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Abstract

In this work, we intend to employ nanowires for the realisation of an artificial neuron which can be used
to design a neural network that will guide the new generation of non-von Neumann architectures such as
Neuromorphic Computing. Possible applications are strongly related to Neuromorphic architectures and
artificial intelligence, such as high-performance computers, robotics hardware and autonomous drones.

Here, we aim to design a device that can perform as a node in an optically communicating neural network.
We employ nanowires to form a single artificial neuron by coupling a receiver and a transmitter of
optical signals, together with a transistor as an in-between control element. Based on this configuration,
we find optimal optical properties for our desired neural network communication. The node-to-node
communication relies on the strength of the connection known as weights. The connection strength can
be tailored by the position and rotation of the individual nanowires making up the nodes and layers;
however, this might set some correlations and limitations on the weights.

We frame our main research questions as a set of hypotheses that we test by numerical experiments
using the finite-difference time-domain (FDTD) method. The FDTD method is one of many numerical
methods that exist to tackle this type of electromagnetic simulation. Among the valid alternatives are
the finite element method and the method of the moment. However, we decided on the FDTD method
because it is the one that best suits our needs to perform electromagnetic simulation on nanowires and
to study a node-to-node communication.

We split our study and perform separate simulations on the receiver and transmitter. During the simu-
lation of the receiver, we sweep the incoming light angle to study the absorption difference between two
distinct depletion regions. The difference in absorption between the two regions yields a potential differ-
ence that allows switching on and off the transistor that controls the current through the transmitter.
The emitted light from the transmitter is assumed proportional to the current. To study the transmitter,
a dipole source was placed in the middle of a nanowire to study and evaluate the ability of the emitter
to emit light in a specific direction, namely directivity.
The results from the receiver and transmitter studies are combined into a weight function after connecting
the two simulated nanowires that form an artificial neuron. The weight function is our ultimate result
from our experiment, which can be employed to design a custom neural network based on already known
weights.
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CHAPTER 1 Introduction

1 Introduction
1.1 Motivation
The last century was packed with brilliant minds that boosted our society’s knowledge and information
through the advent of computers, the internet, and television that constantly influence our life. As an ex-
ample, one interesting object that seems to propel research efforts in the following decades is an artificial
neuron (AN) that was idealised and reported for the first time in 1944 by Pitts and McCulloch [1]. Pitts
and McCulloch were the pioneers of the field for what later became known as Neural Networks. Later
in 1951, Minsky and Edmonds inspired by Pitts and McCulloch built the first neural network machine
at MIT Media Laboratory, named SNARC1, which was one of the first attempts in the field of Artificial
Intelligence [2][3]. These technical advances paved the fundamental building block of a new generation of
non-von Neumann architectures, e.g. Neuromorphic Computing [4]. The technique has a wide variety of
applications, such as High-Performance Computing [5], Robotics hardware and Autonomous Drones [6].

In this work, we put forward and test a device design with the aim that it can be used as a node
in neural networks (NNs). Furthermore, a set of nodes should communicate with each other if they are
coupled together, and we intend to describe the strength of such a coupling. The neural node component
that serves as the fundamental building block of a general neural network (NN) is shown schematically
in Fig.1. A single neuron may compute simple logical gates such as AND, OR and NOT similarly to addi-
tion and multiplication operations between layers [7]. Therefore, node communications are mainly basic
mathematical operations such as vector or matrix operations as a = ωTx + b or a = Θ · x + b in matrix
notation. In addition, an activation function, φ(a), is necessary to map out the output as shown in Fig.1.

In our envisioned realisation of an artificial neural network (ANN), the node-to-node weighted connec-
tivity is attained by emitting and receiving overlapping light signals inside a shared 2D waveguide, under
the right circumstances. The neural network that we are going to simulate is a broadcasting network,
in contrast to having individual guiding channels, like fibres, between all the neurons. The strength of
the communication or coupling is described by a set of parameters called weights, ωi,j , as exemplified in
Fig.1, which can be seen as a weight matrix.

Σ
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1

x1

x2

x3

φ

Activation y1

y2

ω
(2)
1,1

ω
(2)
2,1

ω
(1)
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ω
(1)
1,3

Neuron

Figure 1. An abstraction of a minimal Neural Network is composed, from the leftmost, of an input layer
xi, at least one neuron, and an output layer yi, where each neuron has an activation function φ(a).

The node design consists of a Receiver nanowire (NW) based on photovoltaic nanotechnology [8] such
as two distinct photo-diodes labelled by +/– as depicted on the left side of Fig. 2, and a Transmitter
or emitter NW containing a nanowire-LED. A key element of the NN communication proposed here is
the illumination angle from the leftmost end which influences the amount of absorption between these
two different photo-diodes. The absorbed carriers2 are gathered at the middle of the Receiver NW via
a gold contact pad and form the gate voltage, Vgate or net charge. The gate voltage controls the current
through the LED via a device, namely a Metal–oxide–semiconductor field-effect transistor (MOSFET).
The MOSFET behaves as a physical activation function that maps the built-up potential on the Vgate
contact to a current through the nanowire-LED. The LED produces the radiation pattern, and it is set
in the middle of the emitter NW as far as possible from the gold contact pads. The emitted power is

1Stochastic neural analogue reinforcement calculator (SNARC).
2One of the carriers accumulated on the Vgate contact, e.g. holes or electrons may rule over the other one, leading to a

net charge that switch on/off the transistor and control the current flow from the circuit to the LED in the Transmitter as
shown in Fig. 2.
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CHAPTER 1 Introduction

transmitted towards both ends of the NW. However, it is possible to limit the transmission to one side
of a Transmitter NW by placing a Bragg reflector at one side that acts as a mirror [9]. What makes
these nanoscale devices so desirable for both research and application fields is the limited footprint, an
improving conversion efficiency [8] and last, the capability to absorb a broad variety of wavelengths, λ,
although its nanoscale size3. So, we are interested in leveraging the superior speed, and energy efficiency
of light as a carrier of information [10].

Figure 2. A single physical artificial neuron composed, from the leftmost, by a Receiver NW with
two distinct photo-diodes +/–, a transistor, and a Transmitter NW with an LED in the middle. (a)
Photo-diode p-n junction labelled with + or –, detects the incoming source (b) The activation function
seen in Fig. 1 is replaced with a transistor current-voltage characteristic [11]. The activation function maps the
built-up potential or net charge on the Vgate contact to a current source through (c) the Transmitter LED.

Fig. 3 represents the fundamental building blocks of a simple NN, e.g. an input layer, a hidden layer
and an output layer, accordingly. The input layer, performed by a Transmitter, generates the incoming
light source, while the hidden layer is a physical artificial neuron obtained via an electrical coupling of a
Receiver and a Transmitter through a transistor and gold contact pads as also shown in Fig. 2 and last,
a Receiver as an output layer.

Figure 3. Sketch of a basic physical Neural Network framework formed by an input layer x1, a single
hidden neuron h(1)

1 and an output layer y1 , respectively. Transmitter and Receiver NWs rotate anticlockwise w.r.t
to the baseline r1 or r2, which is a virtual line connecting a Transmitter end-facet transmission point to the centre
of a Receiver NW. For α=β= 0°, both Receiver and Transmitter NWs are aligned with the baselines, r1, r2.

Figure 4(a) depicts the interrelation between nanowires through a set of parameters, e.g. (r, α, β) where
r is the distance between Transmitter and Receiver, α the Receiver rotation angle and β the Transmitter
rotation angle, respectively. Figure 4(b) is a FCNN4 where an example input node x2 is Fully-Connected
to the next hidden layer similar to the emitter case of Fig. 4(a). The weight values, Θ, represent the
strength of the connection between nodes. In short, the below images depict how one can tune the

3The ratio of simulated cross-section versus geometrical cross-section shown in Fig. 24, is an appealing factor of NWs.
4The Transmitter-Receiver correlation can be seen as a 2D graphic representation of a fully-connected neural network.
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CHAPTER 1 Introduction

strength of optical communication by simply rotating a nanowire or a set of NWs. This is one of the
main aspects of this network design strategy. The key point is how the rotation of one nanowire influences
not only one weight but an entire row or column of a weight matrix for a network with more than two
neurons.

(a) Framework of Neural Network communication.

x1

x2

x3

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer

Θ(1)

y1

y2

Output
layer

Θ(2)

(b) A Fully-Connected 3-4-2 Neural Network.

Figure 4. (a) Schematic representation of an optical communication between Transmitter and
Receiver NWs between layers in an extended NN compare to Fig. 3. (b) An abstraction of the previous
physical NN such as a fully-connected neural network (FCNN) with 3-4-2 architecture.

In conclusion, the nodes shown in Fig. 4 are made up of nanowires, and the connection strength ω can
be tailored by the position and rotation of NWs; this will, however, set some correlations and limitations
on the weights. One can view these NWs as a part of a circuit board that has been placed down and
contacted, as exemplified in Fig 2. We cannot move them; thus, the weights are fixed. Consequently,
the weights are set and cannot be trained in-loco. However, the training part of these weights is done
externally on Supercomputers. Therefore, one needs to implement a NN model that is solid and reliable
such as a pre-trained model, e.g. the AlexNet [12] to extract these weights. Given these pre-trained
weights, one can eventually build a mathematical model that describes the position and rotation of NWs
in a NN as illustrated in Fig 4(a).

Exploiting nanowire features under the right circumstances, we want to prove three main hypotheses
that are important if the types of networks that we propose here are to be realised:

1. Can the absorption of a receiver NW be so specific to suit our neural network requirements, even
though, nanowires have tiny cross-section?

2. Can the emission of the transmitter nanowire also be tuned to control the spread of light through
the neural network?

3. If a network has more than two neurons, then the transmitter rotations affect not only one weight
but rather an entire row or column of a layer-to-layer weight matrix as depicted in Fig 4(a). Can
such a network be useful nevertheless?

Hypothesis 1)We assume that we can have more local absorption in one of the two end depletion regions
for a certain illumination angle. After selecting an appropriate semiconductor composed of indium and
phosphorus, namely, indium phosphide (InP), we can tune the absorption by sweeping the illumination
angle, which means that we can adjust the weights and the strength of communication between nodes or
layers of a neural network.
Hypothesis 2) We will investigate if it is possible to adjust the Transmitter parameters to direct and
control the light cone emission through a neural network.
Hypothesis 3) We will try to develop an algorithm that allows our proposal to mimic a specific neural
network to test this hypothesis.

3



CHAPTER 1 Introduction

1.2 Aim
This thesis aims to study the limitations of a physical neural network based on broadcasting optical
communication. Such a scheme allows all transmitted signals to share a common waveguide, limiting
the footprint of such a computational network. The aim in designing this network is that the weights
are controlled by geometry, like the relative angle and distance between two components in the network.
The shared waveguide approach introduces correlations between different weights. For example, if one
component is rotated to tilt the transmitted radiation pattern, this will affect the connections to all com-
ponents in the following layer. We intend to study if it is possible to perform interesting computations
under these limitations.

By performing electromagnetic (EM) simulation within the finite-difference time-domain (FDTD) us-
ing a software package called Lumerical, we are aiming to test hypotheses 1) and 2) and by analyzing
those results estimate whether hypothesis 3) can be fulfilled.
We will try to investigate if the absorption of the Receiver NW can be drastically different between the
two ends of the NW by simulating certain illumination angles, wavelengths and NW diameters, for in-
stance. For the Transmitter, after selecting a proper power source, we will study different communication
wavelengths and NW diameters to observe how the Directivity, which is the ability of NWs to direct
light, changes and how it can be controlled. After coupling electrically Receiver and Transmitter to form
a neuron, we aim to describe the Weight function used to calculate the weights that we change by rotating
nanowires of our neural network, which is our end result.

