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Dynamics at an exceptional point in an

interacting quantum dot system

Abstract

A fundamental postulate of quantum mechanics is that the Hamiltonian of a closed
system is Hermitian, guaranteeing real-valued energies and conserved probabilities
throughout the evolution of the system. However, for quantum systems where there
is dissipation and crosstalk with the environment, such as a system of quantum
dots connected to an environment of metallic leads, the dynamics of the system
is instead generated by a non-Hermitian Liouvillian superoperator. One feature of
non-Hermitian operators, showing increasing theoretical and experimental interest
recently, is the possibility of exceptional points. These are points in parameter
space which cause two or more eigenvalues and their corresponding eigenvectors of
the operator to simultaneously coalesce. Exceptional points can be of different or-
ders, corresponding to the number of coalescing eigenvectors and eigenvalues. In
this thesis, we study a system of two quantum dots coupled in parallel to metal-
lic leads and demonstrate the existence of a second order exceptional point in the
Liouvillian superoperator. Furthermore, the dynamics at this exceptional point is
analyzed in detail using a combination of analytical and numerical methods, includ-
ing simulations of the density operator and the current through the system. We
show that the dynamics can be understood in terms of generalized modes and that
the system exhibits unique algebraic decay at the exceptional point. Furthermore,
critical damping at the exceptional point is indicated in the current, in accordance
with a previous work on exceptional points in quantum thermal machines. We also
briefly discuss possible applications of exceptional points in quantum dots, including
control and sensing technologies.
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Chapter 1

Introduction

The theory of quantum mechanics developed in the last century has been proved
to be extremely successful in describing nature at the small scale. Typical systems
treated by quantum mechanics are nuclei, atoms, and other systems which can be
assumed to be isolated from the environment. In such systems, the Hamiltonian
is postulated to be Hermitian, guaranteeing that energies are real-valued and that
the wave function is contained in the system throughout its evolution [1]. However,
for many physical setups we cannot assume the system to be isolated and we must
consider dissipation and the crosstalk between the system and its surroundings.
One way to handle such open systems is to loosen the requirement of Hermiticity
to include dissipation. The resulting field of non-Hermitian quantum physics has
successfully been describing systems in nuclear, atomic and optical physics in recent
decades [2]. One property of particular interest in non-Hermitian operators is the
possibility of exceptional points (EPs). These correspond to points in parameter
space where two or more eigenvalues and their corresponding eigenvectors of the
operator simultaneously coalesce [3]. Exceptional points have been proposed to have
several useful technological applications in e.g. optics and photonics [4, 5], and along
with the optical microring experiments in 2017, EP sensors successfully increased
the sensitivity of current measurements and nano-particle detection [6, 7]. These
sensors exploit the fact that the eigenvalue splitting due to a small perturbation of
the system is extra sensitive at an EP, compared with a degeneracy where only the
eigenvalues coalesce.

A different framework which treats open systems is quantum master equations,
where the dynamics of the system is generated by the Liouvillian superoperator [8].
Similarly to the Hamiltonian in non-Hermitian physics, the Liouvillian is non-
Hermitian due to the coupling to the environment. However, in contrast to the
non-Hermitian Hamiltonian where terms are added phenomenologically to take dis-
sipation into account, the non-Hermiticity of the Liouvillian arises naturally when
deriving a quantum master equation [9]. This non-Hermiticity brings the possibility
of EPs also in the Liouvillian superoperator [10]. EPs in Liouvillian physics have
been of particular theoretical interest recently, and are proposed to have impor-
tant applications in control and sensing technologies. Two recent examples include
Ref. [11], where critical decay towards the steady state in a quantum thermal ma-
chine was found at the EP; and Ref. [12] where an EP corresponded to optimal
steering toward a target quantum state.

An application of particular interest for quantum master equations and Liouvil-
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(a) (b)

Figure 1.1: a) A physical implementation of a single QD system. The QD is realized
within the InAs nanowire, with the source and drain, and the gates (BR, BL and PG)
all clearly visible in this figure. The figure is taken from Ref. [16]. b) A schematic
figure of a QD system where the QD is in the center, tunnel coupled to the source
(S) and drain (D). The gate voltage VG and the source-drain voltage VSD, are tuned
to define the QD.

lian physics is electron transport in systems of quantum dots connected to metallic
leads [13]. A quantum dot (QD) is a fabricated semiconductor structure containing a
small number of electrons and is typically in the order of 100 nanometres in size [14].
The size of the dot needs to be small in comparison to the thermal wavelength of
the electrons, which is why experiments are generally realized at temperatures close
to absolute zero [15]. One method of creating this tiny isolation of electrons is to
confine them in nanowires. Nanowires are structures where two of the dimensions
are on the nanometer scale and lengths of up to tens of micrometers [16]. This way,
nanowires essentially act as a one-dimensional conductor. By then applying volt-
ages via nanoscale electrodes, called gates, the number of electrons can be depleted
in a small region, forming a QD, see Fig. 1.1a. If the voltages are tuned success-
fully, the QD can be tunnel coupled to the two surrounding conducting regions of
the nanowire, known as the source and drain. The electrons can then tunnel from
the source into the dot and then exiting it by tunneling into the drain, producing a
current through the system [14]. This process is schematically presented in Fig. 1.1b.

There are many other ways of fabricating QDs which does not rely on gates
or nanowires for confining the electrons. However, one general property of QDs is
the tunability of their optical, electrical and chemical properties, which has made
them useful in a large range of applications. Quantum dot technologies span areas
from energy harvesting, display technologies, and sensors to medical and biological
applications, with efficient lasers, biotags and solar harvesting devices being available
on the market [17]. The transport setup given in Fig. 1.1 in particular, can be used
as an extremely sensitive charge sensor, being able to detect transport of single
electron charges [15]. The QD systems studied in the literature have also included
systems containing multiple QDs in various arrangements. In Ref. [18] for example,
a system with two QDs coupled in parallel was studied for its quantum interference
effects in the transport dynamics, and was proposed to act as a sensitive electric
switch.
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In this thesis, a parallel QD system was studied for its non-equilibrium transport
properties, with focus on the full quantum dynamics, including the transient current.
In particular, the dynamics at a second order EP is analyzed in detail using a
combination of numerical and analytical approaches. Summarizing the results from
the thesis, a second order EP was found, after which we derive and numerically
implement the transient dynamics of the parallel dot system at and away from
the EP. The time evolution of the reduced density matrix in generalized modes
is evidenced, including algebraic decay at the EP for certain initial conditions, as
opposed to the exponential decay away from the EP. Furthermore, simulations of
the current through the QDs indicated signatures of critical decay at the EP, similar
to the study of quantum thermal machines in Ref. [11].

