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Abstract

The Discrete Fourier Transform is the simplest way to obtain the spectrum
of a discrete complex signal. This thesis concerns the case when the signal
is known to contain a small (unknown) number of frequencies, not limited
to the discrete Fourier frequencies, embedded in complex Gaussian noise. A
typical signal is generated from a digital radar and the frequency components
stem from point scatters, typically targets. The task is to estimate the
frequencies and their respective amplitudes. This is done in a hierarchical
Bayesian framework known from literature. It allows frequencies to be off
the Fourier grid. The thesis contains the derivation of involved distributions,
complementing the literature, being one of the results.

The resulting algorithm is a so-called hybrid-Gibbs sampler utilising a
mix of conjugate priors and Markov Chain Monte Carlo. It constitutes a
triple loop and is computationally heavy. The innermost loop is a Metropolis-
Hastings sampler that samples a type of generalised (univariate and condi-
tional) von Mises distribution. The main task of this thesis is to investigate
the possibility of replacing it with a deep generative model. This would yield
a significant acceleration. The model used in the investigation is a Continu-
ous Conditional Generative Adversarial Network (CCGAN). Such networks
can be used to sample synthetic images from highly multidimensional and
complex distributions. Encouraged by such results it is easy to think that
training a CCGAN to sample a univariate conditional distribution is easy.
Counter-intuitively the opposite seems to be true.

The first numerical result in the thesis is the successful reproduction
of a result from literature, the sampling from a two-dimensional Gaussian
distribution (constant covariance) conditioned on the mean being on the unit
circle. This gives confidence in the implementation. In a second step the
sampling of a univariate Gaussian distribution, conditioned on both mean
and variance, is investigated. Performance is not satisfactory despite the
simple nature of the problem. Learning von Mises type distributions, which
are more complicated and also conditioned on high-dimensional data, yield,
not surprisingly, even less good results with CCGAN than the univariate
Gaussian case. Suggestions for further development of the final CCGAN
are given with the hope of making the CCGAN useful in practical Bayesian
inference.
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Chapter 1

Introduction

1.1 Background

Any complex signal vector in N dimensions can be represented with N
complex amplitudes corresponding to N fixed frequencies being referred to
as the Fourier grid. The most effective way to compute the spectrum of the
signal is to compute the amplitudes with the Fast Fourier Transform (FFT)
[1]. But what if we know that the signal is generated by a small number
of frequencies that do not necessarily coincide with the Fourier frequencies,
and that we want to recover these frequencies and their complex amplitudes?
Applying the discrete Fourier transform for this purpose has two problems.
Firstly, the signal will be spread to many or all Fourier frequencies. Secondly,
the frequencies will by definition be limited to the grid. One way to approach
this problem is to densify the grid, making the problem under-determined.

By imposing sparsity on the problem, i.e., assuming that most frequen-
cies are zero, theory from the field of compressed sensing guarantees the
existence of a unique solution [2]. There are iterative methods for the ap-
proximation of it. But even if the grid is denser, in real applications, the
signal components will unlikely be on the grid and signal amplitudes will be
spread over the grid. Even with a very dense grid, there are both problems
with the vectors corresponding to the frequencies being almost parallel, and
with expensive computations. Another approach, which is taken in this the-
sis, is to consider a grid, dense or not, and introduce for every grid point an
off-grid parameter that represents the offset from the grid point. While the
original problem is linear, the off-grid problem is non-linear.

The thesis consists of two parts. The first part follows the work of
Lasserre’s article [3] closely, where a complex sparse signal embedded in
Gaussian noise is modelled using hierarchical Bayesian methods. Some of
the parameters in the hierarchy are the off-grid parameters previously men-
tioned, when estimating the frequencies of a signal. Bayesian inference in
the form of a hybrid-Gibbs sampler is then used to estimate the target scene

1



1.2. OUTLOOK 2

of the signal. However, the hybrid-Gibbs sampler is computationally heavy,
consisting of a triple loop. The innermost loop is a Metropolis-Hastings
algorithm for sampling from a dilated and truncated generalised von Mises
distribution (dGvM[a,b]). This naturally leads to the second part of this the-
sis, which is how the hybrid-Gibbs sampler may be accelerated by replacing
the Metropolis-Hastings algorithm with a deep generative network for the
sampling of this distribution.

One application of frequency estimation of a signal appears in the di-
rection of arrival (DOA) problem. In short, the DOA problem is that of
determining how the energy/power in the form of electromagnetic radiation
is distributed in space, where the sources represent high energy locations.
Considering a setup of M passive identical sensors uniformly placed along a
line, a so called uniform linear array (ULA). Figure 1.1 illustrates the DOA
scenario with a ULA and one source where the direction of arrival is denoted
as the angle θ.

Figure 1.1: Setup of the direction of arrival problem with a uniform linear
array of M sensors and one source. The goal is to determine the direc-
tion/angle of arrival θ and the power of the signal from the source.

1.2 Outlook

The theoretical background for hierarchical Bayesian modelling is given in
Chapter 2. Readers familiar with Bayesian inference and Monte Carlo meth-
ods can skip this chapter, although the last two sections give a brief introduc-
tion to complex Gaussian random variables and the generalised von Mises
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distribution. Chapter 3 provides the theoretical background for construct-
ing continuous conditional generative adversarial networks (CCGANs) with
the purpose of modelling univariate conditional densities. In Chapter 4, the
theory presented in Chapter 2 is applied for modelling a signal and estimat-
ing its target scene. Section 4.5 presents suggestions for how to accelerate
the process of estimating the target scene. Chapter 5 describes the process
of constructing a CCGAN used for this acceleration, by solving similar sub-
tasks in order to gain a better understanding of where challenges may arise
in constructing the final CCGAN, thus facilitating troubleshooting. Lastly,
Chapter 6 concludes the results of the thesis and suggests future work for
improving the performance of the CCGAN for simulating generalised von
Mises distributions.
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Chapter 2

Bayesian Inference using
Markov Chain Monte Carlo

2.1 Bayesian inference

In general, reasoning and inference without complete information, where for
example the observations - here suitably radar signals - contain noise, must
incorporate a framework for analysing and quantifying uncertainty in order
for one to make well-founded decisions. The mathematical framework for
a part of this kind of reasoning is probability theory, which the reader is
assumed to be acquainted with on a basic level. Other parts, like decision
and utility theory, will be left out of this background. Although there are
multiple interpretations of probability theory, the one of interest in this
thesis is the Bayesian interpretation, which is also called the subjective or
epistemic interpretation, for reasons that will become apparent.

InBayesian inference, one often has access to the observation, effect or
evidence of some unknown cause and would like to compute the probability
of the cause, given the effect. This may appear like backward reasoning,
but the applications are many. One field where this inference is applied
is medical diagnosis, where one knows the probability of, for example, a
patient having symptoms given that they have some disease but would like
to know the probability of the patient having the disease given that the
patient shows signs of the symptoms. The methodology for computing such
probabilities is based on Bayes’ theorem.

Considering two events C and E, interpreted as cause and effect, respec-
tively, Bayes’ theorem gives the probability of C given E as

P (C|E) =
P (C ∩ E)

P (E)
=
P (E|C)P (C)

P (E)
,

assuming that the probability of event E is nonzero, P (E) > 0. Bayes’
theorem is also applicable for probability density functions (pdfs) concerning
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random variables. Given two random variables X and Y , the corresponding
formula for pdfs is

f(X = x|Y = y) =
f(X = x, Y = y)

f(Y = y)
=
f(Y = y|X = x)f(X = x)

f(Y = y)
.

The factors in the formula are well known quantities. The factor P (C) is
the a priori probability, most often just referred to as the prior, which can
be viewed as the statistician’s subjective opinion or belief about the event
C in the absence of any other information, hence the name ”prior”. The
conditional probability P (E|C) is called the likelihood and is the proba-
bility of observing E given C. In some sense this probability quantifies the
causality of the phenomena observed. The probability P (E) is termed the
marginal likelihood or model evidence [4, p.485, 496]. The sought-after
probability P (C|E) is the a posteriori probability, most often just called
the posterior probability. In light of new evidence or observations, the
prior may be updated, taking the value of the previous posterior [5, p.35].

In practical Bayesian inference, the computations to retrieve the poste-
rior probability can be cumbersome, often due to the complexity of marginal
likelihood f(Y ). The marginal likelihood can be computed by marginalising
or integrating over the model parameter space, which can be a complicated
task since the integral may not have a closed form:

f(Y ) =

∫
f(Y |X = x)f(X = x) dx.

To overcome the problem of computing infeasible posteriors due to infea-
sible marginal likelihoods, approximative methods may be used to approx-
imate the sought-after posterior or some expectation over it. One form of
such methods are the computationally intensive sampling methods within
the Markov chain Monte Carlo (MCMC) framework. In short, the
MCMC methods seek to approximate the posterior by approximate sam-
ples from the posterior constructed by simulating a Markov chain. The
details on how this is done are given in Sections 2.2 to 2.4.

After having obtained (an approximation of) the posterior distribution
f(X|Y ), one can form estimators of distribution/model parameters X. One
such estimator is the point estimate minimum mean square error defined as

x̂MMSE =

∫
xf(X = x|Y = y) dx,

for some given observation Y = y, which is the posterior mean [3, equation
(10a)].

One may understand why the Bayesian interpretation of probability is
also referred to as the subjective interpretation, namely that the Bayesian
framework incorporates the statistician’s prior belief of the events into the
probabilistic model. Because the prior must be chosen before the Bayesian
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model is complete, it is in fact a model choice problem. There is a trade-
off between choosing a prior that makes the calculations mathematically
tractable at the same time as the physical interpretation of the parameters
on which one constructs the prior is preserved. It is possible to choose
the prior in a way such that the posterior has the same form, belongs to
the same family of distributions to be more exact, as the prior. The prior
and posterior would then be conjugate distributions and the prior would
be a conjugate prior to the likelihood. Using conjugate priors makes
Bayesian inference easier through simpler mathematical manipulations [6,
Section 1.2].

When parameters are dependent on each other on multiple levels, a hier-
archical modelling approach can be taken. Hierarchical Bayesian models
allow the prior parameters to be further modelled by some other parame-
ters themselves, also known as hyperparameters. The joint probability of
all the parameters should therefore in some sense reflect the dependencies
between them [7, Chapter 5]. An example is in epidemiological modelling,
where one examines how infectious diseases spread within and between coun-
tries based on the number of daily infected cases for each country. In this
thesis, a signal y will be modelled using a hierarchical Bayesian model ac-
cording to Figure 4.1 seen in Section 4.2.

As opposed to the frequentist interpretation of probability, also called
the classical interpretation, the Bayesian approach may work better when
no experimental data at all is available, which can be the case if one would
like to model a phenomenon that seldom or never occurs. The frequentist
view relies on the concept that a probability of an event can be defined by
its relative frequency after many trials or occurrences [5, p.35-36]. As men-
tioned, this approach may be inadequate for modelling the probability that
our sun will explode tomorrow since this event cannot be repeated numerous
times in order to define the probability in the frequentist manner. Another
difference between the two interpretations is that the frequentist framework
mostly concerns point estimates of events or random variable probabilities,
while the Bayesian approach lends a richer probabilistic analysis because
complete distributions, in contrast to just point estimates, are obtained in
the form of posteriors of the parameters of interest [5].

2.2 Markov chains

The necessary theory of Markov chains for understanding the MCMC meth-
ods in relation with the problem at hand will be given in this section.

A Markov chain is defined as a sequence of random variables (states)
X0, X1, . . . , XN , such that for all n = 0, 1, . . . , N − 1, the variables are
conditionally independent in accordance with the Markov property

f(Xn+1 ∈ A|X0, . . . , Xn) = f(Xn+1 ∈ A|Xn),
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X0 X1 X2 . . . XN

Figure 2.1: Schematic illustration of a Markov chain

where the probability of the initial variable f(X0) and the conditional prob-
abilities of subsequent variables, called transition probability densities
or transition kernel(s), are specified. The random variables take values
in a state space X and a subset of it is denoted as A ⊂ X . If the state
space X is continuous, the transition probabilities are represented by a bi-
nary function called a transition kernel. In the discrete case, the transition
probabilities are represented by a transition matrix where each element pij
corresponds to the probability of going from the state in row i to column
j. Intuitively, the Markov property says that the probability of the next
variable only depends on the present variable and not the previous ones. A
Markov chain can thus be represented as a directed graph in the form of a
chain. Figure 2.1 illustrates this.

The probability of obtaining a specific realisation of a sequence x0:N can
be written as

f(X0:n = x0:N ) = f(X0 = x0)
N∏

n=1

q(Xn = xn|Xn−1 = xn−1),

where X0:n denotes the Markov chain X0, X1, . . . , Xn, and q denotes the
transition probability density. The marginal probability of a specific element
in the Markov chain at position n can be expressed recursively with respect
to the marginal probability of the previous variables in the chain as

f(Xn) =

∫
X
q(Xn|xn−1)f(xn−1) dxn−1.

A stationary Markov chain is a Markov chain satisfying

f(X0 = x0, X1 = x1, . . . , Xk = xk) = f(Xn = x0, Xn+1, . . . , Xn+k = xk)

for all n and k. Expressed differently, a stationary distribution π is said
to be stationary with respect to a Markov chain if

π(X ′) =

∫
X
q(X ′|x)π(x) dx, (2.1)

thus X0 ∼ π implies that Xn ∼ π for all n. Equation (2.1) is called the
global balance equation. One can ensure that a Markov chain has a
specific stationary distribution π by constructing the transition probabilities
in a way such that the detailed balance equation is satisfied:

π(x)q(x′|x) = π(x′)q(x|x′) (2.2)
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for all x, x′ ∈ X . Statistically, one cannot distinguish the direction between
the two states x and x′. When a Markov chain satisfies this property, it is
referred to as reversible. That stationarity is implied can be shown through
straight forward calculations:∫

X
π(x)q(x′|x) dx =

∫
X
π(x′)q(x|x′) dx = π(x′)

∫
X
q(x|x′) dx = π(x′),

where one sees that the definition of stationarity in equation (2.1) is satisfied.
The final property of Markov chains to be introduced is of great impor-

tance for assuring that the constructed Markov chain converges towards a
unique stationary distribution of interest and lies at the core of the MCMC
methods. This leads us to the ergodicity property of a Markov chains. A
Markov chain is said to be ergodic if there exists a finite integer k such
that every state of the the Markov chain can be reached from every other
state in exactly k steps. If a Markov chain is ergodic, then it has a unique
and positive stationary distribution π such that

lim
N→∞

f(XN = x) = π(x)

for all states x that a Markov chain can take. Important here is also that
the stationary distribution is independent of the choice of initial distribution
f(X0) [8, 9, Section 11.2.1 and Chapter 6, respectively]. Intuitively, ergod-
icity for Markov chains imply that every state in the state space can be
reached independently of what state the chain starts in. The two examples
given next may make the property of ergodicity clearer.

Assuming a and b are two states with the transition probabilities given
on the edges on the directed graph given in Figure 2.2, the probability of
going from state a to b is thus 0.4. An example of a realisation of a Markov
chain on this setting of length three could be (X0 = a,X1 = a,X2 = b).
For this Markov chain, one can observe that every state (a and b) can reach
every other state in exactly k = 2 steps, hence it is ergodic.

a b0.6

0.4

1

Figure 2.2: An ergodic Markov chain with two states a and b and given
transition probabilities on the directed edges.

A second example is obtained by modifying the transition probabilities
from the example given previously to the one seen in Figure 2.3. After
inspecting this Markov chain, one can conclude that it is not ergodic, there
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a b

1

1

Figure 2.3: A non-ergodic Markov chain with two states a and b and given
transition probabilities on the directed edges.

is not a finite integer k such that every state can reach every other state in
exactly k steps.

As mentioned, the idea behind the MCMC methods in the given problem
setting is to approximate the joint posterior of an observed signal y, given
some parameters introduced in a hierarchical Bayesian model, or some ex-
pectation over it by approximative samples from the posterior constructed
by simulating a Markov chain. Using MCMC methods, the marginal like-
lihood does not have to be known in order to enable sampling from the
joint posterior. A Markov chain has to be constructed in a way such that
it is efficient to simulate from and has the joint posterior as its stationary
distribution. These necessary properties are satisfied by the Markov chains
generated by the MCMC methods.

2.3 The Metropolis-Hastings algorithm

There are two main flavors of MCMC methods: Gibbs sampling (al-
gorithm) and the Metropolis-Hastings (MH) algorithm. Formally, the
Gibbs sampler is in fact a special case of the MH algorithm [9, Section
10.1.1]. The MCMC methods are part of the general Monte Carlo frame-
work, used for approximating expectations of the form

Ef [ϕ(X)] =

∫
X
ϕ(x)f(x) dx, (2.3)

which is the expectation of an objective function ϕ evaluated on the random
variable X taking values in X with the pdf f . As an example, the random
variableX could be the total time a person parks her car, Poisson distributed
with probability mass function f and where the objective function is defined
as ϕ(x) = 5+2x money units corresponding to the price of the parking of a
car for x time units. The expectation of this objective function would then
be the expected amount of money a person would have to pay for parking.

Monte Carlo integration is a method for evaluating expectations like
the one in equation (2.3) benefiting from the law of large numbers. The
method is as follows: sample elements x1, x2, . . . , xN independently of each
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other from their common distribution and form the empirical average

Êf [ϕ(X)] =
1

N

N∑
i=1

ϕ(xi).

By the law of large numbers, the empirical distribution converges towards
the true expectation as N → ∞, thus

Ef [ϕ(X)] ≈ Êf [ϕ(X)] =
1

N

N∑
i=1

ϕ(xi)

[9, p.83].
Approximating the expectation in equation (2.3) using Monte Carlo in-

tegration is possible through techniques that do not sample directly from the
pdf f . Examples of such methods are importance sampling and MCMC
methods. This comes in handy in Bayesian inference where the pdf f is a
posterior where the normalising constant is unknown due to an intractable
marginal likelihood.

Given an unnormalised distribution

f(X) =
1

Z
Q(X),

where the pdf Q(X) is efficient to evaluate, but the normalising constant Z
is intractable, the idea behind MCMC methods is to construct an ergodic
Markov chain that is easy to simulate and has f as its stationary (target)
distribution [9, p.268]. The Metropolis-Hastings algorithm does just this by
generating a Markov chain through a special construction of the transition
probability. The transition probability of a Markov chain generated by the
MH algorithm is composed of two distributions, the proposal or instru-
mental distribution r, and the MH acceptance probability α. Given
a sample in the Markov chain x(t−1), the next sample x(t) is obtained by
first generating a proposed sample x∗ for the next state by sampling from
the proposal distribution as x∗ ∼ r

(
x∗|x(t−1)

)
. The acceptance is then com-

puted as

α
(
x∗, x(t−1)

)
= min

(
1,

f(x∗)r
(
x(t−1)|x∗

)
f
(
x(t−1)

)
r
(
x∗|x(t−1)

)) (2.4a)

= min

(
1,

Q(x∗)r
(
x(t−1)|x∗

)
Q
(
x(t−1)

)
r
(
x∗|x(t−1)

)). (2.4b)

The proposed sample x∗ is then taken as the next sample x(t) according to

x(t) =

{
x∗, with probability α

(
x∗, x(t−1)

)
x(t−1), with probability 1− α

(
x∗, x(t−1)

)
.
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Important to note is that the fraction in the acceptance probability is inde-
pendent of the normalising constant Z [9, Chapter 7.3.1]. The MH algorithm
and different variations are presented in the Monte Carlo book [9, Chapter
7].

It can be proven that the transition probability for a Markov chain gen-
erated with the MH algorithm satisfies the detailed balance equation, hence
the target distribution denoted as f is also the stationary distribution of
the Markov chain. In order to show that detailed balance is satisfied, the
transition probability for the MH generated Markov chain first must be
known. Given an element x(t−1) in the chain, the conditional probability of
the proposed element x∗ when it is accepted is given by the product of the
probability of the element first being proposed and the probability of this
proposed element being accepted as

P
(
U ≤ α

(
x∗, x(t−1)

))
r
(
x∗|x(t−1)

)
= α

(
x∗, x(t−1)

)
r
(
x∗|x(t−1)

)
,

where U denotes a uniformly distributed stochastic variable on the unit
interval. The probability of staying at the same element x(t−1), thus rejecting
the proposed element x∗, is given by a point mass computed as∫

X
P
(
U > α

(
x∗, x(t−1)

))
r
(
x∗|x(t−1)

)
dx∗

=

∫
X

(
1− α

(
x∗, x(t−1)

))
r
(
x∗|x(t−1)

)
dx∗

= 1−
∫
X
α
(
x∗, x(t−1)

)
r
(
x∗|x(t−1)

)
dx∗

= pr
(
x(t−1)

)
.

