Appendix A : Programming code

In order to help the future developers of the application this appendix will explain
all the steps needed to modify the database and the code of the application.

A.1 Database

To modify the database, during the phase of developing of the app the application
that was used is Supabase. To access the database and modify it, it is necessary to
write @ mail to manelmartirosich@gmail.com and | will give the access. It is
important to say that Supabase stores database for free, but when the application
will be finished and more data need to be stored, a new database will be requested.

Once you have access to the database, you have to click on the “table editor” and
then select the table that you want to modify.

J., Table editor

public

Mew table

mailto:manelmartirosich@gmail.com

Then in case you want to add a row just click on “insert row” and fulfill all the
information. If you need to add information about a material that is already on the
database just click on “NULL” and modify the value. It is important to consider
before modifying the value if the column is a string or an integer. Also you can
add a new parameter of the table using “new column”.

To modify the users database you don’t need to do anything, it is automatic with
the programming code of the application.

A.2 Python files

A.2.1 admin.py

In this file you need to register every existing function that you import and register
the models that you will use.

from pyexpat import features
from django.contrib import admin

from .models import Feature

admin.site.register(Feature)

A.2.2 models.py

In this file you can create and modify the models used in the application.

from django.db import models

Feature(models.Model):
name = models.CharField(max_length=100)
details = models.CharField(max_length=500)

A.2.3 urls.py

In this file you have to add the entire html that will be used in the application. This
is important because you have to specify values in order to have access and
modify its tasks in the view.py file.

from django.urls import path
from . import views

urlpatterns =

path('', views.index, name='index'),
path('register', views.register, name='register'),
path('login', views.login, name='login'),
path('logout', views.logout, name='logout'),
path('design', views.design, name='design'),

path('results', views.results, name='results'),

path('tech', views.tech, name='tech")

A.2.4 view.py

In this file is listed all the programming code. For every path that you have created
in the urls.py you have to define the function here.

A.2.4.1 Index

Index is the main page of the application, so in this page the only request is that
every time you click on a button it redirects you correctly. So it is necessary to use
the features.

index(request):

features = Feature.objects.all()
return render(request, 'index.html',{'features': features})

A.2.4.2 Login

This function is used to log in in the application in order to use it. So the first step
is to establish connection with the users database. Also as is done before, you have
to define the function. The DATABASE_PASSWORD, DATABASE_URL_U
and DATABASE_PORT are defined in another file in order to protect the access
to the database.

login(request):

conexion = psycopg2.connect(user="postgres’,
password=os.getenv('DATABASE PASSWORD'),
host=0s.getenv('DATABASE_URL _U"),
port=int(os.getenv('DATABASE_PORT')), database='postgres')

cursor = conexion.cursor()

In order to submit data to be processed for the server it is important to use the
POST method instead of GET method. For processing which username and
password is using the user, the method POST is needed.

if request.method == 'POST':
username = request.POST['username’]

conexion.close()

return render (request, 'login.html")

Once the username is defined it is important to see if it is registered in the users
database. To check it, the username is used to look in the database, if the username
is in there, the password and the mail become a variable in the code. If it is not the
length of the “I” variable becomes 0.

cursor.execute(
"SELECT mail, password"
" FROM usuaris"
" WHERE usuari =
, (username,))
l=cursor.fetchall()

Obviously the password is encrypted to protect the data of the users. So to check if
it is the same password in the database that in the POST method is needed to
encode the password of the database and hash and encode the password of the
POST method. If those to passwords are different the function ends in here. Also if
the length of “1” is 0 the function ends here.

if len(l) == 1:
str_hash = 1[0][1]
hash = str_hash.encode('utf-8")
if hash !=
bcrypt.hashpw(request.POST['password'].encode('utf-8"),hash):
messages.info(request, 'Invalid Credentials')
conexion.close()
return redirect ('login')

messages.info(request, 'Invalid Credentials')
conexion.close()
return redirect ('login')

The application has an internal database of users in order to have control of who
uses it. But every time you run a new version of the server it is deleted. So this is
why the external database users is used. Once you have checked if the user exists
in the external database it is important to see if it is in the internal database and if
it has not been registered at another time and then make the internal log in.