The thesis is divided in the following chapters. In Chapter 2 we present the
underlying theory of the thesis, including electron transport in QD systems, tools
used in the theory of open quantum systems, and the Jordan normal form, which
is needed to construct the full dynamics at the EP. Chapter 3 consists of three
parts. Firstly, a further description of the parallel QD system and the model used
to describe it are given. Then, we calculate the Liouvillian and demonstrate the
existence of a second order EP. Finally, the density matrix and the current through
the system at the EP is simulated, and the transient behavior is analyzed in detail.
In Chapter 4, we conclude and give an outlook on further work and open questions
relevant to EPs in Liouvillian physics, and particularly in QD systems.



Chapter 2

Background theory

The theory chapter of the thesis is divided into three sections. Firstly, a brief
overview of the theory behind transport through quantum dots is given. Then, the
focus is turned to some of the tools used in open quantum systems, ultimately ending
in a section about quantum master equations. The final section will further explain
the notion of EPs, and introduce important tools used in EP physics. Throughout
the entire thesis, we will set the reduced Planck constant, the Boltzmann constant
and the elementary charge to unity, i.e., h̄ = 1, kb = 1, and |e| = 1.

2.1 Transport through quantum dots

To understand the transport of electrons through a system of quantum dots, it is
insightful to first study the single quantum dot system. The following explanation
is inspired by Ref. [19].

Consider a single quantum dot with N electrons capacitively coupled to a gate,
as well as to source and drain reservoirs through tunnel junctions as in Fig. 1.1b.
The main transport properties of the system can then be understood in terms of the
chemical potentials of the quantum dot and the source and drain reservoirs. These
are often depicted in electro-chemical potential diagrams, see Fig. 2.1. There, µ(N)
is the energy required to add the Nth electron to the quantum dot, and µS and
µD are the Fermi levels of the source and drain. The shaded areas represent the
Fermi-Dirac distributions of the reservoirs.
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Figure 2.1: An electro-chemical potential diagram of the single quantum dot system.
The source and drain are in a thermal distribution given by the shaded areas with
Fermi levels µS and µD. The quantum dot is depicted as a ladder with energies
µ(N), representing the energy required to add the Nth electron to the dot. The
figure is adapted from Ref. [19].

Using this picture, the electron transport through the quantum dot can be easily
visualized. If the chemical potentials of the dot are located as in Fig. 2.1, µ(N+1) is
below µS, and an electron will likely tunnel from the source onto the dot, increasing
the number of electrons on the dot from N to N + 1. After the tunneling event,
there is an even lower chemical potential available for the electron, µD, and the
electron will with a high probability leave the quantum dot and enter the drain. In
this fashion, the system will cycle through having N and N+1 electrons on the dot,
producing a current.

It turns out that µ(N) depends linearly on the gate voltage VG. Consequently,
the ladder of states in Fig. 2.1 can be lowered or raised by changing VG. The source-
drain voltage VSD on the other hand, changes the difference between µS and µD.
Through these two processes, it is possible to change the electro-chemical potential
landscape and therefore control the current through the system. This captures the
main behavior of the dynamics of the quantum dot system. However, by adapting
the theory of open quantum systems, a much richer and more accurate theory can
be developed.

2.2 The theory of open quantum systems

Open quantum systems are systems which are non-isolated and connected to some
sort of environment. Often, it considers a total system consisting of the (sub)system
of interest, and an environment. The total system is closed, and therefore it obeys
the standard quantum mechanical equations of motion. The goal of the theory
of open quantum systems is to infer the dynamics of the smaller system from the
equations of the total system [20]. There are several approaches to open quantum
systems, each with their own domain of applicability. In this thesis we will use a
master equation approach, which handles electron-electron interactions in the system
of interest well, but has the disadvantage of requiring approximations regarding
the strength of the coupling to the environment. Another approach is by using
Green’s functions, which is relevant in the opposite domain, i.e., when there is strong
coupling to the environment but negligible electron-electron interactions [21].
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2.2.1 The von Neumann equation and the reduced density
operator

An essential tool used in the theory of open quantum systems is the density operator
ρ̂. A common approach for such systems is to assume that the system is known to
be in a state |ψk〉 with a probability pk, or in another state |ψl〉 with a different
probability pl, and so on. Generally, the system is then said to be in an ensemble
{|ψk〉 , pk}k. The density operator describes this information in a compact way:

ρ̂ =
∑
k

pk |ψk〉 〈ψk| . (2.1)

It can easily be shown that the density operator is Hermitian and has unity trace,
since the probabilities must add up to one. Furthermore, by fixing a basis {|φi〉},
the density operator can be represented by its matrix elements

ρij = 〈φi|ρ̂|φj〉 =
∑
k

pk 〈φi|ψk〉 〈ψk|φj〉 . (2.2)

The diagonal elements ρii represents classical probabilities of being in a state |φi〉
and the off-diagonal elements ρij are the so called coherences between state |φi〉 and
|φj〉. Note that the matrix elements are basis dependent, and that there always is a
basis in which the density operator is diagonal [8].

The average measured value of an observable Ô of an ensemble represented by
ρ̂ is given by

〈Ô〉 = Tr(ρ̂Ô). (2.3)

From the density operator one can therefore extract all significant information from
the ensemble, and it can be described as the ”state” of the system. It is also possible
to calculate how the density operator evolves over time. Under a Hamiltonian Ĥ,
the time evolution is given by the von Neumann equation

dρ̂

dt
= i[ρ̂, Ĥ] ≡ Lρ̂, (2.4)

where L is the Liouvillian superoperator, or just the Liouvillian [8].
The Liouvillian L in Eq. (2.4) is an operator acting on an operator, hence being

called a superoperator. It is however possible to represent the Liouvillian as a matrix
L, which acts on a vector representation of the density matrices, usually written as
|ρ〉〉. The Hilbert space spanned by these vectors is called the Fock-Liouville space,
equipped with a scalar product 〈〈ρ1|ρ2〉〉 [20].

