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Abstract

The release of anthropogenic greenhouse gases (GHGs) has substantially increased the
global mean surface air temperature. Increases in global mean surface air temperature
will lead to warmer and drier conditions, promoting more frequent, long-lasting, intense
forest wildfires. The usage of remote sensing (RS) can aid in quantifying forest
characteristics and large-scale changes in forest ecosystems. RS can detect wildfires,
assess the damage level of burnt forests, and enhance the evaluation of forest
regeneration after a fire event. Differenced normalized burn ratio (INBR), Normalized
differential vegetation index (NDVI), and differenced normalized difference vegetation
index (ANDVI) have been proven to assess forest fire disturbance and forest health.
However, many of these techniques have yet to be validated by field sampling in
Swedish boreonemoral forest systems.

The study aimed to investigate and evaluate the existing RS methodology for fire
disturbance and forest health in a group of Swedish boreonemoral forests. This was
done by using the proposed RS methodology and dendrochronology assessment.
Estimating burn severity (INBR) and forest health (ANDVI) on boreonemoral forests
show good potential as the fire disturbance signal and health of the forest are captured
using Sentinel-2 images. This study concluded that using the presented RS
methodology for visualisation (ANBR and dNDVI) is viable as it helps users visualise
the effects and severity of boreal forest wildfires and vegetation recovery. Using dINBR
as a tool to estimate burn severity patterns has been proven possible but unreliable
regarding the relationship between high burn severity and decreased tree increment
patterns. NDVI temporal changes have been shown to explain some of the changes to
Pine increment patterns but are restricted to 1-2-year trends. However, NDVI might be
reliable for evaluating temporal growth increment patterns in Swedish boreonemoral
forests. Due to the few sites, this cannot be confirmed or denied. Both presented RS
methods are robust but need modifying as variabilities in reflectance can be an
uncertainty. The usage of the used RS methodology shows potential for further studies,
as improvements can be made from this study to validate the presented method and
assessment better.
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Sammanfattning

Utsldppet av de antropogena véxthusgaser (GHG) har avsevirt okat den globala
medeltemperaturen. Okning av den globala medeltemperaturen kommer leda till
varmare och torrare forhallanden, vilket framjar mer frekventa langvariga intensiva
skogsbriander. Anvdndningen av fjarranalys (RS) kan hjélpa till att kvantifiera skogens
egenskaper och storskaliga fordndringar i skogens ekosystem. RS kan uppticka
skogsbrinder, bedoma skadenivan pa brinda skogar och forbéttra utvdrderingen av
skogsdterhdmtning efter en brandhdndelse. Tidigare forskning har pavisat att
differentierat normaliserat brinn forhallande (dNBR), normaliserat differentiellt
vegetationsindex (NDVI) och differentierat normaliserat differensvegetationsindex
(AINDVI) kan anvindas for att bedoma storningar orsakat av skogsbriander och
skogsaterhdmtning. Ménga av dessa tekniker har dock &nnu inte validerats genom
féltprovtagning i svenska boreonemoerala skogssystem.

Studien syftade till att undersdka och utvdrdera den befintliga RS-metodiken for
brandstdrning och skogsaterhdmntning i en grupp svenska boreonemoerala skogar.
Detta gjordes genom att anvinda den foreslagna RS-metoden och dendrokronologiska
metodiken. Uppskattning av brinnskador (dNBR) och skogshidlsa (dANDVI) pa
boreonemoerala skogar visar god potential eftersom brandstdrningssignalen och
skogsaterhdmtning fdngas med Sentinel-2-bilder. Denna studie drog slutsatsen att det
ar lonsamt att anvinda den presenterade RS-metoden for visualisering (ANBR och
dNDVI), eftersom den hjilper anvindare att visualisera effekterna och brand
storningsgraden av boreala skogsbriander och aterhdmtning av vegetation. Att anvinda
dNBR som ett verktyg for att uppskatta monster for brannskador har visat sig vara
mdjligt men inte tillforlitligt ndr det géller sambandet mellan hog bridnnskada och
minskade monster for tridtillvixt. NDVI-tidsforandringar har visat sig forklara nagra
av fordndringarna i tall tillvixtsmonster men dr begrinsade till 1-2-ariga trender.
Diremot kan NDVI vara en tillforlitlig metod for att utvdrdera temporala
tillvaxttillvixtmonster 1 svenska boreonemoerala skogar. P4 grund av de fa
studieplatserna kan detta inte bekréftas eller fornekas. De presenterade RS-metoderna
ar robusta men behdver modifieras eftersom variationer i reflektans kan vara en
osdkerhet. Anvindningen av den presenterade RS-metoden visar potential for
ytterligare studier, eftersom forbattringar kan goras frdn denna studie for att battre
validera den presenterade metodiken och beddmningen.

Nyckelord: Fjirranalys, INBR, NDVI, dNDVI, Dendrokronologi
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1. Introduction

The release of anthropogenic greenhouse gases (GHGs) has substantially increased
the global mean surface air temperature, with further increases predicted should
mitigation measures fail to be enacted (IPCC, 2019; IPCC, 2021). This is of great
concern as the planet's warming can trigger various positive feedback mechanisms
that can further amplify climate change (IPCC, 2019; IPCC, 2021). One feedback of
increasing concern is climate-amplified forest wildfire activity.

Forest wildfires are naturally occurring fires in forest ecosystems that are non-
prescribed. These fires can potentially release large amounts of GHGs through the
combustion of vegetation and soil and can be extremely difficult to control (Martell,
2007; UN, 2022; Global Forest Watch, 2022). Increases in global mean surface air
temperature, along with the frequency and extremity of drought conditions, enhance
the flammability of forest ecosystems (Martell, 2007; Alkhatib, 2014; Holden, et al.,
2016; Sherstjuk, et al., 2018; IPCC, 2021; UN, 2022). Warmer and drier conditions
and poor land management promote frequent, long-lasting, and more intense wildfires
(Sunar & Ozkan, 2001; Martell, 2007; Global Forest Watch, 2022). Of the GHGs
emitted during wildfire events, carbon (C) containing compounds have the most
substantial impact on the climate due to their relative abundance and long atmospheric
lifetimes (Akther & Hassan, 2011; Alkhatib, 2014; Holden, et al., 2016). Previous
studies have shown that boreal forest fires can enhance forest biodiversity depending
on the burn severity. However, they can also harm boreal forest ecosystems as they
act as a net C sink.

The usage of remote sensing (RS) can aid in quantifying forest characteristics and
large-scale changes in forest ecosystems (White, et al., 1996; Isaev, et al., 2002;
Sherstjuk, et al., 2018). RS can help detect wildfires, assess the damage level of burnt
forests, calculate global burned areas, and enhance the evaluation of forest
regeneration after a fire event (White, et al., 1996; Isaev, et al., 2002; Chuvieco, et al.,
2004; Akther & Hassan, 2011; Eriksson, et al., 2018; Sherstjuk, et al., 2018). Several
studies have assessed the correlation between normalised difference vegetation index
(NDVI) and tree ring width growth (Kaufmann, et al., 2008; Bhuyan, et al., 2017).
The results revealed a positive correlation between the tree rings' width and high
NDVI values for the summer months in boreal forests (Kaufmann, et al., 2008;
Bhuyan, et al., 2017). Damaged or dead vegetation will show more reflectance in the
red region of the visible spectrum and thus will have a lower NDVI. Thus, applying
NDVI to RS for vegetation health estimation, pre-fire and post-fire, should be able to
explain the loss of "greenness" from forests after a wildfire event.

Burn severity application to RS is another way of assessing wildfires, as they can
provide detailed information regarding the fire perimeters, intensity, and severity
(Whitman, et al., 2018; UN, 2022). Differenced normalised burn ratio (ANBR), like
NDVI, uses spectral bands to assess changes in reflectance from wildfire-affected



areas. The shift in ANBR from pre- to post-fire can help evaluate the severity of the
fire during and after the event: high severity will show a higher value (+1) while low
severity (often correlated with regrowth) will show lower to negative values and thus
give an insight to the intensity of the fire (Whitman, et al., 2018; UN, 2022).

An increase in wildfire regimes will release more significant portions of stored C in
soil and biomass as fires are one of the more dominating factors of the in-time rapid
release of C back into the atmosphere. Thus, it is essential to utilise satellite imagery
to better understand and improve the global C budget from boreonemoral ecosystems.
dNBR, dNDVI, and NDVI have been proven to address this issue, but with lacking
validation from ground measurements, it is still uncertain how well they perform in
Swedish boreonemoral biomes. Thus, RS can be a powerful tool for boreal and
boreonemoral wildfire evaluation and assessment in these ecosystems around the
globe.

2. Aim

This study aims to investigate and evaluate the existing RS methodology for fire
disturbance and forest health in a group of Swedish boreonemoral forests. Sweden's
altered fire regime and its relative lack of wildfire sampling deserve separate validation
of related satellite imagery.

This project is part of the Lund University collaboration with BECCs under the
physical geography and ecosystem science department. This study is a pilot study for
the project Learning from a fire-prone past for a fire-prone future: Assessing the
effect of forest fires (pilot project) in BECCs.

This study intends to address the following hypotheses regarding the application of RS
to boreal forest wildfires in Sweden:

1. dNBR can be used to assess the 2018 boreonemoral forest wildfire activity.

2. A correlation between high burn severity and low tree increment pattern can be
established.

3. dNDVI can be used to assess the health of boreonemoral forests after the 2018
wildfire activity.

4. NDVI can explain temporal changes to tree increment patterns for Pinus

sylvestris.

3. Theoretical Background

3.1. Fennoscandian Climate and Biome

The Fennoscandian region varies climatically and ecologically (Karlsen, et al., 2009).
The Scandinavian peninsula in Fennoscandia owns much of its weather due to the
maritime climate, where warm moisture-rich prevailing westerlies and southwesterlies
originate from the North Atlantic (Skartveit, et al., 1975). Scandinavia is also affected



by the arctic south-directed cold airmasses that produce long-lasting clouds, creating a
climatically diverse region (Skartveit, et al., 1975). The amount of precipitation that
falls in the area is heavily determined by the quantity of moisture released from the
westerlies and southwesterlies (Skartveit, et al., 1975).

Moen and Lillethun (1999) divided the Fennoscandian biome into vegetation zones
representing the dominating species (Figure 1). The boreonemoral zone is the transition
zone between deciduous broad-leaved forest and coniferous forests, which dominates
Sweden’s middle to the southern area (Moen & Lillethun, 1999; Karlsen, et al., 2009).
The transition zone from boreonemoral to the northern boreal zones is coniferous-
dominated (@kland, 1990; Esseen, et al., 1992; Moen & Lillethun, 1999; Karlsen, et
al., 2009). The start of the growing season for the Fennoscandian climate varies, where
the southern nemoral zone can experience lush green forests as early as May-June
whilst the northern alpine regions still face snowmelt (Beck, et al., 2007; Hogda, et al.,
2013). The start of the growing season is heavily influenced by both abiotic and biotic
influences, where the most prominent trigger being the temperature (Beck, et al., 2007).

Vegetation zones in Fennoscandia
(after Moen 1999)

Figure 1: Moen's vegetation zone classification for Fennoscandia (1999).

The Fennoscandian boreal forest structure is considered homogeneous, where Pinus
sylvestris (Pine) and Picea abies (Spruce) is the most dominating species found, where
forests cover 65% of the total land area in Sweden alone (Esseen, et al., 1997; Milz,



2013). The two species have a broad habitat amplitude, ranging from dry rocky and
alluvial heaths to forest wetlands and mires. Pine trees tend to prevail on drier soils with
continental climates with higher fire frequency (Esseen, et al., 1997).

3.2. Forest Fires

“Wildfires are a result of temperature conditions, of soil moisture conditions, and, of
course, something has to startit.”

By John Holdren 2008

3.2.1. Wildfires

Wildfires are prone to happen during dry seasons, where temperatures are high and soil
moisture is low (Bickerton, 2012; Wolters, 2022; WHO, 2022). Such seasons dry out
the lush green vegetation converting it to dry combustible fuel. The ignition source for
fires can come from human-induced activity (faulty power lines, arson, campfire, to
name a few) or natural occurrences like lightning strikes (Bickerton, 2012; Wolters,
2022; WHO, 2022). There is still uncertainty about how wildfires start, around 50% of
recorded wildfires, the ignition source is unknown (WHO, 2022). For wildfires to
occur, three conditions must be fulfilled: fuel, oxygen, and energy. These three
conditions together are known as the fire triangle (Bickerton, 2012; Wolters, 2022;
WHO, 2022).

The increase in wildfire intensity and spreading worldwide have caused various damage
in different sectors (Chiu, et al., 2022). Around 6.2 million people worldwide get
affected by wildfire and volcanic activity each year, where 2400 deaths each year result
from direct or secondary impacts. Direct impacts come from burns, suffocations, and
injuries, whereas secondary damages can come from inhaling particles. Wildfires
impact the climate and ecosystems due to the massive release of carbon dioxide (COz),
carbon monoxide (CO), and fine particle mattes that get scattered into the atmosphere
and transported long distances, altering air quality. Other impacts include infrastructure
disruption, food security, loss of crops and animals, and resource loss, to name a few
(Shi, et al., 2021; UCDavis, 2022). The ongoing climate change and rapid release of
GHGs alter terrestrial ecosystems to favour wildfires. This causes hotter and more
intense wildfires worldwide and varies the turnover time for wildfires.

3.2.2. Boreal forest fires

Fire disturbances in boreal ecosystems have been shown to affect the succession
dynamics in boreal forests, the carbon dynamics, the age of the forest, and their
structure of them (Wallenius, et al., 2004; Kasischke, et al., 2011; Rolstad, et al., 2017,
Kuosmanen, et al., 2018). Forest fires at a local scale allow nutrients to be released back
into the ecosystem and decrease competitors in the area. This allows favourable
conditions for forest regeneration and below-canopy species to establish and change the
biodiversity. Forest fires also spatially enhance the site's heterogeneity, allowing



mosaic patterns to form between burned and unburned patches (Wallenius, et al., 2004;
Rolstad, et al., 2017). Precursors to boreal forest fires play an essential role in the
burning patterns, where vegetation, topography, and slope face, to name a few, can
determine why some boreal forest burn compared to others in the same region
(Angelstam, 1998).

Fennoscandian boreal forest, dominated by pine, tends to have a fire turnover time of
20-60 years compared to the turnover time for general boreal forests, which tends to be
a few decades to around 100-year intervals (Esseen, et al., 1997; Wallenius, et al., 2004;
Rolstad, et al., 2017). Pine-dominated forest shows that the fire frequency may be
explained by vegetation characteristics and soil moisture found at the site (Wallenius,
et al., 2004). However, Fennoscandian fire frequencies might not be correlated with the
increase in temperature alone, but rather with soil moisture and other factors (Rolstad,
et al., 2017). There is still uncertainty about how Fennoscandian forests’ vegetation
dynamics get affected by forest wildfires (Molinari, et al., 2020). The uncertainty may
lay in the low frequency of Fennoscandian forest fires, as around 0.004% of them
annually burns.

3.2.3. 2018 Swedish forest fires

During the summer of 2018, Sweden faced one of the worst fire episodes in the modern
day (Bjorklund, 2019; Granstrom, 2020). The fire peak of summer 2018 ranged from
the 12 to the 20" of July, when the fire weather index (FWI) peaked at over 22
(Granstrom, 2020). The total amount of forest fires that burned during 2018 is still
unclear, only 31 fires were bigger than 50 ha, and seven of them were bigger than 500
ha (Granstrém, 2020). The most extensive fires during the period were located around
southern Norrland and northern Dalarna. The total burn area due to these fires reached
25 000 ha (Bjorklund, 2019).

