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Abstract

In a standard mass spectrometry workflow, acquired mass spectra are searched against
a library of peptides to extract peptide spectra matches (PSMs). Peptides are normally
quantified by aggregating the intensities of fragment ions extracted from MS/MS
spectra. However, quantifying peptides by summing up the intensities of all fragment
ions in PSMs can resulting in inaccurate results due to the fact that multiple fragment
ions can interfere with each other in complex samples. This project aims to use machine
learning to enhance fragment ion ranking for every precursor to ensure optimal peptide
quantification. Here, we describe a workflow that leverages machine learning to pick
only the most confident fragments extracted for each potential peptide for
quantification. We demonstrate the usability of the workflow on yeast standard
benchmark data, showing that the average accuracy of quantification and differential
expression across all optimized methods is 22.46% higher than the standard workflow.
In addition, we investigate the performance of our workflow on existing complex and
low-fold-change proteomic data containing four species and demonstrate the
generalizability of our models on unrelated diverse data sets.

Introduction 1

Mass spectrometry proteomics 2

Liquid chromatogram-mass spectrometry(LC-MS ) has changed the way proteomics data 3

is acquired. It is known as a hypothesis-free discovery method that allows the 4

acquisition of data on proteins, peptides and fragment ions without relying on 5

antibodies [1]. In a standard LC-MS proteomics workflow of any experiments, proteins 6

are first extracted from the sample using biochemical methods, then cleaved into 7

peptides. Peptides are then passed through the liquid phase and are separated by 8

chromatography and ionized by electrospray ionization into precursor ions. Precursor 9

ions are sent to a mass spectrometer to measure and report the mass-to-charge ratio 10

(m/z ) of both the peptide precursor ions and the fragment ions produced by collision of 11

precursor ions [2]. 12
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LC-MS greatly improves the efficiency of proteomic data acquisition, making it 13

possible to identify and quantify all proteins in a single run from samples containing 14

thousands of proteins. Several different mass spectrometry-based proteomics strategies 15

have been developed over the past few years [3]. There are currently two main methods 16

of mass spectrometry-based protein research, that are discovery-based qualitative 17

protein analysis and targeted protein quantitative analysis. 18

In discovery-based qualitative protein analysis, the mass spectrometer automatically 19

selects peptide ions for fragmentation based on signal strength. Match the experimental 20

spectrum to the library spectrum to infer the peptide sequence and thus identify the 21

protein. Whereas in targeted protein quantitative analysis, the mass spectrometer is 22

programmed to detect specific peptide ions from the target protein, with the aim of 23

identifying the protein and accurately quantifying a selected few proteins of interest 24

with high sensitivity and reproducibility. 25

Data-dependent acquisition (DDA) is also known as shotgun proteomics. It is a 26

discovery-based proteomics mode where the goal is usually to identify as many proteins 27

as possible. In this method, proteins are digested into peptides by typsin or other 28

enzymes. The mass spectrometer then sequentially examines all peptide ions eluting 29

from the liquid chromatography(LC ) column at a specific time, conducts a MS1 scan 30

and picks out those precursor ions with the strongest intensity. Those precursor ions are 31

separated and fragmented to generate the MS/MS (MS2) spectrum. DDA is the most 32

used mode for many years, but it only selects peptide signals that are higher than noise 33

in the full scan mass spectrometer and ignores low-abundance peptides. Thus it fails to 34

obtain high-quality MS/MS spectra for all peptides present in the sample [2, 4]. 35

Selected reaction monitoring (SRM) is also known as targeted proteomics, which 36

aims to quantify the protein of interest as accurately as possible [2]. In this method, the 37

mass spectrometer is programmed to select a specific m/z of precursor ions for 38

fragmentation. Fragmented product ions are selected and then directed to the detector 39

for quantification, resulting in a trace of signal intensity versus retention time for each 40

”transitions”(precursor-product ion pair). Several suitable transitions make up the SRM 41

assay which used to quantify target peptides and corresponding target proteins. 42

This requires selection and validation of a suitable set of SRM transitions for each 43

target precursor ion, and optimization of other SRM analysis parameters before the 44

analysis can be applied to protein detection and quantification [5], which means more 45

upfront investments are needed compared to discovery-based experiments [2]. 46

Data-independent acquisition (DIA) or SWATH(which uses 25 Dalton as a 47

scanning interval in DIA experiment) theoretically combines the advantages of DDA 48

and SRM [6]. Instead of picking peptides for fragmentation based on signal intensity, 49

DIA records the retention time(RT) of all peptides and all their fragment ions within 50

the entire LC gradient, which means all data include RT, intensity and m/z of all 51

precursor ions and fragment ions are collected. Specifically, for a specific retention time, 52

MS1 scans the entire mass range once, records the RT and the corresponding m/z of all 53

precursor ions, and then enters MS/MS which scans the m/z range according to the 54

precursor ion separation window sequentially and records all fragment ion information. 55

For example, in SWATH-MS [3] setting, the specified m/z window is usually 56

400-1200m/z and the precursor isolation window is set to 25 m/z. All peptides in 57

400-425m/z mass range will be fragmented and detected simultaneously at the first 58

MS/MS scanning. Then, the MS/MS scanning window is increased by another isolation 59

window to 425–450 m/z, and this process is repeated 32 times, gradually completing the 60

entire mass range, this forms a cycle time [6]. 61
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Data acquired in DIA mode is continuous in time and fragment ion intensities, which 62

allows complete mass spectral data with low variability. However, due to the large 63

precursor ion separation window, peptides co-elution and co-fragmentation result in 64

very complicated MS/MS spectrum and the loss of the direct correspondence between 65

fragment ions and precursor ions. Thus DIA mode requires more powerful data analysis 66

tools than the previous two methods [6]. 67

Quantitative proteomics 68

Quantitative proteomics not only identifies proteins, but also measures their abundance. 69

Accurate quantification can provide evidence for an organism’s response to the internal 70

or external environment [7]. Initially, immunological methods such as western blot 71

(WB) and enzyme-linked immunosorbent assay (ELISA) are used to quantify proteins. 72

But the number of proteins that can be quantified at the same time is limited [7]. 73

Nowadays, mass spectrometry was used in proteomics researches and enables accurate 74

quantification of hundreds of proteins [7]. 75

Label-based quantification and label-free quantification 76

There are two different methods for protein quantification, i.e. label-based 77

quantification and label-free quantification. Label-based protein quantification uses two 78

stable ”heavy” and ”light” isotopes to label peptides or proteins. In mass spectrometer, 79

the two isotopes undergo a mass shift of 3-4 Da and their peak intensities ratios are 80

capable of indicating abundance [8]. Label-free quantitative proteomics relies on 81

extracted ion chromatograms (XIC) intensities or spectral counting. It uses a 82

comparison of precursor ion intensities between MS runs to quantify proteins or peptides 83

based on peak area or peak intensity measurements after features alignment based on 84

retention time, m/z, charge state, etc [9]. Label-based quantification is useful but 85

limited by the number of labels that can be applied simultaneously in an experiment [7]. 86

Relative and absolute quantification 87

Protein quantification can also be divided into relative and absolute quantification. 88

Relative quantification aims to study the relative abundance of a certain protein or 89

peptide between different biological states. In absolute quantification experiments, a 90

labeled standard peptide with known concentration, which has the same sequence and 91

physical properties as the sample peptide is added to the target protein. The exact 92

amount of target protein can be measured by measuring reference peptides [7]. Both 93

label-based and label-free quantification can be used for relative and absolute protein 94

quantification. 95

Differential expression 96

Differential protein expression research is one of the key research directions of 97

quantification proteomics. It aims to study the abundance and expression of proteins in 98

different biological states to identify biomarkers of disease and treatment response, 99

elucidate biological pathways, and identify and validate protein drug targets. 100

