
IDENTIFYING PIGGYBACKING

WITH RADAR AND NEURAL

NETWORKS

HANNES OLSSON, JOEL SIGURDSSON

Master’s thesis
2022:E67

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract

A common problem in access control is piggybacking. This is when a person
without authorized access sneaks closely behind another with access through
a door. This thesis seeks to answer whether using radar is a viable solution
when attempting to detect piggybacking. Detection will be made by classifying
sequences of point clouds generated by the radar, using neural networks. The
thesis compares two different placements of the radar, at the side of- and above
a door, with an existing camera based piggybacking detection solution.

In addition to comparing the results, the development of the model will
be described in detail. This includes exploring different architectures for the
neural network(s). Moreover, strengths and weaknesses of radar technology,
compared to camera technology will be discussed.

The results show that all three solutions perform well, with accuracy above
99% when one or two people are walking normally in frame. When comparing
the solutions on more challenging scenarios such as one person carrying a big
box or two people hugging while walking, both radar based solutions outperform
the camera based solution.

In general, slightly better separation between people can be seen in the
point clouds generated by the radar placed above the door. This resulted in
slightly better performance compared to the placement at the side of the door
in certain scenarios.

In a world where privacy and integrity is more valued than ever, radar has a
big role to play in modern access control solutions. The results from this thesis
show that a radar can perform at the same level, and sometimes better than a
camera for detecting piggybacking.

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Piggybacking . 1
1.1.2 Radar versus Camera . 1

1.2 Purpose . 2
1.3 Prior Research . 3

1.3.1 Classification on high resolution 3D models 3
1.3.2 Pose classification of people 4
1.3.3 Classification on point clouds 4

1.4 Statement of contribution . 4

2 Theory 5
2.1 Radar . 5

2.1.1 FMCW Radar . 5
2.2 Artificial Neural Networks . 8

2.2.1 Activation of Neurons . 10
2.2.2 Optimization . 13
2.2.3 Convolutional Neural Networks 18
2.2.4 PointNet . 20
2.2.5 Recurrent Neural Networks (RNN) and LSTM 22
2.2.6 Overfitting . 24
2.2.7 F-score . 26

2.3 Camera based Piggybacking detection 27

3 Method 29
3.1 Generation and preprocessing of data 29

3.1.1 Hardware setup . 29
3.1.2 Categorization of data . 29
3.1.3 Data recording . 31
3.1.4 Point filtering . 32
3.1.5 Velocity augmentation . 33
3.1.6 The final datasets . 34

3.2 Model 1: 3D CNN . 35
3.3 Model 2: PointNet . 37
3.4 Model 3: LSTM and PointNet . 39
3.5 Implementation of subcategories . 40

3.5.1 Introducing Multiple Networks 42
3.6 Implementing a real-time classification model 44
3.7 Manual Test Design and Execution 48

4 Results 50

4.1 Manual tests . 50

5 Discussion 54
5.1 Comparison between network-structures 54
5.2 Limitations . 55
5.3 Computation time . 55
5.4 Decision thresholds . 56
5.5 Future Work . 56

5.5.1 Experimentation with decision thresholds 56
5.5.2 Different environments and movement patterns 57
5.5.3 Variety of scenarios . 57
5.5.4 Parameters for the real-time classification 57

6 Conclusion 59

1 Introduction

1.1 Background

This is a project idea that has been developed by the New Business Access Control
division at Axis Communications, together with the authors. One major security
threat in access control is piggybacking. Piggybacking is when a person with au-
thorized access unlocks a security door, and someone without access walks in closely
behind them. There are existing solutions for identifying this scenario using camera
technology, but Axis would like research regarding the viability and effectiveness of
using radar technology. Recording an area with cameras is sometimes restricted by
law, while doing so with radar might not be. For this reason, usage of radar can be
of interest even if it does not outperform the camera solution.

1.1.1 Piggybacking

In certain access control situations it can be of interest to monitor whether multiple
people are attempting to pass through a security door in tandem. By walking very
close to each other, a malicious employee can make it difficult for surveillance systems
to identify the unauthorized second person. Axis’ existing surveillance systems for
this type of detection is based on camera technology. It has been determined to be of
interest to explore whether a high-resolution FMCW radar can be used for the same
purposes.

1.1.2 Radar versus Camera

For the purpose of detecting piggybacking, the point clouds from a radar have a few
major advantages over images from a camera that are purely technical. They contain
data in three dimensions and they contain velocity data. The trade off for this is
a loss of detail. See Figure 1 for an example of how the same scene looks when
represented in both camera image and radar point cloud. All that can be seen is
the shape of the objects in the radar’s field of view. The radar is also not affected
by lighting conditions and changes in the environment, such as whether it is raining
or not in a scene. When considering non-technical aspects, radar has advantages in
aspects related to economy and integrity. From an economical point of view, a radar
is generally cheaper to produce than a video camera. From an integrity point of view,
a radar is a lot less intrusive since it only sees shapes, and can not be used to identify
a person. In some places, camera surveillance is restricted by law, while surveillance
using radar might not be.

1

Figure 1: View from the camera and the radar at the reader position

Figure 2: View from the camera and the radar at the roof position

1.2 Purpose

The purpose of this thesis is to design a viable model for pre-processing raw radar-
data as well as classifying a set of scenarios related to piggybacking. There is no
specified number for what level of accuracy would considered ’viable’. Two important
thresholds would be if it performs better than a guess, and if it performs as well as
the camera solution. Furthermore, two radar units will be used. One will be located
above the door, recording at a suitable downwards angle. The other will be placed
at the side of the door, roughly at chest height, angled horizontally. The views from
both radars can be seen in Figure 1 and Figure 2. A sketch showing the two different
placements of the radars can be seen in Figure 3. Data will be recorded from both
points of view simultaneously, with the intent to compare the two positions in terms
of accuracy.

The research questions that this thesis seeks to answer is:

• (RQ1): Is radar at all a viable solution for this type of classification problem?

• (RQ2): How does the developed radar solution perform in comparison to an
existing camera solution on the same test data?

• (RQ3): What is the preferred placement of the radar: Above the door, or at
the side of the door?

On top of these research questions, two additional purposes are formulated as:

• (AP1): Develop a model with the best possible accuracy given the project’s
time constraints.

• (AP2): Provide insights that can aid development of similar projects.

2

Figure 3: Drawing showing the two positions of the radar

1.3 Prior Research

1.3.1 Classification on high resolution 3D models

A resource frequently used (e.g. [14], [17], [18], [22]) in research regarding classification
on high resolution 3D models is ShapeNet [3]. With high resolution means that the
shapes are detailed enough that a human can easily tell what it is. ShapeNet is a
database that contains two different datasets that are used to evaluate models on
classification of 3D models. These datasets are called ShapeNet10 and ShapeNet40

3

and include 10 and 40 classes respectively. Some examples of classes are airplanes,
cars and cups. As of September 2022, the state of the art model on ShapeNet is
PIG-Net [18]. Another good performer is PointNet [22], which will be central within
this thesis.

