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ABSTRACT 
 

Geography is the study of knowledge in a given location, and history is the study of 

knowledge over time. The combination of changes over time has always been 

challenging to visualize in maps. The main aim of this thesis was to analyse 

differences between various methods used to visualize spatio-temporal data with 

open-source web mapping technology. The methodology of this thesis has been split 

into three main parts: (1) data collection and preparation; (2) application 

development; and (3) performance testing and statistical analysis.  

Through a comparative study between four technology solutions/methods to visualize 

spatio-temporal data, this work has tried to document if there are differences in 

loading times and efficiency results evaluated based on performance tests. Four time 

series datasets ranging in sizes were utilized as the test data for the four different 

techniques, GeoJSON, WMS, D3 and Cesium. A large dataset contained all the farms 

in Norway over the last 20 years. A medium-large dataset contained the farms in the 

three northernmost counties of Norway. Two datasets, medium and small are from a 

radio collar that reported the position of the deer in Lærdal every hour with different 

time periods. The performance time results shows that the WMS technology was the 

fastest for data loading in terms of the display time and total loading time (including 

all JavaScript and Hypertext Markup Language for all four datasets). Cesium, 

GeoJSON and D3/TopoJSON were also usable for small datasets but failed the large 

data tasks. The results regarding animation efficiency were that WMS was the only 

technology that was able to display all four datasets. However, for the small datasets, 

the GeoJSON technology seemed to be the fastest, but the differences in time were so 

small that there were no significant differences among the animation efficiency 

measures. 

The overall conclusion is that only one of the four technologies handled all datasets 

and that was the WMS application. WMS was the fastest method for data loading and 

had the smallest display times and total loading times, including all JavaScript and 

HTML, for all four datasets. And for efficiency and animation the conclusion was that 

WMS was the only technology that was able to display all datasets. 

What of four open-source-based methods are most optimal for visualizing spatio-

temporal data are the contribution of this work. There are also some suggestions to 

future work in the discussion section. 
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This thesis was written by Viggo Lunde and supervised by Finn Hedefalk at the 

Centre for Economic Demography and Department of Economic History at Lund 
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TERMS DEFINED 
 

2D: Two-dimensional mapping (north and east coordinates in a flat plane).    

3D: Three-dimensional mapping (north, east and height, like virtual globes).    
4D: 3D plus time.          
ANOVA: Analysis of Variance.        
Cesium: Open-source JavaScript library for creating 3D globes. 

D3: Data-Driven Documents, a JavaScript library for producing dynamic, interactive data  

visualizations in web browsers. 

Efficiency: Performance time of animation in browser. 

GeoJSON: JSON for geographic data. Data format designed for 

representing simple geographical features, along with their non-spatial 

attributes.         
HTML: Hypertext Markup Language.        
JSON: JavaScript Object Notation, an open-standard human-readable file format and data  

interchange format. 

Mashup: A term from two of my references (Wood, 2007) and (Kim, 2019). 

NIBIO: Norwegian Institute of Bioeconomy Research.      
OpenLayers: Open-source JavaScript library for displaying map data in web browsers as maps.  

It provides an API for building rich web-based geographic applications. 

Performance time: Time measured in browser for total loading of web application,  

loading data to application and time to show first point in map. 

Spatio-temporal: Spatial refers to space. Temporal refers to time. Spatiotemporal,  

or spatial temporal, is used in data analysis when data are collected across both  

space and time. 

SVG: Scalable Vector Graphics, an extensible markup language (XML)-based vector  

image format for two-dimensional graphics with support for interactivity and animation. 

TopoJSON: TopoJSON is an extension of GeoJSON that encodes topology. 

WMS: Web Map Services, OGC standard.  

 

  



 

 

1 INTRODUCTION 
 

Spatial time series data have always been a challenge for cartographers to visualize in 

maps. (Han, 2018). According to Corbett (2012), one of the earliest examples is 

Minard’s visualization of Napoleon's 1812 march to visualize data on time maps. This 

was a starting point of visualizing time-series datasets, and several GIS companies 

have also utilized the same data and concept with modern technology to show the 

time axis in a visual manner in a web environment. The combination of changes over 

time and the differences between open-source technologies are the main issues of this 

work. It combines geography as the study of knowledge in a location and history as 

the study of knowledge over time. 

 

Modern computer technologies provide opportunities that are better than ever before 

for the storage, management, visualization, and analysis of dynamic spatial data over 

time. Web applications are also becoming more and more stable and larger amounts 

of data at an ever-increasing pace. Spatio-temporal visualization is a way to illustrate 

changes in an area over time on a map. The challenge of displaying time on 

interactive maps or web mappings is smaller compared printed maps. Unlike printed 

maps, these maps can be made with built-in animations that allow the user to see 

changes in an area over time. Some Internet maps have sliders that allow the viewer 

to see a snapshot of the exact point in time that they want to know about simply by 

sliding the slider to the appropriate time. Other maps are animated and allow the 

viewer to see a time lapse illustration that covers a set time period. A typical scenario 

for both types is to compare information in a given place over a period of time. 

 

In the literature in this area of research, few studies with comparisons of open-source 

technologies for showing time series in web maps have been found. However, an 

increasing amount of time-series data from satellites and modern sensors in planes are 

produced(Gómez et al., 2016), and such methods are becoming increasingly in 

demand to show how different datasets change over time. 

 

The present thesis has tried to find the differences between the technologies in the 

open-source landscape to provide a better way to choose which technologies to use in 

different scenarios. If a small dataset is given, then one technology might be better, 

but if larger datasets are studied, then another technology might be preferred. 

 

Four different open-source technologies for visualizing time series data were 

compared, and the differences between them were measured. The four technologies 

developed and measured are as follows: 

1. GeoJSON data in OpenLayers 

2. TopoJSON data in D3 with OpenLayers, 

3. WMS raster maps with OpenLayers and 

4. GeoJSON with Cesium. 

The data preparation time, loading time, and animation efficiency of each method 

were the main subjects in this work. 

 

In the studies of Andrienko et al. (2003) one main issue was determining the types of 

technologies that are suitable for visualizing spatio-temporal data in web map 

applications. For the end-users of geo-visualization tools, it would be convenient if 
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this thesis could advise developers or users regarding which techniques to utilize in 

various situations. The corresponding knowledge base could be built from different 

techniques. My work will continue in terms of finding more knowledge about what 

technology is best to use in this field with datasets of different sizes. Different web 

applications were developed and measured with regard to data preparation time, 

loading time and animation efficiency. 

 

Before starting the research, it was expected that WMS technology would be 

preferable in most cases, at least for large datasets.  

 

In the context of the current study, the differences between various open-source 

methods regarding their ability to visualize spatiotemporal data were mainly of 

interest. The results should point developers in the right direction when choosing what 

technology to use. 

 

1.1 Aim and research questions 
The main aim of this thesis was to the analyse differences between various methods 

used to visualize spatio-temporal data with open-source web mapping technology. 

 

Questions: 

This thesis aimed to answer the following main research question: “What open-

source-based methods are most optimal for visualizing spatio-temporal data with 

regard to preparation, loading time, and efficiency?” 

 

Objectives: 

This thesis has one main objective to answer the research question. 

1. Statistically analyse the differences between the open-source techniques with 

regard to the following: 

  A) Loading time performance in the client 

 B) Efficiency of the animation that shows the time series data 

C) Preparation time for the data to be visualized 
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1.2 Outline of the thesis 
 

To analyse the differences between the methods used to visualize spatio-temporal 

map data with open-source web technologies this work will cover the following 

structure. 

 

Chapter 1: Introduction  

What of four open-source-based methods are most optimal for visualizing spatio-

temporal data are the contribution of this work. 

Chapter 2: Literature review 

Previous researchers have done the same web performance measures as this work, but 

it has not been done on the same methods. The same measures have been used for 

other studies comparing for example javascript libraries. 

Chapter 3: Materials and methods 

Time measures through the window.performance object in the browser were used to 

compare the four methods. It is suitable for this study because no additional code had 

to be added to the javascript applications. And the numbers could easily be exported 

to a file after all the runs of the code. 

Chapter 4: Results 

Results for preparation time is that data preparation for the different technologies used 

does not have significant differences timewise. The performance time results shows 

that the WMS technology was the fastest for data loading in terms of the display time 

and total loading time. 

Chapter 5: Discussion 

The overall conclusion was that only one of the four technologies handled all datasets 

and that was the WMS application. WMS was the fastest method for data loading and 

had the smallest display times and total loading times, including all JavaScript and 

HTML, for all four datasets.  
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2 LITERATURE REVIEW 
 

This section reviews the related studies and techniques that were applied within this 

thesis. The following three topics are reviewed: 1) spatio-temporal data visualization; 

2) open-source techniques for visualization; and 3) performance testing for web sites. 

 

2.1 Spatio-temporal data visualization 
 

The following paragraphs summarize the current state of spatio-temporal data 

visualization. Different ways of displaying time series are described in this section. 

Wood et al. (2007) were able to design and combine specific encodings and 

interactions by interactively ‘slicing and dicing’ according to time, geography and 

attributes. Their client-side filtering approach by time was functionally useful and 

achieved impressive geo-visualization speeds; communicating temporal data through 

tag clouds in a map allowed for spatio-temporal visualization as well as spatial 

aggregations and selections. They also asked for further consideration in visualization 
case studies that integrate other technologies and alternative data, which is one of the 

goals within this thesis. 

 

There are several approaches for displaying time series data, and Brunsdon et al. 

(2007) compared such methods. The techniques highlighted in their work include map 

animations, the co-mapping approach and the isosurface approach, all of which have 

potential advantages (and limitations) for researchers interested in the exploratory 

visualization of point-level data; their work related to crime events suggested that 

more evidence is needed to show how users benefit from geo-visualization tools. A 

comap is an extension of a coplot, or conditional plot, but with maps. These maps 

show different conditions side by side or arranged in a rectangular set of panels in 

time order. 

Isosurfaces can be three dimensional plots with spatial data on two axes and time on 

the third axis. Brunsdon found them to be hard to identify in many cases. In the 

present work, one type of map animation was chosen. In the following study, the time 

series represented the attribute changes used. 

 

The methods for illustrating changes in an area over time on a map were split into 

three main approaches by Dibiase et al. (1992). They stated that dynamic variables 

could be used to emphasize the location of a phenomenon, emphasize its attributes, or 

visualize changes in its spatial, temporal, and attribute dimensions. They were 

visualizing chronological changes through time series, visualizing attribute changes 

through re-expression, and visualizing spatial changes through fly-by map animation 

and how these methods could be used to visualize spatio-temporal data in both 

realistic (chronological) and abstract (reordered and paced) forms. In this early 

animation study, the authors highlighted the combination of static maps, graphs, 

diagrams and images and showed that animation enhances analysts' abilities to 

express data in a variety of complementary forms. 

 

The following 4D studies were important because 3D mapping with time changes was 

a part of the present thesis, and the 4 dimensions in this case included north and east 

coordinates, height and time. Resch et al. (2013) described 4D cartography in 2013 as 

follows. The 4D representation (three spatial dimensions plus time) of time-varying 
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phenomena, i.e., through thematic 4D mapping, was still widely untouched. It was 

demonstrated that 4D cartographic representations could help to understand dynamic 

spatiotemporal phenomena. A central question suggested for future research was how 

to represent time in 4D visualizations. The efficient and effective 4D visualization of 

spatial data on the Internet was also a goal (Resch et al., 2014), and the authors solved 

this problem by displaying time-series diagrams of environmental parameters with 

WebGL. Future research questions involved the representation of the time dimension 

in 4D systems, optimized and generic temporal generalization, and the possibility of 

integrating and creating (pseudo)photorealistic illustrations in web-based geo-

visualization systems. Other studies used virtual globes (3D) to show data effectively 

and to compare 2D and 3D background maps. 

 

A systematic meteorological data visualization framework on a virtual globe, which 

extended the emerging virtual globe platform to include the simulation and 

visualization of meteorological data for climate studies, was presented by Liu et al. 

Most existing visualization technologies in 2015 could easily be transferred to the 

globe by redefining their stated coordinates (Liu et al., 2015). They also presented a 

virtual globe application of a tropical cyclone demonstrating that virtual globes could 

be an effective tool for meteorological data visualization and analysis. 

 

In another presentation, three types of animated geo-visualizations of water depth 

based on tide information were included by the authors: (1) a 2D cartographic map 

(abstraction), (2) a 2D ortho-photorealistic image (photorealism) and (3) a 3D 

immersion (3Drealism). Their work showed three results at different tidal stages (low, 

medium and high levels). They also found that the third dimension provides more 

interaction possibilities (displacement in 3D) for users and increases the 

comprehension of the tide phenomenon in terms of producing more realistic sea 

animations (Masse and Christophe, 2016). 

 

Murshed et al. developed a 4D canvas web application based on the open-source 

Cesium virtual globe, and the present work used Cesium as one of the evaluated 

technologies. The authors used their application to dynamically visualize multiple 

energy simulation results, such as the techno-economic photovoltaic potentials or 

energy needs of 3D buildings, in the context of different Asian and European cities. 

Analytical functionalities were also integrated, and a GUI was built to allow users to 

conduct explorative analyses of the results. This study demonstrated that with the 

wide availability of 3D datasets and technological advancements in virtual globe 

software frameworks, many different smart city applications can be integrated into the 

developed application (Murshed et al., 2018). 

 

Expensive pre-processing steps can be offloaded to the associated server or cloud 

when the client machines do not have sufficient computational power to perform 

rendering at frame rates suitable for interactivity, and rendering in the client was 

usually performed earlier. However, this is now changing due to improvements in 

CPU and GPU technology on mobile devices and networking technology. 