The transition probability is thus composed as

q
(
x(t)|x(t−1)

)
= α

(
x(t), x(t−1)

)
r
(
x(t)|x(t−1)

)
+ pr

(
x(t−1)

)
δx(t−1)

(
x(t)
)
,

where the Dirac delta function is defined as∫ ∞

−∞
f(x)δy(x) dx = f(y),

where f is a continuous compactly supported function.
To show that the Markov chain generated by the MH algorithm has the

target distribution as its stationary distribution, one must show it satisfies
the global balance equation (2.1). In the proof below, one can think of the
variables as z = x(t) and x = x(t−1):
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∫
X
f(x)q(z|x) dx

=

∫
X
f(x)

(
α(z, x)r(z|x) + pr(x)δx(z)

)
dx

=

∫
X
f(x)α(z, x)r(z|x) + f(x)pr(x)δz(x) dx,

inserting the definition of the acceptance probability lends∫
X
f(x)q(z|x) dx

=

∫
X
f(x)min

(
1,
f(z)r(x|z)
f(x)r(z|x))

)
r(z|x) dx+ f(z)pr(z)

=

∫
X
min

(
f(x)r(z|x), f(z)r(x|z)

)
dx+ f(z)pr(z)

=

∫
X
f(z)min

(
f(x)r(z|x)
f(z)r(x|z)

, 1

)
r(x|z) dx+ f(z)pr(z)

=

∫
X
f(z)α(x, z)r(x|z) dx+ f(z)pr(z)

= f(z)

∫
X
α(x, z)r(x|z) dx+ f(z)

(
1−

∫
X
α(x, z)r(x|z),dx

)

= f(z)

(
1 +

∫
X
α(x, z)r(x|z) dx−

∫
X
α(x, z)r(x|z),dx

)
= f(z),

which concludes the proof that the generated Markov chain from the MH
algorithm has the target distribution as its stationary distribution. More-
over, under weak assumptions on the target and proposal distributions, the
Markov chain generated by the MH algorithm is ergodic, implying that

1

N

N∑
k=1

ϕ(xk) →
∫
X
ϕ(x)f(x) dx

as N → ∞ [9, Section 7.3]. After some burn-in period Nbi, the samples
generated are sampled as if they were sampled from the target distribution
which we initially could not sample from directly due to its complexity. How-
ever, successive samples will be correlated, which actually is not a problem
in practice [9, p.269]. To obtain independent samples one could subsample
the returned samples from the MH algorithm [8, p.544].

The choice of proposal distribution has a substantial impact on how well
the algorithm performs since the proposal determines how the state space
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is explored. Examining the acceptance probability in equation (2.4), one
can get a better understanding of how the state space is explored. The
ratio f(x∗)/f

(
x(t−1)

)
can be interpreted as high when the proposed element

x∗ is preferable than the current one, leading to a higher probability of
accepting the proposal. As a consequence of this, the samples tend to stay
around high-density regions of the target distribution. Examining the ration
r(x|z)/r(z|x) instead, this will be high when it is easy to go back from x∗

to x(t−1).

2.4 Gibbs sampling

Say that one has a multivariate distribution f depending on p random vari-
ables, θ =

[
θ1, . . . , θp

]
, that is difficult to sample from directly. If the condi-

tional distributions of each one of the random variables are easy to sample
from, the Gibbs sampler can aid in the sampling of the joint distribution.
The joint pdf can be denoted as

f(θ) = f(θ1, . . . , θp),

and the conditional (posterior) distribution of the random variable θk as

fk(θk|θ−k),

where θ−k is the same as θ, but where the element at position k has been
removed. Assuming that these are efficient to simulate from for all k =
1, . . . , p, the Gibbs sampler can be summarised as in the Monte Carlo book
[9, Chapter 10].

The resulting Markov chain generated by the Gibbs sampler has the
joint distribution f(θ) as its stationary distribution. The proof that the
target distribution, f(θ), is the Gibbs generated Markov chain’s stationary
distribution is given for the two-dimensional state space case. The proof for
higher dimensions is similar. Firstly, one can note that the transition kernel
is

q
(
θ
(t)
1 , θ

(t)
2

∣∣θ(t−1)
1 , θ

(t−1)
2

)
= f

(
θ
(t)
1

∣∣θ(t−1)
2

)
f
(
θ
(t)
2

∣∣θ(t)1

)
.
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The global balance equation (2.1) can be shown to be satisfied as∫ ∫
f
(
θ
(t−1)
1 , θ

(t−1)
2

)
q
(
θ
(t)
1 , θ

(t)
2

∣∣θ(t−1)
1 , θ

(t−1)
2

)
dθ

(t−1)
1 dθ

(t−1)
2

=

∫ ∫
f
(
θ
(t−1)
1 , θ

(t−1)
2

)
f
(
θ
(t)
1

∣∣θ(t−1)
2

)
f
(
θ
(t)
2

∣∣θ(t)1

)
dθ

(t−1)
1 dθ

(t−1)
2

=

∫
f
(
θ
(t−1)
2

)
f
(
θ
(t)
1

∣∣θ(t−1)
2

)
f
(
θ
(t)
2

∣∣θ(t)1

)
dθ

(t−1)
2

=

∫
f
(
θ
(t)
1 , θ

(t−1)
2

)
f
(
θ
(t)
2

∣∣θ(t)1

)
dθ

(t−1)
2

= f
(
θ
(t)
1

)
f
(
θ
(t)
2

∣∣θ(t)1

)
= f

(
θ
(t)
1 , θ

(t)
2

)
.

As for the MH algorithm, under weak assumptions, the Gibbs sampler can
be shown to be (geometrically) ergodic, implying that

1

N

N∑
k=1

ϕ(xk) →
∫
X
ϕ(x)f(x) dx

as N → ∞ [9, Chapter. 10].
If some of the conditional posterior distributions used in the Gibbs sam-

pler are difficult to sample from directly, the MH algorithm can be used
to sample from these, leading to a hybrid-Gibbs sampler, also called
Metropolis-within-Gibbs [9, p.393].

2.5 Complex random variables

Complex random variables are similar to real random variables, but with
the difference that they map outcomes from some sample space into some
complex space instead of some real space. As a complex number can be
written on the form z = a+jb, where a, b ∈ R and j is the imaginary unit, a
complex random variable can be considered as a pair of real random variables
corresponding to the real and imaginary part of the variable, respectively.
We denote a generic complex random variable as

Z = Re(Z) + j Im(Z) = A+ jB,

where A and B are some real random variables [10, Chapter 17].
A complex random variable is distributed as a univariate complex

Gaussian with mean zero and variance σ2, Z ∼ CN
(
0, σ2

)
, if the real and

imaginary parts of Z are distributed according to

Re(Z) ∼ 1√
2
N
(
0, σ2

)
and Im(Z) ∼ 1√

2
N
(
0, σ2

)
.
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The scaling factor 1/
√
2 ensures that the variance is correct. One can check

that the complex random variable Z has the correct expectation, zero:

E[Z] = E[Re(Z) + j Im(Z)]

= E[Re(Z)] + j E[Im(Z)]

=
1√
2
· 0 + j

1√
2
· 0

= 0

and the correct variance, σ2:

V[Z] = E
[
|Z|2

]
−
∣∣E[Z]∣∣2

= E
[
|Z|2

]
= E

[
Re(Z)2 + Im(Z)2

]
= E

[
Re(Z)2

]
+ E

[
Im(Z)2

]
= V[Re(Z)] + E[Re(Z)]2 + V[Im(Z)] + E[Im(Z)]2

=
1

2
σ2 + 0 +

1

2
σ2 + 0

= σ2.

One can similarly show the same for a generic univariate complex Gaussian
Z ∼ CN

(
µ, σ2

)
. The pdf of a complex Gaussian Z ∼ CN

(
µ, σ2

)
is given by

f(z) =
1

πσ2
exp

(
− |z − µ|2

σ2

)
and the pdf of a generic complex multivariate Gaussian CNM (θ,Σ) as

f(x) =
1

πM det(Σ−1)
exp

(
− (x− θ)HΣ−1(x− θ)

)
, (2.8)

where the superscript (·)H denotes taking the Hermitian conjugate [11, p.26].
Simulating a univariate complex Gaussian with zero mean is summarised

in Algorithm 2 in Appendix A. Sampling of a generic univariate complex
Gaussian Z ∼ CN

(
µ, σ2

)
is made in the same way as in the zero-mean case,

except that the expectation µ ∈ C is added to the sample from the zero
mean complex Gaussian distribution.

A distribution that enforces sparsity, where the random variable is either
zero or not, is the Bernoulli complex Gaussian distribution. This dis-
tribution is a mixture between a point mass at the value zero and a complex
Gaussian if the variable is non-zero. A variable Z distributed according to
this distribution is denoted as Z ∼ BerCN

(
w, µ, σ2

)
, where the mixture

pmf/pdf is

f(z) = (1− w)δ(|z|) + w
1

πσ2
exp

(
− |z − µ|2

σ2

)
.
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The weight parameter w is the probability that the variable takes a non-
zero value. Sampling from a Bernoulli complex Gaussian is summarised in
Algorithm 3 in Appendix A [12, Appendix 3].

2.6 The generalised von Mises distribution

One of the biggest tasks of this thesis is to use a generative model (CCGAN)
to simulate a dilated and truncated generalised von Mises distribu-
tion denoted as dGvM[a,b], where −π ≤ a < b ≤ π indicates the limits of
the truncation. The dGvM[a,b] distribution can be seen as a generalisation
of the von Mises distribution (vM), as indicated by its name.

The von Mises distribution vM(κ, ϕ) can be seen as a normal distribu-
tion ”wrapped” around a circle with a concentration specified by κ > 0 and
expected angle ϕ ∈ [−π, π]. It is also called the circular normal distribution.
The analogous normal distribution for vM(κ, ϕ) is N (ϕ, 1/κ). The proba-
bility density function for the angle ω ∈ [−π, π] is given by

vM(ω;κ, ϕ) =
exp(κ cos(ω − ϕ))

2πI0(κ)
,

where I0 is the modified Bessel function of order zero used to ensure that
the density integrates to one [13]. Three examples of such pdfs can be seen
in Figure 2.4.

Figure 2.4: Three von Mises probability density functions specified by the
parameters given in the figure. From the green and red plots one can observe
that the density ”wraps” around the interval on which ω is defined on.
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To allow for asymmetry and multimodality as opposed to the von Mises
distribution, its generalisation was introduced in the form of the gener-
alised von Mises distributionGvMM (κ,ϕ) (of orderM). It is parametrised
by κ with elements κ1, κ2, . . . , κM > 0 and ϕ with elements ϕ1, ϕ2, . . . , ϕM ∈
[−π, π] and has the probability density function

GvMM (ω;κ,ϕ) ∝ exp

(
M∑

m=1

κm cos
(
ωm− ϕm

))
,

where the normalising constant is a series of Bessel functions which makes it
complicated to sample from this distribution [14, Section 1]. The subscript
(·)M is omitted if it is clear what order the GvM distribution has. Three
examples of such pdfs for M = 2 can be seen in Figure 2.5.

Figure 2.5: Three generalised von Mises probability density functions spec-
ified by the parameters given in the figure.

By scaling the angle variable ω in the GvM distribution with a factor
C > 0, the number of modes of the density can be changed, resulting in a
dilated generalised von Mises distribution (dGvM) with density:

dGvMM (ω;κ,ϕ) ∝ exp

(
M∑

m=1

κm cos
(
Cωm− ϕm

))
.

One finally obtains the already mentioned dilated and truncated generalised
von Mises distribution by truncating the dGvM distribution on an interval
[a, b], where −π ≤ a < b ≤ π as

dGvMM,[a,b](ω;κ,ϕ) ∝ exp

(
M∑

m=1

κm cos
(
Cωm− ϕm

))
1[a,b](ω).
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Here, 1 denoted the indicator function defined as

1A(x) =

{
1, if x ∈ A

0, otherwise

for some set A. Some illustrations of the densities of the dilated (and trun-
cated) GvM distributions can be seen in Figure 2.6.

(a) Three examples of dilated generalised
von Mises distributions with dilation fac-
tor π.

(b) Three examples of dilated and trun-
cated ([-0.5,0.5]) generalised von Mises
distributions with dilation factor π.

Figure 2.6: Visually comparing some densities between the dilated GvM and
the dilated and truncated GvM pdfs.

In this thesis, methods like Monte Carlo (Sections 2.3 and 2.4) and gen-
erative models in the form of continuous conditional generative adversarial
networks (Chapter 3) are used to sample from the dilated and truncated
generalised von Mises distribution.
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Chapter 3

Continuous Conditional
Generative Adversarial
Networks

A dataset can be seen as having been sampled from an unknown underlying
data generating distribution. How a distribution like this can be modelled
given a dataset, using CCGAN, is presented in this chapter. In contrast to
discriminative models that model a conditional probability P(y|x) of a label
y given a data point x, generative models instead model the conditional
probability P(x|y) of an observable x given a label y [8, p.43].

Introduced year 2014 by Ian Goodfellow et. al., GAN is a framework
for constructing a generative model by pitting two (neural network) models
against each other, acting as adversaries. The formal definition of this game
is defined in equations (3.3) and (3.4). Given a dataset, which can be seen
as having been generated from some unknown data generating distribution
pdata, one of the networks, G, is a generative model that approximates the
sampling of pdata. The other network, D, is a discriminative model that
distinguishes between whether a data point was drawn from the true data
or sampled from the generator G [15, p.1].

Intuitively, one can understand the GAN framework by the analogy
where the generator is an art forger with the goal of tricking a discrimi-
nator acting as a gallerist into falsely classifying a painting as authentic.
Both parts start of not knowing what a real or fake painting looks like. As
time passes, the discriminator gets better at deciding if a painting is authen-
tic or fake, which the generator circumvents by finding new ways to make
the counterfeited painting look more authentic. Ideally after a sufficiently
long time, for the goal of the GAN framework, the generator creates paint-
ings that are indistinguishable from the authentic ones. For this framework
to work, the generator and discriminator have to improve at a similar pace.
If the discriminator improves too fast in comparison with the generator, the
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generator will be overpowered by the discriminator in the sense that the
generator will not comprehend how it should modify its generated samples
(paintings) in accordance with the authentic ones. On the contrary, if the
generator improves too fast, the discriminator will not be able distinguish
between the authentic and fake samples.

There are several applications of GAN, most of which relate to image
generation or modification. The StyleGAN architecture is used for image
synthesis capable of generating photo realistic images of for instance people’s
faces, cars, and buildings [16]. The website [17] uses StyleGAN to generate
images of persons that do not exist. Another application of GAN is image-
to-image translation where a model is tasked to learn a mapping between
an input image to an output image using a dataset of paired images. The
CycleGAN is a GAN architecture that does this without having access to
a dataset with paired images, but instead image collections with specific
characteristics. An example from the CycleGAN paper [18] can be seen in
Figure 3.1.

The application of GAN in this thesis will not be that of image genera-
tion, but instead of sampling from a univariate dilated and truncated gen-
eralised von Mises distributions introduced in Section 2.6, using a CCGAN
model as described in Section 5.5. This problem is fundamentally different
from the case of sampling images, since images are high-dimensional. Uni-
variate distributions may be less complex than multivariate ones, however,
due to a lesser complexity, the samples from univariate distributions are not
as easily distinguishable from each other than those of multivariate ones.

As GANs consist of artificial neural networks (ANNs), a brief summary of
the main concepts of ANNs is given in Section 3.1. Section 3.2 describes the
formal game theoretical setup of the adversarial networks. It is equivalent
with the training procedure of these networks. A modification in the GAN
architecture to facilitate the generation of conditional samples that have
a specific characteristic is introduced in Section 3.3. These Conditional
Generative Adversarial Networks (CGAN) condition the inputs to each
of the two networks (generator and discriminator) on a target label that can
be seen as additional information for the networks. The case of target labels
that belong to a finite set of values (which may have arisen from a multi-class
classification problem) is introduced before moving on to the case where the
conditioned values belong to a continuous set of values, for example the real
line. This type of GAN will be referred to as Continuous Conditional
Generative Adversarial Networks (CCGAN) and is presented in Section
3.3.1. Lastly, how the performance of GANs in this thesis are evaluated is
presented in Section 3.4.
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Figure 3.1: Illustration of CycleGAN image-to-image translation. Given two
arbitrary collections of images with some specific characteristic each (for
instance horse versus zebra images), the CycleGAN learns to translate an
image from one of the collections to an image that attains the characteristic
of the other collection.

3.1 Artificial Neural Networks

An artificial neural network (ANN) is a collection of computational nodes
and edges connecting these. They can be used for modelling patterns in data,
essentially function approximation, for solving classification and regression
tasks in supervised learning, but also for modelling probability distributions.
The feedforward network is a common ANN architecture that represents
a composition of functions by adjacent layers, where each layer consists of a
number of nodes, where each node in each layer is connected to every node in
the subsequent layer. Assuming the network input and output dimensions
are N and M , respectively, the feedforward network can be defined by a
function

RN ∋ x0 7→ f(x0;W ) ∈ RM ,

where x0 is the network input, andW is the collection of weights parametris-
ing the network. The general output of layer ℓ ∈ {1, . . . , L} of a feedforward
network is

h(ℓ)
(
h(ℓ−1)

)
= ϕ(ℓ)

(
W (ℓ)Th(ℓ−1) + b(ℓ)

)
,

where h(ℓ−1) is the output of the preceding layer, ϕ(ℓ) is the activation
function in layer ℓ operating elementwise on the vector input, W (ℓ) is the
weight matrix, b(ℓ) is the vector containing the biases for each node in the
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ℓ:th layer, and

f(x0;W ) = h(L)

h(0) = x0.

The sizes of the layers may vary, and the dimensions of the weight matrices
and bias vectors are chosen accordingly. A common activation function
for the hidden layers, namely neither the input nor output layer, is the
Rectified Linear Unit (ReLU), defined as

ReLU(x) = max(0, x), x ∈ R.

The logistic sigmoid is often used for binary classification problems as
output activation function, given by

σ(x) =
1

1 + exp(−x)
.

The output can be interpreted as the probability that the sigmoid input x
belongs to one of the two classes in question [19, Chapter 6]. According
to the universal approximation theorem, for any sufficiently regular
function that is to be approximated, there exists, for an arbitrary tolerance,
a feedforward network that approximates it with this tolerance. However,
the theorem is nonconstructive [19, Section 6.4.1].

The task of training a network, given a dataset D, is an optimisation
problem where a loss function W 7→ L(W ;D), tailored to a specific prob-
lem, is to be minimised. The learning problem can thus be posed as finding
the network weights satisfying the following:

W ∗ = argmin
W

L(W ;D).

Optimising the loss function is synonymous with ”training” the network.
For classification and regression problems, the loss is usually chosen to be a
cross-entropy or mean square error loss, respectively.

The loss is iteratively minimised by adjusting the network parameters in
such a way as to descend the gradient of the loss function with respect to
the parameters:

Wt+1 = Wt − η∇WtL(Wt;D),

where η is the learning rate. This is standard Gradient Descent (GD).
To accelerate the optimisation and to avoid local optima, the dataset is
batched, giving rise to the two GD methods mini-batch gradient descent
and stochastic gradient descent depending on whether the batches have
a larger cardinality than one or not, respectively. Due to the non-convexity
of the problem, potential existence of plateaus and saddle points, and spar-
sity of the data features, several other GD methods have been suggested
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to alleviate these problems. A commonly used gradient descent algorithm
that uses both an adaptive learning rate for each individual network param-
eter and momentum is adaptive moment estimation (ADAM). ADAM
computes and keeps track of an exponential average of biased first moments
(mean) mt+1 and second moments (variance) vt+1 of the gradients. The
moments are updated as

mt+1 = β1mt + (1− β1)∇WtL(Wt;D)

vt+1 = β2vt + (1− β2)
(
∇WtL(Wt;D)

)2
,

where β1 and β2 are hyperparameters usually set to 0.9 and 0.999 respec-
tively. The moments are both initialised to zero. Calculating the unbiased
moment estimates is done as

m̂t+1 =
mt+1

1− βt1

v̂t+1 =
vt+1

1− βt2
.

The ADAM parameter update rule is then defined as

Wt+1 = Wt −
η√

v̂t+1 + ϵ
m̂t+1,

where ϵ is another hyperparameter used for numerical stabilisation whose
default value usually is 10−8 [20, p.7-8].

Using the backward propagation algorithm, the gradients are com-
puted by recursively applying the chain rule along each and every path of
the network from the loss to each input and simultaneously caching the in-
termediate derivatives, essentially making backpropagation a dynamic pro-
gramming algorithm with linear time complexity [19, Section 6.5].

To further accelerate the training process, but also stabilise it by dimin-
ishing internal covariance shift, the method of batch normalisation
can be used. Internal covariance shift arises when the distribution of each
layer’s input changes due to the change of parameters of the previous layer.
This makes the training more sensitive to the choice hyperparameters, for
instance learning rate. Batch normalisation whitens the inputs to each layer;
thus, the inputs are transformed to have zero mean and unit variance, re-
ducing the effect of interval covariance shift [21].

3.2 The two-player minimax game

The probability distribution pG of the generator approximates pdata. This is
done by letting the input z, called the latent vector or simply noise vector,
to the generator be drawn from a distribution pz that is efficient to sample
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from (usually from a unit uniform or standard normal distribution). The
generator output is a value x = G(z;WG), where WG is the parameters
of the generator. The space in which the latent vector z is drawn from is
called the latent space. Given a sample x drawn from either pdata or pG,
the output D(x;WD) of the discriminator represents the probability that
the input x came from the training data. The two networks can be described
by the following mappings:

RN ∋ z 7→ x = G(z;WG) ∈ RM

RM ∋ x 7→ D(x;WD) ∈ R,

where N is the dimension of the latent space and M is the dimension of the
samples/discriminator inputs. Figure 3.2 illustrates how the networks are
setup. From now on, the network parameters WG and WD will be omitted
to increase readability.