Returning to the mentioned goal of the theory of open quantum systems, a
natural question is the following: How do we extract the density operator of a
subsystem ρ̂S, from the total density operator ρ̂T , the latter describing the closed,
full system? This question is resolved by the reduced density operator. If the total
system T consists of a subsystem S and an environment E, then the reduced density
matrix for the subsystem is given by

ρ̂S = TrE(ρ̂T ), (2.5)

where TrE is the partial trace over the environment. The partial trace essentially
takes the average with respect to the environmental degrees of freedom. This way, a
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density operator for the subsystem of interest is obtained without having to simulate
the whole system. The reduced density operator contains all measurement statistics
of interest in the subsystem, placing it at the core of the theory of open quantum
systems [8].

2.2.2 The Lindblad Master equation

An important framework for determining the dynamics of an open quantum system
is the master equation approach. A classical master equation is defined by

dpi
dt

=
∑
j

Rjipj −
∑
j

Rijpi, (2.6)

with probabilities pi of being in state |ψi〉, and transition rates Rij describing the
rate of transitions from |ψi〉 to |ψj〉. As an example, the states in a quantum dot
system may correspond to the number of electrons on the dot while the transition
rates are typically related to the Fermi-Dirac distributions of the reservoirs and the
tunneling rates of the barriers [19].

Adding the condition
∑

i pi = 1, such that the total probability is unity, to the
master equation results in a system of ordinary differential equations. This can be
solved numerically using standard methods for first order differential equations, such
as the Runge-Kutta method [22]. Once the probabilities pi(t) are obtained, the time
evolution of the system can be calculated. Returning to the quantum dot example,
the transient dynamics of the current can then be calculated by considering the
amount of charge tunneling through the barriers at each point in time, which is
directly related to the tunneling rates and probabilities pi(t) [19].

While a classical master equation may give accurate results for some quantum
systems, it leaves out important physics. A quantum master equation generalizes
the notion of a classical master equation in the following sense: The unknown in
a quantum master equation does not only contain the probabilities pi of being in
a quantum state |ψi〉, but also the coherences. Hence, a quantum master equation
involves the full density matrix while a classical master equation only includes the
diagonal elements. As discussed previously, it is always possible to find a basis in
which the density matrix is diagonal. However, this basis is in general not the eigen-
basis of the Hamiltonian, and therefore does not represent classically physical states.
Hence, a quantum master equation indeed generalizes its classical counterpart.

The starting point for quantum master equations is the von Neumann equation
given by Eq. (2.4), for the density matrix of the total system. This equation is
exact, but since the total system generally has a macroscopic amount of degrees of
freedom, is not solvable. To progress, the idea is to reduce the number of degrees
of freedom by applying the partial trace to trace out the environment, and then
make suitable approximations to obtain a solvable quantum master equation for the
smaller system of interest. A standard approximation is to assume that the coupling
between the system and the environment is weak in comparison to the other energy
scales of the system, such that the coupling can be treated perturbatively. This
way, terms containing a coupling strength parameter of orders larger than a given
precision can be neglected.

One of the most established quantum master equations is the so called Lindblad
equation [23], which exists in several forms and can be derived in various ways.
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In Ref. [20], a form of the Lindblad equation is derived directly from the micro-
scopic dynamics. The first part of the derivation follows the steps described in the
previous paragraph, i.e., considers the coupling perturbatively and traces out the
environment. However, the resulting equation is in general still not solvable, and
more approximations are necessary to proceed. One of the main assumptions that
follows in the derivation is a Markovian approximation, meaning that the derivative
of the density matrix is assumed to only depend on its current state, and not its
past. At the end of the derivation, the following form of the Lindblad equation is
obtained:

dρ̂

dt
= i[ρ̂, Ĥeff] +

∑
i

Ĵiρ̂Ĵ
†
i −

1

2
ρ̂Ĵ†i Ĵi −

1

2
Ĵ†i Ĵiρ̂ ≡ Lρ̂, (2.7)

where ρ̂ is the reduced density operator, and Ĥeff is the sum of two terms: the
subsystem Hamiltonian ĤS and the Lamb shift Hamiltonian ĤLS. Originally, the
Lamb shift was studied in atomic systems where the interaction with the quantum
vacuum was found to cause a small shift of the energy levels. In open quantum
systems, the Lamb shift Hamiltonian reflects a similar effect: a renormalization
of energy levels due to the interaction with the environment [20]. The operators
Ĵi are the so called jump operators, which capture the coupling processes to the
environment. In Ref. [24], a phenomenological approach for calculating the jump
operators is described. Using this so called PERLind approach, each jump operator
is associated with an actual, physical process. Taking a quantum dot system as
an example, every jump operator then represents a certain tunneling event. Once
the jump operators are constructed and the first term of Eq. (2.7) is calculated, an
expression for the Liouvillian L can be obtained.

The right hand side of the Lindblad equation can be divided into two parts.
The first term, i[ρ̂, Ĥeff], describes the unitary, free evolution of the system. A
simple example of a free evolution would be the precession of magnetic moment in a
magnetic field. The sum over i on the other hand, labeling, e.g., different tunneling
events, correspond to the non-unitary and dissipative part of the dynamics [8].
The latter part causes the total Liouvillian to be non-Hermitian, which brings the
possibility of EPs in the matrix representation of the Liouvillian.

2.3 Exceptional points

A matrix which describes the time evolution of a physical system, such as a Hamil-
tonian or a Liouvillian matrix, generally depends on the parameters of the system.
These parameters span the so called parameter space, and it is in this space the
EPs lie. An EP is defined as a point in the parameter space which causes two or
more eigenvalues and their eigenvectors to simultaneously coalesce [2]. Furthermore,
EPs can be of a different orders, reflecting how many eigenvectors coalesce at the
point. The notion of EPs and its orders are directly related to a type of matrix
decomposition, the Jordan normal form.

