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Abstract

This report presents our digital design flow for creating high speed very large scale
integration circuits using a fifth generation disruptive beamforming control and
data processing circuit as example. The flow consists of different stages. First,
a design stage where a golden reference is created in Mathworks’ Simulink using
different HDL supported toolboxes like the DSP HDL toolbox. Testbenches are
created along side the golden reference in Mathworks’ environment with Matlab
and Simulink. The same testbenches will be used during the entirety of the flow
to continuously verify all of the components in each stage. The second stage is
the code generation which will be done using another toolbox from Mathworks,
the HDL Coder. To verify the code, Cadence’s Xcelium will be used together
with Mathworks’ HDL Verification toolbox to simulate the produced code using
the mentioned testbenches, giving the simulation the same stimuli as used for
the golden reference. To automate the flow, automation scripts are created to
configure, set up and start the different steps of the stages and connecting the
Cadence tools to the Mathworks environment, leaving only the system designing
left for the developer. As a final step, Cadence’s Genus is used to synthesize the
system and evaluate the designs cost in terms of area and speed with the use of a
65 nm standard cell library.

The HDL Coder generates HDL in a hierarchical, readable and well documented
fashion with extended debugging properties. The many settings allow for cus-
tomization of the generation, both in terms of coding style and in architecture.
The quality in terms of design costs lies upon the developer. Even though the
many toolboxes with predefined algorithms exists to help the designer, custom
control systems do not exist as toolboxes and are not better than its implementa-
tion as designed by the creator. Using the Mathworks and Xcelium tools in the
same environment allowed to reduce the verification time by reuse of testbenches
and automate the design of components for a chip concept like the 5G disruptive
digital beamforming circuit for BeammWave.
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Popular Science Summary

The upcoming 5G-New Radio Standard will enable cellular communi-
cation in the millimeter-Wave (mmWave) frequency bands, mainly at
24-30GHz. The mmWave frequency bands open up for large system
bandwidth and Gb/s data rates enabling a lot of new use cases, such
as advanced Augmented Reality (AR) and Virtual Reality (VR) ap-
plications. However, the high isotropic path loss between the radio
transmitter and radio receiver for mmWave makes it necessary to rely
on antenna arrays with large number of antenna elements. These an-
tenna arrays overcome the path loss by high directional gain through
beamforming which focus energy in a particular direction in order to
mitigate the high path loss in the mmWave frequency band.

The first 5G mmWave mobile devices on the market, such as smartphones, will use
analog beamforming. The main reason is time to market. Analog beamforming
solution is bulky and far from optimized with respect to cost, size and power
consumption, and hence the first mmWave devices on the market merely constitute
a proof-of-concept solution for cellular communication using mmWave.

For smartphones and IoT devices targeting the mass market, the radio architec-
ture really needs to be optimized from cost and size perspective. The start-up
company BeammWave has developed a disruptive digital beamforming architec-
ture, by integrating the RF IC, front end Radio modules, filters, and antenna
element in a single RF chip that will drastically change the way beamforming will
be implemented in mobile devices in the future. Future mobile devices will rely
on digital beamforming.

With increased system complexity, methods and tools that can shorten the design
development time become increasingly important, specially concerning digital de-
signs. Traditionally, a system description is typically “manually” translated to
VHDL or Verilog and then introduced into a digital flow. Recently, tools have ap-
peared that can automatically convert Matlab/Simulink system descriptions using
e.g., the HDL Coder toolbox in Matlab, to generate HDL that can be introduced
into the digital flow in Cadence’s tools. With more complex systems the capability
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of these tools needs to be evaluated.

In this Master’s Thesis, we present our flow, how to connect and use the different
state of the art tools. We will also show how to automate the processes by using
real digital designs needed by BeammWave in their disruptive digital beamforming,
as examples. This flow includes everything from the design process to creating
idealized models. From generating HDL and verifying its behavior, to synthesizing
which estimates the cost, size and timing. Finally the flow is evaluated, not only in
the resulting quality compared to a traditional flow, but also from the developing
perspective, comparing traditional and our flow in terms of automation and hours
spent for development.
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List of abbreviations

5G-NR: 5G-New Radio

ADC: Analog to Digital Converter

ASIC: Application-specific integrated circuit

CAN: Controller Area Network

CPU: Central Processor Unit

DAC: Digital to Analog Converter

DSP: Digital Signal Processing

FIR: Finite Response Filter

FPGA: Field Programmable Gate-Array

FSM: Finite State Machine

HDL: Hardware Description Language

HSDPA: High Speed Downlink Packet Access

IC: Integrated Circuit

IoT: Internet of Things

IP: Intellectual Property

RF: Radio Frequency

RFIC: Radio Frequency Integrated Circuit

RTL: Register Transfer Level

SoC: System on Chip

SRAM: Static Random Access Memory

TCL: Tool Command Language

VHSIC: Very High Speed Integrated Circuit

VHDL: VHSIC Hardware Description Language

VLSI: Very Large-Scale Integration
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Chapter 1
Introduction

New improvements to smartphones, computers, internet of things (IoT) and other
devices, both in processing and data usage, creates more and more complex sys-
tems. The process of developing new digital integrated circuits (IC) has evolved
from simple units to complex systems which has driven the development and verifi-
cation time to increase considerably. Often large teams divide the work in different
abstraction layers and subsystems. From idea and mathematical representation of
the subsystems down to register transfer level (RTL) and transistor level design.

While the complexity has increased, new tools to handle the complexity have been
developed. Mathworks’ Matlab and Simulink have added or updated toolboxes to
enable translation of their code to hardware description languages (HDL) which
describes the RTL. Integration of verification tools such as Cadence’s Xcelium or
Mentor graphics’ Modelsim have also been added to Mathworks’ tools.

One complex system is the radio frequency (RF) IC for the 5G radio standard
which the start-up company BeammWave currently is developing. One part of
the RF IC is the digital processing and control system of the down and up link,
between the antennas and the 5G-NR (Fifth Generation New Radio) baseband
circuitry. This design will be implemented to explore and create a flow around
since BeammWave is kind enough to supply concepts and description of the state
of the art system.

The main task of this master thesis is to create a design flow for developing digital
ICs and evaluating compared to traditional flow using the tools from Mathworks
and Cadence. To evaluate the flow we will compare generated HDL from the
Mathworks tools with a traditional creation of HDL by analyzing the properties
given by synthesizing the RTL descriptions. Evaluating the flow by its development
efficiency compared to traditional translation will also be included in this master
thesis.
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2 Introduction

1.1 Motivation

The first 5G mmWave mobile devices on the market, such as smartphones, will
use analog beamforming. The main reason is time to market. Analog beamform-
ing solution is bulky and far from optimized with respect to cost, size and power
consumption. BeammWave has developed a disruptive digital beamforming archi-
tecture, by integrating the front end Radio modules, filters and antenna element
in a single RF chip which will change the way beamforming will be implemented
in mobile devices in the future.

Traditional verification requires manual translations from system description to
RTL which often takes a long time. Especially when large parts of the code have
to be redone when something changes. A quicker design flow is developed and to
decrease the developing time and thus decrease the time to market which benefits
any company.

A design flow using Matlab to create RTL is not new [1] but with the continuously
updated and added toolboxes to Matlab and Simulink makes it worth investigating
the current state of the tools to create state of the art technology. Specifically since
Matlab is often used in the design process by researchers from different fields. From
ideas and mathematical descriptions to RTL in a single environment makes the
flow centralized and convenient.

1.2 Goal of the Project

A documented design flow for RTL development using Mathwork tools, with clear
instructions on how and where to configure in order to meet specifications for any
future application specific integrated circuit (ASIC). A big part of the flow will be
testing and verification to make the development easier. The flow will be flexible
to enable the adding of new blocks, toolboxes and tools to continue the creation
of state of the art technology.

The master thesis will also evaluate the flow compared to traditional manual trans-
lation flow. This will show advantages and disadvantages between manual and
generated HDL and how the developing time differs. The findings of analyzing
different verification methods and tools will be presented along with design prob-
lems and how to solve them. Finally, a report of the digital design flow principles
will be included in the master thesis.

1.3 Related Work

Past studies of system and RTL verification flow have been done in Matlab [2]
where O. Z. Batur, M. Koca and G. Dundar created a synthesizable VHDL model
using Matlab scripts and testbenches which are simulated using Mentor Graphics’
Modelsim as co-simulator, comparing results between the reference model and the
RTL model. In another study [3] K. Ng explores different challenges in RTL
verification using high-level system models, where the approach is to simulate a
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reference model and a model under test and compare their results. How effective
these models are in particular issues such as timing and input constraints in or-
der to verify the RTL model. Since high-level system models are a reference for
the hardware implementation and do not describe entirely the architecture of the
system.

Another study which includes the Cadence Xcelium tools are [4] A. Goel, B. B.
T. Sundari and S.Mathew’s "UVM based Controller Area Network Verification
IP (VIP)" a verification intellectual property (IP) is tested for a Controller Area
Network (CAN) block. This approach is simulating using Xcelium in order to
perform the functional verification. In [5] T. M. Bhatt and D. McCains "Matlab
as a development environment for FPGA design" a design flow using Mathworks
tools targeted to Field programmable gate arrays (FPGA) presents how a digital
flow is applied to High Speed Downlink Packet Access (HSDPA) blocks, by using
older tools such as HDL Designer and conversion blocks. The authors create a
design flow for RTL development and verification, along with Mentor Graphics
software. T. M. Bhatt and D. McCains flow can be improved with more recent
tools and targeted to ASIC as it is intended in this master thesis. A more recent
study [6] is V. Y. Sarges “Evaluating Simulink HDL Coder as a Framework for
Flexible and Modular Hardware Description” which evaluates Mathworks HDL
Coder, for specific blocks for a FPGA.

1.4 Thesis Outline

The presented thesis is organized in the following chapters:

• Chapter 2: Overview. A summary of the modern digital design flow
techniques and our digital flow for this master thesis.

• Chapter 3: Idea and Modeling. Describe how the Mathworks envi-
ronment is used with different tools by exploring designs and forming the
first stages of our digital design flow based on an edge detector and DIG-IF
models.

• Chapter 4: HDL Code Generation. Shows how the Mathworks block-
sets are translated to HDL together with the design process of writing HDL
by hand.

• Chapter 5: Simulation and Synthesis. Describes the used Cadence
tools, the strategies to setup and automate the process based on the men-
tioned models from chapter 3.

• Chapter 6: Results. A description of the designed digital flow and the
generated HDL code, co-simulation and synthesis tasks based on the models
from chapter 3, compared to the handwritten.

• Chapter 7: Conclusions. Final conclusions regarding the master thesis
and future work for this flow.
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Chapter 2
Overview

2.1 Digital Design Flow

A digital design flow is a process for developing a concept or a product with certain
specifications to physical hardware implementation. The process is usually seen
from three different domains: The behavioral, the structural and the physical.
Figure 2.1 shows the Gajski–Kuhn chart levels from the center of the diagram to
the outside with a higher level of abstraction.

Figure 2.1: Gajski–Kuhn chart or Y diagram

The behavioral domain represents the system as a black box, since it explains how
the system responds to stimuli by using equations to describe the functionality.
The structural domain is more precise by specifying the actual components in-
side the hardware implementation and how all these components are connected.

5



6 Overview

A netlist gathers these links representing it as a schematic. The physical view
adds more information to the system such as the placement of each component,
including the used area and wires in the system implementation and is used for
fabrication.

2.2 General VLSI Digital IC Design

For Very Large Scale Integration (VLSI) fabrication, meaning the fabrication of a
system that could include millions of transistors, a typical flow [10] is followed in
different stages, as in Figure 2.2.

Figure 2.2: Design flow steps
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The first stage is to create a floating or fixed point model and verifying its behavior.
Most other programming languages are capable of creating and testing models
since it often describes a algorithm or function.

The next step in the stage is in the structural domain. Describing the model in RTL
using HDL such as VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware
Description Language) or Verilog. The systems are often described using Finite
State Machines (FSM) which control the systems behaviour only using states and
inputs. At the RTL, all registers, signal widths and logic gates are defined which
creates a complete system description. These first two stages is the frontend of
VLSI design and the following stages are the backend VLSI design [12].

Synthesis is the third stage where the components are compiled from a system
description in RTL. Hardware libraries are used to define how the transistors
should be used to create the logic gates and registers. It also contains clocks
circuitry which is Synthesized to include timing constraints. The clocks are defined
with a frequency, maximum skew and a maximum delay. Since transistor takes
time to switch it is crucial that all the transistors have had enough time, in the
clock cycle time frame to switch. The synthesising sums up the switching time of
each transistor, making sure the timing constraints are met. Synthesizing programs
like Cadence’s Genus can optimize the system by switching places of components
to improve the timing characteristics. But if the timing constraints still are not
met, a redesign of the logic is needed or a loosening of the constraints.

So far no physical schematic has been created, everything has just been simulated.
Synthesizing just calculates the design as everything where well behaved without
parasitic currents. In the last step of the stage, the routing, a physical layout is
created. If problems arise in this stage, the redesign may go back to the synthesis
or even to the RTL creation stage. A digital design flow is an iterative process
[7] where design validation, constraint checks, timing and size verification are
performed in parallel, often by different engineers. After all the tests have passed
in the all stages, the design can be manufactured to a physical product.