Analysis of protein differential expression typically involves normalization of 101

quantitative matrices and comparisons of statistical differences in the abundance of 102

proteins. Normalization of the quantitative matrix is necessary to scale the data to a 103

range that makes the samples more comparable, thereby eliminating technical issues 104

caused by repeated experimental designs and instrumentation bias to ensure the 105

reliability of downstream analysis [10,11]. 106
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Variance Stabilization Normalization (VSN), Linear Regression Normalization, and 107

Local Regression Normalization are commonly used quantitative matrix normalization 108

methods [10–12]. NormalyzerDE combines a general retention time (RT) segmentation 109

method compatible with a broad range of global normalization methods for quantitative 110

matrix normalization [11]. This method detects more peptides without losing precision 111

compared to traditional methods. Downstream differential expression analysis often 112

involves the handling of missing values and the choice of statistical methods including 113

two-samples t test, ANOVA ect. Compared to ANOVA, NormalyzerDE achieves higher 114

recall using the empirical Bayes Limma approach [11]. 115

DIA quantification analysis 116

Data Independent Acquisition (DIA) mode enables high-throughput and highly 117

reproducible quantification of proteomics data and has become more and more 118

commonly used method for protein quantification [7]. It is a powerful method, but 119

requires more data analysis than DDA and SRM modes. In DDA mode, the relationship 120

between precursor and fragment ions is well defined. The peptide sequence that best 121

explains a given MS2 spectrum can be found by matching fragment ions to a theoretical 122

library generated based on a given list of proteins(spectrum-centric approach). 123

In DIA mode, the precursor ions separation window is generally large, resulting in 124

co-elution and co-fragmentation of precursor ions within the same retention time, and 125

the direct relationship between precursor and fragment ions is lost. Therefore, DIA 126

produces convoluted and highly co-fragmented spectra that require more complex 127

analytical tools to make sense of the produced signal. 128

Recently, many DIA quantitative analysis software have been published. For 129

example, DIA-Umpire deconvolves the DIA data and redistributes the fragment ion in 130

the MS/MS spectrum as a pseudo-DDA spectrum through a certain algorithm, and 131

then performs a spectrum-centric scoring to find the peptide sequence from the spectral 132

library that best explains a given MS/MS spectrum [4]; OpenSWATH uses a 133

peptide-centric scoring, which starts with target peptides list, aims to assign confident 134

MS/MS sprctrum to each peptide. Regardless of the scoring method used, standard 135

DIA quantitative analysis workflows require a reliable spectral library for chromatogram 136

extraction, which also relies on robust chromatographic extraction tools. The extracted 137

PSMs require further filtering, which is achieved by using powerful algorithms for peak 138

group selection and scoring to identify mismatches. By controlling for the false discovery 139

rate (FDR), the correct peak groups can be used to quantify protein abundance. 140

Chromatographic extraction 141

The first step in DIA quantitative data analysis is to extract the chromatographic 142

information from the MS/MS map. In a peptide-centric scoring analysis, the algorithm 143

first searches from a given spectral library, extracting the RT, intensities and m/z of the 144

precursor and fragment ions and relevant chromatographic features for each peptide. 145

The spectral library is the basis for peptide-centric scoring analysis [3]. A spectral 146

library usually contains a list of proteins and peptide sequences digested under specific 147

conditions, the retention time of the peptide, the empirically based precursor ion of the 148

peptide with strong signal and its m/z, the fragmentation of the precursor ion under 149

specific conditions, the intensities of the resulting fragment ions and their m/z [3]. It 150

also contains the information of a group of reference peptides which is added into 151

samples for retention time normalization. Due to the fact that the retention times of 152

peptides varies while the settings of the LC setup is different, retention time of this 153

experiment can be normalized and calibrated by aligning its retention time back to the 154

library [13]. There are several methods can be used to generate spectral libraries. It can 155
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be derived from previously collected DDA data. In SWATH-MS experiments, a ”peptide 156

query parameter” (PQP), which stores prior knowledge of the mass spectrometry and 157

chromatography of target peptides in an empirically based spectral library [3] is used as 158

library. It is also possible to directly deconvolve DIA data to obtain pseudo MS/MS 159

spectra to generate spectral library(DIA-Umpire [4]). Searle et al. [14] generated a 160

chromatographic library at the expense of adding 6 gas phase fractionation injections to 161

the narrow-window DIA run, which results more sensitive and reproducible than 162

generating a spectral library from DDA mode. 163

Chromatographic extraction also relies on a powerful library search engine. An 164

increasing number of library search engines have been published for DIA data analysis. 165

All of these search engines introduce mismatches, so downstream analysis mainly 166

focuses on identifying mismatches generated by search engines. 167

Peak group scoring 168

Several ”peak groups” can be identified in a transition group record [15], but usually not 169

all peak groups can represents the peptide of interest. Selecting the correct peak for each 170

precursor ion ensures accurate quantification, so it is one of the most important steps in 171

a DIA quantitative analysis. Peak group scoring is generally performed by training 172

machine learning models to score target peaks and decoy peaks based on peak features. 173

Several algorithms and models have been published in recent years to select optimal 174

peaks for precursors. mProphet [15] uses a semi-supervised learning to combine 175

sub-scores such as temporal concurrency and the shape of peaks in peak groups, and the 176

relative intensities of transition traces to obtain a discriminant score for each peak to 177

maximize the separation between true and false peak groups( [15]). Peak groups with 178

the highest discriminant scores were used for protein quantification. DIA-NN [16] trains 179

a linear classifier iteratively according to 73 peak features such as fragment ion 180

co-elution, similarity between observed and reference spectra library etc. to calculate 181

discriminant scores. Then it trains a small ensemble of neural network to calculate q 182

values based on discriminant scores for each peak to control FDR. 183

Target-decoy strategy is commonly used to identify PSMs in DIA data analysis. In 184

general, mismatches are definitely present due to the fact that not all peptides in a 185

sample will be present in the search space but still assigned to a spectrum, and all 186

MS/MS spectrum including those from the background are usually given peptide 187

matches [17]. In experiments using precursor intensity for quantification, peak groups 188

and their fragment ions are used to calculate precursor intensity. If the intensity of a 189

precursor ion is calculated by incorrect peak group, it can lead to a inaccurate 190

quantification of this peptide. So, identifying and filtering mismatches ensures accurate 191

downstream quantification. 192

In DIA experiments, it is not practical to examine all PSMs manually. A commonly 193

used strategy is the target-decoy strategy [17]. The goal of target-decoy strategy is to 194

add a naturally nonexistent, necessarily incorrect ”decoy” sequences to the search space, 195

which, when deemed correct, can represent those false matches in the search results. 196

These decoy sequences are similar with incorrect target sequences in length, amino acid 197

composition and scores calculated by search engine [17], which indicates that decoy and 198

mismatches have similar MS/MS spectra. Through this strategy, a classifier can be 199

trained from multiple features and can be used to identify mismatches from the target. 200

The target-decoy strategy is simple and powerful, it is applicable to data generated by 201

any search engine [17]. Thus, it has become the main method used by many software to 202

select peak groups. 203
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False discovery rate(FDR) is a concept in statistics that is a way of 204

conceptualizing the false positive rate (i.e. type I error in null hypothesis testing) when 205

making multiple comparisons. The FDR is the expected ratio of the number of false 206

positive classifications in the total number of positive classifications [18]. It can be 207

calculated from the confusion matrix (detailed in Fig 2) by the following equation: 208