2.3.1 Jordan normal form

In physics, a common way to simplify calculations is to diagonalize the matrix
generating the time evolution of the system. The diagonalization process can be
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understood as a change of basis to linearly independent eigenvectors ri, defined
by Ari = λiri, where λi is the corresponding eigenvalue [25]. In this basis, the
linear transformation of the matrix is very simple: it scales each eigenvector ri by
the corresponding eigenvalue. The matrix in the new basis is therefore diagonal,
explaining the name of the process. For a matrix A and its diagonal form D, this
can be written as

A = SDS−1, (2.8)

where S = (r1, . . . , rn) consists of the eigenvectors of A.
However, not all matrices can be diagonalized, the exceptions being called de-

fective matrices. For a defective matrix, there does not exist a complete basis of
eigenvectors, and the diagonalization process is not possible [25]. This is closely
related to the notion of EPs, since when two eigenvectors coalesce, one dimension
is lost and the eigenvectors do not form a basis anymore. A matrix at an EP is
therefore always defective.

Fortunately, there is a notion of an ”almost diagonal” form for defective matrices,
called the Jordan normal form. Recall that in the diagonalizable case, the basis is
changed to the linearly independent eigenvectors. To construct the Jordan form
for a defective matrix, this basis has to be completed in some way to span the full
space. This can be done using Jordan chains [25], which for each eigenvector ri with

eigenvalue λi, consist of vectors ri, r
(2)
i , . . . , r

(ni)
i defined by

(A− λiI)ri = 0,

(A− λiI)r
(2)
i = ri,

(A− λiI)r
(3)
i = r

(2)
i ,

...

(A− λiI)r
(ni)
i = r

(ni−1)
i ,

(2.9)

where I is the identity matrix. The length of the ith chain, ni, depends on the
number of coalescing eigenvectors, and is therefore the same as the order of the
corresponding EP. Note that for eigenvectors not involved in an EP, i.e., for eigen-
vectors which have not coalesced, the Jordan chain is of length one, only consisting
of the eigenvectors themselves.

The vectors forming the Jordan chain are also known as the right generalized
eigenvectors, which indicates the notion of left generalized eigenvectors. Regular left
eigenvectors li are row vectors, defined by liA = λiA. These can then be extended
to left generalized eigenvectors in a similar way as the right ones, forming Jordan
chains li, l

(2)
i , . . . , l

(ni)
i . The left generalized eigenvectors can be constructed such that

l
(s)
i r

(t)
j = δijδst, i.e, biorthogonally to the right generalized eigenvectors [2]. Creating

these left and right Jordan chains for each linearly independent eigenvector results
in q pairs of chains, each of which are collected into the matrices

{ri}qi=1, where ri =
[
ri r

(2)
i . . . r

(ni)
i

]
,

{li}qi=1, where li =


li
l
(2)
i

. . .

l
(ni)
i

 . (2.10)
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Here, the bold font in ri (li) indicates a collection of column (row) vectors next to
(below) each other, forming a matrix. The set of right generalized eigenvectors from
all Jordan chains is called the canonical basis of the transformation. Using this new
basis, the transformation matrix M can be formed:

M =
[
r1 . . . rq

]
, (2.11)

which also is known as the modal matrix. The inverse modal matrix M−1, can be
formed in terms of the left generalized eigenvectors:

M−1 =

l1...
lq

 , (2.12)

since ljri = δijI where I is the nj × ni identity matrix. This follows from the
biorthogonality of the left and right generalized eigenvectors.

The Jordan normal form of A is then finally obtained by forming J = M−1AM
and has the following structure:

J =

Jn1
(λ1) . . . 0
...

. . .
...

0 . . . Jnq
(λq)

 , where Jni
(λi) =


λi 1 . . . 0
...

. . . . . .
...

...
. . . 1

0 . . . . . . λi

 . (2.13)

The Jordan form hence consists of q Jordan blocks Jni
(λi) on the diagonal, where

each block is of size ni and consists of its eigenvalue on the diagonal and ones on the
super diagonal [25]. Note that if all blocks are of size one, i.e., if there are no EPs,
the Jordan form is diagonal. The Jordan normal form can therefore be thought of
a generalization of the diagonal form D.

Unfortunately, the Jordan form of a matrix is notoriously difficult to calculate
numerically. This stems from the fact that an arbitrary small perturbation away
from an EP completely changes the Jordan form. The process is therefore inherently
numerically unstable [26]. For simple cases, it is however possible to work around
this difficulty by introducing a small tolerance to determine if eigenvalues and their
eigenvectors have coalesced. One can then infer the block structure of the Jordan
form and construct it manually.

To be able to use the Jordan form in calculations, a substitution A→ MJM−1

has to be made, and hence, the matrices M and M−1 are also desirable to compute
numerically. These matrices consist of the right and left generalized eigenvectors,
which can be calculated by the following process. Firstly, the regular eigenvectors
are calculated by some numerical method, e.g., the scipy.linalg.eig function in
Python. If there are coalesced eigenvectors (within the tolerance), the corresponding
Jordan chains need then to be computed. This can be done by solving the defining
equations for the generalized eigenvectors given by Eq. (2.9). However, since
A− λiI is not of full rank, the equations are underdetermined, meaning that there
is no unique solution. A standard way of solving this problem is by using the
Moore-Penrose pseudoinverse, which finds one of the solutions to the equation [25].
This process is then repeated until the full Jordan chains for each set of coalescing
eigenvectors are calculated, obtaining all of the generalized eigenvectors. Finally, by
biorthogonalizing the two sets of vectors, the modal matrix M and its inverse M−1

are obtained. Alternatively, M−1 can be calculated by numerically inverting M .
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2.3.2 General solution of linear ODEs

A useful application of the Jordan form is for analytical solutions of ordinary differ-
ential equations (ODEs). A linear ODE is differential equation of the form

dx

dt
= Ax. (2.14)

Often, the unknown x is a vector, and A a matrix. The solution can then be written
as a matrix exponential in the following way:

x(t) = eAtx(0), where eAt =
∞∑
k=0

(At)k

k!
. (2.15)

The matrix exponential can be simplified using Jordan decomposition. In Ref. [25],
it is shown that eAt = MeJtM−1 where M is the modal matrix and

eJt =

e
Jn1

(λ1)t . . . 0
...

. . .
...

0 . . . e
Jnq

(λq)t

 , where eJni
(λi)t = eλit


1 t . . . t

ni−1

(ni−1)!
...

. . . . . .
...

