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Abstract 2 

Transposable elements (TEs) are mobile genetic elements that make up roughly 50% of the 3 

human genome, with retrotransposons (or transposons which retrotranspose via an RNA 4 

intermediate) making up the vast majority of these elements. Recent studies have suggested that 5 

TEs could play a role in many neurological conditions, including ALS and dementia. The 6 

specific reasons why TEs are associated with these conditions remain somewhat unclear, with 7 

potential explanations including mutagenic insertion, immune responses to the presence of 8 

transcripts, and cytotoxic peptides resulting from the translation of these transcripts. We 9 

performed single-nuclei RNA sequencing (snRNA-seq) to profile the impact that TEs have on 10 

the development of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Our results show 11 

clear evidence for activated microglia and reactive astrocytes in PD, suggesting 12 

neuroinflammation. Additionally, using trusTEr, a new bioinformatics pipeline for the 13 

quantification of TE expression from single nuclei sequencing datasets, we were able to identify 14 

cell type-specific expression patterns of LINE1s and HERVs between diseased and control 15 

brains, which raise questions about the functional consequences of an aberrant expression of TEs 16 

in the human brain and their role in neuroinflammation.  17 

  18 
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Popular summary 19 

Protein-coding genes – the “important” bits of DNA that contain instructions for our cellular 20 

machinery – make up just 2% of our genome. The other 98%, about half of which is a group of 21 

ancient viral genes and sequences which have mutated to replicate themselves, have historically 22 

been considered irrelevant to study. However, recent research has shown that much, though not 23 

all, of this so-called “junk DNA” actually gets copied into RNA fairly frequently and has some 24 

influence on nearby areas of the genome. Might it impact human health? 25 

 26 

Modern bioinformatics research suggests this may be the case. Retrotransposons, which are 27 

DNA sequences that have (or had) the ability to retrotranspose (or create copies of themselves 28 

throughout our genetic code using RNA intermediates) make up nearly half our genome but have 29 

not been researched so much until recently due to historical constraints in technology. However, 30 

what research does exist suggests that RNA intermediates created by retrotransposons can impact 31 

brain health in some important ways and are associated with diseases like dementia. For this 32 

reason, we chose to research two types of retrotransposons – human endogenous retroviruses 33 

(HERVs), which are insertions of viral genetic code which still sometimes create RNA 34 

intermediates but never retrotranspose anymore, and long interspersed nuclear element 1s 35 

(LINE1s, L1s), which are the only retrotransposons that can still retrotranspose in humans – and 36 

their impacts on two common neurodegenerative diseases, Alzheimer’s disease (AD) and 37 

Parkinson’s disease (PD). We wanted to see if the expression of these retrotransposons differed 38 

between cell types as well, so we used a method called single-nucleus RNA sequencing (snRNA-39 

seq), which let us examine all the RNA produced by each individual cell and identify cell types 40 

based on that. 41 
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 42 

We found that while LINE1s did not show particularly different expression patterns in brains 43 

with AD or PD and healthy brains, HERVs showed some interesting patterns. Perhaps most 44 

interesting was the fact that a HERV associated with inflammation was much more expressed in 45 

PD microglia than in control microglia. This is especially interesting because microglia are a 46 

type of brain cell that forms part of the immune system and causes inflammation, and 47 

neuroinflammation is an important factor in the development of many neurodegenerative 48 

disorders, including PD. We also found that many genes associated with inflammation were 49 

highly expressed in these microglia, providing compelling evidence that HERVs in microglia 50 

may be involved in the inflammation seen in PD. 51 

 52 

Despite these findings, there is much that we still cannot explain. For instance, we are not certain 53 

whether the inflammatory response seen is a result of the RNA intermediates from these HERVs 54 

or from the viral proteins these intermediates code for – or even whether this difference in 55 

expression is a cause or an effect of neuroinflammation. That said, these findings provide 56 

exciting opportunities for future research in the field of neuroinflammation and retrotransposon 57 

activity. 58 

 59 

 60 

  61 
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Introduction 62 

Transposable elements 63 

Transposable elements (TEs) are mobile genetic elements that can relocate throughout the 64 

genome. TEs comprise roughly 50% of the human genome, as opposed to protein-coding genes, 65 

which make up just 2% of the human genome (1). They are divided into two classes: class I, or 66 

retrotransposons, and class II, or DNA transposons (1–3). Retrotransposons function through a 67 

copy-and-paste mechanism, wherein an RNA intermediate is created through the cell’s RNA 68 

transcription machinery, and has its information written into the genome through reverse 69 

transcription at a different locus (1–3). Conversely, DNA transposons function through a cut-70 

and-paste mechanism in which a region of DNA uses cellular machinery to cleave itself from its 71 

current locus and insert itself into a different locus (1–3). 72 

 73 

Between the two classes, retrotransposons make up a far greater share of the human genome than 74 

DNA transposons, which are no longer active in humans but remain active in some other 75 

organisms (1,3). Within the retrotransposon class, elements are classified into those containing 76 

long-terminal repeat (LTR) elements and those which do not (1,4). Among non-LTRs, elements 77 

are further classified into long interspersed nuclear elements (LINEs), short interspersed nuclear 78 

elements (SINEs), and other families (Figure 1) (1,4).  79 

 80 

LINEs 81 

Of all retrotransposons, LINE elements are the most plentiful and are further divided into more-82 

common LINE1 (L1) and less-common LINE2 (L2) elements. L1s comprise roughly 17% of the 83 

modern human genome (5,6). Despite the incredible amount of the human genome made up of 84 
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L1s, only 80-100 L1s have retained the ability to retrotranspose, with 84% of all 85 

retrotransposition activity in the modern human genome coming from a handful of L1HS 86 

elements (7,8). The fact that L1s have the ability to retrotranspose makes them important to 87 

understand, as their retrotransposition has the potential to cause mutagenic insertions in protein 88 

coding genes, thus causing a wide variety of health problems including neurodegenerative 89 

diseases (1).  90 

 91 

L1s are comprised of five regions: a 5’ untranslated region (UTR), three open reading frames 92 

(ORFs) called ORF0, ORF1, and ORF2, a 3’ UTR, and a poly-A tail on the 3’ end (6). ORF1 93 

codes for an RNA binding protein, while ORF2 encodes for a reverse transcriptase (6). The role 94 

of ORF0 remains somewhat unclear, as it was only discovered quite recently, but it is suspected 95 

Figure 1: Classification of different retrotransposons. The retrotransposons included in this study are highlighted in green. 
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to enhance the expression of its respective L1 (6). It is known to contain an antisense promoter, 96 

which could potentially initiate the expression of downstream genes (9). 97 

 98 

LTRs 99 

In humans, nearly all LTR elements are endogenous retroviruses (ERVs), a family of genetic 100 

elements thought to have originated with genomic insertions from retroviruses far back in the 101 

human lineage (10). ERVs which are found in humans are referred to as human ERVs (HERVs). 102 