The 2018 fires resulted from multiple abiotic factors, one being temperature and the
other being precipitation (Rolstad, et al., 2017; Krisinformationen, 2018; Bjorklund,
2019; Bjorheden & Johannesson, 2019). During the summer of 2018, the temperatures
recorded were one of the highest Sweden has faced in modern days. Most areas of
Sweden had an average of < 35°C (<95 °F) temperature peaks (hot spells) (Granstrom,
2020). The number of days with precipitation and rainfall was below average to almost
none. This created long periods of extremely high fire risk in Sweden. The reasons for
a loss of precipitation and extreme hot spells were the weakened Atlantic jet stream and
the high-pressure blocking front (Granstrom, 2020). This ultimately caused the forests
to dry out, revealing combustible fuel from dead wood, grass, and shrubs (Bjorklund,
2019).

3.3. Sentinel-2 Copernicus mission

Space-borne imagery is a powerful tool to examine Earth’s surface and its changes
using spectral instruments that measure spectral bands in visible, infrared, and radar
frequencies (Segah, et al., 2010). Space-borne imagery has assisted scientists in



estimating and detecting wildfires around the globe. The start and end of wildfires, fire
intensity, and the total number of burned areas are still largely unknown. Thus using
satellites can help assess this issue (Li, et al., 2010). As boreal fires are one of the more
dominating factors of in-time rapid C release from boreal forest ecosystems, it is crucial
to utilise satellite imagery to help improve the global C budget (Li, et al., 2010;
Kasischke, et al., 2011). One of the first usages of space-borne fire detection comes
from using AVHRR data (Kelhi, et al., 2003). Today different satellites can help detect
wildfires with the help of the instruments they carry onboard (Milz, 2013). Different
satellites deliver different products that can vary spatially and temporally. Among the
available satellites, Sentinel-2 Copernicus twin satellites have been used to detect small
and largescale wildfires in boreal ecosystems.

Sentinel-2 Copernicus's mission aims to monitor variability in land surface conditions.
It comprises twin polar-orbiting satellites with the same sun-synchronous orbits, with a
temporal resolution of 2-5 days in mid-latitudes (ESA, u.d.). The twin satellites carry a
multispectral instrument providing 13 spectral bands at 10m, 20m, and 60m spatial
resolution (ESA, u.d.). Several of the 13 bands provided by Sentinel-2 are burn
sensitive, where they lay in the electromagnetic spectrum's visible and shortwave
spectral range. One band that has proven to be very useful in estimating the extent of
fire damage is the red-edge band. The Sentinel-2 Copernicus mission for fire detection
has been used for European countries since its start in 2015 but has also been applied
to post-fire monitoring and forest health/regrowth (Farasin, et al., 2020; De Simone, et
al., 2020).

3.4. Fennoscandian forest fire estimations

Previous studies have used different indexes to estimate forest health, burn severity,
fire damage, forest health, and forest regrowth with the help of RS technology. These
indexes are based on calculations using the spectral bands provided by space-borne
imagery. Correlations between the indexes and field measurements are accurate
depending on the topography, vegetation, and soil moisture (Llorens, et al., 2021).

3.4.1. NBR and dNBR

To estimate burn damage, the index NBR is commonly used (UN, 2022). NBR is
calculated by using bands in the near-infrared (NIR) and short-wave infrared (SWIR)
regions in the electromagnetic field (Farasin, et al., 2020). NBR considers the NIR and
SWIR region as they are less sensitive to atmospheric influences, and thus can more
accurately estimate the effects of fire on vegetation (Llorens, et al., 2021; UN, 2022).
This index can help map out the burn area and its severity, thus highlighting them.
Areas affected by fires have relatively low reflectance in the NIR region and high in the
SWIR region (De Simone, et al., 2020). High NBR values (<+1) indicate healthy
vegetation. In contrast, low values indicate bare ground or burnt areas, which can pose
a problem if a forest has been clearcut as this will display a fire-affected area when
using RS.



dNBR, similar to NBR, is an extension of NBR where the NBR values from pre- and
post-fire are used to estimate the severity of burn areas from satellite images (Keeley,
2009; Farasin, et al., 2020). Unlike NBR, high values of dNBR (< +1) indicate more
damage and inform users of the severity of the fire, while negative numbers (-1<)
indicate enhanced forest regrowth (Quintano, et al., 2018).

3.4.2. NDVI and dNDVI

The vegetation index NDVI quantifies vegetation “greenness” by using satellite
imagery's red and NIR bands (Lacouture, et al., 2020; GISGeography, 2022). This
index allows users to measure vegetation productivity and recovery from natural or
human-induced disturbances to forest ecosystems (Segah, et al., 2010; Lacouture, et al.,
2020). Vegetation (chlorophyll) absorbs light in the red region of the electromagnetic
spectrum. At the same time, it reflects light in the NIR region, thus, reviewing the
relationship between them can reveal the health of the forest on a larger scale than field
measurements (Sever, et al., 2012). NDVI values range from -1 to +1, where negative
values usually indicate open water sources, around 0 indicate urban areas, and values
closer to +1 show dense green leaves (Sever, et al., 2012; GISGeography, 2022). NDVI
as ANDVI depends on the vegetation type, as different vegetation reflects light in the
NIR region. One problem with using space-borne imagery to calculate NDVI is the
atmospheric noise from dust, aerosols, and clouds, which can cause negative bias
(Beck, et al., 2007). The atmospheric noise distorts the radiance path causing higher
reflectance in the red region and a decreased reflectance in the NIR region (Beck, et al.,
2007). Another problem with NDVI is soil interference, where high soil moisture or
low vegetation cover will result in higher reflectance in the visible spectra, causing a
lower NDVI.

dNDVI, similar to dNBR, is used to map out changes to vegetation (McKenna, et al.,
2018). dNDVI uses images from previous years and following years to identify
vegetation regrowth after a disturbance event.

4. Methodology

The project was divided into two main areas: RS processing and fieldwork. The
objective of this report, as stated in the aim, is to investigate how well satellite imagery
performs on large-scale assessment of fire damage and forest health, as well as
performance correlation to field sampling. The RS processing was carried out at the
beginning of the project, and the fieldwork was carried out later. Site selection is the
same for both parts but differs in collection and processing.

4.1. Site selection

The study area of interest is based on previous field measurement sites from Johan
Eckdahl (Eckdahl, et al., 2022). As the study was carried out in the spring of 2022,
burned sites located on the southeast coast of Sweden were chosen to investigate
(Figure 2). One additional site in Virmland county was also selected to study based on



the previous knowledge of the area and interest. Each dot in figure 2 represents both
the burned site and the corresponding control site.

8 0 100 200 300 400

Figure 2. Johan Eckdahls' field sites show Sweden divided in gradients based on
SMHI’s climate data between 1961 and 2017. The first map shows temperature
gradients, and the second shows rainfall in mm. The figure is taken from Eckdahl and
colleges (Eckdahl, et al., 2022).

For the site selection, some criteria were put into place. The first criterion was to filter
out sites that still face frozen precipitation (snow or hail) or have multiple frost nights
(nights below 0°C) in May. This is due to complications of tree core sampling as trees
do not retain water during the winter months, and thus the samples might crumble. The
second criterion was that the sites had to have available satellite data for pre-fire (2017),
post-fire (2019), and the following years leading up to 2021. The last criterion for site
selection was to identify if any sites have been clear-cut since 2019. This was done by
checking satellite images in google earth pro (Google Earth, 2022).

4.1.2. Site description

The sites used in this study were located in the boreonemoral zone (Figures 1 and 2).
The site was dominated by pine plantation forests grown on well-drained podzol soil.
All sites were located in no permafrost zones. For the burned and control plots, the
understory vegetation was dominated by different kinds of moss, blueberry shrubs,
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grass, and occasionally lingonberry shrubs. No canopy fires were present in the
burned plots, but different scarring levels were present (Appendix III). Most burned
sites contained deadwood in various stages of decomposition except the site
Stormandebo (Appendix VIII).

Table 1. Additional site information for all plots used in the study. Age = standing
age of the forest, Bare rock = visual estimate of the percentage of bare rock,

Plant _cover = visual estimate of the percentage of plant cover by understory, pH =
organic layer pH, Mortality = visual estimate of the percentage of dead trees, CHAR
= kg/m/m of char on the top layer of the soil, C = kg/m/m of C in the organic layer,
Moisture = raster data for soil drainage (unitless), and SPEI = SPEI drought index.
Additional information was provided by Eckdahl and colleagues (2022).

Area Plot ID Age Bare_Rock Plant_cover pH Mortality CHAR C Moisture  SPEI

Kil 71 63 2 0 34 52.94 1.43 4.82 57.56 -1.49

Kil 72 63 1 99 4.05 0 0 3.11 26.16 -1.49
Osterbymo 81 82 20 5 3.79 59.37 1.51 4.98 51.71 -2.07
Osterbymo 82 78 5 95 3.77 3.12 0 3.88 69.25 -2.07
Rullerum 83 62 10 2 3.84 16.66 1.39 2.22 7.10 -2.02
Rullerum 84 31 20 80 3.91 15.38 0 5.51 8.10 -2.02
Stormandebo 85 71 5 0 3.76 30 3.47 3.15 17.14 -2.02
Stormandebo 86 99 20 80 3.54 22.72 0 3.17 26.50 -2.02
Lessebo 99 88 40 0 4.16 98.07 2.48 3.85 65.42 -1.81
Lessebo 100 76 0 100 3.4 0 0 9.31 105.50 -1.81

4.2. Data collection

4.2.1. Satellite data

Satellite data was collected using GEE (GEE, 2022) to assess satellite performance.
GEE is a geoportal allowing users to view, process, analyse, and download geospatial
data for academic or research purposes for free (GEE, 2022). The software will enable
users to download data from the satellites: Sentinel-2, MODIS, GRACE, Landsat, etc.
(GEE, 2022). The satellite data used in this study was the Sentinel-2 Copernicus twin
satellite Level-2A orthorectified atmospherically corrected surface reflectance (ESA,
2022). This allows users to assess 10m spatial resolution easily compared to other
satellites with a lower spatial resolution.

The burn sites and control plots point coordinates were converted to rectangle
coordinates to cover roughly a 3 km-by-1.5 km area. The large area helps distinguish
the forest from lakes, urban areas, and agriculture but also captures the entire burn site
and the control plots in the same image. The burn sites were cross-referenced from
Skogsstyrelsens burn polygons to ensure that the site covers the entire burn site
(Skogsstyrelsen, 2022). The conversion from point coordinates to rectangles was made
in the programming software MATLAB (MatLab, n.d.). This conversion can be seen
in Appendix I.
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Before downloading the data and processing them, several filters were applied. The first
filter applied was the start date and end date. The start date was May 1%, 2018, as the
fires mainly occurred from the end of June to the beginning of August during the
drought season in Sweden (SMHI, 2019). The end date was September 1% as most fires
had already stopped or were mostly smoulder fires where the damage could already be
seen. The start and end dates were applied to all years from 2017 to 2021. Each year's
tree increment pattern correlates to the vegetation season's growth. Thus, the satellite
data were extracted for these months to accurately represent the increment patterns.

A cloud cover filter was also applied to filter out images with more than 100 % cloud
cover. In ideal situations, images with zero cloud cover are of interest, but the photos
taken containing the interest area could have cloud cover that might not be seen in the
interest area and thus be filtered away. The GEE code for downloading can be seen in
Appendix II. A MATLAB code for discarding unwanted photos was used to ensure the
images were of high quality and did not contain any cloud shadows or clouds covering
the direct site. This code was written by Veiko Lehsten and can be seen in Appendix
I1I.

4.2.2. Field samples

The field sites for coring were divided into five sites, containing a burn plot and a
corresponding control plot located around < 100 m away from the burned plot (Table
1). Four sites were located in southern Sweden and one in Virmland county.

The tree cores were extracted using an increment borer (5.15 mm ©) following the user
manual (Haglof Sweden, 2022). The cores were drilled at the height of 1.4 m — 1.5 m
(chest height) and on the sides of the trees with minimal to no burn scars. Trees with a
@ > 25 cm were cored to ensure that a minimum of 30 years was captured in the core.
4 - 5 trees were cored twice, providing 8 — 10 cores per plot (Table 1, Appendix IV).
Cores were taken from Pinus sylvestris trees with partial to intact crowns. Additionally,
dead Pinus sylvestris trees with burn scars were cored as well (Appendix IV).
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Table 2. Table showing area for the burn plots and control, with their corresponding
coordinates. The table also shows tree sp. and the total number of trees cored for each
site.

Burned plots

Area Plot Long Lat Treesp. Trees cored
Kil 71 13248167 59.597367 _ LnUS. 5
Sylvestris
N Pinus
Osterbymo 83 1535082 5780882 (oo 5
o
Rullerum 81 16.617233  58.26775 s 5
Sylvestris
Stormandebo 85 163014998 57.7467978 L mUS 5
Sylvestris
Lessebo 99 1543149  56.8721 Pinus. 4
Sylvestris

Control plots

Area Plot Long Lat Treesp. Trees cored
. Pinus

Kil 72 13.249433 59.596633 . 5
Sylvestris

Osterbymo 84 15350241 57.808176 L nuS 5
Sylvestris

Rullerum 82 16.617467  58.2668 Pinus 5
Sylvestris

Stormandebo 86 16.30155 57747101 Fitod 5
Sylvestris

Lessebo 100 1542874  56.87192 Pinus. 5
Sylvestris

4.3. Data processing

4.3.1. Remote sensing processing

Data processing for satellite data used the programming software MATLAB (MatLab,
n.d). The following calculations have been converted into a MATLAB code that
automatically calculates the NBR, NDVI, dNBR, and dNDVI for all sites (Appendix
V).

4.3.1.1. Fire Damage Severity

Fire severity and damage were determined by using dNBR. dNBR is used to assess
burn severity after a fire event, where the severity is estimated using RS data pre-fire
and postfire events. RS data from 2017 was used as pre-fire indices and 2019 as postfire
indices for the different sites and was calculated as follows:

NIR — SWIR

NBR = TR ¥ SWIR
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dNBR = NBR(pre—fire) - NBR(post—fire)

where NIR is the near-infrared band, and SWIR is the shortwave infrared band (Holden,
etal., 2016; Bickstrom & Grenert, 2019). The dNBR is later calculated using the prefire

values and the postfire values, where high values ( dANBR > 0.8) correspond to high fire
severity (Quintano, et al., 2018). Both NBR and dNBR are unitless indices.

4.3.1.2. Forest Health Estimation

Vegetation health and regrowth can be assessed using NDVI. NDVI measures the
“greenness” (chlorophyll) of healthy vegetation by looking into the reflectance band
for vegetation (NIR) and the absorbent band (Red) (Lange, et al., 2017; GISGeography,
2021). The healthy vegetation reflects more in the NIR spectral wavelengths. Thus,
having a higher value (close to +1), less healthy vegetation will reflect at lower levels
(NDVI < +0.5). NDVI was calculated as follows:

NIR — Red

NDVl = ——
NIR + Red

dNDVI = NDVI(Pre—fire) - NDVI(Post—fire)

where NIR is the near-infrared spectral band, and Red is the red band (Sunar & Ozkan,
2001). The dANDVI was calculated using NDVI values pre-fire (2017) and postfire
(2018). Both NDVI and dNDVT are unitless.

4.3.2. Tree-ring processing

The tree rings were processed following the standard dendrochronology procedures
(Briker, 2002; Edvardsson, et al., 2019). The cores were wetted and shaved to expose
the cellular structures of the rings. Following the preparation of the cores, the cores
were dried at room temperature for 3 - 24h before measurement. The tree rings were
measured to the nearest 0.01 mm using the digital LINTAB positioning table connected
to a Leica stereomicroscope and TSAPWin Scientific software (Rinn, 2022a; Rinn,
2022b; Leica, 2022; Edvardsson, et al., 2019). TSAPWin allows users to measure and
analyse tree rings and can be applied to different scientific fields (Rinn, 2003). All
equipment and software were used following the user manual. The cores were given
specific core IDs in the TSAPWin program to be stored in the database (Appendix IV).