FDR = FP/(FP + TP ) (1)

Where FP refers to false positive, TP refers to true positive. 209

FDR control procedures use a given q value to control FDR due to the fact that 210

FDR is the expectation value of q. Q value can be calculated by decision score [19]. A 211

binary classifier calculates the possibility(or decision score) of data being classified into 212

a classification (Supplementary figure 1). According to a given threshold of decision 213

score, data points can be classified into a specific classification (target or decoy) and 214

resulting in a confusion matrix. At a given possibility threshold, q values can be 215

calculated by the following equation [19]: 216

Q = B/(B +A) (2)

Where B is the number of false discoveries and A is the number of true discoveries. 217

Most of the DIA quantification software are performed using the target-decoy 218

strategy followed by FDR control. For example, EncyclopeDIA [7] search results were 219

filtered to a 1% FDR on peptide-level using Percolator [20]. Proteins are then 220

parsimoniously allocated to protein groups and filtered on 1% FDR at protein-level [21]. 221

OpenSWATH [22] search results were filtered to a 1% FDR on peptide-level using 222

pyProphet [23] if peptide and protein inference in the global context is conducted [22]. 223

Calculation of proteins abundance 224

In label-free experiments, the abundance of proteins can be calculated by spectral 225

counting or MS1 intensity calculations [9]. Spectral counting works on the principle that 226

peptides with higher abundance produce more abundant MS/MS spectra after 227

fragmentation, so the peptide counts assigned to a protein are proportional to the 228

protein’s abundance [9]. 229

The principle of calculating the intensity of MS1 (or precursor) is to quantify 230

peptides by summarizing the intensities of fragment ions extracted from the MS/MS 231

spectrum. Obviously, the population of fragment ions used to calculate precursor 232

intensity will directly affect the final quantitative results. The most commonly used 233

method in the past is the TopN method [24], which is the summation of the intensities 234

of N fragment ions with the highest intensity [25], or directly sums the intensities of all 235

fragment ions. Software, such as OpenSWATH and EncyclopeDIA, rank the importance 236

of these ions by their overall intensity and then sum them all up to provide quantitative 237

information for a peak group that corresponds to a peptides precursor ion. Although 238

this works for the most part, there have been increasing number of studies that have 239

found that performing statistical analysis of proteins on the fragment ion level provides 240

more accurate quantitative information and more precise differential expression 241

data [24,26]. 242

However, these approaches tend to ignore the fact that multiple ions can contribute 243

to the overall intensity of a detected fragment ion, or they claim that this contribution 244

is insignificant. In complex samples, these interferences can be quite common, and 245

effectively skew quantitative accuracy by assuming the most intense ions provide the 246

best quantitative information, when in fact the high intensity of that ion species is the 247

result of multiple fragment ions interfering with each other. Approaches have been 248

developed to correct fragment intensities based on levels of identified interference [23] or 249
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to identify interfered fragments for consideration in downstream processing [16]. It has 250

been shown that by using multiple sub scores, including fragment ion interference, it is 251

possible to identify and rank fragment ions and select optimal subsets of these fragment 252

ions to significantly improve the quantitative accuracy of peptide identification (11-25%) 253

versus the TopN strategy [25]. 254

Machine learning (ML) 255

Machine learning is a discipline and method that uses computers as tools to simulate 256

the way humans learn in real time. Machine learning can learn from data or previous 257

experience to improve the performance of specific algorithms in artificial intelligence, or 258

to optimize the performance metrics of computer programs. The goal of machine 259

learning is to train a machine learning model to do a task well. The performance of 260

machine learning model on this task can be measured and the performance can be 261

improved by learning from experience [27]. Specifically, machine learning learns from a 262

training set with the aim of building a model based on sample data in order to make 263

predictions or decisions without being explicitly programmed. 264

Machine learning models are trained by minimizing the loss function and adjusting 265

the weights accordingly. The loss function represents the difference between the 266

predictions of the model being trained and the actual problem instance [28]. Therefore 267

loss functions can also be used to evaluate how well a particular algorithm models a 268

given data. If the prediction deviates too much from the actual result, the loss function 269

will produce very large numbers, so the goal of machine learning is to let the loss 270

function learn to use some optimization function to reduce the error of the prediction. 271

Machine learning problems can be divided into classification problems and regression 272

problems. In regression problems, machine learning learns from data to predict accurate 273

values (Fig 1a). Whereas in classification tasks, machine learning learns the data and 274

classifies it into specific categories (Fig 1b). Correspondingly, classification models are 275

trained by finding optimal parameters to minimize the classification loss function, and 276

regression models are trained by minimizing the regression loss function. 277

Fig 1. The tasks of machine learning are divided into classification tasks and
regression tasks. a) Regression tasks(a univariate regression). b)
Classification tasks(a binary classification).
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Binary classification [29] 278

Binary classification is commonly used in DIA data analysis because of target-decoy 279

strategy. Binary classification refers to the classification problem where the label has 280

only two classifications while multi-class classification refers to the classification 281

problem where data are labeled in more than two classes. The task of binary 282

classification model is to learn the characteristics of the two types of labels on each 283

feature, and classify the data into one of the two categories. It can be used to predict 284

whether email is spam or whether fragment ions and peak groups are targets. 285

Algorithms that are suitable for classifying data set are called classification 286

algorithms. Popular algorithms for binary classification includes logistic regression, 287

k-nearest neighbors, decision trees, support vector machines (SVM), and naive bayes. 288

Among others, logistic regression and SVM algorithms are specifically designed for 289

binary classification. 290

Stochastic gradient descent (SGD) [30] 291

SGD also known as incremental gradient descent, is an iterative method for optimizing 292

differentiable objective functions. It is not a machine learning model, but an 293

optimization technique used to train a machine learning model. This is a simple but 294

very effective method and can be easily implemented [30]. Specifically, it uses gradient 295

information to minimize the objective function by continuously iteratively adjusting the 296

parameters to find a suitable value. It does not search for the parameter that minimizes 297

the loss function on all training data, but randomly optimizes the loss function on a 298

certain piece of training data in each round of iteration, so that the update speed of 299

each round of parameters is greatly accelerated, so it is the best method to train a 300

model on the large data set. It is commonly used for fitting linear classifiers and 301

regressors under convex loss functions, such as (linear) support vector machines and 302

logistic regression [30]. 303

Model evaluation [31] 304

Model evaluation is to measure how a machine learning model good at a task. Take 305

binary classifier as an example, a binary classifier calculates a probability of being 306

classified into class 1 (also known as the positive class) for each given data point. The 307

probability then is used to determine the predicted class based on a probability 308

threshold(or decision score threshold). The performance of the classification can then be 309

assessed by comparing the predicted values with the actual values and summarizing the 310

results in a 2x2 matrix (i.e. confusion matrix) showed in Fig 2. A data point that is 311

actually a negative class (0) and is predicted to be a negative class (0) is called true 312

negative (TN); a data point that is actually a negative class (0) and is predicted to be a 313

positive class (1) is called false positive (FP); a data point that is actually positive (1) 314

and is predicted to be positive (1) is called true positive (TP); a data point that is 315

actually positive (1) and is predicted to be negative (0) is called false negative (FN). 316

The final result for each data point can only be one of four. And the number of 4 317

results present in the evaluated data set forms the confusion matrix. Confusion matrix 318

varies while varying the threshold used to assign observations to a given class. 319