2.3 Hierarchical Design

As a system becomes larger and complex, going through the mentioned stages in
a flow becomes harder to modify and validate. Using a hierarchical design flow,
the system can be broken down into smaller blocks or subsystems. Each block or
subsystem can then be divided into more blocks or subsystems until the description
is implementable. The testing is also divided into different types of tests such as
unit tests for each block or system and integration tests for testing blocks and
systems together.

Figure 2.3 shows how a design can be divided into more blocks in Simulink. By
designing in a hierarchical way, advantages such as tests for specific blocks, sepa-
rate the workload in a team, the reuse of verified designs to similar systems and
enabling the integration of third party components into the system [9].
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Figure 2.3: Hierarchical structure in Simulink of DIG-IF
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2.4 Our Design Flow

After a general digital flow was reviewed and exploring in previous sections, the
following chapters will specify with tools, automation scripts and examples how
our flow works. How certain packages from each software links to another to create
an efficient design flow and how to construct each step in the stage for automated
processes. The Figure 2.4 displays the entire digital flow, which shares procedures
from a general design flow as shown in Figure 2.2.

The main focus of our flow goes from a concept or a product idea to verification
and synthesis of the RTL description. It also focus on how the components are
created, both in terms of product quality and the developing efficiency. By us-
ing Mathworks’ environment, the entire flow can share testbenches, both across
different stages and for different components. A network link is used to setup a
connection to Cadence’s Xcelium and Genus as an extension of the environment,
allowing co-simulation for RTL description verification and synthesis. A flow can
be created for many different types of components. The components our flow are
based on is shown in Figure 2.5 which is picked out for developing control cir-
cuits and High Speed (HS) data processing using filters and basic arithmetic from
sampled analog signals.
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Figure 2.4: Proposed digital flow

Figure 2.5: Flow components



Chapter 3
Idea and Modeling

3.1 Product Idea

To create an idea of a product in digital design, the development starts with the
defining the function and its constraints, these are studied and explored with the
Mathworks tools to create a golden reference. It is called in this way, golden
reference, due to it determines the target, how the targeted design should work
in a idealized way. Then by using different Mathworks toolboxes a digital model
can be formed by dividing the design into smaller comprehensible components in
a hierarchical way.

Simulink is suitable for this task since it shares the same perspective of hierarchy
where each component is modeled by itself and then connected, which is also the
structure in RTL system description. In the Mathworks enviroment, scripting
can be done to create testbenches and connecting the models to other services
provided by toolboxes and other programs. The outputs of those services can
be processed and verified with scripts to make sure the targeted design works as
intended. The testbenches are solely based on the Matlab programming language
and not generated to hardware testbenches as other flows may have. The benefits
of having the testbenches outside of the hardware environment is that they also
can be used in the later stages design stages, such as the RTL generation and
synthesis stages discussed in chapter 4 and 5.

3.1.1 Mathworks Model

From the golden reference, components are made. Each properly defined as its own
model by choosing and defining its specific algorithm. The models are created as
Simulink blocks which can be translated to HDL. The modeling is a continuous
development where the models are updated to fit the constraints of the product
since all the cost parameters of the modeling are not known until synthesis or
even the final routing stage. This is why each model needs its own testbench and
automated setup, to collect the costs as far down the design flow as possible.

To differentiate between what is going to be translated to HDL code and what

11



12 Idea and Modeling

are constants, test data and testbenches, Simulink is only used for what is going
to be translated. Matlab code could also be translated to HDL code but avoided
as explained more in chapter 4. Some exceptions are made but the code for the
exceptions are put in Simulink’s Matlab function blocks which works as any other
Simulink model.

To design a circuit in Simulink, different predefined operational blocks are used.
The blocks connect to each other by drawing lines between each block’s inputs
and outputs, similar to a signal in VHDL. Just as signals in VHDL have different
types, so does and have the lines. The type define how the blocks should operate
on the signal. Array types are also available creating a list of signals. But instead
of defining the type for each line, it propagates from the blocks input and output
connections. Often the testbench input defines the type of the input signal for
the first blocks which output can either change the type or be propagate the type,
leaving it the same as the input. For example, an addition block can increase the
bitwidth with one bit to avoid overflow, changing the type. A delay block does
not change the type and propagates the input type to the output.

3.1.2 Testbenches

Creating the models and testbenches is done in unison, continuously verifying
earlier made models with integration testbenches. But before the modeling starts,
a setup script is created where test data is generated from the description and
constants. The test data is saved and used for every model’s testbench. That way
the same test data can be used for multiple iterations of the same model, making
the testing efficient and centralized. The generated test data is the same input as
the top model would receive, meaning it has to be transformed before it is used
for each specific model.

The testbench starts by importing the constants and subset of test data needed.
Then it transforms the test data to fit the specific model. The easiest way is to use
previous models to transform the test data which also integrates those models to
an integration testbench. Code 3.1 shows a part of example integration testbench,
how it uses a previous model to transform the test data.
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function errors = integration_testbench(verbose, options)
load(’setup/example_input.mat’, ’input_bus’);
load(’constants.mat’, ’req_mem_size’);

input = [input_bus.req_base];
stop_time = numel(input);

% Transform input using previous model
packager_output = sim(’packager/unit_test’, [], options.simOptions);

% Runs the test
input = packager_output;
output = sim(’request_buffer/unit_test’, [], options.simOptions);

Code 3.1: Part of Request buffers unit test

After the creation of the specific test data comes the generation of expected output
data. This is done either directly from the constants, from the input or as a
combination. If the model should be able to handle certain errors, such data must
also be generated and tested for. This is done by editing both the test data and
the expected data in the specific testbench.

The testbenches are built as functions in Matlab, taking run options and debugging
arguments such as verbosity as inputs and returns if there is any mismatch between
the received and expected output. The functions are collected in a script as a test
suite where all tests can be run with the set of input data and constants. This
ensures that every model still works after changing the constants. In addition
to the Matlab testbench suite which tests the functionality of the models, it also
connects to a co-simulation server as described in chapter 5 to verify Simulink’s
simulations using the same test data.

3.2 Model Development by Examples

3.2.1 Edge Detection - A 2D Convolution Algorithm

As a first example, a two dimensional (2D) convolution also called a finite impulse
response (FIR) filter was chosen to explore the design flow. A FIR filter is often
used for image processing and in this example the filter will be used to find edges
in an image. It was chosen since the data is streamed through the algorithm and it
needs large memories. Both streaming and handling memory are crucial in many
hardware designs which makes how the Mathworks tools handle this essential for
establishing the flow.

The golden reference starts by examine the mathematical expression of a 2D con-
volution which looks as follows:

g(x, y) = w ∗ f(x, y) =
a∑

dx=−a

b∑
dy=−b

w(dx, dy)f(x+ dx, y + dy)
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where g is the convoluted result, w and f are the inputs to be convoluted. In image
processing one of the inputs is called a kernel w which operates on the image f .

To verify that the actual algorithm works, a testbench is set up in Matlab where
the input is changeable, both using different images but also with raw numbers for
debugging. The output can then be verified by examining the plot of the output
or in this case, the processed image. Mathworks have a lot of predefined functions
and one of them: filter2 [15], does the exact 2D convolution. Providing the
test image and kernel an expected output can be generated and compared to the
actual output, verifying the algorithm with pixel precision.
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3.2.2 DIG-IF

As a second example design to create a flow for, a description was set up together
with BeammWave for a part of their 5G chip, the DIG-IF. Specifically it describes
digital part between the ADCs (analog to digital converters) and an interface for
a processor or a state machine, the baseband (BB).

Figure 3.1: DIG-IF Design sketch

The function of the DIG-IF is to control the downlink (DL) data flow between
antennas and baseband by filtering and combining the data streams using different
filters and combining weights. It also controls the uplink (UL) data flow in a similar
way as the downlink but instead of combining the data streams from the antennas,
it splits the data stream from the baseband to the antennas.

The DIG-IF design is built using a request scheme. The baseband requests data,
the change of a parameter or the setting of a coefficient. The data requests in-
cludes which time to sample since the baseband does not keep track of the exact
time. Each request makes DIG-IF respond with an acknowledgement or a nega-
tive acknowledgement, depending on the success. The DIG-IF will also respond
later when it is time to sample the data from a data request. The request are not
necessarily sent in order from the baseband and can be canceled, meaning search
algorithms are needed to insert and read the requests stacks.

All the design specifics for DIG-IF can be found in appendix A together with the
constraints, final circuit and results.
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Chapter 4
HDL Code Generation

4.1 Fixed Point

Before converting a Simulink model to HDL code the signals must be represented
in integer or fixed point form. Initially the signals are Mathworks’ default type:
double, defined by IEEE’s Standard 754 [8]. The reason the conversion is needed
is because fixed point form have a lower complexity leading to using less space,
less power and an increase in speed compared to a floating point implementation.
The only loss is the dynamic range floating point provides but since the range of
a signal often is known, the dynamic range is not needed.

Fixed point form is a signal type with a fixed bitwidth, fractional length and a
bit representing if the signal is signed, using two’s compliment. It also defines
the signal scaling, bias point and how mathematical operations work regarding
rounding and adding additional bits to avoid over- and underflow. Operational
blocks can be specified if they should operate on the signals using real world signal
value with the scaling and biasing or using the stored bits as they are, resulting
in different hardware implementations. For fixed point signals with binary point
scaling and zero bias, real world and stored bit hardware implementations are the
same. Figure 4.1 and 4.2 shows how 0b11010101 can represent different numbers
in fixed point form.

Figure 4.1 has three fractional bits meaning the three least significant bits represent
the decimal part. The decimal part is represented as division by 2. One fractional
bit would only allow the decimal to be 0 or 0.5. Note that it also signed with its
most significant bit set to high, this makes the number be negative.

Figure 4.2 is not defined by a fractional point. Instead it is defined with a slope.
Each increasing bit is scaled with 1.5 · 2−3 resulting in the different bits can rep-
resent values a binary point scaling can not.

In the edge detection example, the pixels of the image already are defined in a
black and white range, represented by 8 unsigned bits and a kernel which only
includes integers between -1 and 1 inclusive. The input types propagate through

17
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Figure 4.1: Fixed point with 3 fractional bits

Figure 4.2: Fixed point with slope 1.5 · 2−3 and bias +1

the model which makes the output gain a signed bit from the multiplication and
a few bits from the summations, compared to the input.

If the kernel had had fractions with a wider bitwidth the resulting output bitwidth
could have been increased to avoid overflow or underflow. But high precision has
it costs and can lead to unreasonable high bitwidths. In the edge detection case,
an 8 bit input multiplied 9 times in a 3 by 3 kernel with another 8 bit number
would result in the output needing to be 72 bits width to avoid overflow. The
solution is to specify the type, the fixed point parameters, after each operation
and allowing some underflow. Mathworks’ provides an tool, the fixed point tool
which suggest new parameters since calculating them for every step by hand can
be a tedious task.

The fixed point tool works by iteratively trying different fixed point configurations
for different signals in the specified design and evaluating the output error for
different inputs. When the iteration max is hit or the absolute error is below
specified allowed error a report is generated. The report consisting of how much
each of the bits are used in each component together with overflow and underflow.

The newly found fixed point configurations can then be implemented in the actual
design. Most of the DIG-IF design is a control system which is bit exact and where
every bit size is predefined. The only exception is the up and down link data paths
where the filters use the fixed point tool. The fixed point tool wizard is shown in
Figure 4.3 and the result of a fixed point filter implementation for the constraints
of the DIG-IF is shown and discussed in section 6.1.2.3
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Figure 4.3: fixed point tool data types

4.2 HDL Coder

Mathworks’ HDL Coder toolbox generates HDL from Matlab functions or Simulink
models. The generation works by having predefined HDL code for the fundamen-
tal blocks and connect them using the Simulink models or Matlab functions as
schematic. This way makes the HDL Coder suitable for RTL hierarchical designs
where a complex system can be treated and imported as a group of small subsys-
tems and developed independently. The HDL Coder toolbox provides a library
of blocks including bit operations and routing specifications. The toolbox also
grants the initial blocks of Simulink such as adders and multipliers, to be HDL
compatible, giving them fixed point algorithms for HDL realization. The HDL
Coder also provides some larger hardware models such as RAMs, serialization and
deserialization systems to tune the design in terms of speed and area.

The HDL Coder can also optimize the implementations HDL by pipelining and
make subsystems share resources such as multipliers, adders and other DSP blocks.
Neither the 2D Convolution model or the DIG-IF has used resource sharing since
no resource limits has been set. Commonly resource sharing is revisited after syn-
thesis where a size and resource usage estimation is concluded. When developing
for a FPGA the resource limit is known since a FPGA has a fixed amount of
resources and the optimization is of higher importance.

Verification models are also generated by the HDL Coder. These models have all
their variables set as fixed values and its generative functions have been generated
meaning the model does no longer depend on Matlab workspace variables or have
any variant subsystems. In the verification model the optimizations can also be
seen. For example, either by the absence of blocks due to dead code and resource
sharing or by insertion of extra registers in case of pipelining.
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4.2.1 Code Settings

There are two ways to generate code. Either the usage of a window based wizard
as displayed in Figure 4.4 or to call a Matlab function with the design parameters
as shown in code 4.1.