1.3 Scope
The devices making up the neural network are composed of advanced nanowire devices with electrical
properties, like transistors and diodes. In this thesis, we are only interested in their optical properties.
For example, we study how they absorb and transmit light as a function of their relative positions
and rotations. Thus, we will limit ourselves to single nanowire components without considering the
necessary electronics, i.e. the contact pads and wires as shown in Fig. 2. In addition, we will perform
3D simulations in free space to map out the optical characteristics of the nanowire devices, which is a
simplification compared to simulating them in a waveguide environment. We believe that this is the
correct starting point to study the physics of the devices first, while the waveguide physics could enter
at a later stage in order not to obstruct our view.

1.4 Outline
After providing the Motivation above and describing the main research questions, we introduce the The-
ory chapter which is dedicated to cast our simulation problem onto the form of an initial value problem
(IVP). Entering this problem are Maxwell’s equations accompanied by examples of their conditions at
material interfaces, problem geometry, initial conditions, and boundary conditions (BC). As an aside, we
provide a useful definition of the Directivity.

The Method chapter is about solving the initial value problem specified in the Theory. First, the
principle of the FDTD method is given in the style of Yee’s FDTD technique which is described and
implemented with a few algorithm examples with periodic BC, non-reflecting BC and propagation in
a medium in 1D, to get a basic idea of the method. Expanding on this Yee’s FDTD method, specific
Lumerical features are introduced to show how Lumerical treats the boundaries and minimises the nu-
merical error via perfect matching layers (PML). The final part of the Method is dedicated to Sources,
Monitors and Limitations to complete the FDTD method as implemented in Lumerical. After explaining
the physics in the Theory chapter and how the methods are applied, the outcome of these investiga-
tions are presented in the Results and Discussion chapter to consolidate our hypotheses 1), 2), and 3).
The Conclusion chapter is devoted to the main findings and discusses possible applications and further
development of this project.

4



CHAPTER 2 Theory

2 Theory
This chapter explains briefly the theoretical principles that govern the physical phenomena that interests
us. We will describe the physical situation of NWs absorbing and emitting light as an initial value problem
(IVP). IVPs frequently occur in applications, hence, the numerical solution of this kind of problem is a
central task in many simulation environments for mechanical, electrical, chemical systems. IVP is a type
of problem involving an initial condition, a set of equations and boundary conditions. The solution of
an IVP is an unknown function, y, that requires the use of an ordinary differential equation (ODE) with
one independent variable or partial differential equation (PDE) in the case of more than one independent
variable plus an initial condition. Let y ∈ C1[t0, te] be a function that is a solution of the following initial
value problem:

y′ = f(t, y(t)) with y(t0) = y0 as initial condition (1)

Similarly, in higher dimensions, the differential equations are a class of y′i = fi(t, y1(t), . . . , yn(t)) equations
and y(t) is a vector function. At higher orders, the IVP derivatives are considered as independent function,
e.g. y′′(t) = g(t, y(t), y′(t)) [13]. Notably, the boundary conditions are used to fully specify the problem
on a certain physical domain.

This Theory chapter is organised according to the key components of the IVP and introduces, first,
the set of Maxwell’s equations in linear matter, second, how the geometry is specified within the problem
space, third, a set of relevant initial conditions including plane waves and dipoles, and fourth, boundary
conditions. As an aside, in the end, we add the definition of Directivity with examples of isotropic
emission and emission from a Hertzian dipole.

2.1 Maxwell’s equations in matter
Here, Maxwell’s equations are shown in regions of space where there are charge distribution ρ and current
density J. Note, in linear material, the free current density in Maxwell’s equations is generally J 6= 0.

i) ∇ ·D = ρ

ε
Gauss’s law forE, iii) ∇×E = −∂B

∂t
Faraday’s law,

ii) ∇ ·B = 0 Gauss’s law forB, iv) ∇×B = µJ + µε
∂D
∂t

Ampère’s law,
(2)

where D = εE, H = 1
µ

B and J = σE

These equations are still valid in a vacuum with no sources; under such circumstances, the charge distri-
bution ρ and the current J disappear; while, the permeability and permittivity are the ones in free space,
e.g. µ0, ε0, respectively [14][15].

2.1.1 Conditions at material interfaces
The following equations relate the electric and magnetic fields to the left and right of the interface between
two linear media when a wave passes through two distinguished materials, e.g. air to semiconductor or
fibreglass to air. The details of the following equations are related to the conservation laws such as energy
and charge conservation, and specify the internal boundary conditions at material interfaces [14]:

i) ε1E
⊥
1 = ε2E

⊥
2 , iii) E‖1 = E‖2

ii) B⊥1 = B⊥2 , iv) 1
µ1

B‖1 = 1
µ2

B‖2
(3)

where the fields are split into E⊥, E‖, the orthogonal and parallel components, respectively, same for
B⊥, B‖ with respect to the interface, as depicted in Fig. 5. Note that ε1 6= ε2.
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CHAPTER 2 Theory

Figure 5. Sketch of a material interface where interior boundary conditions of Eq. (3) should be fulfilled.

2.2 Geometry within the problem space
In a linear material, electromagnetic waves propagate at speed:

v = 1
√
εµ

= c

n
(4)

n ≡
√

εµ

ε0µ0
∼=
√
εr µ close to µ0 for most of media (5)

where n is the index of refraction of a medium, see Appendix A.2. εr is the dielectric constant5 that
is often greater than 1; hence, incoming light source propagates more slowly in a material. Notably,
the dielectric constant, εr enters into Gauss’s law for E and Ampere’s law, and this is how Maxwell’s
equations know that there is a device in the simulation environment due to the refractive index variation.
An important point here is that the refractive index as a function of position, n(r, ω), is an relevant
function to specify in the system of equations; this is one of the prerequisites of the problem, just as the
initial and boundary conditions.

In idealized conditions, the refractive index, n, is sometimes assumed real and the material do not
absorb any light. However, real materials absorb part of incoming light source, which effectively can be
described by a complex refractive index:

ñ = n+ iκ, (6)

where n is the real part and the imaginary part is the extinction coefficient, κ.
Inserting the ñ into the wave vector, k̃ =

(
ω
c

)
ñ =

(
ω
c

)
[n+ iκ] of the plane wave, and rearranging the

plane wave equation, we find

E(z, t) = E0 · ei(k̃z−ωt),
= E0 · e−α

z
2 ei(kz−ωt) (7)

where k in the second line of above equation is real and e−α z2 is the exponential damping factor which is
related to the absorption coefficient α = 2ωκ

c = 4πκ
λ0

[16].
An example of values is the refractive index, n = 3.5896, λ0 = 0.5876 µm, extinction coefficient,

κ = 0.35045 and α = 74 947 cm−1 for InP compound material6.

2.3 Initial conditions, Sources
A source, such as a plane wave, injects electromagnetic radiation that subsequently impinges a device
or material under study. In this study we use sources that inject electromagnetic energy during a short
time period and then follow the propagation of the created waves through the system of interest.

5Dielectric constant is independent of the amplitude of E; however, it depends on the frequency.
6These values are taken from the Refractive index database.
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CHAPTER 2 Theory

2.3.1 Plane waves
In the case of plane wave propagating in z-direction in free space with no sources, the Maxwell’s equations
simplify to:

∇ ·E = 0 =⇒ ∂Ex(z, t)
∂x

= 0 Gauss’s law forE,

∇ ·H = 0 =⇒ ∂Hy(z, t)
∂y

= 0 Gauss’s law forH,

∂E
∂t

= 1
ε0
∇×H =⇒ ∂Ex

∂t
= − 1

ε0

∂Hy(z, t)
∂z

Ampère’s law, (8)

∂H
∂t

= − 1
µ0
∇×E =⇒ ∂Hy

∂t
= − 1

µ0

∂Ex(z, t)
∂z

Faraday’s law, (9)

where both E and H are vectors in 3D that represents three equations each, in general. The plane waves
are solutions to these equations and are given as

E = E0 · ei(kz−ωt), B = B0 · ei(kz−ωt), (10)

and such waves can be used as initial conditions to the IVP. If the physical fields, i.e. the real components
of E0 and B0 are considered in place of the complex amplitudes, respectively, along the x- and y-axis,
the following linearly polarised wave is a a possible solution:

E(z, t) = E0 cos (kz − ωt+ δ)x̂, B(z, t) = B0 cos (kz − ωt+ δ)ŷ, (11)

Note that E and B7 are mutually orthogonal, with real amplitude related by B0 = k
ωE0 = 1

cE0. Addi-
tional constraints from the Maxwell’s equations on E0 and B0, since ∇ · E = 0 and ∇ ·H = 0, require
that

(E0)z = (B0)z = 0

which proves, electromagnetic waves are transverse [14][16], such that wave propagation is orthogonal to
the electric and magnetic fields.

Figure 6. Transverse electromagnetic wave (TEM)

z

x

y
t

Ex = E0

Hy

B = µ0H

Ex = electric field amplitude
Hy = magnetic field amplitude
n = index of refraction

v = 1
√
εµ

= c

n
, c = 1

√
µ0ε0

µ0 = magnetic permeability in a vacuum,
ε0 = electric permittivity in a vacuum,
c = speed of light (3× 108m/s)

Fig. 6 depicts the vector nature of the fields of a wave propagating in three dimensions along the z-axis
due to set initial conditions. E(z, t) field oscillates in the x direction and H(z, t) in the y direction,
while the power source flows along z. The right-hand rule defines the direction of the power flow by
the cross-product E ×H. By summing an ensemble of plane waves, arbitrary shapes in time, such as a
Gaussian pulse, G(t), can be built. The Gaussian pulse oscillates w.r.t time, but it is constant in space
along its wavefronts, i.e. E and H.

7Every solution to Maxwell’s equations, in vacuum, must fulfil the wave equation in Appendix 1, the vice versa is not
true.
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CHAPTER 2 Theory

2.3.2 Energy in Electromagnetic waves, Poynting vector
In relation to the plane waves, we can define another relevant element of electrodynamics: the Poynting
vector. Here we will provide a brief introduction and discussion. The energy density or total energy
stored, per unit volume, in electromagnetic fields, E, is [14]:

u = We +Wm = 1
2

(
εE2 + 1

µ
B2
)

(12)

For a monochromatic plane wave
B2 = 1

c2
E2 = µεE2 (13)

where is E = E0 cos(kz − ωt+ δ), it follows that we have equal electric and magnetic contributions:

u = εE2 = εE2
0 cos2 (kz − wt+ δ) (14)

where the cosine argument is the phase and k is the wavenumber, and δ is a phase constant.
From the Lorentz force, F = q(E + v×B), the work done on a charge q is expressed by

dW = F · dl = q(E + v×B) · v dt = qE · v dt, J = qv

that describes the electromagnetic forces on the charges in a domain V during the time dt. The rate at
which work is applied on all the charges in a volume V is

dW
dt =

∫
V

(E · J) dτ (15)

where (E · J) is the power per unit volume which can be expanded as:

(E · J) = −1
2
∂

∂t

(
εE2 + 1

µ
B2
)
− 1
µ
∇ · (E×B), (16)

obtained by using the Ampère-Maxwell’s law to cancel the term J, the product rule and the Faraday’s
law8. Inserting the Eq. (16) into Eq. (15) and applying the divergence theorem to the second term,
follows the final form of the Poynting’s theorem9:

dW
dt = − d

dt

∫
V

1
2

(
εE2 + 1

µ
B2
)

dt− 1
µ

∮
S

(E×B) · da, (17)

where S is the surface that bounds V . The first term on the right represents the change in total energy
stored in the fields; the second term is the rate at which energy is transported out of V by E and B
through its boundary surface S with da normal to the surface S.