Hybrid visualization approaches are more promising because they exploit the entire 

spectrum of available computational resources (Mwalongo et al., 2016). Data access 

and filtering can be handled by a separate data service layer that hides the differences 

between data sources and presents a uniform data access interface to the visualization 

layer; this was a conclusion in the above work. 
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Some studies represented below reviewed big data and machine learning, which is 

beyond the scope of the present paper, but they also heavily examined web-based 

visualization, which is why they are mentioned here. Li et al. developed a 

cyberinfrastructure solution for visualizing big, multivariate and time-varying climate 

data in 2017. A major challenge was that collaborative scientific analysis has focused 

on how to handle the organization, transmission and rendering of these data over the 

web because their data were rather voluminous. They demonstrated the applicability 

of the video encoding technique in the PolarGlobe web-based visualization platform 

and suggested ideal choices for video compression techniques under various network 

environments (Li and Wang, 2017). Moreover, they suggested including machine 

learning techniques to automatically capture abnormalities in the climate system, such 

as extreme weather, cyclones, and their moving trajectories. 

 

Padilla et al. proposed a dual-process cognitive framework that expanded on 

visualization comprehension theory (which was supported by empirical studies) to 

describe the decision making process with visualizations. They also offered practical 

recommendations for visualization design that take human decision-making processes 

into account (Padilla et al., 2018). In the present study, there are also guidelines on 

what technology to choose. 

 

Moreover, Christophe (2020) experimented with a reconciliation between computer 

vision and map design, with the dual purpose of spatio-temporal analysis and the 

visualization of geospatial data, while combining knowledge and methods to obtain a 

more flexible approach for geo-visualization methods and tools. He also stated that 

visualization could facilitate the first steps of decoding, reasoning and learning. In 

particular, the issue of the interpretability of spatio-temporal data, from raw to 

simulated data, could help to visually analyse geophysical, climatical, 

sociodemographic, and historical phenomena and dynamics on earth. This line of 

research trended more toward machine learning than I went with spatio-temporal data 

in this thesis. However, they used style to display some data in a time window, as we 

did. 

 

Park et al. demonstrated the nationwide spatial and temporal distributions of two 

major air pollutants, PM10 and NO2, over 14 years (from 2001 through 2014) in 

South Korea. They recommend a web-based visualization of scholarly data for active 

research and data sharing beyond academia by using an easy application without 

advanced technical skills, thereby allowing users to effectively understand scientific 

information. Such approaches not only lead to the proliferation of related studies but 

also improve public awareness and understanding (Park et al., 2020). 

 

(Loechel and Schmid, 2013) argued that a fast response to a web request was a 

mandatory characteristic of Web Map Services. They proposed several caching 

techniques, such as tile caching and reverse proxy caching, for speeding up the 

responses of WMS. 

 

Some main points and methods that were used in this thesis are summarized in this 

section. Dynamic data within interactive maps (obtained using the time slider) have 

been the focus in this thesis. Interactive maps often have two main components: 

background map layers and theme layers. Background maps change when you zoom 
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in and pan the map, and the theme layers are displayed on top of the background map 

to convey the message regarding the theme you want to highlight. 

Differences in visualizing static and dynamic data in the theme layer were a major 

issue in this thesis. For static theme data in a web mapping application, the system 

loads and shows all data immediately when the application has finished loading in the 

browser. For spatio-temporal theme data, some data are shown first, and then more 

data are shown successively along a time axis. In this thesis, a time slider was chosen 

because the user could then move the slider to the desired time to see these 

differences. As the slider moves, new data are shown in the map either by loading all 

the data and only showing some of the data (GeoJSON) at a given time or by 

constantly loading new data (WMS)s. 

 

In the context of the 4D data sharing on the Internet, (Hejmanowska et al., 2019) 

specify two kinds of problems. The first is the optimal presentation of 4D models, 

including making them available on the Internet, and the second, the integration of 4D 

models with GIS data on the Web GIS platform. Their conclusion was that results 

obtained for publications using X3D technology were not satisfactory, both in terms 

of the appearance of the 3D model and the functionality of the browser. Integration of 

3D / 4D models is possible at the WebGIS level, with raster base maps shared as 

OpenLayers, cartographic layers and vector objects with attributes. 

 

In this thesis, one of the three methods described in the study by (Dibiase et al., 

1992), visualizing chronological changes through time series, has been the focus. As 

they stated, the depiction of changes over time in the positions or attributes of 

geographic phenomena from a constant viewpoint (changes in a chronological space) 

is the most obvious application of animation in both the social and physical sciences. 

 

(Wood et al., 2007) asked for further consideration in visualization case studies that 

integrated other technologies and alternative data, as we have tried to do in this work. 

WMS is one of the five methods that were used in our work, as in that of (Loechel 

and Schmid, 2013). Fast response times are crucial to web applications today, and this 

work analysed some methods to find the abovementioned differences. 

 

 

2.2 Open-source techniques for visualization 
 

There are several open-source techniques for web visualization, and some are more 

suitable for visualizing spatio-temporal data than others. Openlayers were used in all 

of the tests in this work and were chosen because the literature highlights it as one of 

the most relevant and best web mapping libraries.  

 

CampToCamp is one of the leading companies developing geospatial solutions, and 

in an article at dev.to, the developers highlighted what they thought were the three 

best open-source mapping libraries. Leaflet, Mapbox GL and OpenLayers are their 

favourites, and they considered OpenLayers to be the most complete library. Because 

OpenLayers has extensions such as ol-cesium that manage the bindings between 

OpenLayers and CesiumJs (a great virtual globe library written in WebGL), to switch 

from 2D to 3D maps, this thesis chose OpenLayers. The developers also mentioned 

that a massive crowdfunding campaign recently leveraged hundreds of thousands of 

dollars to help the community progress and enhance the library. Thus, it is safe to 
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build applications with OpenLayers and trust that the library will not stop developing 

and supporting them for many years to come. 

 

Openbase.com has also made a list with the “12 Best Vanilla JavaScript Map 

Libraries”, and the three best-rated map libraries according to the Openbase team and 

community were the same three as those in CampToCamp’s article, with OpenLayers 

at the top. Vanilla JavaScript refers to using plain JavaScript without any additional 

libraries or frameworks such as React, jQuery or Angular. This, combined with our 

own experience with both OpenLayers and Leaflet, made us decide to use 

OpenLayers with different data formats in this master’s thesis. 

 

To display spatio-temporal data, it is a good choice to show different data in the same 

place in a sequence. OpenLayers is good at this, and studies looking into comparisons 

of such methods were reviewed. The aim of my study was to find an effective way to 

display time series data. A study looking at how to easily and quickly visualize a large 

amount of data via an Internet platform was deemed relevant. From the perspective of 

Netek et al. (2019), the main aim was to test the point data visualization possibilities 

of selected JavaScript mapping libraries to measure their performance and ability to 

cope with a large amount of data. The mapping libraries OpenLayers, Leaflet, 

MapBox and Supercluster were studied, and according to a result in this thesis, large 

data must be handled carefully to be loaded properly in a map application. 

 

In another study Farkas (2017) identified the most capable libraries for acting as the 

basis of a web GIS client (Cesium, Leaflet, NASA Web World Wind, OpenLayers 2, 

and OpenLayers 3) and compared them. The libraries were compared by their GIS 

feature coverage and some quality metrics. OpenLayers 3 was identified as the most 

capable library due to its support for nearly 60% of the examined GIS features, its 

small size, and its moderate learning curve. OpenLayers seemed to be a recurring 

theme in these reviewed studies. 

 

To summarize what open-source technologies to choose in the present study, 

OpenLayers with different data formats and technologies, Cesium, D3 and WMS 

were used from a GeoServer. OpenLayers was our choice because there was 

experience with it for many years in our organisation, and Farkas (2017) also meant 

OpenLayers was the best choice. Cesium shows data in 3D, which is important for 

understanding how data are placed in the terrain, and as discussed by (Bing et al., 

2016), this was important to try out in our work. D3 and TopoJSON were described 

by (Sack et al., 2014) and inspired the D3 applications in the present study. The study 

of (Król, 2018) is an important study because they made prototype applications used 

for testing and conducted a comparative performance analysis like that done in the 

present work. One difference is that they compared only raster map viewers, and the 

present work tested and compared both vector and raster solutions. The questionnaire-

based work of Ballatore et al. (2011) was done quite a few years ago but is still of 

some relevance because it dealt with both OpenLayers and GeoServer. This indicates 

that both are mature technologies that will continue to be relevant for many years to 

come. 

Four different technologies were tested in the present thesis are described in the 

following sections. A map client was made with the open-source library OpenLayers. 

The client had background maps and showing time series data as points on the top 
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using these different data formats. 

 

• GeoJSON – An application with OpenLayers and the GeoJSON data format 

was developed and tested. GeoJSON is an open-standard format designed for 

representing simple geographical features along with their non-spatial 

attributes. It is based on the JSON format. OpenLayers can read this format 

and make vector features to draw on the map. 

• WMS – An application with OpenLayers and the WMS raster data format was 

developed and tested. A Web Map Service (WMS) is a standard protocol 

developed by the Open Geospatial Consortium in 1999 for serving 

georeferenced map images over the Internet. OpenLayers can display this 

format as images on a map. The images were served by a GeoServer. 

• D3 – An application with OpenLayers and D3 integration was made. 

OpenLayers loads TopoJSON geometries and uses D3 (d3.geo.path) to render 

these geometries to an SVG element on top of the OpenLayers background 

map. 

• Cesium – An application with OpenLayers and Cesium integration was 

developed, and GeoJSON data were loaded and drawn on top of the Cesium 

background map. 

 

Under is a subsection for each of these with references to the literature. For further 

description about the development of these methods, see the system integration 

section. 

 

 

2.2.1 GeoJSON 
GeoJSON is an open standard format designed for representing simple geographical 

features, along with their non-spatial attributes. In our case time was one of the 

attributes used to show the spatiotemporal data. A GeoJSON file was loaded as a map 

layer in the client. 

Shang (2015) studied efficient vector mapping with vector tiles based on cloud server 

architecture. The study compared GeoJSON and TopoJSON with google protocol 
buffers and used D3.js to render the vector data. The results showed that overall 
performance of vector tile based vector maps can be improved by applying 
distributed memory caching implementation on the server side as compared to 
naïve architecture. 
A questionnaire was designed by Ballatore et al. (2011) to obtain responses 

from the relevant online communities about a given set of characteristics. This 

article described the analysis of 14 open-source projects in the area of web and GIS 

technologies, providing first-hand information about open-source web and geospatial 

tools. Both GeoServer and OpenLayers were included and had high overall scores, 

even though Mapserver had a better score than GeoServer in their survey. 

 

2.2.2 WMS 
WMS is a raster image format and Geoserver was used to convert the data from shape 

to images. To filter out time attributes to show different the CQL_FILTER parameter 

was used when asking for the image from Geoserver. 

Król (2018) conducted a comparative analysis of the performance of selected raster 

map viewers. The prototype applications were used to test the implementation of 
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selected design tools. Efficiency measurements were made using tools for automated 

testing. They stated that it is possible that the results may have been determined by 

the measurement mechanism rather than the actual performance of the applications. 

Therefore, it is advisable to complement automated tests with usability tests. The 

compromise between performance and usability was demonstrated by an application 

created on the basis of the ImageViewer plugin. It was this latter application that the 

authors pointed out as objectively the best choice for raster map presentation among 

all the tested methods. 

 

2.2.3 D3 (TopoJSON) 
Data was converted to TopoJSON and was read with the D3 javascript library and 

rendered to a map layer as a SVG element. Because TopoJSON is a more compact 

format it should be faster to load than for example GeoJSON. 

In a study by Sack et al. (2014) a D3 tutorial that covered the finding and formatting 

of data, geographic data were converted into GeoJSON and TopoJSON formats, and 

the data were asynchronously loaded into a browser. Their work with D3 mapping is 

well documented, so we could implement our D3 application. 

 

2.2.4 Cesium 
To look at the world in 3D, one needs a library like Cesium that provides users with 

the opportunity to see the landscape as a virtual world. Cecium is a javascript library 

converting the OpenLayers client from 2D to 3D. The spatio-temporal data was added 

to the client as a vector layer from GeoJSON. A paper by (Bing et al., 2016) 

introduced a web-based visualization method based on Cesium and the 3D City 

Database to construct a three-dimensional panoramic electric power visualization 

system. All tools used in their paper are 

open-source and could promote system development and upgrades, as in the present 

work. The extra Z-axis provided an extra dimension over two-dimensional maps for 

visualization. 

 

A multidimensional web-mapping platform was developed for citizen participation 

purposes, where users could better assess and understand the evolution of their cities 

over time (Lafrance et al., 2019). The spatio-temporal mechanism devised in Lafrance 

et al.’s research, as well as its components (i.e., animations, charts, and timelines), are 

relevant for visualizing and analysing the impacts of the choices made during a 

consultation. Both 2D and 3D spatial dimensions need to be included in a citizen 

participation platform, given that each of them may be more useful or intuitive 

depending on the information provided by different scenarios. The authors also 

included a 4D representation for which Cesium 3D-tiles could be a potential solution 

to improve performance. 

 

 

 

2.3 Website performance testing  
The main aims in the present thesis were to test the preparation time, loading time and 

efficiency of animation for each of the datasets and technologies. Loading time and 

efficiency are the main two characteristics and are used in performance testing to 

measure the time required by different methods. In the simplest terms, the page load 

time is the average amount of time it takes for a page to show up on your screen. It is 
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calculated from initiation (when you click on a page link or type in a web address) to 

completion (when the page is fully loaded in the browser). In this thesis, the loading 

time was split into three different parts: the loading time of the theme data, the display 

time required by the site to present the first time data on screen, and the total loading 

time, described as extra page load time. The efficiency was measured after the page 

finished loading from the time animation and started; 100 time intervals (hours) were 

shown in the map for the deer data, and 20 time intervals (years) were shown for the 

production subsidies data. 