1.3.2 Pose classification of people

In a previous thesis at Axis, the same radar hardware was used to classify humans
as either standing, sitting or lying down. Important take-aways from this thesis is
how proficient PointNet is at classifying peoples poses [1]. Given this proficiency at a
fairly similar problem, with the same radar, PointNet would be expected to perform
well on the piggybacking problem.

1.3.3 Classification on point clouds

Point clouds are challenging to classify. One reason for this is that they are unordered.
Therefore, for a model to be successful at classifying point clouds, it needs to be
invariant to input permutation [22]. According to R.Qi et al. there are three ways of
handling this. The first solution is to order the input canonically. The second would
be to treat the input as a sequence and augment the data by all possible permutations,
and train a RNN on the permutations. Thirdly, one could use a symmetric function
to aggregate the information from each point [22]. The creators of PointNet argue
that using a symmetric function to aggregate the information is the most effective
way.

1.4 Statement of contribution

Throughout the thesis work, Hannes Olsson and Joel Sigurdsson have been working
closely together with most aspects of the project. Some division of labor during the
development phase was done, where Joel had more responsibilities regarding the im-
plementation of software suited to his relative expertise in computer science. Hannes
focused more on experimenting with the networks, making changes to architecture
and hyperparameters to find improvements in performance. This was suited to his
relative expertise in mathematics. Every chapter of the thesis has been worked on
together, although some division of labor for subsections has been done. The contri-
butions to both the development phase and the writing phase have been equal.

4

2 Theory

In this chapter, the knowledge applied within the thesis will be explained. The chap-
ter will briefly cover FMCW radar and the camera solution. It will also provide an
overview on neural networks, as well as explanation of techniques that are imple-
mented during the project.

2.1 Radar

Radar is a technology that can measure distance to an object using radio-waves. In
addition to measuring the distance to an object, it can also be used to measure the
angle to the object, the object’s velocity and direction of the velocity. A radio wave is
emitted in pulses or continuously by the radar, the wave is then reflected by objects in
its field of view back to the radar. From now on, a radar that emits its signal in pulses
will be referred to as a pulsed radar, and a radar that emits its signal continuously
will be referred to as a continuous radar.

2.1.1 FMCW Radar

The radar modules used in this project are Frequency-Modulated Continuous Wave
radars or FMCW for short. The FMCW radar is a variation of the Continous Wave
radar, CW for short. One major difference between pulsed radar and Continuous
Wave radar is that instead of sending out pulses, the CW radar radiates a continuous
signal. This gives it different properties compared to pulsed radar. The CW radar
is generally simpler and uses less power, it can detect objects that are very close to
the radar and it has a higher resolution than the pulsed radar. It also has a lower
maximum range than a pulsed radar. A pulsed radar can operate on ranges in the
kilometers, while a CW radar is effective up to about 100 meters. This range varies
depending on the radar in question. Being able to detect objects very close to the
radar makes it ideal for the use case within this thesis. One disadvantage of the CW
radar is that it cannot tell the distance to an object. This is why an FMCW radar is
used instead of a regular CW radar. The FMCW radar maintains positives of the CW
radar, such as having high resolution and being able to detect objects very close to the
radar, with the added property that it can measure distance to an object. It does this
by modulating the frequency of the transmitted signal. Modulation of the frequency
during transmission is also known as transmitting in chirps. The distance to the
object is then calculated by considering both the difference in phase and frequency,
between the transmitted signal and the received signal. This is referred to as the
Doppler shift [2]. A complete FMCW radar system consists of atleast two antennas,
one or more TX antennas for transmitting and one or more RX antennas for receiving.
It also includes a synthesizer that generates the chirps and a mixer combining the
transmitted and received signals. The mixer combines the signal generated by the
synthesizer that is currently being transmitted, and the signal received by the RX

5

Figure 4: (1) the synthesizer, (2) one or many TX antennas, (3) one or many RX antennas,
(4) the mixer, (5) the IF signal. The arrows show where the radio signal is sent.

antenna. This combined signal is called the IF signal and it contains important
properties that will be used to calculate distance, velocity and angle to an object.
Figure 4 shows a complete FMCW radar system, in a block diagram. The FMCW
radar module used in this thesis has a high resolution. For two points to be seen as
two separate points, they need to be at least 5.8 cm apart.

Range measurement As previously mentioned, FMCW radar uses frequency mod-
ulation of the transmitted signal to determine distance to a target. The transmission
is done in chirps that have a start frequency fc, a bandwidth B, a duration Tc and a
frequency shift S [12]. Figure 5 shows how the chirps look with regard to amplitude
over time and frequency over time.

Once a reflected signal is received, the mixer combines the two sinusoidal waves into
a single sinusoid. The frequency of the IF signal (the combined sinusoid) is equal
to the difference between the frequencies of the transmitted signal and the received
signal and the phase of the IF signal is equal to the difference in phase between the
transmitted signal and the received signal. The distance d to an object is calculated
as

d =
c|∆t|
2

=
c|∆fr|
2S

, (1)

where c is the speed of light, ∆t is the time delay, ∆fr is the frequency difference and
S is the frequency shift per time unit [12].

Velocity measurement Using the phase difference from the sinusoid produced by
the mixer, the velocity v of an object can be calculated as

6

Figure 5: Plots showing the chirps with amplitude and frequency over time.

v =
λ∆ω

4πTc

, (2)

where ∆ω is the phase difference between the transmitted signal and the received
signal, λ is the wavelength and Tc is the time between chirps [12].

Angle measurement If more than one RX antenna is used, the angle to an object
can be measured. This is the so-called angle of arrival (AoA). With two RX antennas
at a distance ∆d from each other, the angle of a reflected signal can be calculated by
analyzing the phase difference at the two antennas.

The phase difference ∆ϕ between the RX antennas is calculated as

∆ϕ =
2π∆d

λ
. (3)

Using basic geometry one can show that ∆d = l sin(θ), where l is the distance between
the two RX antennas and θ is the angle of arrival. For the example setup in Figure 6,
θ can be calculated as

θ = sin−1(
λ∆ϕ

2πl
). (4)

7

Figure 6: Example setup of TX antenna (green) and RX antennas (red) for AoA calculation.

Determining (X, Y, Z) coordinates To be able to determine the position of a
point in the room, at least three RX antennas positioned in different planes are needed.
With more than three antenna, both the vertical angle θ and the azimuth angle σ
can be calculated. The azimuth angle is an angle in a spherical coordinate system,
more precisely it is the horizontal angle from a cardinal direction. Once you have the
distance d, the vertical angle θ and the azimuth angle σ, it is fairly straightforward
to determine the (X, Y, Z)-coordinates of the point, which are calculated as

X
Y
Z

 = d

cos(θ) ∗ sin(σ)
cos(θ))

cos(θ) ∗ cos(σ)

 , (5)

where θ is the vertical angle, σ is the azimuth angle and d is the distance to the
radar.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs), also referred to simply as neural networks, are an
attempt at creating a mathematical reproduction of the structures found in the human
brain [9]. This is achieved by creating an assembly of simple processing elements, with
a functionality loosely based on the neurons found in humans and other animals.
Neurons are nerve cells that communicate via impulses of voltage in the cell wall. A
neuron typically receives input from many thousands of connections, which are, in
simple terms, summed together in the cell body to result in an output resulting in a
voltage impulse. Synapses mediate the connections by adjusting the strength of the
signal, and are modeled as weights in the artificial neuron, which similarly considers
a sum of all the weighted inputs before calculating an output.