Structurally, HERVs are fairly similar to the genetic materials of other retroviruses, such as HIV. 103 

They are comprised of four coding regions – gag, pro, pol, and env – which code for structural 104 

viral proteins, such as viral capsids and reverse transcriptase (11). These regions are flanked on 105 

the 5’ and 3’ ends by long terminal repeats (11). HERVs make up a significant proportion of the 106 

human genome – roughly 8% – but none are still able to retrotranspose (12). However, they may 107 

still generate transcripts in the cell (11–13). Increased expression of HERVs has been shown to 108 

be associated with a variety of neurodegenerative diseases, such as Alzheimer’s disease (AD) 109 

(13,14). 110 

 111 

Neurodegenerative diseases 112 

Age-related neurodegenerative diseases are an increasingly urgent public health issue as general 113 

health improves throughout the world, causing lifespans grow. In 2010, 35.6 million people in 114 

the world had dementia, the most common age-related neurodegenerative disorder; this number 115 

is expected to grow to 115.4 million by 2050 (15). Parkinson’s disease (PD) is the second most 116 

common neurodegenerative disease after dementia – affecting an estimated 3% of individuals 117 

older than 90 – making its study extremely relevant in the context of an aging population (16). 118 
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Studying both dementia and PD is crucial to help better understand and improve geriatric health 119 

in the future. 120 

 121 

Alzheimer’s disease 122 

The most common form of dementia is AD (17). Current research suggests that it is caused by 123 

insoluble clumps of hyperphosphorylated tau protein, which are called “neurofibrillary tangles” 124 

(17,18). These neurofibrillary tangles lead to cell death in the prefrontal cortex, which then 125 

results in degradation of cognition and memory (17). 126 

 127 

Although it is well understood that the presence of tau plaques and neurofibrillary tangles in the 128 

brain lead to the development of AD symptoms, the etiology of the disease remains unclear. One 129 

hypothesis postulates that vascular dysregulation in the cerebral cortex is one of the primary 130 

contributors to the disease (19–21). In this hypothesis, degradation of the blood-brain barrier is 131 

the driving biological mechanic behind the disease (21). This degradation results in 132 

neuroinflammation and hypoxia, resulting in neuronal cell death (21). Recent research has found 133 

that a lack of endothelial progenitor cells may be the cause of this vascular stress in the first 134 

place (19). 135 

 136 

 137 

Parkinson’s disease 138 

PD is an age-related neurological condition in which the primary symptoms are related to motion 139 

control (17). Its proximate cause is the death of dopaminergic excitatory neurons in the 140 

substantia nigra (22). It may occur with or without dementia symptoms, resulting from the 141 
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buildup of alpha-synuclein (a-Syn) in the prefrontal cortex called “Lewy bodies,” meaning the 142 

substantia nigra and prefrontal cortex are both very relevant areas of the brain to study in PD 143 

(16,23).  144 

 145 

Inflammation in neurodegenerative diseases 146 

Despite their prevalence, the causes of age-related neurodegenerative diseases remain poorly 147 

understood. However, several hypotheses have emerged, one of the foremost being that 148 

neuroinflammation is an important cause (24). Research has shown, for instance, that individuals 149 

with PD have significantly increased levels of inflammatory cytokines in their blood (25). 150 

Additionally, AD progression is well-known to be associated with neuroinflammation, and anti-151 

inflammatory treatments may be used to slow the progression of the disease (26,27). 152 

Transposable elements (TEs) are known to cause inflammatory responses in hosts and are known 153 

to be associated with a wide range of neurodegenerative disorders, which suggests a possible link 154 

between TEs and the diseases studied here (1). 155 

 156 

The role of TEs in neurodegenerative diseases 157 

The “transposition theory of aging” postulates that the regulation of retrotransposons becomes 158 

more dysfunctional as an individual ages, a pattern which has been found in organisms such as 159 

Drosophila and mice (28–31). In humans, DNA methylation patterns are known to change with 160 

aging – a process that could cause the upregulation of formerly silenced TEs as the genomic 161 

regions containing the TE code become demethylated (32,33). Additionally, TAU protein 162 

resulting from AD is suspected to impact the expression of heterochromatin protein 1 (HP1), an 163 

epigenetic regulator, potentially affecting the regulation of TE expression (34). Moreover, in a 164 
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prior study on the relationship between TAU buildup and TE expression, researchers found a 165 

positive correlation between the amount of tau in the brains of Alzheimer’s patients and the 166 

expression of TEs (31). This is relevant to our study, as retrotransposons have the potential to 167 

cause myriad deleterious health effects.  168 

 169 

One of the most obvious traits of TEs that can impact human health is the mutagenic insertion of 170 

TE copies in other genes (1). Although most TEs have developed enough mutations over time to 171 

become transcriptionally inactive, some remain active (1,35). However, other health impacts 172 

may occur from the transcription of TEs. One such impact is the creation of cytotoxic peptides 173 

from TE transcripts (1,14). Additionally, the presence of TE transcripts in the nucleus as 174 

noncoding RNA has the potential to impact regulatory processes within the cell (1,36). 175 

 176 

As TEs have a long heritage in our genomes, our cells have evolved methods to control their 177 

transcription. One example of this defense mechanisms is TRIM28, an epigenetic co-repressor 178 

(12,37). In the TRIM28 repressive complex, Krüppel-associated box-zinc finger proteins 179 

(KRAB-ZFPs) bind to the TE sequence and recruit Trim28, which then acts as a scaffold for 180 

other proteins such as SETDB1 and HP1 to epigenetically repress TEs through DNA methylation 181 

(12,37–39). Prior studies have suggested that this mechanism may cause TRIM28 to 182 

epigenetically silence nearby genes as well (37). 183 

 184 

In contrast, some studies have also shown that TEs may act as alternative promoters or enhancers 185 

for nearby genes and thus result in greater transcriptional activity in their immediate 186 

surroundings, showing how varied the roles of TEs are in the human genome (1,40). 187 
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 188 

One crucial factor about TEs to understand when studying their role in neuroinflammation is that 189 

TE transcripts and peptides can often be mistaken for viral fragments by the cell. As a result of 190 

this similarity, a leading hypothesis on why TEs appear so correlated to neuroinflammatory 191 

diseases is the accumulation of RNA transcripts, RNA:DNA hybrids, and extra-chromosomal 192 

DNA, which can result from retrotransposon transcription (2). The presence of these TE-related 193 

factors alerts the immune pathways within the cell, leading to inflammation (4).  194 