 

2.3.1 Common approaches to performance testing 
In regard to performance testing, some common metrics, such as load time, bandwidth 

and concurrent users, factors that are interesting when looking at such issues (Figure 

1). In the present work, the scope has been narrowed to the loading time and 

efficiency of the animation that shows the time series data. There has been little focus 

on fine-tuning and re-testing in this work but re-tests were done this summer to ensure 

quality of the data. Later work in this area should have more focus on this aspect. 

 

 
Figure 1: A generic process for conducting performance testing. 

 

A study from 2001 about website testing involved page testing, hyperlink testing and 

all-path testing. The experimental analysis and testing techniques described by Ricca 

and Tonella (2001) were early thoughts regarding the assessment of website quality. 

They provided deep insight into the internal functioning of web applications with 

more than one page, highlighting the strengths and weaknesses found at that time. 

However, their study is not as relevant for single-page applications, such as those 

developed in this thesis. 

 

An important measure of web page performance is how long it takes for a web page 

to be downloaded sufficiently for the web browser to start displaying the web page (or 

parts of it) to the user (Graham-Cumming et al., 2017). A web page typically includes 

the base HTML and potentially a large number of resources that must be loaded so 

that the web page can be displayed. These resources may include client-side scripts 

(e.g., JavaScript), cascading style sheets (CSS), and/or images that are required for the 

correct layout, appearance and functioning of the web page. 

In our case, there were JavaScript libraries with CSS, theme data and images such as 

background map tiles. 

 

Web site performance testing can be divided in two main categories. Single-page web 

applications and multipage web sites. GIS web applications is mainly single-page 

loading data from other sources as Geoserver or distributed servers from the mapping 

authorities. Here is the performance testing loading data from the sources. Other 

websites are often built of more pages and the performance testing is about loading 

new pages in the same site. 

 

We focused on performance in terms of the loading times in the client.  The tests of 

(Ricca and Tonella, 2001) were not applied in the present work because we were 
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testing single-page applications and not sites with many sub-pages. However, the 

description of Graham-Cumming et al. (2017) helped determine where to put the 

performance metrics used to measure the loading and animation results. 
 

2.3.2 Related studies on performance testing 
Performance testing for a single-page web application was the main issue of the 

present work. There are several tools or extra JavaScript libraries that could be used, 

such as selenium or jMeter, but we hoped to add as few JavaScript libraries that could 

affect the measured times as possible. Our goal was to measure preparation times, 

efficiency and loading times without needing to load extra objects and use extra time. 

This section concerns loading time performance testing and what has been done in 

this area. 

 

2.3.2.1 Websites in general 
 

One study tried to determine the metrics and evaluation methods that best suit a 

JavaScript framework comparison. A benchmark framework executed tasks to test the 

efficiency of three JavaScript frameworks (AngularJS, Aurelia, and Ember). The 

research showed the impact of the environment (CPU usage and network 

connectivity) on JavaScript frameworks. (Ferreira, 2018). The report used two 

functions to measure the execution times of JavaScript applications (Date.now() and 

Performance.now()). 

 

A study comparing the DOM manipulation methodologies of vanilla JavaScript, 

Angular, React and Vue.js in terms of DOM performance was formed (Persson, 

2020). Test applications were created, and these applications were used as a base for 

comparing application sizes and for comparison tests involving DOM performance-

related metrics using Google Chrome and Firefox. The performance interface, which 

was implemented in both Google Chrome and Firefox, was used to measure the time 

durations of the test cases. 

 

Another paper analysed page loading time trends, which is an important part of any 

website’s user experience. Manhas (2013) stated “And many times, we’ll let it slide to 

accommodate better aesthetic design, new nifty functionality or to add more content 

to web pages. Unfortunately, website visitors tend to care more about speed than all 

the bells and whistles we want to add to our websites.” Additionally, page loading 

time is becoming an increasingly important factor in regard to search engine rankings. 

This study claimed that high-performance web sites lead to higher visitor 

engagement, retention and conversion rates. With JavaScript frameworks, they found 

that from 2008-2013, the size of the average web page had more than tripled, and the 

number of external objects had nearly doubled. 

 

Nägele et al. (2015) described steps that were taken towards finding a method to 

measure the client-side performance of web applications. A definition of client-side 

performance within the context of web applications was formulated, and the 

properties by which to evaluate possible methods were defined. With these properties, 

an evaluation method was developed. Two profiling metrics were suggested, of which 

one metric was eventually implemented and improved in the next step. Finally, an 

integration method to apply the profiling metric to a project was implemented. The 

profiling metrics were accuracy, impact, usability and portability. The performance of 
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the application was affected significantly, as it decreased by approximately 45%. This 

thesis therefore found that this method was not very relevant. 

 

A native Android application and a multi-platform web application to monitor solar 

radiation and the output power of a photovoltaic system were developed by Santana et 

al. (2016). The authors mostly looked into transfer times, and their research was 

therefore interesting to the work in this study. The response times of both applications 

were obtained, and the developed web application was very poor compared to the 

native Android application. 

 

An article from Timanovskyi and Plechawska-Wójcik (2020) presented an analysis of 

the performance of selected tools when building a single-page application. A Chrome 

browser with the DevTools tool was used to evaluate the performance of the test 

application. The total number of tests was 112. As part of the study, a test application 

was created using different JavaScript frameworks - the angular framework and the 

Vue.js framework. 

 

 

 

2.3.2.2 GIS web applications 
 

A study looking at how to easily and quickly visualize a large amount of data via an 

Internet platform was conducted. From the perspective of the authors, the main aim 

was to test the point data visualization possibilities of selected JavaScript mapping 

libraries to measure their performance and ability to cope with a large amount of data. 

(Netek et al., 2019) The mapping libraries OpenLayers, Leaflet, MapBox and 

Supercluster were studied, and Netek et al. (2020) described an experiment to test 

both raster and vector tile methods. The concept behind raster tiles is based on pre-

generating an original dataset 

including a customized symbology and style. All tiles are generated according to a 

standardized scheme. Performance testing in terms of the loading time, data size, and 

the number of requests was performed. The authors measured different zooming and 

panning operations in the map and found durations in milliseconds with the Google 

Chrome console, as in this thesis. 

 

The work of Zunino et al. (2020) assessed the advantages of representing 

geographical information as vectors over raster representations and was implemented 

using three popular JavaScript libraries. The presented case study application, namely, 

the LQI Web map, was built using HTML5 technology, which allowed it to run on 

different platforms. Their result was a clear indication that OpenLayers was the best 

library for raster maps on all devices. 

 

Kim and Jang (2019) compared and analysed the dynamic mashup performance 

characteristics of various map platforms. To efficiently compare the performance, 

they defined and measured performance comparison metrics, including the data 

loading time, mashup time and user interaction time. In this thesis, different methods 

for visualizing time-series datasets and loading times was compared and analysed in a 

similar way. 
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To summarize this section, this thesis used the performance library to measure time 

because it was built inn and no additional code needs to be added. This method is also 

simple to use. The thesis of Ferreira (2018) also uses the performance library in a 

similar way as we do in this work. The present thesis also used performance metrics 

and the differences in these time metrics, as they did in the study of Persson (2020). 

As the page loading time is becoming a more important factor in regard to search 

engine rankings (Manhas, 2013), our measures for finding the fastest application have 

relevance in that area as well. Netek et al. (2020) dealt with a large amount of data, 

both raster and vector data, and we observed that the vector solutions were not able to 

effectively handle the largest dataset. Zunino et al. (2020) found that OpenLayers was 

the best for raster maps on all devices, and they also used vector tiles in addition to 

GeoJSON. Inspiration and experience from them made us choose OpenLayers as our 

test mapping library. 
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3 MATERIALS AND METHODS 
 

To answer the research questions in this thesis, the main approach was to test different 

technologies for visualizing time series data in web map clients with 2D and 3D 

background maps. The methodology of this thesis has been split into three main parts: 

(1) data collection and preparation; (2) application development; and (3) performance 

testing and statistical analysis. Through a comparative study between four technology 

solutions/methods to visualize spatio-temporal data, this work has tried to document if 

there are differences in loading times and efficiency results evaluated based on 

performance tests.  

 

 

 

3.1 Data and study area 
Four time series datasets were utilized as the test data for the four different 

techniques, GeoJSON, WMS, D3 and Cesium. 

 

3.1.1 Study area 
All over Norway there are farm points in the large dataset. An area covering the three 

northernmost counties in Norway before 2020 (Nordland, Troms and Finnmark) is the 

coverage of the medium-large dataset that is a subset of the large dataset. See Figure 

2. A small part of the western area of Norway close to Lærdal is where the medium 

and the small datasets are located. The datasets contain points from a radio-marked 

deer. See Figure 3. 
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Figure 2: Map of the medium-large dataset study area in ETRS89/UTM zone 33N. 
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Figure 3: Study area for the small and medium datasets in ETRS89/UTM zone 33N. 

 

 

3.1.2 Data 
 

Four datasets ranging in sizes were used with the different technologies. These 

datasets are described in the following. 

 

The large dataset contained the farms in Norway over the last 20 years (data from 

1999 to 2019); farms were defined as properties that obtained production subsidies 

from the Norwegian authority. These data were obtained from the NIBIO (Norwegian 

Institute of Bioeconomy Research). The dataset contains points representing farms 

each year, decreasing from 66706 to 38983 over this time period. The total number of 

points in the dataset is 984 832. 
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The medium-large dataset contains the farms in the three northernmost counties of 

Norway over the last 20 years. The dataset is a subset of the large dataset that uses 

only the tree northernmost counties to obtain a smaller dataset to work with. The total 

number of points in the dataset is 145 449. 

 

The medium dataset has points from a radio-marked deer. 

The data are from a radio collar that reported the position of the deer every hour. The 

dataset covers a small part of the western area of Norway close to Lærdal. This is a 

point dataset with a time attribute. We stored the data in a PostGIS database and 

obtained the data in GeoJSON format for the client through a Java API. The total 

number of points in the dataset is 5 000. 

 

The small dataset also contains points from a radio-marked deer but over a shorter 

time period. It is from the same part of Norway close to Lærdal. The total number of 

points in the dataset is 1 500. Table 1is describing the data. 

 
Table 1: Datasets used in the analyses. 

Dataset Format Reference 
system 

Spatial 
coverage 

Temporal 
coverage 

Temporal  
detail 

No. of 
objects 

Provider 

Norwegian 
farms 
(large) 

Point 
shapefiles 

EPSG 
25833 

National 
Norway 

1999-2019 year 984 
832 

NIBIO 

Norwegian 
farms 
(medium-
large) 

Point 
GeoJSON 

EPSG 
25833 

Northern 
Norway 

1999-2019 year 145 
449 

NIBIO 

Radio 
collar deer 
(medium) 

Point 
GeoJSON 

EPSG 
25833 

Area 
near 
Lærdal 

21.Sept to 
31.Dec 
2020 

hour 5 000 NIBIO 

Radio 
collar deer 
(small) 

Point 
GeoJSON 

EPSG 
25833 

Area 
near 
Lærdal 

1-30. 
September 
2020 

hour 1 500 NIBIO 

 

 

 

3.2 System implementation 
 

JavaScript is a text-based programming language used both on the client side and 

server side that allows you to make web pages interactive. While HTML and CSS are 

languages that give structure and style to web pages, JavaScript gives web page 

interactive elements that engage a user. All the present methods were developed with 

different JavaScript libraries. 

 

Performance tests were performed regarding both data preparation and the web client 

response and loading time. To do this, the windows.performance object in the browser 

was used. Google Chrome’s debugger tools were used to find loading time 

differences. A small set of points was chosen, and the animation was measured. The 

web applications were loaded 100 times, and every parameter was stored in local 

storage in the browser. When the site was loaded the 100th time, the data were 

retrieved from local storage and saved as a csv-file on the computer running the test. 
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Statistical analyses of the data obtained from the performance tests were used to find 

significant differences between the presentation methods. ANOVA tests were run to 

compare the performance results from the different applications. It was necessary to 

find the time intervals during which these data should be visualized, as well as to 

represent the data in a user-friendly way in Internet applications. 

 

To obtain scientific results, excels statistical tools were used to compare the data from 

the presentation methods regarding speed and loading times. 

 

At the NIBIO, we used GIT and continuous integration to develop web applications. 

One developmental branch was made first, and then twelve other branches were made 

for the different methods (4) and datasets (4). The applications were developed on a 

local computer, pushed to a GIT repository and deployed to two different servers: a 

development server inhouse (inside NIBIO’s firewall) named utvgeo01.int.nibio.no 

and an external test server named karttest.nibio.no. The servers were set up with the 

Ubuntu operating system with Apache, Tomcat and GeoServer. 

 

 

3.2.1 Open-source technologies 
The following list presents the technologies used for development: 

• Apache 2.2.15 

• Tomcat 8.0.21 

• GeoServer 2.18.1 

• Parcel Bundler 2.0.0-beta.1 

• jQuery 3.3.1 

• OpenLayers 6.5.0 

• ol-layerswitcher 3.6.0 

• D3 5.9.2 

• TopoJSON 3.0.2 

• proj 4 2.5.0 

• Lodash 4.17.20 

• Moment.js 2.29.1 

• JsPanel 2.6.3 

• SweetAlert2 9.10.12 

• FontAwesome 5.3.1 

 

Further descriptions of the technologies are as follows: 

 

Apache 

Open-source HTTP server for modern operating systems including UNIX and 

Windows. The goal is to provide a secure, efficient and extensible server that provides 

HTTP services in sync with the current HTTP standards. The Apache HTTP Server 

("httpd") was launched in 1995 and it has been a popular web server on the Internet 

since April 1996. The Apache HTTP Server is a project of The Apache Software 

Foundation. 