if
User.objects.filter(username=request.POST["username']).exists()

usero=auth.authenticate(username=username,
password=str(hash))

auth.login(request, usero)

conexion.close()

return redirect('/")

else:

user =
User.objects.create_user(username=request.POST[‘'username'],
password=str(hash))

user.save()

user=auth.authenticate(username=username,
password=str(hash))

auth.login(request, user)

conexion.close()

return redirect('/")

A.2.4.3 Register

This time the first step is to check if the password matches with the parameter
“repeat the password”. As is done before all the parameters introduced by the user,
is treated with the POST method.

register(request):
if request.method == 'POST':

if request.POST['password'] ==
request.POST['password2']:

As is done in the login function, the second step is getting connection with the
database. If the username or the mail are already used the function ends here.

If there is no match between the data given by the user and the existing in the
database, the user is stored in the database. The password is crypt before been
introduced to the database.

Once the user is registered, the application will redirect it to the login page.

6

conexion = psycopg2.connect(user="postgres",
password=os.getenv('DATABASE PASSWORD'),
host=0s.getenv('DATABASE URL U"),
port=int(os.getenv('DATABASE PORT')), database='postgres"')
cursor = conexion.cursor()
cursor.execute(
"SELECT mail, usuari"
" FROM usuaris"
" WHERE usuari = OR mail =
3
(request.POST['username’], request.POST[‘email’],))
l=cursor.fetchall()
conexion.close()
cursor.close()
if len(l)!=0:
messages.info(request, 'User Already Used')
return redirect('register')
else:
conexion = psycopg2.connect(user="postgres’,
password=os.getenv('DATABASE PASSWORD'),
host=0s.getenv('DATABASE_URL _U"),
port=int(os.getenv('DATABASE PORT')), database='postgres"')
cursor = conexion.cursor()
salt = bcrypt.gensalt(10)
password =
bcrypt.hashpw(request.POST[‘password”’].encode('utf-8"),salt)
cursor.execute("""
INSERT INTO usuaris (usuari, mail,

password)

VALUES (%s,%s,%s);

, (request.POST["username'],
request.POST['email'], password.decode('utf-8'),))
conexion.commit()

conexion.close()
cursor.close()
return redirect('login')

A.2.4.4 Logout

This function has the objective of logging out the user and returning it to the main
page.

logout(request):

auth.logout(request)
return redirect('/")

A.2.4.5 Design

This function recollects all the requests that the user needs for the piece and
compares those with the data stored in the materials database. As it has seen
before, the first steps are connect with the database and process the data
introduced by the user, but this time it is important to check if these data is
introduced as an integer or string. Also the parameters which the user can choose
options will be converted to true or false.

design(request):
conexion = psycopg2.connect(user="'postgres’,
password=os.getenv('DATABASE PASSWORD'),
host=0s.getenv('DATABASE_URL"),
port=int(os.getenv('DATABASE_PORT')), database='postgres')
cursor = conexion.cursor()
if request.method == "POST":
strengh = request.POST[‘strengh’]
if strengh.isnumeric() ==
messages.info(request, 'Invalid value, must be an
integer')
return redirect('design")
volum = request.POST[‘volum']
if volum.isnumeric() ==
messages.info(request, 'Invalid value, must be an
integer')

return redirect('design')
strengh = float(strengh)
volum = float(volum)
temp_work = request.POST['temp_work"]
if temp_work.isnumeric() ==
messages.info(request, 'Invalid value, must be an

integer')

return redirect('design’)

temp_work = float(temp work)

quality grade = request.POST['quality grade']

if quality grade.isnumeric() ==
messages.info(request, 'Invalid value, must be an

integer')

return redirect('design')
quality grade = float(quality grade)
isotropy® = request.POST['isotropy']
if isotropy@ == 'si':
isotropy
else:
isotropy
thick = request.POST['thick"]
if thick.isnumeric() ==
messages.info(request, 'Invalid value, must be an
integer')
return redirect('design')
thick = float(thick)
support® = request.POST[‘support’]
if support® == 'si':
support=
else:
support=

Once all those checks are done, the next step is to check if there are any materials
and processing types that match with those parameters and if not, give information
to the user about if there is not any material on the database or if there is not any
processing type on the database.