Figure 3.2: Schematic illustration of the GAN setup.

The discriminator is a binary classifier, outputting the probability that
the input x is authentic. Training of the discriminator is therefore done in
such a way as to maximise the probability that the discriminator assigns the
correct target label (authentic or fake) for the inputs drawn from both the
training data and fake data sampled from the generator. The loss function
for the discriminator, LD, to be minimised is therefore the binary cross-
entropy loss defined as

LD = −Ex∼pdata [log(D(x))]− Ez∼pz [log(1−D(G(z)))], (3.1)

where the expectation is split up into two terms since the mini-batch the
discriminator will train on consists of two parts: a mini-batch drawn from
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the GAN training data and a mini-batch of samples sampled from the gen-
erator. Each data point in the authentic mini-batch is assigned a target
label of value 1, while the fake samples are assigned value 0. Since the
training data is not labeled, except implicitly while training the discrimi-
nator, the GAN framework falls under the unsupervised learning category.
Observing the discriminator loss, one notes that the value of the loss is
smaller when the discriminator correctly classifies an authentic input x
(D(x) → 1 =⇒ log(D(x)) → 0) and larger when it misclassifies an authen-
tic input (D(x) → 0 =⇒ log(D(x)) → −∞). A similar observation can be
made by examining the term log(1−D(G(z))) in the loss function, where a
discriminator that distinguishes between authentic and fake samples has a
smaller loss.

As formerly stated, the goal of the generator is to trick the discriminator
into believing that the samples generated from the generator are authentic.
A suitable loss function LG for the generator is therefore

LG = Ez∼pz [log(1−D(G(z)))]. (3.2)

The mini-batch that the generator receives is simply a mini-batch of latent
vectors sampled from the latent space as z ∼ pz. One notes that a generator
that is better at fooling the discriminator, thus making the discriminator
believe the target label of the sample G(z) is 1, gives a lower generator loss
(D(G(z)) → 1 =⇒ log(1−D(G(z))) → −∞).

Because of the dependence of the generator loss on the discriminator
loss, the two losses of the networks can be combined to form the following
two-player minimax game:

min
G

max
D

V (G,D), (3.3)

with value function V (G,D) defined as

V (G,D) = Ex∼pdata [log(D(x))] + Ez∼pz [log(1−D(G(z)))]. (3.4)

The optimisation of the value function eventually leads to the obtaining of
the optimal generator parameters

W ∗
G = arg min

G
max
D

V (G,D),

after which the generator should be able to sample data points that are
indistinguishable from the authentic ones.

As shown in [15, Proposition 1], for a fixed generator G, the optimal
discriminator D is

D∗
G(x) =

pdata(x)

pdata(x) + pG(x)
.
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The value function in equation (3.4) can thus be reformulated as

V (G,D∗
G) = Ex∼pdata [log(D

∗
G(x))] + Ez∼pz [log(1−D∗

G(G(z)))] (3.5a)

= Ex∼pdata [log(D
∗
G(x))] + Ex∼pG [log(1−D∗

G(x))] (3.5b)

= Ex∼pdata

[
log

pdata(x)

pdata(x) + pG(x)

]
(3.5c)

+ Ex∼pG

[
log

pG(x)

pdata(x) + pG(x)

]
. (3.5d)

Using the definition of the Kullback-Leibler divergence (KL divergence)
[22, equation (1)]:

KL(p ∥q) =
∫
x
p(x) log

p(x)

q(x)
dx

which measures how close two probability distributions p and q defined over
the same support (part of domains with non-zero probability) are, the last
equality in equation (3.5) can be rewritten as

V (G,D∗
G) = KL(pdata∥pdata + pG) +KL(pG∥pdata + pG).

A further rewrite can be made by using the Jensen-Shannon divergence
(JS divergence) [23, equation (10)] which is a symmetrisation of the KL
divergence defined as:

JS(p ∥q) = 1

2

(
KL

(
p
∥∥∥p+ q

2

)
+KL

(
q
∥∥∥p+ q

2

))
.

Using this definition, one can check that the value function can be rewritten
as

V (G,D∗
G) = − log(4) + 2 · JS(pdata ∥pG).

The JS divergence is non-negative and is zero when the distributions pdata
and pG are the same. It follows that the global minimum of the value
function obtains its minimum at − log(4) when pdata = pG. The generator
thus seeks to minimise the JS divergence between its represented distribution
pG and the data generating distribution pdata. Research has been done on
whether there are other loss functions the adversarial networks may use
for training, resulting in for example Wasserstein GAN (WGAN) [24] and
WGAN with gradient penalty (WGAN-GP) [25]. The presented GAN is
commonly referred to as the Vanilla GAN.

In practice, a modified generator loss is used to improve the training:

LG = −Ez∼pz [log(D(G(z))].
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Rather than minimising the log-probability of the discriminator making a
correct prediction, this generator loss function aims at maximising the log-
probability of the discriminator making a mistake. In the former case, the
generator receives a smaller loss if the discriminator outputs the correct la-
bel to a sample, hence the gradients of the generator parameters may vanish
during training and the generator does not learn anything. This is especially
the case in early training where the discriminator learns to distinguish be-
tween authentic and fake samples. Modifying the generator loss is therefore
of practical importance to obtain a well-functioning generator [19, p.692][15,
p.1-3]. Algorithm 5 in Appendix A summarises the GAN training.

Generative adversarial networks are notoriously difficult to train in prac-
tice due to instability and mode collapse/dropping. The phenomenon of
mode collapse appears when the generator samples ”collapse” to one mode,
reducing the diversity of the generated samples. To gain a better under-
standing of GAN training and of the potential problems, see [26] where the
problems are introduced and discussed with the aim of overcoming them.
An example of a problem where mode collapse can arise is the creation of
a GAN to sample 28 × 28 pixel-images of handwritten digits (0 to 9) in
accordance with the MNIST dataset [27]. Mode collapse would result in a
generator that only generates images that look identical and probably look
like one of the ten digits.

3.3 Conditional GAN

For the previously introduced (vanilla) GAN, the user has no control over
which sample that should be generated since the input z to the generator
itself is sampled from a specified latent space. For generators that represent
some distribution pG corresponding to a multi-class distribution like the
MNIST data for instance, the generated image could be any of the ten digits.
If additional information is given to the networks by conditioning them on
some class label (digit) during training, the generator may be able to produce
the corresponding sample given a target label, resulting in what is called
Conditional Generative Adversarial Networks (CGAN). Conditioning
on some auxiliary data c that describes some data point x is done by feeding
both the generator G and discriminator D the auxiliary data c together with
the latent vector z and data point x giving outputs G(z, c) and D(x, c)
respectively. The discriminator outputD(x, c) can be seen as the probability
that the input x is authentic given the condition c. The training data for a
CGAN consist of labelled data pairs (x, c), thus the goal of a CGAN is to fit
the conditional distribution pdata(x|c). The minimax game for a CGAN can
be seen as optimising the minimax game for a GAN according to equation
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(3.3), but for each condition c. More formally, this can be written as

min
G

max
D

Ec∼pdata(c)

[
Ex∼pdata(x|c)[log(D(x, c))]

+ Ez∼pz(z)[log(1−D(G(z, c), c))]
]

[28, p.1-3]. A schematic illustration of the CGAN framework can be seen in
Figure 3.3.

Figure 3.3: Schematic illustration of the CGAN setup.

In practice, the conditioning of the networks on additional information
c can be done in several ways. Kwak and Zhang explore four different
architectures to incorporate the condition into the networks [29, p.2-3]. One
of these (also used in the original CGAN paper) lets c be a one-hot vector,
thus c is a zero vector apart from the element which corresponds to the
particular class in question that instead takes value one. For example, if
there are C ∈ N classes in a given dataset, the vector of size C with zeros
everywhere except element k (instead having value one) would be a one-hot
vector corresponding to the k:th class. The inputs to the generator and
discriminator are then the concatenation of the data point x and condition
c.

The case when the conditional information belongs to some continuous
space instead of a finite set of values is treated in the next subsection,
presenting the continuous CGAN.

3.3.1 Continuous Conditional GAN

The CGAN framework works well for categorical conditions that correspond
to class labels. However, this does not work equally well for conditions/scalar
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conditions lying in some continuous space, called regression labels. This
is mainly due to two problems:

1. The CGAN training relies on the principle of so-called Empirical
Risk Minimisation (ERM), which seeks to minimise the empirical
version of the specified loss function given some training data [30,
Section 4]. For this method to work well, the training data should
have many data points for each distinct condition. In practice, this
can be difficult to achieve since the regression label lies in a continuous
space, resulting in a training dataset with few or no samples for each
of the uncountable number of labels.

2. For conditions corresponding to class labels, the label is often encoded
by a one-hot vector which is then fed into the generator and discrimi-
nator with their corresponding inputs using concatenation. The num-
ber of distinct labels is fixed in these scenarios. For regression labels
however, the number of possible distinct labels are often uncountable,
making the usage of one-hot vectors infeasible.

One might approach these two problems by naively ”binning” the regres-
sion labels into disjoint intervals treated as independent classes and train
a CGAN to fit this binned data. There are some problems with this ap-
proach however. For instance, the represented distribution by the generator
can only be conditioned on the interval a label belongs to but not the label
itself, large intervals lead to poor results and correlations between the dif-
ferent classes is not considered [31, p.1-2].

Ding et. al. [31] proposed the CCGAN framework to deal with the
two problems stated above. In their work, they use the CCGAN for image
generation where the regression labels are of dimension one. The regression
label c is therefore assumed to be of dimension one for the rest of this
section. For the purpose of this thesis, the regression label will be of higher
dimension, but more on this in Section 5.5. The first problem is addressed
by the introduction of two empirical discriminator losses, labelled the Hard
Vicinal Discriminator Loss (HVDL) and Soft Vicinal Discriminator
Loss (SVDL), and an empirical generator loss. In this thesis, only the
HVDL is used, hence the SVDL will be disregarded. The second problem
was dealt with by the introduction of a novel label input method [31, p.2].
The new input method uses a label projection, but this is not used in this
thesis, see [32] for more details.

The HVDL is based on the principal of vicinal risk minimisation
(VRM) instead of ERM. ERM makes use of empirical distributions calcu-
lated from an underlying training dataset, forming Dirac masses at these
data points. In VRM, these empirical distributions are replaced with vicin-
ity functions with domains Ω(xi) := {x : d(x,xi) ≤ νxi} for each data
point xi, where x is some data point lying in the same space as the training



3.3. CONDITIONAL GAN 32

data points, d(·, ·) is some specified metric, νxi is some small real number,
and the set Ω(xi) is the vicinity of the data point xi [33, Section 1.1].

As mentioned, the goal of the (continuous) CGAN is to fit the conditional
distribution pdata(x|c). It is reasonable to assume that a small perturbation
of a label c produces a small change to pdata(x|c), it is this property that
VRM takes into account by letting data points in their vicinities share labels.
Letting the data points resemble images of people’s faces and the regression
labels be the corresponding age of the person, one can imagine that the
distribution of the facial features of eight-year-old children should be close
to the ones of nine-year-old children.

In what follows, the HVDL and CCGAN generator losses are loosely de-
rived from the CGAN discriminator and generator losses, respectively. The
discriminator and generator losses for a CGAN are (compare with equations
(3.1) and (3.2), respectively):

LD = −Ec∼pdata(c)

[
Ex∼pdata(x|c)[log(D(x, c))]

]
(3.6a)

− Ec∼pG(c)

[
Ex∼pG(x|c)[log(1−D(x, c))]

]
(3.6b)

= −
∫

log(D(x, c))pdata(x, c) dxdc (3.6c)

−
∫

log(1−D(x, c))pG(x, c) dxdc (3.6d)

and

LG = −Ec∼pG(c)

[
Ez∼pz(z)[log(D(G(z, c), c))]

]
= −

∫
log(D(G(z, c), c))pz(z)pG(c) dzdc,

where pdata(c) and pG(c) are the authentic and fake label marginal distribu-
tions, respectively, pdata(x|c) and pG(x|c) are the authentic and fake data
point distributions conditioned on c respectively, pdata(x, c) and pG(x, c) are
the authentic and fake joint distributions of x and c, respectively, and pz(z)
is the prior probability density function over the latent space. Apart from
the latent space prior the rest of the distributions are unknown, thus the
corresponding empirical losses (indicated by the superscript (·)δ) are min-
imised instead, in the CGAN framework:

L̂δ
D = − 1

Na

C∑
i=1

Na
ci∑

j=1

log
(
D
(
xa
ci,j , ci

))
− 1

NG

C∑
i=1

NG
ci∑

j=1

log
(
1−D

(
xG
ci,j , ci

))

L̂δ
G = − 1

NG

C∑
i=1

NG
ci∑

j=1

log(D(G(zci,j , ci), ci)),
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where C is the number of distinct labels, Na and NG are the number of
authentic and fake samples, respectively, Na

ci and NG
ci are the number of

authentic and fake samples with label c, respectively, xa
ci,j

and xG
ci,j

are
the j:th authentic and fake samples with label ci, respectively, and zci,j is
independently and identically sampled from the prior pz(z). In the empiri-
cal discriminator loss, the original joint probability densities pdata(x, c) and
pG(x, c) from the original discriminator loss have been estimated by their
empirical probability density functions

pδdata(x, c) =
1

Na

C∑
ci

Na
ci∑

j=1

δ
(
x− xa

ci,j

)
δ(c− ci)

pδG(x, c) =
1

NG

C∑
ci

NG
ci∑

j=1

δ
(
x− xG

ci,j

)
δ(c− ci),

where δ(·) indicates the Dirac delta mass centered at zero. It is these empir-
ical probability density functions that VRM replaces with vicinity functions
with the purpose of alleviating the first stated problem in the beginning of
this subsection.

Using the chain rule of probabilities, the joint probability densities of
pdata(x, c) and pG(x, c) can be written

pdata(x, c) = pdata(c)pdata(x|c)
pG(x, c) = pG(c)pG(x|c).

Using so-called kernel density estimation (KDE), the marginal distri-
butions pdata(c) and pG(x) can be estimated using the given training and
generated data with Gaussian kernels with variance, also called bandwidth,
σ2:

pdata(c) ∝
1

Na

Na∑
j=1

exp

(
−
(
c− caj

)2
2σ2

)
(3.7)

pG(c) ∝
1

NG

NG∑
j=1

exp

(
−
(
c− cGj

)2
2σ2

)
, (3.8)

where caj and cGj are the j:th authentic and fake training labels, respectively.
Density estimation seeks to make inferences about an underlying probability
density function from a finite number of samples seen as generated from this
distribution, saying something about the probability of points not included
in the data [34]. The parameter σ2 can be seen as a hyperparameter for
these marginal probability estimations. The conditional probability density
functions pdata(x|c) and pG(x|c) are estimated using the following vicinity
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functions:

pdata(x|c) ∝
1

Na
c,ν

Na∑
i=1

1{|c−cai |≤ν}δ
(
x− xa

i

)
(3.9)

pG(x|c) ∝
1

NG
c,ν

NG∑
i=1

1{|c−cGi |≤ν}δ
(
x− xG

i

)
, (3.10)

where xa
i and xG

i are the i:th authentic and fake data points with corre-
sponding labels cai and cGi , respectively. The hyperparameter ν is a small
real number determining how close regression labels should be in order to be
considered belonging to each other’s vicinities, which within their respective
data points should be treated as similar. The integer Na

c,ν is the number of
authentic samples with regression label cai that satisfy |c− cai | ≤ ν and the
integer NG

c,ν is the number of fake samples with regression label cGi that sat-

isfy |c− cGi | ≤ ν. One can view these constraints as having ”hard vicinities”
defined by c ± ν, hence the name HVDL. Combining the marginal KDEs
from equations (3.7) and (3.8) with the conditional vicinity functions from
equations (3.9) and (3.10), respectively, results in the hard vicinal estimates
(HVE) of the joint probability estimates as:

p̂HVL
data (x, c)

= C1

[
1

Na

Na∑
j=1

exp

(
−

(c− caj )
2

2σ2

)][
1

Na
c,ν

Na∑
i=1

1{|c−cai |≤ν}δ(x− xa
i )

]
p̂HVL
G (x, c)

= C2

[
1

NG

NG∑
j=1

exp

(
−
(
c− cGj

)2
2σ2

)][
1

NG
c,ν

NG∑
i=1

1{|c−cGi |≤ν}δ
(
x− xG

i

)]
,

where the constants C1 and C2 ensures that the estimates are valid prob-
ability density functions integrating to one. Inserting these estimates into
the CGAN discriminator loss seen in equation (3.6) results in the CCGAN
discriminator HVDL:

L̂HVDL
D

= − C3

Na

Na∑
j=1

Na∑
i=1

Eϵa∼N (0,σ2)

[
1{|caj+ϵa−cai |≤ν}

Na
caj+ϵa,ν

log
(
D
(
xa
i , c

a
j + ϵa

))]

− C4

NG

NG∑
j=1

NG∑
i=1

EϵG∼N (0,σ2)

[
1{|cGj +ϵG−cGi |≤ν}

Na
cGj +ϵG,ν

log
(
D
(
xG
i , c

G
j + ϵG

))]
,

(3.11)
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where the constants C3 and C4 ensures that the estimates are some con-
stants, ϵa := c − caj and ϵG := c − cGj . The loss function of the generator of
a CCGAN is

L̂ϵ
G =

1

NG

NG∑
i=1

EϵG∼N (0,σ2)

[
log
(
D
(
G
(
zi, c

G
i + ϵG

)
, cGi + ϵG

))]
(3.12)

[35, Section 2].
The CCGAN discriminator and generator losses enable training on the

vicinities of the regression labels c through the addition of Gaussian noise
ϵ with variance σ2 to the labels, lessening the problem of the training data
not containing enough data points for each of the infinite number of labels.
There are still some problems that may arise, as will be discussed in Section
5.5. As seen in the generator CCGAN loss in equation (3.12), Gaussian
noise is added to the seen labels cGi to train the generator on unseen labels,
enabling the generator to estimate pdata(x|c′) where c′ does not belong to
the training dataset. In this way generalisation is encouraged, thus the
hyperparameters σ and ν determining the noise and vicinity size respectively
act as regularisation parameters. This is how the CCGAN solves the first
problem stated in the beginning of this subsection.

Algorithm 6 in Appendix A summarises the CCGAN training. In prac-
tice, the normalising constants Na

caj+ϵa,ν and Na
cGj +ϵG,ν

in the HVDL CCGAN

discriminator loss, seen in equation (3.11), are set to one. The regularisation
parameters σ and ν are selected according to a rule of thumb, as explained
in the CCGAN paper [31, Section S.4]. A clear motivation for the rule of
thumb was not given, except that it seemed to work well for their exper-
iments. All regression labels are normalised to the unit interval [0, 1], the
bandwidth of the KDEs is then selected as

σ = σ̂ca

(
4

3Na

)1/5

, (3.13)

where σ̂ca is the sample standard deviation of the normalised training labels.
The hyperparameter σ can be seen as a parameter for how much the labels in
the dataset should be perturbed, without representing a completely different
distribution. The vicinity function radius ν is set to

ν = mννbase,

wheremν is generally set to 1 or 2, standing for half of the minimum number
of adjacent labels used for estimating pdata(x|c) given a label c, and

νbase = max
(
ca[2] − ca[1], c

a
[3] − ca[2], . . . , c

a
[Na

uc]
− ca[Na

uc−1]

)
, (3.14)

where ca[i] is the i:th smallest normalised distinct label and Na
uc is the number

of distinct labels in the dataset.
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3.4 Evaluating GAN performance

There are many techniques to evaluate GANs, both qualitative through
visualisation of generated samples (images) and quantitative through metrics
like the Wasserstein-1 (W1) distance, also called Earth-Mover distance, or
Energy distance (ED) for instance. However, there is no consensus as
to how exactly GANs should be evaluated in general [36]. In the following
sections, qualitative evaluation and the two metrics, W1 distance and ED,
will be presented.

Qualitative evaluation of GANs through visualisation of the generated
samples work well as the visualisation makes sense to a human. The sam-
ples should thus be images or a collection of samples seen as drawn from
a (multivariate) probability distribution of maximum dimension 2 so that
the empirical distributions in the form of histograms or KDEs can be visu-
alised. Comparisons are then made between the samples and the authentic
data by an annotator. An example of a visualisation which upon qualitative
evaluation is made where a GAN was used to model a standard univariate
Gaussian N (0, 1) is shown in Figure 3.4. One can observe that the distri-
bution the generator represents, pG, is quite close to the true underlying
data distribution pdata. This evaluation is highly subjective, which is why
quantitative should be considered.

Figure 3.4: Visualisation which upon qualitative evaluation is made where
a GAN was used to model a standard univariate Gaussian N (0, 1). The
two densities were calculated using KDE from the training data sampled
from a univariate standard normal distribution (red) and samples from the
generator (blue).