 195 

Bioinformatics considerations 196 

From a bioinformatics standpoint, TEs can be rather difficult to study. Perhaps the most 197 

prominent reason for this difficulty is the amount of repetition in TE-infiltrated regions (41). 198 

Sequence repetition means that mapping TEs to unique loci in the genome is very challenging. 199 

Additionally, the fact that TE families tend to be quite homogeneous means that separating two 200 

related subfamilies (for instance, L1HS and L1PA2) can be difficult, particularly when 201 

performing short-read sequencing. This difficulty is further compounded when performing 202 

single-cell analysis, as the number of reads for each cell is quite small when compared to bulk 203 

sequencing. Considering these challenges, we chose to pool similar cell transcriptomes together 204 

when quantifying TEs, analyze TE expression on a per-subfamily level rather than a per-element 205 

level, and use a software specifically developed to quantify TE reads rather than traditional gene-206 

quantification software, ensuring that the reads quantified are not limited to those that can be 207 

mapped to a specific locus (42). 208 

 209 

Project aims 210 
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Based on prior research, we believe it would be relevant to further investigate the relationship 211 

between TEs and neurodegenerative disorders (1,14,30,31). Many studies have identified a 212 

relationship between neurodegenerative diseases and TE expression; however, few have profiled 213 

the roles that different cell types play in this relationship (14,30,31). Therefore, we have chosen 214 

to use single-nuclei RNA sequencing (snRNA-seq) rather than bulk sequencing. This approach 215 

will allow us to characterize TE expression in diseased and control samples on a per-cell type 216 

basis. The aim of this thesis is to profile the expression of four L1 subfamilies (L1HS, L1PA2, 217 

L1PA3, and L1PA4) and five HERV subfamilies (LTR2, LTR5B, LTR5-Hs, LTR7, and LTR17) 218 

which have been previously shown to activate the immune response or been implicated in 219 

inflammation in the substantia nigra and prefrontal cortex of PD and prefrontal cortex of AD 220 

(43,44). Additionally, we will assess astrocytes for eight biomarkers of astrocyte reactivity 221 

(CHI3L1, C3, S100B, CRYAB, MAOB, NFAT5, HSPB1, and MT2A) and microglia for eight 222 

biomarkers of microglial activation (FTL, SPP1, APOE, CD74, FCGR3A, CST3, CSF1R, and 223 

PTPRC) (45–49) in each region. This will allow us to assess the inflammatory statuses as well as 224 

the TE expression. 225 

 226 

Results 227 

Experimental setup 228 

To investigate the difference in expression of different TE subfamilies, the analysis was 229 

performed using 17 postmortem samples with PD (9 prefrontal cortex, 8 substantia nigra) and 14 230 

normal control (NC) postmortem samples (6 prefrontal cortex, 8 substantia nigra) which were 231 

sequenced using snRNA-seq.  232 

 233 
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 234 

Figure 2: Graphical representation of the PD and AD experiments. For the PD experiments, PD and NC cell samples were 235 
sequenced in our laboratory; for the AD experiment, the AD and NC data were downloaded from an online repository. Created 236 
in biorender.com. 237 

 238 

To study the same question in AD, the analysis was performed using publicly available 239 

prefrontal cortex transcriptome data from eight postmortem samples with Alzheimer’s disease 240 

and seven control postmortem samples (50).  241 

 242 

PD experiment – substantia nigra 243 

Quality control and cell type assignment 244 

After filtering out potential doublets (technical artifacts that contain genetic information for two 245 

cells despite appearing as one) and low-quality cells, 30,117 cells passed quality control, of 246 

which 17,031 belonged to patients with PD and 13,086 of which belonged to the control group 247 

(Table 1, Appendix 1). 248 
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 249 

Cell types were assigned based on the expression of various biomarkers. In the substantia nigra, 250 

the detected cell types were neurons (RBFOX3, MAP2, DCX), astrocytes (GFAP, AQP4, GJA1, 251 

SLC1A3), microglia (FYB1, P2RY12, CD74), oligodendrocytes (PLP1, MOG, MBP), and 252 

oligodendrocyte progenitor cells (VCAN, COL9A1, PDGFRA) (Figure 3b, 3c).  253 

Table 1: Cell type counts in PD and NC substantia nigra samples 254 

       Astrocytes  Microglia  Neurons  Oligodendrocytes   OPCs  Total 
  PD   1892 1697 127 12079 1236 17031 
  NC   1428 1004 363 9143 1148 13086 
Total 3320 2701 490 21222 2384 30117 

 255 
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 256 

Activated microglia and reactive astrocytes detected in PD 257 

Figure 3: (a) Violin plots showing quality control variables in PD substantia nigra samples (from left: number of genes detected 
in each cell, total number of RNA reads detected in each cell, and % of reads coming from mitochondria in each cell) (b) 
Uniform manifold approximation and projection (UMAP) plots showing cell type specific biomarkers (RBFOX3 = neurons, 
GFAP = astrocytes, PLP1 = oligodendrocytes, VCAN = OPCs, FYB1 = microglia, FLT1 = endothelial cells). (c) UMAPs 
showing assigned cell type (left) and Seurat cluster (right). 
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Some previously annotated biomarkers for activated microglia (FTL, SPP1, APOE, CD74, 258 

FDGR3A, PTPRC, CST3, and CSF1R) were found significantly upregulated (Wilcoxon, p < 259 

0.05) in PD microglia (Figure 4a), as well as known biomarkers of reactivity in PD astrocytes 260 

(CHI3L1, C3, S100B, CRYAB, MAOB, NFAT5, HSPB1, MT2A) (Wilcoxon, p < 0.05) (Figure 261 

4b) (45–49). 262 

 263 

Following gene set enrichment analysis (GSEA) we corroborated the presence of activated 264 

microglia in the substantia nigra of patients with PD, with multiple immune-related gene 265 

ontology terms showing upregulation. Such terms included “immune effector process,” “cell 266 

activation,” and “cytokine production” in microglia (Figure 4c). Astrocyte terms seemed to be 267 

largely focused around extracellular interactions and movement, like “cell motility” and 268 

“external encapsulating structure” (Figure 4c). 269 

 270 

Interestingly, many gene ontology terms in oligodendrocytes were also upregulated. Most of the 271 

upregulated terms were related to the 3D structures of proteins, such as “unfolded protein 272 

binding,” “protein folding,” and “response to topologically incorrect protein”. 273 

 274 
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OPCs in PD substantia nigra samples showed a large amount of upregulation of GO terms 275 

Figure 4: (a) GSEA results for each cell type, showing the top five most significantly activated and repressed terms in PD (if more than five terms 
were significant; otherwise, all terms are shown). (b) Violin plots showing expression of microglial activation biomarkers in PD (left) and normal 
control (right) individuals. (c) Violin plots showing expression of astrocyte activation biomarkers in PD (left) and control (right) individuals. (For 
(b) and (c): Wilcoxon rank-sum test, ns = (p > 0.05); * = (p < 0.05); ** = (p < 0.01); *** = (p < 0.001); **** = (p < 0.0001). 
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associated with extracellular interactions. Such terms included “cell periphery” (Figure 4c). 276 