Precision value, recall value and ROC-AUC value calculated by confusion matrix are 320

frequently used to evaluate the performance of a model. Recall score, (also called true 321

positive rate or sensitivity) as marked in green in Fig 2, refers to the percentage of the 322

number of positive data points that are correctly predicted as positives within the 323

number of all actual positives. Precision score, as marked in red in Fig 2, refers to the 324

percentage of the number of positive data points that are correctly predicted as 325

positives out of the number of all predicted positives. 326
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The ROC-AUC score is also one of the main metrics for evaluating the performance 327

of a classification model [29]. The ROC-AUC score is obtained by calculating the area 328

under the receiver operating characteristic(ROC) curve, which represents the degree of 329

separability/distinction or admixture/intersection between the predictions of two classes 330

and summarizes the performance of a classifier over all possible probability thresholds. 331

Specifically, new confusion matrix is generated while decision score threshold changing. 332

The ROC curve then can be generated by taking true positive rate(TPR, also know as 333

recall, as marked in green in Fig 2) as the y axis and false positive rate (FPR, as 334

marked in yellow in Fig 2) as the x axis. The ROC-AUC score then can be calculated. 335

The higher the ROC-AUC score, the higher the discrimination between the two 336

categories and the better the performance of the model. 337

Fig 2. Confusion matrix and measurements of models.

Precision/recall trade-off 338

Precision/recall trade-off is defined from the fact that high precision and high recall 339

generally cannot be satisfied simultaneously: increasing precision reduces recall and vice 340

versa(Fig 3). It is a strategy to improve the performance of machine learning models. 341

The goal of this strategy is to find a possibility threshold that will provide the machine 342

learning model with target precision and recall score to ensure the performance of 343

model in classifying the data into one of four results. As can be seen from Fig 3 marked 344

with red line, when the precision is 0.9, there is a certain recall value and a threshold for 345

the decision score. And with this decision score threshold, at least 90 precision score can 346

be archived by the classifier. 347
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Fig 3. The precision-recall trade-off of a classifier.

Classifiers usually use 0 as the threshold. When a threshold higher than 0 is used, 348

higher precision and lower recall are obtained. Different classification tasks have 349

different purposes and it can be achieved by using precision/recall trade-off. In the 350

target-decoy strategy, it is important to ensure that the probability of true 0 (decoy) 351

being predicted as 1 (target) is as small as possible, so the purpose is usually to 352

guarantee a high precision instead of high recall. However, in some models such as fraud 353

detection models, it is not expected for a true 1 to be predicted as a 0, so the goal is 354

usually to ensure that the recall score is as high as possible. 355

Research aim 356

This project aims to investigate the possibility to streamline fragment ion ranking and 357

automate the optimal quantification of peptides using a subset of the fragment ion 358

population for each precursor. We aim to use algorithmic approaches and machine 359

learning to determine fragment ion ranks within a peak group, and then combining 360

them in an optimal way to provide quantitative information at the peptide levels. The 361

machine learning involved is a classification problem, where negative target labels are 362

derived from the fragment ions extracted from the decoy entries in the spectral library. 363

Algorithms will also be implemented to calculate the features that will be used as input 364

for the classifier, as well as multiple methods to then combine the selected fragment ions 365

in an optimal way to provide accurate peptide level quantification. The algorithms will 366

all be implemented in an existing Python package developed by the group, so that they 367

can be easily accessible for analysis for particular data set. Benchmarking will be done 368

using complex samples with specific sets of peptides spiked-in at known concentrations 369

so that quantitative accuracy can be precisely measured based on a ground truth. 370

Materials 371

All files involved in this project are stored in the group Linux server, where most of the 372

software is installed. But some software such as NormalyzerDE was used as R package in 373

Rstudio of 64-bit Microsoft Windows 10 system on the local computer. Code and data 374

is available at https://github.com/Lina0125/QuantifyAtFragmentLevelWithClassifiers. 375
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Yeast benchmark sample preparation 376

To obtain the benchmark proteomic data, we divided the experiments into two groups, 377

each containing 10 samples. Spike-in mouse protein are constant in all samples while 378

yeast proteins are vary in two groups. The accurate spike-in protein concentration is 379

showed in supplementary table 1, relatively, the concentration of the yeast protein of 380

group2 was diluted 4-fold compared to that of group1. 381

Due to the fact that the settings of the chromatography system (LC) affect the 382

elution times of all peptides, specific LC settings result in RT data for peptides that are 383

specific to a single experiment. A group of iRT peptides used for retention time 384

calibration is added to the sample during the sample preparation stage, and is used to 385

perform regression against the experienced library to correct the retention time of this 386

experiment. There was only a slight difference in the concentration of iRT peptides 387

between the two groups (Supplementary table 1). The iRT intensity of the two groups 388

in the differential expression result should be the same theoretically. 389

LC-MS DIA data collection 390

All peptide analyses were performed on a Q Exactive HF-X mass spectrometer (Thermo 391

Fisher Scientific) connected to an EASY-nLC 1200 ultrahigh-performance liquid 392

chromatography system (Thermo Fisher Scientific). Peptides were trapped on the 393

precolumn (PepMap100 C18 3 µm; 75 µm × 2 cm, Thermo Fisher Scientific) and 394

separated on an EASY-Spray column (ES803, column temperature 45 °C, Thermo 395

Fisher Scientific). Equilibrations of columns and sample loading were performed per 396

manufacturer’s guidelines. Solvent A was 0.1% formic acid, and solvent B (0.1% formic 397

acid, 80% acetonitrile) was used to run a linear gradient from 5 to 38% over 120 min at 398

a flow rate of 350 nL/min. The mass range for MS1 was 350–1650 m/z with a resolution 399

of 120,000 and a resolution of 30,000 for MS/MS with stepped normalized collision 400

energies (NCE) of 25.5, 27, and 30. The data-independent acquisition (DIA) method 401

was derived from Bruderer et al. [32]. The 44 variably sized MS/MS windows were 402

350–371, 370–387, 386–403, 402–416, 415–427, 426–439, 438–451, 450–462, 461–472, 403

471–483, 482–494, 493–505, 504–515, 514–525, 524–537, 536–548, 547–557, 556–568, 404

567–580, 579–591, 590–603, 602–614, 613–626, 625–638, 637–651, 650–664, 663–677, 405

676–690, 689–704, 703–719, 718–735, 734–753, 752–771, 770–790, 789–811, 810–832, 406

831–857, 856–884, 883–916, 915–955, 954–997, 996–1057, 1056–1135 and 1134–1650 407

m/z,resulting in a total cycle time of ∼3.3 s and 6–8 sampling points per 408

chromatographic peak on average. 409

Raw data converted to mzML 410

All DIA data analysis software take open file format such as mzml [33] files as input. 411

Thermo raw data from mass spectrometers can be converted to mzml files by 412

ThermoRawFileParser [34] or MSconverter in ProteoWizard [35]. 413

Spectra library 414

The spectra library contains precursor and fragment ion m/z values, relative fragment 415

ion intensities of transitions and normalized peptide retention times. Decoys are added 416

to the spectra library for later classification and error rate estimation. Spectra library 417

for yeast benckmark data is already available in this project and was generated using 418

MSFragger then transformed to OpenSWATH available peptide query parameters 419

(PQPs), i.e. the pqp file format. The PQP is a parameter required for peptide-centric 420

scoring, which stores the following information: the optimal peptides for the protein, 421
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and the elution times of those peptides under specific LC settings; Several fragment ions 422

with the strongest signal generated by the fragmentation of precursor ions under specific 423

collision conditions; the charge states of the precursor and fragment ions and the 424

relative ion intensities of all selected fragments [22]. The spectral library also contains 425

decoy proteins that can be generated in OpenSWATH by OpenSwathDecoyGenerator 426

for later classification and error rate estimation. 427

iRT library 428

A kit of 8 reference peptides have been added into samples. The iRT library contains 429

the PQP of these peptides is used to calibrate the retention times for this experiment. 430