 

 

Tomcat 
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Tomcat is the Apache Software Foundation's implementation of a Java "servlet 

container". Tomcat makes it possible to run Java-based web applications based on 

servlet or Java Server Pages standards. Open-source implementation of the Jakarta 

Servlet, Jakarta Server Pages, Jakarta Expression Language, Jakarta WebSocket, 

Jakarta Annotations and Jakarta Authentication specifications. These specifications 

are part of the Jakarta EE platform. The Jakarta EE platform is the evolution of the 

Java EE platform. GeoServer is a Java application and running in Tomcat. 

 

Parcel 

Parcel is a compiler for all code, regardless of the language or toolchain. Parcel takes 

all files and dependencies, transforms them, and merges them together into a smaller 

set of output files that can be used to run your code. Parcel supports many different 

languages and file types out of the box, from web technologies like HTML, CSS, and 

JavaScript, to assets like images, fonts, videos, and more. In this thesis JavaScript was 

used. 

 

jQuery 

jQuery is a JavaScript library that makes things like HTML document traversal and 

manipulation, event handling, animation, and Ajax simple with an easy-to-use API 

that works across a multitude of browsers. With a combination of versatility and 

extensibility, jQuery has changed the way people write JavaScript. 

 

GeoServer 

Geoserver is a Java-based server that allows users to view and edit geospatial data. 

Using open standards set forth by the Open Geospatial Consortium (OGC), 

GeoServer allows for great flexibility in map creation and data sharing. GeoServer is 

free software and distributed under GNU General Public Licence Version 2.0. This 

significantly lowers the financial barrier to entry relative to proprietary GIS products. 

In addition, GeoServer is not only available free of charge but is also open-source. All 

datasets were served as WMS with a query filter from GeoServer version 2.18.1. 

The data from the GeoJSON files were opened in QGIS and converted to shape files. 

New styles were made, and the shapefiles were set up as layers in Geos\Server. All 

data were EPSG:25833. 

 

OpenLayers 

Openlayers is a JavaScript library that makes it easy to put a dynamic map on any 

web page. It can display map tiles, vector data and markers loaded from any source. 

OpenLayers has been developed to further the use of geographic information of all 

kinds. It is free, open-source JavaScript released under the 2-clause BSD Licence 

(also known as the FreeBSD). OpenLayers was used in all applications but has 

limitations regarding the number of points in vector data. 

 

D3 

Data-Driven Documents is a JavaScript library for producing dynamic, 

interactive data visualizations in web browsers. The D3.js library uses prebuilt 

functions to select elements; create SVG objects; style them; or add transitions, 

dynamic effects or tooltips to them. These objects can also be styled using CSS. The 

data can be provided in various formats, such as JSON, comma-separated values 

(CSVs) or GeoJSON. 

 

https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Web_browser
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Cesium 

Cesium is an open-source JavaScript library for creating 3D globes and maps with the 

best possible performance, precision, visual quality, and ease of use. A virtual globe 

such as that of Cesium is a three-dimensional (3D) software model or representation 

of the Earth or another world. A virtual globe provides the user with the ability to 

freely move around in the virtual environment by changing the viewing angle and 

position. Compared to a conventional globe, virtual globes have the additional 

capability of representing many different views on the surface of the Earth. These 

views may be of geographical features, man-made features such as roads and 

buildings, or abstract representations of demographic quantities such as population. In 

this thesis, points in a map were shown in a 3D globe. 

 

TopoJSON 

TopoJSON is an extension of GeoJSON that encodes topology. Rather than 

representing geometries discretely, geometries in TopoJSON files are stitched 

together from shared line segments called arcs. TopoJSON eliminates redundancy, 

allowing related geometries to be stored efficiently in the same file. Used with the D3 

technology in this thesis. Installed through Node package manager. 

 

Proj 

Proj or Proj4js is a JavaScript library to transform point coordinates from one 

coordinate system to another, including datum transformations. 

 

Lodash 

Lodash is a modern JavaScript utility library delivering modularity, performance & 

extras. Used to sort on time property for the timeseries map data in this thesis. 

 

Moment.js 

Moment is a JavaScript library to parse, validate, manipulate, and display dates and 

times. Used to parse time property values in this project. 

 

JsPanel 

JsPanel is a JavaScript library to create highly configurable floating panels, modals, 

tooltips, hints/notifiers/alerts or context menus for use in backend solutions and other 

web applications. 

 

QGIS 

QGIS is a professional GIS application that is built on top of and proud to be itself 

Free and Open-source Software (FOSS). The program can view maps, edit and 

analyse geographic data and export in most common map file formats. The program 

has tools for both vector and raster maps. 

 

 

 

 

 

3.2.2 Application development 
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A web application with common map functionalities, such as background maps, layer 

lists, and panels was made first. The following applications described under were 

based on this common web map application. 

 

 

1. GeoJSON 

The first application developed used OpenLayers to show points from GeoJSON 

(Figure 4). A GeoJSON file was made from QGIS form data in a PostGIS database 

and stored locally as a file to avoid the impact of network traffic on later 

measurements. The data were loaded from the file and read as OpenLayers features. 

The features were added to an OpenLayers VectorSource. The source was used to 

make a VectorLayer called hiddenLayer. Style was added to the layer to show the 

points on the map. 

 

To reach the goal of displaying only one unit of time at once, the time slider was 

added with an interval of 100 time units to make it easier to measure a statistically 

significant number of times. To show a filtered subset of the features, another 

VectorLayer called visibleLayer with a different style was made. The features were 

ordered by the time attribute using the lodash library. 

 

The animation was started when all points were loaded with the first index among the 

100 that we wanted to show, and the source of the visibleLayer was filtered to show 

only the points for the time interval on the time slider. The filtered points were shown 

500 milliseconds before the next index was sent to the filter function, the source of 

the layer was updated, hiding the current features and showing the features for the 

next time interval. 

 

 
Figure 4: OpenLayers and GeoJSON application. 
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2. WMS 

In this method, the data were saved as a shapefile in QGIS, and this file was moved to 

GeoServer. A new layer was made with the shapefile, and GeoServer provided many 

different output formats. The list of output formats supported by a GeoServer instance 

can be found with a WMS GetCapabilities request. Below is an example of a standard 

WMS request for one of the supported formats used in this study. 
https://karttest.nibio.no/geoserver/master/wms? 

service=WMS& 

version=1.1.0& 

request=GetMap& 

layers=master%3Ahjort_1-30sept& 

bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791

379.426336285& 

width=768& 

height=596& 

srs=EPSG%3A25833& 

styles=& 

format=image%2Fpng 

In the Web Map Services standard, it is possible to filter the data obtained from an 

input image. This can be done with an extra parameter called CQL_FILTER, and we 

can ask for a special time interval. An application was developed to show the filtered 

WMS images on the map. See Figure 5. 

 

When the time slider moved, a new URL was sent with a new CQL_FILTER to 

obtain an image from GeoServer with the desired point in time. 

 

The OpenLayers tutorial was set up with Parcel Bundler Version 1. However, to be 

able to ask for the WMS images from the local computer without cross-origin 

problems, Parcel Bundler Version 2 was used to proxy the requests to GeoServer 

from the local computer during development. 

 

Example proxy settings. 
{ 

  “/geoserver”: { 

    “target”: “http://utvgeo01.ad.skogoglandskap.no/geoserver/”, 

    “pathRewrite”: { 

      “^/geoserver”: “” 

    } 

  } 

} 

 

 

https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
https://karttest.nibio.no/geoserver/master/wms?service=WMS&version=1.1.0&request=GetMap&layers=master%3Ahjort_1-30sept&bbox=93749.41772619059%2C6783341.010973525%2C104093.4370224792%2C6791379.426336285&width=768&height=596&srs=EPSG%3A25833&styles=&format=image%2Fpng
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Figure 5: OpenLayers and WMS application with spatio-temporal data from deer collars. 

 

3. D3 

The D3 method was based on an example where TopoJSON was loaded and used the 

d3.geo.path from d3js to render geometries as an SVG element. 

TopoJSON is an extension of GeoJSON that encodes topology. Rather than 

representing geometries discretely, geometries in TopoJSON files are stitched 

together from shared line segments called arcs. TopoJSON eliminates redundancy, 

offering much more compact representations of geometry than GeoJSON; typical 

TopoJSON files are 80% smaller than their GeoJSON equivalents. The loading of the 

data was expected to be faster when the size was smaller. First, the data had to be 

converted to TopoJSON, which was done with the geo2topo function. geo2topo is 

part of TopoJSON which you install as a global node package with “npm install -g 

topojson” and are used with the following command: 

 
geo2topo pt=PTAll.geojson > pt.topojson 

 

In the map application, a Canvas Layer was made, where the TopoJSON features 

were added. See Figure 6. To filter the points to show only the points for the actual 

time interval, the d3layerFilter was used. First, all points were set to opacities of 0. 

When the time slider moved, the points selected were set to opacities of 1: 

 
d3layerFilter.svg.selectAll('path').filter(data => { 

      return data.properties.Acquisition_time === 

ordered[sid].properties["Acquisition_time"]; 

    }).attr('fill', 'red').style('opacity', 1.0); 
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Figure 6: OpenLayers and D3 with spatio-temporal data from deer collars. 

 

 

 

4. Cesium 

Cesium is an open-source JavaScript library for creating 3D globes and maps with the 

good performance, precision and visual quality according to the Cesium website. 

 

The data were loaded as GeoJSON, and the same filtering method as that in the 

GeoJSON technique was used. The features were read from the GeoJSON file in 

OpenLayers, and the features were added to a vectorSource and vectorLayer so they 

could appear in the map. See Figure 7. 
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Figure 7: Cesium and spatio-temporal GeoJSON data from deer collars. 

 

 

 

Time measuring 

For all four technologies, it was important to measure the loading times and animation 

times to find differences. The window.performance object in the browser was used, 

and mark were set at the beginning of the html-file to start the timing and where we 

wanted to start and stop measuring. 

An object with all the results was made each time the site was finished loading, and 

the objects looked like this: 

 
  var newItem = { 

      'Nr': loadNr, 

      'mark-total': performance.measure('total', 'start', 

'end').duration, 

      'mark-load-data': performance.measure('load-data', 

'load.data.start', load.data.end').duration, 

      'draw-on map':performance.measure('draw-map', 'load.data.end', 

'end').duration, 

      'animation':performance.measure('animation', 'anim.start', 

'anim.end').duration 

 

  }; 

 

This object was added to an array in local storage. Then, a function with an input 

variable was made to decide how many times the site should be loaded before the 

array in local storage should be written to a csv-file. All methods were loaded 100 

times each. All loading data for each method were downloaded as a CSV file to the 
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computer where the applications were run in the browser. The JavaScript function is 

called saveData: 

 
var saveData = (function () { 

var a = document.createElement("a"); 

document.body.appendChild(a); 

a.style = "display: none"; 

return function (data, fileName) { 

    var json = JSON.stringify(data), 

        blob = new Blob([json], {type: ‘octet/stream’}), 

        url = window.URL.createObjectURL(blob); 

    a.href = url; 

    a.download = fileName; 

    a.click(); 

    window.URL.revokeObjectURL(url); 

}; 

}()); 

 

The CSV file had to be changed in TextPad so that Excel could open it. Commas had 

to be changed to semicolon, and /n had to be changed to line breaks. 

 

The files for all four methods for a given dataset were added to a readable format, the 

data were copied to a spreadsheet, and an ANOVA test was run. See chapter 3.3.4. A 

result from the ANOVA was the average time required for all 100 measurements. 

From those average times, a chart was made showing the differences in the average 

times for each of the four metrics of the four methods and three datasets. 

 

 

3.2.3 Data conversion 
These datasets needed to be prepared in dissimilar ways for different presentation 

methods, and one task was to find an effective production trial to prepare the data for 

visualization. QGIS and geo2topo were used to convert the data between GeoJSON, 

Shape (ESRI’s spatial data format) and TopJSON used in the different measurements. 

 

 

 

3.3 Performance testing 
 

By dividing the total time into the loading time and animation time, a distinction is 

made between what measures spatial data and spatio-temporal data. Performance tests 

were performed, and it was considered whether measurements should be made to 

compare static and dynamic data in other ways, but this idea was rejected as 

significant new information in relation to time use was provided. As mentioned earlier 

four datasets were used during the testing of the four different technologies. 

 

The results were recorded using the Google Chrome console (Chrome DevTools). 

Caching was also switched off to ensure that all data were reloaded each time, and the 

“Preserve log” option was checked to record the data of all previous requests sent to 

the server during the interactions for each measurement. The console record was 

exported to the HAR (HTTP Archive) format after testing and then converted into a 

CSV file. 



30 

 

3.3.1 Data preparation time 
Data was prepared for each of the technologies and the time used to prepare each 

dataset for each technology was measured manually using a normal clock.  GeoJSON 

data was used both with the Cesium application and the GeoJSON application. QGIS 

was used to make GeoJSON from data in the PostGIS database. QGIS was also used 

to convert from PostGIS to shape files for WMS (delivered by GeoServer). 

TopoJSON was used in the D3 application. To convert GeoJSON to TopoJSON for 

D3, the geo2topo program was used in the following way. 

 
geo2topo pt=PTAll.geojson > pt.topojson 

 

geo2topo deer=orange_bukk_lærdal_jul_des.txt > deer_medium.topojson 

 

The Cesium applications were executed using WGS 84/Pseudo-Mercator - Spherical 

Mercator EPSG:3857. The data had to be transformed to this format, and the export 

function in QGIS was used. This transformation was a part of the preparation time for 

all datasets for the Cesium map application. These measures can be considered as 

subjective and has therefore been discussed if it has any relevance.  