A wave travels and carries this energy flux density S, measured as energy per unit time and area,
called the Poynting vector

S ≡ 1
µ

E×B . (18)

For a monochromatic plane wave in z direction, S = cu ~z where cu is the energy per unit time and area,
carried by the wave; which can be related to the intensity10 by making use of Eq. (13):

I ≡ 〈S〉 = 1
2εvE

2
0 (19)

All things considered, we are interested in measuring the time-averaged value 〈S(t)〉 [14]. As the wave
travels, it carries this energy along with it, rather than the fluctuating cosine-squared term, Eq. (14).
Thereby, the intensity is the average power per unit area carried by an electromagnetic wave which is
what we work with a monitor when we perform our FDTD simulations.

8More detailed derivations on Griffith’s 4th edition, Introduction to Electrodynamics [14]
9Poynting’s theorem says that the work done on the charges by the electromagnetic force is equal to the decrement in

energy left in the fields, minus the energy that flowed out via the surface.
10This holds also in linear media. The Poynting vector itself is always true, in general, regardless the media.
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2.3.3 Dipole sources
In this section we will distinguish between far-field and near-field. In the case of the far-field, at large
distances such as r � λ, the contribution of a field from many multipoles can be seen as a localised charge
distribution or a single charge with potential approximated to V (r) = 1

4πε0

Q
r [17]. While, in the near-field,

for r � λ, one may consider the contribution of many multipoles such as the dipole, quadrupole and
octopole, mainly. The potential V (r) of any localised charge distribution can be expanded in powers of 1

r
where the law of cosines in Eq. (20) and Taylor expansion are involved, and their coefficients are Legendre
polynomials. [14]. Below follows the law of cosine and the multipole expansion w.r.t 1

r truncated to
the 4th order:

r 2 = r2 + (r′)2 − 2rr′ cosα = r2

[
1 +

(
r′

r

)2
− 2

(
r′

r

)
cosα

]
, (20)

V (r) = 1
4πε0

∫ 1
r ρ(r′) dt′ = 1

4πε0

[
1
r

∫
ρ(r′) dt′ + 1

r2

∫
r′ cosα ρ(r′) dt′+

1
r3

∫
(r′)2

(
3
2 cos 2α− 1

2

)
cosα ρ(r′) dt′ + ....

]
(21)

Figure 7. Shows several multipole potentials as function of 1
r
, 1
r2 , 1

r3 and 1
r4 , respectively.

The above equation, in a far-field environment where the distance r � λ, approaches a monopole potential
as follows:

V (r) = 1
4πε0

1
r

∫
ρ(r′) dt′

In the case of dominant time-dependent dipole potential where the total charge Q =
∫
ρdt = 0 and

ρ(r, t) = ρ(r)eiωt, then V (r, t) from Eq.(21) can be written concisely as:

V (r, t) = 1
4πε0

p(t) · r̂
r2 where p(t) =

∫
r′ρ(r′, t) dt′

where we note that the dipole moment is defined by the oscillating charge density ρ(r, t). The dipole
moment p(t) oscillates in time. Dipole sources can be used as an initial condition in a FDTD simulation.

2.4 Boundary conditions
2.4.1 Free-flow boundary condition
In the context of EM simulations, the perfectly matching layer (PML) was originally proposed by J.P.
Berenger in 1994 [18]. The PML is a type of boundary that allows E and H fields to travel through and
escape the problem space in order to avoid that radiation reflection may bounce back into the FDTD
simulation region. Whereas, when they are applied to the discretised spaces used in the FDTD method,
there are often some imperfections due to reflections11 and instabilities related to the discretisation of the
PML equations, see [19]. Nevertheless, PML is widely considered the state-of-art for the termination of

11Reflection yields disturbance known as aleatoric noise that is relatively common in signal processing.
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FDTD grids, especially when one wants a free-flow boundary condition. In other words, PML is necessary
to keep outgoing E and H fields from being reflected back into the simulation environment [20] as shown
in Fig. 8. Though there are several alternatives to this type of boundary conditions as suggested by J.P.
Berenger [18], we will focus mainly on PML because it is the one implemented in Lumerical.

Figure 8. Visualisation of E and H fields propagating outward through a PML boundary condition,
avoiding reflection of radiation back into the simulation region.

2.4.2 Periodic boundary condition
To be able to understand periodic boundary conditions, we describe here the physics of wave oscillations
that travel in space and time. First, we set the boundary conditions

u(x) = u(x− L), (22)

where L is a period length. Then a traveling wave example function as shown in Fig. 9 can be

u(x, t) = f(kx− ωt) = A sin(kx− ωt), (23)

To this end, by applying the BC from Eq. (22) to the above Eq. (23) gives discrete allowed values for k.
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a) Lattice vibration or beaded string in equilibrium.

L

−1

1

u(x, t) = A sin(kx− ωt)

u(x, t) = cos(kx− ωt)

x, t

u(x, t)

b) Periodic boundary conditions.

Figure 9. Sketch of two examples of periodic boundary conditions. (a) Shows a periodic BC in a lattice
structure. While (b) two examples of periodic BC such as a string.
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2.5 Definition of directivity
Directivity is the ability of an antenna to focus radiation along the direction of maximum intensity. This
property can be used to benchmark the antennas in our study. Before looking at the directivity, we start
by looking at the directive gain which is the emission pattern of the antenna as a function of direction,
defined as

G(θ)2D = 2πU(θ)
Prad

or G(θ, φ)3D = 4πU(θ, φ)
Prad

. (24)

in both 2D and 3D, where U(θ) and U(θ, φ) are the angular distributions of radiation intensity per unit
solid angle and Prad is the total power. Note, for a homogeneous pattern, i.e. a constant function U(θ)
or U(θ, φ), the directive gain in Eq. (30), is also a constant equal to 1.

Formulation of Directivity
The directivity is defined as the maximum value of the directive gain, here in 2D:

D2D = 2πUmax

Prad
. (25)

where directivity is not a function of θ but a scalar.
Below we present formulas for calculating the directivity in 2D when U(θ) is known, both when it is
known as a continuous function or a discrete set of data points [15]:

Continuous 2D: D = U(θ)|max
1

2π
∫ 2π

0 dθ U(θ)
(26)

Discrete 2D: D = max
i

(
Ui(θ)

1
2π
∑n−1
i=0 Ui(θ) ·∆θ

)
, ∆θ = θi − θi−1 (27)

using the transformation
∫

dθ →
∑
i ∆θ with the appropriate variable substitutions. Here we can use

∆θ = θmax − θmin

N
= 2π − 0

N
. (28)

to eliminate 2π from our expressions, resulting in

D = max
i

(
Ui(θ)N∑n−1
i=0 Ui(θ)

)
. (29)

To exemplify the use of the directivity concept, we provide two examples: isotropic emission with D=1
and the Hertzian dipole emission [15] in 2D where D=2 . These values can be calculated inserting the
known function for U(θ) in each case. First, for an isotropic emitter we have U(θ) = 1, which gives

Disotropic = U(θ)|max
1

2π
∫ 2π

0 dθ U(θ)
= 1

1
2π2π

= 1. (30)

In contrast, the Hertzian dipole with U(θ) = sin2(θ) and given
∫ π

2
0 sin2 θ dθ ≡

∫ π
2

0 cos2 θ dθ12 follows

DHertzian = U(θ)|max
1

2π
∫ 2π

0 dθ U(θ)
=

= 1
1

2π
∫ 2π

0 dθ · sin θ2+cos θ2

2

= 2 (31)

These two examples can aid in interpreting the results from our modeling.

12Alternative option −→ Double angle formula U(θ) = sin2 θ ≡ 1
2 (1− cos 2θ) follows same result.
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3 Methods
After introducing the fundamental building blocks of the Theory, in this Method chapter, we will describe
the FDTD method and the use of Yee’s staggered lattice [21] to solve the initial value problem (IVP).
The chapter is outlined in the following way:

1. A few words of merit is dedicated to the FDTDmethod on the notes of a specific variation introduced
by Dr Kane S. Yee.

2. We explain the Discretisation in the simulation space and the Courant stability condition.

3. Algorithm examples are suggested to overview FDTD method in a simple 1D scenario.

4. Geometry and Initial conditions with sources are given.

5. Boundary conditions are illustrated to exhibit how Lumerical treats boundaries to optimise accuracy
and computational time.

6. We discuss both general and specific limitations of the FDTD method.

3.1 The FDTD technique
The finite-difference time-domain method (FDTD) is well-known in the context of Numerical Methods
and in Computational Fluid Dynamics problems to compute approximate solutions to a related system
of differential equations under certain boundary value conditions. FDTD is widely used in the fields
of nanotechnology as nanophotonics and spintronics [20] due to its relative easy implementation of first
derivatives in Maxwell’s equations, where E and H are intermixed. Another evident reason for its
successful use is its ability to cover efficiently a wide broadband per simulation run, while handling
various media such as vacuum, dielectrics and metals [20][21].

Nevertheless, FDTD was introduced in the field of electromagnetism (EM) in 1966 by Dr. Kane S.
Yee with a paper on the use of a finite difference staggered grids algorithm in the solution of Maxwell’s
equations [21]. Yee’s staggered lattice leads to an accurate and robust algorithm, compared to the
collocated grid, even though it’s an extra step of complication.
The basic technique that underlies FDTD is the finite difference method. Using the central difference
approximation (CDA) to both spatial and temporal partial derivatives, the Ampere’s and Faraday’s law
are discretised. Due its better accuracy, CDA13 is the one employed by the FDTD method to study EM
wave simulation.

3.1.1 Discretisation of the simulation space
Calculating the curl of the two fields in 1D, 2D, 3D can be computationally challenging. The FDTD
method is a grid-based finite-difference algorithm where the simulation environment is discrete in space
and time via collocated grid as shown in Fig. 10(a). However, with the introduction of the Yee’s stag-
gered lattice [21], in the 70′s, the Maxwell’ equations E and B-fields are staggered by rectangular unit
cells along a cartesian grid. The E-field is set midway between a pair of H-field points, and the other
way around for H-field and E-field points as shown in Fig. 10(b). By staggering the problem space, the
E,H grid points are out of phase, which might seems an additional complication w.r.t a collocated grid
but at the end it is an effective approach. This former scheme is known as Yee’s staggered lattice [21].
This technique is at the core of several FDTD package applications and gives robustness to the algorithm.

The following figures display what the Yee’s staggered lattice [21] is; basically, the environment is dis-
cretised as ∆x,∆y in 2D and ∆x,∆y,∆z in 3D, respectively, to accomplish a computational stability
advantage due to its unique configuration.

13The CDA is said to have second order accuracy or behaviour compare to the backward & forward approximation [13].
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(a) Collocated grid. (b) Staggered grid.

(c) Staggered grids from 2D and 3D views.