The measured rings were then processed using the software ARSTAN_44xp following
the user manual (Cook & Holmes, 1999). The program minimises the influences of
non-climatic variations, ultimately transforming the ring’s width into dimensionless
indices (ARSTAN indices) that are unitless (Cook & Holmes, 1999; Edvardsson, et al.,
2019).
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4.4. Data analysis

As this report is a pilot study for a more extensive project, the study was only conducted
for a smaller sample size. Thus, the results are based on this sample size. Some analyses
could not be carried out but are presented in the following section and explained further.

4.4.1. Visualization of burn severity and forest health signal

The reflectance values were transformed and categorised to validate if the fire signal is
strong enough to be captured using satellite burn severity estimation (Appendix V). The
different categories included: high severity (reflectance > 0.6), moderate severity (0.6
> reflectance > 0.4), low severity (0.4 > reflectance > 0.2), and unburnt (reflectance <
0.2). The categorisation thresholds were established by looking at the frequency
distribution of the reflectance values.

For estimation of forest health, the reflectance values, like INBR, was transformed and
categorized into four robust categories (Appendix V): no regrowth (reflectance > 0.3),
low regrowth (0.3 > reflectance > 0.2), moderate regrowth (0.2 > reflectance > 0), and
regrowth detected (reflectance < 0). To estimate vegetation loss for each site, the
dNDVI was derived using pre-fire vegetation reflectance (end of 2017) and post-fire
vegetation reflectance (end of 2018). To visualise the health of the forest after the fire
disturbance in 2018, NDVI reflectance for 2021 was used as a post-fire for ANDVI
assessment.

4.4.2. Validation of RS methodology and forest increment patterns

To be able to validate if using RS methodology is a viable tool for estimating burn
severity and forest recovery in Fennoscandia, different statistical tests were performed.
For each site, the dNBR and NDVI values were extracted for analysis by taking the
surrounding pixel values for the burned and control plot. The median pixel value
corresponds to the coordinates for each plot. The nine pixels were then averaged to
create one value for analysis (Appendix V).

To establish that the fire disturbance of 2018 influenced the boreal forests' growth
patterns, the mean value and standard deviation (SD) were derived by using the
ARSTAN indices between 2010 - 2017 as the pre-fire growth ratio. The ratio was then
established for 2018, 2019, 2020, and 2021 by dividing the yearly value by the pre-fire
growth indices. The following year’s mean value and SD were then determined for the
control and burned plots.

The growth indices for each year were then tested for differences in significance (p <
0.05) by taking the burned and control plot against each other to verify if there is any

difference between them.

Due to the small sample size and unequal distribution, a permutation test was done
using the add-on function provided in MATLAB (Krol, 2021) (Appendix VI). A
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permutation test is built on the assumption that there is no difference in means between
the two populations and is another form of hypothesis testing. The permutation test
assumes that the two populations are independent of each other and looks into the
means of the population groups, similar to bootstrap techniques. The function returns a
p-value, and if the p-value is below the significance threshold (p < 0.05), the null
hypothesis is rejected. The permutation test also returns the effect size (Hedges ‘g),
which determines the actual difference in means between the two groups. Hedges’ g
effect size tells how much the two population differs from one another. An effect size
of > 0.8 is determined as a large effect and thus can be seen by the naked eye, an effect
size of below < 0.2 is considered trivial. The null hypothesis for permutation states:

Ho= The samples come from the same mean distribution.

This test was performed to establish if there are any differences in the satellite imaging
and ARSTAN indices between control plots and burned plots.

The tests were also conducted to see if there is any significance between the pre-fire
state (average indices 2010 to 2017) and post-fire (2019) for ARSTAN growth indices.
For dANBR, the tests were run in the same manner as seen above between control and
burned plots, but for NDVI, this was done for all years and between pre-fire and post-
fire, like the indices. The burn and control plots value for the ANBR and NDVI was
estimated by taking the mean value of the surrounding pixels.

To establish if there is any correlation between the RS methodology (burn severity and
NDVI) with growth indices, an R? (correlation coefficient) value, Spearman’s rank
correlation coefficient, and root-mean-square-error (RMSE) would be conducted. In
this report, a visual scatter correlation was conducted between dNBR and ARSTAN
indices, and a time-series visual correlation was determined for NDVI and ARSTAN
indices for the years 2017-2021. This is due to the small sample size, as the intended
correlations can be regarded as to biased and not representative of the boreonemoral
wildfires in Sweden. Thus, no statistical analysis was conducted for the correlation
coefficient in this report.

4.5. Funding

All travel expenses such as car, hotel, and equipment were funded by the BECC’s
project: Learning from a fire prone past for a fire prone future: Assessing the effect of
forest fires (pilot project). Lab equipment and program licenses were provided by Lund
University.

5. Result
5.1. Analysis of fire disturbance signal for the study areas

The fire signal can be visually distinguished for medium to larger fires (Figures 3, 4,
and 7). Burn severity categorization for the largest sites shows a clear low severity
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border followed by a moderate severity middle where few pixel values show high
severity (Figures 3 and 7). For the medium-sized burn sites, the categorisations show a
clear low severity border followed by a moderate severity middle (Figures 4 and 5).
The most minor fire site (Figure 6) shows a weak signal in the low categorisation with
very few pixels in the moderate severity classification outside the sampling point. The
sampling point for Stormandebo (Figure 6) shows unburnt values where the sampling
has been done, indicating that the fire signal (ANBR values) is too weak to be picked
up by the satellite instruments. The dANBR values for both categorised and
uncategorized indices also show disturbance signals outside of the sites.

a. dNBR for 2018 fire in Kil . X b. dNBR for 2018 fire in Kil
- 2 High Severity
« Burned * Burned
59.6072° N * 59.6072° N -
- High
59.6002° N 59.6002° N
&
Moderate 2
-]
59.5932° N 59.5932° N
I sigh > 0.6
Moderate
Low 0.6<>0.4
Low
. o; <202
0 ° -Unbumed <02
59.5862"° N 59.5862" N

Unburned
13.2494° E13.2629° E 13.2494° E13.2629° E

Figure 3. Map of the study area Kil. Dot (.) = Burn site, and Star (*) = Corresponding
control site. A) shows the raw dNBR index values ranging from unburnt (dark green)
to high severity (bright yellow). B) shows the categorized dNBR index values classified
into: High severity > 0.6, Moderate severity 0.6 <> 0.4, Low severity 0.4 <> 0.2, and
Unburnt < 0.2.
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b. dNBR for 2018 fire in Rullerum

Burned
i Control

58.2809° N 58.2809° N
J High
58.2738° N 58.2738° N
&
Moderate Z
-1
58.2668° N 58.2668° N
i I High > 0.6
: Moderate
Low B 0.6<>0.4
Lo
- 0.4“; >0.2
[ unburned <0.2
58.2598° N 58.2598° N
Unburned
16.6130° E16.6220° E 16.6130° E16.6220° E

Figure 4. Map of the study area Rullerum. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the raw dNBR index values ranging from unburnt
(dark green) to high severity (bright yellow). B) shows the categorized dNBR index
values classified into: High severity > 0.6, Moderate severity 0.6 <> 0.4, Low severity
0.4 <>0.2, and Unburnt <0.2.
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Figure 5. Map of the study area Osterbymo. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the raw dNBR index values ranging from unburnt
(dark green) to high severity (bright yellow). B) shows the categorized dNBR index
values classified into: High severity > 0.6, Moderate severity 0.6 <> 0.4, Low severity
0.4 <>0.2, and Unburnt <0.2.

18



a. dNBR for 2018 fir gﬁgh Severity b. dNBR for 2018 fire in Stormandebo
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Figure 6. Map of the study area Stormandebo. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the raw dNBR index values ranging from unburnt
(dark green) to high severity (bright yellow). B) shows the categorized dNBR index
values classified into: High severity > 0.6, Moderate severity 0.6 <> 0.4, Low severity
0.4 <>0.2, and Unburnt <0.2.
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Figure 7. Map of the study area Lessebo. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the raw dNBR index values ranging from unburnt
(dark green) to high severity (bright yellow). B) shows the categorized dNBR index
values classified into: High severity > 0.6, Moderate severity 0.6 <> 0.4, Low severity
0.4 <>0.2, and Unburnt <0.2.
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5.2. Burn severity’s impact on tree ring width for control and fire-
affected areas

The analysis of the ARSTAN indices was tested between the plots for each year. The
ARSTAN growth indices show a decrease in the mean between 2017 to 2018, with a
value of 0.366 for the control plot. A similar trend of decline (decrease of 0,287) can
also be detected for the burned plot, however not as large as the control (Table 3).
Decrease of the mean value continues for the burned plot, where the decrease in indices
is at the lowest 2019 (mean value of 0,686), one year after the fire disturbance. The
control plot shows a faster recovery than the burned plot by looking at the mean
ARSTAN indices value. The control and burn plots show an increase in growth

following the decrease, but they do not reach the same mean value as pre-fire (mean
2010-2017).

The variance for control and burn plots shows low variance (< 0.1), indicating that the
values are close to the mean with slight variance between the sample and its mean value
(Table 3). However, for the burned plot, the variance is slightly higher for the year 2018
and 2019, showing a somewhat larger spread of the data points. The permutation test
indicates no difference between the ARSTAN indices for control and burned. Thus,
concluding no statistical difference between them as the p-value was over the threshold.
This is also shown in Hedges’ g, where the effect size is below the point to be
considered “medium effect”, meaning that the two plots are similar.

Table 3. Table of the statistical analysis for ARSTAN growth indices values for burned
and control plots (unitless). The tests were conducted year-wise. The table shows the
mean value with their corresponding standard deviation (SD) values, Hedges ‘g
(unitless), and permutation test for equal means.

Mean £ SD Permutation test

o _ |Sample size
Significance = Effect size

Control B d
ontro urne (p<0.05) (Hedges'g)

ARSTAN indices comparison between control and burned sites

Average 2010-2017 1,064 + 0,082 1,087 + 0,082 0,655 0,27 5
2018 0,698 £0,169 0,8 +0,365 0,578 0,36 5
2019 0,885 +0,094 0,686+0,33 0,249 -0,82 5
2020 0,973 £0,245 0,739+ 0,162 0,109 -1,12 5
2021 0,952 +0,128 0,824 +0,193 0,304 -0,78 5

The analysis of the INBR mean values is disclosed in Table 4 and shows a difference
in means between the burn and control plots (difference of 0,254). The difference
between the control and true middle of the burn plots shows a higher difference
(difference of 0,345), indicating that the burned plot middle value has a higher INBR
than the field sample burn plot. This can also be observed when comparing the INBR
values between the sample burn plot and true middle burn values (difference of 0.091).
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Each dNBR plot shows a low variance for the variance, indicating that the INBR values
do not vary excessively from the mean value.

The permutation test revealed a statistically significant difference between the control
dNBR values and two different ANBR burn values (Table 4). The p-value for control
dNBR and burned dNBR values (field sampling burn plot) shows a value of 0.019 with
an effect size (Hedges’ g) of 1.79. This indicates that the difference between the control
dNBR and burned dNBR mean values is statistically significant. The p-value between
the control dNBR and the burned plot true middle dNBR value shows a value of 0.025,
with an effect size of 2.15. The higher effect size indicates a more significant difference
between the values and their means compared to the control and field sampling burn
plot but statistically shows a lower p-value. No difference was found between the burn
plots dNBR values and the true middle dNBR values.

Table 4 shows a low spread of the mean pixel values for the control dNBR values,
ranging from 0 to 0.1 (unburnt values). For the dNBR, the field sampling burn plot
values range from 0.1 to = 0.4 (unburnt to moderate severity), while the true burn
middle values range from = 0.25 to = 0.55 (low severity to moderate severity). This
indicates that the true middle burn plot shows a wider spread in the different severity
classes whilst the field burn sample values range mainly in the low severity to unburnt
and touch moderate severity.

Table 4. Table of the statistical analysis for ANBR values (unitless) for the burned,
middle of the burned plot (true middle), and control plots. The table shows the mean
value with their corresponding standard deviation (SD) values, Hedges ‘g (unitless),
and permutation test for equal means.

Mean = SD Permutation test
Control Samole Significance = Effect size |Sample size
P (p<0.05) (Hedges'g)

dNBR comparison control vs. Burned (Sample)

dNBR Control vs. Burned

0,037+ 0,065 0,291 +0,189 0,019 1,79 5
(sample)

dNBR Control vs. True middle | o o7\ o 06c 038240217 0,025 2,15 5
(sample)

dNBR Burned (control) vs. True | 0,291 + 0,189 0,382 + 0,217 0,478 0,45 5

By analysing the relationship between dNBR (control and burned) and ARSTAN
indices for 2019, no clear visible correlation could be observed (Figure 8). Under
normal circumstances, a correlation coefficient analysis would be performed to
investigate further if a correlation can be established. The control values show a higher
growth increment with a corresponding low dNBR value, except for the site Lessebo
that have a high dNBR value and high growth increment. Most of the dNBR values
were found to have a correlating growth increment between 0.3 — 0.75.
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dNBR values against ARSTAN indices 2019
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Figure 8. Scatterplot showing ARSTAN growth frequencies for 2019 and the
corresponding ANBR values for the control and burn sample site. Y-axis shows the
ARSTAN growth frequencies, and the x-axis shows the dNBR value. Burned = red dot
(.) and Control = green star (*). All sites have been marked with their corresponding
name.

5.3. Analysis of forest health after a fire disturbance for control and

fire-affected areas

Analysing the visualization of the ANDVI signal between the fire year (2018) and pre-
fire (2017), most fire damages can be distinguished. In the sites Kil and Rullerum
(Figure 9a and 10a, respectively), the fire damage signal can be easily distinguishable
between the fire year (2018) and pre-fire year (2017). Kil (Figure 9a) shows even a
larger area of vegetation loss compared to the ANBR for the site (Figure 3a). However,
for the sites Rullerum and Stormandebo, the fire damage and burn severity perimeter is
visually different (Figures 4a and 9a for Rullerum, and Figures 6a and 12a for
Stormandebo). The vegetation loss perimeter where the fire disturbance occurred could
not be distinguishable for the sites Osterbymo and Lessebo (Figures 11a and 13a).

Throughout the image, there is an apparent reduction of vegetation between the years
2017 and 2018, indicating an overall disturbance occurred between the years. The pixel
categorisation was classified as moderate regrowth; thus, the disturbance was not too
severe to damage the surrounding area to a point where no vegetation was detected.