 

3.3.2 Loading time 
The loading time was split into four parts for each of the four applications developed. 

In the code there was placed timers (javascript performance.marks) for each part 

that was measured. Three different loading times were measured before the 

animation: (1) the time for loading the data, (2) the time required to display the first 

data on the map and (3) the total time for loading the whole application. The first part 

was from when the data started to load until the response from the server was 

delivered. The second part was from when the data were loaded to the point at which 

the first data were shown on the map. The third part was the total loading time of the 

site from the start of index.html until the start of the animation. The fourth was the 

time required to show 100 time intervals as an animation. 

To obtain the loading times, the performance object in the browser window was used 

and the results was stored in the browsers local storage. After 100 loadings the data 

from local storage was written to a csv-file and downloaded to the local computer. 

 

3.3.3 Efficiency 
Efficiency was measured as 100 time intervals shown for the deer data, and for the 

production subsidies data, the large dataset did not provide any data for comparison 

since the browser crashed before the data was loaded. Two different browsers were 

tried but it crashed both in chrome and firefox. 

During the animation, the map was zoomed in one level and then zoomed out two 

levels later in the animation. The animation times were also stored in the browsers 

local storage and written to a csv-file when finished with all the 100 time intervals.  

The performance test regarding efficiency was not expected to show large differences 

between the technologies because there was a javascript loop showing next point 

every 500 milliseconds to show next time interval. 
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3.3.4 Statistics 
Analysis of variance (ANOVA), is a statistical method that separates observed 

variance data into different components to use for additional tests. One-way (or 

unidirectional) ANOVA is used for three or more groups of data to gain information 

about the relationships between the dependent and independent variables. The result 

of the ANOVA formula, the F-ratio, allows for the analysis of multiple groups of data 

to determine the variability between samples and within samples. If no real 

differences exist between the tested groups (the null hypothesis), the result of the 

ANOVA F-ratio statistics will be close to 1. 

ANOVA tests on the data from the csv-files were performed in Excel to determine if 

there were significant differences between the technological methods. Four times 

were measured: the total loading time, the loading time for the data, the display time 

for the first time-interval, and the time required for the animation of 100 time-

intervals. Graphs were made to compare the average loading times for each 

technology. See chapter 4 (Results) to see the results of the tests. 

 

 

To see if there were significant differences between all methods the Bonferroni-

corrected Multiple comparisons were used in all relevant results. 
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4 RESULTS 
 

The results of this thesis are divided into three main sections: (1) data preparation 

time; (2) loading time; and (3) dynamic visualization efficiency. The results were 

gathered from the statistical analysis of the differences between the open-source 

techniques. 

 

4.1 Loading time 
All applications were loaded one hundred times, and three different loading times 

were measured: the time for loading the data, the time required to display the first 

data on the map and the total loading time for the whole application. The times were 

measured in milliseconds. 

 

4.1.1 Deer data (small dataset) 
The four technologies were compared via ANOVA single-factor analyses. 

Averages are preferable to totals because they represent the summarized data on the 

same scale as the individual values, which makes visual comparison much easier 

(Lindsay, 2011). All graphs are therefore based on average numbers from 100 runs. 

 

Three different time measures were collected: load data times, display data time, and 

total load and display times. In addition, the animation efficiency was measured. 

 

To interpret the single-factor ANOVA, the P-value is the probability that 

an F statistic would be more extreme (larger) than the F-crit shown in the table, 

assuming that the null hypothesis is true. When the P-value is larger than the 

significance level (.05), the null hypothesis is accepted; when it is smaller, it is 

rejected. 

 

Table 2 shows the summary of the data loading times of the small dataset. The 

average column is showing.  

Figure 8 (red bars in the graph) shows the average data loading times for the small 

dataset, where the values for Cesium and GeoJSON are quite similar, while those of 

D3 and WMS are much smaller. 

 

 
Table 2: Summary for group of loading times for the small dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 82.004 334.508 

Geo 100 74.443 436.259 

D3 100 4.773 1.948 

WMS 100 9.466 9.433 

 

Error! Reference source not found. shows the ANOVA results table for data 

loading with the small dataset. The P-value is smaller than .05, which means that 

there are significant differences between the methods.  
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Table 3: ANOVA result for loading times of small dataset. SS= sum of squares, df = Degrees of freedom, MS = 

mean squares, F=F-ratio, P-value = the area to the right of the F statistic and F-crit = alpha value. 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 509543.364 3 169847.788 868.620 9.803E-174 2.627 

Within Groups 77432.824 396 195.537    

Total 586976.188 399         

 

 

Bonferroni-corrected Multiple comparisons were used (Table 4). 

 
Table 4: Comparisons if there are significant differences in loading time in the small dataset 

Compare P-value Alpha value:  Significant 

Cesium vs Geo .00704166 .008333 TRUE 

Cesium vs D3 9.476E-101 .008333 TRUE 

Cesium vs WMS 4.3233E-95 .008333 TRUE 

Geo vs D3 4.8989E-83 .008333 TRUE 

Geo vs WMS 2.1379E-77 .008333 TRUE 

D3 vs WMS  3.949E-31 .008333 TRUE 

 

As Table 4 shows there were statistically significant differences between all methods. 

 

The times from the data being loaded to the first data point being displayed are shown 

in the map (Table 5). The ANOVA results are presented in Table 6. Figure 8 (green 

bars in the graph) shows the average display times compared. WMS was the fastest 

and GeoJSON was the slowest. The Cesium- and D3-methods had similar times, but 

the D3 method was slightly faster. 

 
Table 5:  Summary of display times for the small dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 145 678.886 

GeoJSON 100 200 1120.036 

D3 100 130 326.696 

WMS 100 75 161.232 

 

 
Table 6: ANOVA table for the display times in the small dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 803742.127 3 267914.042 468.617 7.233E-130 2.627 

Within Groups 226397.989 396 571.712    

       

Total 1030140.12 399         
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Bonferroni-corrected Multiple comparisons were used (Table 7). 

 
Table 7: Comparisons if there are significant differences in display time in the small dataset 

Compare P-value Alpha value:  Significant 

Cesium vs Geo 9.063E-20 .008333 TRUE 

Cesium vs D3 2.088E-19 .008333 TRUE 

Cesium vs WMS 4.025E-28 .008333 TRUE 

Geo vs D3 3.609E-86 .008333 TRUE 

Geo vs WMS 3.369E-103 .008333 TRUE 

D3 vs WMS  2.475E-07 .008333 TRUE 

 

As Table 7 shows there were statistically significant differences between all methods. 

 

The total loading times for the small dataset were also measured, the summary of the 

times (Table 8) and the ANOVA results are presented in Table 9.  

 
Table 8: Summary of total loading times for the small dataset in milliseconds. 

SUMMARY     

Groups Count Sum Average Variance 

Cesium 100 53444 534 5073 

GeoJSON 100 48402 484 3949 

D3 100 26905 269 1855 

WMS 100 10845 237 910 

 

Based on the P-values, there are significant differences between the measures of the 

methods. Figure 8 (blue bars in the graph) shows the average total loading times and 

shows that the Cesium method used the most time to load the whole application, 

closely followed by the GeoJSON method. The D3 method was clearly faster than the 

previous two, and the WMS method had the fastest total loading time among the four 

methods for which time was measured. 

 

 
Table 9: ANOVA table for the total loading times for the small dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 11687425.31 3 3895808.44 1322.155 7.207E-206 2.627 

Within Groups 1166837.227 396 2946.55865    

Total 12854262.54 399         

 
 

 
Bonferroni-corrected Multiple comparisons were used ( 

Table 10). There are significant differences between all methods for the total loading 

times of the small dataset. 
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Table 10: Comparisons if there are significant differences in total time in the small dataset 

Compare P-value Alpha value:  Significant 

Cesium vs Geo 2.26444E-28 .008333 TRUE 

Cesium vs D3 3.95801E-06 .008333 TRUE 

Cesium vs WMS 1.41568E-61 .008333 TRUE 

Geo vs D3 6.26281E-45 .008333 TRUE 

Geo vs WMS 4.25658E-87 .008333 TRUE 

D3 vs WMS  1.1113E-63 .008333 TRUE 

 

 
As  

Table 10 shows there were statistically significant differences between all methods. 

 

 
Figure 8: Comparing all average data for small dataset in milliseconds. 

 

 

4.1.2 Deer data (medium dataset) 
Table 11 presents the summary of the loading data for the medium dataset.  

 
Table 11: Summary data loading times for the medium dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 179 334 

GeoJSON 100 174 381 

D3 100 22 21 

WMS 100 20 25 

 

Table 12 presents the ANOVA results table for the data loading measures for the 

medium dataset. The null hypothesis was that all methods used the same amount of 

time. The tests show significant differences between the measures of the four methods 
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(P<0.01). Figure 9 (red bars in the graph) shows the average loading times for the 

methods tested. The Cesium and GeoJSON methods used more than 20 times the 

timespans of D3 and WMS. 

 

 
Table 12: ANOVA table for loading times for the medium dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 2421601.27 3 807200.425 4245.041 1.303E-300 2.627 
Within Groups 75299.9504 396 190.151    

Total 2496901.23 399         

 

Bonferroni-corrected Multiple comparisons were used (Table 13). There are not 

significant differences between Cesium and GeoJSON or D3 vs WMS, all other 

methods for the total loading times of the medium dataset had significant differences. 

 
Table 13: Comparisons if there are significant differences in loading time in the medium dataset 

Compare P-value Alpha value:  Significant 

Cesium vs GeoJSON 0.055 0.008333 FALSE 

Cesium vs D3 2.196E-156 0.008333 TRUE 

Cesium vs WMS 9.852E-157 0.008333 TRUE 

GeoJSON vs D3 1.929E-146 0.008333 TRUE 

GeoJSON vs WMS 9.095E-149 0.008333 TRUE 

D3 vs WMS  0.033 0.008333 FALSE 

 

As Table 13 shows that the difference between Cesium and GeoJSON was not 

significant, the same between D3 and WMS, no significant difference.   The rest 

showed statistically significant differences between the methods. 

 

 

Table 14 presents the summary of the display times for the medium dataset. 
 

Table 14: Summary regarding the display times after loading the medium dataset in milliseconds. 

SUMMARY     

Groups Count Average Variance 

Cesium 100 187 2996 

Geo 100 250 726 

D3 100 127 481 

WMS 100 113 234 

 

Table 15 presents the ANOVA results regarding the display times after loading the 

data. The P-values were well under 0.05, which shows that there are significant 

differences between the tested methods. Figure 9 (green bars in the graph) shows a 

graph with the average display times, and D3 and WMS had the best display times. 
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WMS was slightly better than the D3 method, with GeoJSON using approximately 

double the times of those two methods and Cesium between them. 

 

 
Table 15: ANOVA table display times for the medium dataset 

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Grps 1177259 3 392420 353.636 1.31E-111 2.627 

Within Grps 439429 396 1110    

       

Total 1616688 399         

 

 

 

Bonferroni-corrected Multiple comparisons were used (Table 16). There are 

significant differences between all methods for the display times of the medium 

dataset. 

 
Table 16: Comparisons if there are significant differences in display time in the medium dataset 

Compare P-value Alpha value:  Significant 

Cesium vs Geo 9.063E-20 0.008333 TRUE 

Cesium vs D3 2.088E-19 0.008333 TRUE 

Cesium vs WMS 4.025E-28 0.008333 TRUE 

Geo vs D3 3.609E-86 0.008333 TRUE 

Geo vs WMS 3.369E-103 0.008333 TRUE 

D3 vs WMS  2.475E-07 0.008333 TRUE 

 

 

Table 17 presents the summary of the total loading times for the medium dataset. 

 
Table 17: Average total loading times for the medium dataset in milliseconds. 

SUMMARY    
Groups Count Average Variance 

Cesium 100 680 15291 

Geo 100 662 2304 

D3 100 425 1991 

WMS 100 330 3327 

 
 

Table 18 shows the ANOVA results regarding the total load times for the medium 

dataset. The tests show significant differences between the measures of the four 

methods (p<0.01). Figure 9 (blue bars in the graph) shows the average total loading 

times for the medium dataset. Additionally, here, the WMS method was the fastest in 

terms of the metrics of the four approaches. 
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Table 18: ANOVA table total loading time for medium dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 9095174 3 3031725 529.233 3.953E-138 2.627 

Within Groups 2268494 396 5729    

Total 11363668 399         

 

 

Bonferroni-corrected Multiple comparisons were used (Table 19). There are not 

significant differences between Cesium vs GeoJSON or D3 vs WMS,  all other 

comparisons between methods for the total loading times of the medium dataset had 

significant differences. 

 

 
Table 19: Comparisons if there are significant differences in total time in the medium dataset 

 

 

 

 

 

 

 

 

 

 

Table 19 shows that the difference between Cesium and GeoJSON was not 

significant, the same between D3 and WMS, no significant difference.   The rest 

showed statistically significant differences between the methods. 

 

 
Figure 9: Comparing all average data for medium dataset in milliseconds. 
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Compare P-value Alpha value:  Different 

Cesium vs Geo 0.059 0.008333 FALSE 

Cesium vs D3 1.971E-154 0.008333 TRUE 

Cesium vs WMS 8.242E-155 0.008333 TRUE 

Geo vs D3 1.93E-146 0.008333 TRUE 

Geo vs WMS 6.957E-147 0.008333 TRUE 

D3 vs WMS  0.033 0.008333 FALSE 



40 

 

 

4.1.3 Production subsidies data (medium-large dataset) 
The SUMMARY results regarding the data loading times are presented in Table 20 . 

The tests show significant differences between the measures of the four methods 

(P<0.01). Figure 10 (red bars) shows the average load times for the four methods, and 

as expected, the numbers are much higher for this larger dataset. Additionally, the 

WMS came out as method with the shortest times. The Cesium method had the 

highest measures, with the two others in between. 

 

 

 

 
Table 20: Summary of load times for the medium-large dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 627 4086.713 

GeoJSON 100 609 4670.512 

D3 100 76 258.294 

WMS 100 71 301.898 

 

The ANOVA results regarding the data loading times are presented in Table 21. 