Figure 10. (a) Visualisation of a collocated grid where all the E and H-field components are
simultaneously computed at a point for a given incoming wave source. (b) Staggered grid where the
field components are out of phase, so each grid stores different field components [20][21]. Figure (c)
displays, from the leftmost, the 2D Yee’s lattice where H-field is set midway between a pair of
E-field components and vice versa. Hz (H-mode) and Ez (E-mode) components stem from∇×E and∇×H,
accordingly. While in 3D, all three main field components are depicted for a single cubic grid voxel, volumetric
picture element. In general, FDTD methods store different field components for different grid locations [20][21].

3.1.2 The simulation algorithm
Finite differences such as forward, backward and central difference approximation are popular in numerical
methods; however the central difference approximation (CDA) is the one employed by the FDTD method
to study EM wave simulation due to its smaller error term. We apply CDA to the Ampere’s law:

∂E(z, t)
∂t

def= lim
δ→0

E(z, t0 + δ
2 )− E(z, t0 − δ

2 )
δ

≈
E(z, t0 + δ

2 )− E(z, t0 − δ
2 )

δ
, (32)

∂H(z, t)
∂z

def= lim
δ→0

H(z0 + δ
2 , t)−H(z0 − δ

2 , t)
δ

≈
H(z0 + δ

2 , t)−H(z0 − δ
2 , t)

δ
. (33)

Alternatively, one can obtain the Taylor expansion of E(z, t0 + δ
2 ) & E(z, t0 − δ

2 ), respectively. Then
compute the difference between them, all divided by δ to obtain the CDA at t0:

E(z, t0 + δ
2 )− E(z, t0 − δ

2 )
δ

= E′(z, t0) + 1
3!
δ2

22E
′′′(z, t0)︸ ︷︷ ︸

error term

+...

= E′(z, t0) + O(δ2) (34)

∴ E′(z, t0) ≈
E(z, t0 + δ

2 )− E(z, t0 − δ
2 )

δ
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which resembles what we are utilising during our EM simulation, as exemplified below in Eqs. (32-33).
The ordo term (big "O"), O(δ2) in Eq. (34), indicates a sum of all the terms in the Taylor expansion that
are not shown, starting at δ2, and the error term.

Using the CDA as shown in Eqs. (32-33), one may re-write the Ampere’s law and similarly the Faraday’s
law, see section 2.3.1, with finite differences. In addition, introducing the space-time Yee-lattice shown
in Fig. 10, leads to an accurate, simple, and robust algorithm, which we will outline below, starting with
the discretization of the time-space.
Hereafter, we use the following notation to indicate the location where fields are sampled in space & time

Ex(z, t)→ Ex(k∆z, n∆t)→ Ek,nx , Hy(z, t)→ Hy(k∆z, n∆t)→ Hk,n
y , (35)

where lattice position is indicated by superscripts for position k and time n, respectively. In the following,
we rearrange the Ampere’s and Faraday’s law into the finite difference form as,

E
k,n+1/2
x − Ek,n−1/2

x

∆t = −H
k+1/2,n
y −Hk−1/2,n

y

ε0∆z ,

H
k+1/2,n+1
y −Hk+1/2,n

y

∆t = −E
k+1,n+1/2
x − Ek,n+1/2

x

µ0∆z ,

which explicate that the E-field is solved at integer space (k) steps, and half-integer (n ± 1/2) time
steps, while the H-field is solved by half-integer space (k± 1/2) steps, and integer time steps (n), by the
assumption that both fields are interleaved in both space and time. Hence, with H, k ± 1/2 means that
H is situated between between the E field values, as shown in Fig. 10, similarly for E; this stems from
the property of Yee’s lattice or staggered grid lattice where both fields are offset in space and time, as
depicted in Fig. 10.
Now we transform the above equations into two simultaneous recursive algorithms by solving for Ex at
time n+ 1/2 and Hy at time n+ 1:

Ek,n+1/2
x = Ek,n−1/2

x − ∆t
ε0∆z

(
Hk+1/2,n
y −Hk−1/2,n

y

)
, (36)

Hk+1/2,n+1
y = Hk+1/2,n

y − ∆t
µ0∆z

(
Ek+1,n+1/2
x − Ek,n+1/2

x

)
. (37)

In Eq. (36) Ek,n+1/2
x is the updated value based on the past step E

k,n−1/2
x plus the finite difference,

CDA, of the Hy derivative. Very similarly, the Hy is updated via Faraday’s equation. In this way, the
method computes recursively the fields for the entire time and space desired. These equations form the
fundamental building blocks for how to understand the FDTD method.

After discretising the equations, one wants to renormalise Eqs.(36-37) to get the same dimensionality
and order of magnitude between electric and magnetic fields. The main reason for this is that Ex and
Hy differs by several orders of magnitude due to ε0 and µ0 [20]. The solution is to normalize by,

Ẽ =
√
ε0
µ0
E Renormalisation. (38)

Substituting the change of variables Eq.(38) into Eqs.(36-37) gives

Ẽk,n+1/2
x = Ẽk,n−1/2

x − β
(
Hk+1/2,n
y −Hk−1/2,n

y

)
, (39)

Hk+1/2,n+1
y = Hk+1/2,n

y − β
(
Ẽk+1,n+1/2
x − Ẽk,n+1/2

x

)
, (40)

where β = c
∆z/∆t is the ratio of the speed of light to grid velocity ∆z

∆t in vacuum and c = 1√
µ0ε0

is the
speed of light.

In Eqs.(39-40), the Ampere’s and Faraday’s law are discretised and staggered in time and space.
Then, for given initial conditions and boundary conditions, we compute the corresponding E and H-fields
recursively via the FDTD method till the space-time intervals are evaluated. The algorithm will be a
first derivatives’ system which makes it simple to implement, even though the intermixing of the electric
and magnetic fields.
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A simple step by step overview of the algorithm proposed by Dr. Kane S. Yee [21] follows:

1. Solve the finite difference Eqs. (39-40) to obtain the unknown updated fields in terms of the known
past fields.

2. Evaluate the electric fields half-integer time step, n+ 1/2, into the future as illustrated in Eq. (36).
Once they are known, they become past fields that can be used to update the magnetic field.

3. Evaluate the magnetic fields one-integer time step into the future at n + 1 as shown in Eq. (37).
These points can now be used to calculate the electric field of the next time step.

4. Repeat the two last steps till the fields are computed over the desired time duration.

3.1.3 Stability, Courant stability condition
A necessary condition for the stability of the algorithm is the Courant condition. An appropriate size of
the cells like the space step ∆z and time step ∆t need to be carefully selected to fulfil this condition [20].
First, we define β, the ratio of speed of light to the mesh velocity ∆z/∆t, to be

β
def= c

∆z/∆t

For numerical stability, β < 1, in the specific case of one dimensional problem. In the most general case
of n dimension we instead have the inequality

with β def= c

∆z/∆t →
∆t

√
ε0µ0 ·∆z

= c0

∆z√
n

∆z ≤
1√
n

(41)

with n = 2, 3 for specific dimensions such as 2D and 3D, respectively.
Once defined, β and the cell size ∆z that characterise the accuracy of the computation, ∆t follows
according to Eq. (41) for stability scope.
In conclusion, the Courant stability condition ∆t = ∆x√

nc0
is used to ensure stability during simulations

by restricting the time step ∆t once the discretisation ∆z, is fixed.

3.1.4 Coded examples for 1D pulse propagation
The following examples are inspired from the work of Professor Sullivan [20], and implemented using
Python3, and related libraries, i.e. Numpy and Matplotlib.
The Yee’s algorithm [21], basically Eqs. (39-40), can be summarised as follows:

1 Ex[k, 1] = Ex[k, 0] + beta * (Hy[k-1, 0] - Hy[k+1, 0]) #Ex[k, n+1/2] hence, Ex is f(x, t)
2 Hy[k, 1] = Hy[k, 0] + beta * (Ex[k-1, 0] - Ex[k+1, 0])

for the discrete form of the Maxwell’s equations along the desired time.
Alternatively,

1 Ex[k] = Ex[k] + beta * (Hy[k-1] - Hy[k]) # same as x = x + 1 OR x += 1
2 Hy[k] = Hy[k] + beta * (Ex[k] - Ex[k+1])

where this latter version is more slender and time dependency is implicit, such that the n + 1/2 and
n−1/2 superscripts from Eq.(39-40) are neglected, while space steps or positions are adjusted to integers
as k and k+1 or k−1 for the sake of computation. Below follows a few examples of the pulse propagation
on a finite number of FDTD cells where the E and H-fields are computed considering the staggered grid
from Yee’s lattice.

Free space
Here, we will illustrate how Gaussian pulse originated from the centre of the FDTD cells, at starting
point kc=100 as shown in Fig 11. The index kc represents the index of the electric field Ek,nx = ex[kc]
in the middle of the simulation region, that travels outward in free space.

1 # Gaussian pulse positioned in the middle of the problem space
2 pulse = exp(-0.5 * ((t0 - time_step) / spread) ** 2)
3 kc = 100 # index that represents the electric field Ex, in the middle of the cells
4 ex[kc] = pulse # pulse located at centre where ex[k] = Ex(k)
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output plot:

Figure 11. Illustration of a Gaussian pulse generated from the centre, kc=100, of the problem space where the
electric field ex[kc]=Ek,nx propagates outward in free space with no medium in the simulation region in one
dimension [20].

Notice that the pulse travels towards both end-points of the FDTD cells, see link to Python simulation.
Thus, the Ex pulses are symmetric around the origin of the problem space, while Hy is both positive and
negative based on the direction of propagation, as suggested by the right hand-rule.

Non-reflecting boundary condition in 1D
Here, we compute non-reflecting boundary conditions where the pulse originated from the centre of the
FDTD region are absorbed in the end-points of the problem space without being reflected, see link to
Python animation.
We have special points such as the boundary points ke and 0 where ke is the rightmost point and 0 is
the leftmost point in the problem space, respectively as illustrated in Fig. 12. At these boundary points,
we can’t update their values with the algorithm. Instead, we need to implement a physical boundary
conditions. Therefore, we need to treat E0,n

x in a special way, hence we assume that the flow of information
is always originated from the centre of the simulation region outwards and no external source enters the
problem space. Basically, any source is only going outward the FDTD space. To achieve this, one copies
the value of the past E1,n−2

x into the first mesh cell at time n, taking into account that the E-field in one
time step, ∆t, travels distance

d = c0 ·∆t = c0 ·
∆x

2 · c0︸ ︷︷ ︸
Courant

= ∆x
2 , (42)

which shows that two time-steps are necessary for the E-field to cross one cell. In other words, we are at
the boundary and we want

E0,n
x = E1,n−2

x (43)

One possible way to implement this condition is to store the boundary data in two-element lists, i.e.
boundarylow and boundaryhigh, see below implementation, from which one pops and appends the
values to create the necessary two time-step delay. In particular, one pops the first element in the list
and then append a new one, meaning that the newest element of the list spends exactly two steps inside
the list before popping out.
To rephrase it, imagine a list of two elements such as E=[0,0], then at the first time, one computes
the algorithm shown in Eq. (39), while popping out the first element from this list. So now we have an
old element left at position E[0] and a new one at E[1] in the list. In the second time step, the same
algorithm is updated once again and the previous old existing element E[0] is popped out, so E[1]
becomes E[0], while a new E[1] is appended into the same list. Here we remind that two-time steps
are necessary for the Ex-field to travel one cell. In this way, one emulates the extinction of the pulse at
lower and upper boundaries by popping and appending elements from two lists, i.e. boundarylow and
boundaryhigh.