Figure 4.4: HDL Coder Wizard

function makeHDL(model2gen, path)
checkhdl(model2gen)
makehdl(model2gen,’TargetDirectory’,path,
’SimulationLibPath’, path, ’SimulationTool’,
’Cadence Incisive’, ’GenerateCoSimModel’,’Incisive’,
’GenerateValidationModel’,’off’);

end

Code 4.1: Make HDL script
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The HDL Coder comes with many configurations in different categories:

• Target: Specify if the code should be generated for a specific FPGA or
generic ASIC. The target’s frequency is also set and when combined with
a timing library to define the time taken to do a multiplication for exam-
ple, timing estimates can be calculated and timing optimizations become
possible.

• Optimization settings: Define how the pipelining should happen and the
limits of the resource sharing.

• General coding settings and how the clock and reset should function: Coding
style and coding standards regarding the clock and reset can be selected to
follow predefined industry standard for naming conventions and language
versions or completely customized.

• Reporting: The generation can generate a report as Figure 4.5 where the
specific components are linked to the code, showing what models made what
code. If and how timing, area and optimization reports should be presented.

Figure 4.5: HDL Coder output reports

• Testbench generation. In the case of the edge detection and DIG-IF systems
no HDL testbenches are used since Xcelium connects to Simulink which is
used as the testbench. Another way is to generate HDL testbenches which
can be tested together with the genereated code for the models in a simulator
tool as Xcelium.
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4.2.2 Blocksets

In addition to the fundamental blocks provided by the HDL Coder toolbox, ad-
ditional toolboxes are provided by Mathworks which provides different systems,
models and blocks. Each toolbox is specific to certain area or subject where com-
plex systems are created by the interaction of multiple toolboxes. An example of
a block provided by Mathworks’ DSP HDL Toolbox [13] are generic filters which
will be explored more in the following chapters. The filter block is generated from
the filter designer [17] and can be configurations to work as any type of filter.

When a design grows and start to contain many different operations and signal
lines it can be hard to follow. To abstract out some complexity, subsystems can
be made in Simulink. These subsystems are what makes Simulink a hierarchical
designer where each subsystem is similar to a entity in VHDL. Subsystems are
also be saved and then referenced like having a library of custom blocks, just as
toolboxes are used. Subsystem can even be looped meaning one subsystem will be
used for every input. Subsystems can also be variant, meaning different subsystem
can be used in the same place, assuming they have the same input and output
ports. The selection of which subsystem is determined by constants from the
workspace or input signals.

An example subsystem in Simulink is a register. The register subsystem consists
of a delay used together with a switch as shown in Figure 4.6. Both components
supports all types of signals, including arrays of signals, making it a variable size
register from the input signal type.

Figure 4.6: Simulink register

An example of a variant subsystem could be a one clock cycle binary index search.
An algorithm for finding an available spot in a memory. To create this algorithm,
a register keeps track of which spots are available by having a zero at the available
indexes and a one at the occupied. Then it is just to find the first zero in the
register, which is done by checking if there is a zero in the top or bottom half of
the input to each subsystem where the input to the first subsystem is the register
content. The design of a 8 bit example is displayed in Figure 4.7.
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Figure 4.7: 8 bit binary index search

The variant part is that every stage is its own subsystem which are concatenated
to create the structure Figure 4.7 to create algorithms handling larger inputs. In
this specific case a looped subsystem can not be used since every stage contains a
different amount of signals.

4.2.3 Dedicated Blocks

4.2.3.1 HDL Coder Generic RAM

The HDL Coder has dedicated blocks for generic RAMs. The address and data
width of the RAMs are defined with the size of the inputs in the Simulink model
automatically, which will be generated using generics in HDL.

Figure 4.8: HDL Coder Dual port RAM in Simulink

A full description of the generated HDL code for a RAM block can be seen in the
appendix C.1, where the line 47 sets the address and data width. The lines from
21 to line 35 calls the components.

4.2.3.2 Block Matrix Multiply

In the DIG-IF vector-matrix multiplication is used to combine or split the signals to
or from the antennas. Simulink’s matrix multiply block gained fixed point support
from the HDL toolbox, letting it perform one clock cycle multiplications by having
many multiplication cores. For example combining 8 antennas to 4 output streams
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requires 32 multiplication cores. If the hardware is not quick enough or the cores
take up too much space, another streaming block[16] can be used. By specifying
matrix sizes and the hardware its gonna be implemented on, Mathworks supplies
the latency and the resources needed.

4.2.3.3 Filter

The easiest way to create a filter is by using Mathworks’ filter designer tool. In the
tool the filter can be defined either by specifying which implementation along with
frequency and magnitude specifications. Mathworks can find the minimum order
needed to fulfil the specifications and generate the coefficients. With the addition
on HDL Coder, quantization of the filter is possible by defining the arithmetic
and fixed point properties of the signal in the filter. When quantifying the filter
properties may change due to loss of accuracy in the coefficients leading to the
specifications of the filter may need to be retweaked to fit the accuracy in the
coefficients.

In the case of the DIG-IF, the properties of each signal are set by the fixed point
tool. This increases the control, allowing the signals in each stage of the filter
to have different properties. Since a maximum error is set when generating the
properties using the fixed point tool, it ensures the filter properties are not changed
due to accuracy loss.

4.3 Handwritten HDL Development - Edge Detector

To write the code from a description, the system must be properly understood.
Designing the architecture is done by exploring the system with blocks, without a
Matlab environment and only a HDL simulator. Time is spent on designing test-
benches for specific blocks to ensure its functionality. Different types of statements
is used for the handwritten version such as concurrent and sequential signals. In
the edge detection, A finite state machine controls the data input and how the
data flows in the different registers and operators, having boolean flags raised as
indicators.

Using an external SRAM (static random access memory) IP (Intellectual property)
will improve the system in terms of area speed and power, compared to a generic
RAM made with HDL. But the implementation involves the knowledge of the IPs
delays and requires the adjustment of the delays of other components to make
sure the output is correct. The delay adjustments may add latency to the overall
design. To counteract this in the example of a RAM, a larger read can be done.
Different parts of the same output are used for multiple signals. As a result the
circuit has become more complex.

Handwritten designs are often hierarchical as well where the design can be split
into different files. In the case of the Edge Detector which is not a large model,
it was not necessary. The design required description of multiple internal signals,
to control the datapaths and registers, and route signals from SRAM IP. More
than 60 signals of different widths were used and traced in the handwritten edge
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detector. The documentation of the code is another task that is not automated
and has to be done.

The VHDL code 4.4 shows the routing of one register and the control signals
which triggers different datapaths. In line 5, a signal determines if the input of
the register is either RAM_A or RAM_B. Total control of the dataflow is achieved by
handwriting the code.

---datapaths , routing of Line 1 register
L1_next <= (others => ’0’) when state_reg = ’0’ else L1_R1;
L1_R1 <= (others => ’0’) when counterLength_reg <= 1 else L1_R2;
L1_R2 <= L1_reg when addressRAM_reg = 0 else L1_R3;
L1_R3 <= unsigned(RAM_A_OUT) when RAMselect_reg =’0’ else unsigned(RAM_B_OUT);

Code 4.4: Routing of register and control signal

The kernel operator is implemented with simpler functions such as addition and
subtraction from different registers which stores parts of each line of the image,
as seen in code 4.5. 3 extra identical blocks running in parallel perform the same
operation with other inputs, to process 4 pixels in each clock cycle.

--matrix convolution, simpler function addition/subtraction
sum1 <= ("0000" & L1_reg(15 downto 8)) + ("0000" & L1_reg(7 downto 0)) +

("0000" & L2_reg(7 downto 0)) - ("0000" & L2_reg(23 downto 16)) -
("0000" & L3_reg(23 downto 16))- ("0000" & L3_reg(15 downto 8));

sum1_2 <= sum1(10 downto 0) & "0";-- bitshift 2 multiply

Code 4.5: Simpler kernel function operation

Verify the code without a Matlab environment, only using the waveforms and
output is not an easy task. In the case of the edge detector a testbench is created
in VHDL which inserts binary data from a test image. The output is rebuilt to
an image and can be viewed for verification. But it is hard to tell which part of
the code is wrong when the image is not looking as it should. The only help is
when using the HDL simulator. The behavior of each signal is viewed in a timing
diagram with its absolute value in a defined radix such as hex as can be seen in
Figure 4.9.

Figure 4.9: Timing diagram from HDL simulator
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Chapter 5
Simulation and Synthesis

5.1 HDL Verifier

The HDL Verifier toolbox [18] allows co-simulations of the designs using exter-
nal simulators such as Cadance’s Xcelium. A connection is made from Matlabs
or Simulinks environment which enables the co-simulation blocks provided by the
HDL Verifier to take an input as a Simulink model and send it to the HDL simu-
lator server where a design is loaded. The server returns the output data to the
Simulink models’ outputs to be used in the Matlab or Simulink environment as
comparison or usage of an external system.

Figure 5.1: Blocks in the HDL Verifier blockset

Models as seen in Figure 5.1 links the Mathworks and Cadence environments
creating a powerful simulation environment due to the accessibility of Matlab
workspace variables and strength of the simulators processing. Many Simulink
models linking to different external simulators can be joined together to create
specific testbenches and import other, already compiled designs. These models
enable both Matlab researchers and developers and system RTL designers to share
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the same framework.

The link is established by setting a port or socket in the co-simulation block
which allows to run cross-network simulation where the Simulink environment
and HDL simulator are executed in different systems. Multiple links are allowed
in this format, as long as a port is not shared between different HDL Xcelium
instances. The possibility to execute several simulations in parallel in the Simulink
environment enables large systems to be integrated and tested at once. Figure 5.2
shows an example setup for a Xcelium remote server at LTH.

Figure 5.2: Connection Setup in co-simulation block

5.2 Cadence’s Xcelium

Cadence’s Xcelium is a simulator for digital hardware in order to verify function-
ality of RTL or Gate-level designs. This is just one part of the whole process
of verification although crucial since after synthesis or layout, the description or
architecture can be modified to meet certain constraints and the simulation is the
first verification of the RTL logic works as intended.

Figure 5.3 shows how the VHDL or Verilog files are compiled by Xcelium, using
commands such as xmvhdl or xmvlog. Then the command xmelab defines the de-
sign hierarchy of the model, this command elaborates code for simulation. Lastly,
the command xmsim simulate the stimuli creating results that can be displayed
with another environment such as SimVision with a GUI as displayed in Figure 5.4
or passed back to Mathworks.
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Figure 5.3: Cadence Xcelium environment

Figure 5.4: Simvision GUI

Cadence’s Xcelium is able to run TCL scripts, which enables automation of steps
in the simulation. A start up TCL script is used to fetch the license to enable
the start of the program. The path to the HDL source files to compile and elabo-
rate and optional configurations are appended as parameters. The configurations
can contain if the GUI should be used and on which port the Xcelium should
expect the connection to Mathworks. TCL is widely adopted by electronic design
automation(EDA) tools makers for automation [11].
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5.3 Xcelium Co-simulation

Once Xcelium has the RTL source it can start the simulation. There are several
ways to start the HDL simulator and connect to the Mathworks software. Xcelium
can be set up as a server or as a client, with Simulink or Matlab respectively. Since
Simulink is used as the main environment for system design, Xcelium works as
the host waiting for stimuli from Simulink, the client. Figure 5.5 shows the link
between the Simulink environment and Xcelium Simulator.

Figure 5.5: Xcelium as a server

With this setup, co-simulation is a tool which enables the sending of data from
the Simulink environment to the Xcelium simulator. Since Simulink and Xcelium
does not necessarily work at the same rate it is important to set up the timings
correctly between the two. Simulink only works in ideal clock cycles while Xcelium
simulates the actual time it takes for a signal to change. Having a higher accuracy
in Xcelium and not compensating for it in the timing configurations results in
the simulation not behaving as intended. Xcelium could be using the same input
multiple times and outputs data to Simulink in the the wrong rate.

The co-simulation model generated from HDL Coder in Figure 5.6 shows a compar-
ison between a Mathworks model and a simulated RTL model, where the outputs
can be tested with the Simulink tools.

A Matlab automation script handles the generation of co-simulation model, sends
the file to the server and then starts the server and simulates the design from
using its testbench. The script can be found in appendix B.5. It takes at least
two parameters, which model to cosimulate and the address where the server
lives. It also has an optional configuration struct which defines the configuration
parameters for the server and how to find the testbenches and source files of the
model, relative to its path. When the design is done, the script erases the used
RTL description on the server and closes the connection. This is done by setting
post-simulation TCL commands on the co-simulation block.
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Figure 5.6: Design model and co-simulation linking model

The enabling of Xcelium simulations on a different server in another network is
done by first connecting to its Virtual Private Network (VPN). This enable the
use of a socket connection from Simulink for transmitting stimuli and receiving
output data. The server environment is prepared by uploading the source files
which is made by an automatic setup script in Code 5.1 over SSH (Secure Socket
Shell). Xcelium is started as host using the server start up script in Code 5.2 ran
by the setup script.