Analysing the vegetation regeneration between 2017 and 2021 for ANDVI shows that

most sites have a positive regeneration compared to the ANDVI values between 2017
and 2018 (Figures 9b, 10b, 11b, and 12b). Lessebo (Figure 13b) shows an apparent
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reduction in vegetation recovery compared to the other sites. This is of interest as this
can indicate secondary disturbance or a fire disturbance that happened later than the 1%
of September 2018. Osterbymo was the only site showing positive forest regrowth after
the fire disturbance, according to the visual analysis (Figure 11b).

dNDVI between dNDVI change between
a. 2018 and 2017 for Kil b. 2021 and 2017 for Kil

* Burned
# Control

* Burned
« Control

59.6072° N 59.6072° N |

59.6002° N 59.6002° N

59.5932° N 59.5932° N
- No regrowth - No regrowth
Low regrowth Low regrowth
Il Moderate regrowth ::;:::v::le
0 - Regrowth 0 - Regrowth
59.5862" N 59.5862" N
13.2494° E13.2629° E 13.2494° E13.2629° E

Figure 9. Map of the study area Kil. Dot (.) = Burn site, and Star (*) = Corresponding
control site. A) shows the dNDVI index values from 2017 and 2018. B) shows the
dNDVI index values from 2017 and 2021. dANDVI index values classified into: No
regrowth > 0.3, Low regrowth 0.3 <> 0.2, Moderate regrowth 0.2 <> 0, and Regrowth
<0.
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a. dNDVI between b. dNDVI change between
2018 and 2017 for Rullerum 2021 and 2017 for Rullerum

urned
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16.6130° E16.6220° E 16.6130° E16.6220° E

Figure 10. Map of the study area Rullerum. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the INDVI index values from 2017 and 2018. B)
shows the ANDVI index values from 2017 and 2021. dNDVI index values classified
into: No regrowth > 0.3, Low regrowth 0.3 <> 0.2, Moderate regrowth 0.2 <> 0, and
Regrowth < 0.

dNDVI between b. dNDVI change between
2018 and 2017 for Osterbymo 2021 and 2017 for Osterbymo

57.8222° N 57.8222° N
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Figure 11. Map of the study area Osterbymo. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the ANDVI index values from 2017 and 2018. B)
shog{ys the ANDVI index values from 2017 and 202@. dNDVI index values classified
into: No regrowth > 0.3, Low regrowth 0.3 <> 0.2, Moderate regrowth 0.2 <> 0, and
Regrowth < 0.
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dNDVI between
2018 and 2017for Stormandebo
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Figure 13. Map of the study area Lessebo. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the INDVI index values from 2017 and 2018. B)
shows the ANDVI index values from 2017 and 2021. dNDVI index values classified
into: No regrowth > 0.3, Low regrowth 0.3 <> 0.2, Moderate regrowth 0.2 <> 0, and
Regrowth < 0.

[l No regrowth
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dNDVI change between
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Figure 12. Map of the study area Stormandebo. Dot (.) = Burn site, and Star (*) =
Corresponding control site. A) shows the ANDVI index values from 2017 and 2018. B)
shows the ANDVI index values from 2017 and 2021. dNDVI index values classified
into: No regrowth > 0.3, Low regrowth 0.3 <> 0.2, Moderate regrowth 0.2 <> 0, and
Regrowth < 0.
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5.4. Vegetation growth with NDVI and tree ring width

Analysing the differences in mean values for NDVI between 2017 and 2021 for the
control area shows an increase in NDVI for 2019 (Table 5). This increase of 0,046 from
the overall mean of =~ 0.464 is only present in the control area and is only present for
2019. For the burn area, the mean value starts to decrease in 2018 and continues to
decline until 2021, when a slight increase of = 0.026 can be detected. This indicates that
the control area shows a relatively stable NDVI where the burn area is affected by the
2018 fire disturbance according to the mean NDVI values.

The variance for control and burn plots shows low variance (< 1), indicating that the
values are close to the mean value (Table 5). For the permutation test, the only year that
showed a statistically significant difference in means was the year 2019, where the p-
value was 0.04. This stipulates that a detectable difference can be made one-year post-
fire between the values.

Table 5. Table showing the statistical analysis for NDVI values (unitless) between the
years 2017 to 2021 for control and burn plots. The table shows the mean value with
their corresponding standard deviation (SD) values, Hedges’ g (unitless), and
permutation test for equal means.

Mean = SD Permutation test

Significance = Effect size |Sample size

Control Burned (p<0.05) (Hedges'g)

NDVI comparison within the same year

NDVI 2017 0,499 + 0,047 0,523 + 0,050 0,47 0,48 5
NDVI 2018 0,468 £ 0,077 0,492+0,111 0,688 0,25 5
NDVI 2019 0,51+0,050 0,33+0,148 0,04 -1,26 5
NDVI 2020 0,443+0,123 0,32+0,127 0,132 -0,98 5
NDVI 2021 0,449 + 0,108 0,346 + 0,106 0,138 -0,95 5

Analysis of the time-series trends in NDVI and ARSTAN growth frequencies showed
an overall low correlation between them visually (Figure 14). Similarities between the
growth frequencies and NDVI values can be seen in some figures but only for a
maximum of 1 - 2 years. For the site Kil (Figure 14a), the NDVI shows a decline from
2018 until 2020 before increasing. The growth increment shows a decline until 2018
for both controls and burned before they divert. The ARSTAN indices for the burned
plot continued to decline until 2019 before starting to increase, while the control shows
an increase after 2018.

Rullerum shows an increase in growth increment for the burned plot compared to the
control between 2017 and 2018 (Figure 14b). The NDVI decreases for both plots
between 2017 and 2018; however, the burned plot NDVI continues to decrease until
2019 before increasing like the control values. The growth increment for the burned
plot drops in 2019 before drastically increasing the following years to 2021, while the
control values have a slighter decrease until 2020 before starting to grow again.
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The site Osterbymo shows a decrease in growth rate for both the control and burn plot
until 2018 before starting to increase up to the year 2020 before decreasing again
(Figure 14c). The NDVI trend value shows an increase for both plots until 2018, when
the burned plot NDVI values start to decline, and the control increases before
decreasing 2019.

For the site Stormandebo (Figure 14d), all variables show a decrease until 2018, where
only the burn growth increment continues to decline until 2019 before increasing. The
other variables increased between 2018 and 2019, where the NDVI for the control and
the burned plot shows similar trend patterns of increasing and later decreasing. The
ARSTAN growth indices for the control plot continue to grow at a similar rate after
2019.

The last site (Lessebo) shows similar trends for all variables except the control growth
increment for the control plot that declines between 2017 and 2018 (Figure 14e). The
NDVI for the burned plot shows a rapid decline after 2018 until 2019 before slowly
starting to increase again, where the NDVI for the control plot shows slight variations
in the trend. The growth increment for the control plot starts to increase between 2018
and 2020 before decreasing, while the burn growth rate starts to decline in 2019 and
continues to decline up to 2021. The ARSTAN growth indices and NDVI control show
a similar trend pattern until 2019.

a. NDVI values against ARSTAN indices for Kil 12 b 0N6DVI values against ARSTAN indices for Rulleru{n2

4 .
ARSTAN Indices

0.2 0.4 0.2 0.
2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

Y, . Y
'OI\gIS)VI values against ARS%EXN indices for Osterbyllng : N&)‘yl values against ARST%aI{I indices for Stormandebo

-=-=7 3 % e ]
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Figure 14. Figure showing temporal changes for NDVI and ARSTAN growth indices
between 2017 and 2021 for burned and control plots. The red colour indicates burned,
and green indicate control. The different lines correspond to the different variables:
NDVI burned (-.), NDVI control (--), ARSTAN indices burned (...), and ARSTAN
indices for control (-). Y-axis left shows the NDVI values, the y-axis right shows the
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ARSTAN growth indices, and the x-axis shows the year. The sites shown in the figure
are A) Kil, B) Rullerum, C) Osterbymo, D) Stormandebo, and E) Lessebo.

6. Discussion
6.1. Visualization estimation for dANBR and dNDVI

The study aimed to investigate and re-evaluate the existing RS methodology for fire
disturbance and forest health in a group of Fennoscandian boreal forests. To evaluate if
the 2018 fire disturbance produced a strong enough signal to be captured, visualization
methods were used and will be discussed in the following section. As stated in the
methodology section, a proper analysis could not be conducted due to the small sample
size. Thus, it is important to keep in mind that the results do not accurately represent
the full potential of the methodology used in this study.

6.1.1. Did the 2018 boreonemoral forest wildfires produce a strong enough signal
to be assessed using ANBR?

This study focused on using Sentinel-2 Copernicus product to estimate the burn severity
using dNBR. Previous studies have revealed that this is a viable tool to assess the
severity of forest wildfires for large-scale application (Keeley, 2009; Whitman, et al.,
2018; Farasin, et al., 2020; UN, 2022). By analyzing the results, the burn severity is
easily distinguishable for all sites, thus helping the user to identify the fire perimeter
compared to the areal images (Appendix VII). The classification of burn severity shows
the diversity of the fire damage within the fire border. Most fires showed moderate
severity, concluding that some of the vegetation survived the 2018 fire disturbance.
Only a few sites showed high-severity pixels within the burn scar, appreciating the total
loss of vegetation within the 10 m by 10 m pixel (Figures 4 and 7). This is a robust
estimation as there might be surviving trees within the pixel, but the overall value
overlooks this factor.

Using dNBR values can help to minimize climate variability during the fire year as one
of the precursors to fires is the drought effect revealing dry combustible biomass
(Bickerton, 2012; Bjorklund, 2019; Wolters, 2022; WHO, 2022). This is minimized by
taking pre-fire NBR values (2017) and subtracting post-fire NBR (2019) values. Even
though this minimizes climate variability, it is vital to check that the pre-fire year and
post-fire years are not categorized as drought years. Using dNBR in Swedish biomes
proves to be a valuable tool to visualize the severity and total loss of biomass from the
area.

6.1.2. Can an assessment be made for the boreonemoral forest health after the
2018 wildfire activity?

Looking at the ANDVI images for loss of vegetation between the pre-fire year and the
end of the fire year shows a clear loss of vegetation within the entire image. This is
supported by the fact that the drought year 2018 affected the entirety of Sweden,
resulting in a loss of overall biomass. Looking within the fire perimeter, figures 9a, 10a,
and 12a show no to little regrowth of vegetation within the border, except for the site
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in Kil, where the control area shows loss of vegetation as well. The remaining sites
show moderate regrowth concluding that there is a small reduction of vegetation
production for the control plots. Unlike dNBR, the vegetation loss perimeter is larger
for the sites Kil, Rullerum, and Stormandebo (Figures 9a, 10a, and 12a). But for the
sites Lessebo and Osterbymo, there is no indication of a fire perimeter at all (Figures
11a and 13a), concluding that the fire did not reach the canopy, and thus does not affect
the NIR reflectance values for the sites.

The forest regeneration after the 2018 fire disturbance reveals most of the vegetation
starts to recover to the 2017 pre-fire state. Even though there is a positive regrowth, it
does not indicate the health of the trees, as it only measures the reflectance in the
chlorophyll for green vegetation (Segah, et al., 2010; Lacouture, et al., 2020). Thus, the
burn severity from the fire might have damaged the trees to a point where they cannot
recover, allowing first succession dynamics to take hold again (Wallenius, et al., 2004;
Sever, et al., 2012; Rolstad, et al., 2017). To better estimate tree health, the NDVI
methodology needs to be modified and corrected for Pinus sylvestris tree reflectance to
minimize this source of error.

6.2. Validation of RS methodology against ground measurements

To understand the correlation between burn severity and tree growth patterns it is vital
to identify that the trees did take damage from the 2018 forest wildfires. Thus, the
significance test between the burned and control plots allows the user to appreciate
these changes. Previous studies have shown that forest wildfires create favorable
conditions for the surviving trees but also other vegetation species (Wallenius, et al.,
2004; Kasischke, et al., 2011; Rolstad, et al., 2017; Kuosmanen, et al., 2018). One way
to identify if NDVI is a viable tool for this estimation is by identifying any correlation
between growth patterns for the corresponding NDVI value. This would have been
performed as stated in the data analysis but was not possible to do due to the small
sample size. Thus, a visual correlation was made instead. This will be presented in the
following section.

6.2.1. Can a correlation between high burn severity and low tree increment pattern
be established?

To understand ARSTAN indices growth patterns, significance testing was done
between burned and control plots for each year (Table 3). By looking at the statistical
test, one can see a decrease in growth rate for both the burn and control plot between
2017 to 2018, corresponding to the drought effect happening in Sweden (Bjorklund,
2019; Granstrém, 2020). The mean value decreased for both plots indicating a
disturbance happening. The 2019 burn plot shows a continuing decrease, thus hinting
that the trees are healing from the fire disturbance. For the following years after 2019,
the trees start to increase the increment pattern to a mean value of 0.0824, thus further
confirming this theory (Wallenius, et al., 2004; Rolstad, et al., 2017).
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The permutation test shows no statistical difference between the mean values of the
burn and the control plot for the increment patterns for all years. This concludes that
the mean values statistically are not different. Still, visually they are (Table 3). The year
2018 was considered one of the worst drought years Sweden faced in modern times,
causing the trees in the control plots to be disturbed as well as in the burn plots. The
results support that the extreme drought affected the entire area, as seen in the ANDVI
for 2017-2018 (Figures 9a, 10a, 11a, 12a, and 13a) (Granstrom, 2020). Previous studies
stated that a fire disturbance allows nutrients to be released back into the soil, and that
creates favourable conditions for the surviving trees, which is confirmed in this study
by looking at the mean values for 2021 (Wallenius, et al., 2004; Kasischke, et al., 2011;
Rolstad, et al., 2017; Kuosmanen, et al., 2018).

Differences in dNBR between the burn and control plots showed statistical significance
between them (Table 4). This can be seen for both the field sample burn values and the
true middle burn values. Still, the effect size shows a bigger effect for the true middle
burn values compared to the field sample burn values, concluding that there is a higher
variance in dNBR values from the mean (Table 4). The lower dNBR values for the field
sample burn plot might be due to the site selection for the burn plots, which too close
to the fire borders causes pixels that are regarded as “outside the perimeter” to be
included in the analysis.

As stated in the introduction to this section, an accurate correlation could not be
established. Looking at Figure 8, one can see that the data points show no visual
correlation between overall dNBR values to the corresponding growth increment.
However, the control values show a cluster in the low dNBR values and a high growth
increment value. This indicates that there might be a possible correlation if more
samples are included. The site Lessebo shows interesting values, where a high growth
rate and high ANBR values can be seen. This is of interest as this site includes the largest
fire studied with the highest severity pixels overall. In Table 4, the difference in INBR
values can be seen, where the burn values show a high variance between the data. The
true middle box shows values in the severity category (values ranging from = 0.25 to =
0.55, low to moderate severity). In contrast, the burn field sample value ranges from
unburnt to moderate, indicating, as motioned before, that the field sample sites are too
close to the fire border perimeter.

6.2.2. Can NDVI explain temporal changes to tree increment patterns for Pinus

sylvestris?

Analyzing the statistical test for NDVI between the burned and control plots for all
years showed no statistically significant difference except for the year 2019 (Table 5).
The mean value between the control plots for all years showed a relatively low value
(= 0.47), indicating moderate vegetation. Boreonemoral forest with dominating Pinus
sylvestris trees tends to grow on dry soils with a continental climate, where this type of
forest can be found on dry, rocky alluvial heaths (Esseen, et al., 1997) (Appendix VIII).
Looking at the mean value for the burned plot between all the years, one can see a
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higher NDVI value (= 0.53) in 2017 compared to the control plot. Looking at the images
from the field sampling, it is evident that the burned and control plots vary, which might
explain the differences in the NDVI values (Appendix VIII).

The NDVI values for the burn plots for all years show a decline from 2018 to 2020,
indicating an overall loss of abundant vegetation in the area. The difference between
the pre-fire state (2017) and the 2020 value shows roughly a decrease of 0.203,
compared to the reduction of only 0.056 for the control plot. This supports that the fire
had a more significant effect on the burned plot than the drought effect for NDVI, which
was hypothesised for the ANBR values. Thus, NDVTI is a valuable indicator to estimate
the impact and regrowth of trees after disturbance than dNBR alone. For the year 2019,
the difference between burned and control plots could be established using the
permutation test, where the p-value was 0.04, which indicates that in 2019 the
disturbance could be detected by the NDVI values.