A possible implementation of non-reflecting boundaries:
1 # Non-reflecting Boundary Conditions
2 ex[0] = boundarylow.pop(0) # Stack/Pile, Push-Pop method.
3 boundarylow.append(ex[1])
4 ex[ke - 1] = boundaryhigh.pop(0) # ke = number of FDTD cells.
5 boundaryhigh.append(ex[ke - 2])
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where ke is the number of FDTD cells and kc=ke/2 is the centre of the cell where the pulse is triggered.
Alternatively, once can employ queue module from Python3 library.

output plot:

Figure 12. The Gaussian pulse, G(t) generated via FDTD simulation from the centre of the problem space,
propagates towards both the endpoints or edges of the FDTD space. At the edges, the Ex pulses vanish due to the
non-reflecting boundaries; hence no reflecting components of the pulse bounces back into the FDTD simulation
space [20].

Propagation towards a dielectric medium in 1D
In our final example, the pulse is now traveling from the left edge of the FDTD space towards a dielectric
material starting from the leftmost simulation region and the effect of the collision is shown in Fig. 13.

output plot:

Figure 13. Representation of a pulse that travels from the left towards a medium with a relative dielectric
constant, ε = 4, where at time step T = 220 collides with a dielectric material. The collision yields one reflected
and one transmitted part of the pulse. [20][22].
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For simulations in the case of dielectric medium it is necessary to consider an extra factor εr = 4 into
Eqs. (8), such as

∂E
∂t

= 1
ε0εr
∇×H =⇒ ∂Ex

∂t
= − 1

ε0ε r

∂Hy(z, t)
∂z

, Ampère’s law (44)

∂H
∂t

= − 1
µ0
∇×E =⇒ ∂Hy

∂t
= − 1

µ0

∂Ex(z, t)
∂z

, Faraday’s law (45)

with a similar factor needed to be added to the finite difference CDA, Eq. (39), which takes the final
form in code

1 Ex[k] = Ex[k] + cb[k] * (Hy[k-1] - Hy[k])
2 Hy[k] = Hy[k] + beta * (Ex[k] - Ex[k+1])

where cb[k] = 1/eps, eps = ε
As shown in Fig. 13, after collision with a medium, a Gaussian pulse, G(t), is partially reflected and
partially transmitted. However, notice a π phase shift of the reflected component, which is due to energy
and momentum conservation [22], see link to Python animation.

In conclusion, these examples of pulse propagation in FDTD cells have demonstrated how a staggered
grid can be implemented and explored in three realistic physical scenarios in 1D to familiarize ourselves
with the basics of the FDTD simulation scheme.

3.2 FDTD in Lumerical
From this point on, we will exploit specific features from the Lumerical FDTD package [23], instead of
implementing codes ourselves. Notice that all the above simulations are run in a staggered, discretised,
and uniform environment which is not necessarily the one employed by Lumerical. Lumerical treats
boundaries and space with different approaches such as perfectly matching layers (PML) , see section 3.2.2.
In addition, it uses a non-uniform mesh technique to maximize the use of its computational resources,
see section 3.2.4.
Lumerical adjusts the mesh, in accordance to the refractive index, n, of the material. Considering that
frequency, f = v/λ, is conserved but not speed v = c/n and λ =λ0/n; it follows that n can be considered
as a scaling factor by which v and λ are reduced and accordingly, the mesh size as shown in Fig. 14.

X

Y

0 1500 3000|

1100

550

Figure 14. Grid representation of the FDTD simulation environment. Hovering the problem space,
one notices Lumerical tends to make finer and dense grids close to the NW boundaries to keep some accuracy.
On the other hand, it increases the grid sizes outside the NW domain to reduce computation time, following a
non-uniform meshing. Figure generated from Lumerical simulation.

3.2.1 Initial conditions and sources
Lumerical offers several options of power sources such as beam source, dipole source, and total field
scattering field (TFSF) [23]. In this project, the LED produces the radiation pattern that is modelled
by introducing dipole sources along the x̂, ŷ, and ẑ directions to be studied independently, as clarified
in the Results section. The dipole sources are positioned in the centre of a Transmitter as is exemplified
in Fig. 15 to observe and evaluate how the Directivity varies accordingly to different wavelengths and
diameters, see link to Lumerical simulation 1. For the Receiver, we have mainly worked with a plane
wave source which injects power along a plane into the FDTD simulation region as shown in Fig. 16 to
monitor and study the absorption in the NW. We expect high power source absorption for small angles
α, and low absorption for large angles, see link to Lumerical simulation 2.
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200 nm

200 [nm]

Figure 15. Dipole source is placed at the centre of the NW to model the LED radiation pattern.
The movie monitor along the yz-plane, depicted with 4 red dots, records the intensity, |E|2 of E-fields. While,
the FDTD region is depicted as orange box. Figure generated from Lumerical simulation.
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Figure 16. Wavefront of a plane wave source impinging on a nanowire within an FDTD simulation. The NW is
centred at the origin of the simulation space, where the plane wave is injected with an angle α, with respect to
the normal vector N of the leftmost interface. Figure generated from Lumerical simulation.

3.2.2 Boundary conditions
PML boundary conditions are necessary to keep the outgoing E and H fields from being reflected back
into the problem space, see section 2.4. In Lumerical, the purpose of the perfect matching layers (PML) is
to minimise the reflection noise and discard any possible numerical instability, without penalising compu-
tational time [20][24]. One can view the PMLs, as an absorbing boundary medium or "free flow" boundary
conditions, as illustrated in Fig. 12 where the fields disappear at the end-facets of the problem space.

There are several options of PML profiles in the Lumerical software [19], and each of them has its
own numerical behaviour customised for a specific task. However, we mainly focus on the Standard and
Stabilised profiles, though exists other two profiles such as Steep Angle and Custom [24][25]. Standard
profile works rather well for a limited number of layers and it performs the best when the PML boundaries
are stretched along the simulation region. While, a material or device that cuts through a PML region
might cause numerical instability. In this latter case, it is highly suggested to adopt a Stability Profile
which is tailored purposely for this scenario, at the expense of a higher number of PML layers employed.

Overall, increasing the number of layers leads to a lower reflection at the expense of computational
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efficiency; hence, for a reliable and good result, it is recommended to select an appropriate number of
layers according to the computation time and memory available. Thus, the number of PMLs was mainly
based on the computation time and quality of the results.

A simple scenario of a PML is demonstrated in Fig. 12 where a Gaussian pulse is absorbed at the
endpoints or edges without reflecting anything back. An alternative example scenario is a perfect cav-
ity/resonator with PML boundaries, where we may observe the behaviour in Fig. 17 [26], where the
evanescent fields are effectively cut by the PML. This is also what we would expect from a similar simu-
lation in Lumerical.

In Fig. 17, the source is set at the leftmost end, similarly to Fig. 13, and propagates along the cav-
ity depicted in grey and filled with confined modes, blue and red bulbs in x-direction. While, in the
y-direction, sufficient room is left to avoid that the outer PML boundaries can affect the cavity modes.
PMLs are inside the edges of the simulation region, in order to absorb the confined modes at the end-point.
The thickness of the PML layer is a crucial parameter to limit possible back-reflection from the source
[26]. This latter FDTD simulation example was scripted using a powerful open-source MEEP package [26]
which is a valid alternative to Lumerical.




1 μm

168 [μm]

8 [μm]

Y

X

Figure 17. Representation of a perfect cavity which is the dark grey area in the centre of the
2D region. PMLs are employed to act as fictitious absorbing material added around the edges
of the simulation region, so that modes or fields rapidly go to zero. The incoming source, from the
leftmost side of the problem space, diffuses along x-y-directions forming cavity modes, blue and red bulbs, due to
superposition of travelling waves. Figure generated using MEEP package [26] copyrighted by MIT under the GNU
General Public Licence [27].

3.2.3 Storing the solution - Monitors
Frequency-domain field monitors are available in Lumerical to store data in the frequency domain from
simulation results across some spatial region within the FDTD simulation region [28]. For the Receiver
study, we are interested in storing information from two distinct transmission boxes and not over the
whole nanowire. This is because we want to see the absorption difference between the two regions. A
collection of data that are collected by the power monitors follows:

E: Electric field data as a function of position and frequency/wavelength.

H: Magnetic field data as a function of position and frequency/wavelength.

P: Poynting vector as a function of position and frequency/wavelength.

T: Transmission as a function of frequency/wavelength.

As an example of a relevant monitor for the study of the transmitter, notice in Fig. 15 a power
monitor along yz-plane, depicted with 4 red dots, necessary to record the intensity, |E|2 of the E-fields,
for instance. The extracted data such as E-fields versus angle, along different axes, are used to fit pulse
peaks and define the standard deviation, σ, and directivity, D, as detailed in the Results section 4.2.2.

Figure 18 shows the simulation setup for case II for the Receiver NW studied. The NW is set at
x, y = [ 1

4 ,
3
4 ] of the simulation space to provide the best conditions for a homogeneous illumination for

both cases I and II. This method development, we refer to as Homogenisation, see link to Lumerical
animation, case II as comparison to the initial setup as described in Fig. 16.
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Figure 18. Homogenisation of the simulation environment where a monitor, depicted in yellow, is set along the
whole xz-plane of the FDTD simulation region to record and monitor all the necessary events within the problem
space such as absorption and intensity. Figure generated from Lumerical simulation.

Transmission box monitors around depletion regions
In Fig. 19, the transmission box monitors are used to record the flow of incoming electromagnetic waves
to determine the difference in in- and outflow related to the absorbed power inside the volume of the
boxes. The carrier difference on the center electrode, that non-equal absorption in the two regions will
produce, charges the gate electrode of the FET14 and thus turns it either on or off.
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200 [nm]
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(a) Transmission box monitors case I.
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X
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200 [nm]
Y

(b) Transmission box monitors case II

Figure 19. Lumerical transmission box monitors employed around the depletion regions of semiconductors to
measure the absorption in two specific regions. Figure generated from Lumerical simulation.

14FET is a type of transistor that use electric field to control the current flow of charges in a semiconductor.
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3.2.4 Limitations
The FDTD method has a general difficulty with a large angle of incoming power source as displayed in
Fig. 16, with respect to the PML boundary; 15 this may cause issues such as PML reflections of the
source into the FDTD region and missing collision with a device. In Lumerical, the incoming source
sweep angle is limited between 0°:50° 16, which forced the experiment to be split into two cases, case I
and case II, respectively, as shown in Fig. 20(a). Thereby, we sweep the source and not the NW rotation
because we cannot rotate the transmission box monitors alongside the nanowires, accordingly, while
keeping fixed the power source as illustrated in Fig. 20(b). The main problem of rotating the NW instead
of the incoming source is that the box monitors as shown in Fig. 19, need to be rotated according to the
NW and this feature is not available in Lumerical. The latter constrain is a compelling computational
limitation rather than a physical one. Hence, the rest of the work and results are carried on using the
configuration described in Fig. 20(a).

(a) Rotate the power source w.r.t a fixed NW into
case I and case II, respectively.

(b) Rotate the NW w.r.t a fixed power source as unique
case.

Figure 20. (a) Schematic representation of a fixed NW (case I & II) in the problem space where the incoming
power source around the nanowire is swept. This scheme is the one employed during the entire experiment for the
Receiver NW. In contrast, (b) represents a sketch of an alternative solution where instead a nanowire is rotated
for a fixed source.

