual object recognition and remote sensing using the datasets TinyImageNet and
BigEarthNet-S2 respectively. Self-supervised contrastive learning took place successfully for both
models, indicated by converging contrastive accuracy and loss, however the supervised accuracies
continue to fluctuate upwards, sometimes heavily, with no sign of convergence. This suggests that the
models are still learning and capable of learning more through continued training.

Despite smaller batch sizes and contrastive temperatures preferred for small training-lengths with
TinyImageNet, no clear preference of hyperparameters were shown for longer training. The highest
top-1 accuracy from all training variations models was 41.66%, obtained via training for 400 epochs
with batch size 1024, contrastive temperature τ = 0.25. Conducting a longer training with different
hyperparameter variations would be especially interesting for TinyImageNet, as it shows no bottlenecks
during learning.

As for BigEarthNet-S2 : despite a high classification accuracy, poor sensitivities of approximately
60% of the models suggest very limited generalization capacity. This limited generalization capacity is
not attributed to poor training or parameter tuning, but rather to a poorly chosen classification task
with respect to the dataset. In this case, the semantically diverse satellite images were too complex
for the binary classification task classifying farmland.

The intrinsic limitation of using BigEarthNet-S2, being multi-labelled, for a classification task
is the semantically diverse information present in each sample. For an initial evaluation of self-
supervised learning performance with satellite imagery, it would be a good idea to utilize a simple
dataset containing images with non-overlapping, semantically distinct classes. This would entail that
images contain strictly one label with one semantic context spanning the entire image.

If one insists to use multi-labelled dataset alternative downstream tasks should be considered.
Since multi-labelled image-based datasets contain so much diverse information, one might want to
explore the use of pixel-based downstream tasks such as semantic or instance segmentation.

Although studying the effect of other hyperparameters, such as learning rate, number of training
epochs, and augmentation strength, could potentially bring a higher predictive accuracy for the land
classification problem, it would be of higher interest to explore larger methodological changes. One
feasible alternative is to fine-tune the base encoder with a niched dataset for a specialized classification
task. In relation to remote sensing, one could fine-tune the pretrained network on satellite images of
farmland, paired with their yields, for yield prediction using a limited dataset.

33

Bibliography

[1] Alfredo Canziani and Yann LeCun. NYU Deep Learning, Spring 2020. 2020. url: https://
atcold.github.io/pytorch-Deep-Learning/.

[2] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. In:
CoRR abs/2002.05709 (2020). arXiv: 2002.05709. url: https://arxiv.org/abs/2002.05709.

[3] Moo K. Chung. 3. The Gaussian kernel. 2007. url: https://pages.stat.wisc.edu/~mchung/
teaching/MIA/reading/diffusion.gaussian.kernel.pdf.pdf.

[4] Vineet Gundecha. “Challenges of Large-batch Training of Deep Learning Models”. In: (2020).
url: https://infohub.delltechnologies.com/p/challenges-of-large-batch-training-
of-deep-learning-models/#:~:text=It%20has%20been%20consistently%20observed,

perform%20poorly%20on%20test%20data..

[5] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR abs/1512.03385
(2015). arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385.

[6] Nitish Shirish Keskar et al. “On Large-Batch Training for Deep Learning: Generalization Gap
and Sharp Minima”. In: CoRR abs/1609.04836 (2016). arXiv: 1609.04836. url: http://arxiv.
org/abs/1609.04836.

[7] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. “Revisiting Self-Supervised Visual Rep-
resentation Learning”. In: CoRR abs/1901.09005 (2019). arXiv: 1901.09005. url: http://
arxiv.org/abs/1901.09005.

[8] Oscar Mañas et al. “Seasonal Contrast: Unsupervised Pre-Training From Uncurated Remote
Sensing Data”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). Oct. 2021, pp. 9414–9423.

[9] Kevin P. Murphy. “Machine Learning A Probabilistic Perspective”. In: (2012).

[10] Ashley Walker Robert Fisher Simon Perkins. Gaussian Smoothing. 2003. url: https://homepages.
inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm.

[11] Aston Zhang et al. Dive into Deep Learning. https://d2l.ai. 2020.

34

https://atcold.github.io/pytorch-Deep-Learning/
https://atcold.github.io/pytorch-Deep-Learning/
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://pages.stat.wisc.edu/~mchung/teaching/MIA/reading/diffusion.gaussian.kernel.pdf.pdf
https://pages.stat.wisc.edu/~mchung/teaching/MIA/reading/diffusion.gaussian.kernel.pdf.pdf
https://infohub.delltechnologies.com/p/challenges-of-large-batch-training-of-deep-learning-models/#:~:text=It%20has%20been%20consistently%20observed,perform%20poorly%20on%20test%20data.
https://infohub.delltechnologies.com/p/challenges-of-large-batch-training-of-deep-learning-models/#:~:text=It%20has%20been%20consistently%20observed,perform%20poorly%20on%20test%20data.
https://infohub.delltechnologies.com/p/challenges-of-large-batch-training-of-deep-learning-models/#:~:text=It%20has%20been%20consistently%20observed,perform%20poorly%20on%20test%20data.
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1901.09005
http://arxiv.org/abs/1901.09005
http://arxiv.org/abs/1901.09005
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm
https://d2l.ai

Appendix A

Appendix

A.1 TinyImageNet: Further Training

A.1.1 Batch size N = 256

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

Figure A.1: Learning with batch size N = 256 and temperature τ = 0.25 for 100 epochs

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

Figure A.2: Learning with batch size N = 256 and temperature τ = 0.25 for 200 epochs

35

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

Figure A.3: Learning with batch size N = 256 and temperature τ = 0.25 for 400 epochs

36

A.1.2 Batch size N = 1024

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

Figure A.4: Learning with batch size N = 1024 and temperature τ = 0.25 for 100 epochs

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

Figure A.5: Learning with batch size N = 1024 and temperature τ = 0.25 for 200 epochs

(a) Contrastive and supervised accuracy (b) Contrastive and supervised loss

Figure A.6: Learning with batch size N = 1024 and temperature τ = 0.25 for 400 epochs

37

A.1.3 Tabular Summary

Batch size \Epochs 50 100 200 400

256 32.26 37.33 41.05 39.6

1024 29.1 34.32 39.62 41.66

Table A.1: Top-1 accuracy for different batch sizes and training epochs.

Batch size \Epochs 50 100 200 400

256 58.08 64.93 68.62 68.29

1024 54.65 60.03 65.24 68.17

Table A.2: Top-5 accuracy for different batch sizes and training epochs.

38

	Introduction
	Aim
	Context

	Background & Theory
	Machine Learning
	Self-Supervised Learning

	Artificial Neural Networks
	Linear regression
	Perceptron
	Multilayer Perceptron
	Classification
	Convolutional Neural Networks
	Residual Networks

	Optimization
	Gradient Descent
	Stochastic Gradient Descent
	Minibatch Stochastic Gradient Descent
	Momentum
	Adaptive Learning Rate
	Layer-wise Adaptive Rate Scaling

	Image Processing
	SimCLR

	Method
	Data
	Evaluation
	Data partitioning

	Model & Training

	Results
	TinyImageNet Results
	BigEarthNet Results

	Discussion
	Results Discussion
	Conclusion and Further Research

	Appendix
	TinyImageNet: Further Training
	Batch size N=256
	Batch size N=1024
	Tabular Summary