Specifically, Regression alignments of retention times for the reference peptides and iRT 431

library were performed from a single run to obtain regression equations that were 432

mapped back to the spectral library to normalize and calibrate retention times. 433

OpenSWATH 434

OpenSWATH is a peptide-centric search software which performs targeted 435

chromatographic extraction. Its components are very flexible, and can be compatible 436

with other software only by converting data formats, and allows users to add their own 437

functions to form new workflows. The input files for the OpenSWATH algorithm 438

contains the spectral data mzml files, the spectral library, the iRT library and the swath 439

window file which contains the MS window settings for this experiment. OpenSWATH 440

is used to conduct retention-time alignment, chromatographic extraction and 441

peak-group scoring in this project and it is used as a singularity container [36]. 442

pyProphet [37] 443

pyprophet is an implement software of mProphet [15]. It uses a number of different 444

subscores such as the pearson correlation between each pair of corrected traces, 445

performs semi-supervised learning on decoy and target peaks, merges the sub-scores into 446

a final score, selects the best peak in each chromatogram, and estimates FDR [23]. The 447

pyProphet software used in this project is directly installed in the virtual environment 448

of the Linux server and was installed using the following command: 449

pip install pyprophet 450

TRIC 451

TRansfer of Identification Confidence (TRIC) uses cross-run alignment and retention 452

time correction to further align and correct stacking error conditions from multiple 453

OpenSWATH and pyProphet runs. Only the feature alignment.py script is used in this 454

project, which is directly placed in the site package in the virtual environment of the 455

Linux server. It was installed using the following commands: 456

pip install numpy 457

pip install pymzml==0.7.8 458

pip install Biopython 459

pip install msproteomicstools 460

Snakemake [38] 461

The Snakemake workflow management system is described based on the Python 462

language, which allows the integration of many different software and languages in a 463
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workflow, which is repeatable and extensible, and can be easily deployed to any 464

environments. The Snakemake version used in this project is 6.13.0. 465

Singularity container 466

Singularity virtualizes and containerizes systems, allowing applications to be moved 467

from one system to another [36]. The OpenSwathWorkflow in this project is run 468

through Singularity, and the program is currently available in the group. 469

Python 470

Python is a programming language that is powerful, fast, and portable. The main steps 471

of scoring fragment ions and filtering by user specified methods is all written into a 472

Python package by using version 3.8.10. 473

NormalyzerDE [11] 474

NormalyzerDE is a LC-MS-based protein quantification analysis software for 475

normalization and differential expression analysis. It is used to normalize quantitative 476

matrix and conduct differential expression analysis in this project. We use the 477

NormalyzerDE R package in Windows system 10 Rstudio 64-bit with R version 4.0.1 on 478

the local machine. Installation was performed using BiocManager: 479

install.packages(”BiocManager”) 480

BiocManager::install(”NormalyzerDE”) 481

Methods 482

As shown in Fig 4, we combine the OpenSWATH workflow with machine learning 483

classifiers and an algorithm to score fragment ions. The experimental data were already 484

converted into mzML format. At the beginning of our work, OpenSWATH is used to 485

obtain sqlite3 tables which store PSMs and their information. We use the merged 486

process of pyProphet and TRIC as a generalized workflow to compare with our 487

workflow. In the optimized workflow, we first train several different classifiers using the 488

output of OpenSWATH, they are ”initial”, ”precision 90”, ”qvalue cutoff” and ”lnl” 489

classifiers. These classifiers are then used on the pyProphet scoring data to obtain 490

discriminant scores for fragment ions, which are used to calculate q values for FDR 491

control at the fragment ion level. Finally, quantitative matrices are obtained by 492

different precursor intensity calculation methods (TopN, mean, median, sum). 493
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Fig 4. Integrate fragments ion classifier into OpenSWATH workflow [22].

Generalized Workflow and parameters 494

We use OpenSwath Workflow as a generalized method with 3 components as shown in 495

Fig 5; In this workflow, OpenSwath is used for targeted extraction of chromatogram; 496

pyProphet is used for statistical scoring; TRIC is used for alignment of multiple runs to 497

generate quantitative matrix. 498

Fig 5. Detailed steps in generalized workflow.

OpenSWATH is used to extract chromatogram. As shown in Fig 5 marked with 499

blue, OpenSWATH takes mzml files, spectra library, iRT library and swath window file 500

as inputs. Firstly, it calibrates retention times in each run by aligning them against a 501

previously determined normalized retention time space generated by mapping iRT 502

library in a run back to the iRT library. Then it searches from peptide lists in spectral 503

library, with the instructions of search window in swath window file, it extracts MS/MS 504

map for each peptide according to the m/z and retention time information from the 505

spectra library to generate integrated fragmentation counts versus retention-time data. 506
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Finally, OpenSWATH conducts peak groups scoring algorithm by scoring spectrum 507

features using multiple, orthogonal scores such as elution profiles of the fragment ions 508

etc. The extracted chromatogram data and scores in every run are stored in the output 509

osw files. The intact parameters of OpenSWATH used are: 510

OpenSwathWorkflow 511

-in 512

-tr 513

-tr irt 514

-out osw 515

-out chrom 516

-swath windows file 517

-threads 50 518

-enable ms1 true 519

-enable ipf true 520

-Scoring:Scores:use uis scores 521

-Scoring:Scores:use total mi score 522

-Scoring:stop report after feature 5 523

-Scoring:TransitionGroupPicker:compute peak quality 524

-min rsq 0.07 525

-batchSize 10000 526

pyProphet [37] is used to score and choose peak groups and is conducted following 527

OpenSwathWorkflow documentation(Fig 5 marked with orange). The pipeline is 528

run-specific context and can be separated to 2 parts: model generation and model 529

application and global output. 530

In model generation step, firstly, ”pyprophet subsamples” subsample all runs. Then 531

”pyprophet merge” generates a subsampled classifier that learns faster. Then the 532

classifier is learned at ”MS1/MS2” level using ”pyprophet score” and the results are 533

stored in scoring model.osw. 534

In model application and global output step, ”pyprophet score” applies the classifier 535

generated in the first step to all specific runs in parallel. Then ”pyprophet reduce” 536

extracts relevant data for global scoring to generate small files (*.oswr). Next, 537

”pyprophet merge” merges the files, and performs global peptide (”pyprophet peptide”) 538

and protein level (”pyprophet protein”) FDR control. ”pyprophet backpropagate” 539

backpropagates global statistics to individual runs. Outputs from backpropagates(PYP 540

osw files) are also used as the input of optimized workflow(Fig 6)b. Finally, ”pyprophet 541

export” exports results with confidence scores at the peptide query level (run-specific 542

context). 543

TRIC [39] is used to align peaks within runs. As shown in Fig 5 marked with yellow) 544

. Results from pyProphet that with confidence scores on peptide query level then 545

aligned in TRIC. Peak groups filtered at the 1% FDR level and stored in the final 546

quantitative matrix. The intact command used is as follow: 547

python feature alignment.py 548

–in 549

–out 550

–out matrix 551

–max rt diff 30 552

–mst:useRTCorrection False 553

–fdr cutoff 0.01 554

–max fdr quality 0.01 555

556
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The optimized workflow 557