Further relevant limitations, with respect to the strengths and weaknesses of the FDTD method, are
described below.

Advantages of FDTD modeling [29]:

• FDTD is a time-domain technique where a single simulation is sufficient to obtain a broad range of
response system frequencies when a Gaussian pulse G(t), is employed.

• FDTD allows to model easily a wide range of diverse linear dielectric and magnetic media.

• FDTD computes the E and H-fields over the entire meshed problem space in time which can be
stored via monitors. Stored results can be manipulated for closer analyses and inspections.

Disadvantageous:

• FDTD computes the E and H-field overall problem space that requires be meshed; hence, this
process can lead to a high computational time for large models.

• In addition, space discretisation can vary sensibly in spatial grid size, so this is an extra computa-
tional memory cost to take into account.

• A computational domain must be finite to be allocated in memory. So, often artificial boundaries
are employed; however, they can cause errors. These errors can be prevented using PML to simulate
an infinite and unbounded computational domain.

15The simulation radiation that hits the Receiver is approximated as a plane wave in the far-field, for distance r � λ as
mentioned in the Theory chapter, dipole sources.

16It is not a general FDTD problem but a Lumerical one that cannot sweep the impinging source for angles > 50°.
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4 Results and Discussion
This chapter is devoted to the study of electromagnetic simulations from Lumerical FDTD method to
validate hypotheses 1) and 2), see section 1.1. The structure of this section is as follow:

• Firstly, we present results that show a drastic difference in absorption between the two photodiode
regions in the Receiver NW’s respective ends, by simulating certain illumination angles, wavelengths
and NW diameters.

• Secondly, after selecting a proper power source, we show different communication wavelengths and
NW diameters for the Transmitter NW to observe how the Directivity changes and how it can be
controlled. Simulation data of Directivity are assembled in a table for comparison.

• Lastly, we pursue to establish the Weight function used to calculate the weights that we change by
rotating nanowires of our neural network, which leads to our final result.

4.1 Receiver simulation via FDTD method in Lumerical

(a) |E|, xz-plane d = 160 nm, λ = 650 nm. (b) |E|, xz-plane d = 160 nm, λ = 800 nm.

Figure 21. Representation of an horizontal NW, in a FDTD simulation region, illuminated by an
injected source at an angle α = 45° from the bottom-left corner for both figures as schematised by the red
arrows. Each image displays the absolute electric field strength |E|

[
V
m

]
along a NW, via a colour-map, for a

single simulation, along an xz-plane view. For a fixed NW’s diameter d = 160 nm, (a) featuring a shorter
wavelength λ, we can see many different waveguide modes allowed. While, in (b) providing a longer
wavelength λ, the patterns are much simpler. Images extracted from a Lumerical simulation.

Before going into detailed simulations of the angle-resolved absorption, we study the physical promising
parameters such as the wavelength, λ, and the NW’s diameter, d. Indeed, in a recent study, Van Dam
et al. [30] proved that it is possible to find a combination of wavelength and diameter, where the modes
inside the cavities are dominated by the fundamental one, HE11. Such a situation can be achieved for
NW’s diameter below 170 nm, which is optimal for our application.
We begin to fix the NW’s diameter of d = 160 nm and look at the |E|-field strength at various wavelengths.
A plane wave is injected along the xz-plane, with a fixed angle of α = 45°, from the bottom-left corner
of the simulation environment, as shown in Fig. 21. We monitor the number of the cavity modes, which
is expected to depend on the wavelength. A priori, we cannot analyse the different modes17, but we can
infer from the results if we have a few or many modes. More specifically, we observe in Fig. 21(a, b) the
interference pattern between the different modes: the fewer the number of modes, the less interference
pattern should be observed. In the example Fig. 21(a), for λ = 650 nm, many modes are exhibited in
the receiver NW, seen as periodic intensity modulations. On the contrary, in Fig. 21(b), many modes

17To define if the modes are high or low order ones, one may perform a signal decomposition, e.g. Fourier series.
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have been suppressed by increasing the wavelength of the impinging power source to 800 nm. This result
suggests that we are close to a single mode, in agreement with the previous work [30]. Alternatively, at a
fixed wavelength, the suppression of modes can be done by shrinking the NW’s diameter. Due to a time
constraint, we chose a NW diameter of 160 nm because the wavelength of 800 nm suits the InP material
well [30].

After determining the physical parameters, we want now to define the relative absorption18 cross-section
of the NW at λ = 800 nm of the photo-diode(+) and the photo-diode(−) as a function of the illumination
angle as shown in Fig. 22. Unfortunately, Lumerical is known to have convergence issues, see section
3.2.4. So, we have to implement two distinct simulation cases as illustrated in Fig. 22 to overcome the
power injection problem; it is cumbersome to inject power source for α > 60° [29]. Hence, we sweep an
impinging power source, i.e. plane wave 1 between α = 0°: 45° for one case, and then plane wave 2 from
α = 45°: 90° for the second case, accordingly.
The difference in absorbed carriers between the +/– photo-diodes represents the built-up potential on the
Vgate contact that control the circuit current via a transistor towards the Transmitter LED, see section
1.1. Therefore, for small illumination angles α align with respect to the NW axis, we expect drastic dif-
ferences in the relative absorption, between the photo-diode(+) and the photo-diode(−) of the NW. For
small illumination angles, the photo-diode(−) is farther away from the power source, so in comparison,
the relative absorption should be much smaller than photo-diode(+). On the other hand, for α = 90°,
the impinging power source is equally distributed along the NW from the plane wave 2 viewpoint. Ergo,
at α = 90°, the relative absorption pattern between +/– photo-diodes should be the same. While, for
α = 45°, the relative absorption19 to an impinging power source should overlap for both plane wave 1
and plane wave 2 because 45° is a common angle. To this end, we can use the symmetry requirements to
estimate how well we have constructed our simulation environment.

Figure 22. Overview of the simulation setup environment which shows two distinct sources, i.e. plane
wave 1 and plane wave 2, injected from two different sides of the simulation cell. In our numerical experiment,
we sweep the injection angle from 0° to 45° for one case and then from 45°: 90° for the second case, accordingly.
Then, we patch the full results, 0°: 90°, together to obtain a full simulation data of relative absorption, between
two distinct +/– photo-diodes.

The acquired data from the FDTD simulations are four different datasets distinguished by two different
setups, i.e. case I, II, and two distinct photo-diodes, red and blue per setup, as exemplified in Fig. 23.
During each simulation, we sampled a finite number n of sweep angle points, e.g. n = 13 for the impinging
power source, to save some computation time. Each sample point covers ∼ 5° of the total 0°: 90°.

We monitor the relative absorption pattern of the NW which depends on the illumination angle, α.
More specifically, from Fig. 23(a), we can observe a significant difference in relative absorption between
the red and blue data-points for small angles around 0° as expected, while we notice an overlapping
tendency, for large illumination angles close to 90°. In contrast, around 45°, we can see a compelling gap
between the red and blue relative absorption data-points. This gap is due to a lack of an homogeneous
illumination with the current simulation environment, see section 3.2.3. This gap in the relative absorption
cross-section needs to be addressed via a technique that we called Homogenisation, by repositioning the
NW in the upper-left area of the FDTD region, see Fig. 18. This latter technique intends to solve issues
due to geometrical effects. The Homogenisation results shown in Fig. 23(b), helped us to achieve the
expected convergence of the data-points at α ∼ 45°.

18Relative absorption is meant with respect to the injected power source, i.e. plane wave.
19Transmission and absorption are interrelated to each other, e.g. Pabs = A (Iin−Iout) = A I0(1−e−αL) = A I0(TL−T0)

where A is the injection area.
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Figure 23. Collection of the main NW receiver simulations where the relative absorption of an injected
plane wave is collected versus an illumination angle α, for both case II, 0° to 45°, and case I, 45° to 90°, respectively.
(b) has a better convergence at 45° w.r.t a) due to a reduction of geometrical effects.

To investigate the simulations of the angle-resolved absorption in more depth, we patched, interpolated
and scaled the sampled data-points as shown in Fig. 24, for the full range of illumination angles from 0°:
90°, to define two cross-section functions. We patched the red and blue lines from Fig. 23(b) respectively,
at 45°. The interpolation of sampled data-points was computed via a piecewise smooth interpolation
polynomial, e.g. linear spline20. Alternatively, the Lagrange interpolation polynomial is an effective
approach; however, yields some evident oscillations at the edges of an interval, see Appendix A.3. Hence
we dropped this latter method in favour of the linear spline one.
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Figure 24. Comparison between simulated σ+, σ− cross-sections and the geometrical σgeom used as
theoretical reference versus α.

The resulting cross-sections are functions of α expressed by:

σ+(α) = P

I
· T+(α) = Ainjection · T+(α),

[
W

W/µm2 = µm2
]

(46)

σ−(α) = P

I
· T−(α) = Ainjection · T−(α), I =

[
W
µm2

]
(47)

where P is the power of the illumination source and I the intensity of the illumination, Ainjection the
injection area and T (α) the transmission21. In addition, we compare the two simulated cross-sections σ+

20Implementing a method, namely scipy.interpolate.interp1d from Python3.
21The absorption and transmission are interlinked to each other, e.g. Abs = A(Iin − Iout) = A(I0 − I0e−κL) =

AI0(TL − T0) where A = area of injection.
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and σ− with the geometrical σgeom used as theoretical reference to shed light on the physical properties
of Receiver NW. The σgeom is given by:

σgeom(α) = σtop · cosα+ σside · sinα (48)

where, if one visualises a NW as a cylinder, σtop is the facet area of the NW ends, whereas σside are the
added projected rectangular areas of the photo-diodes for α = 90° as exemplified in Fig. 22.

The simulated σ+ (red curve) in Fig. 24 is remarkably higher than σ− ( blue curve), especially for
small illumination source angles. Whereas, the σ− curve well follows the σgeom which highlights that we
obtained consistent results in comparison with the theoretical one. The oscillation of σ− around σgeom
is related to numerical instability. While, for α ∼ 50° to 90° both σ+, σ− tend to clearly converge which
is what we expect.

In summary, this final result comparing the simulated cross-sections for a wavelength of λ = 800 nm
verifies our hypothesis 1), stating that we can tune the local absorption in a NW by changing the
illumination angle.
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4.2 Transmitter simulation via FDTD method in Lumerical
The purpose of these studies is to test hypothesis 2) stated in the Introduction. We started first by
choosing the nanowire material to support the proper emission wavelength by tailoring the band-gap of
the Transmitter such that we get the desired wavelength as output. We assume that the emission from the
electron-hole recombination in the LED of the Transmitter produces light with an energy corresponding
to the communication wavelength that we desire, namely 800 nm, as concluded in the Receiver section.
Thereby, we want a band-gap above this latter energy value for the rest of the Transmitter NW (that is,
outside of the small LED region) in order for it to be transparent to the emitted light. To fulfill these
requirements, we create a material alloy GaInP with 30 % gallium and 70 % Indium, which corresponds
to a band-gap of λ = 750 nm when converted to wavelength. As the size of the source that emits the
radiation is small compared to the length of the GaInP nanowire as well as the energy is lower than our
NW band-gap; we can neglect the variation of the refractive index and model the whole nanowire as
consisting purely of our GaInP alloy. To sum up, the Transmitter NW model is made up of a single type
of material that acts as a waveguide enough wide to support at least one mode [30].