As mentioned above, GAN-training seeks to minimise the distance be-
tween the distribution the generator represents, pG, and the unknown data
generating distribution pdata. How this distance is measured can be done
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in several ways, but the presented way was through JS divergence. Unfor-
tunately, when visualising the losses of the discriminator and generator for
each training epoch, they are not as informative as for the losses minimised
for supervised learning problems. For supervised learning problems, there is
a negative correlation between the value of the loss function to be minimised
and the accuracy of the model. A lower loss function value corresponds to
a higher accuracy of the model. For GANs, this is not the case. What
one instead can look for in the discriminator and generator losses is if they
converge and stabilise during training. Convergence of the losses tend to
indicate that the networks have settled on some model parameters. One
should however make a qualitative evaluation to make sure that the gener-
ator produces reasonable samples similar to the ones in the training data.

Another way of measuring how close two distributions p and q are, given
a finite number of samples from them, is by using the Wasserstein-1 distance:

W1(p, q) = inf
π∈Π(p,q)

E(x,y)∼π

[
∥x− y∥1

]
,

where Π(p, q) is the set of all joint probability distributions π(x, y) with
marginals p and q respectively [37, equation (1)]. This distance arose from
the theory of optimal transport [38, p.22]. As opposed to the JS divergence,
it has been experimentally shown that a lower W1 distance are correlated
with better qualitative results [24].

A metric that is similar to the Wasserstein-1 distance is the energy dis-
tance. Assuming X and X ′ are two independent random variables dis-
tributed according to p, and Y and Y ′ are two independent random vari-
ables distributed according to q, then the energy distance between the two
variables X and Y is

ED(p, q) =
(
2E|X − Y | − E|X −X ′| − E|Y − Y ′|

)1/2
(3.15)

[39].
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Chapter 4

Signal Modelling and Target
Scene Estimation

This chapter details the methodology for one approach for solving the non-
linear problem of estimating the target scene of a signal that is robust to
grid mismatch. Section 4.1 provides a sparse signal representation using a
Fourier dictionary taking into account potential grid point offsets. In Section
4.2, a hierarchical Bayesian model for the signal is proposed. To estimate
the signal parameters, a hybrid-Gibbs sampler is used. The construction
of this is detailed in Section 4.3, and the evaluation is presented in Section
4.4. Finally, suggestions for accelerating the Bayesian inference using deep
generative models are given in Section 4.5.

4.1 Signal model

Upon receiving a signal y ∈ CM , the goal is to estimate the target scene.
Often, depending on how the signal is modelled, the signal consists of a sum
of cisoids embedded in white noise:

y =

N∑
n=1

αnan + n, (4.1)

where M is the size of the observation space, N is the number of target
signals (sources), αn ∈ C, n = 1, . . . , N , are the complex amplitudes and
an ∈ CM , n = 1, . . . , N , the steering vectors defined as

[an]m = exp(j2πfnm)

with frequency fn of the n:th target signal, and noise vector n. The sought-
after target scene from the signal is then (N,α1, f1, . . . , αN , fN ). The size
of the observation space M may in practice be equal to the number of
antenna elements seen in Figure 1.1. Assuming that the signal is sparse,

39
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namely that the number of targets is small, the signal may assume a sparse
representation. By using a Fourier basis, the signal model in equation (4.1)
can be rewritten as

y = Fx+ n, (4.2)

where F ∈ CM×M is a Fourier dictionary where usuallyM ≥M and x ∈ CM

is the sparse vector having ideally N nonzero components. The elements in
the Fourier dictionary are defined as

[fm]m =
1√
M

exp

(
j2πm

m

M

)
,

where m = 0, 1, . . . ,M − 1, m = 0, 1, . . . ,M − 1, and fm is the m:th column
of F . This basis is appropriate if the frequencies of the signals match the
ones on the grid

0,
2π

M
, 2

2π

M
, . . . , (M − 1)

2π

M
.

However, in practice, the frequencies may have an offset, making the true
frequencies lie outside or between the grid frequencies, giving rise to the
grid mismatch problem. Targets with frequencies not aligning with the
grid frequencies are so-called off-grid targets. As proposed in [40], the
possible grid error or grid mismatch, namely the difference between a target’s
frequency and the closest frequency on the frequency grid, is modelled by a
vector, ϵ ∈ RM , corresponding to the perturbations on the frequency axis.
This so-called grid mismatch vector is denoted as

ϵ =
[
ϵ0, . . . , ϵm, . . . , ϵM−1

]T
.

The Fourier dictionary is thus parameterised by the grid mismatch vector
as follows:

F (ϵ) =
[
f0(ϵ0), . . . ,fm(ϵm), . . . ,fM−1

(
ϵM−1

)]
,

where the m:th component of the vector in column m is[
fm(ϵm)

]
m

=
1√
M

exp

(
j2πm

m+ ϵm

M

)
.

To prevent overlapping between the frequency bins of the Fourier dictionary,
the grid mismatch elements are assumed to be bounded to the interval ϵm ∈
[−0.5, 0.5). Nevertheless, if the frequencies of multiple different sources lie
on the same grid point, these are not possible to distinguish. The sparse
signal model in equation (4.2) is hence reformulated as

y = F (ϵ)x+ n. (4.3)

In what follows, a hierarchical Bayesian model for the observed signal y
depending on parameters including the target amplitude vector x and grid
mismatch vector ϵ is presented, with the goal of estimating the target scene
(x, ϵ) using a hybrid-Gibbs sampler.



4.2. HIERARCHICAL BAYESIAN SIGNAL MODEL 41

4.2 Hierarchical Bayesian Signal Model

A hierarchical Bayesian model for the observed signal is proposed. This
model can be seen in Figure 4.1.

Figure 4.1: Hierarchical Bayesian model of an observed signal y given the

parameters collected in θ =
[
σ2, w, σ2x,x

T , ϵT
]T

and hyperparameters β0,
β1, γ0 and γ1.

Bayesian inference will be used to compute the posterior of the model
parameters generating the observed signal. The joint probability of all the
parameters should therefore in some sense reflect the dependencies between
them [7, Chapter 5]. The goal after receiving a signal y is to compute the
target scene (x, ϵ). This can be done by either point estimates of the target
scene or full distributions given by the Bayesian framework, but the posterior
of the target scene must be known beforehand in the Bayesian case.

Using Bayes’ theorem, the joint posterior of the model parameters, given
the observed signal, can be written as

f
(
σ2, ϵ,x, w, σ2x|y

)
=
f
(
y|σ2, ϵ,x, w, σ2x

)
f
(
σ2, ϵ,x, w, σ2x

)
f(y)

∝ f
(
y|σ2, ϵ,x, w, σ2x

)
f
(
σ2, ϵ,x, w, σ2x

)
.

The symbol ∝ denotes proportionality. Proportionality holds because the
left-hand side is a function of the model parameters, so discarding any fac-
tor solely depending on the observed signal y on the right-hand side, the
marginal likelihood in this case, preserves proportionality. The marginal
likelihood can be obtained by marginalising or integrating over the model



4.2. HIERARCHICAL BAYESIAN SIGNAL MODEL 42

parameter space, which can be a complicated task since the integral may
not have a closed form. Denoting the collection of model parameters as

θ =
[
σ2, w, σ2x,x

T , ϵT
]T
,

the marginal likelihood can be computed as

f(y) =

∫
f(y|θ)f(θ)dθ.

An estimate of the target scene (x, ϵ), can be obtained by the minimum
mean square errors (MMSE) of the estimators

x̂MMSE =

∫
xf(x|y)dx

ϵ̂MMSE =

∫
ϵf(ϵ|y)dϵ.

These estimates have no closed form solutions due to the intractability
caused by the distributions f(x|y) and f(ϵ|y). To overcome this prob-
lem, approximative methods are used, MCMC methods in our case. For
reasons that will become apparent when the conditional posteriors of the
target amplitude vector x and the grid mismatch vector ϵ are derived, both
of the vectors are sampled elementwise using a Gibbs sampler, where each
of the grid mismatch elements are sampled using the MH algorithm, nested
in the Gibbs sampler. The MCMC method used is therefore a hybrid-Gibbs
sampler.

The hybrid-Gibbs sampler is implemented to iteratively sample the model
parameters σ2

(n)
, w(n), σ2

(n)

x x(n), ϵ(n), from their corresponding conditional
posterior distributions. The superscript (·)(n) indicates an MCMC sample
at iteration n. The conditional posterior distributions of each of the param-
eters can readily be written as

f(θi|y,θ−i),

where θ−i is the same as θ but were the element at position i has been
removed. When enough samples have been collected, the MMSE estimators
can be approximated empirically as

θ̂i,MMSE =
1

Nr

Nr∑
n=1

θ
(n+Nbi)
i (4.4)

where Nbi and Nr are the number of burn-in samples and number of kept
samples, respectively.

Because the parameters that compose the observed signal are sampled
from their corresponding conditional posteriors, it is necessary to have ac-
cess to these. In their turn, the conditional posteriors are derived from the
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likelihood of the observed signal and the corresponding priors of the param-
eters. Therefore, the likelihood is first derived, the priors of the parameters
introduced afterwards, and the conditional posteriors derived lastly before
constructing and using the hybrid-Gibbs sampler to estimate the minimum
mean square error estimators of the target scene.

4.2.1 Signal likelihood derivation

The additive white background noise, n, in the signal model

y = F (ϵ)x+ n

is assumed to be a complex Gaussian with variance σ2 of the form

n|σ2 ∼ CN
(
0, σ2IM×M

)
,

where IM×M is the identity matrix of size M ×M . This subscript will be
disregarded for the ease of notation.

Assuming that the frequency mismatch ϵ and target amplitude vector
x are known, one can observe that the signal is a linear combination of
a complex multivariate Gaussian, hence the signal itself must also be a
complex multivariate Gaussian depending on the constant F (ϵ)x and the
white noise n. The likelihood of the observed signal can thus be written as

y|ϵ,x, σ2 ∼ CN
(
E[F (ϵ)x+ n],Cov(F (ϵ)x+ n,F (ϵ)x+ n)

)
, (4.5)

where the resulting expectation is computed as

E[F (ϵ)x+ n] = E[F (ϵ)x] + E[n] = F (ϵ)x+ 0 = F (ϵ)x

and the covariance computed as

Cov(F (ϵ)x+ n,F (ϵ)x+ n)

= Cov(F (ϵ)x,F (ϵ)x) + Cov(n,n) + 2Cov(F (ϵ)x,n)

= 0+ σ2I + 0

= σ2I,

where it was used that the covariance of the sum of independent random
variables is the sum of the covariances. Using the resulting expectation
and variance of the likelihood of the observed signal, the distribution of the
observed signal given in equation (4.5) can be rewritten as

y|ϵ,x, σ2 ∼ CN
(
F (ϵ)x, σ2I

)
.
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Using the expression of a generic complex multivariate Gaussian given
by equation (2.8), the pdf of the likelihood can be written as follows:

f
(
y|ϵ,x, σ2

)
(4.6a)

=
1

πM det(σ2I)
exp

(
−
(
y − F (ϵ)x

)H(
σ2I

)−1(
y − F (ϵ)x

))
(4.6b)

=
1

πM
∏M−1

m=0 σ
2
exp

(
−
(
y − F (ϵ)x

)H
I
(
y − F (ϵ)x

)
σ2

)
(4.6c)

=
1

πMσ2M
exp

(
− ∥y − F (ϵ)x∥22

σ2

)
. (4.6d)

Now that the distribution of the likelihood is known, the priors of the pa-
rameters making up the observed signal are introduced, some of which are
chosen in such a way as to be conjugate priors with respect to the signal
likelihood.

4.2.2 Signal parameter priors

The choice of the prior distributions of the parameters are made in such a
way as to make the calculations of the posteriors mathematically tractable,
making use of conjugate priors, at the same time as the physical interpreta-
tions are preserved.

As the target scene (x, ϵ) is assumed to be sparse, namely having a
small number of nonzero elements, the priors of the target scene model
parameters x and ϵ should enforce sparsity. With this in mind, the prior
of the target amplitudes are assumed to be Bernoulli-complex Gaussian
distributed, xm|w, σ2x ∼ BerCN

(
w, 0, σ2x

)
, with the mixture pdf

f(xm|w, σ2x) = (1− w)δ(|xm|) + w
1

πσ2x
exp

(
− |xm|2

σ2x

)
, (4.7)

which enforces sparsity. The level of sparsity is determined by the parameter
w ∈ [0, 1], whose value is the probability that the corresponding variable
xm is nonzero. In other words, this prior represents a target being present
at the m:th frequency bin with probability w and power σ2x.

If a target is present at the m:th frequency bin, the grid mismatch for
this target should be determined. It therefore seems reasonable to model
the grid matches ϵm depending on the reciprocal incoming target xm, and
if no target is present in a specific frequency bin, there should be no grid
mismatch. The prior for the grid mismatches is therefore set as

f(ϵm|xm) =

{
1[−0.5,0.5](ϵm), if xm ̸= 0

δ(ϵm), if xm = 0.
(4.8)
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The prior of the noise power σ2 is given by an inverse-gamma distri-
bution σ2|γ0, γ1 ∼ IG(γ0, γ1) mostly because this prior is conjugate to the
signal likelihood, seen in equation (4.6d). The hyperparameters γ0 and γ1
are the shape and scale parameters , respectively, for the inverse-gamma
distribution, enabling the selection of an informative or flat prior depending
on how much information is available about the noise power. The pdf of the
inverse-gamma prior for the signal power is

f
(
σ2|γ0, γ1

)
∝ e−γ1/σ2

(σ2)γ0+1
1[0,+∞[

(
σ2
)
.

The prior of the target signal power σ2x is also given by an inverse-
gamma prior, denoted as σ2x|β0, β1 ∼ IG(β0, β1). As for the noise power,
the hyperparameters for the target signal power are chosen carefully with
respect to the prior knowledge about the target scene. The pdf of this
distribution is

f
(
σ2x|β0, β1

)
∝ e−β1/σ2

x

(σ2x)
β0+1

1[0,+∞[

(
σ2x
)
.

The hyperparameters γ0, γ1, β0 and β1 are chosen in a suitable way as
to give the sought-after mean and variance of the prior distributions of the
thermal noise power σ2 and target power σ2x. The mean E[g] and variance
Var[g] of a generic inverse gamma distribution g ∼ IG(ν0, ν1) are given by

E[g] =
ν1

ν0 − 1
, ν0 > 1 (4.9a)

Var[g] =
ν21

(ν0 − 1)2(ν0 − 2)
, ν0 > 2 (4.9b)

[41]. Hyperparameter tuning is done using these equations.
The prior of the level of occupancy w is given by a uniform distribution

on the unit interval, w ∼ U[0,1], since no knowledge about the sparsity of the
signal is available. The pdf of this prior is

f(w) = 1 for w ∈ [0, 1].

Given the signal likelihood and signal parameter priors, the signal pa-
rameter posteriors can be derived.

4.2.3 Signal parameter posteriors

The final components needed for retrieving the estimated target scene using
Bayesian inference are the posterior distributions of the model parameters.
These are derived with the aid of the known likelihood and given priors
above. The detailed derivations of the posterior distributions can be seen in
Appendix B, this section serves as a summary.
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As mentioned, the model parameters

θ =
[
σ2, w, σ2x,x

T , ϵT
]T

are to be sampled elementwise using a hybrid-Gibbs sampler. For this pur-
pose, the posterior distributions of the elements xm and ϵm of the amplitude
vector x and grid mismatch vector ϵ, respectively, also have to be known.

Starting from the joint posterior pdf of σ2, ϵ,x, w, σ2x|y, the posteriors of
the model parameters are derived. Utilising the dependencies between the
model parameters seen in the hierarchical Bayesian model in Figure 4.1, the
joint posterior pdf can be written as

f
(
σ2, ϵ,x, w, σ2x|y

)
= f

(
y|ϵ,x, σ2

)
f(ϵ|x)f

(
x|w, σ2x

)
f(w)f

(
σ2x
)
f
(
σ2
)
.

(4.10)
Using the fact that the following equality holds:

y − F (ϵ)x = em − fm(ϵm)xm,

where
em := y −

∑
i ̸=m

fi(ϵi)xi,

one can obtain expressions of the posterior distributions of each separate
element xm and ϵm. Conditioning on all the parameters in the joint posterior
pdf apart from xm and ϵm gives the conditional joint posterior

f
(
ϵm, xm|y, ϵ−m,x−m, σ

2, w, σ2x
)

∝ exp

(
− |xm|2 − xmeHmfm(ϵm)− x∗mfm(ϵm)Hem

σ2

)
× f(ϵm|xm)f

(
xm|w, σ2x

)
,

from which the conditional posteriors of xm and ϵm are derived.
Following the derivation given in Appendix B.1, the m:th element of x

is distributed according to a Bernoulli Gaussian distribution

xm|y, ϵ,x−m, σ
2, w, σ2x ∼ BerCN

(
wm, µm, η

2
m

)
with parameters

η2m :=
σ2 + σ2x
σ2σ2x

µm :=
η2m
σ2

fm(ϵm)Hem

wm :=
w

η2m
σ2
x
exp

(
|µm|2
η2m

)
1− w + w

η2m
σ2
x
exp

(
|µm|2
η2m

) . (4.11)
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The derivation of the posterior distribution of ϵm in Appendix B.2 con-
cludes that the m:th element of ϵ is distributed according to a dilated and
truncated generalised von Mises distribution of order M :

ϵm|y, ϵ−m,x, σ
2 ∼ dGvMM [−0.5,0.5](κ,ϕ)

with parameters

κ ∈ RM ϕ ∈ RM

κm :=
2

σ2
√
M

|bm| ϕm := arg(bm)

b := x∗mu∗
m ⊙ em u ∈ CM×M

bm := [b]m [um]m := exp
(
j2πmm/M

)
.

It has a density

f
(
ϵm|y, ϵ−m,x, σ

2
)

(4.12a)

∝ exp

(
M−1∑
m=0

κm cos

(
2π
ϵm

M
m− ϕm

))
f(ϵm|xm). (4.12b)

Given an observed signal y and given target scene (x, ϵ), the conditional
posteriors of the parameters σ2, w and σ2x can be readily derived as in
Appendices B.3, B.4 and B.5, respectively. Assuming that the amplitude
vector x has n1 nonzero elements, hence n0 = M − n1 components that
equals zero, the conditional posterior distributions can be summarised as

σ2|y,x, ϵ ∼ IG
(
γ0 +M,γ1 + ∥y − F (ϵ)x∥22

)
w|x ∼ Beta(n1 + 1, n0 + 1)

σ2x|x ∼ IG
(
β0 + n1, β1 + ∥x∥22

)
.

Note that the conditional posteriors of σ2 and σ2x also are inverse-gamma
distributed as their priors due to the priors being conjugate priors to the
likelihood of the observed signal.

With the given priors, signal likelihood and posteriors of the model pa-
rameters, the hybrid-Gibbs sampler for performing Bayesian inference can
be constructed.

4.3 Signal parameter sampling with hybrid-Gibbs

In this section, the construction of the hybrid-Gibbs sampler is described.
After the overall algorithm has been summarised, the details of how the tar-
get amplitude elements xm and the grid mismatch elements ϵm are sampled
are given.
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The goal upon receiving a signal y is to compute the target scene (x, ϵ),
that is modelled using the Bayesian hierarchy given in Figure 4.1. Because
the conditional distributions of the model parameters are known and easy to
sample from, apart from the grid mismatch vector ϵ which will be sampled
using a Metropolis-Hastings approach, the Gibbs sampler is suitable for
sampling from the joint conditional posterior

f
(
σ2, ϵ,x, w, σ2x|y

)
given by equation (4.10). This leads to the hybrid-Gibbs sampler specified
in the following subsection.

4.3.1 Constructing the hybrid-Gibbs sampler

Apart from the observed signal y, the hyperparameters (β0, β1), (γ0, γ1) for
the noise and target signal powers σ2 and σ2x, respectively, are needed for
running the hybrid-Gibbs sampler since the priors of the model parameters
must be defined beforehand. The hybrid-Gibbs sampler for sampling the
model parameters and computing the MMSEs is summarised in Algorithm
1. Note that the initial grid mismatch samples only are drawn for the el-
ements of ϵ(0) corresponding to the nonzero components of x(0) according
to the prior of ϵm seen in equation (4.8). From this prior one observes that
xm = 0 implies that ϵm = 0 due to the point mass δ(ϵm), meaning that
ϵm = 0 with probability 1. Sampling a uniform ϵm is thus only necessary
if xm ̸= 0, otherwise one simply lets ϵm = 0. From the inner loop of the
hybrid-Gibbs sampler algorithm, one notes that a slight difference in nota-
tion has been introduced. In this inner loop, the target amplitude and grid

mismatch vectors x
(n)
−m and ϵ

(n)
−m, respectively, have the following definitions

(pay attention to the superscripts)

x
(n)
−m =

[
x
(n)
0 , . . . , x

(n)
m−1, x

(n−1)
m+1 , . . . , x

(n−1)

M−1

]
(4.13)

ϵ
(n)
−m =

[
ϵ
(n)
0 , . . . , ϵ

(n)
m−1, ϵ

(n−1)
m+1 , . . . , ϵ

(n−1)

M−1

]
, (4.14)

where after adding the sample x
(n)
m to the target amplitude vector x

(n)
−m gives

x(n) =
[
x
(n)
0 , . . . , x

(n)
m−1, x

(n)
m , x

(n−1)
m+1 , . . . , x

(n−1)

M−1

]
, (4.15)

which is conditioned upon for sampling the next grid mismatch ϵ
(n)
m .
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Algorithm 1: Hybrid-Gibbs sampler for estimating target scene
of a given signal y.