By looking if there is a visual correlation between NDVI and the growth increments in
Figure 14, we can conclude that no relationship could be established. Similar trend
patterns (only for 1-2 years) can be seen between the different variables for all sites but
are not strong enough to establish a correlation. For the sites, Kil, Osterbymo, and
Stormandebo (Figures 14a, 14c, and 14d, respectively) show an apparent decline in
growth increment between 2017 and 2018 for the control and burn plot. For
Stormandebo, this trend is also seen for NDVI control and burned values before they
divert from each other again. Lessebo shows a diversion between control and burned
plot increment growth. The control decreased between 2017 and 2018, while the burn
decreased between 2019 and onward (Figure 14e). This might indicate that the trees
affected by the fire started to show damage much later and could not recover from the
injury creating secondary mortality (Heikkala, et al., 2014). Looking at Rullerum
(Figure 14b), the burn plots' increment growth peaked between 2017 and 2018, like
Lessebo (Figure 14e), where the NDVI values for the burned also followed this same
pattern. Even though this study cannot conclude if a correlation can be established,
similarities have been identified (Kaufmann, et al., 2008; Bhuyan, et al., 2017).

6.2.3. Future development

As this is a pilot project, the analysis of ANBR, dNDVI, and NDVI, with their
corresponding tree increment values, could not correctly be executed due to the small
sample size (see Chapter. 4.4. Data analysis). For future studies, it is vital to have a
larger sample size of field samples and their related satellite imagery. For field
samples, it is purposed to core a minimum of 20 trees (10 for burned plot and 10 from
a control site) with two cores for each tree (to ensure that the rings are correctly
measured). The table seen below (Table 6) shows a rough estimate of how much time
it would take to process 40 cores and their related satellite imagery (one site). This
paper considered five sites located in the southeast of Sweden, but it is recommended
to use a minimum of 10 sites to ensure an accurate assessment.
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The table does not consider the travel time to and from sites, as all sites are located
differently depending on where you are situated. The timetable assessment does not
include prior knowledge of the programs used and code development.

Table 6: Timetable showing the total time it takes to collect, process, and analyse one
field site. One site includes 40 cores (from burned and corresponding control plots)
and related satellite imagery. This table does not include travel time.

Time table
Activity Preperation Collecting Prqcessmg Analysis
RS processing
Sentinel-2
Coperenicus 1 2 3 4
data
Field work
| Tree 1 12 10 6
increments
Total time 39
(Hours):

6.3. Can we use RS methodology for assessing burn severity and forest

regrowth?

The usage of RS methodology is a potential tool for burn severity assessment and forest
regrowth estimation for boreal forests in Fennoscandia (White, et al., 1996; Isaev, et
al., 2002; Kaufmann, et al., 2008; Li, et al., 2010; Sherstjuk, et al., 2018; Bhuyan, et al.,
2017; McKenna, et al., 2018; Whitman, et al., 2018; UN, 2022). RS tools have been
proven to work in other boreal forests across the globe, but as with all methods, they
must be adapted to the study area. Climate variability can pose a problem as space-
borne imagery is sensitive to atmospheric noise from the present atmosphere (Beck, et
al., 2007). Spatial resolution is also an essential factor for evaluating the tool, as the
low spatial resolution does not capture the variability within the pixels. Temporal
resolution poses a problem as the return time might be captured at different times and
with too big-time gaps. Sentinel-2 Copernicus's mission fulfils the demand for both
spatial and temporal resolution combined (ESA, u.d.). The future NBR and NDVI
methodology needs to be corrected for the boreal forests in Sweden with more data to
determine if there is a correlation between tree growth patterns and the proposed
methods presented.

Finally, the site variability must be considered. All sites vary in soil structure, moisture
availability, and nutrient availability (Angelstam, 1998; Bickerton, 2012; Wolters,
2022; WHO, 2022). Multiple factors contribute to why some forests are prone to fires,
and others are not (Angelstam, 1998). Understanding these factors will help us assess
the effect of fires on tree growth in Sweden and improve the global C budget for the
future climate.
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7. Summary and conclusion

The study investigated and evaluated existing RS methodology for fire disturbance in
a group of Swedish boreonemoral forests. Estimating burn severity (dNBR) on
boreonemoral forests show good potential as the fire disturbance signal is captured
using Sentinel-2 images. The fire signal is clear for all fires where the smaller ones were
also captured in this study. Fires with moderate to high severity show better
performance when using dNBR. dNDVI, like dNBR, showed a clear signal where the
fire disturbances were captured and other disturbances like the 2018 drought effect.
dNDVI showed promising results as the fire location is clearly visible, but the fire
borders differ from the dNBR maps. Analysis of the 2018 forest wildfires' impact by
looking at ANDVI images showed that the vegetation returned to a near pre-fire state
(2017). But ANDVI measures the entirety of the forest vegetation. Thus, this needs to
be modified to reflect the health accurately for the Pine trees. Using the presented RS
methodology for visualisation (ANBR and dNDVI) is viable as it helps users visualise
the effects and severity of boreal forest wildfires and vegetation recovery.

Using dNBR as a tool to estimate burn severity patterns has been proven possible but
unreliable regarding the relationship between high burn severity and decreased tree
increment patterns. As this study concluded that more samples are needed to establish
if there is a relationship between dNBR and tree increment patterns. NDVI temporal
changes have been shown to explain some of the changes to Pine increment patterns
but are restricted to 1-2-year trends. The fire year 2018 affected the increment patterns
for all study sites. Still, the effect was also present in the following years, 2019 and
2020, indicating that secondary disturbances are affecting the individual sites.
However, NDVI might be reliable for evaluating temporal growth increment patterns
in Swedish boreonemoral forests. Due to the few sites, this cannot be confirmed or
denied.

Both presented RS methods are robust but need modifying as variabilities in reflectance
can be uncertain. The usage of RS methodology shows potential for the future, as
improvements can be made from this pilot study to validate the presented method better.
An increase in global mean air temperature will affect the frequency of wildfire
regimes. It is predicted that the increase in wildfire regimes will impact the global C
budget, as stored C in soils and biomass will be released back into the atmosphere more
rapidly. The presented RS methodology is a valuable and powerful tool for a better
understanding this relationship and further improvement of the global C budget.
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Appendix
Appendix I: Code for converting point coordinates to rectangles.
Code for converting point coordinates to rectangles using MATLAB.

%% Script to convert point coordinates to rectangle.
% Written by Joanna Eaton & Veiko Lehsten 2022.

%% Conversion of point to rectangle.

% Distance of intrest.

meter = 3000;

% Point coordinates for one site.

PointLo
PointlLa

Longitude; % Longitude point.
Latitude; % Latitude point.

% Conversion.
old_dist=0;

for dy=0.0001:0.00001:0.02
north_south=11distkm( [PointLo PointLa-dy 1, [PointLo PointLa+dy 1) ;
if old_dist<meter/1000 & north_south>meter/1000
GeoCoorLat=dy;
break
else
old_dist=north_south;
end
end

old_dist=0;

for dx=0.0001:0.000001:0.02
east_west=1ldistkm( [PointLo-dx PointLa ], [PointLo+dx PointLa 1)
if old_dist<meter/1000 & east_west>meter/1000
GeoCoorLong=dx;
break
else
old_dist=east_west;
end
end

GeolLol
Geolo2

PointLo + GeoCoorLong;
PointLo - GeoCoorLong;

GeoLal = PointLa + GeoCoorlLat;
GeolLa2 = PointLa - GeoCoorlLat;

Coordinat_86 = [GeoLol GeolLo2 GeolLal GeolLa2]; % Data stored in this matrix.

north_south_86=11distkm([GeoLol GeoLal ], [GeoLol GeolLa2])
east_west_86=11distkm( [GeoLol GeoLal ], [GeoLo2 GeolLall)



Appendix II: GEE code for downloading the images.

GEE code for downloading images from Sentinel-2 using Java Script. The code
includes filters such as start and end date, cloud filter, and scale.

// Code for downloading Satellite Imaging from GEE.
// The code is produced by Joanna Eaton and Veiko Lehsten 2022.

// This section specifies area of intrest and available data for that region.

var geometryfire = ee.Geometry.Rectangle([ 16.310544000000000, 57.756471 , 16.292555
var batch = require('users/fitoprincipe/geetools:batch') // Geotool for batch collection.

57.737731000000004]); // Area of intrest.

var collection2S = ee.ImageCollection("COPERNICUS/S2") // Satellite images based on area of intrest, timeframe, and cloud percentage.

.filterBounds(geometryfire)
.filterDate('2017-05-01', '2017-09-01')
.filter(ee.Filter.lte('CLOUDY_PIXEL_PERCENTAGE',100));
print(collection2S);

// Export the image, specifying scale and region.

batch.Download.ImageCollection.toDrive(collection2s,
"Site86_17",

{description: 'Fire_201752',

region: geometryfire,

fileFormat: 'GeoTIFF',

scale : 10,

formatOptions: {

cloudOptimized: true

s

1



Appendix III: Table showing the complete list of tree cores.

Table over all tree increment cores used in the project. The table also includes tree 1D,
their core ID, location (longitude and latitude), burn scar height, as well as crown
mortality. The table is divided between burn and control sites.

Burn Unburnt
Tree_ID  Core ID Longitude Latitude Burn_Scar Crov.vn_Mo Tree_ID Core_ID: Longitude Latitude
rtality(%)

71_1_1 948091 13.247778 59.597365 23 NaN 72_1_1 948141  13.249393 59.596579
71_1_2 948092  13.247778 59.597365 23 NaN 72_1_2 948142 13249393 59.596579
7121 948101  13.247884 59.597463 25 NaN 7221 948151  13.249380 59.596544
7122 948102  13.247884 59.597463 25 NaN 72_2 2 948152  13.249380 59.596544
7131 948111 13.247959 59.597667 29 NaN 7231 948161 13.249672 59.596649
7132 948112  13.247959 59.597667 29 NaN 7232 948162  13.249672 59.596649
71_4_1 948121  13.248006 59.597457 1.95 NaN 72_4_1 948171  13.249470 59.596661
71_4_2 948122  13.248006 59.597457 1.95 NaN 72_4_2 948172  13.249470 59.596661
71.5_1 948131 13.247817 59.597087 35 NaN 72_5_1 948181  13.249342 59.596711
71.5.2 948132  13.247817 59.597087 35 NaN 72_5_2 948182 13.249342 59.596711
83_1_1 948351 15.350733 57.808759 1.10 NaN 84_1_1 948301 15.350466 57.807965
83_1.2 948352  15.350733 57.808759 0.3 NaN 8412 948302 15.350466 57.807965
83 21 948361 15.350963 57.808920 04 100 84 21 948311 15.350233 57.808006
83 .2 2 948362 15.350963 57.808920 04 100 84 2 2 948312 15.350233 57.808006
8331 948371 15.351020 57.808952 0.5 NaN 84 31 948321 15.350278 57.808048
833 2 948372 15.351020 57.808952 0.5 NaN 84 3 2 948322 15.350278 57.808048
83_4_1 948381 15.350805 57.809039 04 NaN 84_4_1 948331 15350190 57.808041
83_4 2 948382  15.350805 57.809039 04 NaN 84 4 2 948332 15350190 57.808041
83_5_1 948391 15350738 57.809112 0.15 NaN 84 51 948341 15350246 57.808278
8352 948392 15350738 57.809112 0.15 NaN 84 5 2 948342 15350246 57.808278
81_1_1 948201 16.617150 58.267692 1.5 100 82_1_1 948251 16.617464 58.266943
8112 948202 16.617150 58.267692 1.5 100 8212 948252 16.617464 58.266943
8121 948211 16.617386 58.267737 25 30 82 21 948261 16.617475 58.266859
8122 948212 16.617386 58.267737 25 30 822 2 948262 16.617475 58.266859
81.3_1 948221 16.617657 58.267702 1.95 NaN 82 31 948271 16.617631 58.266797
8132 948222  16.617657 58.267702 1.95 NaN 82 .3 2 948272  16.617631 58.266797
81_4_1 948231 16.617303 58.267706 28 20 82_4_1 948281 16.617313 58.266757
81_4 2 948232  16.617303 58.267706 28 20 82 4 2 948282 16.617313 58.266757
81.5_1 948241 16.617496 58.266734 2 NaN 8251 948291 NaN NaN

8152 948242  16.617496 58.266734 2 NaN 825 2 948292 NaN NaN

85_1_1 948401 16.301705 57.746654 1.5 60 86_1_1 948451 16301423 57.747037
8512 948402 16.301705 57.746654 1.5 60 86_1_2 948452 16301423 57.747037
85 21 948411 16301576 57.746737 1.8 NaN 86_2_1 948461 16301650 57.747137
852 2 948412 16301576 57.746737 1.8 NaN 86_2 2 948462 16.301650 57.747137
85 3_1 948421 16301379 57.746635 5.5 NaN 86_3_1 948471 16.301849 57.747115
8532 948422 16301379 57.746635 5.5 NaN 86_3_2 948472 16.301849 57.747115
85_4_1 948431 16.301694 57.746635 1 NaN 86_4_1 948481 16.301555 57.747052
854 2 948432 16.301694 57.746635 1 NaN 86_4_2 948482 16.301555 57.747052
8551 948441 16301889 57.746913 1.8 NaN 86_5_1 948491 16.301638 57.747035
855 2 948442  16.301889 57.746913 1.8 NaN 86_5_2 948492  16.301638 57.747035
99 1_1 948001 15.431093 56.871761 NaN 100 100_1_1 948041 15.428578 56.871996
9912 948002 15431093 56.871761 NaN 100 100_1_2 948042 15.428578 56.871996
99 21 948011 15431062 56.871771 NaN 100 100_2_1 948051 15.428694 56.872058
99 2.2 948012 15431062 56.871771 NaN 100 100_2_2 948052 15.428694 56.872058
99 31 948021 15431109 56.871809 25 66.66 100_3_1 948061 15428758 56.871992
99 3.2 948022 15431109 56.871809 25 66.66 100_3_2 948062 15.428758 56.871992
99_4_1 948031 15431154 56.871745 54 33.33 100_4_1 948071 15.428709 56.871921
99 42 948032 15431154 56.871745 54 33.33 100_4_2 948072 15428709 56.871921

100_5_1 948081 15428647 56.871936
100_5_2 948082 15428647 56.871936

il



Appendix IV: Code for keeping or discarding satellite imagery

Code for keeping or discarding satellite images in red greed blue composition. This
allows the user to discard images of low quality. This code was produced by Veiko
Lehsten. The code is written in MATLAB.

%% Code for viewing images and discarding images of low quality

% Code is written by Veiko Lehsten 2022.
% Press 1 to keep the image, press 2 if the images are of low quality, and press 0 to delete
% the image from the folder.

%% Keep or Discard

close all
folder_name='"'; % Keep empty.

dirimages=dir(['500x500_2021/Site21_100' folder_name 1) % Add in folder path and to all the other places with the same ID.
last_day='123";

% Code loops through the entire folder for images

for i=3:size(dirimages,1)
if ~dirimages(i).isdir
if ~strcmp(dirimages(i).name(1:8),last_day)
im=imread(['500x500_2021/Site21_100' folder_name '/', dirimages(i).name]);
last_day=dirimages(i).name(1:8);
% To view the images in RGB
A = im;
RGBImage = A(:,:,[4 3 2]);
RGBImage = uint8(rescale(RGBImage, 0, 255));
imshow(RGBImage) ;
set(gcf, 'PaperPosition', [0 @ 4 2]);

% Use if you want to view the images in a specific band
simgesc(squeeze(im(:,:,8));

x=input('keep ? @: no 1l:yes good quality 2: bad quality');

if x== % Low quality images

evalc(['! mv 500x500_2021/Site21_100' folder_name '/', dirimages(i).name ' 500x500_2021/Site21_100' folder_name '/low_quality/' 1);
end
if ~x

delete(['500x500_2021/Site21_100' folder_name '/', dirimages(i).namel);

end
if x==1 % Keep the image
datum_name = [dirimages(i).name(1:4) '-' dirimages(i).name(5:6) '_' dirimages(i).name(7:8) ]
eval(['! cp 500x500_2021/Site21_100' folder_name '/', dirimages(i).name ' 500x500_2021/Site21_100' folder_name '/high_quality/' datum_name '.tif' ])
end
else
delete(['500x500_2021/Site21_100' folder_name '/', dirimages(i).namel);
end
end



Appendix V: Processing code for RS methodology

MATLAB script for the entire RS processing for the thesis. The code includes
converting .tif to MATLAB matrix, INBR, dNDVI, and NDVI. The code also
includes how the images was produced, analysis of the RS method, and tree increment
alaysis.