Artificial neural networks can be used for a variety of purposes. In this thesis the
application will be a classification problem. This is essentially the task of guessing the

8

correct label for an image, based on a predetermined set of classes. A label is a pointer
that contains information regarding which class a piece of data belongs to, but the
terms are practically interchangeable. An example of this task is classification of hand-
written digits. A resource that can be used for such research is the MNIST dataset,
which contains 70,000 images [15]. Classification of MNIST involves assigning one of
ten labels corresponding to the digits 0-9 to a large set of images with a resolution
of 28x28. See Figure 7 for an example of labeling. While typical 2D images is a
more common subject for image recognition, in this thesis the images will be in the
form of 3D point clouds, and the classes used will be either ’Piggybacking’ or ’Not
Piggybacking’.

Figure 7: Samples from the MNIST dataset and their respective labels [24, p.3].

Artificial neural networks (ANN) consist of five main components: artificial neurons,
connections, activation functions and biases living on the artificial neurons, as well
as weights living on the connections. A column of artificial neurons is referred to
as a layer. Artificial neurons are hereafter referred to simply as neurons or nodes.
These terms will be used interchangeably. ANNs are created by connecting layers
of artificial neurons. See Figure 8 below for a simple example network. The size of
a layer refers to how many neurons it contains. Each neuron in the network has a
single output value, also referred to as an activation. This output depends on the
connections from the previous layer, their related weights, the neuron’s bias, and
finally an activation function. How these activations are calculated will be further
explained in Section 2.2.1.

There are multiple types of neural networks. Two examples which will be used in
this thesis are feedforward networks and recurrent networks. The network shown in
Figure 8 is a fully connected feedforward network. In a fully connected feedforward
network, each neuron’s output value is passed on to every neuron in the next layer,
until the output is reached. The two hidden layers in Figure 8 are dense layers,
meaning that they are fully connected to the previous layer. Hidden layers simply

9

refers to any layers between the input- and output layers. The output layer is the
final layer in the network, in this case a dense layer of size 1. Arrows between neurons
represent the connections, each of which is associated with a unique weight. Recurrent
neural networks will be covered in Section 2.2.5.

Figure 8: Example ANN with three inputs (squares), two hidden layers of neurons (circles),
and a single output neuron (circle).

2.2.1 Activation of Neurons

To clarify how information travels through the network, it is crucial to explain how
the neurons are activated. As an example, the sum of the weighted inputs and the
bias, z31 , for the single output neuron n3

1 in layer 3 of Figure 8 can be calculated
according to

z31 = w3
1,1a

2
1 + w3

2,1a
2
2 + w3

3,1a
2
3 + b31. (6)

Note that the input layer is counted as layer 0. The notation wk
i,j refers to one specific

weight. The superscript refers to the layer the weight is received by, currently k = 3.
The subscript i, j refers to the position of the relevant neurons in their respective
layers: i for the sending neuron and j for the receiving neuron. For example, the
weight associated with the highlighted connection in Figure 9 would be referred to as
w3

3,1. Note that weights are assigned to the receiving layer. Similar notation applies
for the output value of each neuron, denoted as aki , but since this value is the same
for all connections originating in the neuron there is no need to specify which neuron
it is pointing to in the receiving layer. The bias of a neuron nk

j is denoted as bkj .

10

Figure 9: Highlight of the connection related to the weight w3
3,1 and the output a23.

In more general terms, the activation akj ∈ R of a neuron nk
j with position j in

the layer k is calculated using the outputs from the entire previous layer ak−1
i ∈ R,

i ∈ {1, 2, .., n}, where n ∈ N is the size of the layer k − 1. The calculation also
involves a bias bkj , and a set of weights wk

i,j ∈ R. These values, denoted zkj , are then
fed through a selected activation function f : R→ R according to

akj = f(zkj) = f(
n∑

i=1

(wk
i,ja

k−1
i) + bkj). (7)

Within this thesis, each layer uses a specified activation function to calculate the out-
put for each neuron. The selection may vary between layers. The networks used in
this thesis utilize the following two activation functions: the sigmoid function, which
can be seen in Figure 10, and the rectified linear unit (ReLU) function, which can be
seen in Figure 11. There are no well defined rules regarding optimal choices of activa-
tion functions for each specific application of ANNs [19]. These were selected as they
are commonly used in practice, and showed good results for this application.

Since layers are structured as columns, it stands to reason that activations for an
entire layer can be efficiently described using column vectors. The activations for the
layer k can be calculated by replacing the sums with matrix operations:

ak = f(W kak−1 + bk) (8)

Here, each row of the matrix W k ∈ Rm×n corresponds to the weight vector wk
j ∈ Rn

for each neuron j ∈ {1, 2, ...,m} in the receiving layer k. The vector ak−1 ∈ Rn is a
column vector containing all the outputs of the previous layer k − 1. The activation
function f is applied element wise, e.g for an example vector v, see (9).

11

The sigmoid function: σ(z) :=
1

1 + e−z

Figure 10: The sigmoid function visualized. The horizontal axis represents z, the vertical
axis represents the activation.

The ReLU function: R(z) := max(0, z)

Figure 11: The ReLU function visualized. The horizontal axis represents z, the vertical
axis represents the activation.

f

([
v1
v2

])
=

[
f(v1)
f(v2)

]
(9)

By repeating (8), a network with K ∈ N layers can be represented in a single function
y, where x is the input vector and θ represents the configuration of weights and biases
for the entire network, known as the parameter vector. The output of the neural
network is then the output of a function y : Rm × RM → Rd,

y(x,θ) = fK(WKfK−1(...f 2(W 2f 1(W 1x+ b1) + b2)...) + bK). (10)

To break this function down, consider first the activation functions f 1,f 2, ...,fK .
These are the selected activation functions for each layer. The parameter vector θ
contains the weight matrices W 1,W 2, ...,WK and bias vectors b1, b2, ..., bK for each
layer, and is of length M . The property of each layer being dependent on all previous

12

layers is captured using functions within functions. The deepest parenthesis in the
function, f 1(W 1x+b1), contains the input vector x as well as the weights and biases
from the first layer. These values are put through the activation function f 1, resulting
in the output vector a1 from the first layer. This output vector is then used to make
the same calculation for the second layer via f 2. By repeating this for all layers, the
final output vector y(x,θ) can be calculated. This output vector will have length d,
which corresponds to the amount of output neurons in the network.