In order to select the most suitable fragment ions for each peak group, we use machine 558

learning to learn 12 fragment ions features such as the intensity score compared to 559

intensity in library of each transition(VAR INTENSITY SCORE) and the mass 560

deviation score of the fragment ions throughout the retention 561

time(VAR MASSDEV SCORE) etc. to discriminate true and false fragment ions. This 562

is achieved by adding decoys to the library searching space to provide negative labels 563

and its similar spectrum maps with positive targets for classifier training. The resulting 564

models are then used to generate a discriminate score. Discriminate scores are then used 565

to calculate q-values which can be used to control the FDR at the fragment ion level. 566

Models generation 567

As shown in Fig 6a, the data for building the classifier comes from the output of 568

OpenSWATH. OpenSWATH extracts the features of transition groups from the 569

chromatogram and stores them in the osw tables. The 12 sub-scores are used as 570

classifying features, and the label is the target and the decoy added to the search space. 571

Specifically, we first use sqlite3 in python to merge SQL tables. In model training 572

process, data is firstly separated to 80% training set and 20% test set(”hold-out 573

cross-validation” training method), then models are trained using SGD method. 574

Specifically, we fit a logistic regression model to the training data and optimize the 575

model via SGD, which is implemented using the SGD Classifier(loss=”log loss”) in 576

scikit-learn [40]. This model is called the ”initial” model and is used as a reference 577

classifier. We then apply this classifier to the data and use the result as a reference. 578

Three new classifiers are eventually generated by using three different methods to 579

improve the performance of the ”initial” classifier. 580
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Fig 6. The steps of optimized workflow. a)Models generation; b)
Application of the optimized workflow.

Model improvements are mainly achieved by ensuring a high precision score and 581

dealing with noisy labels. Specifically, we used three different strategies: 1) Control the 582

precision to at least 0.9 through the precision/recall trade-off strategy, then train a new 583

classifier on the filtered reliable training set by the same method, this classifier is called 584

”precision 90”. 2) Generate another new training set by removing the noisy labels (false 585

targets) in the training set through the FDR control strategy. Specifically, the q value 586

was calculated using the gscore python package (which is a implementation of the 587

QVALITY algorithm [41]) to control the FDR at the 1% level and generate a new 588

training set. Through the same process as ”initial” classifier, it trains a new classifier 589

called ”qvalue cutoff”. Gscore algorithm is also used for downstream FDR control for 590

all optimized workflow. 3) Finally, we use confident learning [42] to enhance the initial 591

classifier. It is implemented using the CleanLab [43] package. Specifically, it trains a 592

robust version of the initial model that performs better with noisy labels. It improves 593

the model without removing any training indices, this classifier is called 594

”lnl”(LearnWithNoisyLabel). 595

Due to the deletion of part of the training set, the number of two categories is 596

uneven In ”precision 90” and ”qvalue cutoff” classifiers. The target/decoy ratio of 597

”precision 90” classifier is 9:1, and the target/decoy ratio of ”qvalue cutoff” classifier is 598
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1:5 (Supplementary table 2). Thus class weight=”balanced” parameter is used in SGD 599

classifier to balance the weight of the class during model fitting. It uses weighted 600

classification costs to alter the behavior of the learned classifier so that it gives more 601

weight to points in smaller classes and less weight to points in larger classes. 602

FDR control at fragment ion level 603

The entire optimized workflow is shown in Fig 6b. In order to perform FDR control at 604

the protein and peptide levels, we use the pyProphet scoring data instead of the 605

OpenSWATH output data as the input to the classifiers. So OpenSWATH and 606

pyProphet is conducted firstly in our workflow. In the next steps, each run is processed 607

individually, performing scoring, FDR control at fragment ion level, and precursor 608

intensity calculation. Finally each run is combined into a quantitative matrix. 609

Specifically, in each individual run, the resulting models first classifies all fragment 610

ions and gives a discriminant score, this discriminant score is then used to compute a q 611

value (via the gscore algorithm) for subsequent use in FDR control at the fragment ion 612

level. FDR control and filtering were first processed at the protein and peptide level, 613

which was achieved by aligning each run against a list of proteins and peptides in a 614

global model generated by pyProphet. We then perform FDR control at the fragment 615

ion level to filter fragment ions that were misassigned to the precursor ions in the 616

peptide list. 617

Precursor quantification 618

Finally, we calculate precursor intensities of the target peptides by four different 619

methods. 1) TopN strategy, that is, select top N optimal fragment ions and sum its 620

intensities; 2) Mean strategy, calculate mean intensities of all reliable fragment ions; 3) 621

Median strategy, calculate median intensities of all reliable fragment ions; 4) Sum 622

strategy, sums the intensities of all reliable fragment ions. 623

All runs are processed individually and then combined into a quantitative matrix. In 624

order to avoid data redundancy, we removed the protein with intensity NaN generated 625

by aligning back to the global model in all samples because it was not expressed in any 626

samples. 627

Differential expression analysis 628

Protein quantification matrix normalization and differential expression analysis were 629

performed in R studio on a local computer using the NormalyzerDE R package. In 630

addition to implement the retention time segmentation method, loess regression (using 631

the ”performCyclicLoessNormalization” parameter) was also employed, merged by the 632

mean normalization method. Data set evaluation and normalization quality assessment 633

and differential expression analysis were performed using empirical bayesian limma 634

method. The log2 fold change value, statistic p value and adjusted p value of the two 635

groups at the protein level are finally reported. 636

Process of multi-species proteomics data 637

In order to investigate whether the classifiers generated in the yeast benchmark 638

experiments can also be used for DIA data set containing multiple species. We used the 639

optimized workflow on low-fold change experimental data from a high-complexity data 640

set generated by Bruderer et al [32], which contained a total of four species (H. sapiens, 641

C. elegans, S. cerevisiae, E. coli). Data is downloaded directly from PRIDE with the 642

data set identifier PXD005573. All process of this data set is the same as the yeast 643
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benchmark data, except that the fragment ion classifier is already derived from the 644

yeast benchmark data. We also generated sample specific classifiers for this data set, 645

with all processing steps as same as for the yeast benchmark data. 646

Code availability 647

The code for this project is available in 648

https://github.com/Lina0125/QuantifyAtFragmentLevelWithClassifiers. It contains two 649

analysis pipelines (generalized pipeline and optimized pipeline) written in Snakemake 650

and a portable python package which can be used for quantifying DIA data at fragment 651

ions level. The generalized pipeline uses a combination of OpenSWATH, pyProphet and 652

TRIC to automate the routine processing of DIA data quantitative analysis. The 653

optimized pipeline uses a combination of OpenSWATH, pyProphet, and the python 654

package for scoring and filtering fragment ions. It further controls FDR at the fragment 655

ion level and allows fragment ions to be combined using user-selectable methods, which 656

enables quantification of DIA data at the fragment ion level in an automated, efficient 657

and user-friendly manner. 658
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Results 659

Generated classifiers 660

The trained classifier consists of an initial classifier and three classifiers trained using 661

three different improving methods. To gain insight into how each model differs in its 662

predictions and performance, we used Shapley values [44] to explain how every input 663

feature contributed to the output decision among all features in every classifier. In the 664