%% Script to import, calculate, and display figures

% Script developed by Joanna Eaton 2022.
% Credits to Wenxin Zhang & Veiko Lehsten.

%% Import and process satellite images.

% This code loops through the folders and reads the data in them (each
% Sentinel-2 images.

% The data is also stored as NDVI & NBR files in 3D-matrixes with all the NDVI & NBR values for
% all sites. NDVI is averaged over the site.

% Site 72 (Kil).
display(‘'Site 72');

for i=72 % Folder tick

if (i<=72||i>=74)
Path=['/Users/joeaton/Desktop/MatLab modelling/Masterthesis/500x500_17/Sitel7_',num2str(i)]; % Folder path to where the data is stored

File=dir(fullfile(Path, '*.tif")); % Open the .tif ending files

FileNames={File.name}'; % Rename and locates it in a filename string matrix

leng=size(FileNames,1); % Loops through the length of the File matrix

for j= 1:leng

[GISImg_72,Ref72] = geotiffread([Path,'/', cell2mat(FileNames(j))]); % Loops through MatLab GEOTiff format
NDVI_temp=(GISImg_72(:,:,8)-GISImg_72(:,:,4))./(GISImg_72(:,:,8)+GISImg_72(:,:,4)); % Calculating the NDVI values
NDVI84_18(:,:,j)=NDVI_temp; % Stores the NDVI values in 3D

NBR_temp=(GISImg_72(:,:,8)-GISImg_72(:,:,12))./(GISImg_72(:,:,8)+GISImg_72(:,:,12));
NBR84_18(:,:,j)=NBR_temp;
end

end
end

% Site 82 (Stormandebo)
display('Site 82');

for i=82 % Folder tick

if (i<=72||i>=74)
Path=['/Users/joeaton/Desktop/MatLab modelling/Masterthesis/500x500_17/Sitel7_",num2str(i)]; % Folder path to where the data is stored

File=dir(fullfile(Path, "*.tif"')); % Open the .tif ending files

FileNames={File.name}'; % Rename and locates it in a filename string matrix

leng=size(FileNames,1); % Loops through the length of the File matrix

for j= 1:leng

[GISImg_82,Ref82] = geotiffread([Path,'/', cell2mat(FileNames(j))]); % Loops through MatLab GEOTiff format
NDVI_temp=(GISImg_82(:,:,8)-GISImg_82(:,:,4))./(GISImg_82(:,:,8)+GISImg_82(:,:,4)); % Calculating the NDVI values
NDVI84_18(:,:,j)=NDVI_temp; % Stores the NDVI values in 3D

NBR_temp=(GISImg_82(:,:,8)-GISImg_82(:,:,12))./(GISImg_82(:,:,8)+GISImg_82(:,:,12));
NBR84_18(:,:,j)=NBR_temp;
end

end
end

% Site 84 (Stormandebo)
display('Site 84');

for i=84 % Folder tick

if (i<=72||i>=74)
Path=['/Users/joeaton/Desktop/MatLab modelling/Masterthesis/500x500_17/Sitel7_"',num2str(i)]; % Folder path to where the data is stored

File=dir(fullfile(Path, "*.tif"')); % Open the .tif ending files

FileNames={File.name}'; % Rename and locates it in a filename string matrix

leng=size(FileNames,1); % Loops through the length of the File matrix

for j= 1:leng

[GISImg_84,Ref84] = geotiffread([Path,'/', cell2mat(FileNames(j))]1); % Loops through MatLab GEOTiff format
NDVI_temp=(GISImg_84(:,:,8)-GISImg_84(:,:,4))./(GISImg_84(:,:,8)+GISImg_84(:,:,4)); % Calculating the NDVI values
NDVI84_18(:,:,]j)=NDVI_temp; % Stores the NDVI values in 3D

NBR_temp=(GISImg_84(:,:,8)-GISImg_84(:,:,12))./(GISImg_84(:,:,8)+GISImg_84(:,:,12));
NBR84_18(:,:,]j)=NBR_temp;



end

end
end

% Site 86 (Stormandebo)
display('Site 86');

I for i=86 % Folder tick

if (i<=72||i>=74)

File=dir(fullfile(Path, '*.tif")); % Open the .tif ending files

FileNames={File.name}"'; % Rename and locates it in a filename string matrix

leng=size(FileNames,1); % Loops through the length of the File matrix

for j= 1:leng

[GISImg_86,Ref86] = geotiffread([Path,'/', cell2mat(FileNames(j))]); % Loops through MatLab GEOTiff format
NDVI_temp=(GISImg_86(:,:,8)-GISImg_86(:,:,4))./(GISImg_86(:,:,8)+GISImg_86(:,:,4)); % Calculating the NDVI values
NDVI86_18(:,:,]j)=NDVI_temp; % Stores the NDVI values in 3D

NBR_temp=(GISImg_86(:,:,8)-GISImg_86(:,:,12))./(GISImg_86(:,:,8)+GISImg_86(:,:,12));
NBR86_18(:,:,]j)=NBR_temp;
end

end
end

% Site 100 (Stormandebo)
display('Site 100');

for i=100 % Folder tick

if (i<=72||i>=74)
Path=['/Users/joeaton/Desktop/MatLab modelling/Masterthesis/500x500_17/Site17_',num2str(i)]; % Folder path to where the data is stored

File=dir(fullfile(Path, '*.tif")); % Open the .tif ending files

FileNames={File.name}'; % Rename and locates it in a filename string matrix

leng=size(FileNames,1); % Loops through the length of the File matrix
~for j= 1:leng

[GISImg_100,Ref100] = geotiffread([Path,'/', cell2mat(FileNames(j))]); % Loops through MatLab GEOTiff format
NDVI_temp=(GISImg_100(:,:,8)-GISImg_100(:,:,4))./(GISImg_100(:,:,8)+GISImg_100(:,:,4)); % Calculating the NDVI values
NDVI100_18(:,:,j)=NDVI_temp; % Stores the NDVI values in 3D

NBR_temp=(GISImg_100(:,:,8)-GISImg_100(:,:,12))./(GISImg_100(:,:,8)+GISImg_100(:,:,12));
NBR100_18(:,:,j)=NBR_temp;
end

end
end

%% dNBR Processing and viewing
display('dNBR processing')
dNBR_72= (NBR72_17(:,:,7)) - (NBR72_19(:,:,8)); % dNBR calculation using images in the end of the season.

L = zeros(size(dNBR_86)); % Classifies the pixels into categories.
L(dNBR_86>= 0.6)

L(dNBR_86>= 0.4 & dNBR_86< 0.6)
L(dNBR_86>= 0.2 & dNBR_86< 0.4)
L(dNBR_86< 0.2) = 4;

2;
3;

cmap = [100; 110; 00 1; 0 180];
dNBRimage = labeloverlay(dNBR_86,L, 'Colormap',cmap); % Creates the new image.

% Figure creation

% First images shows the unclassified image.

figure(1)

subplot(1,2,1)

dNBR_86 = uint8(rescale(dNBR_86, 0, 255));
imshow(dNBR_86, ‘Colormap', summer)

hold on

title('dNBR for 2018 fire in Stormandebo');

set(gcf, 'color', '#FFFFFF');

plot(55,111,"'.", 'MarkerSize',20, 'color', '#000000")

plot(55,106, '*', 'MarkerSize',20, 'color', '#000000')% Marker to visulize the middle of the plot
legend('Burned', 'Control');

axis on

grid on

ax = gca;

ax.FontSize = 16;

ax.FontWeight = 'bold';

set(gca, 'FontName', 'Times New Roman')

xticks([0:37.3333:112]);

xticklabels({'16.2986%0 E','16.3045% E','16.3105% E'});
yticks([0:26.5000:212]);

yticklabels({'57.7565 N','57.7541% N','','57.7494"%0 N','"','57.7448%0 N','"','57.7401% N',"''});
¢ = colorbar;

c.Ticks = ([0:63.75:255])

c.TickLabels = {'Unburned','Low', 'Moderate', 'High', 'High Severity'};
c.Label.String = "dNBR';

hold off

'/Users/joeaton/Desktop/MatLab modelling/Masterthesis/500x500_17/Site17_',num2str(i)]; % Folder path to where the data is stored



% Classified image.

subplot(1,2,2)

imshow(dNBRimage) ;

hold on

title('dNBR for 2018 fire in Stormandebo');

set(gcf, 'color', '#FFFFFF');

xticks([0:37.3333:112]);

xticklabels({'16.2986"0 E','16.3045% E','16.3105% E'});
yticks([0:26.5000:212]);

yticklabels({'57.7565%0 N','57.7541% N','','57.7494%0 N','"','57.7448% N',"'",'57.7401% N',''});
plot(55,111,'.", 'MarkerSize',20, 'color', '#000000"')
plot(55,106, ‘', 'MarkerSize',20, ‘color’, '#000000 ")
legend('Burned', 'Control');

axis on

grid on

annotation('rectangle', [0.87 ©.37 .03 0.03], 'Color',[1 @ @], 'FaceColor',[1 @ 0]);

annotation('rectangle', [0.87 0.32 0.03 0.03], 'Color’,[1 1 @], 'FaceColor’,[1 1 0]);

annotation('rectangle', [0.87 0.27 0.03 0.03],'Color', [0 @ 1], 'FaceColor', [0 @ 1]);

annotation('rectangle', [0.87 0.22 0.03 0.03],'Color', [0 1 @], 'FaceColor’, [0 1 0]);

annotation('textbox', [0.9 @.34 0.9 @.05], 'EdgeColor','None', 'String', 'High = 0.6','FontName', 'Times New Roman', 'FontSize', 16, 'FontWeight','bold');
annotation('textbox', [0.9 0.29 0.9 0.05], 'EdgeColor’, 'None','String*, 'Moderate 0.6 < = 0.4','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight®,'bold');
annotation('textbox', [0.9 0.24 0.9 0.05], 'EdgeColor’, 'None', 'String','Low 0.4 < = 0.2','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold');
annotation('textbox', (0.9 0.19 0.9 0.05], 'EdgeColor', 'None', 'String', 'Unburned < ©.2','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold');

ax = gca;

ax.FontSize = 16;

ax.FontWeight = 'bold';

set(gca, 'FontName', 'Times New Roman')
hold off

%% dNDVI processing and viewing
display('NDVI Processing')
PNDVI_86_1 = (((NDVI86_17(:,:,8)) - (NDVI86_18(:,:,22)))); % dNDVI calculation using images in July for 2017 and 2018.
L = zeros(size(pNDVI_86_1)); % Classifies the pixels into categories.

L(pNDVI_86_1>= 0.3) = 1;
L(pNDVI_86_1>= 0.2 & pNDVI_86_1< 0.3)

L(PNDVI_86_1>= 0 & pNDVI_86_1< 0.2) =
L(pNDVI_86_1<= 0) = 4;

cmap = [100; 110; 001; 0180];
pNDVIimagel = labeloverlay(pNDVI_86_1,L, 'Colormap',cmap); % Creates the new image.

PNDVI_86_2 = (((NDVI86_17(:,:,8)) - (NDVI86_21(:,:,8)))); % dNDVI calculation using images in July for 2017 and 2021.

L = zeros(size(pNDVI_86_2)); % Classifies the pixels into categories.
L(pNDVI_86_2>= 0.3) ;

L(pNDVI_86_2>= 0.2 & pNDVI_86_2< 0.3)
L(pNDVI_86_2>= @ & pNDVI_86_2< 0.2) =
L(pNDVI_86_2<= @) = 4;

cmap = [100; 110; 001; 0180];
pNDVIimage2 = labeloverlay(pNDVI_86_2,L,'Colormap',cmap); % Creates the new image.
% Creation of the areal photography.

A = Image_Site_2021;
RGBImage = A(:,:,[4 3 2]);
RGBImage = uint8(rescale(RGBImage, @, 255));

figure(2)
% dNDVI 2017-2018

subplot(1,2,1)

imshow(pNDVIimagel);

hold on

title('dNDVI between 2018 and 2017 for Stormandebo');
set(gcf, 'color', '#FFFFFF');

xticks([0:37.3333:112]);

xticklabels({'16.2986%0 E','16.3045% E','16.3105% E'});
yticks([0:26.5000:212]);

yticklabels({'57.7565% N','57.7541%0 N','','57.7494%0 N','*','57.7448% N',"",'57.7401% N',"'});
plot(55,111,'.", 'MarkerSize',20, 'color", '#FDCB59")
plot(55,106, '*', 'MarkerSize',2@, 'color", '#FDCB59"')
legend('Burned', 'Control');

axis on

grid on

annotation('rectangle', [0.43 .37 0.03 0.03],'Color',[1 @ @], 'FaceColor',[1 @ @]);

annotation('rectangle', [0.43 0.32 0.03 0.03], 'Color',[1 1 @], 'FaceColor',[1 1 @]);

annotation('rectangle', [0.43 0.27 0.03 0.03], 'Color', [0 @ 1], 'FaceColor',[0 0 1]);

annotation('rectangle’, [0.43 0.22 0.03 0.03],'Color', [0 1 @], 'FaceColor',[0 1 0]);

annotation('textbox', [0.46 ©.34 0.9 0.05],'EdgeColor’', 'None','String', 'No regrowth','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold');
annotation('textbox', [0.46 .29 ©.9 0.05], 'EdgeColor’', 'None','String','Low regrowth','FontName', 'Times New Roman', 'FontSize', 16, 'FontWeight','bold');
annotation('textbox',[0.46 0.24 0.9 0.05], 'EdgeColor', 'None', 'String', 'Moderate regrowth','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold"');
annotation('textbox',[0.46 0.19 0.9 0.05], 'EdgeColor', 'None','String', 'Regrowth', 'FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold');

ax = gca;

ax.FontSize = 16;

set(gca, 'FontName', 'Times New Roman')
hold off

% dNDVI 2017-2021

subplot(1,2,2)

imshow(pNDVIimage2);

hold on

title('dNDVI change between 2021 and 2017 for Stormandebo');
set(gcf, 'color', '#FFFFFF');

xticks([0:37.3333:112]);

xticklabels({'16.2986"0 E','16.3045% E','16.3105% E'});
yticks([0:26.5000:212]);

yticklabels({'57.7565% N','57.7541% N','*,'57.7494%0 N','*,'57.7448"0 N','','57.7401% N',''});
plot(55,111, MarkerSize',20, 'color', '#FDCB59"')
plot(55,106, '*', 'MarkerSize',20, 'color', '#FDCB59")
legend('Burned', 'Control');

axis on

grid on

annotation('rectangle', (0.87 .37 0.03 0.03],'Color',[1 @ @], 'FaceColor',[1 @ @]);

annotation('rectangle', [0.87 .32 0.03 0.03],'Color',[1 1 @], 'FaceColor',[1 1 @]);

annotation('rectangle', [0.87 0.27 0.03 0.03], 'Color',[@ @ 1], 'FaceColor', [0 @ 1]);

annotation('rectangle', [0.87 .22 0.03 0.03], 'Color',[@ 1 @], 'FaceColor', [0 1 @]);

annotation('textbox',[0.9 0.34 0.9 0.05], 'EdgeColor', 'None', 'String', 'No regrowth','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold');
annotation('textbox',[0.9 @.29 0.9 @.05], 'EdgeColor', ‘None','String",'Low regrowth','FontName', 'Times New Roman', 'FontSize', 16, 'FontWeight','bold');
annotation('textbox',[0.9 .24 0.9 0.05], 'EdgeColor', 'None', 'String', 'Moderate regrowth','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold');
annotation('textbox', (0.9 9.19 0.9 0.05], 'EdgeColor', 'None','String', 'Regrowth','FontName', 'Times New Roman', 'FontSize', 16,'FontWeight','bold');

ax = gca;

ax.FontSize = 16;

set(gca, 'FontName', 'Times New Roman')
hold off

%% Arial photo

vil



f = figure;

figure(f)

imshow(RGBImage) ;

hold on

title('Areial photo of Stormandebo 2021');

set(gcf, 'color', '#FFFFFF');

xticks([0:37.3333:112]);

xticklabels({'16.2986"0 E','16.3045%0 E','16.3105% E'});
yticks([0:26.5000:212]);

yticklabels({'57.7565%0 N','57.7541% N','','57.7494% N','"','57.7448%0 N',"'','57.7401% N',"''});
plot(55,111,'."', '"MarkerSize',20, 'color', '#DAGADA")
plot(55,106, '*', 'MarkerSize',20, 'color"', '#5FDAGA")
legend('Burned', 'Control');

axis on

grid on

ax = gca;

ax.FontSize = 16;

set(gca, 'FontName', 'Times New Roman')

hold off

%% ARSTAN Indices extraction

% Importation of data was made through Matlabs own importation function in
% tabs (Variable).