Many other activated terms were associated with tissue development, such as “central nervous 277 

system development,” “multicellular organism development,” and “system development” (Figure 278 

4c). 279 

 280 

Neurons also showed a large degree of both suppression and activation of various terms. The 281 

most suppressed terms were broadly related to ribosomes and protein translation, such as 282 

“ribosomal subunit” and “cytoplasmic translation” (Figure 4c). The most activated terms were 283 

largely related to synaptic activity, such as “postsynapse,” “trans-synaptic signaling,” and simply 284 

“synapse” (Figure 4c). 285 

 286 

TE expression – decreases in L1 and HERV expression seen in PD oligodendrocytes 287 
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Results are shown for four young L1 subfamilies: L1HS, L1PA2, L1PA3, and L1PA4 (Figure 5a, 288 

5b). In each case, TE expression is somewhat lower in PD samples than in control samples 289 

across many cell types, most notably in the oligodendrocytes; however, notable differences are 290 

also present in OPCs (Figure 5a, 5b). That said, no cluster shows a log fold difference (LFD) in 291 

expression of below -1 in PD (Figure 5a, 5b). No differences were seen in L1 expression in 292 

microglia, astrocytes, or neurons (Figure 5a, 5b). 293 

 294 

Figure 5: (a) Bar charts showing the LFD of the expression of various TE subfamilies in PD vs. control samples.  (b) UMAPs showing the 
normalized expression (total number of reads / cell count per cluster) of those same TEs. 
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The data in five ERV subfamilies – LTR2, LTR5-Hs, LTR5B, LTR7, and LTR17 – show that 295 

LTRs appear to have a similar expression profile in oligodendrocytes to L1s. All five subfamilies 296 

show decreased expression in oligodendrocytes and neurons from PD samples, with LTR2 297 

showing decreased expression in astrocytes and OPCs. LTR2, LTR5-Hs, and LTR17 all show 298 

increased expression in PD microglia (Figure 6a, 6b). 299 

 300 

Figure 6: (a) Bar charts showing the LFD of the expression of various TE subfamilies in PD vs. control samples.  (b) UMAPs showing the 
normalized expression (total number of reads / cell count per cluster) of those same TEs. 
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PD experiment – cortex 301 

Quality control and cell type assignment 302 

Figure 7: (a) Violin plots showing quality control variables in PD cortex samples (from left: number of genes detected in each 
cell, total number of RNA reads detected in each cell, and % of reads coming from mitochondria in each cell) (b) UMAPS 
showing cell type specific biomarkers (CAMK2A = excitatory neurons, GAD1 = inhibitory neurons, GFAP = astrocytes, PLP1 = 
oligodendrocytes, VCAN = OPCs, FYB1 = microglia, FLT1 = endothelial cells). (c) UMAPs showing assigned cell type (left) 
and Seurat cluster (right). 
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Similar exclusion criteria were used in this experiment as in the substantia nigra experiment to 303 

ensure that low-quality cells and doublets were excluded from the analysis. In total, 31,348 cells 304 

passed quality control, with 13,426 cells belonging to control patients and 17,922 cells belonging 305 

to PD samples (Table 2, Appendix 2). We found all of the expected cell types, which we 306 

categorized based on the expression of various biomarkers. The detected cell types included 307 

astrocytes (GFAP, AQP4, GJA1, SLC1A3), microglia (FYB1, P2RY12, CD74), 308 

oligodendrocytes (PLP1, MOG, MBP), excitatory neurons (GRIN1, HS3ST2, CAMK2A), 309 

inhibitory neurons (GAD1, GAD2, CALB2, CNR1), OPCs (VCAN, COL9A1, PDGFRA), and a 310 

small population of endothelial cells (FLT1, PECAM1) (Figure 7b, 7c).  311 

 312 

Table 2: Cell type counts in PD and NC prefrontal cortex samples 313 

       Astrocytes  Endothelial 
cells  

Excitatory 
neurons  

Inhibitory 
neurons  

Microglia  Oligodendrocytes   OPCs  Total 

  PD   2791 89 5825 3300 587 4428 902 17922 
  NC   1952 154 4474 2117 301 3557 871 13426 
Total 4743 243 10299 5417 888 7985 1773 31348 

 314 

Microglia and astrocytes activated in PD prefrontal cortex 315 

Some biomarkers of microglial activation – SPP1, CD74, FCGR3A, and CST3 – showed 316 

upregulation in PD microglia, likely pointing towards activation of microglia in the prefrontal 317 

cortex as well (Figure 8a). This effect was accompanied with the significant upregulation of 318 

several biomarkers for astrocyte reactivity in PD astrocytes such as MT2A, HSPB1, MAOB, 319 

CRYAB, and CHI3L1 – which suggests the activation of astrocytes in the prefrontal cortex 320 

(Figure 8b) (45–49).  321 

 322 
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GSEA showed a similar astrocyte gene set expression profile as the PD substantia nigra. Many of 323 

the gene ontology terms associated with the differentially expressed genes involved interactions 324 

with the outside of the cell, such as “external encapsulating structure,” “extracellular matrix,” 325 

and “cell adhesion” which were significantly upregulated (Figure 8c). Additionally, many terms 326 

related to cell movement, such as “cell migration” and “locomotion,” were activated (Figure 8c).  327 

 328 

Likewise, microglia showed similar signs of activation, with the most upregulated terms being 329 

“cellular activation” and “immune system process” (Figure 8a). Many of the most downregulated 330 

terms were related to ribosomes and protein translation, such as “cytosolic translation” and 331 

“ribosome” (Figure 8c).  332 

 333 

Endothelial cells showed a very interesting expression pattern in the PD cortex samples. Many 334 

GO terms related to vasculature were upregulated, such as “blood vessel development” and 335 

“angiogenesis” (Figure 8c). Terms related to the 3D structures of proteins, such as “protein 336 

folding,” were suppressed (Figure 8c). 337 

 338 
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Oligodendrocytes in PD prefrontal cortex samples showed a marked decrease in many GO terms 339 

Figure 8: (a) GSEA results for each cell type, showing the top five most significantly activated and repressed terms in PD (if more than five 
terms were significant; otherwise, all terms are shown). (b) Violin plots showing expression of microglial activation biomarkers in PD (left) 
and normal control (right) individuals. (c) Violin plots showing expression of astrocyte activation biomarkers in PD (left) and control (right) 
individuals. (For (b) and (c): Wilcoxon rank-sum test, ns = (p > 0.05); * = (p < 0.05); ** = (p < 0.01); *** = (p < 0.001); **** = (p < 
0.0001) 
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associated with morphogenesis. Such terms included “neuron development,” “cellular 340 

component morphogenesis,” and “cell junction assembly” (Figure 8c). There were several 341 

upregulated terms as well, but they did not appear to follow a clear pattern (Figure 8c). 342 