”initial” classifier, the mutual information score is the most important feature while the 665

mass deviation score is the least important feature on average. If a data point has the 666

higher mutual information score, it is more likely to be predicted as a target. On the 667

contrary, the higher intensity score leads to higher possibility to be predicted as a 668

decoy(Supplementary figure 2a). In ”precision 90” classifier, the mutual information 669

score is the most important, however, fragment ion intensity ratio is the least important 670

feature(Supplementary figure 2b); In ”qvalue cutoff” classifier, the shape correlation 671

between peaks in a peak group has most contribution to model output(Supplementary 672

figure 2c). Among the three classifiers, the higher peak shape correlation score leads to 673

higher possibility to be predicted as a target while higher isotope overlap score leads to 674

higher possibility to be predicted as a decoy (Supplementary figure 2). 675

Before classifiers are used in every run, we evaluated the precision score of every 676

trained classifier on the same test data set. Result shows that improved models all have 677

higher precision score than the reference (”initial”) classifier. The ”precision 90” 678

archived high precision score (0.977) as it is expected to be. ”qvalue cutoff” classifier 679

has the highest precision score (0.980) on test data set (Supplementary table 3). 680

Yeast benchmark data 681

The applicability of our workflow was first tested using the yeast standard benchmark 682

data. Four trained fragment ion classifiers are combined with the q value calculation 683

algorithm to filter and optimize fragment ions for peak groups. The filtered fragment 684

ions then were used to calculate precursor intensity using top3, mean, median and sum 685

strategy respectively. Each classifier is combined with the gscore algorithm and four 686

precursor calculation methods to form 16 results, which are compared with the baseline 687

result of the generalized workflow. 688
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Fig 7. The differential expression result of 8 different iRT peptides. a) Mean
method; b) Median method; c) Top3 method; d) Sum method.

The log2 fold changes for the 8 iRT peptides are more consistent when using 689

optimized workflow while it is more discrete in the generalized workflow(Fig 7). Among 690

the four calculation methods of precursor ions intensity, the mean strategy is the most 691

accurate due to the result that the log2 fold change of the 8 iRT peptides for all 692

machine learning methods is centered around 0(Fig 7a). 693

Specifically, at baseline, the mean deviation of log2 fold change values from 694

theoretical (0) for the 8 iRTs is 0.74±1.008, higher than all classifiers combined with 695

any quantitative method. Among all methods, the ”qvalue cutoff” classifier combined 696

with the mean quantification strategy is the most accurate, as its mean deviation of log2 697

fold change values for the 8 iRTs is 0.07±0.071 (Supplementary table 4), which is the 698

closest to the theoretical value (0). 699
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Fig 8. FDR changing curve for each method when given a ± 0.5 log2 fold
change tolerance. a) Mean method; b) Median method; c) Top3 method; d)
Sum method.

As shown in Fig 8, it is easy to see that the FDR values all increase while giving a 700

±0.5 tolerance interval of the theoretical log2 fold change value. This is because after 701

the tolerance x is given, between 0-x - 0+x log2 fold change range, more yeast proteins 702

are allowed to present while more mouse proteins are allowed to present in 2-x - 2+x 703

range, resulting in an increase in FDR. 704

When quantifying precursor ions using mean, median, and sum methods, the FDR 705

rise for each classifier was more gradual than baseline across the log2 fold change 706

tolerance range(Fig 8a,b,d). Among the top3 quantification method, although the FDR 707

of the lnl classifier is higher than that of all methods, the FDR of the rest classifiers is 708

stable regardless of the log2 fold change tolerance(Fig 8c). 709

Within this tolerance range, we calculated the accuracy of every method. A mouse 710

protein was considered correct when its adjusted p value was greater than 0.01 while a 711

yeast protein was considered correct when its adjusted p value was less than 0.01 within 712

±0.5 log2 fold change tolerance range. Accuracy represents the proportion of the sum of 713

the two values to the total number of proteins identified by each method. Results show 714

that optimized methods have higher accuracy within ±0.5 log2 fold change tolerance 715

range (Supplementary table 5). The mean accuracy of all optimized methods is 91.95, 716

which is 22.46% better than the generalized method. 717
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Fig 9. The number and species of protein deferentially expressed in the two
groups. a) Mean method; b) Median method; c) Top3 method; d) Sum
method.

When the adjusted p value of a protein is less than 0.01, we considered the protein 718

to be differentially expressed in the two groups. Yeast proteins are expected to be 719

differentially expressed. In the baseline, the number of mouse proteins differentially 720

expressed in the two groups was greater than the number of proteins in yeast (Fig 9), 721

implying a higher FDR and poorer accuracy. Among all quantification methods, the 722

top3 strategy results in fewer mouse proteins being differentially expressed in the two 723

groups compared to other quantification methods. 724

Statistically, the mean proportion of mouse proteins within differentially expressed 725

proteins in the optimized workflow is 37.68%, which is 39.77% lower than the baseline 726

workflow(62.56%, Supplementary table 6). This also indicates the improved accuracy of 727

our method compare to the generalized workflow. 728
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Fig 10. The ROC curve and ROC AUC score of different methods. a) Mean
method; b) Median method; c) Top3 method; d) Sum method.

Using yeast proteins as class 1, mouse proteins as class 0, and 1 minus adjusted 729

p-values as decision scores which can discriminate whether a protein is differentially 730

expressed or not. We plotted ROC curves of FPR and TPR as a function of decision 731

score threshold. As shown in Fig 10, FPR represents the proportion of mouse proteins 732

among differentially expressed proteins, while TPR represents the proportion of yeast 733

proteins among differentially expressed proteins. A ROC-AUC score of 1 indicates that 734

all yeast proteins are differentially expressed, while an AUC score of 0 indicates that all 735

mouse proteins are differentially expressed, i.e., the higher the ROC-AUC score, the 736

higher the accuracy. The ”qvalue cutoff” classifier combined with the mean 737

quantification method achieved the highest ROC AUC score of 0.9762 (Fig. 10a), 738

indicating the highest accuracy. When using top3 quantification method, ”qvalue cutoff” 739

achieved higher ROC AUC score than the generalized method (Fig 10c). When combine 740

with median quantification methods, all classifiers except the ”initial” have slightly 741

higher ROC AUC than the baseline (Fig 10b) while using mean and sum quantification 742

methods, classifiers except the ”initial” classifier achieved high ROC AUC score with 743

above 0.96 (Fig 10a,d). 744

Multi-species proteomics data 745

All classifiers have the highest ROC AUC score on average when cooperate with mean 746

quantification method on yeast benchmark data. So mean quantification method has 747

only been investigated on multi-species protein data. As shown in Supplementary figure 748
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3, lines show theoretical log2 fold change value for 4 species in 2 groups(yeast:-0.263, 749

caeel:-0.1375, human:0, ecoli:0.3785). The peak of the log2 fold change for each species 750

in generalized workflow, ”precision 90” and ”lnl” classifiers are closer to the theoretical 751

value. 752

We also generated sample-specific classifiers for this data set and found that the 753

results were not different from the results of the classifiers generated using yeast 754

benchmark data. 755

Discussion 756

Data analysis software typically quantifies peptides by aggregating the intensities of 757

fragment ions extracted from MS/MS spectra in standard DIA mass spectrometry 758

workflows. Previous methods for calculating precursor ion intensities by summing up 759

fragment ions with TopN intensities may have overlooked the fact that multiple 760

fragment ions interfere with each other in complex samples. 761

Here, we investigated a fragment ion level classifier and combination method based 762

on the OpenSWATH workflow, hoping to simplify fragment ion sorting and 763

automatically optimize peptide quantification using a subset of the precursor fragment 764

ion population. 765

We implemented these algorithms in a Python package and wrapped each function 766

of the workflow using Snakemake. We firstly used the SGD method to train the 767

classifier from 12 features of fragment ions, and improved the performance of the 768

classifier by ensuring a high precision score or dealing with noisy labels to provide a 769

cleaner training set through different methods. This provided a more accurate 770

discriminate score than the reference classifier for each fragment ion. We then extended 771

the use of a group available Python package gscore algorithm for computing the q 772

values of fragment ions for FDR control at the fragment ion level. After getting the 773

candidate fragment ions, we tried different combinations of fragment ions to calculate 774

precursor intensity. We combined these steps into a portable Python package that 775

contains discriminant score calculation, q value calculation, FDR control on fragment 776

ion levels, and different peptide quantification methods. It has user-friendly options and 777

can be easily accessed to analyze specific datasets. Finally, to optimize combined 778

fragment ions to provide quantitative information at the peptide and protein levels, we 779

combined this Python package with the OpenSWATH and pyProphet workflows to form 780

a simplified and optimized Snakemake pipeline. 781

On yeast benchmark proteomics data, we found an average accuracy improvement of 782