%%%%%%% Extraction of data %%%%%%%%%%%
display('ARSTAN Indices')

% Renaming the imported sheets

Kil_B = TreeCoreData;

Kil_C = TreeCoreDataS1;
Lessebo_B = TreeCoreDataS2;
Lessebo_C = TreeCoreDataS3;
Osterby_B = TreeCoreDataS4;
Osterby_C = TreeCoreDataS5;
Rullerum_B = TreeCoreDataS6;
Rullerum_C = TreeCoreDataS7;
Storm_B = TreeCoreDataS8;
Storm_C = TreeCoreDataS9;
Kil_B = Kil_B(:,8);

Kil_C = Kil_C(:,8);

Lessebo_B = Lessebo_B(:,8);
Lessebo_C = Lessebo_C(:,8);
Osterby_B = Osterby_B(:,8);
Osterby_C = Osterby_C(:,8);
Rullerum_B = Rullerum_B(:,8);
Rullerum_C = Rullerum_C(:,8);
Storm_B = Storm_B(:,8);
Storm_C = Storm_C(:,8);

% Extracting values from 2010 - 2021

TW_72_B = Kil_B(94:104,:);
TW_72_C = Kil_C(101:111,:);
TW_82_B = Rullerum_B(97:107,:);
TW_82_C = Rullerum_C(221:231,:);
TW_84_B = Osterby_B(32:42,:);
TW_84_C = Osterby_C(15:25,:);
TW_86_B = Storm_B(104:114,:);
TW_86_C = Storm_C(104:114,:);
TW_100_B = Lessebo_B(46:56,:);
TW_100_C = Lessebo_C(66:76,:);

% Calculationg the ratio of growth from the ARSTAN Indices, the mean value
% between 2010-2017 was extracted. The ratio is calculated by taking the
% value of intrest and divided by the mean value.

mean(TW_72_B(1:7,:));

(TW_72_B(8,:))/(TW_72_B_R(1,:));
(TW_72_B(9,:))/(TW_72_B_R(1,:));
(TW_72_B(10,:))/(TW_72_B_R(1,:
(TW_72_B(11,:))/(TW_72_B_R(1,:));
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TW_B2021= [TW_72_B_R(5,:) TW_82_B_
TW_C2021= [TW_72_C_R(5,:) TW_82_C_

% Standard deviation for ARSTAN Indices

TW_SB2020 = std(TW_B2020);
TW_SC2020 = std(TW_C2020);

%% Statistics (1/4)
%%%%%%%% Extraction of the mean value and standard deviation for dNBR %%%%%%%%%%

% dNBR Burn plot

viil



display('dNBR Burn plot')

dNBR_72_B = mean(mean(dNBR_72(148:150,72:74)));
dNBR_82_B = mean(mean(dNBR_82(148:150,80:82)));
dNBR_84_B = mean(mean(dNBR_84(148:150,84:86)));
dNBR_86_B = mean(mean(dNBR_86(110:112,54:56)));
dNBR_100_B = mean(mean(dNBR_100(154:156,99:101)));

dNBR_B = [dNBR_72_B dNBR_82_B dNBR_84_B dNBR_86_B dNBR_100_B]"';
dNBR_SB = std(dNBR_B) ;

% dNBR Control plot

display('dNBR Control plot')

dNBR_72_C = mean(mean(dNBR_72(156:158,80:81)));
dNBR_82_C = mean(mean(dNBR_82(158:160,81:83)));
dNBR_84_C = mean(mean(dNBR_84(156:158,81:83)));
dNBR_86_C = mean(mean(dNBR_86(105:107,54:56)));
dNBR_100_C = mean(mean(dNBR_100(155:158,82:84)));

dNBR_C = [dNBR_72_C dNBR_82_C dNBR_84_C dNBR_86_C dNBR_100_Cl"';
dNBR_SC = std(dNBR_C);

% dNBR Center Burn plot

display('dNBR Center Burn plot')

dNBR_72_M = mean(mean(dNBR_72(143:145,66:68)));
dNBR_82_M = mean(mean(dNBR_82(147:149,81:83)));

dNBR_84_M = mean(mean(dNBR_84(149:151,83:85)));

dNBR_86_M = mean(mean(dNBR_86(113:115,59:61)));
dNBR_100_M = mean(mean(dNBR_100(147:149,115:117)));

dNBR_M = [dNBR_72_M dNBR_82_M dNBR_84_M dNBR_86_M dNBR_100_M]';
dNBR_SM = std(dNBR_M);

%% Statistics (2/4)

%%%%%%%% Extraction of the mean value and standard deviation for NDVI %%%%%%%%%%
% NDVI Burn plot

display('NDVI Burn plot')

NDVI_72_B = mean(mean(NDVI72_21(148:150,72:74)));

NDVI_82_B = mean(mean(NDVI82_21(148:150,80:82)));

NDVI_84_B = mean(mean(NDVI84_21(148:150,84:86)));

NDVI_86_B = mean(mean(NDVI86_21(110:112,54:56)));

NDVI_100_B = mean(mean(NDVI100_21(154:156,99:101)));

NDVI_B21 = [NDVI_72_B NDVI_82_B NDVI_84_B NDVI_86_B NDVI_100_B]';
NDVI_SB21 = std(NDVI_B21);

% NDVI Control plot

display('NDVI Control plot')

NDVI_72_C = mean(mean(NDVI72_21(156:158,80:81)));
NDVI_82_C = mean(mean(NDVI82_21(158:160,81:83)));
NDVI_84_C = mean(mean(NDVI84_21(156:158,81:83)));
NDVI_86_C = mean(mean(NDVI86_21(105:107,54:56)));
NDVI_100_C = mean(mean(NDVI100_21(155:158,82:84)));

NDVI_C21 = [NDVI_72_C NDVI_82_C NDVI_84_C NDVI_86_C NDVI_100_C]';
NDVI_SC21 = std(NDVI_C21);

X



% NDVI Center Burn plot

display('NDVI Center Burn plot')

NDVI_72_M = mean(mean(NDVI72_21(143:145,66:68)));

NDVI_82_M = mean(mean(NDVI82_21(147:149,81:83)));

NDVI_84_M = mean(mean(NDVI84_21(149:151,83:85)));

NDVI_86_M = mean(mean(NDVI86_21(113:115,59:61)));

NDVI_100_M = mean(mean(NDVI100_21(147:149,115:117)));

NDVI_M21 = [NDVI_72_M NDVI_82_M NDVI_84_M NDVI_86_M NDVI_100_M]';
%% Statistics (3/4)

%%%%%%%% Variance calculation %%%%%%%%%

% dNBR Variance
display('dNBR Variance')

dNBR_B_V = var(dNBR_B);
dNBR_C_V = var(dNBR_C);
dNBR_M_V = var(dNBR_M);
Variance_dNBR = [dNBR_B_V dNBR_C_V dNBR_M_V];

% NDVI Variance
display('NDVI Variance')

% Burned

NDVI_B17_V = var(NDVI_B17)
NDVI_B18_V = var(NDVI_B18)
NDVI_B19_V = var(NDVI_B19)
NDVI_B20_V = var(NDVI_B20)
NDVI_B21_V = var(NDVI_B21)

Variance_NDVI_Burned = [NDVI_B17_V NDVI_B18_V NDVI_B19_V NDVI_B20_V NDVI_B21_V];

% Control

NDVI_C17_V = var(NDVI_C17)
NDVI_C18_V = var(NDVI_C18)
NDVI_C19_V = var(NDVI_C19)
NDVI_C20_V = var(NDVI_C20)
NDVI_C21_V = var(NDVI_C21)

Variance_NDVI_Control = [NDVI_C17_V NDVI_C18_V NDVI_C19_V NDVI_C20_V NDVI_C21_VI];

% ARSTAN Indices Variance
display('ARSTAN Variance')

% Burned

TW_B2017_V = var(TW_B2017)
TW_B2018_V = var(TW_B2018)
TW_B2019_V = var(TW_B2019)
TW_B2020_V = var(TW_B2020)
TW_B2021_V = var(TW_B2021)

Variance_ARSTAN_Burned = [TW_B2017_V TW_B2018_V TW_B2019_V TW_B2020_V TW_B2021_V];

% Control

TW_C2017_V = var(Tw_C2017)
TW_C2018_V = var(Tw_C2018)
TW_C2019_V = var(Tw_C2019)
TW_C2020_V = var(TW_C2020)
TW_C2021_V = var(Tw_C2021)

Variance_ARSTAN_Control = [TW_C2017_V TW_C2018_V TW_C2019_V TW_C2020_V TwW_C2021_V];
%%%%%%%% Mean calculation %%%%%%%%%%%

% dNBR Mean
display('dNBR Mean')

dNBR_B_M = mean(dNBR_B);
dNBR_C_M = mean(dNBR_C) ;
dNBR_M_M = mean(dNBR_M) ;

Mean_dNBR = [dNBR_B_M dNBR_C_M dNBR_M_M];



% NDVI mean
display('NDVI Mean')

% Control

NDVI_C17_M = mean(NDVI_C17)
NDVI_C18_M = mean(NDVI_C18)
NDVI_C19_M = mean(NDVI_C19)
NDVI_C20_M = mean(NDVI_C20)
NDVI_C21_M = mean(NDVI_C21)
% Burned

NDVI_B17_M = mean(NDVI_B17)
NDVI_B18_M = mean(NDVI_B18)
NDVI_B19_M = mean(NDVI_B19)
NDVI_B20_M = mean(NDVI_B20)
NDVI_B21_M = mean(NDVI_B21)

% ARSTAN indices
display('ARSTAN Mean')

% Control

TW_C2017_M = mean(TW_C2017)
TW_C2018_M = mean(TW_C2018)
TW_C2019_M = mean(TW_C2019)
TW_C2020_M = mean(TW_C2020)
TW_C2021_M = mean(TW_C2021)

Mean_ARSTAN_Control = [TW_C2017_M TW_C2018_M TW_C2019_M TW_C2020_M TW_C2021_M];

% Burned

TW_B2017_M = mean(TW_B2017)
TW_B2018_M = mean(TW_B2018)
TW_B2019_M = mean(TW_B2019)
TW_B2020_M = mean(TW_B2020)
TW_B2021_M = mean(TW_B2021)

Mean_ARSTAN_Burned = [TW_B2017_M TW_B2018_M TW_B2019_M TW_B2020_M TW_B2021_M];

%% Statistics (4/4)

%%%%%%% Box plot of dNBR S%%%%%%%%

A = dNBR_B;
B = dNBR_C;
C = dNBR_M;
group = [ones(size(A));

2 ; ones(size(B));
3 x ones(size(C))];

for i = 1:1length(group(:,1))

if group(i) == 1

group(i) = Variance_dNBR(:,1);
else

group(i) = group(i);

if group(i) == 2
group(i)

= Variance_dNBR(:,2)

else
group(i) = group(i);

if group(i) == 3
group(i) = Variance_dNBR(:,3)

else
group(i) = group(i);
end
end
end
end
figure(4)
hold on

title('Mean dNBR against dNBR variance', 'FontSize', 22,'FontWeight', 'bold')
boxplot([A, B, Cl,group);

xlabel('variance', 'FontWeight', 'bold');

ylabel('Mean', 'FontWeight', 'bold');

set(gca, 'FontName', 'Times New Roman','FontSize', 22)

set(gcf, 'color', '#FFFFFF');
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%%%%%% Permutation test %%%%%%%%%

% This subsection is where the Permutation test is conducted:

% Input values,

first "Sample" then "Control"

display('Permutation test')

[p, observeddifference, effectsize]l = permutationTest(NDVI_B21, NDVI_C21, 1000, 'plotresult',1)

%%%%% Scatter plot %%%%%%%%%%

% dNBR vs. Arstan indices

figure(5)
hold on

title('dNBR values against ARSTAN indices 2019','FontSize', 22, 'FontWeight', 'bold')
xlabel('dNBR', 'FontSize', 22, 'FontWeight', 'bold"')

ylabel('ARSTAN Indices','FontSize', 22, 'FontWeight', 'bold')

plot(dNBR_B, TW_B2019,'.','MarkerSize',20,'color’, '#D91111")

plot(dNBR_C, TW_C2019, 'x', 'MarkerSize',20, " 'color’', '#4A9012")

plot(dNBR_M, TW_B2019,'+', 'MarkerSize',20,'color', '#D91111")

legend('Burned’,
set(gca, 'FontName', 'Times New Roman','FontSize', 22)
set(gcf, 'color', '#FFFFFF');

'Control', 'Middel Burn plot')

%%%%%% Correlation Coefficient %%%%%%

R1

R3

%% NDVI Subplots

= corrcoef(dNBR_B, TW_B2018);
R2 = corrcoef(dNBR_B, TW_B2019);
= corrcoef(dNBR_M, TW_B2018);

% Correlation between NDVI and ARSTAN Indices

%%%%%%%% Extracting Site values %%%%%%%%%%%%

Kil_NDVI_B
Kil_NDVI_C

[(NDVI_B17(1,:)) (NDVI_B18(1,:)) (NDVI_B19(1,:)) (NDVI_B2@0(1,:)) (NDVI_B21(1,:))]1';
[(NDVI_C17(1,:)) (NDVI_C18(1,:)) (NDVI_C19(1,:)) (NDVI_C20(1,:)) (NDVI_C21(1,:))]1';

Kil_TW_B = [(TW_B2017(1,:)) (Tw_B2018(1,:)) (TW_B2019(1,:)) (TW_B2020(1,:)) (TW_B2021(1,:))]1';

Kil_Tw_C

Rullerum_NDVI_|
Rullerum_NDVI_

Rullerum_TW_B
Rullerum_Tw_C

B
C

Osterbymo_NDVI_B
Osterbymo_NDVI_C

Osterbymo_TW_B
Osterbymo_Tw_C

Stormandebo_NDVI_|
Stormandebo_NDVI_C

Stormandebo_TW_B
Stormandebo_TW_C

Lessebo_NDVI_B
Lessebo_NDVI_C

Lessebo_TW_B =
Lessebo_TW_C =

[(TW_C2017(1,:)) (TW_C2018(1,:)) (TW_C2019(1,:)) (TW_C2020(1,:)) (TW_C2021(1,:))1';

