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Abstract 

Motivation: Proteomics is the large-scale study of all the proteins found in a cell, tissue or organism. In the last 

few years, and thanks to the development of mass spectrometry and bioinformatics, proteomics has led the 

research in several fields, ranging from medicine to agriculture. In order to reconstruct the amino acid sequence 

de novo protein sequencing can be used. It uses the protein’s molecular weight, its mass spectrometry spectrum, 

and bioinformatics’ tools to reconstruct the sequence without the use of a database. This avoids problems such 

as the limited amount of data found in the databases. Nonetheless, more research needs to be carried out to 

optimize the tools and data extraction, specially to deal with the ambiguous spectra of long peptides. In this 

project, several machine learning algorithms were created using TensorFlow and Keras. The aim was for at least 

one of the models to correctly identify sequence tags extracted from tandem mass spectrometry spectra from 

fake tags. 

Results: Seven machine learning models were successfully built to classify sequence tags from tandem mass 

spectrometry spectra. Upon evaluation of the models, two of them delt with the data better, according to several 

statistical parameters (confusion matrix outcomes, accuracy, precision, recall and area under the curve) and 

managed to classify the true tags of each spectrum largely correctly. 

Contact: ju7605or-s@student.lu.se 

Supplementary information: Additional data found in the Supplementary Information appendix. Scripts and 

documentation (README.md) sent separately. 
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Background 

Introduction 

Proteomics is the large-scale study of proteomes (Aslam 

et al., 2017). Proteomes was a term coined in the nineties 

to describe the entire set of proteins produced in an 

organism, cell, or tissue (Wasinger et al., 1995; Wilkins, 

1997). Even though proteomics is a fairly new discipline, it 

has been leading biological research in all the fields, 

ranging from plants to medicine (Jorrín-Novo et al., 2015; 

Uemura & Kondo, 2015). This is in part due to the 

development of bioinformatics and mass spectrometry in 

the last few years (Gauthier et al., 2019; Shackleton, 

2010). 

Mass spectrometry (MS) is an analytical tool suitable for 

measuring the mass-to-charge ratio (m/z) of peptides and 

calculate their exact molecular weight (Covey et al., 1988). 

This allows for the identification of unknown compounds 

and to determine the structure and chemical properties of 

peptides (Domon & Aebersold, 2006). The most 

fundamental component in MS is the mass analyzer, 

which takes ionized masses and separates them based on 

m/z. This generates information-rich ion mass spectra 

from the peptide fragments (Dass, 2007). 

Two mass analyzers can be coupled together using an 

additional reaction step in tandem mass spectrometry 

(MS/MS or MS2). The first spectrometer (MS1) separates 

the ionized molecules by their m/z. The second 

spectrometer (MS2) takes the fragmented ions, separates 

them by their m/z and detects them. The fragmentation 

step, which occurs between MS1 and MS2, allows for the 

identification and separation of ions with extremely 

similar m/z (Domon & Aebersold, 2006; Figure 1A). There 

are several approaches to MS/MS, such as collision-

induced dissociation (CID), ion-molecule reaction, and 

photodissociation (Sleno & Volmer, 2004). 

The fragmented ions follow a specific nomenclature. For 

peptides, fragments containing the N-terminus are 

labeled a, b, c, while the fragments that contain the C-

terminus are labeled x, y, z. In both cases, which letter is 

used depends on the site of the cleavage while the 

numbers indicate the amount of amino acid residues 

found in the fragmented ion (Roepstorff & Fohlman, 1984; 

Figure 1B). 