#!/bin/bash
# Args: name server_files hdl_files server_address server_path port
if (( $# == 6 )); then

ssh "$4" "mkdir" "$5"
scp $2 $4:$5
ssh "$4" "mkdir" "$5$1"
scp $3 $4:$5$1
ssh "$4" "cd $5; set NAME=$1; set PORT=’$6’; source run_xcelium.tcl;

/bin/rm -r $1"
else

echo "Expects 6 arguments:
name server_files hdl_files server_address server_path port"

echo "Ex:
DIG_IF hdl_prj/cosimulation/server_files/* hdl_prj/hdlsrc/DIG_IF_test/*.vhd
user@server ~/Documents/temp 1337"

/bin/bash -i
fi

Code 5.1: server_setup.sh
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source setup_xcelium_w_licence
xmvhdl -v93 -smartlib -messages $NAME/*.vhd
xmelab -64bit -access +rwc -vhdl_time_precision 1ns $NAME -messages -mccodegen
xmsim $NAME -64bit -tcl -loadvpi /export/space/local-sw/matlab/instr2019b
/toolbox/edalink/extensions/incisive/linux64/
liblfihdls_gcc41.so:simlinkserver +socket=$PORT

Code 5.2: start_xcelium.tcl

The Matlab script in appendix, section B.5 is used to create and setup the co-
simulation model also runs the server setup script by using the built in system
method in Matlab [14] making the entire simulation automated from a single
Matlab function.

5.4 Synthesis using Genus

Genus is another Cadence tool, which synthesize a design by elaborate its HDL
description, defining the cells used in the description. The synthesis process re-
quires libraries and constraints in order to build a specific architecture from the
cells in the library. In the following examples a 65 nm library was used. A digital
schematic or netlist is the output from the synthesis which describe how a group
of cells is connected by wires. Figure 5.7 displays a visualization of the netlist.

Figure 5.7: Schematic view from Genus

Just as Xcelium, Genus also supports TCL scripts and the Genus synthesis scripts
can be found in appendix D. The script include the design setups such as libraries
to use, files, clock constraints, synthesis job or effort, the clock and reset configu-
rations and reports on area and timing.
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Results

An overview of our digital design flow can be seen in Figure 6.1. The Figure con-
tains a more specific flow stating which steps are automated and which needs setup,
compared the generic flow presented in Figure 2.2. Just as the generic, our flow
starts with the description of the concept or product idea, setting up design con-
stants. To enable prototyping with different values for the constants, a script sets
up configurations of the different constants with different values. Another script
generates test data from the constants to be used for all testbenches. The scripts
used to setup and generate the test data for DIG-IF are in appendix B.3 and B.4.

Figure 6.1: Overview of final flow

When a description is made and constants have been set, the development can
start. The specific implementation of the edge detector and DIG-IF are described
in the following sections, 6.1.1 and 6.1.2 respectively. To have an organised flow,
the file structure displayed in Figure 6.2 is used where the different scripts and
processes along with the implementations and its testbenches can be found. The
full file structure for DIG-IF with all of its components can be found in the Github
repository, link in appendix A.2.1.
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root/
hdl_prj/

cosimulation/
cosimulate.m
server_setup.sh
start_simulator.tcl

hdl_src/
<model name>/

<generated source file>.vhdl
...

...
helper_functions/
models/

<model name>/
DUT.slx
integration_test.slx
integration_testbench.m
unit_test.slx
unit_testbench.m

...
setup/

input_creation/
gen_<input type>.m
...

constants.mat
gen_constants.m
gen_input_data.m
input_data.mat

test_suite.m

Figure 6.2: The flow’s file structure

6.1 Models

6.1.1 2D Convolution

In addition to the 2D Convolution Simulink model, a custom Matlab function im-
plementing the same algorithm and Mathworks’ filter2 [15] is also tested. Each
using the same testbench. To display the result images in the same format as
the input, the output is clamped between 0 and 255 to fit in a 8 bit representa-
tion which makes all negative values displayed as black and all values above 255
displayed as white.

The test data used to verify the implementations consists of different images,
random noise and an incremental image where the next pixel is brighter than the
previous. One example of test data is the image in Figure 6.3 along with the result
of the different results for respective implementation.
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(a) Original black and white, 8 bit image (b) Mathwork’s filter2 function

(c) Custom Matlab implementation (d) Simulink implementation

Figure 6.3: The 2D convolution result

The keen eye may spot differences in the literal edge cases between the Mathworks’
filter2 version and the other implementations, because there are differences. The
implemented algorithm wraps the edges compared to Mathworks’ filter2 which
is padded by black edges.
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6.1.1.1 HDL Generation

A Matlab implementation of a 2D convolution can look as follows:

function g = conv2d_golden(f, w, width)
[w_height, w_width] = size(w);
f_amount = size(signal,2)-((w_height-1)*width+w_width-1);
g = zeros(f_amount, 1);

for i = 1:f_amount
for j = 1:w_height

index = i+(j-1)*width;
g(i) = g(i) + sum(f(index:index+w_width-1).*w(j,:));

end
end

end

Code 4.2: 2D convolution golden reference

When running the matlab code through the HDL Coder to generate VHDL code,
the result was not feasible since it generated with 2.5 million input pads. This is
because the test image shown in Figure 6.4 which is a 8 bit 640 x 480 image was
inserted all at once, not streamed a pixel at a time as wanted.

Figure 6.4: Original black and white, 8 bit image

To streamline a function, the variables which needs to be persistent must be ex-
plicitly declared. A design was implemented where each function call receives
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one pixel, having a constant kernel, constant image width and stores the previous
pixels in a shift register with reading at certain indexes.

function g = gol_mat_stream(x)
width = 640;
w = [

1 1 0;
1 0 -1;
0 -1 -1;

];

[w_height, w_width] = size(w);
persistent memory;
persistent extraMemory;
if isempty(memory) || isempty(extraMemory)

memory = zeros(w_height-1, width);
extraMemory = zeros(1, w_width-1);

end

w_flipped = flip(flip(w,2));
g = sum([x, extraMemory].*w_flipped(1,:));

for i=1:w_height-1
g = g + sum(memory(i, width-w_width+1:width).*w_flipped(i+1,:));

end

memory = [
extraMemory(end), memory(1, 1:end-1);
memory(1:end-1,end), memory(2:end,1:end-1);

];

extraMemory = [x, extraMemory(1:end-1)];
end

Code: 4.3 2D convolution streamed

The design took unusual long time to translate to HDL which led to cancellation
of the translation. When the implementation was retried with a smaller image it
was revealed that the shifting of the memories are not efficient at all. Instead of a
smart shift register, every element of the memory was taken out to an additional
register and then inserted back, one step below its previous location.

The 2D convolution implementation continued to Simulink. Instead of custom
memories, Simulink’s delay blocks were used. Concatenating several delays creates
a shift register, as shown the example below in Figure 6.6 and 6.5. A kernel of
size 5 by 4 was used in the specific example which can be seen by the numbers
of how many signals are used for each input. The image width in the example is
640 pixels wide which of 4 rows are stored in the shift register, show in the outer
model, Figure 6.5.
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Figure 6.5: Outer model of 2D convolution implemented in Simulink

Figure 6.6: Outer subsystem of 2D convolution in Simulink

The Simulink implementation was generated to HDL without any issues.

6.1.1.2 Simulation

The Xcelium simulation of the generated HDL results in the edge cases along the
top of the image differs in a second way compared to the results shown in Fig-
ure 6.3, as seen in Figure 6.7. This is because the RAMs are not reset between
runs. By design the RAMs keeping its values from the last run to increase perfor-
mance, compared to Simulink’s simulations which automatically resets the RAMs
between runs. Figure 6.8 displays a zoomed in version of Figure 6.7 on the error
which shows that the error disappears after 1280 pixels, corresponding to the first
two rows of the 640 pixel wide image that is used.
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Figure 6.7: Simulink and Xcelium simulation differences

Figure 6.8: Zoomed in Simulink and Xcelium simulation differences

6.1.2 DIG-IF

The DIG-IF is a more complicated system than the edge detection, concatenating
many subsystems and models each with its own testbenches. The DIG-IF consists
of four main subsystems: The packager, the request control system, the uplink data
path and the downlink data path. Each subsystem only contains other subsystem
or the fundamental building blocks described in section 4.2.2. The hierarchy in
each subsystem is displayed in Figure 6.9. The data width between each block are
set in the Simulink environment, and after testbench generation, the HDL Coder
engine updates properly all the signals required.
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(a) The packager (b) Requesting

(c) Downlink (d) Uplink

Figure 6.9: DIG-IF subsystems

6.1.2.1 Requesting

The request control system contains three components: The time control, which
count clock cycles as seen in Figure 6.9b. The count can also be shifted with a
set time request. A frame controller, which keeps the active transmit or receive
request parameters until the clock cycle count is reached and the transmit or
receive request is over. And a request buffer. The request buffer inserts all of the
transmit and receive requests in a RAM and keeps the request start sample time in
an register. The start sample time register is continuously searched to find which
request to output next, since the requests may not be inserted in order.

The unit testbench for the request controller verifies that the correct request with
all of its parameters are outputted at the correct time. Table 6.1 shows some
example incoming requests and Table 6.2 shows a subset corresponding outputs.
Each row in the output corresponds to one clock cycle.
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ID fn UC SEND filter addr dist addr ts ls
1 1 F F 0 0 28 74
2 1 T F 29 17 103 196
3 1 T F 29 17 302 194
4 1 F F 61 3 497 123
5 1 F F 55 46 621 171
9 1 F T 6 2 1196 169
7 2 F T 5 3 880 114
8 2 F T 5 3 998 188
10 2 F T 7 1 1366 194
11 2 F F 32 11 1565 149
12 2 F F 32 11 1718 56
13 2 F F 62 37 1782 178
14 2 F F 21 28 1968 191
...

Table 6.1: Incoming requests

Sample valid fn ID SEND filter addr dist addr
194 T 1 2 F 29 17
195 T 1 2 F 29 17
196 T 1 2 F 29 17
197 F 1 - - - -
198 F 1 - - - -
...

1363 T 2 9 T 5 3
1364 T 2 9 T 5 3
1365 T 2 9 T 5 3
1366 T 2 10 T 7 1
1367 T 2 10 T 7 1
1368 T 2 10 T 7 1

Table 6.2: Part of the request output

Cancelling of request and time shifting is also tested. A cancel request is sent
with which ID to cancel and all rows having the specific ID in the expected data
are cleared. Table 6.2 shows how the request with an ID of 3 has been canceled.
The time shifting is an additional request which adds a specified amount of time.
This may corrupt the result by making the response getting shorter or even skip a
request due to its start time being in the time that is skipped. All these actions are
tested for, to make sure the system does not break. Avoiding corruption of data
and skipping request is up to the baseband. In addition specific errors can also
be inserted, by inserting requests which will overlap or trying to cancel a request
with an ID that does not exists for example. These errors are also tested for and
should return an error to the baseband.
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Figure 6.10: Request output ID signal

Figure 6.10 displays the ID of the requests using Xcelium as simulator. The ID
is also compared to the expected output ID. ID 3 has also been canceled which
is caught both in the expected output and by the simulator and no errors are
returned.

The algorithm used to find which request to output next and to find the ID for
request canceling, is the same linear search. It works by reading one ID and one
start sample time every clock cycle and save its index which also is the request
address in the ram. In the case of finding the ID, the occupied flag is lowered when
the correct ID is found. If the occupied flag already it continues the search. If no
ID to cancel has been found in 64 clock cycles, which is the size of the example
memory, an error; ID not found is issued. In the case of finding the request start
time, if the time is less than 64 clock cycles away, it is considered found and moved
to an output register, waiting to be outputted at the exact right time.

6.1.2.2 Packager

The packager processes the input from the baseband interface to signals inside the
circuit. Its hierarchy is seen in Figure 6.9a. The packager also creates packages
of responses and errors to send to the baseband. If a type identifier is read, the
packager goes into the state which the type identifier specified. It also raises a
busy flag, removing the ability to switch state. If the incoming data is a request,
specified from the type identifier, the packager collects all of the incoming data
in a shift register before outputting it to the request subsystem. The waiting for
all of the incoming data introduces a delay, from when a request is inserted to
when it can be executed. For most constant configurations, the delay is regarded
negligible compared to the request sample sizes.

In all cases the busy flag is raised for a fixed amount of clock cycles defined from
the constants, with the exception of when the incoming data is a fetched data
stream. Then the busy flag is kept high until the transmit controller in the uplink
subsystem defines the transmit is over. The packager also make packages for the
baseband. Most packages are just the data with an appended type identifier. The
responses packages appends an header as its first output cycle and continue with
the data in the response. Just as unpacking incoming data, the busy flag is raised
while outputting packages.
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6.1.2.3 Up- and Downlink

The up- and downlink as seen in Figure 6.9d and 6.9c keeps its coefficients and
weights for the combining, splitting and filtering in different banks. The banks are
set by requests on an address from the baseband. The same address is used by the
requests to specify which set of coefficients and weights to use for the response.
The accuracy for the combiner and splitter is set from the description meaning the
fixed point is already defined. This is assuming the previous step in the data path
has the correct accuracy. The combiner uses a matrix multiply block. In the case
of the splitting this is true since the data comes directly from the baseband. But
not necessarily for the combiner since it has a down sampling filter as it previous
step. To ensure the filter have enough accuracy while not having to large of an
implementation, the fixed point tool is used.