...
. . . t

0 . . . . . . 1

 .
(2.16)

The matrix exponential therefore consists of entries with terms of the form tkeλit [25].
Note that if A is diagonalizable, all blocks are of size one and the entries consist of
pure exponentials on the diagonal.

Using this result, the solution to Eq. (2.14) can be written as

x(t) = MeJtM−1x(0). (2.17)

This can further be decomposed if one considers the generalized modes of the system.
A generalized mode in this context is meant as the solution to the ODE, with an
initial condition in a linear combination of vectors in one of the Jordan chains. It
can be shown that the trajectory then never leaves that Jordan chain throughout
the whole time evolution.

To show this, suppose first that the initial state is in such an initial state, i.e.,
in a linear combination of vectors in one of the Jordan chains:

x(0) = a1ri + a2r
(2)
i + · · ·+ ani

r
(ni)
i = ria, (2.18)

where a = (a1, . . . ani
)T is a constant vector and ri is defined in Eq. (2.11). Inserting

this into Eq. (2.17), the solution can be written as

x(t) = MeJtM−1x(0) = MeJt

l1...
lq

 ria = rie
Jni

(λi)ta. (2.19)

Hence, the solution stays in the space spanned by the initial condition throughout the
time evolution, as earlier proposed. For an arbitrary initial condition, the solution
can be written as a sum over these generalized modes:

x(t) =

q∑
i=1

rie
Jni

(λi)tlix(0), (2.20)
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and the initial condition therefore decides what modes are included in the dynamics
of the system. A more detailed derivation of Eqs. (2.19) and (2.20) is done in
Appendix A.

Translating this theory into the language of Liouvillian physics, the underlying
ODE is given by the Lindblad equation, transformed to Fock-Liouville space

dρ(t)

dt
= Lρ(t)→ d

dt
|ρ(t)〉〉 = L |ρ(t)〉〉, (2.21)

where L is the matrix representation of the Liouvillian and |ρ(t)〉〉 the vectorized
density matrix. Using Eq. (2.20), the solution can then be written in terms of the
eigenvalues and generalized eigenvectors of L.



Chapter 3

Results: EP-dynamics in a parallel
dot system

Equipped with the necessary theory, the dynamics of the parallel QD system can
now be simulated. The equation of motion for the system is the Lindblad equation,
given by Eq. (2.7), for the reduced density operator of the two quantum dots. In
Fock-Liouville space, the Lindblad equation is given by Eq. (2.21), with a matrix
representation of the Liouvillian, L. Specifying the values of the parameters of the
system, L can be constructed from the jump operators and the effective Hamiltonian
in the Lindblad equation. By then searching for coalescing eigenvalues and eigen-
vectors of L in the parameter space, EPs can be located, at which the dynamics
obey Eq. (2.20). Finally, Eq. (2.3) can be used to simulate the transient current
through the parallel QD system. The numerical calculations were done in Python

using standard tools from the numpy and scipy packages. Furthermore, a piece of
code which already implemented the PERLind approach for calculating the jump
operators and the rest of the Liouvillian was used as a starting point for further
calculations. Both this pre-existing code and the code developed during the work
of the thesis can be found in Ref. [27].

3.1 Model

In this thesis, a particular quantum dot system was studied, consisting of two quan-
tum dots connected to two leads, both of them in thermal equilibrium. Similarly
to the works in e.g. Refs. [18, 28], the quantum dots are assumed to be coupled
in parallel to the leads, meaning that the dots are coupled to the same lead on
each side. For simplicity, the electrons are assumed to be spinless, which is a good
approximation for a low bias voltage in the presence of a magnetic field. However,
the bias voltage considered in this thesis is cannot be considered to be small, and
hence we must rely on an assumption of the system only containing one spin species.
Furthermore, it is assumed that there is no direct tunneling between the dots. How-
ever, we consider an interacting system, with a finite contribution from the Coulomb
repulsion between the electrons in the case of double occupancy. A sketch of the
model is given in Fig. 3.1.
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Figure 3.1: The modeled parallel dot system, where the quantum dots in the center
have energies ε1 and ε2. Located on the sides are the two reservoirs R,L with
temperatures TL/R and chemical potentials µL/R. The allowed tunneling processes
are indicated with arrows, with corresponding tunneling rates Γ± δΓ.

To reduce the dimension of the parameter space, a fixed tunneling rate Γ and a
variable tunneling detuning δΓ are introduced. The four tunneling rates in terms of
Γ and δΓ are assumed to be asymmetric, as indicated by Fig. 3.1. It is also assumed
that each dot is restricted to be either empty or contain one (spinless) electron. The
energy levels of the two QDs are assumed to given by ε1/2 = −VG±δε, with a variable
energy detuning δε and a gate voltage VG, which we set to zero. Furthermore, the
temperatures of the leads TL = TR = 10Γ, the chemical potentials µL/R = ±VSD/2,
the bias voltage VSD = 300Γ, and the Coulomb energy U = 250Γ, are all fixed in
terms of Γ. This leaves the two tuning parameters, δΓ and δε, as the only parameters
of the system, resulting in a two dimensional parameter space.

To be able to justify the Lindblad approach for calculating the dynamics of the
system, one more major approximation has to be made regarding the coupling be-
tween the dots and the leads. We must assume that the strength of the coupling
between the system and the environment is weak in comparison with the tempera-
ture, i.e., Γ � T . In this so called weak-coupling limit, the Lindblad equation is a
standard approach for investigating the dynamics of a quantum dot system. In this
thesis, we consider terms up to first order in Γ. This approximation neglects effects
such as cotunneling, where several electrons simultaneously tunnel into and out of
the QDs [18]. Hence, we only consider sequential tunneling processes.

The total system can be modeled by the Hamiltonian

Ĥ = ĤQD + Ĥleads + Ĥtunneling, (3.1)

where the three terms correspond to the quantum dot, lead, and tunneling Hamil-
tonians

ĤQD =
∑
i=1,2

εid̂
†
i d̂i + Ud̂†1d̂1d̂

†
2d̂2,

Ĥleads =
∑

k,s=L,R

Es,kĉ
†
s,kĉs,k,

Ĥtunneling =
∑
i=1,2

∑
k,s=L,R

ts,iĉ
†
s,kd̂i + t∗s,id̂

†
i ĉs,k,

(3.2)

where d̂†i (d̂i), i ∈ {1, 2}, creates (annihilates) an electron in dot 1 or 2, and ĉ†l,k (ĉl,k),
s ∈ {L,R}, creates (annihilates) an electron in the left (L) or right (R) lead with
momentum k and energy Es,k [18]. The tunneling amplitudes ts,i are directly related
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to the corresponding tunneling rates by

Γs,i = 2πνF |ts,i|2, (3.3)

where νF is the density of states in the lead, which we assume to be independent of
energy [24].