 

 

Figure 1. A) Schematic view of MS/MS workflow. In order to generate a mixture of ions the initial sample is ionized. Then, precursor ions 

of a specific m/z are selected by MS1 and fragmented to generate a product of ions (MS2) for detection. B) Schematic view of peptide 

fragmentation. The different fragmented ions are depicted using different colored lines and named according to peptide fragment ion 

notation. At the top of the image, we see the N-terminus ions while at the bottom, there are the C-terminus ions.
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MS/MS spectra can be used in protein sequencing, which 

consists of determining the amino acid sequence of a 

peptide (Medzihradszky & Chalkley, 2013). Protein 

sequencing can be performed by database search, by de 

novo sequencing, or by hybrid methods (Kim & Pevzner, 

2014; Medzihradszky & Chalkley, 2013; Taylor & Johnson, 

1997). In database search, the mass spectra data of the 

peptide is run through a directory to find a match with a 

known peptide sequence (Kim & Pevzner, 2014). This can 

be done by using peptide sequence tags, which are short 

amino acid sequences derived from the peptide (Mann & 

Wilm, 1994). Even though database search is a useful 

technique, it has a limited number of sequence tags. 

These are dependent on the data on each database and 

can lead to bottlenecks in the increase of knowledge (Bork 

& Koonin, 1998). De novo peptide sequencing avoids this 

issue by reconstructing the amino acid sequence of a 

peptide using the sequence’s tags, an MS/MS spectrum, 

and the peptide’s mass (Medzihradszky & Chalkley, 2013). 

Thus, de novo peptide sequencing from MS/MS spectra is 

crucial in the description of new protein sequences (Tran 

et al., 2017). Consequently, in the last few years the field 

has been heavily studied and numerous tools have been 

proposed, such as DeepNovo, PEAKS, or PepNovo (Frank 

& Pevzner, 2005; Ma et al., 2003; Tran et al., 2017). 

Nonetheless, several issues still exist with these methods, 

such as the noise and ambiguity of long peptides in 

MS/MS spectra (Steen & Mann, 2004). In order to deal 

with these issues and get a higher optimization, deep 

learning was introduced in the field (Tran et al., 2017). 

Deep learning is very interesting to use in de novo protein 

sequencing data because it does not need base layers 

dependent on existing data. Moreover, it can learn from 

multiple levels of representation of the data, which is 

useful with MS/MS spectra (Tran et al., 2017).  Even 

though it has been seen that amino acid extraction from 

MS/MS spectra was possible using machine learning 

models, it was not seen if those sequence tags could be 

successfully classified using machine learning models. This 

would be helpful in fields like antibody sequencing, in 

which de novo sequencing is a must due to the lack of 

comprehensive databases and the different de novo 

methods can lead to different sequence candidates for 

each spectrum.  

Aim 

For this reason, the aim of this project was to see if a 

machine learning model could successfully classify 

sequence tags from MS/MS spectra. The idea behind this 

was to build a binary classifier that could correctly classify 

real tags found in the spectrum from fake tags. This was 

thought as a subsequent step from the amino acid 

extraction from the spectra. The data was obtained from 

a variety of species, to give the model a broader training 

spectrum. Upon successful training and evaluation of the 

first architecture, several other models were built to see if 

the structure of the models affected their classification 

performance. In this way, the rate of real tags correctly 

classified by each model is crucial in deciding which model 

worked best. 

Methods 

The data used in this project was obtained using higher-

energy collisional dissociation (HCD), a type of CID. The 

MS/MS spectrometer outputs the data in a .raw file that 

is converted to a mascot generic format (.mgf) file that 

contains the spectrum and its relevant information. The 

spectra were annotated using five different search 

engines. The data came from eleven species: Escherichia 

coli, Enterococcus faecalis, G Streptococcal, Equus 

caballus (horse), Homo sapiens (human), Mus musculus 

(mouse), Pseudomonas aeruginosa, Staphylococcus 

aureus, Streptococcus neumoniae, Streptococcus 

pyogenes and Saccharomyces cerevisiae (yeast). Each 

species dataset has 200,000 data points, with 50% of true 

tags and 50% of fake tags. While the real tags were 

confirmed to be in the spectrum, the fake tags were 

created using the real tags and random amino acids not 

found in the real tags. In this way, one, two or all three 

amino acids in the real tag were changed to a random 

amino acid to create the fake tag.  

In order to create the train and test sets from the data, a 

data preprocessing workflow was used. Eleven sets of 

train and test data were created in a leave one out 

manner, in a similar way as in Tran et al. (2018; Figure 2). 