Figure 6.11: fixed point filter results

The filter aims decrease high frequency signals by -20 dB or keep at most 10% of
the signals. Having a 6 bit input from the analog to digital converter the fixed
point tool is also set to operate with a bitwidth of 6 and only allowed to use binary
point scaling and zero bias to ensure the hardware implementation is as small as
possible. The incoming signals is represented in the range -1 to 0.96875 which is
the range of a signed 6 bit binary number with a fractional length of 5. The fixed
point tool rescales the signal after each operation to avoid overflow and as little
under flow as possible. Figure 6.11 displays the resulting response and the double
precision baseline at a sampling rate of 8000 samples per radian. The input is
generated using a chirp meaning the x-axis also shows each sample with the 8000
sample at the 1 mark on the x-axis. This also create the noise below the analytic
curve since it is the actual sinusoidal waveform that is displayed. The results show
that most of the filtered signal is above -20 dB, at about -18 dB. This is because
of −18 ≈ 20 · log10(2−3) which means the high frequency signals uses a maximum
3 of the 6 bits and decided enough accuracy in the particular case.

In Figure 6.12 an example input to the combiner is shown. Figure 6.13 displays
the combining results when using some example weights shown in the title for
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each plot. The first weight corresponds to the first antenna, in this case the 1
Hz signal, the second weight for the second, 2 Hz, antenna and so on. In the
example a sample rate of 10k sample per second is used with a 6 bit input. The
matrix multiplier uses 10 bits for the multiplication and 6 bits for the accumulation
resulting in rescaling of the signal compared to the input. From 5 fractional bits
to 3.

Figure 6.12: combiner input
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Figure 6.13: combiner results

6.2 Manual translation vs HDL Coder generation

All of the generated code and handwritten code used as examples can be found in
the Github repository, link in appendix A.2.1.

6.2.1 HDL Coder Generated

The HDL Coder includes a lot of configuration of how the code will generate which
makes changes the appearance and readability of the code. Most of the time the
code is readable. The reports with links between each line in the code to the
connections and blocks in the model also helps making it clear what each row in
the generated code means an do. The only issue is when the model contain a lot of
connections that are not in an array or looped, then the generated code will also
have many similar, not looped lines making it hard to understand. An example
of readable code is the generated code of the RAM models used in DIG-IF. The
code can be viewed on the Github repository A.2.1.

6.2.2 Manual Coding

When coding the Edge Detector in VHDL by hand, the architecture is defined by
how the data transfers to registers, SRAMs and how operators is connected and
configured. Tracing different signals may be problematic due to renaming, syntax
errors and logical mistakes from human error. Comments is important in order
to improve readability and to show the data flow for readability and understand-
ing for the future. Just as, or even more important is the documentation of the
handwritten code which is not automatically generated as for HDL Coder gener-
ated created code. As seen in section 4.3 the described function with the registers
involves many simpler operations is combined to a rather messy and long syntax.
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The verification process can not be automated in the same way as done using
the Mathworks tools since the HDL simulator is not connected. Every testbench
must be created manually with manually defined input stimuli. The stimuli must
then be loaded through the simulator. Using Cadence’s Xcelium as simulator
would require all the different descriptions, testbenches and input stimuli files to
be loaded and compiled. The output from the simulation would be an additional
file which most likely needs to be processed before it can be verified to valuate the
results. In the case of the Edge detection, another software is needed to rebuild
the image from the simulation output. Loading the files into the simulator and
preparing the data before is done manually, which could lead to more human error.
The different ports and the values of each signal can be analyzed to evaluate the
process and results in the timing diagrams, displaying the signals waveform. Since
the operation is on each pixel of an image, it is hard to verify the design on a
timing diagram which a part of is shown in Figure 6.14.

Figure 6.14: Cosimulation waveform of handwritten edge detector

To give the handwritten HDL of the Edge Detection a fair comparison was it also
hooked up to Simulink as an external system as displayed in Figure 6.15. With this
approach, instead of writing testbenches in VHDL language manually, Simulink
is able to generate stimuli for the design under test (DUT) and co-simulate with
the handwritten HDL. Since the HDL block behaves as a black box, the output
results are sent back to the Simulink environment where it can be analyzed and
reconstructed to an image.

In the Simulink model with the Edge Detection as the external system 6.15, a
input from the Matlab workspace is created and converted to unsigned integer
to be compatible with the HDL co-simulation input. The result from the HDL
simulator can be treated as a signal in Simulink and Matlab workspace for future
analysis.
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Figure 6.15: Co-simulation on Handwritten HDL

6.3 Genus Synthesis

To verify that the flow is producing quality HDL regarding cost constraints, all
models and systems are also synthesized. As mentioned in section 5.4 digital li-
braries are needed and a 65 nm standard cell library was used to make comparisons
between different implementations.

The sections below contains the result of the 2D convolution implementation and
several subsystems used for the DIG-IF.

6.3.1 Coefficient Banks

The coefficient banks is general modules which store the weights and coefficients
in RAMs that are used with the for the different filter splitter and combination
blocks in DIG-IF. The number of instances of each type and area for different
types of gates are shown in Table 6.3.

Type Instances Area (um2) Area (%)
Sequential 205600 2029664.00 77.5
Inverter 38408 60402.68 2.3
Buffer 2116 20248.80 0.8
Logic 94099 508300.52 19.4
Total 340223 2618616 100

Table 6.3: Coefficient Banks RAM gates and area synthesis report
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The coefficient banks are implemented using Simulinks generic RAMs which are
larger than RAM cores that will be used in a final design.

6.3.2 DIG-IF Requesting

The requesting from DIG_IF was synthesized in order to check the generation of
blocks such as time control, frame control and request buffer. The resources used
by the synthesis are seen in Table 6.4.

Module Cell Count Total Area (um2)
1.Coeff bank 24433 146080
1.1 Frame control 407 2074
1.2 Request buffer 23865 143132
1.2.1 RAMs 8002 58370
1.2.2 Request orderer 15300 82298
1.2.3 Untimed control 462 1909
1.3 Time control 159 869

Table 6.4: Resources used by coefficient bank control module

6.3.3 Combining Block

The combining block contained in the down link data path does matrix multipli-
cation which is a heavy operation. Table 6.5 displays the size and amount of each
component used in the combining block.

Type Instances Area (um2) Area (%)
Inverter 3550 6780 2.5
buffer 189 751 0.3
logic 45868 260542 97.2
Total 49607 268074 100

Table 6.5: Resource used by combining block
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6.3.4 Handwritten Edge Detector VS Generated Edge Detector

Table 6.6 shows the handwritten edge detector and generated edge detector results,
both designs include a third party IP sRAM block which was used for synthesis.
A 65 nm standard cell library was used.

The generated edge detector uses less resources than the handwritten, a great
difference can be seen in the logic area used by generated edge detector which is
only 6.57 % to the area used by the handwritten,

Overall in this design, the sRAMs occupy the majority of the circuit, but the
generated edge detector reduces its area to 84.06 % compared to the handwritten
design

Type Handwritten edge detector Generated edge detector Difference
(Area %)Instances Area (um2) Instances Area (um2)

SRAM IP 2 24993 2 24993 0
Sequential 227 2367 34 409 82.73
Inverter 138 215 14 21 90.24
Buffer 2 4 0 0 -
Logic 586 2891 46 190 93.43
Total 955 30471 96 25616 15.93

Table 6.6: Results from handwritten and generated Edge Detector
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Chapter 7
Conclusions

As new improvements have come to smartphones, computers, IoT and other de-
vices, both in processing and data usage, larger and more complex systems have
to be made. To keep up with the development, new tools to handle the complexity
has also arrived. The main task of this master thesis is to create a design flow
using Mathworks environment and Cadence’s tools for developing state of the art
digital ICs.

7.1 Comparison

The generated description is only as good as the design or architecture. The HDL
Coder is not some magic tool, producing perfect code. It just translate the design
and helps the development by integrating all of the available tools from Mathworks.
To make a good design or architecture, it needs to be more specific compared to
an ordinary Simulink model. Mathworks has tools to help define these specifics.
Examples are the fixed point tool and the toolboxes containing hardware ready
models such as the DSP HDL toolbox.

7.1.1 Quality

The code generated by HDL Coder is good, especially since there are so much
configuration on structure and code semantics with industry standards. The doc-
umentation is really good since we did not have to write it ourselves and it comes
with predefined links between code and model. The only thing it is missing is the
ability to comment on why the individual blocks exists and how they function in
a higher perspective. But since its easy to have an overview in Simulink which the
code links to, those comments may be unnecessary.

The HDL Verifier toolbox has a lot of potential, enabling integration of other HDL
simulators and even FPGAs. Existing, handwritten and legacy code made can be
integrated and added to the design for co-simulation or as an external model. It
also enables an easy way of represent the data output in a proper way like imaging
or audio using Mathworks other toolboxes.

51
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Using Xcelium standalone to simulate the edge detectíon took about 40 minutes.
This is because the design required a large amount of clock cycles to input all
the pixels from a 640x480 image in a serial stream. Using cosimulation from the
Simulink environment tested at the simulation time was close to the standalone
time.

7.1.2 Developer Experience

Using Simulink is a good way of creating hierarchical design. All models created
can be reused such as RAMs or logic circuits, making you create more of a library
of components than a single design. Testing and verification can then be done for
each model, simplifying the process.

The creation of some systems can sometimes be tedious, renaming or redefining
ports of a low level subsystem used in many systems can lead to having to reconnect
and edit all of the higher level systems. Another thing is that in Mathworks
environment there exists a lot more data types than in HDL. These data types
can be nice when debugging but also leads to having to create type conversion
models needed only in the Mathworks environment. These conversion models are
completely removed in the HDL code generation since on RTL both data types
are realized as same data type from the beginning.

7.2 Setup

Setting up the co-simulation server with Xcelium took more time and effort than
expected. Working with different networks with multiple security solutions made
us have to contact the IT supports multiple times. Mathworks comes with doc-
umentation for Incisive, an older version of Xcelium simulator, yet some critical
instructions were missing which difficult the task. Even though many steps are
similar, multiple keyword commands were updated meaning the old Incisive com-
mands did not work.

For a company, in order to implement a connection between the different programs
as in this design flow, the typical setup is a Mathworks client on the developers
system and an external Xcelium server. The server would always have the license,
not as in our setup where we got a student license which has to be enabled for
every simulation. The server setup would also be more straight forward with a
simpler method for the server to access the source files.

At the same time the Matlab-Xcelium distributions should be compatible accord-
ing to Mathworks documentation.



Conclusions 53

7.3 Future Work

Mathworks have plenty of tools and documentation many of which could improve
the flow. Deeper optimization and automation of the HDL generation is always
positive. Even more integration of the Cadence tools can also be extended enabling
quicker developing times.

7.3.1 Improving the Flow

The HDL Coder does have some optimization configurations such as pipelining
and mapping registers to RAM. These were tried but never successfully imple-
mented. The reason is that since the flow is for generic ASIC we had no time and
size constraints. When developing for FPGAs, the specific FPGA can be chosen
which includes a library of available resources and the timing constraints for the
specified targeted frequency. Custom libraries could also be added to enable the
optimization but for that, a custom hardware library will be needed. The HDL
Coder can also provide timing analyzes such finding as critical path when a custom
library is available.

7.3.2 Extending the Flow

Since the HDL Verifier enables integration of other programs and designs an ex-
tension of the flow would be to explore other developing environments to produce
the actual code. Keeping Mathworks for its environment to set up mathematical
golden references and creating testbenches but code VHDL or Verilog in a devel-
oping environment made for coding in those languages. Although this would mean
that code documentation may not be generated as HDL Coder does automatically.

Many other flows have an additional stage before fabricating an ASIC, testing the
design on a FPGA. This could probably be added to the flow rather easily from
what is shown in the Mathworks environment. Many vendors of FPGAs have
its own toolboxes for its models which provide all data needed for co-simulation.
Some toolboxes also states that they can run FPGAs in real time in the Mathworks
environment.

An additional stage would also be the routing stage of a design. To automate
the tesbenches on routed RTL would give the most accurate cost estimations and
would complete the flow for fabrication.
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Appendix A
DIG-IF

Github link to Simulink models

A.1 Design Specifics

A.1.1 Requesting

There are four types of data requests, three of which fetches data from the anten-
nas: A normal request of data: REQ. Request of uncombined data: REQ_UC, which
is used to find the symbols. And an untimed request: REQ_UT, which is used when
the baseband do not know when to sample the data. This could be when the
circuit starts up for example.

The parameters for data requests:

Identification number id
Frame number fn
Downlink filter bank address dfb
Uplink filter bank address ufb
Combiner bank address cb
Splitter bank address sb
Start sample time ts
Sample amount ls
Nth transmit/receive data sample Dn

Table A.1: Request data parameters

Note that the uncombined request does not have any combining address parameter,
nor does the untimed request have any start sample time parameter.

The fourth type of request REQ_SEND is used for transmitting data. Since the
baseband does not have exact time tracking, it sends a request to transmit data at
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a specific time. The DIG-IF will respond with a FETCH response at the specified
time which will immediately take data from the baseband and transmit it. Exactly
how this would work depends on the baseband. One option would be to halt a
processor at the baseband to output the contents of an internal memory.