 
Table 21: ANOVA table for load times for the medium-large dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 29664615.6 3 9888205.2 4245.041 1.303E-300 2.627 

Within Groups 922424.392 396 2329.35453    

Total 30587040 399         

 

 

Bonferroni-corrected Multiple comparisons were used (Table 22). There are not 

significant differences between Cesium vs GeoJSON ,  all other comparisons between 

methods for the loading times of the medium-large dataset had significant differences. 

 

 
Table 22: Comparisons if there are significant differences in total time in the medium-large dataset in 

milliseconds. 

Compare   P-value Alpha value:  Different 

Cesium vs GeoJSON 0.178 0.008333 FALSE 

Cesium vs D3  1.05888E-47 0.008333 TRUE 

Cesium vs WMS 7.16855E-65 0.008333 TRUE 

GeoJSON vs D3  2.61977E-89 0.008333 TRUE 

GeoJSON vs WMS  1.1211E-104 0.008333 TRUE 

D3 vs WMS   2.03726E-87 0.008333 TRUE 

 

Summary of the display data for the medium large dataset is presented in Table 23. 
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Table 23: Summary of display times for the medium-large dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 654 36703.1606 

GeoJSON 100 874 8902.65304 

D3 100 444 5899.13216 

WMS 100 394 2868.83938 

 

 

Table 24 presents the ANOVA display times after loading the data for the medium-

large dataset. The P-values show that there were significant differences between the 

methods. Figure 10 (green bars) shows a graph with the average display times for the 

medium-large dataset. The WMS method displayed the data fastest, followed by D3, 

GeoJSON and Cesium. 

 

 
Table 24: ANOVA results for display times for the medium large dataset. 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 14421422.3 3 4807140.76 353.636 1.31E-111 2.627 

Within Groups 5383004.73 396 13593.44    

Total 19804427 399         

 

 

 

 

 

 

Summary of the total load data for the medium large dataset is presented in Table 25. 
 

Table 25: Summary of total load times for the medium-large dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 654 36703.160 

GeoJSON 100 874 8902.653 

D3 100 444 5899.132 

WMS 100 394 2868.839 

 

 

Table 26 presents the ANOVA results regarding the total load times for the medium-

large dataset. The P-value of 0 shows that there were significant differences between 

the methods. Figure 10 (blue bars) shows a graph with the average load times for the 

medium-large dataset. The WMS method had the smallest loading time, followed by 

D3, GeoJSON and Cesium. 
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Table 26: ANOVA table for the total loading times for medium large dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 14421422.3 3 4807140.76 353.636 1.31E-111 2.627 

Within Groups 5383004.73 396 13593.4463    

Total 19804427 399         

 

 

 

Bonferroni-corrected Multiple comparisons were used (Table 27). There are not 

significant differences between Cesium vs GeoJSON, all other comparisons between 

methods for the total loading times of the medium-large dataset had significant 

differences. 

 
Table 27: Comparisons if there are significant differences in total loading time in the medium-large dataset 

Compare  P-value Alpha value:  Different 

Cesium vs Geo 0.17808466 0.008333 FALSE 

Cesium vs D3 1.0589E-47 0.008333 TRUE 

Cesium vs WMS 7.1685E-65 0.008333 TRUE 

Geo vs D3 2.6198E-89 0.008333 TRUE 

Geo vs WMS 1.121E-104 0.008333 TRUE 

D3 vs WMS  2.0373E-87 0.008333 TRUE 

 

 

Figure 10 shows all the times for the medium large dataset in one graph. 

 

 

 
Figure 10: Comparing all average data for medium-large dataset in milliseconds. 
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4.1.4 Production subsidies (large dataset) 
 

The large dataset was only sometimes displayed on the map, and we were not able to 

load it before the browser crashed. A value of 0 was used if the browser crashed as a 

measure denoting that there were problems with the viewing process. 

 

Summary of the total load data for the large dataset is presented in Table 28. 

 

 
 

Table 28: Average data loading times for the large dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 0 0 

GeoJSON 100 12544 1834889.65 

D3 100 106 7.79 

WMS 100 103 1.57 

 

 

The ANOVA results regarding the data loading times for the large dataset are 

presented in Table 29.  The tests show significant differences between the measures 

of the four methods (P<0.01). Figure 11 (red bars) shows the average loading times 

for the large dataset. WMS and D3 had very small average loading times, while the 

GeoJSON method used over 12 seconds, and the Cesium method crashed the browser. 

 

 
Table 29: ANOVA table for loading times for the large dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 11672573516 3 3890857839 8481.901 0 2.627 

Within Groups 181655002.8 396 458724.754    

Total 11854228518 399         

 

 

The display times for the large dataset are presented in Table 30. 0 means that the data 

could not be displayed. The WMS method was the only method that did not crash the 

browser. Figure 11 (green bars) shows the average display times for the large dataset. 

 
Table 30: Summary of display times for the large dataset in milliseconds. 

SUMMARY    
Groups Count Average Variance 

Cesium 100 0 0 

Geo 100 0 0 

D3 100 0 0 

WMS 100 43 121 
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Table 31 presents the ANOVA results regarding the display times for the large 

dataset. The P-values show that there were significant differences between the 

methods. 

 
Table 31: ANOVA table for display times for the large dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 136838 3 45613 1507.641 3.442E-216 2.627 

Within Groups 11981 396 30    

Total 148818 399         

 

Figure 11 (blue bars) shows the average total loading times for the large dataset. The 

WMS method had the smallest total loading time. D3 had slightly longer time 

requirement, GeoJSON struggled for over 13 seconds, and Cesium crashed the 

browser during the measurements. 
 

Table 32 shows the Summary times for the total loading of the large dataset. 
 

Table 32: Summary of total loading times for the large dataset in milliseconds. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 0 0 

GeoJSON 100 13235 3365170.1 

D3 100 328 3202.3 

WMS 100 236 488.0 

 

Table 33 shows the ANOVA results for the total loading of the large dataset. 
 

 

 
Table 33: ANOVA table for total loading times for the large dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 12772082075 3 4257360692 5054.956 0 2.627 

Within Groups 333517187.5 396 842215.12    

Total 13105599263 399         

 

 
Table 34: Comparisons if there are significant differences in total loading time in the large dataset 

Compare P-value Alpha value Different 

Geo vs D3 5.211E-142 0.008333 TRUE 

Geo vs WMS 1.249E-142 0.008333 TRUE 

D3 vs WMS  7.380E-35 0.008333 TRUE 
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As Table 34 shows that the difference between the methods that managed loading. 

The differences were statistically significant between those methods. 

 

 
Figure 11: Comparing all average data for large dataset in milliseconds. 

 

 

 

 

 

To sum up and visualize the results for total load time for the datasets and methods 

are showed in Table 35. Here the colour green and number 1 shows the fastest total 

loading the next were yellow and number 2 and so on. WMS was the best for all of 

the datasets and methods, D3 was the second best, GeoJSON was the third and 

Cesium used most time when it managed to load the data. 

 
Table 35: Summary, 1 is best loading time and 4 is worst loading time. 0 is not loading. 

Dataset GeoJSON  D3 WMS 

 
 Cesium 

Deer data (small)  3 2 1 4 

Deer data (medium) 3 2 1 4 

Prod. Subsidies 
(medium large) 

3 2 1 4 

Prod. subsidies (large) 3 2 1 0 
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4.2 Efficiency 
 

After the site was loaded, an animation was started immediately, and the times it took 

to show 100 points of the small, medium and medium-large datasets were measured. 

Example URLs can be found in Table 36. The large dataset crashed when loading the 

data except when the WMS method was used. 

 
Table 36: Example URLs of the different applications. 

Technology Dataset URL 

GeoJSON Small https://karttest.nibio.no/timemap/geoJson/ 

Medium https://karttest.nibio.no/timemap/geoJson_large/ 

WMS Small https://karttest.nibio.no/timemap/wms_deer/  

Medium https://karttest.nibio.no/timemap/wms_deer_middle/  

Large https://karttest.nibio.no/timemap/wms_PS/  

D3/ 
TopoJSON 

Small https://karttest.nibio.no/timemap/md3/  

Medium https://karttest.nibio.no/timemap/md3_medium/  

Cesium Small https://karttest.nibio.no/timemap/cesium/  

Medium https://karttest.nibio.no/timemap/cesium_medium/  

 

The animation time results for the small dataset are presented in Table 37 and Table 

38, the P-values here are greater than 0.05 (0.256), which tells us that there were no 

significant differences between the methods. Figure 12 is a graph with the average 

animation times that shows the small differences, with the GeoJSON method 

performing best. 

 
Table 37: Summary of animation times for the small dataset. 

SUMMARY     

Groups Count Sum Average Variance 

Cesium 100 4958205.7 49582 85712615 

GeoJSON 100 4751981.6 47520 51.13439 

D3 100 4953968.7 49540 96727731 

WMS 100 4943869.2 49439 1.14E+08 

 

 
Table 38: ANOVA table of animation times for the small dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 3.01E+08 3 100394567 1.355 0.256 2.627 

Within Groups 2.93E+10 396 74098435    

Total 2.96E+10 399         

 

 

Since the P-value shows no significant differences (P =0,25) it is not required to do 

Bonferroni-corrected Multiple comparisons. 

 

 

 

https://karttest.nibio.no/timemap/geoJson/
https://karttest.nibio.no/timemap/geoJson_large/
https://karttest.nibio.no/timemap/wms_deer/
https://karttest.nibio.no/timemap/wms_deer_middle/
https://karttest.nibio.no/timemap/wms_PS/
https://karttest.nibio.no/timemap/md3/
https://karttest.nibio.no/timemap/md3_medium/
https://karttest.nibio.no/timemap/cesium/
https://karttest.nibio.no/timemap/cesium_medium/
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Figure 12: Average animation times for the small dataset. 

The results regarding the animation times for the medium dataset are presented in 

Table 39 and Table 40. The P-values are greater than 0.05 (0.449), which tells us that 

there were no significant differences between the methods. Figure 13 is a graph 

showing the small differences, where GeoJSON and WMS have the smallest and 

second smallest metrics, respectively. 

 
Table 39: Summary of animation times for the medium dataset. 

SUMMARY    

Groups Count Average Variance 

Cesium 100 50665 49420732 

GeoJSON 100 49520 51 

D3 100 50806 55554009 

WMS 100 50141 49199297 

 

 
Table 40: ANOVA table of animation times for the medium dataset. 

ANOVA       

Source of 
Variation SS df MS F P-value F crit 

Between Groups 102171574 3 34057191 0.883 0.449 2.627 

Within Groups 15263234890 396 38543522    

Total 15365406464 399         

 

 

Since the P-value shows no significant differences (0,449) the Bonferroni-corrected 

Multiple comparisons are not requiered. 
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Figure 13: Average animation times for the medium dataset. 

 

Medium large dataset 

 

The results regarding the animation times for the medium-large dataset are presented 

in Table 41 and Table 42. The P-values are greater than 0.05 (0.449), which tells us 

that there were no significant differences between the methods. Figure 13 is a graph 

showing the small differences, where GeoJSON and WMS have the smallest and 

second smallest metrics, respectively. 

 

 
Table 41: SUMMARY of animation times for medium large dataset 

SUMMARY    

Groups Count Average Variance 

Cesium 100 52665 49420732 

GeoJSON 100 51520 51.13439 

D3 100 52806 55554009 

WMS 100 52141 49199297 

 

 
Table 42: ANOVA table for the animation times for the medium large dataset 

ANOVA       

Source of Variation SS df MS F P-value F crit 

Between Groups 1.02E+08 3 34057191.2 0.883 0.449 2.627 

Within Groups 1.53E+10 396 38543522.4    

Total 1.54E+10 399         
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Figure 14: Average animation times for the medium large dataset. 

Since the P-value shows no significant differences (0,449) are the Bonferroni-

corrected Multiple comparisons not neededv. 

For the large data set, only WMS was measured, and there was nothing to compare 

because the browser crashed when the other methods were used, as explained earlier. 

 

 

4.3 Data preparation time 
 

Table 43 presents the preparation times for the datasets. All measures are in units of 

minutes measured by the clock on the computer. There were in general no large 

differences in data preparation time between the methods. 

 
Table 43: Preparation times for different datasets and methods (in minutes). 

Dataset GeoJSON D3 
(TopoJSON) 

WMS 

(Shape) 
Cesium 
(GeoJSON) 

Deer data (small) 25 25 30 35 

Deer data (medium) 30 30 35 40 

Prod. Subsidies 
(medium-large) 

45 45 50 50 

Prod. subsidies (large) 60 65 75 60 

 

The work of preparing the data was performed only once for each method and dataset, 

and the time did not vary much between the methods in terms of the development 

time, which was approximately three weeks for each method varying with the 

experience in each technique. There were some differences in preparation time, but 

the development time for each method was 2-3 weeks or 80-120 hours. The 

development time were not evaluated in this thesis. The average time was set to 100 

hours multiplied by 60 to get the minutes getting 6000 minutes. The greatest 

difference was between GeoJSON and WMS and was only 15 minutes. 15 of 6000 is 

0,0025 or 0,025%. The p-value in statistical significance is 5% or 0,05. A 15-minute 

difference of 6000 cannot be considered statistically significant. There should have 

been more objective and formal tests in preparation times if these results were to be 

emphasized.  
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5 DISCUSSION 
 

This section discusses the results and the limitations, suggesting future work, and 

summarize the main conclusions. This thesis aims to answer the following main 

research question: “What open-source-based methods are most optimal for visualizing 

spatio-temporal data with regards to preparation, loading time, and efficiency?” 

 

 

5.1 Main results 
 

The results showing the greatest differences were the measures of the loading times. 