Require: Signal y, hyperparameters (β0, β1), (γ0, γ1), burn-in
samples Nbi, samples to keep Nr, and subsample size K.

Result: Samples:
(
σ2

(n)
, w(n), σ2

(n)

x ,x(n), ϵ(n)
)
n=1,2,...,Nr

Estimators: σ̂2MMSE, ŵMMSE, σ̂
2
xMMSE, x̂MMSE, ϵ̂MMSE

{Initialisation}
w(0) ∼ U[0, 1]

σ2
(0)

x ∼ IG(β0, β1)

x(0) ∼
∏M−1

i=0 BerCN
(
w(0), 0, σ2

(0)

x

)
ϵ(0) ∼ U[−0.5, 0.5]

{Iterations}
for n=1 to Nbi +KNr do

σ2
(n) |y,x(n−1), ϵ(n−1) ∼ IG

(
γ0+M,γ1+

∥∥y−F
(
ϵ(n−1)

)
x(n−1)

∥∥2
2

)
w(n)|x(n−1) ∼ Beta(n1 + 1, n0 + 1)

σ2
(n)

x |x(n−1) ∼ IG
(
β0 + n1, β1 +

∥∥x(n−1)
∥∥2
2

)
for m=0 to M − 1 do

x
(n)
m |y,x(n)

−m, w
(n), σ2

(n)

x , σ2
(n)
, ϵ(n−1) ∼ BerCN

(
wm, µm, η

2
m

)
if x

(n)
m = 0 then

ϵ
(n)
m = 0

else

ϵ
(n)
m |y, ϵ(n)−m,x

(n), σ2
(n) ∼ dGvM[−0.5, 0.5](κ,ϕ) according

to Algorithm 4 in Appendix A
end

end

end

{Estimators}
θ̂MMSE = 1

Nr

∑Nr
n=1 θ

(tK+Nbi) for each model parameter according to
equation (4.4)

In practice, the level of occupancy wm defined in equation (4.11) for
determining the probability that the element xm is nonzero can potentially
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become undefined. This is a consequence of the potential simultaneous over-
flow of the exponential factors in the numerator and denominator, which
would lead to an undefined wm (NaN). To overcome this problem, the value
of wm is set to one when this simultaneous overflow of the numerator and
denominator occurs. This is reasonable since the limit of the fraction ap-
proaches one when both exponents tend to infinity.

The posteriors of the model parameters w, σ2, σ2x, and xm follow well
known real distributions and are therefore easy to sample from. Algorithm
3 in Appendix A is used to sample the target amplitude elements, with the
additional step of adding a complex mean to the sample. A more intricate
method for sampling the grid mismatch elements ϵm is needed. The details
of how this is done are given in the following subsection.

4.3.2 Grid mismatch sampling with Metropolis-Hastings

The elementwise sampling of ϵm is done using the MH algorithm since the
conditional posterior is a dilated and truncated generalised von Mises dis-
tribution given in equation (4.12b), that has no easy way of being sampled.
Instead of trying to directly sample from its conditional posterior,

f
(
ϵm|y, ϵ−m,x, σ

2, w, σ2x
)
∝ exp

(
M−1∑
m=0

κm cos

(
2π
ϵm

M
m− ϕm

))
f(ϵm|xm),

(4.16)
the idea of the MH algorithm is to sample a Markov chain with the distri-
bution given by equation (4.16) as its stationary distribution. For the same
reason as explained above, in the initialisation of ϵ(0) in the hybrid-Gibbs

sampler, the next sample ϵ
(n)
m is only sampled using the MH algorithm if

the corresponding target amplitude is nonzero, x
(n)
m ̸= 0. Only grid points

having a nonzero target amplitude can have a grid mismatch.
The proposal distribution in the MH algorithm is chosen to be a distri-

bution that is efficient to sample from and as similar as possible to the target
distribution. In Lasserre’s article [3, Section 2.2.2], the proposal distribution
was chosen as to depend on the estimated target power, |xm|2/σ2. If the
estimated target power was below a fixed threshold, the proposal was chosen
to be flat, and if it was above the threshold, the proposal was chosen to be
a Gaussian. Unlike this choice of proposal, the method used in this thesis
does not make use of such a proposal depending on the estimated target
power. Instead, independently of the estimated target power, the proposal
distribution is simply chosen to be a Gaussian with a mean taking the value

of the previous sample ϵ
(n−1)
m and some suitable variance σ2p. The idea be-

hind choosing the Gaussian proposal mean to be the previous sample is to
iteratively converge towards the true grid mismatch. A suitable variance is
one that balances exploration and exploitation of the state space, hence the
variance should neither be too small nor too large. More specifically, the
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proposal distribution q
(
ϵ∗m|ϵ(n−1)

m

)
for the next sample of an element in the

grid mismatch vector, ϵ∗m, given the previous sample ϵ
(n−1)
m is chosen as:

q
(
ϵ∗m|ϵ(n−1)

m

)
= N

(
ϵ∗m|ϵ(n−1)

m ; ϵ
(n−1)
m , σ2p

)
.

Using the fact that this proposal is symmetric,

q
(
ϵ∗m|ϵ(n−1)

m

)
= q
(
ϵ
(n−1)
m |ϵ∗m

)
,

the acceptance probability can be written as

α
(
ϵ∗m, ϵ

(n−1)
m

)
= min

(
1,

dGvM[−0.5, 0.5]

(
ϵ∗m;κ,ϕ

)
q
(
ϵ
(n−1)
m |ϵ∗m

)
dGvM[−0.5, 0.5]

(
ϵ
(n−1)
m ;κ,ϕ

)
q
(
ϵ∗m|ϵ(n−1)

m

))

= min

(
1,

dGvM[−0.5, 0.5]

(
ϵ∗m;κ,ϕ

)
dGvM[−0.5, 0.5]

(
ϵ
(n−1)
m ;κ,ϕ

)).
In practice, the fraction

dGvM[−0.5, 0.5]

(
ϵ∗m;κ,ϕ

)
dGvM[−0.5, 0.5]

(
ϵ
(n−1)
m ;κ,ϕ

)
may be undefined (NaN) when first computing the numerator and the denom-
inator separately before taking the fraction due to the simultaneous overflow
of both the numerator and denominator. To overcome this problem, the fol-
lowing rewrite is done before computing the acceptance probability in order
to avoid overflow:

dGvM[−0.5, 0.5]

(
ϵ∗m;κ,ϕ

)
dGvM[−0.5, 0.5]

(
ϵ
(n−1)
m ;κ,ϕ

)
=

exp
(∑M−1

m=0 κm cos
(
2π

ϵ∗m
M
m− ϕm

))
exp

(∑M−1
m=0 κm cos

(
2π

ϵ
(n−1)
m

M
m− ϕm

))
= exp

(
M−1∑
m=0

κm

(
cos

(
2π
ϵ∗m
M
m− ϕm

)
− cos

(
2π
ϵ
(n−1)
m

M
m− ϕm

)))
.

The truncation of the generalised von Mises distribution is taken care
of a while-loop guaranteeing that the proposed sample ϵ∗m is in the interval
[−0.5, 0.5]. A summary of the MH algorithm for sampling grid mismatch
elements using the chosen proposal distribution is given in Algorithm 4 in
Appendix A.
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4.4 Estimated target scene evaluation

To evaluate the hybrid-Gibbs sampler, the target scene of a synthetically
generated signal was estimated. The choice of noise power, hyperparameters,
and hybrid-Gibbs parameters were all chosen in accordance with Lasserre’s
article [3, Chapter 4].

The synthetic target scene assumed an observation space of size M = 32
with M = M frequency grid points and three targets, N = 3, with the
corresponding grid mismatches {0, 0.15, 0.45} and post-processing signal-to-
noise ratio (SNR) of 20 dB. The targets assumed to be on the indices 9, 17
and 24, respectively. The grid mismatch vector ϵ was thus constructed as a
zero vector of sizeM containing the values [0, 0.15, 0.45] on the indices 9, 17
and 24, respectively, and the target amplitude vector x was constructed in
the same way as ϵ with the exception that each nonzero element was set to
a complex number with amplitude 20 (dB units) and uniformly randomly
chosen angle on the interval [0, 2π]. Figure 4.2 shows the true target scene
as red stem plots. The synthetic signal was then constructed as

y = F (ϵ)x+ n,

where the noise was created according to Algorithm 2 in Appendix A, with
power σ2 = 1.

The hyper-parameters (β0, β1), (γ0, γ1) were chosen as to give the desired
mean and variance of the priors of the noise and target signal powers σ2 and
σ2x respectively. The desired mean and variance for the noise and target
signal powers were chosen as(

E[σ2],
√

Var[σ2]
)
= (0, 2.4) dB(

E[σ2x],
√
Var[σ2x]

)
=MdB + (0, 3.5) dB,

where MdB = 10 log10(M). Expressing the means and variances in normal
form and using the expressions given by equation (4.9) for the mean and
variance of a generic inverse gamma distribution, the hyper-parameters can
be computed. The resulting hyperparameters, given the specified inverse-
gamma means and variances, were

γ0 =
1(

10
2.4
10

)2 + 2

γ1 = γ0 − 1

β0 =
M2(

10
MdB+3.5

10

)2 + 2

β1 =M(β0 − 1).
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To evaluate the hybrid-Gibbs sampler, it was executed a number of times
with the given setup. The estimated target scenes for each execution were
stored in order to compute the confidence intervals for each grid point. The
resulting estimate of the target scene with confidence intervals is presented
in Figure 4.2.

Figure 4.2: Resulting estimated target scene (blue) using the hybrid-Gibbs
sampler with parameters as follows: Nbi = 100, Nr = 1000 and subsampling
of size K = 5. The number of MH iterations for sampling grid mismatch
elements was set to 20 and the proposal variance was set to σ2p = 0.05.
The synthetic signal y of size M = 32 was constructed with a signal power
σ2 = 1. The size of the frequency grid was set toM = 32, the grid mismatch
vector was constructed according to the left part of the plot (red) and target
amplitude vector according to the right part of the plot (red). The estimated
target scene with 95%-confidence intervals is shown in blue.

4.5 Acceleration of the hybrid-Gibbs sampler

Lasserre et.al.’s work in [3] describes a method for target scene estimation
of a signal embedded in white noise. They use a sparse signal representa-
tion, where the signal is described by a Fourier dictionary parameterised
by the potential grid mismatch, shown in equation (4.3). To estimate the
target scene, they use a hierarchical Bayesian model, including the target
scene as parameters, and Bayesian inference in the form of a hybrid-Gibbs
sampler to estimate it. While this resulted in high estimation performance
of the target scene, the computational load remained heavy. The goal of
this thesis is to accelerate the hybrid-Gibbs sampler using deep generative
models to estimate the target scene of a signal without losing too much of
the estimation performance.
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Examining the hybrid-Gibbs sampler in Algorithm 1 and the MH-part
for sampling the grid mismatch elements in Algorithm 4 in Appendix A, one
observes that the hybrid-Gibbs sampler has a triple loop. Even if the number
of iterations in the second and third loops are significantly smaller than the
outer one, the computational load of the algorithm can be substantially
reduced if the third loop is replaced with a method of sampling the grid
mismatch elements of constant computational complexity.

A way to replace the third loop would be to use a generative model for
sampling the grid mismatch elements instead the MH-algorithm. The next
chapter describes an attempt for how a CCGAN could be used for this task.
Given the dependencies of the grid mismatch element ϵm, given as

ϵ
(n)
m |y, ϵ(n)−m,x

(n), σ2
(n)
,

the CCGAN seeks to model the corresponding dGvM distribution by gen-
erating grid mismatch elements as if generated from this distribution.

The second loop in the hybrid-Gibbs sampler loops over the elements of
the target amplitude and grid mismatch vectors. Due to the assumption of
sparseness of the signal, only a few elements of the target amplitude and
grid mismatch vectors are nonzero. Using this sparsity structure, there may
be a way to create a generative model that fully replaces the second loop
by directly sampling the full target amplitude and grid mismatch vectors.
However, this is not investigated in this thesis, but could be of interest in
future work.



Chapter 5

Generative Modelling of
Univariate Conditional
Densities

In this chapter, the methodology for constructing a CCGAN to sample grid
mismatch elements according to a dilated and truncated generalised von
Mises distribution, as opposed to with the MH algorithm (described in Sec-
tion 4.3.2), is described. In Section 5.1, a CCGAN is created to replicate
the results presented in the CCGAN article [31, Section 4.1], where bivariate
Gaussians with means placed on a unit circle parametrised by an angle were
simulated, as a sanity check to ensure that the CCGANs implemented there-
after were correctly implemented. Section 5.2 describes how this CCGAN is
applied to the problem of simulating univariate normal distributions with a
fixed variance and varying mean on a specified interval. A similar problem
is solved in Section 5.3, but with the variance also varying. Since the von
Mises distribution can be seen as a normal distribution wrapped around a
circle, the CCGAN used for simulating univariate Gaussians is then modi-
fied to simulate von Mises distributions with varying expectations. How this
is done is presented in Section 5.4). Finally, in Section 5.5, how a CCGAN
is trained to fit the grid mismatch samples generated from the MH sampler
nested in the hybrid-Gibbs algorithm is detailed.

The purpose of solving these subtasks instead of directly trying to con-
struct a CCGAN to model a truncated dGvM distribution was to examine
where problems could arise and facilitate troubleshooting for how the models
should be modified to finally work. Through this methodology, the under-
standing of the problem at hand was made more robust.
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5.1 Bivariate Gaussians with means on unit circle

The results of the CCGAN paper [31, Section 4.1] were reproduced in order
to ensure that the subsequent CCGANs were correctly implemented. Here,
bivariate Gaussians with means placed on a unit circle parameterised by
an angle were modelled using a CCGAN. Given an angle representing the
mean of a Gaussian with given covariance matrix, the CCGAN should thus
generate samples as if they were sampled from this specified Gaussian.

The training data for this problem consisted of a collection of 1200 sam-
ples: ten samples for each Gaussian with means uniformly placed on a unit
circle and common covariance matrix σ̃2I2×2, where σ̃ = 0.02. Figure 5.1
illustrates the training samples for this problem. One can view the mean as
parametrised by an angle θ ∈ [0, 2π], where the angle θ = 0 corresponds to
the point A in Figure 5.1 and goes clockwise. The training data thus con-
sisted of pairs (x, θ) of data points x ∈ R2 constituting the two-dimensional
samples and corresponding angles θ giving the means of the Gaussians from
which the data points are sampled.

Figure 5.1: Visualisation of the 1200 training samples (blue) generated from
120 distinct Gaussians with means (red) uniformly placed on the unit circle
and common covariance matrix σ̃2I2×2, where σ̃ = 0.02. The label θ can
be viewed as the angular parametrisation of each mean, with θ = 0 corre-
sponding to point A.

In this problem, the angle θ for a data sample is actually not the re-
gression label, but is rather used for computing the HVDL regularisation
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parameters ν and σ according to the rule of thumb described in equations
(3.13) and (3.14). The regression labels that are fed to the CCGAN are
instead the coordinates of the mean representation. For a specific angle θ,
the regression label is thus (sin(θ), cos(θ)). The network architecture for the
CCGAN used in this experiment can be seen in Table C.1 in Appendix C.
The choice of hyperparameters and setup of the training of this CCGAN is
summarised in Table C.2. Note that the ADAM parameters were set dif-
ferently than the default values mentioned in Section 3.1, this was because
the parameters were chosen to be same as in the CCGAN article [31]. The
qualitative results of this experiment can be seen in Figure 5.2. Here, 12
angles that were not part of the training data were chosen, from each of
which the CCGAN generated 100 samples to be compared with an equal
number of authentic Gaussian samples in a scatter plot.

Figure 5.2: Qualitative result of the CCGAN simulating 2D Gaussians with
fixed covariance matrix and expectations taking values on the unit circle.
The blue points are true Gaussian samples, while the green ones were gen-
erated by the CCGAN.

The qualitative result shows that the CCGAN is able to simulate bivari-
ate Gaussians with fixed covariance matrix σ̃2I2×2, conditioned on an angle
θ ∈ [0, 2π] that parameterises the mean on the unit circle. This is seen since
the real and the fake samples somewhat overlap. This gives confidence in
the implementation of the CCGAN. Using this CCGAN as a steppingstone,
the subsequent subtasks are hoped to be solved.
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5.2 Univariate Gaussians with varying mean

In this section, the CCGAN in the previous section is modified to approx-
imately sample a univariate Gaussian with fixed standard deviation and
varying expectation on a specified real interval. The training data consisted
of a collection of 10 samples drawn from 40 Gaussians with common stan-
dard deviation σ̃ = 0.02 and distinct expectations µ uniformly placed on the
interval [0, 4], giving 400 samples in total. The regression label in this task
is thus a mean µ ∈ [0, 4].

The CCGAN architecture for this task is presented in Table C.3. One
notes that it is similar to the previous CCGAN in Table C.1, except that
the regression label now instead is the one-dimensional mean µ ∈ [0, 4] and
the samples x also are one-dimensional. The hyperparameters and training
setup is presented in Table C.4.

A qualitative evaluation was done by comparing the KDEs of authentic
samples and generated CCGAN samples for 12 means, not appearing in the
training data, uniformly placed on the interval [0, 4]. See Figure 5.3 for this
result.

Figure 5.3: Qualitative result of the univariate Gaussians simulating CC-
GAN with fixed standard deviation and expectations taking values on the
interval [0, 4]. Twelve means not part of the training set were uniformly
picked from the given interval. For each of these, the true pdfs were plotted,
seen in different colors. The red KDEs are the corresponding KDEs of the
CCGAN generated samples.



5.3. UNIVARIATE GAUSSIANS WITH VARYING MEAN AND
VARIANCE 59

Observing the qualitative results in Figure 5.3, one notes that the CC-
GAN is fairly able to simulate univariate Gaussians with fixed standard
deviation σ̃ = 0.02, conditioned on a mean µ ∈ [0, 4]. There appears to be a
small bias in the generated KDEs, both in the mean and standard deviation.
Considering the mean, this is more apparent further out the boundaries of
the interval the mean takes values on. This is seen by how well the peaks
of the true pdfs and corresponding generator KDEs align. The CCGAN
estimates the standard deviation reasonably well but seems to have a larger
estimation due to the peaks of the generated KDEs not reaching as high as
the true pdfs.

5.3 Univariate Gaussians with varying mean and
variance

While the standard deviation in the previous example was fixed, the CC-
GAN in this subtask conditions on both the mean and standard deviation.
The training data for this task consisted of a collection of 20 samples gen-
erated from 120 distinct Gaussians, giving a total of 2400 data points. The
parameters of the Gaussians were uniformly chosen from the specified two-
dimensional regression label space as (µ, σ̃) ∈ [0, 4]× [0.05, 0.1].

The CCGAN architecture for this task is presented in Table C.5, and
the hyperparameters and training setup is summarised in Table C.6. The
qualitative evaluation was done by plotting the true densities and CCGAN
generated KDEs of 12 Gaussians, with parameters uniformly placed in the
specified regression label space, not contained in the training data. The
result is illustrated in Figure 5.4.

The qualitative result of this CCGAN shows poor results on the estima-
tion of the standard deviation, and it seems that a change in the conditioning
on the standard deviation does not have an effect on the standard deviation
estimation. Conditioning the CCGAN on standard deviations throughout
the interval [0.05, 0.1] does not seem to influence the estimated CCGAN dis-
tribution. This can be seen in how the red KDEs seem to have very similar
standard deviations for the three different standard deviation labels. How-
ever, the means of the Gaussians are fairly well estimated, but with a slight
bias. A reason why the CCGAN generated samples may be independent of
the addition of the standard deviation to the regression labels may be that
it is more difficult to discriminate between two Gaussians having the same
mean and a similar standard deviation, than discriminating between two
Gaussians having the same standard deviation and slightly different means.
This may be a reason why the CCGAN has a tendency to generate samples
that are very close to the conditioned mean, because these are easier to dis-
tinguish between as long as the standard deviation is sufficiently small.
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Figure 5.4: Qualitative result of the univariate Gaussians simulating CC-
GAN with varying expectation and variance. Twelve means and three stan-
dard deviations not part of the training set were uniformly picked from the
given regression label space. For each of these, the corresponding true Gaus-
sian was plotted, seen in different colors in the figure. The red KDEs are
the corresponding KDEs of the CCGAN generated samples.

5.4 von Mises distributions with varying mean

In this section, CCGANs are trained to simulate von Mises distributions
vM(κ, ϕ) with a common fixed concentration κ and conditioned on the mean
ϕ ∈ [−π, π], acting as the regression label, using a CCGAN. In a similar fash-
ion as for the previous subtask, the training data consisted of a collection of
20 samples from 120 distinct von Mises distributions with common concen-
tration κ = 20 and varying mean ϕ uniformly placed on the interval [−π, π],
giving 2400 samples in total. Because the von Mises distribution wraps
around its domain, the regression labels c = −π and c = π correspond to
the same distribution. In the training data, the regression labels therefore
do not include the label c = π.