 343 

In excitatory neurons, many of the most-upregulated terms in PD were related to synaptic 344 

activity, with strongly activated terms including “chemical synaptic transmission” and “synaptic 345 

signaling” (Figure 8c). Many suppressed terms, like “mitochondrial respirasome,” were related 346 

to respiration and other cellular energetic processes. 347 

 348 

Inhibitory neurons showed a somewhat similar expression pattern from excitatory neurons. Here, 349 

the most upregulated terms tended to be related to cell communication, with terms like “synapse” 350 

and “cell junction” showing the most upregulation (Figure 8c). Many of the suppressed terms 351 

were related to ribosomes and protein creation, such as “cytosolic ribosome” and “cytoplasmic 352 

translation” (Figure 8c). 353 

 354 

TE expression – PD astrocytes and microglia show upregulation of TEs in prefrontal cortex 355 

We noticed that astrocytes, microglia, OPCs, and excitatory and inhibitory neurons from PD 356 

samples had a marked increase in the expression of the young L1 subfamilies assessed. Of these, 357 

astrocytes showed the largest upregulation, with all four clusters showing an LFD of at least 0.75 358 

(Figure 9a, 9b). Oligodendrocytes did not show a strong change in expression, and endothelial 359 

cells from PD samples showed a marked decrease in expression of all evolutionarily young L1 360 

subfamilies relative to cells from control samples (Figure 9a, 9b).  361 

 362 
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 363 

LTR2 and LTR5-Hs showed a mild increased expression in excitatory neurons, inhibitory 364 

neurons, and astrocytes coming from PD samples (Figure 10a, 10b). The largest differences in 365 

LTR5B expression seemed to come from astrocytes, where expression was increased across all 366 

clusters in PD samples (Figure 10a, 10b). LTR7 also showed marked increases in expression in 367 

astrocytes, as well as in microglia, excitatory neurons, and inhibitory neurons (Figure 10a, 10b). 368 

LTR17 showed increased expression in astrocytes and decreased expression in endothelial cells 369 

but showed less consistent expression patterns in excitatory and inhibitory neurons (Figure 10a, 370 

Figure 9: (a) Bar charts showing the LFD of the expression of various TE subfamilies in PD vs. control samples.  (b) UMAPs showing the 
normalized expression (total number of reads / cell count per cluster) of those same TEs. 
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10b). OPC cluster 15 also shows increased expression of LTR17 in PD samples (Figure 10a, 371 

10b). Oligodendrocytes did not show any dysregulation of ERV expression. 372 

 373 

AD experiment 374 

Quality control and cell type assignment 375 

Figure 10: (a) Bar charts showing the LFD of the expression of various TE subfamilies in PD vs. control samples.  (b) UMAPs showing the 
normalized expression (total number of reads / cell count per cluster) of those same TEs. 
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Overall, 113,535 cells passed quality control. 60,658 of these were from AD samples, while 376 

Figure 11: (a) Violin plots showing quality control variables in AD cortex samples (from left: number of genes detected in each 
cell, total number of RNA reads detected in each cell, and % of reads coming from mitochondria in each cell) (b) UMAPS 
showing cell type specific biomarkers (CAMK2A = excitatory neurons, GAD1 = inhibitory neurons, GFAP = astrocytes, PLP1 = 
oligodendrocytes, VCAN = OPCs, FYB1 = microglia, FLT1 = endothelial cells). (c) UMAPs showing assigned cell type (left) 
and Seurat cluster (right). 
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52,937 were from control samples (Table 3, Appendix 3). There was no major difference in 377 

transcript number between AD samples and control samples. Cell types were characterized with 378 

the same biomarkers used for the PD prefrontal cortex dataset (Figure 11b, 11c).  379 

 380 

Table 3: Cell type counts in AD and NC prefrontal cortex samples 381 

       Astrocytes  Endothelial 
cells  

Excitatory 
neurons  

Inhibitory 
neurons  

Microglia  Oligodendrocytes    OPCs  Total 

  AD   6585 775 20897 7990 2704 17285 4422 60658 
  NC   5667 296 18766 7390 2716 13514 4588 52937 
  Total 12252 1071 39663 15380 5420 30799 9010 113595 

 382 

No upregulated genes related to microglia and astrocytes activation in AD 383 

Several biomarkers associated with microglial activation – FTL, SPP1, CD74, and FCGR3A – 384 

were downregulated in AD microglia, while just one – APOE – was upregulated (Figure 12a). 385 

Additionally, many biomarkers of astrocyte reactivity – MT2A, HSPB1, NFAT5, MAOB, 386 

CRYAB, S100B, and CHI3L1 – were shown to be downregulated in AD astrocytes, while one – 387 

C3 – was upregulated (Figure 12b) (45–49).  388 

 389 

 390 

To perform a broader investigation of if there was an inflammatory-like response in microglia 391 

and astrocytes in AD as well, GSEA was performed in each cell type. In astrocytes, there were 392 

far fewer hallmarks of cellular activity, with the most significant changes in GO terms being 393 

suppressions. The most suppressed terms were related to extracellular interactions, such as “cell 394 

periphery,” “plasma membrane,” and “extracellular region” (Figure 12c).  395 

 396 
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Differences in gene set expression were noted in microglia as well. As with the astrocytes, there 397 

were fewer signs of increased cellular activity in the AD samples over the control samples. 398 

However, the profile of suppressed GO terms was quite similar to the profile seen in PD cortex 399 

samples. In both cases, terms related to ribosomes and protein translation were suppressed. Such 400 

terms in AD samples include “cytoplasmic translation,” “cytosolic ribosome,” and 401 

“ribonucleoprotein complex” (Figure 12c).  402 

 403 

Oligodendrocytes in both AD and PD cortexes showed several GO terms suppressed. However, 404 

while most of these terms were related to cell development and differentiation in PD prefrontal 405 

cortex samples, they were largely related to cellular locomotion in AD prefrontal cortex samples. 406 

Particularly suppressed terms include “chemotaxis,” “regulation of cell motility,” and 407 

“locomotion” (Figure 12c). 408 

 409 
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Interestingly, OPCs in AD samples showed an almost opposite GO profile from the OPCs in PD 410 