cursor.execute(
"SELECT id, material"
" FROM mats"
" WHERE strenght > AND t melting >
, (strengh,temp_work,))

m=cursor.fetchall()
if isotropy ==
cursor.execute(
"SELECT id, name"

FROM processing"
" WHERE quality grade < AND min_thick

, (quality grade,thick))
p=cursor.fetchall()
else:
cursor.execute(
"SELECT id, name"
" FROM processing"
WHERE quality grade < AND isotropy =
AND min_thick < "
, (quality grade,isotropy,thick))
p=cursor.fetchall()
if len(m)==0:
messages.info(request, 'No material in the database
by the moment. If you know any material that could be use with
those parameters please contact us')
cursor.close()
conexion.close()
return render(request, 'design.html')
elif len(p)==0:
messages.info(request, 'No process in the database
by the moment. If you know any process that could be use with
those parameters please contact us')
cursor.close()
conexion.close()
return redirect('design')

If there are possible options then the function will find if the materials can fit with
the processing types. This is done with the id’s of each of the materials and the
processing type’s. In the provider table every row is one connection between a
material and a processing type using the id of each one. If there is a possible
option it will be add to a list, and if it is not possible a list of the possible materials
and the possible processing types will be shown.

1lista=[]
for z in m:
for y in p:
cursor.execute(

"SELECT id"

FROM provider"
" WHERE id mats = AND id processing

10

» (z[e],y[e],))
t=cursor.fetchall()
if len(t) ==1:
llista.append(t[@][@])

if len(llista)==0:
messages.info(request, 'Allowed materials')
for x in m:
messages.info(request, x[1])

messages.info(request, 'Allowed processes')
for a in p:
messages.info(request, a[1])

messages.info(request, 'Those materials can not
be used with those processes according to our database. If you
know that is possible please contact us')

cursor.close()

conexion.close()

return redirect('design')

If there are possible options it will appear a display of all the parameters of the
materials and the processing types in a table. The data of this table is written in
this function but the shape of the table is set in the html file. This table is shown in
the results page.

for v in llista:
i=i+l
cursor.execute(
"SELECT id _mats, id processing"
" FROM provider"
" WHERE id = "
> (v5))
p=cursor.fetchall()
for carm in p:
cursor.execute(
"SELECT *"
" FROM mats"
" WHERE id =
» (carm[@],))
mate=cursor.fetchall()
messages.info(request, 'Characteristics')

messages.info(request, str(mate[0][3]))
messages.info(request, str(mate[0][1]))
messages.info(request, str(mate[0][4]))
messages.info(request, str(mate[0][2]))
messages.info(request, str(mate[@][5]))
coste =

float(mate[@][6])*float(mate[0][8])*volum/1000

str(support))

of the piece'))

coste = round(coste,2)
messages.info(request, str(coste))
messages.info(request, str(mate[0][7]))
messages.info(request, str(mate[0][8]))

cursor.execute(

"SELECT *"

" FROM processing"

' WHERE id =

» (carm[1],))
proce=cursor.fetchall()
messages.info(request, str(proce[0][1]))

costs=float(proce[0][2])/float(proce[@][5])

costs = round(costs,2)
messages.info(request, str(costs))
messages.info(request, str(proce[0][3]))
messages.info(request, str(proce[0][5]))

if support==
if proce[@][6]==
messages.info(request,

else:
messages.info(request, str('Depend

else:

messages.info(request, str(support))
messages.info(request, str(proce[0][7]))
messages.info(request, str(proce[0][8]))
messages.info(request, str(proce[0][9]))
messages.info(request, str(proce[0][10]))

12

return redirect('results')

A.2.4.6 Results and Tech

All the functions of those pages are programmed in the html files. Those functions
are created for if the user refreshes the page it redirects you to the same page.

results(request):

return render(request, ‘'results.html')

tech(request):
return render(request, ‘tech.html')

13

A.3 Html files

In the html files a template has been used, so the only things that will be
commented on this chapter are inputs and the functions programmed manually.
The things that have been modified in the template are considered that are not
important in this annex because that code affects only the good look of the
application.