Each of these sets contained the vector of differences of 

all the tags, both real and fake, of each spectrum.    
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Figure 2. Schematic view of the structure of the leave one out train and test sets in each of the iterations. Depicted in blue are the datasets 

used to create the training set while in green we can observe the test set.  The letter S plus the number inside the squares in the first 

iteration are to show that each of the squares represents a dataset of one of the eleven species. 

 

As mentioned before, the data used as input for the model 

needed to be in the form of a vector of differences. The 

logic behind choosing this method as input for the models 

was that all the input data is standardized and treated the 

same way. Moreover, it uses well established data such as 

the molecular weight of each amino acid and allows for a 

higher degree of efficiency than other methods. 

To obtain the vector of differences of each tag, we first 

need to create a matrix of differences (D) using the m/z 

from the spectrum of each peptide (z1, z2, z3, z4, z5, z6, …, 

zn) (Figure 3A). As an example, a hypothetic peptide 

ABCDEF is used in this explanation. Once D is obtained, the 

vector of masses M (mB, mC, mD, mBC, mCD, mBCD) of each 

possible tag in the peptide, in this case BCD, is used to 

verify the tag in D. The values in M correspond to each 

amino acid in BCD and their combinations: (B, C, D, BC, CD, 

BCD). To verify the tag in D, the minimum absolute value 

of D - mk needs to be obtained (Figure 3B). The result of 

this operation will give the vector ck, which contains (c1, 

c2, c3, c4, c5, c6). As before, those values correspond to each 

amino acid in BCD and their combinations: (B, C, D, BC, CD, 

BCD). Ck values (c1, c2, c3, c4, c5, c6) are then used as input 

for the various machine learning models used (Figure 3C 

and 3D). After training the model, some predictions are 

made using the test set. These predictions are compared 

with the real data to determine which model deals better 

with the data using various statistical tools. 

Seven machine learning models were built and tested: 

ModelA0, ModelA1, ModelA2, ModelA3, ModelA4, 

ModelA5 and ModelA6 (Figure 3D). They were all 

constructed using TensorFlow and Keras. Most of the 

models use a self-built variable signal layer that 

normalizes the data using the exponential function 𝑒−𝑘𝑐. 

Nonetheless, ModelA0 uses a fixed signal layer instead. 

Both fixed and variable signal layers use the same function 

to normalize the data. Nonetheless, the fixed signal layer 

uses a fixed k for all the inputs while in the variable layer 

the k value changes depending on the input value c.  

All the models have at least a dense layer with rectified 

linear unit (ReLU) activation that has different 

dimensionalities of the output space depending on the 

model; a dropout layer, which always has a dropout rate 

of 0.2; and an output layer, which is a dense layer with 

sigmoid activation and a dimensionality of the output of 

1. This last layer is crucial for correctly building a model 

that binary classifies the data. To avoid under and over-

fitting, all the models had an early stopper that stopped 

the training and saved the model if the binary validation 

accuracy stopped improving.
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Figure 3. A) Schematic representation of a plot of m/z versus intensity of a MS/MS spectrum of a hypothetic sequence ABCDEF. The various 

spectrum peaks are represented as (z1, z2, z3, z4, z5, z6, …, zn). The distance between some of the peaks is represented as (c1, c2, c3, c4, c5, 

c6). B) In order to obtain the values of (c1, c2, c3, c4, c5, c6), depicted as ck, we first need to use the m/z of the spectrum (z1, z2, z3, z4, z5, z6, 

…, zn) to create a matrix of differences, D. We also need to use the amino acids found in the tag we want to find in the spectrum, in this 

case BCD, to create a vector of masses M (mB, mC, mD, mBC, mCD, mBCD). If this tag belongs to the sequence ABCDEF, M will be found in D. 