Interpreting the output vector can be done in different ways. For example, when
classifying the aforementioned MNIST dataset of digits with ten classes, a reasonable
choice would to have an output vector of length 10, one for every digit. The activation
of every neuron in the output layer would correspond to how similar the network
considers the input image to each class. The specific answer could then be selected
as the neuron with the strongest activation. In this thesis, another approach called
binary classification will be used, as only two classes [Not piggybacking, Piggybacking]
will be considered. The networks will use structures with a single output neuron using
sigmoid activation: y(x,θ) =: σoutput, a scalar with range (0, 1). The classification is
then made according to

Classification(σoutput) =

{
Not piggybacking, if σoutput < 0.5

Piggybacking, if σoutput > 0.5
. (11)

2.2.2 Optimization

So far Section 2.2 has covered how a neural network makes a decision. But the
question remains how these decisions can be more than a wild guess. The set of
weights and biases θ is at the core of this functionality. By selecting these parameters
in an appropriate manner, the decisions made by the neural network can become
increasingly accurate. This iterative selection process of parameters, typically referred
to as training the network, will be covered within this section. The parameters θ will
be referred to as trainable parameters.

Cost functions To enable quantitative evaluation of a network’s decision making,
a cost function will be utilized. The cost function will be defined in such a way
that a lowering in the cost is equivalent to an increase in accuracy. The purpose of
optimization will then be to minimize the cost function. Cost is also typically referred
to as loss, and will be used interchangeably.

A basic example of a cost function is the quadratic cost function, defined as

C(X,θ) :=
1

2n

n∑
i=1

||ŷ(xi)− y(xi,θ)||2. (12)

13

The notation ||.|| refers to the L2 norm, X ∈ Rn×m is the full dataset of inputs,
specifically a matrix where each row corresponds to an input vector. Every input
vector xi has length m ∈ N, and there is a total of n ∈ N inputs. The function
ŷ : Rm → Rd outputs the label vector for every input vector. The cost function
calculates the square of the length of a vector with the difference between the label
vector ŷ(xi) and the output vector y(xi,θ). For example, when using one output
neuron i.e. d = 1 with sigmoid activation, ŷ(xi) will be a scalar with value 0 or 1 for
each xi. An uncertain answer close to the breakpoint 0.5, such as y = 0.44, might
result in a correct classification if the answer is ŷ = 0, ’Not Piggybacking’, but it
will still incur a cost. The quadratic nature of the cost function is to further increase
the penalty of classifications which are far off the mark, relative to small errors. The
costs for all n inputs in the set X are summed together and normalized, resulting in
the final cost C.

Another example of a cost function, specifically the function that will be used within
this thesis, is the binary cross-entropy function. This is defined as

C(X,θ) = − 1

n

n∑
i=1

(
ŷ(xi) · log(y(xi,θ)) + (1− ŷ(xi)) · log(1− y(xi,θ))

)
. (13)

Here, the function y : Rm × RM → R is similar to y, except it requires d = 1.
Similarly, ŷ : Rm → R, will again output the correct label for a sample xi, but in
this case the output is always a scalar: ŷ(xi) ∈ {0, 1}. Because of this property, one
of the terms ŷ(xi) and (1 − ŷ(xi)) will always be 0, while the other will be 1. The
individual terms in the sum that runs over the dataset of size n will therefore either
be log(y(xi)) if the label is 1, and log(1− y(xi)) if the label is 0.

These terms are essentially the logarithm of the probabilities of each entry xi belong-
ing to its class ŷ(xi). Because the logarithm is an exponential curve that is large close
to zero, it penalizes low probabilities. By minimizing the binary cross-entropy, the
model will become increasingly certain of which category a new sample belongs.

Backpropagation After defining a cost function to evaluate performance, the fol-
lowing challenge is to select a set of weights and biases such that (13) is minimized.
The explanation presented in this subsection will be a summary of the method ex-
plained in Chapter 2 of [19], an example based on simple feedforward networks. The
essence of this process is to calculate the gradient of the cost function with regard to
θ, ∇θC, which is a vector containing the partial derivatives for the cost function with
regard to every weight and bias in the network, ∂C

∂wk
i,j

and ∂C
∂bkj

. Due to the large amount

of connections in a typical network, the gradient will be a vector of considerable di-
mensionality. For example, the networks used during this thesis had a parameter

14

count ranging from tens of thousands to millions. But the core of the computational
complexity is the fact that a weight in a given layer will be impacted by the config-
uration of every trainable parameter in previous layers. Calculating ∇θC is at the
essence of machine learning, and is typically done using the backpropagation algorithm
or a variation thereof such as Adam, which will be explained in the paragraph titled
Adam. For readers unfamiliar with the backpropagation process, the authors would
like to suggest [26] for a brief introduction, or [19] for a more in-depth yet pedagogical
explanation.

The first step of explaining the backpropagation algorithm is defining the error δkj of
a neuron j in layer k according to

δkj :=
∂C

∂zkj
. (14)

Again, z refers to the sum of weighted inputs and bias before an activation function is
applied. The following method will allow for calculation of the error for every neuron
in the system, as well as using those values to calculate ∂C

∂wk
i,j

and ∂C
∂bkj

which will be

contained within the gradient. The first step is to calculate the error for each neuron
in the final layer K according to

δKj =
∂C

∂aKj
f ′(zKj). (15)

The right side of (15) contains the effect of the neuron’s activation on the cost function
multiplied by the derivative of the activation function for that specific value of z. Both
of these terms can be computed after feeding forward through the network to calculate
the output vector. The second step is to define an equation that allows for a layer’s
error vector δk to be calculated given δk+1,

δk = ((wk+1)Tδk+1)⊙ f ′(zk). (16)

Since the error for the final layer, δK can be calculated using (15) above, (16) can
be used to calculate the errors backwards through the entire network. This approach
is the origin of the backpropagation algorithm’s name. The operator ⊙ refers to
the Hadamard product. Once this action is performed, the partial derivatives for
the gradient can now be calculated according to the following equations (17) and
(18).

15

∂C

∂bkj
= δkj (17)

∂C

∂wk
i,j

= ak−1
i δkj (18)

Gradient Descent After calculating the gradient, the set of weights and biases
will be adjusted. The gradient is a vector of partial derivatives, in other words a
measurement of how much every parameter impacts the cost, and in which direction.
By taking a step in the direction of the negative gradient, the cost is reduced. Iterating
this process to gradually reduce the cost function is referred to as gradient descent
[27]. Parameters with a large partial derivative get a relatively larger nudge, while
those with a smaller impact receive less adjustment. The overall size of adjustment
is determined by η, referred to as the learning rate.

For an arbitrary trainable parameter (any weight or bias) p the adjustment ∆p is
calculated as

∆p = η · ∂C
∂p

. (19)

For the entire configuration of the network, the parameters will be updated according
to

θt+1 ← θt − η · ∇θC(X,θt). (20)

The learning rate is a hyperparameter, one of the overall settings configured prior to
any training. Other examples of hyperparameters are the number of epochs and the
batch size. An epoch is a training performed over the entire set of training data. The
batch size is the amount of input vectors processed before a parameter adjustment is
performed.

Gradient descent is performed in the case where the gradient is calculated using the
entire dataset, i.e. when the batch size is equal to the amount of input vectors. This
can be problematic when the dataset is very large, for various reasons. The most
apparent reason experienced during this thesis was limitations in GPU memory, since
larger batches require more memory to process, but configuring this hyperparameter
is also the focus of much research, for example [6], [16], [24]. When using a batch size
of less than the total number of samples, steps will be performed using a gradient
calculated for a single batch. Thus multiple timesteps will be made during each epoch,
according to

θt+1 ← θt − η

(
1

B

B∑
i=1

∇θC(xi,θt)

)
, (21)

16

where b ∋ xi is a batch sampled from X, and B is the batch size. This variation
of gradient descent is referred to as mini-batch gradient descent. The reader might
be familiar with the term stochastic gradient descent, which refers to the special case
B = 1.