The loading times were split into the time required for loading data, the time for 

displaying the first data and the total loading time. All the figures showing average 

time measure graphs in the loading time section of the results chapter showed that the 

WMS method was the fastest. The ANOVA tests showed significant differences 

between the technological methods. For the small datasets, all technologies handled 

the visualizations without problems, but for the larger datasets, the browser had 

trouble keeping up with the vector solutions; however, for WMS, the browsers 

handled the heavy work of visualising the map data. There are large differences in 

performance between the open-source technologies tried in this thesis, for small 

datasets there is small differences in performance, but for larger datasets the WMS 

and the D3 technologies have better performance. It is crucial to select the right open-

source technology in order to save time and increase the usability especially with the 

larger datasets. The results in this thesis indicate that WMS was the fastest for data 

loading and had the smallest display time and total loading time, including all 

JavaScript and HTML, for all four datasets. Cesium, GeoJSON and D3/TopoJSON 

were also usable for the small datasets but failed when used with the larger datasets. 

The following paragraphs discuss the results from each test in more detail. 

 

Regarding the aim of measuring efficiency, the time intervals required for an 

animation were measured to determine if there were differences between the methods. 

No significant differences were found with regards to the animations for all datasets. 

The results in this thesis indicate that WMS was the only technology that was able to 

display all datasets. For the two small datasets, the GeoJSON technology had a bit 

faster times in the animation tests, but the time differences were so small that there 

were no significant differences in the animation efficiency measures. 

 

Preparation time for the data to be visualized was one of the things that this work was 

having a brief look into. To figure out if there were one of the methods that required 

much more time than the others a clock was used to measure the time of the process. 

The preparation time measurement was subjective and not a formal test. The 

preparation time was manually measured and could be subjective. This is not given 

much weight.  

 

In all loading time performance tests, there were statistically significant differences 

between the methods. The differences were tested with T-test with Bonferroni 

correction. WMS was the fastest method in all the measurements that were carried 

out. D3 followed as second best and was the best vector-based method. GeoJSON and 

Cesium made the browser crash with the large dataset, the memory usage was built up 

and caused problems for the browser.  
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Efficiency of the animation that shows the time series data was the third main aim. 

The two smallest datasets were measured, and the results showed there were no 

statistically significant differences. Efficiency was not measured for the medium-large 

dataset because no large differences were expected, and this dataset was added after 

the large dataset crashed to get loading times. 

There has also been comparison of GeoJSON and TopoJSON in the study by Shang 

(2015), but their study discussed the vector tile based Web mapping system. In the 

present study, more unsimilar technologies have been compared, which can be more 

challenging in terms of, for example, background maps or for the purpose of 

comparing raster and vector data sources. 

As described other studies evaluate other types of data/technologies, but no one have 

been found comparing the use of GeoJSON, WMS and TopoJSON / D3. The research 

work that is the basis for this thesis can be described as ground-breaking work that 

can form the basis for further work in this field. It should therefore be considered 

whether this work can be elucidated from different angles. The results are the 

contribution that has been made to bring research in this area further.  

 

 

5.2 Limitations, chosen methods and critical analysis 
 

The measurements based on loading time is valid if the methods in this thesis were 

reliable. The WMS technology measured the whole process of asking for new images 

and showing them in the map.  

 

Cesium, as one of the tested methods, has 3D maps as background layers and it can be 

assumed that it takes longer with 3D than with 2D background maps. The background 

maps would only affect the total load time and not the data loading time and time to 

show the first map. The results indicates that the total load time are different from the 

other load times. In figures showing the times required to load the first map image are 

faster for Cesium than for GeoJSON for all the datasets. The data loading times were 

similar. This was expected since both Cesium and GeoJSON loaded the data as 

GeoJSON. Additionally, for the efficiency results, there were too small differences 

that they had significance, as for example Table 38 showed. 

 

The choice of using OpenLayers as the mapping library was decided from a 

combination of NIBIO’s experience with both OpenLayers and Leaflet, from the list 

of best javascript libraries, and they consider OpenLayers to be the most complete 

mapping library. There was therefore little doubt that OpenLayers should be used in 

this study. 

 

Using the Apache/Tomcat /GeoServer framework was natural for this work since this 

is the choice my company NIBIO have made. The choice is also supported by 

Agrawal and Gupta (2014) where they did a comparison of Web GIS frameworks and 

it was clear that the framework based on Apache Tomcat was more preferable. 
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5.3 Future work 
There are three things that should be considered to change in this thesis if it were to 

be repeated. The first is to use only one type of data to obtain more similar measures, 

for example, only deer data but with more points. This work choose to use two 

different datasets to acquire more variety but there is now an understanding that the 

tests would be more unambiguous with more similar data. The second aspect would 

be to find another way to take the measurements, especially for WMS, to ensure that 

the loading of the images is included in the measurements. Currently, it is a 

questionable regarding whether the measurement process was stopped after sending 

the call for the WMS image and not after the image was loaded. The third change 

would be to use the same measures for all data formats with Cesium as the 

background maps. The data would be split in two, with WMS as the background data 

in one half and with Cesium as the background data in the second half. The two 

partitions could test GeoJSON, D3 and WMS as the present thesis has done. 

 

Cesium has now come out with a new version that supports time-dynamic 

visualization and 4D, and it would be interesting to try out this method and compare it 

with this work. 

 

In future research, it also would be better to determine the limit regarding how large 

vector data OpenLayers can handle. Vector tiles may be another data format worth 

looking at in another study to see if they can solve some of the problems we had with 

the large datasets. 

An improvement for the time series applications could be to show more than one deer 

in the solution and display how the animals move in relation to each other. 
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6 CONCLUSIONS 
 

The study of the differences between various methods used to visualize spatio-

temporal data with open-source web mapping technology provides many new insights 

in different fields in terms of the geographical aspects of preparing datasets and in the 

field of web application development and performance measurement of JavaScript 

single-page web applications. 

 

The aim of this thesis was to analyse the differences between the methods used to 

visualize spatio-temporal data with open-source web mapping technology. This aim 

consisted of one main objective to statistically analyse the differences between the 

open-source techniques with regard to the following: 

   

 A) Loading time performance in the client 

 B) Efficiency of the animation that shows the time series data 

C) Preparation time for the data to be visualized 

 

 

 

 

 

The following main conclusions can be drawn from this thesis: 

A) Performance time 

The conclusion is that WMS was the fastest method for data loading and had 

the smallest display times and total loading times, including all JavaScript and 

HTML, for all four datasets. 

Cesium, GeoJSON and D3/TopoJSON were also satisfactory with the small 

datasets but failed when tested on the larger datasets. 

B) Efficiency:  

The conclusion is that WMS was the only technology that was able to display 

all datasets. For the two small datasets, the GeoJSON technology was the 

fastest, but the differences in time were so small that there were no significant 

differences in the animation efficiency measures. 

C) Preparation time: 

The conclusion is that the preparation time does not have much significance 

regarding which technology is preferred since this time is such a small part of 

the whole development. The method was also highly subjective and should 

have been done in another way. 
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8 APPENDIX 1 (Code example GeoJSON small dataset) 
 

 

Package.json:  

{ 

  "name": "project", 

  "version": "1.0.0", 

  "description": "Project IGEON master", 

  "scripts": { 

    "test": "echo \"Error: no test specified\" && exit 1", 

    "start": "parcel serve index.html panel.html", 

    "lint": "jshint js/panel.js js/index.js", 

    "build": "parcel build --public-url . index.html panel.html" 

  }, 

  "keywords": [ 

    "NIBIO", 

    "map", 

    "master", 

    "Viggo Lunde" 

  ], 

  "author": "Viggo Lunde", 

  "license": "ISC", 

  "dependencies": { 

    "@fortawesome/fontawesome-free": "^5.3.1", 

    "jquery": "^3.3.1", 

    "jquery-ui-bundle": "^1.12.1-migrate", 

    "jspanel": "^2.6.3", 

    "lodash": "^4.17.20", 

    "moment": "^2.29.1", 

    "ol": "", 

    "ol-layerswitcher": "^3.6.0", 

    "proj4": "^2.5.0", 

    "sweetalert2": "^9.10.12" 

  }, 

  "devDependencies": { 

    "jshint": "^2.9.6", 

    "parcel": "2.0.0-beta.1" 

  } 

} 

 

Index.html 

<!DOCTYPE html> 

<html> 

<script>performance.mark('start');</script> 

<head> 

  <meta charset="utf-8"> 

  <link rel="shortcut icon" type="image/x-icon" href="img/NIBIO_emblem.ico" > 

  <link rel="stylesheet" href="https://code.jquery.com/ui/1.12.1/themes/base/jquery-

ui.css"> 
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  <link rel="stylesheet" href="node_modules/ol-layerswitcher/src/ol-

layerswitcher.css"> 

 

 

  <title>GeoJson deer</title> 

  <script src="https://code.jquery.com/jquery-3.3.1.min.js"></script> 

  <script src="https://code.jquery.com/ui/1.12.1/jquery-ui.js"></script> 

 

  <!-- Compiled and minified CSS --> 

  <link rel="stylesheet" 

href="https://cdnjs.cloudflare.com/ajax/libs/materialize/0.100.2/css/materialize.min.cs

s"> 

 

  <!-- Compiled and minified JavaScript --> 

  <script 

src="https://cdnjs.cloudflare.com/ajax/libs/materialize/0.100.2/js/materialize.min.js">

</script> 

  <script src="node_modules/sweetalert2/dist/sweetalert2.all.min.js"></script> 

  <script src="https://cdn.jsdelivr.net/npm/promise-polyfill"></script> 

  <link href="node_modules/@fortawesome/fontawesome-free/css/all.css" 

rel="stylesheet"> 

  <link href="node_modules/jspanel/source/jquery.jspanel.min.css" rel="stylesheet"> 

  <script src="node_modules/jspanel/source/jquery.jspanel.min.js"></script> 

</head> 

 

<body> 

  <button id="open_info_button" class="btn-primary" type="button">Master 

menu</button> 

  <div id="map"></div> 

  <div id="mouse-position"></div> 

 

  <form id="timeRange" action="#"> 

      <button id="start_button" class="btn-primary" type="button">Start 

animation</button> 

      <button id="stop_button" class="btn-primary" type="button">Stop 

animation</button> 

      <p class="range-field"> 

        <label id="timeLabel" for="timeInput">Timeseries change</label> 

        <input type="range" id="timeInput" min="200" max="300" step="1" value="0" 

/> 

      </p> 

    </form> 

 

  <script src="js/index.js"></script> 

</body> 

 

</html> 
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Index.js: 

/*jshint esversion: 6 */ 

 

import { 

  initPanel 

} from './panel.js'; 

 

import $ from "jquery"; 

import '../node_modules/ol/ol.css'; 

//import '../node_modules/ol-layerswitcher/src/ol-layerswitcher.css'; 

import '../css/main.css'; 

 

import moment from 'moment'; 

import _ from 'lodash'; 

 

import { 

  Map, 

  View 

} from 'ol'; 

import { 

  getWidth, 

  getTopLeft 

} from 'ol/extent.js'; 

import TileLayer from 'ol/layer/Tile'; 

import TileWMS from 'ol/source/TileWMS'; 

import OSM from 'ol/source/OSM'; 

import { 

  Draw, 

  Modify, 

  Snap 

} from 'ol/interaction.js'; 

import { 

  Vector as VectorSource 

} from 'ol/source.js'; 

import { 

  Circle as CircleStyle, 

  Fill, 

  Stroke, 

  Style 

} from 'ol/style.js'; 

import { 

  get as getProjection 

} from 'ol/proj.js'; 

import { 

  register 

} from 'ol/proj/proj4.js'; 

import proj4 from 'proj4'; 

import WMTS from 'ol/source/WMTS.js'; 

import WMTSTileGrid from 'ol/tilegrid/WMTS.js'; 

import { 
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  defaults as defaultControls 

} from 'ol/control.js'; 

import MousePosition from 'ol/control/MousePosition.js'; 

import { 

  Zoom, 

  ZoomSlider, 

  ZoomToExtent, 

  Attribution 

} from 'ol/control.js'; 

import { 

  createStringXY 

} from 'ol/coordinate.js'; 

import { 

  Image as ImageLayer, 

  Vector as VectorLayer 

} from 'ol/layer.js'; 

import ImageWMS from 'ol/source/ImageWMS.js'; 

import GeoJSON from 'ol/format/GeoJSON'; 

import Observable from 'ol/Observable'; 

import LayerGroup from 'ol/layer/Group'; 

import LayerSwitcher from 'ol-layerswitcher'; 

import Swal from 'sweetalert2'; 

 

var timeInterval; 

 

var key; 

var oldItems, loadNr; 

 

var backgroundUrl = "https://opencache.statkart.no/gatekeeper/gk/gk.open_wmts";  

// OPEN WMTS first 

var backgroundUrlNib = 

"https://opencache.statkart.no/gatekeeper/gk/gk.open_nib_utm33_wmts_v2";  

// OPEN WMTS first 

 

  $.ajax({ 

  url: '/map/token.jsp', 

  contentType: "application/json", 

  dataType: "text", 

  success: function (data, textStatus, jqXHR) { 

    var result = jQuery.parseJSON( data ); 

    if (result.key) { 

      key = result.key; 

      backgroundUrl = "https://gatekeeper{1-

3}.geonorge.no/BaatGatekeeper/gk/gk.cache_wmts?gkt="+key; 

      backgroundUrlNib = "https://gatekeeper(Jagosh et 

al.).geonorge.no/BaatGatekeeper/gk/gk.nib_utm33_wmts_v2?gkt="+key; 

    } 

    function createNewSource(layerName) { 

      var newSource = new WMTS({ 

        url: backgroundUrl, 
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        crossOrigin: 'Anonymous', 

        layer: layerName, 

        matrixSet: 'EPSG:25833', 

        format: 'image/png', 

        projection: projection, 

        tileGrid: new WMTSTileGrid({ 

          origin: getTopLeft(mapExtent), 

          resolutions: resolutions, 

          matrixIds: matrixIds 

        }), 

        style: 'default', 

        extent: mapExtent, 

      }); 

      return newSource; 