To represent the operators in matrix form, the many-body eigenstates of the
isolated quantum dot Hamiltonian are used as the basis:

|a〉 = |00〉
|b〉 = |10〉 = d̂†1 |00〉
|c〉 = |01〉 = d̂†2 |00〉
|d〉 = |11〉 = d̂†1d̂

†
2 |00〉 ,

(3.4)

where n1 and n2 in |n1n2〉 are the number of electrons in the first and second QD,
respectively. The quantum dot and tunneling Hamiltonians are in this basis given
by

ĤQD = ε1 |b〉 〈b|+ ε2 |c〉 〈c|+ (ε1 + ε2 + U) |d〉 〈d|

Ĥtunneling =
∑

k,s=L,R

[
t∗s,1(|b〉 〈a|+ |d〉 〈c|) + t∗s,2(|c〉 〈a| − |d〉 〈b|)

]
ĉs,k + H.c, (3.5)

where the minus sign in the second term in the tunneling Hamiltonian comes from
the fact that d†2d

†
1 = −d†1d

†
2 for fermions.

In the basis given by Eq. (3.4), the elements of the reduced density matrix can be
written as ραβ, where α, β ∈ {a, b, c, d}, with 16 matrix elements. However, the only
non-zero off-diagonal elements are ρbc and ρcb, i.e, the elements which corresponds to
superpositions of the two states with one occupied dot. This is the result of charge
being a conserved quantity in the total system. The number of elements in |ρ〉〉 is
therefore reduced to six, which in turn means that the Liouvillian effectively can be
represented by a 6× 6 matrix. The vectorization of the density matrix can be done
in several ways, but in this thesis it is given by

ρ =


ρaa 0 0 0
0 ρbb ρbc 0
0 ρcb ρcc 0
0 0 0 ρdd

→ |ρ〉〉 =


ρaa
ρbb
ρcc
ρdd

Re ρbc
Im ρbc

 . (3.6)

Since the density matrix is Hermitian, the diagonal elements are real and ρbc = ρ∗cb.
Hence, for the off-diagonal elements, it is enough to specify Re ρbc and Im ρbc to
obtain an equivalent vectorized representation of the density matrix.

3.2 Spectrum

The first step towards simulating the dynamics of the parallel dot system was to
calculate the matrix representation of the Liouvillian. This was obtained from the
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code implementing the PERLind approach mentioned the beginning of this chapter.
The code calculates the four jump operators, one for each tunneling process, and
then constructs the unitary part of Eq. (2.7). Finally, the code puts these two pieces
together, resulting in the Liouvillian matrix L. We then compared the result with
calculations from the Python-based QmeQ package [29] for comparison. The basis
and ordering used for L and |ρ〉〉 is given by Eqs. (3.4) and (3.6). Once the Liouvillian
was obtained, the parameter space was searched for EPs by numerically calculating
the eigenvalues of L for varying δε and δΓ. A degeneracy of eigenvalues was found
at λ5 = λ6 ≈ −0.5Γ, for δΓ = 10−6Γ and δε ≈ 0.3Γ, see Fig. 3.2. The corresponding
eigenvectors, |ρ5〉〉 and |ρ6〉〉, were found to also coalesce, confirming the existence
of a second order EP. The eigenvalue and right eigenvector corresponding to the EP
will be denoted by λ̄ and |ρ̄〉〉, respectively.

Figure 3.2: The real and imaginary part of two eigenvalues to L, λ5 and λ6, for
varying δε. An eigenvalue degeneracy can be seen at δε ≈ 0.3Γ.

The full spectrum of the Liouvillian at the EP is given in Fig. 3.3, where the
eigenvalue degeneracy between λ5 and λ6 is clear. There is almost a degeneracy
between λ3 and λ4, however, this is not a second EP since the eigenvectors are not
parallel. Furthermore, note that all λi>1 are on the negative real axis, indicating
non-oscillatory, exponential decay towards the steady-state in the dynamics of the
system. This steady-state is given by the eigenvector corresponding to the zero

eigenvalue λ1, since then
d

dt
|ρ1〉〉 = 0.

Figure 3.3: The spectrum of the Liouvillian at the EP, where the degeneracy between
λ5 and λ6 is the relevant one. The crosses are used to distinguish eigenvalues which
are close to each other.
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3.3 Dynamics

Using Eq. (2.20), the time evolution of the system can be given in terms of the
eigenvalues and generalized eigenvectors of L. Away from an EP, the Liouvillian
is diagonalizable, and the terms are purely exponential. The time evolution of the
density operator is then given by

|ρ(t)〉〉 = |ρss〉〉+
6∑
i=2

cie
λit |ρi〉〉, (3.7)

where |ρi〉〉 is the ith right eigenvector of L, and ci = 〈〈σi|ρ(0)〉〉. Here, 〈〈σi| is the
ith left eigenvector, constructed biorthogonally to |ρi〉〉 such that 〈〈σi|ρj〉〉 = δij, and
|ρss〉〉 = c1 |ρ1〉〉 is the steady-state of the system. Furthermore, |ρss〉〉 is the only
eigenvector for which the first four elements add up to one, i.e., the only eigenvector
which represents a density matrix with unity trace, see Eq. (3.6). This implies that
the rest of the other eigenvectors must be traceless for |ρ〉〉 to have unity trace.
Hence, the eigenvectors |ρi>1〉〉, do not describe physical states on their own.