Figure 12: (a) GSEA results for each cell type, showing the top five most significantly activated and repressed terms in PD (if more than five 
terms were significant; otherwise, all terms are shown) Excitatory and inhibitory neurons not shown because no terms showed a significant 
change. (b) Violin plots showing expression of microglial activation biomarkers in PD (left) and normal control (right) individuals. (c) Violin 
plots showing expression of astrocyte activation biomarkers in PD (left) and control (right) individuals. (For (b) and (c): Wilcoxon rank-sum 
test, ns = (p > 0.05); * = (p < 0.05); ** = (p < 0.01); *** = (p < 0.001); **** = (p < 0.0001). 
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samples, as GO terms associated with extracellular interaction were largely suppressed (Figure 411 

12c). Such terms included “cell periphery” and “multicellular organismal process” (Figure 12c). 412 

Just one GO term, “negative regulation of DNA-binding transcription factor activity,” was 413 

activated (Figure 12c).  414 

 415 

As with the PD cortex samples, endothelial cells from AD cortexes showed a strikingly large 416 

increase in the expression of terms associated with extracellular interaction and tissue 417 

development. Such terms in AD samples include “endothelium development” and “anchoring 418 

junction” (Figure 12c). No GO terms were activated or suppressed in either excitatory or 419 

inhibitory neurons. 420 

 421 

TE expression – HERVs show increased expression in endothelial cells and microglia 422 



 32 

We found some evidence that L1HS, L1PA2, L1PA3, and L1PA4 are mildly upregulated in AD 423 

OPCs, microglia, and excitatory neurons (Figure 13a, 13b). However, in contrast to PD, 424 

astrocytes showed no change in any subfamilies, oligodendrocytes showed an increase in the 425 

expression of all subfamilies as opposed to no change seen in PD, and endothelial cells showed 426 

an increase in the expression of all subfamilies, with L1PA2, L1PA3, and L1PA4 all showing 427 

LFDs above 0.5 in AD samples when compared with NC samples – as opposed to the consistent 428 

decrease seen in PD (Figure 13a, 13b).  429 

 430 

Figure 13: (a) Bar charts showing the expression of various L1 subfamilies on a per-cluster basis; data for prefrontal cortex in normal 
control (NC) and PD samples shown.  (b) UMAPs showing the same information. 
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ERV expression was far less consistent between subfamilies in AD samples than L1 expression. 431 

In LTR2, expression by clusters was generally quite similar between the two conditions (Figure 432 

14a, 14b). LTR5-Hs showed a dramatic increase in expression in AD endothelial cells and 433 

modest increases in expression in AD astrocytes, OPCs, and microglia; however, there was no 434 

major difference in expression in oligodendrocytes or inhibitory neurons, and there were only 435 

modest increases in expression in excitatory neuron clusters 6, 7, and 10 (Figure 14a, 14b). The 436 

Figure 14: (a) Bar charts showing the expression of various LTR subfamilies on a per-cluster basis in substantia nigra samples from PD 
and normal control (NC) individuals.  (b) UMAPs showing the same information. 
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only difference in LTR5B expression was a decreased expression in AD endothelial cells. LTR7, 437 

on the other hand, showed increased expression in both endothelial cells (mildly) and microglia 438 

in individuals with AD (Figure 14a, 14b). Finally, LTR17 was found to be upregulated in AD 439 

endothelial cells and excitatory neurons from cluster 11, although some other clusters of 440 

excitatory neurons showed the opposite results, with only clusters 6 and 10 supporting the 441 

upregulation of LTR17. The rest of the cell types shown minor differences such as the 442 

upregulation in microglia and the downregulation in astrocytes, OPCs, and excitatory neurons in 443 

cluster 1 (Figure 14a, 14b). 444 

 445 

Discussion 446 

Understanding the etiologies behind age-related neurodegenerative diseases such as AD and PD 447 

has become crucial as global human life expectancies rise and these conditions become more 448 

common. Differential gene expression analyses in both substantia nigra and prefrontal cortex 449 

samples in our PD dataset point towards microglial activation and astrocyte reactivity. This result 450 

corroborates previous observations of neuroinflammation in neurodegenerative diseases (20,43).  451 

 452 

Using trusTEr, we were able to assess TE subfamily expression and find differences in the 453 

expression of several HERV and L1 subfamilies between diseased brains and control brains in 454 

both PD and AD (1,2). L1s, which make up 17% of the human genome, are relevant to study as 455 

they are the only TE family which still actively retrotransposes in humans (5,6). This means they 456 

have the potential to cause genomic instability, potentially leading to genetic dysregulation and 457 

the expression of mutated genes. Nonetheless, we found no support of upregulation of L1s in 458 

substantia nigra PD samples. That said, we did find a downregulation of the surveyed L1s in PD 459 
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oligodendrocytes; however, considering deleterious health effects that are associated with 460 

increased L1 expression, this finding is difficult to explain and will require further investigation.  461 

 462 

In the PD prefrontal cortex experiment, we found a moderately increased expression of the tested 463 

young L1s in microglia, neurons, astrocytes, and OPCs. This finding, in combination with the 464 

presence of reactive astrocytes and activated microglia, raise the question if increased L1 465 

expression may play a role in the immune response seen in PD. 466 

 467 

The HERV expression study in the PD substantia nigra experiment yielded some interesting 468 

results. For instance, we found that LTR17 is upregulated in PD microglia. LTR17s, as well as 469 

proteins derived from the env gene in HERV-Ws, have been previously shown to cause the 470 

degradation of microglia in multiple sclerosis (51). Moreover, several previous studies have 471 

correlated HERV expression with neuroinflammation and activated microglia (11,12). However, 472 

the cluster where this change was the most dramatic had very few cells in it, meaning this 473 

observation needs to be further examined to discard the possibility of it being a technical artifact 474 

(given that TE quantification requires many reads due to mapping ambiguity), and to understand 475 

its relevance in a PD context. For example, an experiment using immunohistochemical staining 476 

for both the env-derived protein and microglial activation biomarkers might validate this 477 

observation.  478 

 479 

In oligodendrocytes of PD substantia nigra, we found a moderate LTR downregulation in PD 480 

compared to control, which is challenging to explain and warrants further investigation. In the 481 

PD prefrontal cortex samples, LTR2, LTR5-Hs, LTR5B, and LTR7 all showed increased 482 
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expression in neurons, while LTR7 and LTR5-Hs showed modest upregulation in astrocytes and 483 

microglia.  484 

 485 

Interestingly, AD prefrontal cortex samples also showed increased expression of LTR7 and 486 