What makes simulating a von Mises distribution more complicated com-
pared to a Gaussians is that the distribution wraps around the interval
[−π, π]. This was circumvented by modifying the generator output x in the
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following way:

xmod =

{
x+ 2π if x < −π
x− 2π if x > π

to ensure that the output belonged to the interval [−π, π].
The CCGAN architecture for this problem is identical to the preceding

one seen in Figure C.3, except that the regression label instead is the mean
ϕ ∈ [−π, π]. The training setup and hyperparameters are summarised in
Table C.8.

A qualitative evaluation was done by choosing five regression labels ϕ
uniformly placed on the interval [−π, π] and for each of these, the true von
Mises pdf for the fixed concentration κ = 20 and the histograms of the
CCGAN generated samples, were plotted. The result can be seen in Figure
5.5.

Figure 5.5: Qualitative result of the von Mises simulating CCGAN with fixed
standard concentration κ = 20 and expectations taking values on the interval
[−π, π]. Five means not part of the training set were uniformly picked from
the given interval. For each of these, the true pdf was computed and plotted,
seen as the pdfs of different colors in the plot. The red histograms are the
corresponding CCGAN generated samples.

The qualitative evaluation shows that the CCGAN performs reasonably
well on estimating the mean, but poorly on the estimation of the concen-
tration. Like in the subtask of simulating univariate Gaussians with fixed
variance and varying mean, the CCGAN performs worse on labels placed
further away from the centre of the regression label space. Reminiscent
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of the discussion of the qualitative evaluation of the previous subtask, the
CCGAN in this problem also has a tendency to estimate the concentra-
tion substantially higher than the true one. The suggested reason for this
phenomenon is that it is easier to distinguish between two von Mises distri-
butions with shared (small) concentration and slightly different means, than
if the concentration was slightly different and the mean was the same. Thus,
when the CCGAN conditions on a particular mean, it tends to sample close
to this mean.

5.5 Dilated and truncated generalised von Mises
distributions

The purpose of simulating dGvM[−0.5,0.5] distributions using a CCGAN is
to replace the MH algorithm for sampling the grid mismatch elements in
order to accelerate the hybrid-Gibbs sampler for estimation of the target
scene, given an observed signal. Using a CCGAN for grid mismatch gen-
eration would reduce the complexity of the algorithm since the MH algo-
rithm requires several iterations to reach the stationary distribution from
which the final grid mismatch sample is drawn from. The dimension of data
used in Lasserre’s article [3] was M = 32, implying that the order of the
dGvM[−0.5,0.5] distributions would be 32. However, the easier task of simu-
lating dGvM[−0.5,0.5] distributions of order 2 is first examined.

As mentioned in Section 4.3.2, the elements ϵm of the grid mismatch vec-
tor ϵ are to be sampled elementwise using the MH algorithm. By inspecting
the posterior of each distinct grid mismatch element ϵm in equation (4.12b),
one observes that they are dependent on the grid point m. If one were
to replace the MH sampler to simulate ϵm ∼ dGvM[−0.5,0.5](κ,ϕ) using a
CCGAN, an option could therefore be to use regression labels (κ,ϕ,m) of
dimensions 2M +M , where m is one-hot vectors corresponding to the grid
elements in question, namely having value one at the grid element index
m. However, to reduce the complexity of the CCGAN, one CCGAN was
constructed for each grid element in order to avoid having the CCGAN con-
ditioning on regression labels containing one-hot vectors. In other words,
M distinct CCGANs were constructed, one for each grid element, trained
on distinct datasets. Examining the inner for-loop in the hybrid-Gibbs sam-

pler in Algorithm 1, the sampling of ϵ
(n)
m would then be done by subsequent

CCGANs.
In what follows, a number of input architectures for the CCGAN are

presented, the methodology for the dataset collection is described, and the
evaluation of these CCGANs is given.
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5.5.1 Input architectures

As the goal is to simulate a dGvM distribution parameterised by the pa-
rameters κ and ϕ, it seems reasonable to let the regression labels consist
of these vectors. Nevertheless, other regression labels are suggested, with
the reason for exploring other input architectures that may perform better.
More specifically, four input architectures/regression labels have been exam-
ined. What the four cases have in common is that they all use the structure
of the parameters κ and ϕ. The reader may want to be reminded of the
following parameters, given in Section 4.2.3:

κ ∈ RM ϕ ∈ RM

κm :=
2

σ2
√
M

|bm| ϕm := arg(bm)

b := x∗mu∗
m ⊙ em u ∈ CM×M

bm := [b]m [um]m := exp
(
j2πmm/M

)
.

Moreover, only the input architecture distinguishes the CCGANs, and the
training setup are the same.

Regression label of the form (κ,ϕ)

This is the most natural regression label, since (κ,ϕ) directly parameterise
the dGvM distribution. As κ,ϕ ∈ RM , the regression labels are in this
case of dimension 2M . Reminiscent of the structures of κ and ϕ, presented
in Section 4.2.3, one may imagine other parameters that indirectly param-
eterise the dGvM distribution. Some suggestions are presented in what
follows.

Regression label of the form (xm, em)

The complex vector b is one representation of the parameters κ and ϕ,
but anything that determines b := x∗mu∗

m ⊙ em works too. The vector
um is determined by m only and xm is a single complex number. It is
em := y−

∑
i ̸=m fi(ϵi)xi that is most involved. It approximately represents

the part of y corresponding to signal component m plus noise, given that
x−m and ϵ−m are roughly correct.

It seems that (xm, em) is a less complicated representation to use. It
does in particular not contain the varying periodicity introduced by um.
As mentioned, one distinct CCGAN is trained for each grid point, with the
hope of incorporating the dependency of m. A choice of regression label
could therefore be (xm, em). Because xm is complex em is a complex vector,
they cannot be directly inputted to the CCGAN, which only takes real
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values inputs. Complex features should be represented by their real and
imaginary parts or by their amplitude and phase. In this work, a complex
value is represented by its real and imaginary parts, thus one complex value
corresponds to two input nodes of the CCGAN. It thus follows that the
regression label (xm, em) ∈ R2+2M .

Regression label of the form (|xm|,κ/|xm|,ϕ)

The vector um does not change the magnitude of b, so the proposed repre-
sentation is close to the (κ,ϕ) representation, at least for κ, which is the
same up to a factor 2xm/σ

2
√
M . The factor 2/σ

√
M seems like a quite natu-

ral normalisation factor. An option is to factor out |xm| from κ as a separate
feature and use the same ϕ. This yields a representation (|xm|,κ/|xm|,ϕ).
The dimension of this regression label is 1 + 2M .

Regression label of the form (|xm|,κ/|xm|,∠em)

Combining the above ideas, another choice of regression label is
(|xm|,κ/|xm|,ϕ), but with ϕ replaced by ∠em, in order to not have the peri-
odicity stemming from um. This yields a representation (|xm|,κ/|xm|,∠em).
This probably has the advantage that the training data for ∠em is more un-
correlated. On the possible downside, the representation is further away to
the κ and ϕ for the dGvM. The dimension of this regression label is 1+2M .

5.5.2 Data collection

To generate training data of the form (ϵm, c), where c corresponds to the
regression label taking any of the four forms described above, the hybrid-
Gibbs sampler in Algorithm 1 was used. For a given signal y of size M , the
hybrid-Gibbs sampler was executed, and for each generated grid mismatch
ϵm, a data point of the form

(ϵm, xm,m,κ,ϕ, em)

was stored, forming a collection of data

D =
{(
ϵ
(n)
m , x

(n)
m ,m(n),κ(n),ϕ(n), e

(n)
m

)}
n=1

.

The superscript (·)(n) is not to be confused with the iteration index in the
hybrid-Gibbs sampler. The one-hot vector m of size M determines the grid
point a data point belongs to. Thus, with the use of this vector, the dataset
D is split into M distinct datasets

Dm =
{(
ϵ
(n)
m , x

(n)
m ,κ(n),ϕ(n), e

(n)
m

)}
n=1

,
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which is the collection of all grid mismatches at grid point m. Utilising
these collections of grid point dependent datasets, the datasets for each of
the four input architectures are obtained by simply removing or modifying
the regression label elements of interest. The CCGAN corresponding to
grid point m thus trains on the dataset given by Dm. If a dataset is to be
generated from multiple signals, for each and every grid point, the datasets
generated from each distinct signal are simply concatenated.

5.5.3 Evaluation

Three synthetically generated signals of size M = 2, grid size M = 2, and
power σ2 = 1 were created: the first without any targets, the second with
one target in the first grid point with amplitude 10 dB and grid mismatch
0.25, and the third one identical to the second one, but positioned in the
second grid point. For each of these signals, data was collected in accordance
with the method described in the preceding subsection. The hybrid-Gibbs
sampler was executed with the same setup as described in Section 4.4, with
the parameters given in Figure 4.2.

Apart from the input architecture, the CCGAN was the same for all
four cases. Furthermore, for each case, the CCGAN has the same structure
for all grid points. The CCGAN architecture for the first case, where the
regression label is (κ,ϕ), is summarised in Table C.9. The training setup and
the hyperparameters were chosen to be identical between all the CCGANs,
Table C.10. Moreover, for all of the different input architectures, the random
seeds were set to the same value, in order to enable comparison between
them.

As opposed to the preceding subtasks, the training dataset in this task
is generated from a practical setting, namely from hybrid-Gibbs samples
given a synthetically generated signal. The preceding problems generated
data points where the labels were uniformly chosen from the regression label
space. In this problem, the labels may be correlated, and thus not spread
out evenly throughout the regression label space. Figure 5.6 shows scatter
plots of the concentrations and means. As a consequence of this, it may
happen that vicinities of labels that are perturbed do not have a nonempty
intersection with any of the other label vicinities. This can happen if the
rule of thumb for computing the regularisation parameters, σ and ν, is used.
If this happens, the CCGAN training algorithm does not work. Overcoming
this problem showed to be difficult, a discussion on this can be read in
Chapter 6. The CCGAN regularisation parameters were therefore set to
σ = 0 and ν = 0, which is implied conditional GAN losses.

A qualitative evaluation was done by traversing through the training
data points, where for each data point, the true dGvM[−0.5,0.5] pdf and the
corresponding histogram consisting of CCGAN samples was plotted. Figure
5.7 demonstrates the results for two different data points at indices zero and
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Figure 5.6: Scatter plot of the normalised four-dimensional regression labels
of the form (κ,ϕ) divided into two plots.

five of the training dataset for the first input case. Apart from the plots,
the actual data sample, ϵm, and the dGvM parameters κ and ϕ are also
displayed. Because the qualitative result did not differ significantly between
the four regression label cases, only the result of the first case is shown.
It is clear that the CCGANs perform poorly on estimating dGvM[−0.5,0.5]

distributions of order two conditioned on the dGvM parameters κ and ϕ.
Ideally, the red CCGAN sample histograms should overlap with the true
densities shown in blue. If the CCGANs would have been able to fit the
training data well, they could have had practical usefulness for replacing
the MH algorithm in the hybrid-Gibbs sampler for the sampling of grid
mismatch elements. Ideally, the qualitative evaluation should have been in
a similar fashion as the preceding subtasks, where the CCGAN histogram is
compared to the true pdf of an arbitrary dGvM distribution, and not only
the ones given by the labels in the training dataset.

A quantitative evaluation was done by calculating the generator and
discriminator losses, Wasserstein-1 distance, and energy distance, for each
epoch during training. Figures 5.8 and 5.9 summarise the quantitative
evaluations of the four input cases. The quantitative results show that
all CCGANs, independent of grid point or input architecture, have some
sort of stabilisation in the generator and discriminator losses. Moreover, the
Wasserstein-1 and energy distances decrease, indicating that the qualitative
results improve during training.

Suggestions for further development of the CCGAN are given in the next
chapter.
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Figure 5.7: Qualitative evaluation-GUI for the dGvM[−0.5,0.5] simulating
CCGANs. The GUI enabled traversal of the training data points. Here, two
data points, at indices zero and five, from the dataset for the first regression
label case, has been chosen. The blue plot is the true dGvM[−0.5,0.5] pdf
given the parameters seen in each respective figure. The red histograms
show the CCGAN samples for the given regression labels.
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Figure 5.8: Quantitative evaluation of the CCGANs trained on data of the
form (ϵm,κ,ϕ) and (ϵm, xm, em), shown in the top and bottom row, respec-
tively. The left column shows the results for the first grid point CCGAN,
while the right column shows for the second grid point CCGAN.
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Figure 5.9: Quantitative evaluation of the CCGANs trained on data of the
form (ϵm, , |xm|,κ/|xm|,ϕ) and (ϵm, |xm|,κ/|xm|,∠em), shown in the top
and bottom row, respectively. The left column shows the results for the first
grid point CCGAN, while the right column shows for the second grid point
CCGAN.
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Chapter 6

Conclusion

In this thesis, a hierarchical Bayesian model for a sparse complex signal em-
bedded in Gaussian noise was introduced. The choice of parameter priors
was motivated, and the posteriors were derived. Given these, a hybrid-
Gibbs sampler, robust to the grid mismatch problem, was successfully im-
plemented to estimate the target scene of a synthetically generated signal.
However, the complexity of this algorithm is high, due to a triple loop. The
innermost loop consists of a Metropolis-Hastings sampler that samples a
type of generalised (univariate and conditional) von Mises distribution. The
main task of this thesis was to investigate the possibility of replacing this
with a deep generative model, in the hope of a significant acceleration of
the hybrid-Gibbs sampler. Specifically, a CCGAN was investigated for this
purpose. A successful reproduction of a CCGAN from literature, used for
sampling a two-dimensional Gaussian distribution with constant covariance,
conditioned on the mean being on the unit circle, was done, which gave con-
fidence in the implementation.

In order to facilitate troubleshooting and gain a better understanding
of where problems may arise, a number of subtasks were examined before
creating the CCGAN to simulate generalised von Mises distributions. The
first subtask was the simulation of univariate Gaussians with fixed variance,
conditioned on the mean, using a CCGAN. The qualitative result showed
that the problem had been solved successfully. In the second subtask, the
sampling of univariate Gaussians, conditioned on both mean and variance,
was investigated. The performance was not satisfactory, since the CCGAN
did not fit to the standard deviation. The third subtask was the simulation of
von Mises distributions with a fixed concentration, conditioned on the mean.
The CCGAN achieved good mean estimations, while it had a tendency to
estimate the concentration significantly higher than its true value. The
last two subtasks suggest that the CCGAN has a tendency to generate
samples close to the conditioned mean. A reason for this may be that the
CCGAN discriminator distinguishes between data points that are close to its
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conditioned mean, and data points that are far away from its conditioned
mean. Thus, the CCGAN may have a tendency to classify samples that
are close to their conditioned means as authentic, while the probability
of samples further away from their conditioned means being authentic is
smaller.

Finally, a CCGAN was created to simulate dGvM[−0.5,0.5] distributions
conditioned on both a concentration and mean vector κ and ϕ, respectively.
Four different representations of the dGvM parameters were explored as re-
gression labels for the CCGAN. All four cases gave equally poor qualitative
results. The quantitative results showed that the training was stable, indi-
cated by the converging discriminator and generator losses and decreasing
Wasserstein-1 and energy distances.

There is more work to be done in order to construct a well function-
ing CCGAN for dGvM[−0.5,0.5] distribution simulation. More generally, the
study of how CCGANs can be used for simulation of distributions con-
ditioned on multidimensional parameters is of interest. Specifically, how
the CCGAN regularisation parameters are chosen should be further inves-
tigated. In this work, these parameters were set to zero for each regression
label element, but in order to make use of the introduced HVDL loss, these
should be set to some positive carefully chosen values. To achieve better
results with the CCGAN, suggestions for future work are presented in the
next section.

6.1 Future Work

During the course of the thesis, several interesting problems have presented
themselves, in relation to generative modelling of univariate distributions.
The main goal of the thesis was to construct a CCGAN to simulate
dGvM[−0.5,0.5] distributions. This turned out to be a difficult problem, as
has also been noted in the literature, investigating the potential of GANs
simulating one-dimensional distributions [42]. Up to date, there seems to be
no explanation for why this is the case.

6.1.1 Choice of CCGAN regularisation parameters

One obvious potential for improvement of this work, in relation to CCGAN,
would be how the choice of the regularisation parameters σ and ν is made
for multidimensional regression labels. The parameter σ signifies the band-
width of the Gaussian kernels used for marginal distribution estimations of
the regression labels, seen in equations (3.7) and (3.8). It can be seen as
determining how much a label in the dataset should be perturbed, in the
CCGAN algorithm, without representing a too different distribution. The
value of parameter ν determines how large the vicinities of the labels are.
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Labels belonging in each other vicinities are treated as describing similar
distributions.

For the one-dimensional label case, a rule of thumb, given in equations
(3.13) to (3.14), was used to calculate the two parameters. There is yet
no corresponding rule of thumb for the multidimensional case. One ap-
proach, as in Section 5.3, is to use the rule of thumb for each dimension
of the regression labels. When using this approach for the final CCGAN
for dGvM[−0.5,0.5] simulation, this did not work. One reason for this may
be that the training dataset was generated from a practical example not
suitable for the rule of thumb, as opposed to the subtasks, where the labels
were uniformly spaced in the regression label space. If the rule of thumb was
used, the CCGAN training did not function, which was due to the perturbed
labels not having any close neighbouring labels. This is a consequence of
the labels being highly correlated between the κ:s (although not between
the ϕ:s). See Figure 5.6. Thus, perturbing a label with Gaussian noise
ϵ ∼ N (0, σ2) (distinct for each label dimension), resulted in labels that were
too far away from the training labels. Reducing the value of σ and increasing
ν might alleviate this problem, but with the cost of the distributions rep-
resented by the different labels being smeared together, which would result
in worse accuracy of the CCGAN. The difficulty of filling out the regression
label space increases significantly for each added dimension.

A second approach to the choice of CCGAN regularisation parameters
would be to perturb the labels according to some noise ϵ ∼ N (0,H), where
H would be a covariance matrix taking into account the correlations between
the regression label dimensions. In the first approach, the covariance matrix
is a diagonal matrix, where each entry is a variance computed according to
the rule of thumb for each label element. Introducing correlation between
the label elements may alleviate the problem of perturbing training labels
too far away from the ones existing in the dataset.

6.1.2 Restrict generator output

The dGvM[−0.5,0.5] distribution is truncated on the interval [−0.5, 0.5], thus
the CCGAN generator should only output samples in this interval. A fur-
ther improvement of the CCGAN could be the restriction of the generator
outputs to the interval of interest. This is something that should be han-
dled implicitly during training, since an optimal discriminator would classify
samples outside this interval as fake, which is something the generator would
realise. Using a sigmoid function to restrict the generator outputs could be a
possibility. Another suggestion is to explicitly make the discriminator clas-
sify samples falling outside the interval as fake.
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6.1.3 Intermediate tasks

In Chapter 5, subtasks were investigated before constructing a CCGAN
for dGvM[−0.5,0.5] simulation, where the preceding subtask was to simulate
von Mises distributions with fixed concentration, conditioned on the mean.
The difference in complexity between the two problems is big, due to the
dGvM[−0.5,0.5] distribution having potentially very high-dimensional param-
eters κ and ϕ. Intermediate tasks may be introduced in order to further
facilitate troubleshooting. One suggestion for such a task could be to simu-
late two distinct dGvM[−0.5,0.5] distributions of low order, sayM = 2, having
similar parameters, and investigating how well the CCGAN generalises to
labels lying in between. One could also try fixating the concentration vec-
tor κ, while only conditioning on the mean vector ϕ. Moreover, a training
dataset where the labels are uniformly distributed in the regression label
space, instead of having been generated from a practical experiment, could
be examined. Using the first approach for choosing regularisation parame-
ters would then work.

6.1.4 Replacing the MH algorithm with CCGAN

The resulting CCGAN for generating grid mismatch elements as if they were
sampled from their corresponding dGvM[−0.5,0.5](κ,ϕ) distributions gave
poor qualitative results. Naturally, they would therefore not be able to be
used in the hybrid-Gibbs sampler for target scene estimation. However, the
CCGAN is assumed to have given sufficiently good qualitative results for the
rest of this subsection. Before the CCGAN framework can replace the MH
algorithm in the hybrid-Gibbs sampler for grid mismatch sampling, there is
an extra step that has to be introduced in the algorithm. Because the CC-
GAN generates samples, here denoted ϵ∗m, that are not distributed according
to the actual dGvM[−0.5,0.5](κ,ϕ) distribution, an acceptance/rejection step
has to be taken. This has to be done if the grid mismatch samples are to
be sampled from the correct (stationary) distribution. After the CCGAN
sample has been sampled, an acceptance probability is computed as follows:

α
(
ϵ∗m, ϵ

(n−1)
m

)
= min

(
1,

dGvM[−0.5, 0.5]

(
ϵ∗m;κ,ϕ

)
q
(
ϵ
(n−1)
m |ϵ∗m

)
dGvM[−0.5, 0.5]

(
ϵ
(n−1)
m ;κ,ϕ

)
q
(
ϵ∗m|ϵ(n−1)

m

)),
where q denotes the density of the distribution the CCGAN represent. The

proposed sample is then accepted (ϵ
(n)
m = ϵ∗m) with probability α

(
ϵ∗m, ϵ

(n−1)
m

)
and otherwise rejected (ϵ

(n)
m = ϵ

(n−1)
m ). A problem that arises here is that

the distribution the CCGAN represents is not known explicitly. One way
to circumvent this may be by using probability density estimation given a
finite number of samples from the CCGAN. However, other methods for this
may already exist.
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6.1.5 Other generative models

There are other generative models than CCGAN that may be interesting to
investigate for the simulation of dGvM[−0.5,0.5]. Specifically, the Conditional
Variational Auto-Encoder (CVAE) could be of interest. Like the CCGAN,
the CVAE is a conditional generative model that seeks to generate novel
samples as if they were drawn from its training dataset. However, the un-
derlying structure and training of these models are fundamentally different.
The details for CVAEs are given in [43].