At the EP, the Jordan form of L and its exponential, exp (Jt), have to be evalu-
ated. Since the EP is of order two, this results in a 2× 2 Jordan block. This is the
only EP, which means that rest of the Jordan form is diagonal. Using Eqs. (2.13)
and (2.16), this results in the following Jordan form and Jordan exponential:

J =


0 0 0 0 0 0
0 λ2 0 0 0 0
0 0 λ3 0 0 0
0 0 0 λ4 0 0
0 0 0 0 λ̄ 1
0 0 0 0 0 λ̄

 , e
Jt =



1 0 0 0 0 0

0 eλ2t 0 0 0 0

0 0 eλ3t 0 0 0

0 0 0 eλ4t 0 0

0 0 0 0 eλ̄t t

0 0 0 0 0 eλ̄t


, (3.8)

since λ1 = 0.
Furthermore, the Jordan chain vector, here written as |ρ′〉〉, defined by

(L− λ̄I) |ρ′〉〉 = |ρ̄〉〉, (3.9)

and the left generalized eigenvectors 〈〈σ′| and 〈〈σ̄|, need to be evaluated. The
left generalized eigenvectors are constructed such that 〈〈σ′|ρ′〉〉 = 〈〈σ̄|ρ̄〉〉 = 1, and
orthogonal to all other right generalized eigenvectors. Inserting these vectors into
Eq. (2.20) leads, after a bit of work, to

|ρ(t)〉〉 = |ρss〉〉+
4∑
i=2

cie
λit |ρi〉〉+ (c̄+ c′t)eλ̄t |ρ̄〉〉+ c′eλ̄t |ρ′〉〉, (3.10)

where c̄ = 〈〈σ̄|ρ(0)〉〉, and c′ = 〈〈σ′|ρ(0)〉〉.
By numerically calculating the generalized eigenvectors as described in Sec-

tion 2.3.1, the dynamics at and away from the EP, given by Eqs. (3.7) and (3.10),
were implemented. The results were then compared with a numerical ODE-solver.
The numerical solver was set to an absolute and relative tolerance of 10−10 and 10−6

respectively. The relative difference from the implemented methods to the numer-
ical solver, given by ||ρ(t) − ρnum(t)||1/||ρnum(t)||1, was in the order of 10−8 at all
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times, at and away from the EP. Here, || · ||1 represents the matrix 1-norm, i.e. the
maximum absolute column sum of the matrix. With the use of strict tolerances
of the numerical solver, the small relative difference indicates an accurate method.
Furthermore, when reducing the tolerances even more, the distance kept lowering,
indicating that the numerical solver might be the limiting factor. It is hence clear
that the implemented methods produce an accurate result at and away from the EP.

3.3.1 Varying initial conditions

With a clear picture of the analytical dynamics and numerically calculated eigenval-
ues and generalized eigenvectors at hand, simulations of the parallel dot system were
performed. Firstly, the time evolution in the generalized modes was investigated.
This was done by introducing initial conditions consisting of linear combinations of
the generalized eigenvectors

|ρ(0)〉〉 = |ρss〉〉+
4∑
i=2

bi |ρi〉〉+ b̄ |ρ̄〉〉+ b′ |ρ′〉〉. (3.11)

This way, the constants c in Eq. (3.10) are the same as the corresponding constants
labeled with b in Eq. (3.11). The generalized modes included in the time evolution
can then be controlled by the initial condition. To see this, simulations of the
density matrix for different initial conditions were done and then compared with the
steady-state of the system, see Fig. 3.4a.

(a) (b)

Figure 3.4: The decay of the density matrix (a) and the current (b), towards the
steady-state density matrix ρss and current Iss in a logarithmic plot. The simulations
were done at the EP with different initial conditions in linear combinations of the
generalized eigenvectors, see Eq. (3.11). The linear combinations used for the initial
conditions are given by the following: the solid, blue line: b̄ = 1, the dashed, yellow
line: b′ = 1, the solid, green line: b3 = 1, and the dash-dotted, red line: b̄ = 1,
b3 = 15, all other constants being zero if not mentioned. A normalization by
N = ||ρ(0) − ρss|| and N = |I(0) − Iss| was done such that each curve is unity for
t = 0. Here, || · || represents the Euclidean norm of the vectorized density matrices.

With initial conditions including only one bi 6= 0 or b̄ 6= 0, i.e., only one normal
eigenvector excluding |ρss〉〉, a mode consisting of pure exponential decay toward the
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steady-state is seen by the straight lines in the logarithmic plot. This is expected
since the time evolution only picks up one of the exponentials from Eq. (3.10). The
quicker decay corresponds to |ρ3〉〉 since |λ3| > |λ̄|, see Fig. 3.3. When including
both |ρ̄〉〉 and |ρ3〉〉 in the initial condition, the decay first follows the quicker decay
channel, then gradually turns into following the decay of |ρ̄〉〉. Another behavior
is seen for the initial condition including |ρ′〉〉. This generalized mode is not of
exponential nature, since a factor of t exp(λ̄t) enters in the dynamics. Away from
an EP, the dynamics is given by Eq. (3.7) and this type of algebraic decay never
happens. Thus, the behavior of this decay channel is a unique feature of the EP
dynamics.

As discussed in Chapter 2, any relevant observable of the system can be obtained
from the density operator. For the parallel dot system, the main observable is the
current entering or leaving a lead, which by using Eq. (2.3) can be obtained by

〈Îs〉 (t) = Tr (ρ̂(t)Îs), (3.12)

with a current operator Îs, corresponding to the current out of lead s ∈ {L,R}. The
current operators can be phrased in terms of the jump operators from the Lindblad
equation as

Îs = Ĵ†s+Ĵs+ − Ĵ
†
s−Ĵs−, (3.13)

where Ĵsα, α ∈ {+,−}, is the jump operator corresponding to tunneling events
entering (+) a dot from lead s or leaving (-) a dot to lead s.

By calculating and collecting the jump operators using the aforementioned code
implementing the PERLind approach and then inserting Eq. (3.13) into Eq. (3.12),
the current through the QD system could be simulated. In Fig. 3.4b, the calculations
from Fig. 3.4a were used to also simulate the current for the same initial conditions.
The results are similar to the simulations of the density matrix, indicating that the
time evolution in generalized modes carry over to the transient current dynamics.
However, with the initial condition including the two normal eigenvectors, the decay
in the quicker decay channel is washed out in this time scale and seemingly only
follows the slower decay rate. This can be contrasted with the algebraic decay, which
is equally visible in the current dynamics as in the density matrix dynamics.