4.2.1 Dipole source along x-axis
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Figure 25. Emission intensity |E|2 patterns on the xy, xz and yz-plane for λ = 800 nm and diameter d = 160 nm.
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Figure 26. Polar plot references for the xy, xz, yz-plane.
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The dipole source placed in the middle22 of the NW creates an electromagnetic field that couples with
the modes of the cavity, and these subsequently couple out to the free space by shaping and setting the
far-field emission pattern of the LED along x̂, ŷ, and ẑ axes. The NW will act as a waveguide where
modes are partially travelling waves and partially standing waves.

To analyse and study the LED emission pattern, we have recorded the intensity of the electric fields
|Ei(θ)|2 for λ = 800 nm and NW diameter d = 160 nm of dipole sources along all the three axes, i.e.
x̂, ŷ, ẑ with respect to the xy, xz, yz-plane, accordingly. Figure 25 is a decomposition with respect
to the xy, xz, yz-plane of the dipole source along x̂ axis where the light is mainly emitted from the
big lobes at 90 ◦ and 270 ◦ along the xz and yz-plane. For simplicity and intuitive visualisation, the
Cartesian coordinates [x, y, z] are mapped to spherical coordinates [ρ, θ, φ], e.g. the radial distance, polar
angle, and azimuthal angle, respectively. A prescription on how to interpret the angle in these plots is
given in Fig. 26. The light emission pattern in the xy-plane describes the light emitted orthogonal to the
NW. Compared to the emission in the xz and yz-plane, it is relatively marginal and negligible, about
three orders smaller i.e. 10−16 versus 10−13. Therefore, we mainly focus on the results from the xz and
yz-plane. Similar results for dipole sources oriented along the ŷ and ẑ axes.

4.2.2 Fitting of the results
From the analysis of the simulation data presented in Fig. 27(a), we try to fit the signal peaks to acquire
values for the standard deviation σ and the Directivity D. To properly fit the extracted data |Ei|2, there
exists a variety of fitting functions that can suit the task. However, after a close analysis of the shape of
the peaks, as displayed in Fig. 27(a), we selected the Gaussian function as the best option. The Gaussian
function is the probability density function of the normal distribution,

f(x) = 1
σ
√

2π
e

−(x−µ)2

2σ2 , (49)

where σ is the standard deviation and µ is the mean value, while 1/σ
√

2π is the amplitude factor. In
short, we focus on the exponential part of f(x) during the fitting process.
For all planes and diameters of interests, we:

• unwrapped the intensity pattern of the polar plot, as shown Fig. 27,

• fitted the Gaussian function to the emission peak between 0° : 180° as represented in Fig. 27(a),
using the method scipy.curvefit implemented in Python3,

• extracted the standard deviation σ,

• computed the Directivity D from the data, as defined in Eq. (25) and the results are gathered in
the Tab. 1.

There are also non-ideal scenarios such as the one denoted in Fig. 28(a) where the emission signals are
populated by several unwanted peaks or side lobes in the folded polar plot illustrated in Fig. 28(b) which
makes the transmission rather dispersive.

22The dipole source is set at the centre of the Transmitter NW for simplicity and practical reason. One wants to place
the contact pads as far as possible from the LED; otherwise, the electrons and holes might recombine via the metal surfaces.
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Figure 27. (a) Visualisation of the curve fitting of |E2(θ)|2 along the xz-plane, for a NW diameter
of 160 nm, using the Gaussian function. (b) Same data-points as in (a) but for a folded plot. Both plots are
displayed in polar coordinates; however, (a) unfolded and (b) folded, respectively. In (a), we mainly focus on
fitting the best function to the peak signals to gain promising values for the standard deviation σ,
and directivity D.
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Figure 28. (a) Representation of the curve fitting procedure of the most intense peak of the
radiation pattern at 90°, for a NW diameter of 200 nm along the xz-plane as contrast to the prior Fig. 27. Note
the symmetry of the two main peaks around angle 180°, which is expected due to the system geometry. (b) Same
peaks as in (a) but folded as a polar plot.
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Table 1. Assembled values of the NW diameter d, standard deviation σ and directivity D for the xz
and yz-plane, respectively. The unit for the standard deviation is radians while Directivity is dimensionless. "–"
means that no reasonable value has been found during the curve fitting procedure.

x-source
d (nm) σxz Dxz σyz Dyz

220 0.5437 1.8976 0.5316 2.1839
200 0.4966 2.2953 0.4860 2.7169
180 0.3226 2.522 – 1.8396
160 0.4313 3.6571 0.4248 3.8258
140 0.5981 2.9118 0.6164 2.7405
120 0.7016 2.49395 0.8633 2.0273

y-source
d (nm) σxz Dxz σyz Dyz

220 0.5315 2.1866 0.5449 1.9039
200 0.4860 2.7195 0.4968 2.3053
180 – 1.8488 0.3209 2.5286
160 0.4253 3.8231 0.4319 3.6636
140 0.6173 2.7395 0.5975 2.9125
120 0.8597 2.032 0.7011 2.4934

The summary of our work is given in Tab.1 where we want to present results for dipole sources ori-
ented along the x̂ and ŷ-axes. While, ẑ-oriented source is neglected due to non-dipole behaviour, see
in Fig. 29(b), does not resemble our expectations. We found an optimal diameter for sharp pulses and
high Directivity at 160 nm. We observe that σ can be controlled by tuning slightly the diameter between
120 -160 nm. On the other hand, we encounter also a critical diameter, e.g. 180 nm where a nanowire
was populated by double signal peaks that were hard to fit. After a close analysis, we can conclude
that the Transmitter has a spectrum of values that allow us to tune some parameters in our NN. For
instance, if we want one-to-one node communication, we need a sharp and precise emission signal which
can be obtain for d = 160 nm and gives a high Directivity value. In contrast, if we want to simulate a
Fully-connected neural network with connections to a range of nodes, then we want a diffuse emission
pattern using a small diameter, e.g. d = 120 nm and D small as well. Therefore, the change of Directivity
will consequently alter the strength of the connections of our neural network.

To this point, we tested and validated our hypothesis 2), stating that we can direct and control the
light cone emission through a NN by tuning the Transmitter parameters.
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Figure 29. (a) Radiation intensity along the three planes for the ŷ-source equivalent to the one shown in Fig. 25
for the x̂-source. While (b) is the dipole ẑ-source as comparison to the ŷ-source in (a).
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4.3 Realisation of the network
Here, we briefly introduce a simple scheme and overview of the communication between a pair of artificial
neurons as exemplified in Fig. 30, and we will explain the main features that characterise each component.

The layer-to-layer transmission occurs via a Transmitter that injects a radiation pulse onto the next
layer thus acts as a light-emitting diode (LED). On the other hand, a Receiver absorbs the incident
radiation source in two distinct regions labelled with (+/–), where each acts basically as a nanowire solar
cell [8]. This latter process is repeated between layers and nodes during communication.

The thin line in Figure 30(a) marked Vgate represents an electrical coupling of a Receiver and Trans-
mitter NW via a metal contact set at the centre of the receiver NW. The transmitter is assumed to be
electrically connected, while the Vgate acts as a switcher for the emitter NW, see section 1.1. In addition,
in Fig. 30(b) represents a sketch of the NWs’ communication confined in a waveguide structure of mate-
rials such as air, SiO2 and Al2O3. This scheme allows light to be trapped by exploiting the fact that air
and the substrate SiO2 have a lower refractive index with respect to the Al2O3.
Ergo, the higher refractive index of Al2O3 surrounded by two lower ones helps to confine propagating
modes during node-to-node communication.

(a) Receiver and Transmitter electrically coupled via a Vgate
which forms a neuron or antenna.

(b) Optical communication between nodes confined
within a waveguide structure.

Figure 30. Neurons are electrically connected devices in (a) and sandwiched inside a waveguide
structure in (b), that communicate with each other optically between hidden layers, forming a neural network.
Figure courtesy of David Winge, licensed under CC BY [31].

4.4 Constructing the weight function from simulations
After determining the optimal NW diameter of d = 160 nm for the Receiver and Transmitter; we are
interested in looking at the Weight Function that describes the change in voltage on the gate due to
the difference in absorption between two distinct absorption regions, P+

abs and P−abs, respectively, of the
Receiver. The absorption difference is proportional to the ∆Vgate and this is what switches the transistor
ON or OFF and controls the current through the LED, see section 1.1. We used the cross-sections, σ+

and σ− from Eqs. (46, 47) respectively, necessary to compute the absorption23, P+
abs and P−abs in units of

power, for any incoming intensity I(r, β):

P+
abs = σ+(α) · I(r, β) (50)
P−abs = σ−(α) · I(r, β) (51)

where the intensity is assumed to be originated from a Transmitter located at distance r from the Receiver
and rotated by an angle β with respect to the connecting vector as exemplified in Fig. 31(b). To be able
to express this intensity, the Transmitter Directive gain G(β) from Eq. (24),

G(β) = U(β)
2 · 1

π

∫ π
2

0 dβ · U(β)
, (52)

can be used together with the total emitted power Ptot. Keep in mind that there exists a phase shift of
90° between the Gaussian function shown Fig. 27(a) and the one from Eq. (52). Fourthly, the intensity
w.r.t (r, β):

I(r, β) = G(β) · Ptot

2π · r ·W (53)

23Transmission and absorption are interrelated to each other, e.g. Pabs = A (Iin−Iout) = A (I0−I0e−αL) = A I0(TL−T0)
and (P+

abs − P
−
abs) ∝ ∆Vgate where A = Area and P+

abs and P−
abs are the absorption in the +/− regions.
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to express the intensity pattern where W is the width of waveguide structure as illustrated in Fig. 30(b).
Finally, by relating the voltage difference to the difference in absorption we reach

W (r, α, β) = (P+
abs − P

−
abs)

Ptot
= (σ+(α)− σ−(α)) ·G(β) · Ptot

2π · r ·W · Ptot
(54)

as our final expression for the Weight Function W (r, α, β). This represents a direct connection between
the absorption in the + and – regions of the Receiver to the resulting weights. The Weight Function
describes how the gate voltage changes for a fixed output power of a connected transmitter, if we rotate
either the receiver or transmitter NW, or change the distance between the nodes. It is essentially the
fraction of power that can be converted to charges on the gate electrode.

We illustrate the Weight Function in Fig. 31 which is our main achievement. One can notice that there
is a big contrast in the 2D map where it is possible to "switch off" a connection in two way, by rotating
the Receiver or the Transmitter for α, β > 50°. While, for α, β < 30° there is a strong directivity in the
optical signals that suggest that one can actually send signals from one node to another. However, if
a Transmitter shines onto several Receiver NWs, any change of the Transmitter parameters would then
influence an entire column of a weight matrix for a network with more than two neurons, see section 1.1.
These correlation effects could be studied with the help of the Weight Function produced in this work.
Therefore, the weights quantify the strength of node connection; however, if the connection is one-to-many
neurons then we may consider a weight matrix, made up of a set of weight function evaluations.
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(a) Visualisation of NN communication strength. (b) Transmitter-Receiver optical communication.