    } 

    var newSourceNib = new WMTS({ 

      url: backgroundUrlNib, 

      crossOrigin: 'Anonymous', 

      layer: 'Nibcache_UTM33_EUREF89_v2', 

      matrixSet: 'default028mm', 

      format: 'image/png', 

      projection: projection, 

      tileGrid: new WMTSTileGrid({ 

        origin: getTopLeft(mapExtent), 

        resolutions: resolutions, 

        matrixIds: matrixIds_nib 

      }), 

      style: 'default', 

      extent: mapExtent, 

    }); 

    graatone.setSource(createNewSource('topo4graatone')); 

    farger.setSource(createNewSource('topo4')); 

    raster.setSource(createNewSource('toporaster3')); 

    norgeibilder.setSource(newSourceNib); 

   }, 

   error: function(jqXHR, textStatus, errorThrown) { 

     //Error handling code 

     console.log('Kunne ikke hente token fra kartverket, bruker opencache'); 

   } 

 

}); 

 

 

  proj4.defs("EPSG:25833", "+proj=utm +zone=33 +ellps=GRS80 

+towgs84=0,0,0,0,0,0,0 +units=m +no_defs"); 

  register(proj4); 

  //var projection = ol.proj.get('EPSG:32633'); 

  var projection = getProjection('EPSG:25833'); 

  var mapExtent = [-2500000.0, 3500000.0, 3045984.0, 9045984.0]; 

  var resolutions = [21664, 
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    10832, 

    5416, 

    2708, 

    1354, 

    677, 

    338.5, 

    169.25, 

    84.625, 

    42.3125, 

    21.15625, 

    10.578125, 

    5.2890625, 

    2.64453125, 

    1.322265625, 

    0.6611328125, 

    0.33056640625, 

    0.165283203125 

  ]; 

  var matrixIds = new Array(resolutions.length); 

  var matrixIds_nib = new Array(resolutions.length); 

  for (var z = 0; z < resolutions.length; ++z) { 

    matrixIds[z] = 'EPSG:25833:' + z; 

    matrixIds_nib[z] = z; 

  } 

 

 

 

  // Background raster 

  var graatone = new TileLayer({ 

    title: 'Gråtone', 

    id: 'GRAATONE', 

    type: 'base', 

    source: new WMTS({ 

      // url: "http://opencache.statkart.no/gatekeeper/gk/gk.open_wmts", 

      url: backgroundUrl, 

      crossOrigin: 'Anonymous', 

      layer: 'topo4graatone', 

      matrixSet: 'EPSG:25833', 

      format: 'image/png', 

      projection: projection, 

      tileGrid: new WMTSTileGrid({ 

        origin: getTopLeft(mapExtent), 

        resolutions: resolutions, 

        matrixIds: matrixIds 

      }), 

      style: 'default', 

      extent: mapExtent, 

    }) 

  }); 
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  var farger = new TileLayer({ 

    title: 'Farger', 

    id: 'FARGER', 

    type: 'base', 

    source: new WMTS({ 

      // url: "http://opencache.statkart.no/gatekeeper/gk/gk.open_wmts", 

      url: backgroundUrl, 

      crossOrigin: 'Anonymous', 

      layer: 'topo4', 

      matrixSet: 'EPSG:25833', 

      format: 'image/png', 

      projection: projection, 

      tileGrid: new WMTSTileGrid({ 

        origin: getTopLeft(mapExtent), 

        resolutions: resolutions, 

        matrixIds: matrixIds 

      }), 

      style: 'default', 

      extent: mapExtent, 

    }) 

  }); 

 

 

  var norgeibilder = new TileLayer({ 

    title: 'Norge i bilder', 

    id: 'flybilder', 

    type: 'base', 

    source: new WMTS({ 

      url: backgroundUrlNib, 

      crossOrigin: 'Anonymous', 

      layer: 'Nibcache_UTM33_EUREF89_v2', 

      matrixSet: "default028mm", 

      format: 'image/jpeg', 

      projection: projection, 

      tileGrid: new WMTSTileGrid({ 

        origin: getTopLeft(mapExtent), 

        resolutions: resolutions, 

        matrixIds: matrixIds_nib 

      }), 

      style: 'default', 

      extent: mapExtent, 

    }) 

  }); 

  var raster = new TileLayer({ 

    title: 'Raster', 

    id: 'RASTER', 

    type: 'base', 

    source: new WMTS({ 

      // url: "http://opencache.statkart.no/gatekeeper/gk/gk.open_wmts", 

      url: backgroundUrl, 
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      crossOrigin: 'Anonymous', 

      layer: 'toporaster3', 

      matrixSet: 'EPSG:25833', 

      format: 'image/png', 

      projection: projection, 

      tileGrid: new WMTSTileGrid({ 

        origin: getTopLeft(mapExtent), 

        resolutions: resolutions, 

        matrixIds: matrixIds 

      }), 

      style: 'default', 

      extent: mapExtent, 

    }) 

  }); 

 

 

var mousePositionControl = new MousePosition({ 

  coordinateFormat: createStringXY(0), 

  projection: 'EPSG:25833', 

  // comment the following two lines to have the mouse position 

  // be placed within the map. 

  className: 'custom-mouse-position', 

  target: document.getElementById('mouse-position'), 

  undefinedHTML: 'UTM 33' 

}); 

 

var zoomOptions = { 

  className: 'map-zoom', 

  zoomInLabel: '', 

  zoomOutLabel: '', 

  zoomInTipLabel: 'Zoom in', 

  zoomOutTipLabel: 'Zoom out', 

}; 

 

var zoomSliderOptions = { 

  className: 'ol-zoomslider' 

}; 

var extentOptions = { 

  extent: [-2175810,5823784,2933018,8628631], 

  tipLabel: 'Zoom til hele Norge', 

  label: '', 

  className: 'mapExtent' 

}; 

 

var source = new VectorSource(); 

var features; 

 

performance.mark('load.data.start'); 

$.ajax({ 

    type: "GET", 
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    url: "data/json1-30sept.txt", 

 

    dataType: 'json', 

    async: false, 

    success: function (response) { 

       features = new GeoJSON().readFeatures(response); 

       source.addFeatures(features) ; 

 

    } 

}); 

 

 

var hiddenLayer = new VectorLayer({ 

  title: 'All points', 

  source: source, 

  visible: true, 

  //type: base, 

  style: new Style({ 

    fill: new Fill({ 

      color: 'rgba(255, 0, 0, 0.2)' 

    }), 

    stroke: new Stroke({ 

      color: '#ff0000', 

      width: 2 

    }), 

    image: new CircleStyle({ 

      radius: 7, 

      fill: new Fill({ 

        color: '#ff0000' 

      }) 

    }) 

  }) 

}); 

var visibleSource = new VectorSource(); 

var visibleLayer = new VectorLayer({ 

    title: 'Filtered points', 

    source: visibleSource, 

    //visible: true, 

    style: new Style({ 

      fill: new Fill({ 

        color: 'rgba( 0, 0, 255, 0.2)' 

      }), 

      stroke: new Stroke({ 

        color: '#0000ff', 

        width: 2 

      }), 

      image: new CircleStyle({ 

        radius: 7, 

        fill: new Fill({ 

          color: '#0000ff' 
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        }) 

      }) 

    }) 

}); 

 

 

const map = new Map({ 

  controls: [ 

    new Zoom(zoomOptions), 

    new ZoomSlider(zoomSliderOptions), 

    new ZoomToExtent(extentOptions), 

    new Attribution({ 

      collapsible: false, 

      collapsed: false 

    }), 

    mousePositionControl 

  ], 

  target: 'map', 

 

  layers: [ 

        new LayerGroup({ 

            'title': 'Backgroud', 

            layers: [ 

                new TileLayer({ 

                    title: 'OSM', 

                    type: 'base', 

                    visible: true, 

                    source: new OSM() 

                }), 

                raster, 

                norgeibilder, 

                farger, 

                graatone 

            ] 

        }), 

        new LayerGroup({ 

            title: 'Time Layers', 

            layers: [ 

              hiddenLayer, 

              visibleLayer 

            ] 

        }) 

 

    ], 

  view: new View({ 

    projection: projection, 

    center: [378604, 7226208], 

    zoom: 6, 

    maxZoom: 20, 

    minZoom: 6 
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  }) 

}); 

 

performance.mark('load.data.end'); 

 

var layerSwitcher = new LayerSwitcher(); 

  map.addControl(layerSwitcher); 

 

//Change size on map 

setMapSize(); 

 

function setMapSize() { 

 

  var mapWidth = window.innerWidth; 

  var mapHeight = window.innerHeight; 

 

  $('#map').css({ 

    width: mapWidth + 'px', 

    height: mapHeight + 'px' 

  }); // change OpenLayers map *container* size 

  map.setSize([mapWidth, mapHeight]); // adjust the map's size 

  map.updateSize(); 

 

} 

 

 

window.updateLayer = function updateLayer(sid) { 

  console.log('sid'+sid); 

 

        // Clear the source before adding data 

        visibleSource.clear(); 

        var features = source.getFeatures(); 

        let ordered = _.orderBy(features, o => o.get('Acquisition_time'), ['asc']); 

 

    document.getElementById('timeLabel').innerHTML = 

ordered[sid].get('Acquisition_time'); 

    visibleSource.addFeatures([ordered[sid], ordered[sid-1], ordered[sid-2], 

ordered[sid-3], ordered[sid-4], ordered[sid-5]]); 

 

    //console.log(ordered[sid].get('id_position')); 

  } 

 

  var elem = document.getElementById('timeInput'); 

 

  var rangeValue = function(){ 

    updateLayer(elem.value); 

  } 

 

  elem.addEventListener("input", rangeValue); 
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export function startAnimation() { 

  performance.mark('anim.start'); 

  console.log('startAnimation'); 

  var counter = 200; 

  //var counter = 10; 

  timeInterval = window.setInterval(function(){ 

    if (counter < features.length && counter < 300){ 

    //console.log('visibleSource.getState(): ' + visibleSource.getState()) 

    //if (counter < features.length && counter < 300 && visibleSource.getState() === 

'ready'){ 

      updateLayer(counter); 

      document.getElementById('timeInput').value = 

      counter ++; 

      if (counter === 230){ 

        map.getView().setZoom(map.getView().getZoom() + 1); 

      } 

      if (counter === 260){ 

        map.getView().setZoom(map.getView().getZoom() -2); 

      } 

      if (counter === 299){ 

         performance.mark('anim.end'); 

         loadTimes(100); 

       } 

    } 

  }, 500); 

} 

 

export function stopAnimation(){ 

  window.clearInterval(timeInterval); 

} 

 

var startButton = document.getElementById('start_button'); 

startButton.addEventListener('click', startAnimation, false); 

 

var stopButton = document.getElementById('stop_button'); 

stopButton.addEventListener('click', stopAnimation, false); 

 

//visibleSource.on('featuresloadend', startAnimation()); 

 

 

 

window.onresize = function(event) { 

  setMapSize(); 

}; 

 

var saveData = (function () { 

var a = document.createElement("a"); 

document.body.appendChild(a); 

a.style = "display: none"; 

return function (data, fileName) { 



73 

 

    var json = JSON.stringify(data), 

        blob = new Blob([json], {type: "octet/stream"}), 

        url = window.URL.createObjectURL(blob); 

    a.href = url; 

    a.download = fileName; 

    a.click(); 

    window.URL.revokeObjectURL(url); 

}; 

}()); 

 

 

 

 

 

$(document).ready(function() { 

 

  $('#open_info_button').click(function() { 

    initPanel(); 

  }); 

 

  initPanel(); 

 

  var hiddenExtent = hiddenLayer.getSource().getExtent(); 

  console.log(hiddenExtent); 

  if (hiddenExtent) { 

      map.getView().fit(hiddenExtent); 

      map.getView().setZoom(map.getView().getZoom()-1); 

  } 

 

  performance.mark('end'); 

  //loadTimes(100); 

}); 

 

var saveData = (function () { 

var a = document.createElement("a"); 

document.body.appendChild(a); 

a.style = "display: none"; 

return function (data, fileName) { 

    var json = JSON.stringify(data), 

        blob = new Blob([json], {type: "text/csv"}), 

        url = window.URL.createObjectURL(blob); 

    a.href = url; 

    a.download = fileName; 

    a.click(); 

    window.URL.revokeObjectURL(url); 

}; 

}()); 

 

function convertToCSV(arr) { 

  const array = [Object.keys(arr[0])].concat(arr) 
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  return array.map(it => { 

    return Object.values(it).toString() 

  }).join('\n') 

} 

 

 

 

function loadTimes(times) { 

  oldItems = JSON.parse(localStorage.getItem('itemsArray')) || []; 

  loadNr = oldItems.length; 

 

  var newItem = { 

      'Nr': loadNr, 

      'mark-total': performance.measure('total', 'start', 'end').duration, 

      'mark-load-data': performance.measure('load-data', 'load.data.start', 

'load.data.end').duration, 

      'draw-on map':performance.measure('draw-map', 'load.data.end', 'end').duration/*, 

      'animation':performance.measure('animation', 'anim.start', 'anim.end').duration*/ 

 

  }; 

 

 

  oldItems.push(newItem); 

  console.log('stored : ',oldItems); 

 

  //console.table('stored times: '+ Object.entries(oldItems)); 

  localStorage.setItem('itemsArray', JSON.stringify(oldItems)); 

 

  if (loadNr <= times) { 

    console.log('load'+loadNr); 

    window.location.reload(true); 

  } else { 

    var fileName = "timeData_geoJson.csv"; 

    var csvFormat = convertToCSV(oldItems) 

    saveData(csvFormat, fileName); 

  } 

} 
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