Adam The choice of optimizer used for training the networks within this thesis is
Adaptive Moment Estimation, or Adam. It is an optimizer that shows robustness and
performance in several case scenarios, and is preferred in all types of applications by
some neural network researchers [5]. Adam was designed to combine the advantage
of two, at the time, popular methods [13]. The first is AdaGrad, which is designed to
function well on sparse gradients. The second is RMSProp, which performs well when
working with non-stationary settings, i.e. when the theoretical optimal function the
network is trying to learn changes over time.

A key feature of Adam is the inclusion of the exponential moving averages of the
gradient (mt), and a moving average of the squared gradient (vt) in the update rule
[13]. The required inputs are the learning rate η, the exponential decay rates β1, β2 ∈
[0, 1), the cost function C, and the initial parameter vector θ0. The parameters
m0,v0, and the timestep t are initialized as vectors of zeros. These moving averages
decay at rates β1, β2 respectively, and are updated for each timestep according to (23)
and (24). All operations in the following equations are performed element wise.

gt+1 ← ∇θC(X,θt+1) (22)

mt+1 ← β1 ·mt + (1− β1) · gt+1 (23)

vt+1 ← β2 · vt + (1− β2) · (gt+1)
2 (24)

Because the moving averages are initialized as 0, they will have an initialization bias.
This is counteracted by initialization bias correction which will not be covered in
detail, but can be read at [13, p.3]. The bias-corrected moving averages are m̂t =
mt/(1− βt

1), v̂t = vt/(1− βt
2), and will be used in Adam’s update rule:

θt+1 ← θt − η · m̂t√
v̂t+ϵ

. (25)

Here, ϵ is a scalar typically set to ϵ = 10−8 used to avoid division by zero. Note that
(22) corresponds to gradient descent. If mini-batch gradient descent is desired, (22)
should be replaced with

gt+1 ←

(
1

B

B∑
i=1

∇θC(xi,θt)

)
, (26)

similar to (21).

17

Adam was selected as the optimizer of choice due to several factors. The primary fac-
tor was due to familiarity, as it’s a common occurrence in machine learning courses ex-
perienced by one of the authors. This decision was reinforced by considering compar-
isons of algorithms such as [25] where Adam is described as possibly the best choice,
and [5] where its performance is among the top three for all tested datasets.

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are some of the most commonly used neural
networks in the world. They are a type of feedforward network. Their primary use is
for image classification. The way it uses convolutions makes it efficient at extracting
shapes and features from images.

The typical structure of a CNN can be seen in Figure 12. Like all neural networks, it
starts with an input layer. Following the input layer comes a structure containing a
convolutional layer followed by a pooling layer. This structure can then be repeated
until the results are satisfactory. This sequence of layers split the input image into
smaller images called filters. The job of the filters is to capture small shapes and
features of the original image, that might repeat in other images of the same class.
For example if the input image is of a bird, one or many of the filters might try to
capture the beak while some other filters might try to capture the feet. Once the
image has been split into small enough filters that capture all interesting features,
the output of the final pooling layer is flattened and fed into one or many dense layers.
Eventually you reach the output layer that has one or many output neurons.

The Convolutional Layer When people think of a convolutional layer they usually
think of the two dimensional kind, but CNNs also exist for one dimension and three
dimensions. A convolutional layer uses a kernel of a fixed size, the kernel moves
along all dimensions of the input and performs element wise multiplication between
the kernel and the current kernel sized window of the input. In the example in
Figure 13, a two dimensional convolution is shown. It uses a (3, 3) kernel with different
weights. It is currently on the fourth convolution, moving from left to right and top
to bottom.

The Pooling Layer The pooling layer’s job is to reduce the dimensionality of the
network. This is done by aggregating the output of the convolutional layer using some
operator or function. The most common one, and the one used in this thesis is Max
Pooling. It uses the max operator [7]. In Figure 14 another method called Average
Pooling is also included to highlight the differences between pooling methods.

3D CNN and Voxelization for Point clouds Convolutional networks usually
require highly regular formats for the input data [22]. A direct way of using CNNs
with point clouds is to utilize three dimensional convolution kernels. These work

18

Figure 12: Typical structure of a CNN

similarly to convolutional kernels in one or two dimensions, but instead of moving
the kernel along one or two axes the kernel moves along three axes. For this to work,
every input needs to have the same dimensions. A common strategy to ensure this is
voxelization [22]. A voxel is the three dimensional equivalent of a pixel. Voxelization
means a room is defined with a fixed resolution of (X, Y, Z) voxels. This room contains
voxels of size (x, y, z) in some unit (e.g. metres), depending on the amount of voxels
and the size of the modeled area. For example, if the modeled room is a cubic meter
(1, 1, 1) m and the resolution is (10, 10, 10) totaling a thousand voxels, each voxel will
correspond to one cubic decimeter (0.1, 0.1, 0.1) m. In this example as well as during
the applications in this thesis the voxels are cubes, but they can be selected as any
rectangular shape.

Once a room has been defined, every relevant point in the input point cloud is as-
signed to a voxel. This strategy has a lot of disadvantages. One disadvantage is that
voxelization results in sparse data. As an example of this phenomenon, consider a
corridor with a door. The door is a 1 meters wide, two meters tall, and the goal is
to monitor the three meter area in front of the door with one of the radar modules
described in Section 2.1. Assuming that people will walk completely straight in front
of the door, the room can be defined as (3, 1, 2) meters. To fully utilize the 5.8cm

19

Figure 13: Example of a convolution in a convolutional layer

Figure 14: Differences between Average Pooling and Max Pooling

resolution of the radar, desired voxel size is selected as 5cm. This results in a resolu-
tion of (60, 20, 40), totaling 48 thousand voxels. If the point clouds collected contain
a median of 300 points, more than 99% of voxels will usually be empty in each input
frame.

On top of making the data very sparse, this leads to large datasets, requiring signifi-
cant amounts of memory and time for training.

2.2.4 PointNet

PointNet is a neural network design published in 2016, proposing a new way of using
neural networks with point clouds. One significant contribution was a change in the
input representation [22]. PointNet is designed for both classification and segmenta-
tion of high resolution point clouds, albeit in separate parts of the network structure.

20

The authors describe the architecture as ”surprisingly simple”, and summarize the
key to their approach as ”the use of a single symmetric function, max pooling” [22,
p.1].

Figure 15: PointNet architecture [22, p.3]. The right half of the Classification Network is
the key part for classifying point clouds, and was the basis for the PointNet implementation
within this thesis. The notation mlp refers to multilayer perceptrons, which means a set of
dense layers. The associated numbers refer to the layer sizes. Additionally, n is the number
of points in each input frame, and k is the number of classes.