To verify the tag, we find the minimum absolute value of subtracting D minus mk. This will result in a vector ck that contains six values, (c1, 

c2, c3, c4, c5, c6), one for each amino acid and their combinations found in the tag. Real tags should have ck values very close to zero, because 

their masses will be very close to some of the values found in D. C) Ck values (c1, c2, c3, c4, c5, c6) are then used as input for the machine 

learning model that will train itself to properly identify real tags found in the spectra. D) Schematic representation of the structure of the 

seven models: A0, A1, A2, A3, A4, A5 and A6. The green circle represents a dense layer, the blue triangle the dropout layer, the yellow star 

the fixed signal layer, the grey star the fixed signal layer and the orange pentagon the output layer. The number found in the dense layer 

shape depicts the dimensionality of the output space of the layer. The dropout rate of the dropout layer was 0.2 for all the models. The 

dimensionality of the output space of the output layer was 1 for all the models. 
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To evaluate the models, a testing set was used. There 

were a total of eleven testing sets per model, one for each 

of the left-out species in the training sets. This made up 

for a total of 2,200,000 data tested per model. As 

mentioned before, 50% of this data consisted of true tags 

while the other 50% were fake tags. In order to properly 

evaluate the models, the confusion matrix of each of them 

was obtained. The confusion matrix represents the counts 

from predicted and actual values and has four possible 

outcomes: true negatives (TN), which show the amount of 

negative data classified correctly; true positives (TP), 

which are the positive values classified accurately; false 

positives (FP), which show values classified as positive 

when are negative; and false negatives (FN), which depicts 

actual positive values classified as negative (Gupta et al., 

2022). Moreover, four statistical representations derived 

from the confusion matrix were obtained: the accuracy, 

precision, recall and area under the curve.  

The accuracy of the data checks the proportion of correct 

predictions (TN and TP) in all the data classified (TP, TN, 

FP, and FN). The accuracy portrays how accurate a model 

was in predicting the data, or in other words, how rigorous 

a model is at classifying the data correctly. The precision 

of the model checks the proportion of true positives (TP), 

among all the data classified as positive (TP and FP). This 

is useful because we want to be certain that data classified 

positively is truly positive to better assess the models. The 

recall checks the retrieved items (TP) among all the 

relevant items (TP and TN). It is also known as the 

sensitivity of the model. The area under the curve shows 

the model’s ability to distinguish between classes. The 

closer the area under the curve is to one, the better the 

model correctly differentiates between positive and 

negative data (Gupta et al., 2022). 

Results and discussion 

As previously mentioned, the purpose of this project was 

to successfully build a machine learning model that 

classified sequence tags from MS/MS spectra. Not only 

this was achieved, but six additional models were built to 

see if their architecture influenced their classification 

performance. In order to evaluate the models fairly, the 

confusion matrix as well as several statistical methods 

derived from it were used.  

Two different plots of the confusion matrix outcomes 

were built (Figure 4). Figure 4A plots the percentage of the 

outcomes of the confusion matrix out of the total data. 

The TP and FN account for 50% of the data, while the TN 

and FP account for the other 50%. The reason for this is 

that 50% of the tags are true and the other 50% are fake 

in the test data so, no matter how they are classified, they 

should still be there. Even though we aim for the lowest 

number of FP and FN outcomes, a basal number of FN is 

expected. The reason for this is that some peptides, 

specially if they are long, do not have the complete series 

of ions in their spectra, which is already a known issue in 

de novo protein sequencing (Yang et al., 2019). This leads 

to incomplete or ambiguous spectra that can lead to the 

erroneous classification of true tags. A small percentage 

of FN outcomes can be observed in each of the models. 

Nonetheless, in model A4, 5% of the total outcomes are 

FN. Not all the FN in that model can be explained by the 

ambiguity of the spectra, specially when compared to the 

other models, which have around three times less FN. This 

suggests that model A4 has issues classifying the tags. The 

ambiguity of some of the spectra can also explain some of 

the FP, particularly in the models that have a small 

percentage of them. Nonetheless, the models A2, A4 and 

A6 have 5%, 10% and 5% of FP, respectively. This suggests 

that errors in the classification of the data by those models 

might lead to the increase of FP, specially when compared 

to the other models, that have a percentage of FP of 

around 1.5%. These results imply that models A2, A4 and 

A6 are not as trustworthy as the other models, as at least 

5% of the positively classified tags are in fact, fake. 