1. Request data: REQ(id, fn, dfb, cb, ts, ls)

(a) Store request until ts equals ti.
(b) Filter and combine samples from ts to ss = ts + ls of antenna data

using dfb and cb.
(c) Creates a RES(id, fn, nb, D0:Dn) to BB where nb = ls and D0:Dn

is the processed samples

2. Request uncombined data: REQ_UC(id, fn, dfb, ts, ls)

(a) Store request until ts equals ti.
(b) Filters samples from ts to ss = ts+ ls of antenna data using dfb.
(c) Creates a RES(id, fn, nb, D0:Dn) to BB where nb = ls ·

antenna_num
streams and D0:Dn is the processed samples

3. Request untimed data: REQ_UT(id, fn, dfb, cb, ls)
(a) Store request last, i.e. create a ts after every request in the queue.
(b) Filter and combine ls samples of antenna data using dfb and cb.
(c) Creates a RES(id, fn, nb, D0:Dn) to BB where nb = ls and D0:Dn

is the processed samples

4. Request transmit: REQ_SEND(id, fn, ufb, sb, ts, ls)

(a) Store request until ts equals ti.
(b) FETCH(id, fn, ls) data from BB

Listing A.1: List of data requests

In addition of data receiving and transmitting requests, there are also a request
for canceling other data requests: REQ_CANCEL, shift the DIG-IF time counter:
SET_TI, setting the weights of the combining: SET_COMBINER and splitter: SET_SPLITTER
and setting the filter coefficients: SET_DL_FILTER, SET_UL_FILTER respectively.
The only parameter in a cancel request request is its identification number, just
as the only parameter in a; shift of the DIG-IF time counter request, is how much
it should shift tis.

The requests for setting the coefficients for the filters and weights of the combiner
and splitter have similar parameters, the address and the weights or coefficients.
But since the address, weights and coefficients are different, both in amount and
in bitwidths, the request are split several similar requests.

1. SET_TI(tis)

Set ti to 0 when ti equals tis.

2. SET_DL_FILTER(dfb, df0:dfn)
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Identification number id
Time shift tis
Down-link filter bank address dfb
Up-link filter bank address ufb
Combiner bank address cb
Splitter bank address sb

Table A.2: Configuration request parameters.

Set downlink filter bank with address dfb with data df0:dfn.

3. SET_UL_FILTER(ufb, uf0:ufn)

Set downlink filter bank with address ufb with data uf0:ufn.

4. SET_COMBINER(cb, c0:cn)

Set combiner bank with address cb with data c0:cn.

5. SET_SPLITTER(sb, s0:sn)

Set splitter bank with address sb with data s0:sn.

6. CANCEL_REQ(id)

Find request with matching id and remove it.

Listing A.2: List of configuration requests

A.1.2 Responding

When it is time to sample data, specified in the request, the DIG-IF creates a
response: RES, using the same identification number and frame number stated
in the request to send the sampled data back to baseband. But if the specified
time already has passed in that frame when the request reaches the DIG-IF an
negative acknowledgement: NACK is sent. If a request overlaps another request,
in time, it fails since only one request can be active at once. Since overlaps are
not detected until they occurs, the response is not a negative acknowledgement
but a failed request: FAIL. To differentiate errors, negative acknowledgements are
used for immediate feedback whilst failed responses: FAIL, are used when an error
occurs later. A cancellation request can also fail if it does not find the id. Since
the search algorithm to find the correct id takes several clock cycles a fail is sent
instead of an negative acknowledgement.

Negative acknowledgements: NACK(id, fn, error)

1. Request data: REQ
2. Request uncombined data: REQ_UC

Fails: FAIL(id, fn, error)

1. Request data: REQ
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2. Request uncombined data: REQ_UC
3. Request untimed data: REQ_UT
4. Cancelling request: CANCEL_REQ

Listing A.3: Error responses

1. OVERLAP

2. TIMING_OUT_OF_BOUND

3. REQ_MEM_FULL

4. ID_NOT_FOUND

Listing A.4: Possible errors

A.2 Constraints

A.2.1 Constants
Description Name Default value
Antenna amount antenna_num 8
Output streams stream_num 4
Sample bitwidth sample_bitwidth 6
bitwidth in combination pre_sum_combiner_bitwidth 10
Output stream bitwidth post_sum_combiner_bitwidth 8
Transmit bitwidth transmit_bitwidth 6
Bank address bitwidth bank_bitwidth 64
Downlink filter attributes dl_filter_attribs {9, false, false, 4, 4}
Uplink filter attributes ul_filter_attribs {9, false, true, 4, 4}
Combiner attributes combiner_attribs {32, true, false, 8, 7}
Splitter attributes splitter_attribs {8, true, false, 8, 7}

Table A.3: Constants

Where the downlink filter, uplink filter, combiner and splitter attributes are a
grouping of the following constants:

Amount of coefficients/weights coeff_num
Is the coefficients/weights complex complex
Is the signed coefficients/weights signed
Word length word_length
Fractional part fract_length

Table A.4: Attributes

Note that these constants are only constants in the finalized circuit. During devel-
opment these can be anything and the entire design changes depending on these.



Appendix B
Matlab code

B.1 Github repository

Link to all used and referenced source code and models on github https://
github.com/THammarback/MasterThesis. Note that DIG-IF is not complete.

B.2 Matlab test suite - Script to test all the components
1 c l c
2 addpath ( genpath ( ’ s e tup ’ ) ) ;
3 addpath ( genpath ( ’ h e l p e r_ f un c t i o n s ’ ) ) ;
4 addpath ( genpath ( ’ i n pu t_c r e a t i o n ’ ) ) ;
5 addpath ( genpath ( ’ s imu l i n k_b l o ck s ’ ) ) ;
6
7 %% bi t64_b ina ry_index_sea rch_tes t
8 % No dependenc i e s
9 c l e a r

10
11 %open ( ’ b i t64_b inary_index_search_tes t ’ ) ;
12 b i t64_b ina ry_index_sea rch_tes tg round ;
13
14 i f any ( e r r o r s )
15 f p r i n t f (2 , "ERROR − b i t64_b ina ry_index_sea rch : \ n " ) ;
16 d i sp ( e r r o r s ’ ) ;
17 e l s e
18 d i sp (" Pass − b i t64_b ina ry_index_sea rch " ) ;
19 end
20
21 %% f ind_id_index_tes t
22 % No dependenc i e s
23 c l e a r
24
25 %open ( ’ f ind_id_index_tes t ’ ) ;
26 f i nd_id_index_tes tg round ;
27
28 i f any ( e r r o r s )
29 d i sp ("ERROR − f i nd_id_index : s e e e r r o r s v a r i a b l e " ) ;
30 d i sp ( e r r o r s ’ ) ;
31 e l s e
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32 d i sp (" Pass − f i nd_id_index " ) ;
33 end
34
35 %% unt imed_ct r l_te s t
36 % No dependenc i e s
37 c l e a r
38
39 %open ( ’ unt imed_ct r l_tes t ’ ) ;
40 unt imed_ct r l_te s tg round ;
41 %% Note ; because o f random , t h i s cou ld happen even
42 %%though t h e r e i s no e r r o r
43 i f UT_index ~= f i n d ( t s+ l s ~= out . ss ’ )
44
45 f p r i n t f (2 ,"ERROR − unt imed_ct r l_te s t ")
46 e l s e
47 d i sp (" Pass − unt imed_ct r l_te s t " ) ;
48 end
49
50 %% reque s t_bu f f e r_ t e s t
51 % Test depends on : un t imed_ct r l
52 c l e a r
53
54 %open ( ’ r eque s t_bu f f e r_te s t ’ ) ;
55 %open ( ’ r eque s t_bu f f e r_te s tg round ’ ) ;
56 r e que s t_bu f f e r_te s t g r ound ;
57
58 i f any ( any ( e r r o r s ) )
59 f p r i n t f (2 ,"ERROR − r e q u e s t_bu f f e r : s e e e r r o r s v a r i a b l e \n " ) ;
60 e l s e
61 d i sp (" Pass − r e q u e s t_bu f f e r " ) ;
62 end
63
64 %% coef f_bank_test
65 % Depends on : coef f_bank_mult ip le_rams , coef f_bank_single_ram
66 c l e a r
67
68 %open ( ’ coef f_bank_simple_test ’ ) ;
69 %open ( ’ coe f f_bank_s imple_testground ’ ) ;
70 coe f f_bank_s imple_testground ;
71 i f e r r o r s
72 f p r i n t f (2 ,"ERROR − coe f f_bank_test \n " ) ;
73 e l s e
74 d i sp (" Pass − coe f f_bank_test " ) ;
75 end
76
77 %% coe f f_bank_ in t eg r a t i on_te s t
78 % Depends on : coef f_bank_mult ip le_rams , coef f_bank_single_ram
79 % Test depends on : f rame_ct r l , r e que s t_bu f f e r , t ime_ct r l , package_opener
80 c l e a r
81
82 %open ( ’ coe f f_bank_in t eg ra t i on_te s t ’ ) ;
83 coe f f_bank_ in t eg r a t i on_te s tg round ;
84 i f e r r o r s
85 f p r i n t f (2 ,"ERROR − coe f f_bank_ in t eg r a t i on_te s t " ) ;
86 e l s e
87 d i sp (" Pass − coe f f_bank_ in t eg r a t i on_te s t " ) ;
88 end
89
90 %% re c e i v e_b l o c k e r
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91 % No dependenc i e s
92 c l e a r
93
94 %open ( ’ r e c e i v e_b l o c k e r_t e s t ’ ) ;
95 r e c e i v e_b l o c k e r_t e s t g r ound ;
96
97 i f any ( e r r o r s )
98 f p r i n t f (2 , "ERROR − r e c e i v e_b l o c k e r_ t e s t : \ n ")
99 d i sp ( e r r o r s )

100 e l s e
101 d i sp (" Pass − r e c e i v e_b l o c k e r_ t e s t " ) ;
102 end
103
104
105 %% f i l t e r _ b l o c k
106 % Depends on c u r r e n t s e l e c t e d f i l t e r ( s e c t i o n s 2 o r d e r 3 )
107 c l e a r
108
109 f i l t e r_b l o c k_ t e s t g r o u n d ;
110 s im ( ’ f i l t e r_ b l o c k_ t e s t ’ ) ;
111 d i sp ("No e r r o r s − f i l t e r_b l o c k_ t e s t g r o u n d − v a l i d a t e the s cope s " ) ;
112
113 %% combiner
114 % No dependenc i e s
115 c l e a r
116
117 %open ( ’ combiner_test ’ ) ;
118 combine r_tes tg round ;
119
120 i f any ( e r r o r s )
121 f p r i n t f (2 , "ERROR − combine r_tes t : \ n")
122 d i sp ( e r r o r s )
123 e l s e
124 d i sp (" Pass − combine r_tes t " ) ;
125 end
126
127 %% Combining
128 % Depends on combiner
129 c l e a r
130
131 %open ( ’ combin ing_test ’ ) ;
132 combin ing_tes tg round ;
133
134 i f any ( e r r o r s )
135 f p r i n t f (2 , "ERROR − combin ing_tes t : \ n ")
136 d i sp ( e r r o r s )
137 e l s e
138 d i sp (" Pass − combin ing_tes t " ) ;
139 end
140
141 %% s p l i t t e r
142 % No dependenc i e s
143 c l e a r
144
145 %open ( ’ s p l i t t e r _ t e s t ’ ) ;
146 s p l i t t e r_ t e s t g r o u n d ;
147
148 i f any ( e r r o r s )
149 f p r i n t f (2 , "ERROR − s p l i t t e r _ t e s t : \ n")
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150 d i sp ( e r r o r s )
151 e l s e
152 d i sp (" Pass − s p l i t t e r _ t e s t " ) ;
153 end
154
155 %% to_complex
156 % No dependenc i e s
157 c l e a r
158
159 %open ( ’ to_complex_test ’ ) ;
160 to_complex_testground ;
161
162 i f any ( e r r o r s )
163 f p r i n t f (2 , "ERROR − to_complex_test : \ n")
164 d i sp ( e r r o r s )
165 e l s e
166 d i sp (" Pass − to_complex_test " ) ;
167 end
168
169
170 %% DIG_IF
171 % Depends on e v e r y b l o ck ( not dep r e ca t ed ones )
172 c l e a r
173
174 %open ( ’ DIG_IF_test ’ ) ;
175 DIG_IF_testground ;
176
177 d i sp (" Sk ip − DIG_IF − Not ye t implemented ")
178 %%
179 d i sp (" ")
180 d i sp (" A l l Done ! " )

B.3 Matlab setup constants script
1 %% Constant s
2 c l e a r ;
3 sample_frequency = 983.04 e6 ; % 983.04MS/ s
4 symbo l_s i ze = 4400 ; %samples i n a symbol
5 f r ame_s i ze = 10∗8∗14; %symbols i n a frame
6 downsample = 2 ;
7 % frame t ime = symbo l_s ize ∗ f r ame_s i ze /( sample_frequency /downsample )
8 % = 10ms
9