A.3.1 Login

In order to display the message for an error, like “invalid credentials”. First of all a
type of style is needed, and then makes functions for the messages.

e

color: red;

{% for message in messages %}

{{message}}
{%endfor%}

Then create the form to allow the user to introduce all the inputs with the method
POST.

action="1login" method="POST"
{% csrf_token %}
Username:
type="text" name="username"
Password:

type="password" name="password"
type="submit"

A.3.2 Register

The html file for the register is almost the same as the login html, the only
difference is the form that the user has to submit the inputs.

14

method= "POST" action="register'
{% csrf_token %}
Username:
type="text" name="username'
Email:
type="email" name="email"

Password:
type="password" name="password"
Repeat Password:
type="password" name="password2"
type="submit"

A.3.3 Design

In this html file, not considering the template, the form is different between the
login and the register one. This time apart from the written inputs the user will
have two inputs with a display of options.

class="container d-flex align-items-center justify-
content-between"
action="design" method="POST"
{% csrf_token %}

Strengh:

type="number" name="strengh"
Working temperature:

type="number" name="temp_work"
Quality grade

type="number" name="quality grade"
Minimun thickness

type="number" name="thick"
Aproximate volum

type="number" name="volum"

Isotropy?
type="text" name="isotropy" id="isotropy'
value="si">Yes

Need a support?

type="text" name="support" id="support"
value="si">Yes
value="no">No

type="submit"

A.3.4 Results

In this html file, not considering the template lines, the first thing found is the
creation of the table where all the parameters are shown. After that, all the options
will be added on the table.

table, th, td {
border: 1px solid black;

Options characteristics

style="text-align:center">Material:
style="text-align:center">Material type:

style="text-align:
style="text-align:

style="text-align:

style="text-align:
style="text-align:

style="text-align:
style="text-align:
technology:

style="text-align:

style="text-align:

style="text-align:
style="text-align:
treatment?

style="text-align:
moving parts:

style="text-align:

style="text-align:

style="text-align:
manufacture with isotropy?:

{% for message in messages’%}

center"
center"

Young module:
Strengh that can
center">Specific deformation:

Material cost:
Melting temperature:

center"
center"

center"
center"

Density:
Processing
center">Processing cost:

center">Quality grade:

center"”
center"

Speed:

Needs post-processing
center">Clearance between
center">Minimum thickness:
center">Minimum hole size:

center">Does the technology

{% if message|truncatewords:15 == 'Characteristics'%}

style="text-align
{%else%}
{% if message Null?%}
style="text-align
{%else%}
style="text-align
{%endif%}
{%endif%}
{%endfor%}

17

:center">{{message}}

:center”

:center">{{message}}

A.3.5 Tech

This html file has to different parts, the first one with the general advices, which
are written directly to the html file. If you want to add more advices you only need
to add another line to the code with the text needed.

General advices:

Use AM if the shape is complex and difficult to manufacture
with conventional methods

AM is the perfect option for insert logos or figures on the
surface

Then there is a display where the user can choose another technology to see
specific advices for the corresponding processing technologies. If you want to add
more technologies on the display you only need to add a line above </select>

Specific advices:
html

charset="utf-8"
Chosing technology

for="techno">Select the processing technology:

id="techno"
value="">--Make a choice--
value="material_extrusion">Material
Extrusion
value="powder_bed_fusion">Powder Bed

Fusion

18

value="vat photo">Vat
Photopolymerization
value="material jetting">Material

Jetting
value="binder_ jetting">Binder Jetting

After that, the parameters are defined. This number of parameters matches with
the number of advices of the processing technology that has more advices. In this
case there are the eleven advices of the material extrusion.

id="paral"
id="para2"
id="para3"
id="paras4"
id="para5"
id="para6"
id="para7"
id="para8"
id="para9"
id="parale"
id="parall"

select = document.getElementById('techno');
paral = document.getElementById('paral’);
para2 = document.getElementById('para2');
para3 = document.getElementById('para3’);
parad = document.getElementById('parad’);
para5 = document.getElementById('para5');
para6 = document.getElementById('para6');
para7 = document.getElementById('para7');
para8 = document.getElementById('para8');
para9 = document.getElementById('parad9');
paral® = document.getElementById('parale');
parall = document.getElementById('parall’);

select.onchange = setlWeather;