These results are complemented by the categorical plot of 

the confusion matrix outcomes seen in figure 4B. This 

graph depicts the scores in which the data is plotted as 

one of the outcomes. For example, in model A4 some of 

the data falsely classified as positive has a prediction score 

of around 0.9. This means that some fake tags are 

classified as true with a certainty of 0.9 out of 1. This 

implies that to be sure that a tag classified as true is really 

true, the score has to be extremely high so as to avoid the 

chance of a FP. On the other hand, models A3 and A5 have 

some FP with a score of around 0.6. This is quite optimal 

as the certainty that a tag with a prediction score of 0.9 is 

true and classified as such is higher. 
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Figure 4. A) Stacked bar plot of the confusion matrix outcomes’ percentages. The outcomes are labelled in different colors: true positives 

(TP) are green, the false positives (FP) blue, the false negatives (FN) purple, and the true negatives (TN) red. B) Categorical plot of the 

confusion matrix outcomes. In the X-axis are the models and in the Y-axis the score. The outcomes are labelled in different colors: true 

positives (TP) are green, the false positives (FP) blue, the false negatives (FN) purple, and the true negatives (TN) red. 

 

In order to further support these findings, other statistical 

methods derived from the confusion matrix were 

obtained, such as the accuracy, precision, recall and the 

area under the curve. These methods are useful in further 

understanding the data, as they give a clearer picture of 

how the models performed. The raw table with the results 

of each of these statistics per model and test set can be 

seen in the Supplementary Information, Table S1. Figure 5 

plots the results of Table S1. 

Model A4 is less accurate and precise than the other 

models, which have an accuracy and precision closer to 1 

(Figure 5A and 5C). This can be explained by the lower 

accuracy and precision of the sets of Streptococcus 

pyogenes, Escherichia coli and Staphylococcus aureus 

seen in figure 5B and 5D. If we focus on the accuracy, we 

can observe that for model A4, those sets have an 

accuracy of 0.5, compared to the accuracy of above 0.9 of 

the other test sets. This can also be seen, in a lesser 

measure, in the accuracy of models A1, A2 and A6. This 

information leads us to the conclusion that some models 

perform better with certain datasets, while others 

perform equally well regardless of the left out set. This 

might be explained by the fact that there can be 

differences in the protein sequences of different 

organisms and that some of the machine learning 

architectures might deal better with those differences 

without taking a hit on the performance. The variation in 

protein sequences between organisms have been 

reported in several studies, specially between eukaryotic 

and prokaryotic organisms (Bogatyreva et al., 2006; 

Shemesh et al., 2010). Very similar results for the same 

models with worse accuracy can be seen for the precision 

(Figure 5D). When model A1, A2, A4 and A6 are tested 

with some of the sets, the precision is worse. The clearest 

example of this is in model A4, where the set for 

Staphylococcus aureus has a precision of 0. 

The recall and area under the curve of each of the models 

were also obtained (Supplementary Information, Figure 

S1). The recall of all the models is quite good, being close 

to 1 for most of the models and test sets. Nonetheless, 

model A4 has a notable outlier, with a recall of 0, for the 

Staphylococcus aureus set. This further shows that model 

A4 is not only not the most accurate or precise, but also 

the least sensitive. Regarding the area under the curve, a 

similar thing as in the accuracy and precision can be 

observed. Models A2, A4 and A6 have several sets with an 

area under the curve of 0.5. This means that for those sets, 

the models are not good at differentiating between 

positive and negative data. 
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Figure 5. A) Boxplot of the accuracy of the models. On the X-axis are the models and on the Y-Axis the accuracy. B) Categorical plot of the 

accuracy of the models in each test set. The models are depicted in different colors: red for A0, ochre for A1, green for A2, darker green for 