The purpose of the first part of the network’s architecture is to make it invariant
towards geometric transformations of the input [21]. This is performed by the Trans-
former Network (T-Net), which will not be explained in detail as its use within this
thesis is very limited. This corresponds to the left half of the Classification Network,
highlighted in blue in Figure 15. The same reasoning is applied for the Segmentation
Network, which is not used within this thesis.

The approach used for handling PointNet’s input data is to make it two dimensional.
The dimensions of the input data to PointNet is X ∈ Rn,τ , where n ∈ N is the number
of points, and τ ∈ N the number of features. The features are typically the points’
x-, y-, and z-coordinates, but it can be more than three.

Since point clouds are unordered datasets, an area of focus for the development of
PointNet was to achieve invariance to reordering of the input points. When viewing
the neural network as a function, this property can be viewed as the function being
symmetric. A symmetric function is a function which has the same output regardless
of the order of the inputs. An example of this would be a function that satisfies
f(x1, x2, ..., xn) = f(x2, x1, ..., xn) = f(x1, xn, ..., x2) for all sets of inputs within the
domain of f . Another example is max pooling, described in Section 2.2.3.

The approach was to implement a symmetric function that aggregates information
from all n points into a single vector which is invariant to the input order. Their

21

idea was to ”approximate a general function defined on a point set by applying a
symmetric function on transformed elements in the set” [22, p.4], according to

f({x1, x2, ...xn}) ≈ g(h(x1), h(x2), ..., h(xn)). (27)

In this equation, f : 2R
N → R, h : RN → RK , and g : RK × ...× RK︸ ︷︷ ︸

n

→ R are

all symmetric functions. The function h is approximated by three dense layers of
sizes (64, 128, 1024), while g is approximated using a max pooling layer, and n is the
amount of input points. The process up to this point results in a global feature vector
of size 1024 which is highlighted in the top right of Figure 15.

This resulting global feature vector is then fed through another set of three dense
layers of sizes (512, 256, k). It takes the global feature vector as input, and results in
an output vector of size k. These six dense layers as well as the max pooling layer
are the parts of the PointNet architecture that will be mainly utilized within this
thesis.

2.2.5 Recurrent Neural Networks (RNN) and LSTM

A recurrent neural network differs from a feedforward network by having feedback
connections, in addition to feedforward connections. This essentially means that the
connections in the network are allowed to form cycles. This allows neurons in the
network to take previous input and output into account during activation. In Figure
16, the feedback connections are the arrows pointing from the output layer to the
first hidden layer. The feedback connections essentially allows the RNN to have a
memory, storing information for use at a later time. Because of this, a recurrent neural
network can process sequential data. This makes them very useful for certain tasks
that feedforward networks find tough. An example of such a task is natural language
processing. The memory of an RNN allows it to not only take one word or letter
into account at a time, but to look at an entire sequence of words (a sentence) to get
a better understanding of the context. The property that recurrent neural networks
can consider sequential data leads to them also being referred to as temporal, as they
can process data in the time dimension.

Traditional RNNs suffer from a problem called the vanishing gradient problem. This
problem leads to RNNs having short memory [20]. When doing backpropagation
through an RNN, the cycles in the network influences the weights in a way that leads
to some gradients either diverging to infinity or becoming infinitesimal. This leads
to neurons early in the network learning slowly, and sometimes not learning at all.
To combat the vanishing gradient problem, variations of RNN that allows the neural
network to remember for longer has been developed. Two commonly used variations of
RNN are Long Short-Term Memory networks (LSTM), first suggested by Hochreiter
and Schmidhuber in 1997 [11], and Gated Recurrent Units (GRU) first suggested

22

by Cho et. al in 2014 [4]. The biggest difference between these implementations,
and the traditional RNN are how the feedback connections are handled. In this
project, the LSTM network is used and will be described in greater detail in the next
paragraph.

Figure 16: Example RNN with three inputs (squares), two hidden layers of neurons (circles),
and a single output neuron with recurrent connections to the hidden layers (circle).

LSTM An LSTM (Long Short-Term Memory) is a type of RNN (Recurrent Neural
Network). Just like an RNN, an LSTM has feedback connections. Therefore an
LSTM looks a lot like an RNN but with other ways of handling memory. LSTMs
learn to keep only the important information in memory, allowing them to remember
for longer periods of time, hence the name Long Short-Term Memory.

Memory LSTM layers contain memory cells. This is how the network remembers
things, and takes past output into account. There are several different structures of
memory cells, but all include an input gate and an output gate [30]. The variant used
in this project also includes a forget gate.

In the memory cell in Figure 17 c(t) is the cell state at point t, this is where the
memory is stored. The output is denoted as h(t) and is also called the hidden state.
The input data is denoted as x(t). Small t denotes one step in whatever is the

23

Figure 17: Depiction of an LSTM Memory cell with a forget gate [30].

sequential domain. It could for example be a second if the network operates in the
time domain. As can be seen in the left part of Figure 17, the previous cell state and
hidden state is part of the cells activation. The length of the LSTM layers memory
is essentially how many memory cells are stacked in succession.

Bidirectional LSTM The bidirectional variant of LSTM was first suggested by
Graves and Schmidhuber in 2005 [8]. It combines BRNN (Bidirectional Recurrent
Neural Network) with LSTM. The bidirectional variant essentially allows the network
to consider the sequence in both directions. In a time-context this would be past to
future and future to past. It accomplishes this simply by doubling the size of the
LSTM layer. One half of the layer sees the data in the original order, and the other
half of the layer sees the data in reverse order. In the end, the output of the layer
takes both orders into account.

2.2.6 Overfitting

Overfitting is a problem in machine learning. It means that a model has been too
well adjusted to the training data, making it perform worse on unseen data [10].
Overfitting is related to how much training data you have and the complexity of the
network. In general more training data and fewer weights and biases, leads to less
overfitting. A neural network can be seen as a function. An overly complicated func-
tion can be too adjusted to the data. Figure 18 shows how an overly complicated
function might look, compared to a simpler, more well fitted function. This overly
complicated function will most likely generalize worse to unseen data. Like the func-
tion in Figure 18, an overly complicated neural network with too many weights and
biases can be too well adjusted to the data. If a dataset used for training a neural
network is too small, it is more likely that it will be hard to tell the signal from the

24

noise. This essentially means that in a smaller dataset, the neural network will learn
a pattern on both the good data and the noise. While in a larger dataset it will be
easier for the neural network to learn what is information and what is noise, leading
to the network filtering out the noise.

There are ways of preventing overfitting from happening, two of those are Regular-
ization and Dropout. Regularization and dropout will be discussed in greater detail
in this section. An overview of more approaches to preventing overfitting can be read
about in [29].

Figure 18: Example of one overfitted function and one well fitted function.