19

Once all the parameters are defined, the function setWeather is defined.
Depending on which processing technology is selected the advices that are shown
are different. It is important to put all the parameters defined previously in the
function for every technology; if it is empty it is compulsory to define that
parameter anyway.

function setWeather() {
const choice = select.value;

if(choice === 'material_extrusion') {

paral.textContent = '- Most used for
thermoplastics polymers';

para2.textContent = '- Recommended to use
different materials for the support and the part';

para3.textContent = '- Use thinner layer thickness
if the shape of the part is complex in order to avoid stair-
step effect and thicker if the surface is flat. The recommended
layer thickness is ©,25mm’;

parad.textContent = '- 1Increase the infill
percentage if the part has to resist high tensile efforts';

para5.textContent = '- Vertical wall thickness:
imm';

para6.textContent '- Horizontal walls with at
least 4 layers of material';

para7.textContent '- Minimum 452 respect the

horizontal plane for the overhanging parts in order to avoid

the use of supports';

para8.textContent = '- It is recommended to use a
soluble support, with that the clearance between moving parts
is 9,5mm in horizontal and ©,25mm in vertical';

para9d.textContent = '- Minimum 5mm of diameter for
vertical holes and ©,2mm more in the CAD version';

parale.textContent '
circular pins';

parall.textContent = '- Minimum 5mm of diameter for
screw threads and leave 1mm of separation between the start and
the base';

} else if(choice === 'powder_bed fusion') {

paral.textContent = '- It can avoid support if
well designed';

- Minimum 2mm of diameter for

20

para2.textContent Recommended layer
thickness: 0,1mm';

para3.textContent Avoid large masses of
material';

para4d.textContent Possible to recycle the
powder';

para5.textContent Recommended wall thickness:

para6.textContent = '- Minimum clearance between
moving parts: 1mm in both horizontals and verticals directions
(it has to be possible to remove the support material)';

para7.textContent = '- Minimum circular hole
diameter: 0,5mm for vertical holes and 1,3mm for horizontal
holes';

para8.textContent = '- Minimum square hole side
size: 0,5mm for vertical holes and ©0,8mm for horizontal holes';

parad.textContent = '- Minimum @,8mm of diameter
for circular pins';

paral@.textContent

- 0,8mm of distance between

the wall edge and a 2,5mm hole’;

parall.textContent = 5
} else if(choice === 'vat_photo') {
paral.textContent = '- Minimum @,1mm of height for
the details on the surface’;
para2.textContent - Recommended 0,6mm of wall
thickness"';
para3.textContent ‘- Minimum ©,5mm of diameter for
circular holes';
para4.textContent
para5.textContent
para6.textContent
para7.textContent
para8.textContent
para9.textContent
paral@.textContent
parall.textContent =
} else if(choice === 'material jetting') {
paral.textContent = '- Minimum 1mm of thickness for

21

para2.textContent
pins and hole sizes';
para3.textContent
surface details';
para4.textContent
between moving parts';
para5.textContent
surface quality but poor mecha
para6.textContent
para7.textContent
para8.textContent
para9.textContent
paral@.textContent
parall.textContent =
} else if(choice ===
paral.textContent
during the green state phase.
para2.textContent
and reinforcements';
para3.textContent
minimum thickness): 3-75mm
203mm 2mm; 203-305mm = 3,2mm
para4.textContent
of width overhanging part.';
para5.textContent

holes.';
para6.textContent
para7.textContent
para8.textContent
para9.textContent
paral@.textContent
parall.textContent
} else {
paral.textContent

Minimum ©,5mm of diameter for

Minimum ©,5mm of height for

Minimum ©,2mm of clearance

Best option for a nice
nical properties.’;

'binder jetting') {

It is important to be careful

J
1

It is recommended to use ribs

Wall thickness (build size
1mm; 75-152mm = 1,5mm; 152-

LI
I
1

2mm of thickness for a 25mm

Minimum 2mm of diameter for

22

A.4 Other files

Apart from the files commented before it is important to define the other files in
order to protect the database. In order to not upload the password, the port and the
url of the database to GitHub those variable are stored in a .env file.

Then in another file, which is .gitignore, you need to write .env and *sqlite3.

23