10 i d_b i tw i d th = 16 ;
11 f n_b i tw id th = 16 ;
12 t s_b i tw i d th = 32 ;
13 l s_b i tw i d t h = 32 ;
14
15 antenna_num = 8 ;
16 stream_num = 4 ;
17 samp le_b i tw idth = 6 ;
18 pre_sum_combiner_bitwidth = 10 ;
19 post_sum_combiner_bitwidth = 8 ;
20 t r an sm i t_b i tw i d t h = 6 ;
21
22 req_mem_size = 64 ; % cant be change w i thout r e d e s i g n
23
24 %% Bank a t t r i b u t e s
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25 %sha red
26 bank_bitwidth = 8 ;
27 coe f f_ram_bitwidth = 64 ;
28
29 d l _ f i l t e r _ a t t r i b s = s t r u c t ( . . .
30 ’ name ’ , ’ d l _ f i l t e r ’ , . . .
31 ’ coeff_num ’ , 9 , . . .
32 % The c u r r e n t l y a p p l i e d d l f i l t e r d e s i g n has 9 c o e f f i c i e n t s .
33 ’ complex ’ , f a l s e , . . .
34 ’ s i g n ed ’ , t rue , . . .
35 ’ word_length ’ , 4 , . . .
36 ’ f r a c t_ l e n g t h ’ , 4 ) ;
37
38 d l _ f i l t e r _ a t t r i b s . data_rows = c e i l (
39 d l _ f i l t e r _ a t t r i b s . coeff_num∗
40 d l _ f i l t e r _ a t t r i b s . c o e f f_b i tw i d t h ∗
41 (1+ d l _ f i l t e r _ a t t r i b s . complex )/ coe f f_ram_bitwidth ) ;
42
43 u l _ f i l t e r _ a t t r i b s = s t r u c t ( . . .
44 ’ name ’ , ’ u l _ f i l t e r ’ , . . .
45 ’ coeff_num ’ , 1 0 , . . .
46 % The c u r r e n t l y a p p l i e d u l f i l t e r d e s i g n has 10 c o e f f i c i e n t s .
47 ’ complex ’ , f a l s e , . . .
48 ’ s i g n ed ’ , t rue , . . .
49 ’ word_length ’ , 4 , . . .
50 ’ f r a c t_ l e n g t h ’ , 4 ) ;
51
52 u l _ f i l t e r _ a t t r i b s . data_rows = c e i l (
53 u l _ f i l t e r _ a t t r i b s . coeff_num∗
54 u l _ f i l t e r _ a t t r i b s . c o e f f_b i tw i d t h ∗
55 (1+ u l _ f i l t e r _ a t t r i b s . complex )/ coe f f_ram_bitwidth ) ;
56
57 comb in e r_a t t r i b s = s t r u c t ( . . .
58 ’ name ’ , ’ combiner ’ , . . .
59 ’ coeff_num ’ , antenna_num∗stream_num , . . .
60 ’ complex ’ , t rue , . . .
61 ’ s i g n ed ’ , f a l s e , . . .
62 ’ word_length ’ , 8 , . . .
63 ’ f r a c t_ l e n g t h ’ , 7 ) ;
64
65 comb in e r_a t t r i b s . data_rows = c e i l (
66 comb in e r_a t t r i b s . coeff_num∗
67 comb in e r_a t t r i b s . c o e f f_b i tw i d t h ∗
68 (1+ comb in e r_a t t r i b s . complex )/ coe f f_ram_bitwidth ) ;
69
70 s p l i t t e r _ a t t r i b s = s t r u c t ( . . .
71 ’ name ’ , ’ s p l i t t e r ’ , . . .
72 ’ coeff_num ’ , antenna_num , . . .
73 ’ complex ’ , t rue , . . .
74 ’ s i g n ed ’ , f a l s e , . . .
75 ’ word_length ’ , 8 , . . .
76 ’ f r a c t_ l e n g t h ’ , 7 ) ;
77
78 s p l i t t e r _ a t t r i b s . data_rows = c e i l (
79 s p l i t t e r _ a t t r i b s . coeff_num∗
80 s p l i t t e r _ a t t r i b s . c o e f f_b i tw i d t h ∗
81 (1+ s p l i t t e r _ a t t r i b s . complex )/ coe f f_ram_bitwidth ) ;
82
83 %%
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84 save ( ’ s e tup / con s t a n t s . mat ’ )

B.4 Matlab generate test data
1 load ( ’ example_mult . mat ’ ,
2 ’ e xamp le_d l_f i l t e r_banks ’ ,
3 ’ e xamp le_u l_f i l t e r_banks ’ ,
4 ’ example_combiner_banks ’ ,
5 ’ e xamp l e_sp l i t t e r_banks ’ )
6
7 load ( ’ c o n s t a n t s . mat ’ ,
8 ’ antenna_num ’ ,
9 ’ samp le_b i tw idth ’ ,

10 ’ t r a n sm i t_b i tw i d t h ’ ,
11 ’ d l _ f i l t e r _ a t t r i b s ’ ,
12 ’ u l _ f i l t e r _ a t t r i b s ’ ,
13 ’ c omb i n e r_a t t r i b s ’ ,
14 ’ s p l i t t e r _ a t t r i b s ’ )
15
16 req_num = 10 ;
17 send_num = 10 ;
18 req_index = 1 : req_num ;
19 send_index = req_num+1:req_num+send_num ;
20
21 d l_ f i l t e r_ a d d r e s s e s = ( 1 : numel ( examp le_d l_f i l t e r_banks ) ) ’ ;
22 u l_ f i l t e r_ a d d r e s s e s = ( 1 : numel ( examp le_u l_f i l t e r_banks ) ) ’ ;
23 comb ine r_addres se s = ( 1 : numel ( example_combiner_banks ) ) ’ ;
24 s p l i t t e r_ a d d r e s s e s = ( 1 : numel ( examp l e_sp l i t t e r_banks ) ) ’ ;
25
26 r e q_d l_ f i l t e r_add r e s s e s =
27 (mod ( 0 : req_num−1, s i z e ( d l_ f i l t e r_add r e s s e s , 1 ) )+1) ’ ;
28
29 r e q_u l_ f i l t e r_add r e s s e s =
30 (mod ( 0 : send_num−1, s i z e ( u l_ f i l t e r_add r e s s e s , 1 ) )+1) ’ ;
31
32 req_combiner_addresses =
33 (mod ( 0 : req_num−1, s i z e ( combiner_addresses , 1 ) )+1) ’ ;
34
35 r e q_ s p l i t t e r_add r e s s e s =
36 (mod ( 0 : send_num−1, s i z e ( s p l i t t e r_ a d d r e s s e s , 1 ) )+1) ’ ;
37
38 min_req_ls = 5 ;
39 max_req_ls = 20 ;
40 min_req_gap = 0 ;
41 max_req_gap = 10 ;
42
43 new_ti = r a n d i (20)+30;
44 r eq_ids = req_index ;
45 send_ids = send_index ;
46
47 cance l_ id s_not_f i ndab l e = randsample (
48 s e t d i f f ( 1 : ( req_num+send_num+5) , [ req_ids , send_ids ] ) ,
49 5 ) ;
50
51 canc e l_ i d s = [
52 randsample ( req_ids , 1 ) ,
53 randsample ( send_ids , 1 ) ,
54 cance l_ id s_not_f i ndab l e ] ;
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55
56 i n pu t_se t_coe f f s = [
57 c e l l 2ma t ( a r r a y f u n (
58 @( addre s s , data ) s e t_co e f f ( d l _ f i l t e r _ a t t r i b s , add re s s , data ) ,
59 d l_ f i l t e r_ad d r e s s e s ,
60 example_d l_f i l t e r_banks , ’ UniformOutput ’ , f a l s e ) ’ ) . ’ ;
61
62 c e l l 2ma t ( a r r a y f u n (
63 @( addre s s , data ) s e t_co e f f ( u l _ f i l t e r _ a t t r i b s , add re s s , data ) ,
64 u l_ f i l t e r_ad d r e s s e s ,
65 example_u l_f i l t e r_banks , ’ UniformOutput ’ , f a l s e ) ’ ) . ’ ;
66
67 c e l l 2ma t ( a r r a y f u n (
68 @( addre s s , data ) s e t_co e f f ( comb ine r_at t r i b s , add re s s , data ) ,
69 combiner_addresses ,
70 example_combiner_banks , ’ UniformOutput ’ , f a l s e ) ’ ) . ’ ;
71
72 c e l l 2ma t ( a r r a y f u n (
73 @( addre s s , data ) s e t_co e f f ( s p l i t t e r _ a t t r i b s , add re s s , data ) ,
74 s p l i t t e r_ a d d r e s s e s ,
75 examp le_sp l i t t e r_banks , ’ UniformOutput ’ , f a l s e ) ’ ) . ’ ;
76 ] ;
77
78 l s = min_req_ls+r a nd i (max_req_ls−min_req_ls , req_num+send_num , 1 ) ;
79 gaps = min_req_gap+r and i (max_req_gap−min_req_gap , req_num+send_num , 1 ) ;
80
81 l a t e n c y = 4 ;
82 %cu r r e n t d e s i g n t ime from r e qu e s t on i t s i n pu t p i n s to i t can be read
83
84 [ t s , s s ] = gen_req_timing ( l s , gaps , numel ( i npu t_se t_coe f f s )+ l a t e n c y ) ;
85
86 stop_time = max( s s ) ;
87
88 %input_se t_t i = s e t_ t i ( new_ti ) ;
89
90 i nput_reqs = [
91 a r r a y f u n ( @req , . . . %req
92 req_ids ’ , . . . %id
93 ones ( req_num , 1)∗2 , . . . %fn
94 r e q_d l_ f i l t e r_add r e s s e s , . . . %d l f i l t e r a dd r e s s
95 req_combiner_addresses , . . . %combiner add r e s s
96 t s ( req_index ) , . . .
97 l s ( req_index ) ) ;
98
99 a r r a y f u n ( @req_send , . . . %req_send

100 send_ids ’ , . . . %id
101 ones ( send_num , 1)∗2 , . . . %fn
102 r e q_u l_ f i l t e r_add r e s s e s , . . . %u l f i l t e r a dd r e s s
103 r e q_sp l i t t e r_add r e s s e s , . . . %s p l i t t e r a dd r e s s
104 t s ( send_index ) , . . .
105 l s ( send_index ) ) ;
106 ] ;
107
108
109
110 i nput_cance l_ id = a r r a y f u n ( @req_cancel , c anc e l_ id s ) ;
111 i nput_transmi t_data = transmi t_data (
112 r a n d i (2^ t r an sm i t_b i tw id th , stop_time , 1)−1
113 + 1 i ∗ r a n d i (2^ t r an sm i t_b i tw id th , stop_time , 1)−1 i ) ;
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114
115 antenna_input_data = f i (
116 r a n d i (2^ sample_bitwidth , stop_time , antenna_num)−1
117 + 1 i ∗ r a n d i (2^ sample_bitwidth , stop_time , antenna_num)−1 i ,
118 f a l s e , sample_bitwidth , 0 ) ;
119
120 input_bus = make_input ( i npu t_se t_coe f f s , input_reqs , i nput_cance l_ id ) ;
121
122 %% expected_output
123 cance l_ids_not_found = a r r a y f u n (
124 @( cance l_ id ) any ( [ req_ids , send_ids ] == cance l_ id ) ,
125 canc e l_ i d s ) ;
126
127 e xpe c t ed_va l i d = as s i gn_boo l ean s ( a r r a y f u n (
128 @( i d ) a l l ( i d~=cance l_ id s ( cance l_ids_not_found ) ) ,
129 [ req_ids , send_ids ] ) ,
130 t s , s s ) ;
131
132 expected_id = ass ign_numbers (
133 [ req_ids , send_ids ] . ∗ a r r a y f u n (
134 @( i d ) a l l ( i d~=cance l_ id s ( cance l_ids_not_found ) ) ,
135 [ req_ids , send_ids ] ) ,
136 t s , s s ) ;
137
138 expected_SEND = as s i gn_boo l ean s (
139 [ f a l s e (1 , req_num ) , t r u e (1 , send_num ) ] ,
140 t s , s s ) ;
141
142 e x p e c t e d_ f i l t e r_add r e s s = ass ign_numbers (
143 [ r e q_d l_ f i l t e r_add r e s s e s , r e q_u l_ f i l t e r_add r e s s e s ] ,
144 t s , s s ) ;
145
146 expec t ed_d i s t_add re s s = ass ign_numbers (
147 [ req_combiner_addresses , r e q_ s p l i t t e r_add r e s s e s ] ,
148 t s , s s ) ;
149
150 expected_output = s t r u c t (
151 ’ r eq ’ , t a b l e (
152 e xpe c t ed_va l i d . ’ ,
153 expected_id . ’ ,
154 expected_SEND . ’ ,
155 e x p e c t e d_ f i l t e r_add r e s s . ’ ,
156 expec t ed_d i s t_add re s s . ’ ,
157 ’ Var iab leNames ’ , {
158 ’ v a l i d ’ ,
159 ’ i d ’ ,
160 ’SEND ’ ,
161 ’ f i l t e r _ a d d r e s s ’ ,
162 ’ d i s t_add r e s s ’
163 }) ,
164 ’ e r r o r s ’ , s t r u c t (
165 ’ id_not_found ’ ,
166 cance l_ id s_not_f i ndab l e ) ) ;
167
168 save ( ’ s e tup / example_input . mat ’ ,
169 ’ stop_time ’ ,
170 ’ input_bus ’ ,
171 ’ antenna_input_data ’ ,
172 ’ i nput_transmi t_data ’ ,
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173 ’ expected_output ’ ) ;

B.5 Cosimulation script in matlab
1 f unc t i on c o s imu l a t e (name , s e r v e r_add r e s s , o p t i o n s )
2 % COSIMULATE a s imu l i n k b l o ck wi th a hd l s imu l a t o r such as Xce l ium .
3 % 1. Gene ra t e s a cos im model
4 % 2. S t a r t s imu l a t i o n s e r v e r
5 % @ xce l ium_server_go . sh
6 % − Copy the run command f i l e s to the s e r v e r
7 % − Copy the hd l f i l e s to the s e r v e r
8 % − S t a r t s the s e r v e r
9 % 3. Run the c o s imu l a t i o n and