3.3.2 Varying parameters

Simulations were also done to investigate the general behavior of the current at
and slightly away from the EP. This is done in Fig. 3.5, for two different initial
conditions: one with empty dots, and the other in a mixed state. These initial
vectorized density matrices are given by

1 : |ρ(0)〉〉 = |ρempty〉〉 =
[
1 0 0 0 0 0

]T
2 : |ρ(0)〉〉 = |ρmixed〉〉 =

1

4

[
1 1 1 1 0 0

]T
.

(3.14)
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(a) (b)

Figure 3.5: The current over time for different ∆ = δεEP − δε, normalized by the
corresponding steady-state current Iss. The solid, blue curves correspond to the
system being at the EP, while the other two are slightly away from it. The initial
conditions are given by Eq. (3.14), with a) having the empty initial condition and
b) the mixed one.

Looking at Fig. 3.5, it is clear that the three curves behave differently after the
first phase of overshooting the steady-state, i.e., after t ≈ 2. The curves correspond-
ing to a ∆ < 0, slightly overshoot the steady-state once more before approaching
the steady-state solution. This can be phrased as an underdamped behavior. On
the other hand, for ∆ > 0, the decay towards the steady-state is very slow, which
can be thought of as an overdamped system. Lastly, for the system at the EP, the
decay is much faster than for the overdamped system, but does not overshoot the
steady-state again like the underdamped system. This behavior is similar to what
was found in Ref. [11] for quantum thermal machines, where the dynamics at the EP
corresponded to the quickest decay without overshooting the steady-state, which is
known as critical damping. Furthermore, it can be noted that the current dynamics
in Fig. 3.5 varies continuously when approaching and leaving the EP, even though
the notion of EPs at first sight does seem to invoke abrupt changes.



Chapter 4

Conclusion and outlook

Summarizing the results of the thesis, a second order EP in the Liouvillian generating
the dynamics in a parallel dot system was demonstrated. After finding the EP,
Jordan decomposition was used to understand the time evolution of the system in
terms of the generalized modes, given by Eq. (3.10). Intuitively, this means that
the Jordan chains, consisting of generalized eigenvectors, evolve separately, and that
the initial density matrix decides which modes are involved in the dynamics of the
system. Equation (3.10) also implies that the dynamics at the EP for certain initial
conditions includes algebraic decay, as opposed to pure exponential decay away from
the EP. It was also shown that these characteristics of the density operator carry
over to the current through the system. Furthermore, comparisons of the transient
current at and away from the EP indicated similarities to Ref. [11] regarding critical
damping at the EP, but for a system of quantum dots instead of a quantum thermal
machine.

From a computational point of view, one may argue that the dynamics could
just as well have been simulated by a standard numerical integrator instead of the
implemented methods in this thesis. However, the latter gives direct access to the
generalized eigenvectors, which then could be used as initial conditions, directly
controlling which modes to be included in the time evolution. This increased the
understanding of the dynamics of the system and might prove useful for probing the
system for interesting and useful dynamics. It is also important to note that the
generalized eigenvectors were calculated through numerical means, which in theory
can be done for even larger systems and higher order EPs, unlike algebraic methods.

One of the main applications discussed in the literature on EPs is sensing tech-
nologies [4–7]. As mentioned in the introduction, this is because eigenvalue split-
tings are more sensitive to small perturbations at an EP. In the framework of non-
Hermitian physics, the eigenvalues of the operator in question, the Hamiltonian, are
the energies of the system and hence directly observable. In Liouvillian physics, the
eigenvalues instead correspond to the decay rates, which are more abstract and dif-
ficult to measure. An interesting open problem would be to find a useful observable
that probes decay rates, such that similar sensing ideas could be applied to QDs and
Liouvillian systems in general. Another proposed application for EPs is in quantum
control, i.e., for steering a quantum system to a target state in an optimal way. The
signs of critical decay at the EP in the parallel dot system are an indication of the
validity of this application in systems of QDs. If the parallel dot system would act as
a component in a bigger system, it may be important for it to reach its steady-state
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with critical damping. If so, EPs in quantum dot systems may serve as a piece in
the puzzle of reaching optimal performance in future technologies.

To conclude, considering the sparse amount of literature regarding EPs in Li-
ouvillian systems, and in particular systems involving QDs, it is interesting that a
system of quantum dots indeed can give rise to EPs. This opens up many questions
of how to understand and exploit EPs in QD systems in the future. This thesis
begins to answer these questions, and will hopefully lead to further work in the, so
far, small world of exceptional points in quantum dots.
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Appendix A

Derivation of Equation (2.20)

Here, we consider a general linear ODE of the form ẋ = Ax and derive the solution
in terms of generalized modes given by Eq. (2.20). First, we follow the steps in the
main text by introducing an initial condition contained in one of the Jordan chains:

x(0) = a1ri + a2r
(2)
i + · · ·+ ani

r
(ni)
i = ria, (A.1)

where a = (a1, . . . ani
)T is a constant vector and ri is defined in Eq. (2.11). Inserting

this into Eq. (2.17) gives

x(t) = MeJtM−1x(0) = MeJt

l1...
lq

 ria = MeJt


0n1×ni

...
Ini×ni

...
0nq×ni

 a, (A.2)

where the last step follows from that each product ljri results in nj × ni blocks
of zeros if j 6= i and the ni × ni identity matrix if i = j. Inserting the Jordan
exponential now gives

x(t) = M

e
Jn1

(λ1)t . . . 0
...

. . .
...

0 . . . e
Jnq

(λq)t




0n1×ni
...

Ini×ni
...

0nq×ni

 a =
[
r1 . . . rq

]


0n1×ni
...

eJni
(λi)t

...
0nq×ni

 a =

= rie
Jni

(λi)ta.

(A.3)

We can write a general initial condition as a linear combination of vectors in all
Jordan chains as follows:

x(0) =

q∑
i=1

ria
(i), (A.4)

where each a(i) is a constant vector, similarly to Eq. (A.1), for each Jordan chain.
Inserting this initial condition into Eq. (2.17), and using Eqs. (A.2) and (A.3) results
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in

x(t) = MeJtM−1x(0) = MeJtM−1
q∑
i=1

ria
(i) =

q∑
i=1

MeJtM−1ria
(i) =

=

q∑
i=1

rie
Jni

(λi)ta(i) =

q∑
i=1

rie
Jni

(λi)tlix(0),

(A.5)

and we are done.
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