6.1. FUTURE WORK 76



Bibliography

[1] W.T. Cochran, J.W. Cooley, D.L. Favin, H.D. Helms, R.A. Kaenel,
W.W. Lang, G.C. Maling, D.E. Nelson, C.M. Rader, and P.D. Welch.
What is the fast Fourier transform? Proceedings of the IEEE, pages
1664–1674, 1967.

[2] Maroua Taghouti. Chapter 10 - Compressed sensing. In Frank H.P.
Fitzek, Fabrizio Granelli, and Patrick Seeling, editors, Computing in
Communication Networks, pages 197–215. Academic Press, 2020.

[3] Marie Lasserre, Stéphanie Bidon, Olivier Besson, and François Le
Chevalier. Bayesian sparse Fourier representation of off-grid targets
with application to experimental radar data. Signal Processing, pages
261–273, 2015.

[4] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall Press, USA, 3rd edition, 2009.

[5] F.J. Samaniego. A Comparison of the Bayesian and Frequentist Ap-
proaches to Estimation. Springer Series in Statistics. Springer New
York, 2010.

[6] F. Liese and K.J. Miescke. Statistical Decision Theory: Estimation,
Testing, and Selection. Springer Series in Statistics. Springer New York,
2008.

[7] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B.
Rubin. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC
Texts in Statistical Science. Taylor & Francis, 2013.

[8] C.M. Bishop. Pattern Recognition and Machine Learning. Information
Science and Statistics. Springer New York, 2016.

[9] C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer
Texts in Statistics. Springer New York, 2013.

[10] A. Lapidoth. A Foundation in Digital Communication. Cambridge
University Press, 2017.

77



BIBLIOGRAPHY 78

[11] H.H. Andersen, M. Hojbjerre, D. Sorensen, and P.S. Eriksen. Linear
and Graphical Models: for the Multivariate Complex Normal Distribu-
tion. Lecture Notes in Statistics. Springer New York, 2012.

[12] N. Dobigeon, A.O. Hero, and J.-Y. Tourneret. Hierarchical Bayesian
Sparse Image Reconstruction With Application to MRFM. IEEE
Transactions on Image Processing, pages 2059–2070, sep 2009.

[13] D. J. Best and N. I. Fisher. Efficient Simulation of the von Mises
Distribution. Journal of the Royal Statistical Society. Series C (Applied
Statistics), pages 152–157, 1979.

[14] Riccardo Gatto and Sreenivasa Rao Jammalamadaka. The generalized
von Mises distribution. Statistical Methodology, pages 341–353, 2007.

[15] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative Adversarial Networks. 2014.

[16] Amit H. Bermano, Rinon Gal, Yuval Alaluf, Ron Mokady, Yotam
Nitzan, Omer Tov, Or Patashnik, and Daniel Cohen-Or. State-of-the-
Art in the Architecture, Methods and Applications of StyleGAN. 2022.

[17] This person does not exist. https://this-person-does-not-exist.
com/en. Accessed: 2022-07-18.

[18] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Un-
paired Image-to-Image Translation using Cycle-Consistent Adversarial
Networks, 2017.

[19] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive
Computation and Machine Learning series. MIT Press, 2016.

[20] Sebastian Ruder. An overview of gradient descent optimization algo-
rithms. arXiv preprint, 2016.

[21] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. arXiv
preprint, 2015.

[22] Dmitry I. Belov and Ronald D. Armstrong. Distributions of the Kull-
back–Leibler divergence with applications. British Journal of Mathe-
matical and Statistical Psychology, pages 291–309, 2011.

[23] Frank Nielsen. On the Jensen–Shannon Symmetrization of Distances
Relying on Abstract Means. Entropy, 2019.

[24] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein
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Appendix A

Algorithms

Algorithm 2: Simulating univariate complex Gaussian with ex-
pectation zero.

Result: Sample z ∼ CN
(
0, σ2

)
{Generate real and imaginary parts of z}
Re(z) ∼ 1√

2
N
(
0, σ2

)
Im(z) ∼ 1√

2
N
(
0, σ2

)
Return: z = Re(z) + j Im(z)

Algorithm 3: Simulating Bernoulli complex Gaussian.

Result: Sample z ∼ BerCN
(
w, µ, σ2

)
{Generate Bernoulli sample}
x ∼ Ber(w)

{Sample z according to outcome of x}

z =

{
0, if x = 0

∼ CN
(
µ, σ2

)
, if x = 1.

Return: z

81



82

Algorithm 4: MH algorithm for sampling ϵm.

Require: Specified number MH-iterations Nr, dGvM-parameters,

proposal variance σ2p, and vectors x(n), ϵ
(n)
−m as in (4.15) and

(4.14), respectively. Moreover, the previous grid mismatch sample,

ϵ
(n−1)
m , is needed. To simplify notation, the superscript is here
assumed to denote the MH-iterations and not the Gibbs-iterations.
Also, the subscript is neglected as it is clear that the grid point in
question is m. The previous grid mismatch sample is thus written

as ϵ(0) instead of ϵ
(n−1)
m .

Result: A sample ϵ
(n)
m |y, ϵ(n)−m,x

(n), σ2
(n) ∼ dGvM[−0.5, 0.5](κ,ϕ)

for t=1 to Nr do

{Proposal}
while ϵ∗ < −0.5 or ϵ∗ > 0.5 do

ϵ∗ ∼ N
(
ϵ∗|ϵ(t−1); ϵ(t−1), σ2p

)
end

{Acceptance}

α(ϵ∗, ϵ(t−1)) = min

[
1, exp

(∑M−1
m=0 κm

(
cos
(
2π ϵ∗

M
m− ϕm

)
−

cos
(
2π ϵ(t−1)

M
m− ϕm

)))]
{Accept or reject}
u ∼ U[0, 1]

if u < α
(
ϵ∗, ϵ(t−1)

)
then

{Accept}
ϵ(t) = ϵ∗

else

{Reject}
ϵ(t) = ϵ(t−1)

end

end

Return: ϵ
(n)
m = ϵ(Nr)
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Algorithm 5: Training of the generative adversarial networks us-
ing mini-batch gradient descent.

Require: Generator network G, discriminator network D, specified
gradient descent algorithm (for example ADAM), number of
training iterations N , number of discriminator iterations per
generator iteration K, mini-batch size m and a training data set
containing the authentic samples.

Result: Generator that can sample data points indistinguishable
(measured by the discriminator) from the authentic ones.

{Iterations}
for n=1 to N do

{Discriminator iterations}
for k=1 to K do

· Sample mini-batch of latent vectors {z1, . . . , zm} from the
latent space prior pz.

· Sample mini-batch of authentic data points {x1, . . . , xm}
from the training data.

· Update the discriminator weights by descending the
gradient:

-∇WD
1
m

∑m
i=1

[
log(D(xi)) + log(1−D(G(zi)))

]
end

{Generator iteration}
· Sample mini-batch of latent vectors {z1, . . . , zm} from the
latent space prior pz.

· Update the generator weights by descending the gradient:

-∇WG
1
m

∑m
i=1

[
log(D(G(zi)))

]
end

Return: generator network G
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Algorithm 6: Training of the continuous conditional generative
adversarial networks using mini-batch gradient descent and HVDL.

Require: Generator network G, discriminator network D, training
data set containing data points-regression label pairs
Ωa = {(xa

1, c
a
1), . . . , (x

a
Na , caNa)}, Na

uc ordered distinct labels
Υ = {ya[1], . . . , y

a
[Na

uc]
} in the data set, regularisation parameters σ

and ν, specified gradient descent algorithm (for example ADAM),
number of training iterations K and mini-batch size m.

Result: Trained generator G.

{Iterations}
for k=1 to K do

{Train discriminator}
· Sample mini-batch CD = {c1, . . . , cm} with replacement from
Υ.

· Create a set of perturbed target labels
CD,ϵ = {ci + ϵ | ci ∈ CD, ϵ ∈ N (0, σ2), i = 1, . . . ,m} on which
the discriminator will condition on.

· Initialise the sets Ωa
D = ∅ and Ωf

D = ∅ that will contain
authentic samples and generated fake samples with their
corresponding perturbed labels, respectively.

for i=1 to m do

· Randomly pick a pair (x, c) ∈ Ωa satisfying |c− ci − ϵ| ≤ ν,
where ci + ϵ ∈ CD,ϵ and let Ωa

D = Ωa
D ∪ (x, ci + ϵ).

· Randomly pick a label c′ from U(ci + ϵ− ν, ci + ϵ+ ν) and
generate a fake sample x′ by evaluating G(z, c′), where

z ∼ N (0, I) and let Ωf
D = Ωf

D ∪ (x′, ci + ϵ).

end

· Update D with the created sets Ωa
D and Ωf

D using the specified
gradient descent optimiser based on equation (3.11).

{Train generator}
· Sample mini-batch CG = {c1, . . . , cm} with replacement from
Υ.

· Create another set of perturbed target labels
CG,ϵ = {ci + ϵ | ci ∈ CG, ϵ ∈ N (0, σ2), i = 1, . . . ,m} on which
the generator will condition on.

· Generate m fake samples conditional on CG,ϵ and put the
resulting data point-label pairs in Ωf

G.

· Update G with the samples in Ωf
G using the specified gradient

descent optimiser based on equation (3.12).
end

Return: Generator network G.



Appendix B

Derivation of Model
Parameter Posteriors

Starting from the joint posterior pdf σ2, ϵ,x, w, σ2x|y, the posteriors of the
signal model parameters can be derived given an observed signal y. The
joint posterior pdf of σ2, ϵ,x, w, σ2x|y can be computed by rewriting it using
Bayes’ theorem, conditioning and using conditional independence between
the parameters. The dependencies between the parameters are given in the
hierarchical Bayesian model seen in Figure 4.1. The joint posterior pdf can
thus be readily computed as

f(σ2, ϵ,x, w, σ2x|y)
∝ f(y|σ2, ϵ,x, w, σ2x)f(σ2, ϵ,x, w, σ2x)
= f(y|ϵ,x, σ2)f(ϵ,x, w, σ2x|σ2)f(σ2)
= f(y|ϵ,x, σ2)f(ϵ,x, w, σ2x)f(σ2)
= f(y|ϵ,x, σ2)f(ϵ,x, w|σ2x)f(σ2x)f(σ2)
= f(y|ϵ,x, σ2)f(ϵ,x|w, σ2x)f(w|σ2x)f(σ2x)f(σ2)
= f(y|ϵ,x, σ2)f(ϵ|x, w, σ2x)f(x|w, σ2x)f(w)f(σ2x)f(σ2)
= f(y|ϵ,x, σ2)f(ϵ|x)f(x|w, σ2x)f(w)f(σ2x)f(σ2).

The target amplitude and frequency mismatch vectors, x and ϵ, respectively,
are sampled elementwise from their corresponding conditional posterior dis-
tributions of xm and ϵm, using the definitions xm := [x]m and ϵm := [ϵ]m.
These posteriors are derived from their conditional joint posterior pdf

f(ϵm, xm|y, ϵ−m,x−m, σ
2, w, σ2x), (B.2)

which in its turn is derived from the joint posterior given by equation (B.1).
Here we have defined

x−m := (x0, . . . , xm−1, xm+1, . . . , xM−1)
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and
ϵ−m := (ϵ0, . . . , ϵm−1, ϵm+1, . . . , ϵM−1).

The conditional joint posterior pdf given by equation (B.2) can be de-
rived by conditioning on all the other parameters except ϵm and xm and
using proportionality to disregard all the factors that are independent of
these two. Conditioning leads to

f(σ2, ϵ,x, w, σ2x|y) = f(ϵm, xm|y, ϵ−m,x−m, σ
2, w, σ2x) (B.3a)

× f(ϵ−m,x−m, σ
2, w, σ2x|y). (B.3b)

Assuming that the factor given by (B.3b) is nonzero and rewriting the left-
hand side of equation (B.1) using (B.3), one obtains the conditional joint
posterior pdf

f(ϵm, xm|y, ϵ−m,x−m, σ
2, w, σ2x) (B.4a)

∝ f(y|ϵ,x, σ2)f(ϵ|x)f(x|w, σ2x)f(w)f(σ2x)f(σ2)
f(ϵ−m,x−m, σ2, w, σ2x|y)

(B.4b)

∝ f(y|ϵ,x, σ2)f(ϵm|xm)f(xm|w, σ2x). (B.4c)

Remember that the amplitudes xm are assumed to be i.i.d. and that the
same applies to the frequency mismatches ϵm.

To make derivations of the conditional posteriors of the amplitudes xm
and frequency mismatches ϵm simpler later on, the following expression is
introduced:

em := y −
∑
i ̸=m

fi(ϵi)xi.

This expression lends a way of expressing the posteriors as a function of
each separate component xm and ϵm. One can check that

y − F (ϵ)x =

(
y −

∑
i ̸=m

fi(ϵi)xi

)
− fm(ϵm)xm = em − fm(ϵm)xm. (B.5)
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The likelihood of the observed signal in equation (4.6d) can be rewritten
using (B.5) as

f(y|ϵ,x, σ2)

∝ exp

(
− ∥y − F (ϵ)x∥22

σ2

)

= exp

(
−
(
y − F (ϵ)x

)H(
y − F (ϵ)x

)
σ2

)

= exp

(
−
(
em − fm(ϵm)xm)H

(
em − fm(ϵm)xm

)
σ2

)

= exp

(
− eHmem − eHmfm(ϵm)xm − x∗mfm(ϵm)Hem + x∗mfm(ϵm)Hfm(ϵm)xm

σ2

)

= exp

(
− |xm|2 + eHmem − xmeHmfm(ϵm)− x∗mfm(ϵm)Hem

σ2

)
,

where the computation in the last line made use of

fm(ϵm)Hfm(ϵm)
(4.1)
=

M−1∑
m=0

1√
M

exp(−ψm) · 1√
M

exp(ψm) =
M−1∑
m=0

1

M
= 1,

where

ψm := j2πm
m+ ϵm

M
.

The conditional joint posterior given by (B.4c) can thus be expressed as

f(ϵm, xm|y, ϵ−m,x−m, σ
2, w, σ2x) (B.6a)

∝ f(y|ϵ,x, σ2)f(ϵm|xm)f(xm|w, σ2x) (B.6b)

= exp

(
− |xm|2 + eHmem − xmeHmfm(ϵm)− x∗mfm(ϵm)Hem

σ2

)
(B.6c)

× f(ϵm|xm)f(xm|w, σ2x) (B.6d)

∝ exp

(
− |xm|2 − xmeHmfm(ϵm)− x∗mfm(ϵm)Hem

σ2

)
(B.6e)

× f(ϵm|xm)f(xm|w, σ2x) (B.6f)

= L(ϵm, xm, σ
2)f(ϵm|xm)f(xm|w, σ2x), (B.6g)

where

L(ϵm, xm, σ
2) = exp

(
− |xm|2 − xmeHmfm(ϵm)− x∗mfm(ϵm)Hem

σ2

)
. (B.7)
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To simplify notation further, the shorthand L will be used for denoting
L(ϵm, xm, σ

2). This conditional joint posterior will be used for deriving the
conditional posteriors for ϵm and xm in order to facilitate the usage of a
Gibbs sampler.

B.1 Target amplitude vector elements

The elements of the target amplitude vector x are to be sampled elementwise
in order to enable the sampling of x using a Gibbs sampler. Each element xm
is sampled from the conditional posterior of xm, thus its posterior must be
derived. Firstly, a general expression of the conditional posterior is derived
from the joint conditional posterior of ϵm and xm seen in equation (B.6g)
by conditioning on ϵm and then using proportionality in order to only keep
factors with xm-dependence. Secondly, the pdf of the conditional posterior
is computed using the pdfs of the corresponding distributions that make up
the conditional posterior, namely the likelihood and priors. Lastly, from
this resulting pdf of the conditional posterior, a known distribution will be
recognised, and the derivation will be complete.

Conditioning the conditional joint posterior in equation (B.6g) on ϵm, it
can be expressed as

f(ϵm, xm|y, ϵ−m,x−m, σ
2, w, σ2x) = f(xm|y, ϵ,x−m, σ

2, w, σ2x) (B.8a)

× f(ϵm|y, ϵ−m,x−m, σ
2, w, σ2x). (B.8b)

Assuming that the factor given by (B.8b) is nonzero and using proportion-
ality, one obtains a general expression for the conditional posterior of xm:

f(xm|y, ϵ,x−m, σ
2, w, σ2x) =

f(ϵm, xm|y, ϵ−m,x−m, σ
2, w, σ2x)

f(ϵm|y, ϵ−m,x−m, σ2, w, σ2x)
(B.9a)

∝ f(y|ϵ,x, σ2)f(ϵm|xm)f(xm|w, σ2x) (B.9b)

∝ Lf(ϵm|xm)f(xm|w, σ2x). (B.9c)

Examining the conditional posterior, one can observe that the mixture prior
f(xm|w, σ2x) given in equation (4.7) is present, which complicates the deriva-
tion of the posterior of the target element xm since it contains a Dirac delta.
In order to overcome this difficulty, the derivation is done using an approxi-
mation of the Dirac delta function. The Dirac delta function is approximated
in the suitable sense (weakly) by

δ = lim
ν→0

1Bν

|Bν |
(B.10)

where ν > 0 and Bν is the closed ball in some arbitrary normed vector space
S, for example R or C, centred around origo with radius ν. Here, |Bν | is the
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volume of the ball, ensuring that integration over the Dirac delta function
results in the unit volume. Formally, the closed ball can be written as the
set

Bν =
{
x ∈ S

∣∣ |x| ≤ ν
}
.

Assuming one has the closed balls Bνx ⊂ R and Bνϵ ⊂ [−0.5, 0.5], using the
approximation of the Dirac delta function, the priors of ϵm and xm can be
approximated by f̃(ϵm|xm) and f̃(xm|w, σ2x), respectively, as follows:

f̃(ϵm|xm) =

{
1Bνϵ

(ϵm)

|Bνϵ |
, if xm ∈ Bνx

1[−0.5,0.5](ϵm), otherwise

and

f̃(xm|w, σ2x) = (1− w)
1Bνx

(|xm|)
|Bνx |

+ w
1

πσ2x
exp

(
− |xm|2

σ2x

)
. (B.11)

The conditional posterior of xm can be written as

f(xm|y, ϵ,x−m, σ
2, w, σ2x)

= f(xm|y, ϵ,x−m, σ
2, w, σ2x)

(
1Bνx

(|xm|) + 1BC
νx
(|xm|)

)
∝ Lf(ϵm|xm)f(xm|w, σ2x)1Bνx

(|xm|)
+ Lf(ϵm|xm)f(xm|w, σ2x)1BC

νx
(|xm|),

where Bayes’ rule was applied in the form of equation (B.9c). Making use
of the approximations of the priors then lends

f̃(xm|y, ϵ,x−m, σ
2, w, σ2x)

∝ Lf(xm|w, σ2x)
(
1Bνϵ

(ϵm)

|Bνϵ |
1{0}(|xm|) + 1R\{0}(|xm|)

)
1Bνx

(|xm|)

+ Lf(xm|w, σ2x)1BC
νx
(|xm|),

where f̃(xm|y, ϵ,x−m, σ
2, w, σ2x) is the approximation of the conditional pos-

terior of the target amplitude elements. The product of the indicator func-
tions 1R\{0}(|xm|) and 1Bνx

(|xm|) in the first term can be seen to satisfy

1R\{0}(|xm|)1Bνx
(|xm|) = 1Bνx

(|xm|)

since integrating over {0} has no contribution. Similarly,

1{0}(|xm|)1Bνx
(|xm|) = 0.

Thus, it holds that

f(xm|y, ϵ,x−m, σ
2, w, σ2x) = Lf(xm|w, σ2x)1Bνx

(|xm|)
+ Lf(xm|w, σ2x)1BC

νx
(|xm|).
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Using the expression of the approximated target amplitude prior, f̃(xm|w, σ2x),
given in equation (B.11), lends

f̃(xm|y, ϵ,x−m, σ
2, w, σ2x)

∝ L

(
(1− w)

1Bνx
(|xm|)

|Bνx |
+ w

1

πσ2x
exp

(
− |xm|2

σ2x

))
1Bνx

(|xm|)

+ L

(
(1− w)

1Bνx
(|xm|)

|Bνx |
+ w

1

πσ2x
exp

(
− |xm|2

σ2x

))
1BC

νx
(|xm|).