10 % compare S imu l i nk wi th co−s imu l a t o r
11 %
12 % co s imu l a t e ( ’ s imul ink_model ’ , u s e r@ s e r v e r ) ;
13 %
14 % I n s e r t o p t i o n a l o p t i o n s as a s t r u c t . De f au l t v a l u e s :
15 % co s imu l a t e ( ’ s imul ink_model ’ , u s e r@ s e r v e r , s t r u c t ( . . .
16 % ’ port ’ , ’ 5 9 0 8 ’ , . . .
17 % ’ s e r v e r _ f i l e s ’ , [ root , ’/ s e r v e r _ f i l e s / ’ ] , . . .
18 % ’ tb_extens ion ’ , _test , . . .
19 % ’ hd l_f i l e_path ’ , [ ’ hd l_pr j / h d l s r c / ’ , name , tb_extens ion , ’ / ’ ] , . . .
20 % ’ serve r_path ’ , ’~/Documents/ xce l ium_cos im / ’ , . . .
21 % ) ) ;
22
23
24 windows_root = e r a s e ( f i l e p a r t s ( mf i l ename ( ’ f u l l p a t h ’ ) ) , [ pwd ’ \ ’ ] ) ;
25 r o o t = windows_root ;
26 r o o t ( s t r f i n d ( root , ’ \ ’ ))= ’ / ’ ;
27
28 i f e x i s t ( ’ o p t i o n s ’ , ’ v a r ’ ) && i s f i e l d ( op t i on s , ’ po r t ’ )
29 po r t = s t r i n g ( o p t i o n s . po r t ) ;
30 e l s e
31 po r t = ’ 5908 ’ ;
32 end
33
34 i f e x i s t ( ’ o p t i o n s ’ , ’ v a r ’ ) && i s f i e l d ( op t i on s , ’ s e r v e r _ f i l e s ’ )
35 s e r v e r _ f i l e s = op t i o n s . s e r ve r_path ;
36 e l s e
37 s e r v e r _ f i l e s = [ root , ’ / s e r v e r _ f i l e s / ’ ] ;
38 end
39
40 i f e x i s t ( ’ o p t i o n s ’ , ’ v a r ’ ) && i s f i e l d ( op t i on s , ’ t b_ex ten s i on ’ )
41 tb_ex ten s i on = op t i o n s . tb_ex ten s i on ;
42 e l s e
43 tb_ex ten s i on = ’ _test ’ ;
44 end
45
46 i f e x i s t ( ’ o p t i o n s ’ , ’ v a r ’ ) && i s f i e l d ( op t i on s , ’ f i l e_pa t h ’ )
47 hd l_ f i l e_pa th = op t i o n s . f i l e_pa t h ;
48 e l s e
49 hd l_ f i l e_pa th = [ ’ hd l_pr j / h d l s r c / ’ , name , tb_extens ion , ’ / ’ ] ;
50 end
51
52 i f e x i s t ( ’ o p t i o n s ’ , ’ v a r ’ ) && i s f i e l d ( op t i on s , ’ s e r ve r_path ’ )
53 s e r ve r_path = op t i o n s . s e r ve r_path ;
54 e l s e



70 Matlab code

55 s e r ve r_path = ’~/Documents/ xce l ium_cos im/ ’ ;
56 end
57
58 open ( [ name , ’ _test ’ ] ) ;
59 makehdltb ( [ name , tb_extens ion , ’ / ’ , name ] ,
60 ’ GenerateCoSimModel ’ , ’ I n c i s i v e ’ ) ;
61
62 set_param ( [ ’gm_ ’ name tb_extens i on ’ _in/ ’ name ’_in ’ ] ,
63 ’ CommLocal ’ , 0 ) ;
64 set_param ( [ ’gm_ ’ name tb_extens i on ’ _in/ ’ name ’_in ’ ] ,
65 ’CommHostName ’ , e x t r a c t A f t e r ( s e r v e r_add r e s s , "@" ) ) ;
66 set_param ( [ ’gm_ ’ name tb_extens i on ’ _in/ ’ name ’_in ’ ] ,
67 ’ CommPortNumber ’ , po r t ) ;
68 set_param ( [ ’gm_ ’ name tb_extens i on ’ _in/ ’ name ’_in ’ ] ,
69 ’ TclPostSimCommand ’ , ’ a f t e r ␣1␣{ e x i t } ’ ) ;
70
71 cmd = [ ’ s t a r t ␣ ’ windows_root ’ \ xce l ium_server_go . sh ␣ ’ name
72 ’ ␣" ’ s e r v e r _ f i l e s ’ ∗"␣" ’ hd l_ f i l e_pa th ’ ∗ . vhd"␣ ’
73 s e r v e r_add r e s s ’ ␣ ’ s e r ve r_path ’ ␣ ’ po r t ] ;
74 system (cmd ) ;
75 loop_try_sim ( 5 ) ;
76
77 f unc t i on loop_try_sim (max_loops )
78 t r y
79 out = sim ( [ ’gm_ ’ name ’ _test_in ’ ] ) ;
80 ca tch e r r o r
81 i f strcmp ( e r r o r . i d e n t i f i e r , ’ S imu l i n k : SFunc t i ons : SFcnE r ro rS ta tu s ’ )
82 loop_try_sim (max_loops −1);
83 e l s e
84 r e th row ( e r r o r )
85 end
86 end
87 end
88 end
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VHDL code

Github link to vhdl code

C.1 HDL Coder RAM block
1 −− Generated by MATLAB 9.11 and HDL Coder 3.19
2 −− Module : rams_block
3 −− Hierarchy Leve l : 3
4 LIBRARY IEEE ;
5 USE IEEE . std_logic_1164 .ALL;
6 USE IEEE . numeric_std .ALL;
7 USE work . coeff_bank_pac .ALL;
8
9 ENTITY rams_block IS

10 PORT( c l k : IN s td_log i c ;
11 enb : IN s td_log i c ;
12 wr_data : IN s td_log ic_vector (63 DOWNTO 0 ) ;
13 wr_addr : IN s td_log ic_vector (7 DOWNTO 0 ) ;
14 wr_en : IN s td_log i c ;
15 rd_addr : IN s td_log ic_vector (7 DOWNTO 0 ) ;
16 Out1 : OUT vector_of_std_logic_vector8 (0 TO 7 ) ) ;
17 END rams_block ;
18
19 ARCHITECTURE r t l OF rams_block IS
20 −− Component Dec lara t ions
21 COMPONENT SimpleDualPortRAM_generic
22 GENERIC( AddrWidth : i n t e g e r ;
23 DataWidth : i n t e g e r ) ;
24 PORT( c l k : IN s td_log i c ;
25 enb : IN s td_log i c ;
26 wr_din : IN s td_log ic_vector (DataWidth − 1 DOWNTO 0 ) ;
27 wr_addr : IN s td_log ic_vector (AddrWidth − 1 DOWNTO 0 ) ;
28 wr_en : IN s td_log i c ;
29 rd_addr : IN s td_log ic_vector (AddrWidth − 1 DOWNTO 0 ) ;
30 rd_dout : OUT s td_log ic_vector (DataWidth − 1 DOWNTO 0 ) ) ;
31 ENDCOMPONENT;
32 COMPONENT f i_ sp l i t t e r_b l o ck4
33 PORT( in_word : IN s td_log ic_vector (63 DOWNTO 0 ) ;
34 out_arr : OUT vector_of_std_logic_vector8 (0 TO 7 ) ) ;
35 ENDCOMPONENT;

71
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36 −− Component Conf igurat ion Statements
37 FOR ALL : SimpleDualPortRAM_generic
38 USE ENTITY work . SimpleDualPortRAM_generic ( r t l ) ;
39 FOR ALL : f i_ sp l i t t e r_b l o ck4
40 USE ENTITY work . f i_ sp l i t t e r_b l o ck4 ( r t l ) ;
41 −− S i gna l s
42 SIGNAL Simple_Dual_Port_RAM_System_out1 :
43 std_log ic_vector (63 DOWNTO 0 ) ;
44 SIGNAL out_rsvd : vector_of_std_logic_vector8 (0 TO 7 ) ;
45
46 BEGIN
47 USimple_Dual_Port_RAM_System_2 : SimpleDualPortRAM_generic
48 GENERIC MAP( AddrWidth => 8 , DataWidth => 64)
49 PORTMAP( c l k => clk ,
50 enb => enb ,
51 wr_din => wr_data ,
52 wr_addr => wr_addr ,
53 wr_en => wr_en ,
54 rd_addr => rd_addr ,
55 rd_dout => Simple_Dual_Port_RAM_System_out1 ) ;
56 Uf i_sp l i t t e r_4 : f i_ sp l i t t e r_b l o ck4
57 PORTMAP( in_word => Simple_Dual_Port_RAM_System_out1 , −
58 out_arr => out_rsvd ) ;
59 Out1 <= out_rsvd ;
60 END r t l ;
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TCL scripts for synthesis

TCL commands for Genus

D.1 synth.tcl

#Define ROOT to the current folder where the project is
#scripts are placed in the folder scripts

#set ROOT "~/Desktop/Your_project_directory"

set SYNT_SCRIPT "${ROOT}/scripts"
set SYNT_OUT "${ROOT}/OUTPUTS"
set SYNT_REPORT "${ROOT}/REPORTS"

puts "\n\n\n DESIGN FILES \n\n\n"
source $SYNT_SCRIPT/design_setup.tcl

puts "\n\n\n ANALYZE HDL DESIGN \n\n\n"
read_hdl -vhdl ${Design_Files}

puts "\n\n\n ELABORATE \n\n\n"
elaborate ${DESIGN}

check_design
report timing -lint

puts "\n\n\n TIMING CONSTRAINTS \n\n\n"
source $SYNT_SCRIPT/create_clock.tcl

puts "\n\n\n SYN_GENERIC \n\n\n"
syn_generic

puts "\n\n\n SYN_MAP \n\n\n"

73
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syn_map

puts "\n\n\n SYN_OPT \n\n\n"
syn_opt

report_summary -outdir $SYNT_REPORT

puts "\n\n\n EXPORT DESIGN \n\n\n"
write_hdl > ${SYNT_OUT}/${DESIGN}.v
write_sdc > ${SYNT_OUT}/${DESIGN}.sdc
write_sdf -version 2.1 > ${SYNT_OUT}/${DESIGN}.sdf

puts "\n\n\n REPORTING \n\n\n"
report qor > $SYNT_REPORT/qor_${DESIGN}.rpt
report area > $SYNT_REPORT/area_${DESIGN}.rpt
report datapath > $SYNT_REPORT/datapath_${DESIGN}.rpt
report messages > $SYNT_REPORT/messages_${DESIGN}.rpt
report gates > $SYNT_REPORT/gates_${DESIGN}.rpt
report timing > $SYNT_REPORT/timing_${DESIGN}.rpt

D.2 Design_setup.tcl

# Set the top_entity_name you want to do synthesis on
set DESIGN $top_entity_name
set DESIGN_FILES_PATH "${ROOT}/hdl_src/"
set_attribute script_search_path ${SYNT_SCRIPT}
set_attribute init_hdl_search_path ${DESIGN_FILES_PATH}
set_attribute init_lib_search_path { \
/usr/local-eit/cad2/cmpstm/stm065v536/CORE65LPLVT_5.1/libs \
/usr/local-eit/cad2/cmpstm/stm065v536/CLOCK65LPLVT_3.1/libs \
} /

set_attribute library { \
CLOCK65LPLVT_wc_1.00V_125C.lib \
CORE65LPLVT_wc_1.00V_125C.lib \
} /

# put all your design files here
set Design_Files " ${DESIGN_FILES_PATH}main_entitiy.vhd "
set SYN_EFF medium
set MAP_EFF medium
set OPT_EFF medium
set_attribute syn_generic_effort ${SYN_EFF}
set_attribute syn_map_effort ${MAP_EFF}
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set_attribute syn_opt_effort ${OPT_EFF}
set_attribute information_level 5

D.3 create_clock.tcl

#values in picoseconds
set PERIOD 4000
set ClkTop ${DESIGN}
set ClkDomain ${DESIGN}
set ClkName clk
set ClkLatency 200
set ClkRise_uncertainty 200
set ClkFall_uncertainty 200
set ClkSlew 200
set InputDelay 200
set OutputDelay 200

#check the name of the entity in the next line
#/designs/ENTITY/ports_in/clk
define_clock -name $ClkName -period $PERIOD -design $ClkTop -domain
$ClkDomain [find /designs/combiner/ports_in/clk]

set_attribute clock_network_late_latency $ClkLatency $ClkName
set_attribute clock_source_late_latency $ClkLatency $ClkName
set_attribute clock_setup_uncertainty $ClkLatency $ClkName
set_attribute clock_hold_uncertainty $ClkLatency $ClkName
set_attribute slew_rise $ClkRise_uncertainty $ClkName
set_attribute slew_fall $ClkFall_uncertainty $ClkName
external_delay -input $InputDelay -clock [find / -clock $ClkName]
-name in_con [find /des* -port ports_in/*]
external_delay -output $OutputDelay -clock [find / -clock $ClkName]
-name out_con [find /des* -port ports_out/*]
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