LTR5-Hs in the microglia, a finding that may require further research. In these samples, we did 487 

not find evidence of widespread microglial activation or astrocyte reactivity in AD samples; 488 

however, a protein detection method such as immunohistochemical staining would be needed to 489 

confirm the lack of activated microglia or reactive astrocytes. In addition, we found some 490 

evidence of HERV dysregulation in endothelial cells from AD samples, as LTR17 and LTR5-Hs 491 

are both modestly upregulated and LTR5B is modestly downregulated. 492 

 493 

Though the endothelial cell findings appear important in AD, the small population size of this 494 

cell type is worth noting. In contrast to all the other cell types (which had multiple thousands of 495 

cells) there were just 296 endothelial cells coming from control samples and 775 endothelial 496 

cells coming from AD samples. TE analysis requires many reads due to the challenges in 497 

subfamily identification, which makes it difficult to draw any firm conclusions from the patterns 498 

seen in endothelial cells. 499 

 500 

The results of this study suggest that the overexpression of TEs, and in particular HERVs, might 501 

be of importance in the study of neuroinflammation in PD. For example, LTR17 being 502 

upregulated in activated PD microglia raises the question if TEs could play a role in the immune 503 

response in PD, leading to neuroinflammation. Additionally, the relatively low expression of TEs 504 

in PD oligodendrocytes in substantia nigra uncover new potential areas of research.  505 
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 506 

The implications of the data remain unclear for AD. Although some of the results from this study 507 

indicate that TE overexpression in certain cell types (such as microglia) may play a role in PD 508 

development, further research is required to draw any conclusions about the role of TEs in PD 509 

and AD. 510 

Study Limitations and Further Research 511 

The next step for the research would be to map TE reads uniquely, rather than using 512 

multimapping to perform our analysis. Unique mapping would allow us to analyze the data on a 513 

per-element level rather than a per-subfamily level. This would allow us to further interrogate the 514 

roles that TEs play in altering gene expression on a per-locus level, but it would come at the cost 515 

of discarding any reads that map ambiguously to different locations. 516 

 517 

TE analysis softwares such as TEtranscripts give us the exciting opportunity to examine how 518 

TEs impact human health, and snRNA-seq is a powerful tool for analyzing how different cell 519 

subpopulations differ in their transcriptomic profiles. However, high sequencing depth is crucial 520 

for TE quantification softwares to produce accurate results, which has traditionally limited us to 521 

aggregate RNA-seq methods when studying TEs (4,42). Our approach – to pool related nucleus 522 

transcriptomes together from as many samples as possible and to analyze TE expression per cell 523 

population – allows us to solve the issues of TE investigation while also allowing us to perform 524 

the subpopulation-level analysis afforded to us by snRNA-seq. That said, this approach 525 

introduces its own issues, perhaps the most notable one being that each cell cluster only 526 

generates one expression value per TE subfamily. This means that, although the bioinformatics 527 

approach we chose is the most likely one to generate accurate expression values, we cannot 528 
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assess the statistical significance of any TE expression difference. As a result, while our 529 

experiments do suggest some cell type-specific relationships between AD/PD and 530 

retrotransposon expression, further research is required to confirm or disprove these 531 

relationships. 532 

 533 

One way these downsides could be mitigated would be to perform a similar analysis on high-534 

depth long-read snRNA-seq data. Such an analysis would allow us to map a greater proportion of 535 

TE reads to specific loci on the reference genome, allowing us to examine which loci specifically 536 

may be related to neurodegenerative pathologies. Additionally, sufficiently high sequencing 537 

depth would make it unnecessary to pool together reads like we did here, meaning that we can 538 

determine the statistical significance of our observations. 539 

 540 

Methods 541 

Preparation of samples 542 

The PD data were collected from the Cambridge Brain Bank in the UK. The biopsies taken from 543 

the substantia nigra and prefrontal cortex were homogenized and analyzed using the 10X 544 

Chromium 3’ workflow. In this workflow, cells are first multiplexed (labeled based on sample 545 

and then pooled together), then separated from each other using 10X’s proprietary Gel Beads in 546 

Emulsion (GEM) technology. From there, each GEM is sequenced using Illumina short-read 547 

sequencing and each transcript is given a unique molecular identifier (UMI). 548 

 549 

The preparation protocol of AD samples can be found in the original study (50). 550 

 551 
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trusTEr 552 

 553 

TrusTEr is an open-source Python module developed by the Molecular Neurogenetics 554 

Laboratory to create a convenient pipeline for retrotransposon expression analysis. The program 555 

takes raw FASTQ files generated by 10X sequencing as input and outputs an RData file 556 

containing a Seurat object with retrotransposon expression data appended. The steps of the 557 

pipeline are as follows: 558 

1. Quantification of reads 559 

This step runs Cell Ranger’s count function, which takes raw FASTQ data as input and outputs 560 

data in a variety of formats, including an HTML summary, a BAM file, and a Market Exchange 561 

(MEX) format matrix containing barcode information. The version of Cell Ranger used was 562 

3.1.0 for both experiments. The reference genome used in this step is the Genome Reference 563 

Consortium Human Build 38 (GRCh38). 564 

2. Generation of cell clusters 565 

This step uses Seurat to cluster cells together using k-nearest neighbors clustering on a per-566 

sample basis. It executes the ScaleData() (which scales the expression data in preparation to 567 

perform principal component analysis), RunPCA() (which finds principal components of the 568 

data), FindNeighbors() (which calculates which cells are most similar to each other based on 569 

Euclidean distance), FindClusters() (which creates clusters based on k nearest neighbor 570 

clustering), and RunUMAP() (which generates a UMAP for easier viewing of distinct cell types) 571 

commands sequentially for each sample and saves the generated Seurat objects as output. 572 

Additionally, it creates TSV files for each cluster containing a list of all the cellular barcodes 573 

associated with each specific cluster. The full program can be found in the trusTEr GitHub 574 
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repository. The parameters used that differ from the default are “resolution” (changed to 0.7) and 575 

the normalization method (changed to CLR). The Seurat version used is 3.1.5 and the R version 576 

used is 4.0.0. 577 

3. Merging and integration of samples 578 

This step merges all the Seurat objects from the previous step into one object using Seurat’s 579 

merge() function and reruns the clustering algorithm, creating similar barcode TSVs in the 580 

process. As with the previous step, the full program can be found in the trusTEr repository. The 581 

custom parameters used here are “integrate” (set to True), “resolution” (set to 0.1 in the AD 582 

experiment and 0.5 in the PD experiment), and “normalization_method” (set to “CLR”). The 583 