22.46% on the results of all machine learning models compared to the generalized 783

OpenSWATH workflow. This suggests that optimizing the combination of fragment ions 784

can improve the accuracy of protein quantification significantly. 785

Differences between classifiers 786

The average accuracy of the four classifiers on the yeast benchmark spike-in dataset is 787

higher than the standard workflow. This demonstrates the power of our fragment ion 788

ranking algorithm in combination with the target-decoy strategy. 789

Compared to other classifiers, The ”initial” classifier achieves the highest accuracy 790

within the ±0.5 log2 fold change tolerance range on average, when using 0.01 as the 791

cutoff of adjusted p values. This demonstrates the efficiency of the SGD training 792

method on large datasets. Even without handling noisy labels, this training method 793

achieves better protein quantification results than the standard workflows. However, 794

other classifiers have higher ROC-AUC scores and higher accuracy on iRT peptide 795

intensities than the ”initial” classifier. 796
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The ”precision 90” classifier achieves good accuracy regardless of the measurement 797

used. This shows that for the target-decoy classifier, it is necessary to have a minimum 798

number of false positives within the results being predicted to be the target, that is, to 799

ensure that the model has a high accuracy. 800

Based on the results, we would recommend ”qvalue cutoff” as the most practical 801

method because its performance is stable regardless of the quantification method. This 802

proves that q values calculation can be used to control false labels in the training space 803

during the model training phase. 804

There are usually many noisy labels in PSMs results. As shown in Supplementary 805

figure 4, the decision score distribution of the reference classifier has two peaks in the 806

entire decision score interval on the spike-in dataset, and the first peak almost coincides 807

with the decoy labels, which are considered to be the false targets, i.e. noisy labels. Low 808

quality labels usually lead to low quality predictions, so when many false labels are 809

treated as true labels, the accuracy of the model will be poor. Clean and accurate labels 810

are important for accurate predictions. Computing q values to identify and remove 811

noisy labels in the training dataset can generate a cleaner training set, which can 812

effectively improve model precision. The q value cutoff used to filter false targets in the 813

training set was 0.01, a smaller cutoff may result in higher accuracy on protein 814

quantification result but may result in a loss of true targets in the training space, so a q 815

value cutoff of 0.01 is recommended. 816

The ”lnl” classifier significantly outperforms the baseline on the yeast benchmark 817

spike-in dataset, but not as good as other classifiers. But on multi-species proteomics 818

data, it achieved higher accuracy than the ”initial” and ”qvalue cutoff” classifiers, 819

demonstrating the potential of this approach on similarly complex datasets. 820

Differences between quantification methods 821

We also investigated the differences between different precursor calculation methods. 822

The mean, median and sum strategies have similar results (different classifiers have 823

different results) regardless of the measurement used, probably because in these 824

methods, the peptide intensities are determined by using all fragment ions passing FDR 825

control. When using the top3 strategy, the results of different classifiers are relatively 826

consistent, which shows the stability of its performance. This suggests that further 827

combining fragment ions passing FDR control appropriately can significantly affect the 828

result of downstream protein quantification. 829

Among the four quantification methods, the ROC-AUC score of the top3 strategy is 830

relatively lower on average than the other three methods. This shows that the results of 831

the top3 strategy are more dependent on the cutoff value of adjusted p values than 832

other methods. The top3 strategy achieved the highest accuracy over the entire log2 833

fold change tolerance range when using 0.01 as a cutoff of the adjusted p values, and it 834

is more stable no matter what classifier it is combined with. We also investigated other 835

topN methods and found that top3 performed better than top1 and top2 method, which 836

means that there is a specific N that maximizes the accuracy of the topN method. We 837

therefore recommend the top3 method as the default quantification method. 838

Additionally, when selecting N fragment ions in the topN method, we sort the 839

fragment ions by q values rather than fragment ion intensities, so the final result 840

depends on the classifier’s decision scores rather than the fragment ion intensities. 841

Previous methods using the N most abundant fragment ions for quantification may 842

ignore the fact that the fragment ions passing FDR control may originate from multiple 843

peptides. These shared fragment ions can be filtered by specific algorithms in future 844

work. Sorting fragment ions by intensities in the topN method may significantly change 845

the results after excluding shared fragment ions. Furthermore, in the topN method, 846

when N is greater than 1, the FDR control at the fragment ion level will result in 847
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uneven fragment ion numbers, which may introduce errors and needs to be addressed in 848

the future. 849

Other methods such as mean and median methods cannot achieve the same accuracy 850

as top3. We suspect this is because the mean and median intensities of fragment ions 851

may not be able to represent peptide intensities. Fragment ions with smaller intensities 852

will significantly reduce the peptide intensity. This will lead to an overestimation of 853

fragment ions with low abundance and a severe underestimation of fragment ions with 854

high abundance. 855

Possible improvements 856

Due to the large amount of data, this project has limited options in model training 857

method. The total data points are 42531675, which makes the ”hold-out 858

cross-validation” and SGD methods the best and the only method. However, in general, 859

k-fold cross-validation training method is more stable than hold-out at the cost of a lot 860

of computation and training time on large datasets. 861

We found that the performance of the yeast benchmark proteomics classifier and the 862

classifier generated using the four species low fold change proteomics data showed 863

consistent performance on the four species low fold change proteomics data. This 864

demonstrates the potential applicability of the classifier on other datasets, if one 865

classifier works for all experiments, it will save the model training and improvement 866

process. So, it is necessary to spend more time to improve the performance of the 867

classifier in the future. This can be achieved by using new training algorithms, by 868

optimizing features or adding new features. Building different layers and training a 869

neural network model to change how different features are combined and compute their 870

weights may achieve better results. In the selection of features, the contribution of some 871

features to the model output varies across classifiers, while the contribution of other 872

features to the model output remains consistent across classifiers (Supplementary figure 873

2). Shapley values can be used as a reference to filter features that have less effect on 874

the model in all methods. The backpropagation process is another candidate, which 875

allows the model to learn the weights of the input features. In addition, other manually 876

calculated features, such as fragment ion interference scores, can also be added into the 877

input features. 878

Conclusion 879

Previous standard DIA quantitative analysis workflows ignored the fact that fragment 880

ions can interfere with each other in complex samples. In this project, we tested the 881

possibility of using machine learning and algorithms for FDR control at the fragment 882

ion level to pick the most optimal fragment ion population to improve the accuracy of 883

peptide quantification. Using the algorithmic approaches we suggested in combination 884

with machine learning to determine fragment ion ranks within a peak group, we can 885

combine them in an optimal way to provide more precise peptide quantification and 886

improve the accuracy of protein differential expression results significantly. 887
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