[(NDVI_B17(2,:)) (NDVI_B18(2,:)) (NDVI_B19(2,:)) (NDVI_B20(2,:)) (NDVI_B21(2,:))1';
[(NDVI_C17(2,:)) (NDVI_C18(2,:)) (NDVI_C19(2,:)) (NDVI_C20(2,:)) (NDVI_C21(2,:))]';

[(TW_B2017(2,:)) (TW_B2018(2,:)) (TW_B2019(2,:)) (TW_B2020(2,:)) (TW_B2021(2,:))]';
[(TW_C2017(2,:)) (TW_C2018(2,:)) (TW_C2019(2,:)) (Tw_C2020(2,:)) (Tw_C2021(2,:))]1";

[
[

B

[
[

[(NDVI_B17(3,:)) (NDVI_B18(3,:)) (NDVI_B19(3,:)) (NDVI_B20(3,:)) (NDVI_B21(3,:))1';
[(NDVI_C17(3,:)) (NDVI_C18(3,:)) (NDVI_C19(3,:)) (NDVI_C20(3,:)) (NDVI_C21(3,:))]1';

(TW_B2017(3,:)) (TW_B2018(3,:)) (TW_B2019(3,:)) (TW_B2020(3,:)) (TW_B2021(3,:))1";
(TW_C2017(3,:)) (TW_C2018(3,:)) (TW_C2019(3,:)) (TW_C2020(3,:)) (TW_C2021(3,:))1";

= [(NDVI_B17(4,:)) (NDVI_B18(4,:)) (NDVI_B19(4,:)) (NDVI_B20(4,:)) (NDVI_B21(4,:))1';
= [(NDVI_C17(4,:)) (NDVI_C18(4,:)) (NDVI_C19(4,:)) (NDVI_C20(4,:)) (NDVI_C21(4,:))1';

[(TW_B2017(4,:)) (TW_B2018(4,:)) (TW_B2019(4,:)) (TW_B2020(4,:)) (TW_B2021(4,:))1"';
[(TW_C2017(4,:)) (TW_C2018(4,:)) (TW_C2019(4,:)) (TW_C2020(4,:)) (TW_C2021(4,:))1";

(NDVI_B17(5,:)) (NDVI_B18(5,:)) (NDVI_B19(5,:)) (NDVI_B20(5,:)) (NDVI_B21(5,:))1';
(NDVI_C17(5,:)) (NDVI_C18(5,:)) (NDVI_C19(5,:)) (NDVI_C20(5,:)) (NDVI_C21(5,:))]1';

[(TW_B2017(5,:)) (TW_B2018(5,:)) (TW_B2019(5,:)) (TW_B2020(5,:)) (TW_B2021(5,:))1"';
[(TW_C2017(5,:)) (TW_C2018(5,:)) (TW_C2019(5,:)) (TW_C2020(5,:)) (TW_C2021(5,:))]1";

Subplots

figure(6)
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% Kil

subplot(3,2,1)

hold on

title('NDVI values against ARSTAN indices for Kil','FontSize', 22, 'FontWeight','bold')
xlabel('Year','FontSize', 22, 'FontWeight','bold")

set(gca, 'FontName', 'Times New Roman','FontSize', 22)

set(gcf, 'color', '#FFFFFF');

yyaxis left

ylabel('NDVI', 'FontSize', 22, 'FontWeight','bold')
plot(Year,Kil_NDVI_B,'--','color', '#E64D1C', 'LineWidth',3)
plot(Year,Kil_NDVI_C,'-."','color', '#4A9012", 'LineWidth',3)

set(gca, 'ycolor', '#000000")

yyaxis right

ylabel('ARSTAN Indices','FontSize', 22, 'FontWeight', 'bold"')
plot(Year,Kil_TW_B,':"',"'color', '#E64D1C", " 'LineWidth"',3)
plot(Year,Kil_TW_C,'-', 'color', '#4A9012", 'LineWidth',3)

set(gca, 'ycolor', '#000000")

legend('NDVI Burned', 'NDVI Control', 'ARSTAN indices Burned', 'ARSTAN indices Control')

% Rullerum

subplot(3,2,2)

hold on

title('NDVI values against ARSTAN indices for Rullerum','FontSize', 22, 'FontWeight','bold')
xlabel('Year', 'FontSize', 22, 'FontWeight','bold")

set(gca, 'FontName', 'Times New Roman','FontSize', 22)

set(gcf, 'color', '#FFFFFF');

yyaxis left

ylabel('NDVI','FontSize', 22,'FontWeight', 'bold")
plot(Year,Rullerum_NDVI_B,'--','color', '#E64D1C"', 'LineWidth"',3)
plot(Year,Rullerum_NDVI_C,'-."', 'color', '#4A9012"', 'LineWidth"',3)
set(gca, 'ycolor', '#000000")

yyaxis right

ylabel('ARSTAN Indices','FontSize', 22, 'FontWeight','bold')
plot(Year,Rullerum_TW_B,':', 'color', '#E64D1C"', 'LineWidth',3)
plot(Year,Rullerum_TW_C,'-','color", '#4A9012",'LineWidth',3)
set(gca, 'ycolor', '#000000")

% Osterbymo

subplot(3,2,3)

hold on

title('NDVI values against ARSTAN indices for Osterbymo','FontSize', 22, 'FontWeight','bold')
xlabel('Year', 'FontSize', 22, 'FontWeight', 'bold"')

set(gca, 'FontName', 'Times New Roman','FontSize', 22)

set(gcf, 'color', '#FFFFFF');

yyaxis left

ylabel('NDVI', 'FontSize', 22,'FontWeight','bold")
plot(Year,Osterbymo_NDVI_B,'--','color', '#E64D1C', " 'LineWidth',3)
plot(Year,Osterbymo_NDVI_C,'-.', 'color', '#4A9012"', 'LineWidth',3)
set(gca, 'ycolor', '#000000"')

yyaxis right

ylabel('ARSTAN Indices','FontSize', 22, 'FontWeight', 'bold"')
plot(Year,Osterbymo_TW_B,':"', 'color', '#E64D1C", 'LineWidth',3)
plot(Year,Osterbymo_TW_C,'-', 'color', '#4A9012", 'LineWidth',3)
set(gca, 'ycolor', '#000000")

% Stormandebo

subplot(3,2,4)

hold on

title('NDVI values against ARSTAN indices for Stormandebo','FontSize', 22,'FontWeight', 'bold')
xlabel('Year', 'FontSize', 22, 'FontWeight', 'bold"')

set(gca, 'FontName', 'Times New Roman','FontSize', 22)

set(gcf, 'color', '#FFFFFF');

yyaxis left

ylabel('NDVI', 'FontSize', 22, 'FontWeight','bold")
plot(Year,Stormandebo_NDVI_B,'--','color', '#E64D1C", 'LineWidth',3)
plot(Year,Stormandebo_NDVI_C,'-."','color', '#4A9012", 'LineWidth',3)
set(gca, 'ycolor', '#000000")

yyaxis right

ylabel('ARSTAN Indices','FontSize', 22,'FontWeight', 'bold")
plot(Year,Stormandebo_TW_B,': ', 'color', '#E64D1C', 'LineWidth',3)
plot(Year,Stormandebo_TW_C, '-', 'color', '#4A9012', 'LineWidth',3)
set(gca, 'ycolor', '#000000")

% Lessebo

subplot(3,2,5)

hold on

title('NDVI values against ARSTAN indices for Lessebo','FontSize', 22, 'FontWeight','bold')
xlabel('Year','FontSize', 22,'FontWeight', 'bold')

set(gca, 'FontName', 'Times New Roman', 'FontSize', 22)
set(gcf, 'color', '#FFFFFF');

yyaxis left

ylabel('NDVI', 'FontSize', 22, 'FontWeight','bold"')
plot(Year,Lessebo_NDVI_B,'--','color', '#E64D1C', 'LineWidth"',3)
plot(Year,Lessebo_NDVI_C,'-."', 'color', '#4A9012"', 'LineWidth"',3)
set(gca, 'ycolor', '#000000"')

yyaxis right

ylabel('ARSTAN Indices','FontSize', 22,'FontWeight', 'bold')
plot(Year,Lessebo_TW_B,':"', 'color', '#E64D1C', 'LineWidth",3)
plot(Year,Lessebo_TW_C,'-','color', '#4A9012"', " 'LineWidth',3)
set(gca, 'ycolor', '#000000")
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Appendix VI: Permutation test in MATLAB

Permutation test provided in MATLAB add on function. This is an automatic function
which was applied to test the difference between two samples (one control and one
sample) and returns also an effect size. The code is free for download in MATLAB.

[p, observeddifference, effectsize] = permutationTest(samplel, sample2, permutations [, varargin])

Permutation test (aka randomisation test), testing for a difference
in means between two samples.

In:
samplel - vector of measurements from one (experimental) sample
sample2 - vector of measurements from a second (control) sample
permutations - the number of permutations

Optional (name-value pairs):
sidedness - whether to test one- or two-sided:
'both' - test two-sided (default)

‘smaller' - test one-sided, alternative hypothesis is that
the mean of samplel is smaller than the mean of
sample2

'larger' - test one-sided, alternative hypothesis is that

the mean of samplel is larger than the mean of
sample2

exact - whether or not to run an exact test, in which all possible
combinations are considered. this is only feasible for
relatively small sample sizes. the 'permutations' argument
will be ignored for an exact test. (1|0, default 0)
plotresult - whether or not to plot the distribution of randomised
differences, along with the observed difference (1|9,
default: 0)
showprogress — whether or not to show a progress bar. if @, no bar
is displayed; if showprogress > @, the bar updates
every showprogress-th iteration.

Out:
p - the resulting p-value
observeddifference - the observed difference between the two
samples, i.e. mean(samplel) - mean(sample2)
effectsize - the effect size, Hedges' g

Usage example:
>> permutationTest(rand(1,100), rand(1,100)-.25, 10000, ...
‘plotresult', 1, 'showprogress', 250)

Copyright 2015-2018, 2021 Laurens R Krol
Team PhyPA, Biological Psychology and Neuroergonomics,
Berlin Institute of Technology

0P P P P O I P P P P P P P P P P o P P P P P I P P I P P P I P F I F I P o P N P F *F F

2021-01-13 1lrk
- Replaced effect size calculation with Hedges' g, from Hedges & Olkin
(1985), Statistical Methods for Meta-Analysis (p. 78, formula 3),
Orlando, FL, USA: Academic Press.
2020-07-14 1rk
- Added version-dependent call to hist/histogram
2019-02-01 lrk
- Added short description
- Increased the number of bins in the plot
2018-03-15 1lrk
- Suppressed initial MATLAB:nchoosek:LargeCoefficient warning
2018-03-14 lrk
- Added exact test
2018-01-31 1lrk
- Replaced calls to mean() with nanmean()
2017-06-15 1lrk
- Updated waitbar message in first iteration
2017-04-04 1rk
- Added progress bar
2017-01-13 1lrk
- Switched to inputParser to parse arguments
2016-09-13 1lrk
- Caught potential issue when column vectors were used
- Improved plot
2016-02-17 toz
- Added plot functionality
2015-11-26 First version

of of of of I O I O O of o Of Of IO IF I I O O of of of of I o I oF

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

of of o oF o O of oF of of of of
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function [p, observeddifference, effectsize] = permutationTest(samplel, sample2, permutations, varargin)

% parsing input
p = inputParser;

addRequired(p, 'samplel’, @isnumeric);
addRequired(p, 'sample2', @isnumeric);
addRequired(p, ‘permutations', @isnumeric);

addParamValue(p, 'sidedness', 'both', @(x) any(validatestring(x,{'both', 'smaller', 'larger'})));
addParamValue(p, 'exact' , @, @isnumeric);

addParamValue(p, 'plotresult’', @, @isnumeric);

addParamValue(p, 'showprogress', @, @isnumeric);

parse(p, samplel, sample2, permutations, varargin{:})

samplel = p.Results.samplel;

sample2 = p.Results.sample2;
permutations = p.Results.permutations;
sidedness = p.Results.sidedness;

exact = p.Results.exact;

plotresult = p.Results.plotresult;
showprogress = p.Results.showprogress;

% enforcing row vectors
if iscolumn(samplel), samplel
if iscolumn(sample2), sample2

= samplel'; end

= sample2'; end
allobservations = [samplel, sample2];

observeddifference = nanmean(samplel) - nanmean(sample2);

pooledstd = sqrt( ( (numel(samplel)-1)*std(samplel)~2 + (numel(sample2)-1)*std(sample2)~2 ) / ( numel(allobservations)-2 )

effectsize = observeddifference / pooledstd;

w = warning('off', 'MATLAB:nchoosek:LargeCoefficient');
if ~exact & permutations > nchoosek(numel(allobservations), numel(samplel))
warning(['the number of permutations (%d) is higher than the number of possible combinations (%d);\n'
‘consider running an exact test using the '‘exact'' argument'], .
permutations, nchoosek(numel(allobservations), numel(samplel)));

end
warning(w);

if showprogress, w = waitbar(@, 'Preparing test...', 'Name', 'permutationTest'); end

if exact
% getting all possible combinations
allcombinations = nchoosek(1:numel(allobservations), numel(samplel));
permutations = size(allcombinations, 1);

end

% running test
randomdifferences = zeros(1, permutations);
if showprogress, waitbar(@, w, sprintf('Permutation 1 of %d', permutations), 'Name', 'permutationTest'); end
for n = l:permutations
if showprogress && mod(n,showprogress) == @, waitbar(n/permutations, w, sprintf('Permutation %d of %d', n, permutations)); end

% selecting either next combination, or random permutation
if exact, permutation = [allcombinations(n,:), setdiff(1:numel(allobservations), allcombinations(n,:))];
else, permutation = randperm(length(allobservations)); end

% dividing into two samples
randomSamplel = allobservations(permutation(1:length(samplel)));
randomSample2 = allobservations(permutation(length(samplel)+1:length(permutation)));

% saving differences between the two samples
randomdifferences(n) = (r lel) - (r le2);

end
if showprogress, delete(w); end

% getting probability of finding observed difference from random permutations
if strcmp(sidedness, 'both')
p = (length(find(abs(randomdifferences) > abs(observeddifference)))+1) / (permutations+1);
elseif strcmp(sidedness, 'smaller')
p = (length(find(randomdifferences < observeddifference))+1) / (permutations+1)
elseif strcmp(sidedness, 'larger')
p = (length(find(randomdifferences > observeddifference))+1) / (permutations+1);
end

% plotting result
if plotresult
figure;
if verLessThan('matlab', '8.4')
% MATLAB R2014a and earlier
hist(randomdifferences, 20);
else
% MATLAB R2014b and later
histogram(randomdifferences, 20);
end
hold on;
xlabel('Random differences');
ylabel('Count")
od = plot(observeddifference, @, 'kxr', 'DisplayName', sprintf('Observed difference.\nEffect size: %.2f,\np = %f', effectsize, p));
legend(od);
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Appendix VII: Areal images for all sites year 2021

Areal image (RGB) of the site Kil (72), Rullerum (82), Osterbymo (84), Stormandebo
(86), and Lessebo (100) year 2021. The red dot (.) corresponds to the burn plot, and
the green star (*) corresponds to the control plot. The images also contains the
coordinates longitude and latitude.
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Appendix VIII: Photographs from the sites
Photographs of all sites used in the study at the time of coring. The photographs show

the forest subcanopy for control and burned plot. The site Rullerum does not have
control photos, thus, only the burn plot is visible. All photos were taken by Joanna
Eaton (© Joanna Eaton 2022).
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VIILIV. Osterbymo Control
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VIII.VI. Stormandebo Control
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VIIIL.IX. Lessebo Burnt
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