Seurat version used is 3.1.5 and the R version used is 4.0.0. 584 

4. TSV to BAM conversion 585 

This step executes the subset-bam utility to use the barcode TSVs created in the last step to 586 

extract cluster-specific data from the BAM files created in the quantification step and generate 587 

new cluster-specific BAM files to be used in further analysis. The subset-bam version used here 588 

is 1.0. 589 

5. UMI filtering 590 

This step filters reads based on the UMI appended to each molecule during Illumina sequencing 591 

to eliminate duplicate molecules recorded due to PCR replication. The custom program 592 

filterUMIs loops through each read in the BAM file from the previous step and removes any 593 

reads with UMIs that have appeared before. This deduplication allows us to be confident that 594 

multiple identified copies of a gene or TE transcript truly do come from separate molecules in 595 

the cell. 596 

6. BAM to FASTQ conversion 597 
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This step runs the bamtofastq utility from the Cell Ranger suite on the BAM files outputted in 598 

the previous step to create FASTQ files compatible for downstream analysis. 599 

7. Lane concatenation 600 

This step creates a simple Bash script to concatenate all the lane-specific R2 FASTQ files from 601 

the previous step into a single FASTQ file. 602 

8. Cluster merging 603 

This step reruns the merge_samples.R script to group all genetic information from certain 604 

populations into distinct Seurat objects. In this case, AD and control samples were merged into 605 

two separate Seurat objects in the AD experiment, and PD and control samples were merged into 606 

two separate Seurat objects in the PD experiment. 607 

9. Cluster mapping 608 

This step executes the Spliced Transcript Alignment to a Reference (STAR) software to align the 609 

cluster-specific FASTQ files to a reference genome and produce a BAM file as a result (52). The 610 

STAR version used is 2.7.8a. 611 

10. TE quantification 612 

This step uses the TEtranscripts software to quantify the TE expression in each cluster (42). 613 

TEtranscripts was preferred over traditional high-throughput RNA-seq analysis softwares, such 614 

as HTSeq and Cufflinks, because it is programmed to account for the large amount of repetition 615 

in TE sequences and thus provides more accurate results than its competitors when analyzing TE 616 

data (42). 617 

11. Normalization of TE results 618 

This step takes the raw output from TEtranscripts, divides the TE count per cluster by the 619 

number of cells in each cluster, and appends the result to the Seurat object created previously. 620 
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This prevents larger clusters from being overrepresented in TE expression when compared to 621 

smaller clusters. 622 

 623 

Local data analysis 624 

Local data analysis was performed in R v. 4.1.2 using the packages Seurat v. 4.1.0, tidyverse v. 625 

1.3.1, ggpubr v. 0.4.0, and viridis v. 0.6.2 (53–56). Biomarker UMAPs were generated using the 626 

FeaturePlot() function in Seurat. GSEA was performed using the clusterProfiler package v. 4.2.2 627 

as well as the org.Hs.eg.db human genome annotation package v. 3.14.0 (57,58). More details 628 

can be found in the associated GitHub repository, located at 629 

https://github.com/SteinAcker1/MSc_thesis_code. 630 

 631 

Quality control 632 

To ensure that low-quality cells and doublets were not included in our analyses in the PD 633 

samples, we removed cells where the number of total reads was less than the mean for the 634 

sample minus one standard deviation, as well as cells where the number of total reads was 635 

greater than the mean plus two standard deviations. Additionally, cells where more than 10% of 636 

reads came from the mitochondria were excluded. 637 

 638 

The quality control protocol used for the AD samples was somewhat different from the protocol 639 

used for the PD experiments. The same criteria were used to eliminate cells with too few genes 640 

or too high of a mitochondrial percentage; however, doublets filtered out by eliminating any cell 641 

with more than 3500 genes. The change in protocol was done because many of the samples had 642 
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fat-tailed distributions, meaning (mean + 2SD) was not necessarily a surefire way to eliminate 643 

doublets. 644 

 645 

Data access 646 

The AD data were downloaded from the Gene Expression Omnibus (GEO) (accession no. 647 

GSE157827)(50). We only included the largest replicate from each sample in our analysis. These 648 

replicates were AD10-AK3431_S11_L004, AD19-AK137_S25_L004, AD1-AK141_S13_L003, 649 

AD20-AK3570_S14_L004, AD2-AK4226_S1_L004, AD4-AK148_S32_L004, AD5-650 

AK4955_S2_L004, AD9-AK3738_S6_L004, NC12-AK3444_S4_L002, NC14-651 

AK3433_S5_L002, NC15-AK3476_S25_L003, NC17-AK3566_S13_L002, NC18-652 

AK3715_S12_L004, NC3-AK4232_S7_L004, and NC7-AK831_S1_L003. 653 

 654 

These samples were generated via paired-read RNA-seq using an Illumina NovaSeq 6000. 655 

Further details regarding the preparation of these samples can be found in the paper and in the 656 

experiment’s GEO page. 657 

 658 
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Supplemental Information 820 
 821 
Appendix 1: Cell counts per cluster in the PD substantia nigra experiment. 822 

  Cell type   Cluster   PD      NC      Total 
Astrocytes 11 842 635 1477 

6 1050 793 1843 
Microglia 9 1132 641 1773 

13 454 229 683 
16 46 83 129 
17 65 51 116 

Neurons 15 127 363 490 
Oligodendrocytes 8 1017 788 1805 

2 1652 1291 2943 
3 1442 1405 2847 
1 1843 1194 3037 
0 1967 1438 3405 
4 1675 1070 2745 
12 487 428 915 
10 891 744 1635 
5 1105 785 1890 

OPCs 7 922 890 1812 
14 314 258 572 

  Total - 17031 13086 30117 

 823 
Appendix 2: Cell counts per cluster in the PD prefrontal cortex experiment. 824 

 Cell type  Cluster   PD      NC      Total   
Astrocytes 9 739 529 1268 

14 569 390 959 
11 723 534 1257 
10 760 499 1259 

Endothelial cells 24 89 154 243 
Excitatory neurons 6 708 1029 1737 

5 1034 794 1828 
4 970 867 1837 
7 891 689 1580 
21 292 197 489 
12 833 408 1241 
13 726 352 1078 
20 371 138 509 

Inhibitory neurons 18 548 229 777 
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3 1042 876 1918 
8 890 462 1352 
19 450 301 751 
23 188 96 284 
22 182 153 335 

Microglia 16 587 301 888 
Oligodendrocytes 0 1826 1074 2900 

1 1489 1381 2870 
2 1113 1102 2215 

OPCs 15 523 384 907 
17 379 487 866 

  Total - 17922 13426 31348 

 825 
Appendix 3: Cell counts per cluster in the AD prefrontal cortex experiment. 826 

  Cell type  Cluster         AD      NC      Total   
Astrocytes 2 6585 5667 12252 
Endothelial cells 12 775 296 1071 
Excitatory neurons 10 2693 1977 4670 

1 8307 7791 16098 
7 3089 2689 5778 
6 3260 2700 5960 
9 2295 2431 4726 
11 733 739 1472 
13 520 439 959 

Inhibitory neurons 5 3694 3624 7318 
4 4296 3766 8062 

Microglia 8 2704 2716 5420 
Oligodendrocytes 0 17285 13514 30799 
OPCs 3 4422 4588 9010 
   Total - 60658 52937 113595 

 827 
 828 