Regularization Regularization is a way of penalizing less important features. Less
important features means that they have less influence on the final classification.
When a network has many features it can be hard to tell which ones are important.
The regularizer attempts to minimize the weights of the less important features. This
is done by adding a regularization or penalty term to the cost function, according
to

Cr(X,θ) = C(X,θ) + αΩ(θ). (28)

In the equation above, Cr is the regularized cost function, C is the cost function, θ
is the set of weights and biases, α > 0 is a constant used to limit how aggressive the
regularization is and finally Ω is the regularizer. In this project L2 regularization is
used. When doing L2 regularization, the regularizer is the Euclidean distance over
the weights. Inserting this into (27), gives us

25

Cr(X,θ) = C(X,θ) + α||θ||2. (29)

Dropout Dropout means that during training, neurons are dropped with probabil-
ity p. The optimal value for p varies, but is usually around 0.5 for hidden layers and
0.2 for input layers. Figure 19 shows an example network where dropout has been
applied. If a layer in a network is very simple, e.g. consisting of only one neuron,
dropout should not be used. It is also not recommended to use dropout in the output
layer.

Figure 19: Example network where dropout has been applied to the input layer and the
hidden layers.

Dropout ensures that neurons don’t become too dependent on specific connections.
When predicting, each weight is multiplied by the probability p of that neuron being
dropped during training. It is a method that has been empirically proven to make
neural networks less subject to overfitting. Dropout makes training a network slower,
but it allows it to be trained for a larger amount of epochs.

2.2.7 F-score

The F-score is used to evaluate performance of neural networks. In this thesis it
will be used to compare different network structures, and different combinations of
features. The F-score combines the two metrics precision and recall [28]. Precision is
a metric that shows what percentage of the positives are true positives (tp), and recall
is a metric that shows what percentage of all true positives (tp) and false negatives
(fn) are actually true positives (tp). Because of how precision and recall utilizes

26

positives and negatives, this can be calculated for every class in a neural network.
One can also calculate a F-score for the entire dataset by averaging the F-scores of
each class. Precision and recall are calculated according to (30) and (31) respectively.
Figure 20 is a helpful tool when trying to understand precision and recall.

precision =
tp

tp+ fp
(30)

recall =
tp

tp+ fn
(31)

Figure 20: Helpful figure for understanding precision and recall. tp are true postives, fp are
false positives, fn are false negatives and tn are true negatives.

In this thesis, F1-score is used. The F1-score is defined as the harmonic mean of the
precision and the recall, i.e.

F1 = 2
precision · recall
precision + recall

=
2tp

2tp+ fp+ fn
. (32)

2.3 Camera based Piggybacking detection

The camera based piggybacking detection solution that will be used as a comparison
to the radar based solutions has been developed by Axis. Therefore all details can’t
be described due to confidentiality.

The camera solution starts by doing segmentation on the camera feed, in order to
attempt to separate the foreground from the background. After separating the back-
ground and foreground, it uses Hidden Markov Models, or HMM for short to track
the foreground subjects. A HMM is a statistical model that tries to model events
and event transitions that are observable, but which depends on events that are not
observable [23].

27

To tailor the camera solution to a specific problem in a specific environment, a couple
of settings can be tweaked. One of these settings is the sensitivity of the camera
solution. When setting the sensitivity too low, it sometimes doesn’t register when
a person walks past. When it is set too high, it sometimes registers 2 or 3 people
when actually only one walks past. After trying different sensitivity levels, the default
values appeared to be optimal for the piggybacking problem. With the default values
the camera solution almost never misses registering a person walking past, and rarely
registers too many people.

28

3 Method

The main part of the project was the development phase, entailing weeks of trial
and error of various network structures, seeking continuous improvement in terms of
accuracy and robustness. There were no specific quantified goals in terms of accuracy
for (AP1). Instead, this phase of the project would have its scope determined by a
running evaluation of how much time was remaining for the thesis, combined with how
well the current network was performing relative to the expectations of the authors.
In other words, it was an iterative process with an arbitrary goal. Much of this chapter
is not required for defining how the research questions were answered, its purpose is
to highlight some key learnings that might be of interest for further development in
the case where this proof-of-concept is acted upon. Note that the terminology used
in this chapter will include networks, referring to a single neural network, and models
which refers to an entire processing pipeline. This is a distinction which becomes
important after models including multiple networks are introduced.

3.1 Generation and preprocessing of data

3.1.1 Hardware setup

The capturing devices used consisted of two radars developed by Axis and one camera
developed by Axis. The room used for recording was a conference room in the office
building, with the left wall covered in whiteboard, while the others were made of
glass. The height of the roof was 2.6 m. One radar was attached to the ceiling above
the door, directed in an angle of 66° below horizontal. This radar will be referred
to as some variant of roof-radar. The other was placed at the side of the door at a
height of 1.4 m, angled horizontally and perpendicular to the wall. This radar will be
referred to as the reader-radar. A sketch of how the radars were placed can be seen
in Figure 3. The dome camera unit was placed along the roof roughly 1.5 m in front
of the door, facing vertically downwards.

The radar units output 10 frames per second, each frame consisting of a point cloud.
Each point contains a variety of data, not all of which is used within this thesis. At
most, five pieces of information is used as input to the networks from each point:
X-coordinate, Y-coordinate, Z-coordinate, Radar Cross-Section (RCS), and radial
velocity. RCS is a measure of how detectable an object is by the radar. A higher
RCS value means that the point represents something that is seen more clearly. The
radial velocity is the speed at which a point is moving towards- or away from the
radar. It can therefore be both positive and negative.

3.1.2 Categorization of data

To test the adaptability and robustness of the models, multiple categories of scenarios
were introduced. Some scenarios were designed to resemble situations that a model

29

would be faced with in a real-life application, both normal activities such as a person
carrying a large object, and malicious activity such as two people trying to walk in a
way that one person hides behind the other. Other scenarios were simply introduced
after performing random tests to evaluate a model’s robustness and having it fail,
such as one person walking sideways. The categories abbreviated as (NP) and (P)
will be referred to as the main categories, while the other will be referred to as
subcategories. (NP) along with its subcategories include one person and are labeled
as ’Not Piggybacking’, whereas (P) and its subcategories include two and are labeled
as ’Piggybacking’.

• (NP): Not piggybacking: One person walking normally.

• (NPs): Not piggybacking, sideways: One person walking in a sideways fashion
with arms in a broad position by the hips.

• (NPc): Not piggybacking, cardboard box: One person walking while carrying
a large box in front of the body.

• (NPb): Not piggybacking, backpack: One person walking while wearing a
stuffed 60 liter hiking-backpack.

• (NPf): Not piggybacking, fast: One person walking at twice the normal speed.

• (P): Piggybacking: Two persons walking normally, with roughly half a meter
of distance between them.

• (Ph): Piggybacking, hugging: Two persons walking with upper bodies in contact
during the entire sequence.

• (Pd): Piggybacking, diagonal: Two persons walking in a way such that the
person in the back is covered from the reader-radar’s point of view.

• (Pf): Piggybacking, fast: Two persons walking at twice the normal speed.

The development process of this list was iterative, with categories being added and
addressed one at a time. If a model could learn to correctly classify a new category
simply by including a few minutes worth of training data, it would indicate that the
model is adaptable. One way robustness was tested was to include a category in tests
without including it in the training data, which was done for (NPb). Robustness is
used as a broad term to signify that a model could correctly classify scenarios similar
to, but not exactly like what is contained in the training data. This is closely tied to
overfitting, and how well the network generalizes.

Note that the initial list of categories simply consisted of the main categories, (NP)
and (P). These were the only categories used for training and testing while exper-
imenting with network structures. Therefore, the subcategories will not be utilized
until Section 3.5.