Figure 31. (a) Visualisation of the expected Weight Function, W (α, β) for NW d=160 nm which
describes the weights of our Neural Network as a function of our two main parameters α, β with the distance r =
3000 nm kept fixed. (b) Framework of the optical communication between Transmitter and Receiver
nanowires with angles β and α set w.r.t the distance r.
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5 Conclusion and Outlook
Our study shows that one can send information to either side of a InP Receiver NW in a controlled
manner, simply by adjusting the illumination angle. This causes a drastic variation of relative absorption
between its two ends. This result was obtained via Lumerical by creating a FDTD simulation region
and studying the local absorption by the use of transmission box monitors around both ends of a NW,
see section 3.2.3. In addition, we adjusted the NW diameter and incoming light wavelength. Hence, the
main point is that one can tune the absorption difference between the plus and minus regions by simply
changing the injected source angle.

For the Transmitter NW, we established that the width of the resulting light cone, originating from
internal photo-emission, can be tuned by changing the nanowire diameter. To do so, we set a dipole
source at the centre of the GaInP nanowire to study how the emission pattern changed with diameter.
The emission peaks were fitted and we found an optimal range of Directivity and standard deviation σ
values for a tunable emitter. In this way, one can tune the diameter based on the requested communication
scheme: a wide spread signal for a Fully-connected neural network or a sharp and directed one for one-
to-one node communication. Hence, the diameter size of the Transmitter was the key point to define the
desired emission pattern.

By combining the results of the Receiver and Transmitter we provide the theoretical foundation of a
functional artificial neuron able to communicate optically in a neural network. The communication
between nodes are set by the relative characteristic angles (α, β) and the weights quantifying the strength
of these connections are described by the Weight Function, displayed in Fig. 31. From Fig. 31, one can
see that there is a compelling contrast in the 2D map where it is possible to "turn off" the connection in
two ways, by rotating a Receiver or a Transmitter for α, β > 50° as depicted in the violet area. With the
Weight Function as our main result, we laid the foundation to test hypothesis 3), see section 1.1.

As final remark , the Weight Function can be used to design networks based on artificial neurons similar
to the ones studied here. One proposal would be to setup the requested weights and unknown angles as a
nonlinear system of equations. Using the Weight Function from this work, one can then solve the system
to find the optimal rotation angles of the Receivers and Transmitters of such a network. In other words,
the solution to this latter mathematical system gives the rotations and positions of the nanowires in a
neural network that best mimic a given set of trained weights.
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A. Appendix

A.1 d’Alembert’s solution to the wave equation
Plenty of interesting and relevant phenomena that arise frequently in mathematics and physics sciences
such as fluid flows and electric and magnetic potential fields, are modelled by functions of several variables
that satisfy certain partial differential equations, PDE. One of these PDE is the Laplace’s equation,
special case of Poisson’s equation, where ∇2u(xi) = 0 must fulfilled, with function u(xi) ∈ Rn be C2-
smooth as axiom. Solutions of the equation, are harmonic functions, within the domain, if and only if,
they satisfied the Laplace’s equation.

The PDE, we are interested in is the wave equation that can degenerate to the Laplace’s equation within
certain conditions; however, the function u needs to be C2-smooth and not C∞-smooth as the Laplace
one. The wave equation is a second order linear PDE that can be considered as vector value function
v: Rn → Rm; however, can be also a scalar wave equation, special case of the vector one that describe
waves as vectors, e.g. electrical field, E. Hence, each (Ex, Ey, Ez) components of an electric vector field
wave must satisfy the scalar wave equation, same for the magnetic field, B.

We will describe a special case, the scalar wave equation in free space without any sources or sinks as
follows the general form:

∂2u(~x, t)
∂t2

= c2
(
∂2u(x1, t)
∂x2

1
+ ∂2u(x2, t)

∂x2
2

...+ ∂2u(xn, t)
∂x2

n

)
= c2∇2u(x, t) (55)

Solution to the wave equation in one dimension, by the d’Alembert theorem, can be seen as linear com-
bination of sinusoidal plane waves, a possible simple solution, with various directions and wavelength of
propagation; nevertheless all with the same propagation speed c. The wave equation intrinsic linearity
shows that any multiple of a solution or sum of any two solutions is a solution. Superposition principle
follows by setting initial conditions at time t, such as standing waves or harmonics.

General solution to the wave equation in 1D:

u(x, t) = f(x− ct) + g(x+ ct) (56)

f(x− 6c)

(x− ct)
4 6 t

f

Figure 32. Wave form u(x, t) = f(x−ct) travelling towards the right at t=4 and t=6, respectively, while towards
the left for u(x, t) = g(x+ ct).

where t is the time and f(x− ct) defines a waveform travels to the right along the x-axis with speed c,
while g(x+ ct) is the component of the waveform travelling to the left side as shown in Eq. (56).

Taking into account the one dimensional case:

∂2u(x, t)
∂t2

= c2
∂2u(x, t)
∂x2 1D case (57)
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We want to prove that Eq. (56) is a solution to the scalar wave equation, in addition, we want to prove
that it is also valid for a general case where f and g are arbitrary functions w.r.t new variables as follows:

ξ = x+ ct

η = x− ct

}
two new variables w.r.t ξ and η (58)

We express the wave equation by using derivatives w.r.t ξ and η in place of x and t. first partial derivatives
follows:

∂u(x, t)
∂t

= ∂u

∂ξ

∂ξ

∂t
+ ∂u

∂η

∂η

∂t

∂u(x, t)
∂x

= ∂u

∂ξ

∂ξ

∂x
+ ∂u

∂η

∂η

∂x

 1st partial derivatives

Chain rule for both 1st and 2nd partial derivatives.

∂

∂t

(
∂u(x, t)
∂t

)
= ∂2u(x, t)

∂t2
= c2

(
∂2u(x, t)
∂ξ2 − 2∂

2u(x, t)
∂η∂ξ

+ ∂2u(x, t)
∂η2

)
∂

∂x

(
∂u(x, t)
∂x

)
= ∂2u(x, t)

∂t2
= c2

(
∂2u(x, t)
∂ξ2 + 2∂

2u(x, t)
∂η∂ξ

+ ∂2u(x, t)
∂η2

)
 2nd partial derivatives

considering the wave equation and Schwarz-Clairaut’s theorem, we replace the above second partial
derivatives into Eq. (57),

∂2u(x, t)
∂t2

= c2
∂2u(x, t)
∂x2

2∂
2u(x, t)
∂η∂ξ

= −2∂
2u(x, t)
∂η∂ξ

4∂
2u(x, t)
∂η∂ξ

= 0 = ∂

∂η

(
∂u(x, t)
∂ξ

)
⇐⇒

⇐⇒ ∂u(x, t)
∂ξ

= 0 ⇐⇒ u(x, t) = constant

∴ wave equation holds

Hence, we proved that the equation is satisfied and the equality holds for the general form

u(x, t) = f(ξ) + g(η) = f(x− ct) + g(x+ ct)

,
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A.2 Index of Refraction, n
In optics, the refractive index or refraction index n = c/v of a material is a dimensionless number that
describes how fast light travels through the material, where c is the speed of light in vacuum and v is the
phase velocity of light in the medium. An example is the refractive index of water, 1.333, meaning that
light travels 1.333 times slower in water than in a vacuum. Increasing the refractive index corresponds
to decreasing the speed of light in the material.

The refractive index determines how much the path of light is bent, or refracted, when entering a material.
This is described by Snell’s law of refraction as in Fig.5, n1 sin θ1 = n2 sin θ2, where θ1 and θ2 are the
angles of incidence and refraction, respectively, of a ray crossing the interface between two media with
refractive indices n1 and n2. The refractive indices also determine the amount of light that is reflected
when reaching the interface, as well as the critical angle for total internal reflection, their intensity
(Fresnel’s equations) and Brewster’s angle [14].

For an incoming EM light source, refraction implies the Snell’s Law, which states that, for a given a pair
of diverse media, the ratio of the sines of the incident θ1 and reflected θ2 source is equal to the ratio of
phase velocities v1

v2
in the two media, or the ratio of refraction indices, n2

n1
of the two media. In other

word [16],
sin θ1

sin θ2
= v1

v2
= n2

n1

Index of refraction can be seen as the factor by which the speed and the wavelength of the radiation are
reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly
the wavelength in that medium is λ = λ0/n, where λ0 is the wavelength of that light in vacuum. This
implies that vacuum has a refractive index of 1, and that the frequency (f = v/λ) of the wave is not
affected by the refractive index. As a result, the perceived colour of the refracted light to a human eye,
which depends on the frequency, is not affected by the refraction or the refractive index of the medium
[16].

Index of refraction varies with wavelength; this causes white light to split into constituent colours when
refracted, known as dispersion. This dispersion effect can be observed in prisms and rainbows, and
as chromatic aberration in lenses. Light propagation in absorbing materials can be described using a
complex-valued refractive index. The imaginary part then handles the attenuation or transmission, while
the real part accounts for refraction. For most materials the refractive index changes with wavelength by
several percent across the visible spectrum. Nevertheless, refractive indices for materials are commonly
reported using a single value for n, typically measured at 633 nm [16].

Figure 33. Representation of light travels via two distinct media, e.g. air to Al2O3, where its speed
changes causes the rays to bend. This phenomenon, called refraction, is governed by Snell’s Law, which states
that the ratio of the sine of the angle of incidence to that of the angle of refraction is a constant, namely the
index of refraction, n.
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A.3 Lagrange Polynomial
Lagrange interpolation has been used to interpolate the extracted data-points from the receiver simula-
tion. These data-points are used to study the absorption difference between two distinct depletion regions
of a Receiver NW. Follows definition and a simple example of the Lagrange interpolation polynomial em-
ployed during our simulation process.

Problem Determine a polynomial p of degree smaller or equal to three that fulfils p(−1) = 2, p(0) =
6, p(2) = 4 and p(3) = 30 in the Lagrange basis.

Solution After proving the existence and uniqueness of the Lagrange theorem as suggested in Mayers
book [13], we can construct the polynomial as follows:

pn(x) =
n∑
k=0

Lk(x)yk

where the Lk(x) is the Lagrange interpolation polynomial, namely:

Lk(x) =
n∏
i=0
i 6=k

(x− xi)
(xk − xi)

We know that our nodes or interpolation points are x0 = -1, x1 = 0, x2 = 2, and x3 = 3.

As n=2 from pn, we observe that

L0(x0) = (x− x0)
(x0 − x0)

(x− x1)
(x0 − x1)

(x− x2)
(x0 − x2)

(x− x3)
(x0 − x3)

= (x− 0)
(−1− 0)

(x− 2)
(−1− 2)

(x− 3)
(−1− 3)

= −x (x− 2)
3

(x− 3)
4

Hence, if we evaluate L0 for x0 = -1 then we get 1, as follows [13]:

Lk(xi) =
{

1, i = k,

0, i 6= k,

In a similar way is computed the other Lk(xi) which we show the final result:

L1(x1) = (x+ 1)(x− 2)(x− 3)
6

L2(x2) = −x(x+ 1)(x− 3)
6

L3(x3) = x(x+ 1)(x− 2)
12

The resulting Lagrange polynomial is defined by

p2(x) = −x(x− 2)
3

(x− 3)
4 ·2 + (x+ 1)(x− 2)(x− 3)

6 ·6 + −x(x+ 1)(x− 3)
6 ·4 + x(x+ 1)(x− 2)

12 ·30 �
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Figure 34. A comparison between two diverse interpolation polynomials for NW d=160 nm. (a) the
Lagrange interpolation polynomial & Runge phenomenon, where high order polynomials yield two com-
pelling oscillations at the side wings of the polynomials. (b) A piecewise smooth interpolation polynomial
opted as alternative to the prior Lagrange to interpolate our experimental data-points.
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