A3, blue for A4, purple for A5 and pink for A6. C) Boxplot of the precision of the models. On the X-axis are the models and on the Y-Axis the 

precision. D) Categorical plot of the precision of the models in each test set. The models are depicted in different colors: red for A0, ochre 

for A1, green for A2, darker green for A3, blue for A4, purple for A5 and pink for A6. 
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As briefly mentioned previously, a possible explanation for 

these results can be found in the models’ architecture 

(Figure 3D). If, firstly, we focus on the models A2, A4 and 

A6, which performed worse according to the statistical 

methods, they have distinctive architectures compared to 

the ones with better performance. Model A2 is the model 

with the greatest number of dense layers, which seems to 

be a detriment to the efficiency of the model.  Regarding 

the other two models, A4 and A6, they both have two 

dense layers, like the best performing models. The 

difference is that while the best performing models have 

an initial dense layer with a dimensionality of the output 

of 6, those two models have an initial dense layer with a 

lower dimensionality of the output, which is either 3 or 2, 

respectively. Thus, it seems like the first dense layer is 

crucial in the performance of the model and that the 

bigger the dimensionality of the output of the first dense 

layer, the better. 

Regarding the other models, they all seem to classify the 

data better according to both the confusion matrix and its 

derived statistics. Model A0 and A1 have a similar 

architecture: two dense layers with a dimensionality of 

the output of 6 and 3. The only difference between them 

lays in the signal layer: A0 has a fixed signal layer while A1 

has a variable signal layer. Surprisingly, this does make a 

slight difference in the true tag classification, especially 

when the horse dataset is used as a test set. While on the 

other sets both models perform similarly, on this set 

model A1 has a worse accuracy and precision. The other 

two models, model A3 and A5, seem to classify the data 

with a similar accuracy and precision as model A0. The 

difference here lays in the certainty that a tag classified as 

positive is truly positive (Figure 4B). Model A0 has some 

FP with a prediction score of around 0.9, which make it 

less trustworthy than the other two models. In regard to 

the architecture of model A3 and A5, they differ from 

model A0 on similar things. Model A3 has a variable signal 

layer followed by one dense layer with a dimensionality of 

the output of six, while model A5 has a variable signal 

layer followed by two dense layers with dimensionalities 

of the output of six. As previously mentioned, all models 

have the same output layer. Therefore, it seems as if a 

variable signal layer followed by a maximum of two dense 

layers with a dimensionality of the output of six works 

better for the classification of tags from MS/MS spectra. 

Conclusion 

These results show that it is possible to build a machine 

learning model that correctly classifies sequence tags 

from MS/MS spectra. In addition, seven different machine 

learning architectures were successfully built and tested. 

Out of the seven models, some architectures proved to 

have issues classifying the sequence tags (models A2, A4 

and A6), while others were notoriously better at the 

classification (models A3 and A5). Moreover, this project 

opens the door for a further integration of these models 

to create a new scoring system of sequence candidates 

produced by various de novo protein sequencing 

techniques. 
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Supplementary Information 

Table S1. Raw table of the accuracy, precision, recall and area under the curve (AUC). In this table we can observe the data for each of the 

models’ test sets. 

  

 

 

 

 