In the first term, one has 1Bνx
(|xm|)1Bνx

(|xm|) = 1Bνx
(|xm|). In the second

term, the product of the indicator functions 1Bνx
(|xm|) and 1BC

νx
(|xm|) is

zero since the sets are complements, giving

f̃(xm|y, ϵ,x−m, σ
2, w, σ2x)

∝ L(1− w)
1Bνx

(|xm|)
|Bνx |

+ Lw
1

πσ2x
exp

(
− |xm|2

σ2x

)
1Bνx

(|xm|)

+ Lw
1

πσ2x
exp

(
− |xm|2

σ2x

)
1BC

νx
(|xm|)

= L(1− w)
1Bνx

(|xm|)
|Bνx |

+ Lw
1

πσ2x
exp

(
− |xm|2

σ2x

)
1Bνx

(|xm|)

+ Lw
1

πσ2x
exp

(
− |xm|2

σ2x

)
1BC

νx
(|xm|).

Since Bνx → {0} as νx → 0, it holds that 1Bνx
(|xm|) → 0 (in the integrated

sense of a pdf) as νx → 0. Similarly, BC
νx → R as νx → 0, and 1BC

νx
(|xm|) →

1 as νx → 0. Letting νx → 0 therefore results in

lim
νx→0

f̃(xm|y, ϵ,x−m, σ
2, w, σ2x)

∝ L(ϵm, xm = 0, σ2)(1− w)δ(|xm|)

+ L(ϵm, xm, σ
2)w

1

πσ2x
exp

(
− |xm|2

σ2x

)
∝ (1− w)δ(|xm|)

+ L(ϵm, xm, σ
2)w

1

πσ2x
exp

(
− |xm|2

σ2x

)
,

where it was used that L(ϵm, xm = 0, σ2) = 1. Inserting the expression
of L(ϵm, xm, σ

2) from equation (B.7) into this expression, the conditional
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posterior can be computed as

f(xm|y, ϵ,x−m, σ
2, w, σ2x)

∝ (1− w)δ(|xm|)

+ exp

(
− |xm|2 − xmeHmfm(ϵm)− x∗mfm(ϵm)Hem

σ2

)

× w
1

πσ2x
exp

(
− |xm|2

σ2x

)
= (1− w)δ(|xm|)

+ w
1

πσ2x
exp

(
− σ2 + σ2x

σ2σ2x
|xm|2 − x∗m

fm(ϵm)Hem
σ2

− xm
eHmfm(ϵm)

σ2

)
.

Defining

η2m :=
σ2 + σ2x
σ2σ2x

and

µm :=
η2m
σ2

fm(ϵm)Hem

gives the reformulation

f(xm|y, ϵ,x−m, σ
2, w, σ2x)

∝ (1− w)δ(|xm|) + w
1

πσ2x
exp

(
− |xm|2

η2m
− x∗mµm

η2m
− µ∗mxm

η2m

)

= (1− w)δ(|xm|) + w
1

πσ2x
exp

(
|µm|2

η2m

)
exp

(
− |xm − µm|2

η2m

)
.

Rewriting the factor in the first term as

(1− w) =

(
1− w + w

η2m
σ2x

exp

(
|µm|2

η2m

)
− w

η2m
σ2x

exp

(
|µm|2

η2m

))
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gives

f(xm|y, ϵ,x−m, σ
2, w, σ2x)

∝

(
1− w + w

η2m
σ2x

exp

(
|µm|2

η2m

)
− w

η2m
σ2x

exp

(
|µm|2

η2m

))
δ(|xm|)

+ w
1

πσ2x
exp

(
|µm|2

η2m

)
exp

(
− |xm − µm|2

η2m

)

∝

(
1−

w
η2m
σ2
x
exp

(
|µm|2
η2m

)
1− w + w

η2m
σ2
x
exp

(
|µm|2
η2m

))δ(|xm|)

+
w

η2m
σ2
x
exp

(
|µm|2
η2m

)
1− w + w

η2m
σ2
x
exp

(
|µm|2
η2m

) 1

πη2m
exp

(
− |xm − µm|2

η2m

)
.

Defining the constant

wm :=
w

η2m
σ2
x
exp

(
|µm|2
η2m

)
1− w + w

η2m
σ2
x
exp

(
|µm|2
η2m

) ,
one obtains the final expression of the conditional posterior of the target
amplitude elements:

f(xm|y, ϵ,x−m, σ
2, w, σ2x) ∝ (1−wm)δ(|xm|)+wm

1

πη2m
exp

(
−|xm − µm|2

η2m

)

Examining this expression of the conditional posterior pdf, one can observe
that the conditional posterior of xm is distributed according to

xm|y, ϵ,x−m, σ
2, w, σ2x ∼ BerCN

(
wm, µm, η

2
m

)
,

which concludes the derivation of the conditional posterior of the target
amplitude elements.

B.2 Grid mismatch vector elements

As stated above, the elements of ϵ are to be sampled elementwise in order to
facilitate the usage of a Gibbs sampler. Therefore, the conditional posterior
distribution of each component ϵm must be derived. This is done using the
conditional joint posterior seen in equation (B.4c).

In a similar fashion as in the derivation of the conditional joint posterior
given by equation (B.4) from the joint posterior seen in (B.1), the conditional
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joint posterior can be written as

f(ϵm, xm|y, ϵ−m,x−m, σ
2, w, σ2x) = f(ϵm|y, ϵ−m,x, σ

2, w, σ2x)

× f(xm|y, ϵ−m,x−m, σ
2, w, σ2x).

The conditional posterior of ϵm can thus be computed from equation (B.6)
as

f(ϵm|y, ϵ−m,x, σ
2, w, σ2x)

=
f(y|ϵ,x, σ2)f(ϵm|xm)f(xm|w, σ2x)
f(xm|y, ϵ−m,x−m, σ2, w, σ2x)

∝ f(y|ϵ,x, σ2)f(ϵm|xm)f(xm|w, σ2x)

= exp

(
|xm|2 − xmeHmfm(ϵm)− x∗mfm(ϵm)Hem

−σ−2

)
× f(ϵm|xm)f(xm|w, σ2x)

∝ exp(
xmeHmfm(ϵm) + x∗mfm(ϵm)Hem

σ−2
)f(ϵm|xm).

Using the fact that z + z∗ = 2Re[z] for an arbitrary z ∈ C and that(
xmeHmfm(ϵm)

)∗
= x∗mfm(ϵm)Hem,

where the left-hand side and the right-hand side are complex conjugates,
one obtains

f(ϵm|y, ϵ−m,x, σ
2, w, σ2x) ∝ exp

(
2σ−2Re

[
x∗mfmϵ

H
mem

])
f(ϵm|xm).

(B.12)
Examining x∗mfm(ϵm)Hem, one can rewrite it as

x∗mfm(ϵm)Hem

= x∗m

M−1∑
m=0

[
fm(ϵm)

]∗
m
[em]m

= x∗m

M−1∑
m=0

1√
M

exp

(
− j2πm

m+ ϵm

M

)
[em]m

=

M−1∑
m=0

1√
M
x∗m exp

(
− j2πm

m

M

)
[em]m exp

(
− j2πm

ϵm

M

)
.

Defining the matrix

u ∈ CM×M

[um]m := exp
(
j2πmm/M

)
,
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where um is the m:th column of u, one further obtains:

x∗mfm(ϵm)Hem =

M−1∑
m=0

1√
M
x∗m[um]∗m[em]m exp

(
− j2πm

ϵm

M

)
,

using

b := x∗mu∗
m ⊙ em

bm := [b]m,

where ⊙ denotes the Hadamard product, results in

x∗mfm(ϵm)Hem =
M−1∑
m=0

1√
M
bm exp

(
− j2πm

ϵm

M

)
. (B.13)

Letting

zm = bm exp

(
− j2πm

ϵm

M

)
, (B.14)

the polar form of zm can in general be expressed as

zm = |zm| ej arg(zm). (B.15)

Inserting the expression given by (B.14) into (B.15) lends

zm = |zm| ej arg(zm) (B.16a)

=

∣∣∣∣bm exp

(
− j2πm

ϵm

M

)∣∣∣∣ej arg(bm exp(−j2πmϵm/M)) (B.16b)

= |bm|
∣∣∣ exp (− j2πm

ϵm

M

)∣∣∣ej(arg(bm)+arg(exp(−j2πmϵm/M))) (B.16c)

= |bm|ej(ϕm−2πmϵm/M), (B.16d)

where

ϕ ∈ RM

ϕm := arg(bm).

Inserting the expression given by(B.16d) into (B.13) and taking the real part
results in

Re
[
x∗mfm(ϵm)Hem

]
= Re

[
M−1∑
m=0

1√
M

|bm|ej(ϕm−2πmϵm/M)

]
(B.17a)

=

M−1∑
m=0

1√
M

|bm| cos(2πϵm
M
m− ϕm), (B.17b)
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where it was used that

ejθ = cos(θ) + j sin(θ),

and the symmetry of the cosine function. In conclusion, the conditional
posterior of ϵm formulated as in equation (B.12) can be rewritten using
(B.17) as

f(ϵm|y, ϵ−m,x, σ
2, w, σ2x) (B.18a)

∝ exp

(
2σ−2Re

(
x∗mfm(ϵm)Hem

))
f(ϵm|xm) (B.18b)

= exp

(
2σ−2

M−1∑
m=0

1√
M

|bm| cos(2πϵm
M
m− ϕm)

)
f(ϵm|xm) (B.18c)

= exp

(
M−1∑
m=0

κm cos
(
2π
ϵm

M
m− ϕm

))
f(ϵm|xm), (B.18d)

where

κ ∈ RM

κm :=
2

σ2
√
M

|bm|.

This concludes the derivation of the conditional posterior of the grid mis-
match elements.

Observing the resulting expression of the conditional posterior of each
grid mismatch ϵm in equation (B.18d), one can see that it is the pdf of a
dilated and truncated generalised von Mises distribution of order M [14,
equation (7)], which is denoted

ϵm|y, ϵ−m,x, σ
2, w, σ2x ∼ dGvMM [−0.5,0.5](κ,ϕ).

The truncation is due to the multiplication of the posterior with the prior
pdf of ϵm, f(ϵm|xm), which is zero when xm = 0 and otherwise f(ϵm|xm ̸=
0) = 1[−0.5,0.5](ϵm) according to the definition in equation (4.8). The dilation
is due to the scaling of the multiplication of 2πm/M with ϵm in the cosine
function of the posterior.

B.3 Noise power

In the same manner as for the elementwise amplitudes xm and grid mis-
matches ϵm, the expression for the posterior of σ2 is obtained by condi-
tioning on all the other joint parameters seen in equation (B.1) and using
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proportionality. The resulting posterior is calculated as

f(σ2|y,x, ϵ) ∝ f(y|x, ϵ, σ2)f(σ2)

∝ exp

(
− ∥y − F (ϵ)x∥22

σ2

)
exp

(
− γ1

σ2

)
(σ2)γ0+1

1[0,+∞[(σ
2)

=
1

(σ2)γ0+M+1
exp

(
− γ1 + ∥y − F (ϵ)x∥22

σ2

)
1[0,+∞[(σ

2),

one observes that this corresponds to the inverse-gamma distribution

σ2|y,x, ϵ ∼ IG(γ0 +M,γ1 + ∥y − F (ϵ)x∥22).

As expected, the prior of the noise power σ2 is a conjugate prior to the likeli-
hood of the observation signal since both the prior and posterior pdfs f(σ2)
and f(σ2|y,x, ϵ), respectively, belong to the same family of distributions.

B.4 Occupancy level

The same method as for the previous model parameters is used to obtain
the conditional posterior for the occupancy level w. The general expression
for it is

f(w|x) ∝ f(x|w, σ2x)f(w).

The level of occupancy w is a measure of the probability that a specific
component of the target amplitude vector is nonzero. Because the prior of
x is a mixture distribution, more specifically xm|w, σ2x ∼ BerCN (w, 0, σ2x),
we first assume that the number of nonzero components of x is n1. We
define the index set A of cardinality n1 as the set of indices that correspond
to the nonzero components of a target amplitude vector x. The posterior of
w can thus be readily computed as

f(w|x) ∝ f(x|w, σ2x)f(w)

=
M−1∏
m=0

f(xm|w, σ2x)f(w).

Making use of the known target amplitude vector x and where the indices of
the nonzero components are located using the index set A, together with the
approximation of the Dirac delta approximation given by equation (B.10),
the posterior of w can be written as

f(w|x) ∝
∏

mc∈AC

(1− w)
1

|Bν |
1Bν (|xmc |)

∏
m∈A

w
1

πσ2x
exp

(
− |xm|2

σ2x

)
,
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where AC is the complement of the index set A, thus containing the indices
of the zero elements in x. Using the fact that |xmc | = 0, it follows that
1Bν (|xmc |) = 1 for all mc ∈ AC since |xmc | ≤ ν for all ν ≥ 0. Consequently,

f(w|x) ∝ (1− w)M−n1
1

|Bν |M−n1

∏
m∈A

w
1

πσ2x
exp

(
− |xm|2

σ2x

)

= (1− w)M−n1wn1
1

|Bν |M−n1

∏
m∈A

1

πσ2x
exp

(
− |xm|2

σ2x

)
∝ (1− w)M−n1wn1 .

Letting n0 := M − n1, one can see that the posterior of w is a beta distri-
bution

w|x ∼ Beta(n1 + 1, n0 + 1),

which concludes the derivation of the level of occupancy posterior.

B.5 Target signal power

The conditional posterior of σ2x is derived in this section. The general ex-
pression of the posterior is

f(σ2x|x) ∝ f(x|w, σ2x)f(σ2x).

As in the case of the derivation of the conditional posterior of w, it is assumed
that the target amplitude vector x has exactly n1 nonzero components,
where the index set A is the same, the posterior can thus be computed in a
similar fashion as for w. The posterior of σ2x can thus be computed as

f(σ2x|x) ∝ f(x|w, σ2x)f(σ2x)

=
M−1∏
m=0

f(xm|w, σ2x)f(σ2x)

=
∏

mc∈AC

(1− w)
1

|Bν |
1Bν (|xmc |)

×
∏
m∈A

w
1

πσ2x
exp

(
− |xm|2

σ2x

)
e−β1/σ2

x

(σ2x)
β0+1

1[0,+∞[(σ
2
x).
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Using the fact that |xmc | = 0, it follows that 1Bν (|xmc |) = 1 for all mc ∈ AC

since |xmc | ≤ ν for all ν ≥ 0. It thus follows that

f(σ2x|x)

∝ (1− w)M−n1
1

|Bν |M−n1

∏
m∈A

w
1

πσ2x
exp

(
− |xm|2

σ2x

)
e−β1/σ2

x

(σ2x)
β0+1

1[0,+∞[(σ
2
x)

∝ 1

(σ2x)
n1

exp

(
− ∥x∥22

σ2x

)
e−β1/σ2

x

(σ2x)
β0+1

1[0,+∞[(σ
2
x)

=
exp

(
− (β1 + ∥x∥22)/σ2x

)
(σ2x)

β0+n1+1
1[0,+∞[(σ

2
x).

Examining the posterior of the target signal power, one can in conclusion
observe that it is in fact an inverse-gamma distribution

σ2x|x ∼ IG(β0 + n1, β1 + ∥x∥22).



Appendix C

Tables Summarising Network
Architectures and Training
Setups

C.1 Bivariate Gaussians with means on unit circle

Latent vector: z ∼ N (0, I2×2)
Angle: θ ∈ [0, 2π]

concat(z, sin(θ), cos(θ)) ∈ R4

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 2

(a) Generator

Sample: x ∈ R2

Angle: θ ∈ [0, 2π]

concat(x, sin(θ), cos(θ)) ∈ R4

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 1; Sigmoid

(b) Discriminator

Table C.1: CCGAN architecture for the simulation of Gaussians with com-
mon fixed covariance matrix and means taking values on the unit circle. The
abbreviation ”fc” stands for ”fully connected” layers, where the right arrow
indicates how many hidden nodes are in the next layer. ”BN” stands for
”batch normalisation” and one can see that the ReLU activation function
was used.
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Parameter Value

Iterations 6000

Learning rate 5 · 10−5

Optimiser ADAM (with β1 = 0.5 and β2 = 0.999)

Mini-batch size 128

σ 0.074

ν 0.0083

Table C.2: Training setup of the CCGAN for simulating bivariate Gaussians
with fixed common covariance matrix and means taking values on the unit
circle. The learning rate and mini-batch size is the same for both the gener-
ator and discriminator. The computed HVDL regularisation parameters σ
and ν are also included, as defined in equations (3.13) to (3.14) respectively.

C.2 Univariate Gaussians with varying expecta-
tion

Latent vector: z ∼ N (0, I2×2)
Mean: µ ∈ [0, 4]

concat(z, µ) ∈ R3

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 1

(a) Generator

Sample: x ∈ R
Mean: µ ∈ [0, 4]

concat(x, µ) ∈ R2

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 1; Sigmoid

(b) Discriminator

Table C.3: CCGAN architecture for the simulation of Gaussians with com-
mon fixed standard deviation and means taking values on the interval [0, 4].
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AND VARIANCE 101

Parameter Value

Iterations 2000

Learning rate 10−4

Optimiser ADAM (with β1 = 0.5 and β2 = 0.999)

Mini-batch size 128

σ 0.095

ν 0.025

Table C.4: Training setup of the CCGAN for simulating univariate Gaus-
sians with fixed common standard deviation and means taking values on the
interval [0, 4]. The learning rate and mini-batch size is the same for both
the generator and discriminator.

C.3 Univariate Gaussians with varying expecta-
tion and variance

Latent vector: z ∼ N (0, I2×2)
Mean: µ ∈ [0, 4]

Standard deviation: σ ∈ [0.05, 0.1]

concat(z, µ, σ) ∈ R4

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 1

(a) Generator

Sample: x ∈ R
Mean: µ ∈ [0, 4]

Standard deviation: σ ∈ [0.05, 0.1]

concat(x, µ, σ) ∈ R3

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 1; Sigmoid

(b) Discriminator

Table C.5: CCGAN architecture for the simulation of Gaussians with means
taking values on the interval [0, 4] and standard deviations taking values on
[0.05, 0.1].
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Parameter Value

Iterations 2000

Learning rate 10−4

Optimiser ADAM (with β1 = 0.5 and β2 = 0.999)

Mini-batch size 64

σ [0.021, 0.021]

ν [0.0084, 0.0084]

Table C.6: Training setup of the CCGAN for simulating univariate Gaus-
sians with means taking values on the interval [0, 4] and standard devia-
tions taking values on [0.05, 0.1]. The learning rate and mini-batch size
is the same for both the generator and discriminator. Note that the reg-
ularisation parameters are two-dimensional since the regression labels are
two-dimensional. The first element corresponds to the mean, while the sec-
ond one corresponds to the standard deviation.

C.4 von Mises distributions with varying expecta-
tion

Latent vector: z ∼ N (0, I2×2)
Mean: ϕ ∈ [−π, π]
concat(z, ϕ) ∈ R3

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 1

(a) Generator

Sample: x ∈ R
Mean: ϕ ∈ [−π, π]
concat(x, ϕ) ∈ R2

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 1; Sigmoid

(b) Discriminator

Table C.7: CCGAN architecture for the simulation of von Mises distribu-
tions with fixed concentration κ = 20, conditioned on means taking values
on the interval [−π, π].
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Parameter Value

Iterations 300

Learning rate 5 · 10−5

Optimiser ADAM (with β1 = 0.5 and β2 = 0.999)

Mini-batch size 128

σ 0.065

ν 0.0084

Table C.8: Training setup of the CCGAN for simulating von Mises distri-
butions with fixed common concentration κ and means ϕ taking values on
the interval [−π, π]. The learning rate and mini-batch size is the same for
both the generator and discriminator.

C.5 Dilated and truncated generalised von Mises
distributions

Latent vector: z ∼ N (0, I2×2)
Concentrations: κ ∈ RM

Means: ϕ ∈ RM

concat(z,κ,ϕ) ∈ R2+2M

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 100; BN; ReLU

fc → 1

(a) Generator

Sample: ϵm ∈ R
Concentrations: κ ∈ RM

Means: ϕ ∈ RM

concat(x,κ,ϕ) ∈ R1+2M

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 100; ReLU

fc → 1; Sigmoid

(b) Discriminator

Table C.9: CCGAN architecture for the simulation of dGvM[−0.5,0.5] distri-
butions conditioned on the dGvM parameters κ and ϕ.
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Parameter Value

Iterations 1000

Learning rate 10−5

Optimiser ADAM (with β1 = 0.5 and β2 = 0.999)

Mini-batch size 512

σ 0

ν 0

Table C.10: Training setup of the CCGAN for simulating univariate
dGvM[−0.5,0.5] distributions conditioned on the parameters κ and ϕ. The
learning rate and mini-batch size is the same for both the generator and
discriminator. The CCGAN regularisation parameters are set to zero for all
regression label elements.
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