Model Name Accuracy Precision Recall AUC

ModelA0 Yeast 0.910 1.000 0.820 0.994

Human 0.984 0.999 0.969 0.999

Spyogenes 0.989 0.993 0.985 0.999

Mouse 0.997 0.994 1.000 1.000

Ecoli 0.999 0.997 1.000 1.000

SAureus 0.997 0.995 1.000 1.000

SNeumoniae 0.997 0.994 1.000 1.000

PAeruginosa 0.999 0.999 1.000 1.000

Efaecalis 1.000 0.999 1.000 1.000

GStreptococcal 0.989 0.978 1.000 1.000

Horse 0.899 0.831 1.000 0.978

ModelA1 Yeast 0.927 0.999 0.856 0.987

Human 0.978 1.000 0.956 0.999

Spyogenes 0.998 0.999 0.998 1.000

Mouse 0.994 0.998 0.989 1.000

Ecoli 0.995 0.989 1.000 1.000

SAureus 1.000 0.999 1.000 1.000

SNeumoniae 0.998 0.995 1.000 1.000

PAeruginosa 0.998 0.996 1.000 1.000

Efaecalis 0.997 0.993 1.000 1.000

GStreptococcal 0.989 0.979 1.000 0.996

Horse 0.778 0.692 1.000 1.000

ModelA2 Yeast 0.930 0.999 0.860 0.985

Human 0.896 1.000 0.793 0.993

Spyogenes 1.000 0.999 1.000 1.000

Mouse 0.999 0.998 1.000 0.999

Ecoli 0.998 0.996 1.000 1.000

SAureus 1.000 1.000 1.000 1.000

SNeumoniae 0.500 0.500 1.000 0.500

PAeruginosa 0.999 0.999 1.000 1.000

Efaecalis 1.000 0.999 1.000 1.000

GStreptococcal 0.998 0.996 1.000 1.000

Horse 0.878 0.803 1.000 0.898

ModelA3 Yeast 0.943 1.000 0.885 0.993

Human 0.992 0.999 0.985 1.000

Spyogenes 0.998 0.996 1.000 1.000

Mouse 0.997 0.995 1.000 1.000

Ecoli 0.994 0.988 1.000 1.000

SAureus 0.998 0.996 1.000 1.000

SNeumoniae 0.997 0.994 1.000 1.000

PAeruginosa 0.994 0.988 1.000 1.000

Efaecalis 0.996 0.993 1.000 1.000

GStreptococcal 0.998 0.995 1.000 1.000

Horse 0.875 0.799 1.000 0.986

ModelA4 Yeast 0.932 1.000 0.865 0.994

Human 0.994 0.999 0.988 1.000

Spyogenes 0.500 0.500 1.000 0.500

Mouse 1.000 1.000 1.000 1.000

Ecoli 0.500 0.500 1.000 0.500

SAureus 0.500 0.000 0.000 0.500

SNeumoniae 0.999 0.997 1.000 1.000

PAeruginosa 0.997 0.995 1.000 1.000

Efaecalis 1.000 0.999 1.000 1.000

GStreptococcal 0.993 0.987 1.000 1.000

Horse 0.869 0.792 1.000 0.998

ModelA5 Yeast 0.940 1.000 0.880 0.995

Human 0.974 0.998 0.950 0.997

Spyogenes 0.999 0.998 1.000 1.000

Mouse 0.998 0.995 1.000 1.000

Ecoli 0.998 0.996 1.000 1.000

SAureus 0.999 0.999 1.000 1.000

SNeumoniae 0.994 0.988 1.000 1.000

PAeruginosa 0.997 0.993 1.000 1.000

Efaecalis 0.997 0.994 1.000 1.000

GStreptococcal 0.997 0.995 1.000 1.000

Horse 0.849 0.768 1.000 0.991

ModelA6 Yeast 0.914 0.998 0.830 0.989

Human 0.989 1.000 0.979 0.995

Spyogenes 0.998 0.996 1.000 1.000

Mouse 0.999 0.998 1.000 1.000

Ecoli 0.998 0.996 1.000 1.000

SAureus 1.000 0.999 1.000 1.000

SNeumoniae 0.998 0.997 1.000 1.000

PAeruginosa 0.997 0.994 1.000 1.000

Efaecalis 0.501 0.501 1.000 0.502

GStreptococcal 0.994 0.989 1.000 0.999

Horse 0.920 0.862 1.000 1.000

Model Name Accuracy Precision Recall AUC
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Figure S1. A) Boxplot of the recall of the models. On the X-axis are the models and on the Y-Axis the recall. B) Categorical plot of the recall 

of the models in each test set. The models are depicted in different colors: red for A0, ochre for A1, green for A2, darker green for A3, blue 

for A4, purple for A5 and pink for A6. C) Boxplot of the area under the curve of the models. On the X-axis are the models and on the Y-Axis 

the area under the curve. D) Categorical plot of the area under the curve of the models in each test set. The models are depicted in different 

colors: red for A0, ochre for A1, green for A2, darker green for A3, blue for A4, purple for A5 and pink for A6. 