30

3.1.3 Data recording

All training data has been recorded by the authors of this project. This was done by
starting a recording on both radars, then walking back and forward inside a specified
area until a satisfactory amount of data has been recorded. The main benefit of
this method is that it greatly reduces the time needed to gather training data, as
it eliminates the need for editing the recordings. A major part of editing would
otherwise be handling the part of a piggybacking sequence where only one of the
people is within the boundaries. Once a recording is finished, the first and last 150
frames are deleted to make sure that no frames with incorrect data are included in
the training data, e.g. frames with only one person. In every recording, only one
category is represented. In most of the training data, one or both of the authors are
present. There is however a small amount of training and testing data that include
different people. The total amount of training data for (NP) and (P) can be seen in
Table 1.

Training data Testing data
(NP) (P) (NP) (P)

Frames 36589 25866 10203 8733

Table 1: Table showing the amount of train- and test-data for (NP) and (P).

When starting a training, the training set is divided into a training set consisting of
75% of the data, as well as a validation set consisting of 25% of the data. This split is
randomized and will be different for every instance of training, but does not change
between epochs. If desired, the random seed can be specified to enable reproduction
of results. The best model was determined by calculating the loss function for the
network’s classifications on the validation set and choosing the epoch with the lowest
value.

Automated Testing Data The testing datasets are recorded using the same
method as the training data. But these datasets are stored separately, sorted by
category. The testing datasets are smaller, as their main purpose was to act as vali-
dation during the development phase, as well as being able to measure performance for
a specific category. The automated tests are limited in their usefulness, as the black-
box tests for the camera solution can not be performed using pre-recorded datasets.
Therefore, any conclusions of this report will be drawn solely from manual tests, de-
scribed in Section 3.7. However, after developing a satisfactory model, a final set
of automated testis were performed. This set was run on a variety of configurations
to showcase how each architecture performed compared to the others. The purpose
of presenting this information is to aid in potential future research on the subject.
The networks were trained on sets of data recorded by the roof-radar representing
(NP) and (P). The training was performed over 50 epochs. The testing dataset also

31

consists of data from those two categories only. The total size of this testing dataset
after being filtered was 9725 frames.

Note that the datasets were grown in increments during the development phase, and
early decisions may have been made based on instances of training performed on
smaller sets of training data. However all results presented in the thesis, including
this section, are gathered from networks trained on the final datasets.

3.1.4 Point filtering

To remove uninteresting points created by noise or other disturbances, boundaries
were implemented. These boundaries has dimensions (3, 1.2, 2.4) meters. The di-
mensions are in (X, Y, Z), where X is the axis along which people will be walking
(the length of the boundaries), the Y -axis is the width of the boundaries and the
Z-axis is the height of the boundaries. Since there are two different positions for the
radar modules, two different filtering functions were implemented to ensure that the
boundaries correspond to the same space in the recording room. The bottom of the
boundaries is aligned with the floor, and the center of the boundaries is aligned with
the center of the doorway. Think of it as the corridor a person approaching the door
perpendicularly would walk through.

Only the points inside the boundaries are kept. Figure 21 illustrates the filtering
process. The point clouds presented are from the same frame, recorded in the reader
position. The left plot shows the point cloud before filtering, along with the bound-
aries. The limits for the axes were automatically generated so that every point would
fit within the figure. Note for example that there are points appearing up to 8m
away from the radar in the X-direction. This occurs despite the room being roughly
4m long in that direction, and must therefore be reflections. The right plot shows
the points that remain after filtering. In this plot all of the remaining points exist
within the specified boundaries, which should significantly reduce the amount of noise
before the points are used as input. The limits for the axes in this plot were manually
selected to be half as long as the left plot to preserve the shape of the boundaries and
allow for visibility around it.

If after filtering, less than a specified minimum number of points remain, the frame is
considered empty. An empty frame will not be fed into the network. The minimum
number of points ended up being set to 125 fairly early in the development. This
number was not decided upon by any quantifiable means, since the accuracy generally
went up the higher this number was set. The author’s reasoning regarding this was
that the frames with very few points were of such low quality that classification would
be difficult regardless of the network’s accuracy. The issue with setting the limit too
high was that few frames remained after processing, which was predicted to be a
possible issue for real-time access-control applications.

32

Figure 21: Illustration of the boundaries and point filtration.

The variation in points per frame is partially due to randomness. Based on the au-
thors’ observations, two frames captured 100 ms apart of virtually the same scene
can contain significantly different amounts of points. But the main reason for varia-
tions is simply what happens inside the boundaries. The most straightforward reason
for a drop in point count is simply that the person(s) are leaving the boundaries.
However, there was also a systematic drop occurring within the boundaries due to
geometrical limitations with the roof position. This is due to the angle of the radar,
exacerbated by the fact that its signal is weaker near the edges of the radars field of
view. The field of view is a cone, with an angle of about 120 degrees. As a person
moves further away from the roof radar, the edge of its field of view will move down
along the persons body. It turns out that the point filtering boundaries are larger
than the ’optimal zone’ for the roof radar, wherein a persons body can be captured
in its entirety, resulting in a significant amount of frames being discarded. This was
determined not to be a critical issue, instead viewed as an inherent weakness for the
placement, to be considered in the comparison.

The numbers for the training data in Table 1 represent the total number of frames
before any post-processing was done, and are roughly equal for both radar positions.
The difference per recording is roughly 10-20 frames depending on which order the
recordings were stopped in, and can be disregarded. However, due to the 125-point
limit for acceptable frames to be put through the network, the actual numbers used
for training are lower. Due to the aforementioned geometrical limitations of the roof
radar position, significantly more frames are filtered out for the roof position than for
the reader position. This can be seen in Table 2 and Table 3.

3.1.5 Velocity augmentation

Since the radial velocity was introduced as a feature, the models appeared more
sensitive to the pace at which the people were walking. While including it increased

33

Training data Testing data
(NP) (P) (NP) (P)

Raw frames 36589 25866 10203 8733
Filtered 30915 24970 8893 8384
Difference -15.5% -3.5% -13% -4%

Table 2: Table showcasing the effects of filtering on the reader position.

Training data Testing data
(NP) (P) (NP) (P)

Raw frames 36589 25866 10203 8733
Filtered 19920 15053 4657 5068
Difference -45.6% -41.8% -54% -42%

Table 3: Table showcasing the effects of filtering on the roof position.

the overall accuracy on test sets similar to the training data, it generalized poorly for
scenarios where people are walking very fast. At around twice the normal speed, none
of the isolated attempts of detecting piggybacking were successful. Since recording
data with the back-and-forth method used for this research would be difficult at
such high speeds, particularly when involving two people, an attempt was made to
implement data augmentation for the same purpose. This was achieved by multiplying
the velocity vector with an augmentation function. Specifically, a step function fn

was used. The function takes the radial velocity vector v ∈ Rm as input and multiplies
it with a sinusoid according to

fn(v) = (a · sin([n/s]
ω

) + δ) · v. (33)

Here, n is the frame number, m is the amount of points in a frame, s determines how
many frames should pass before a step is taken, ω determines how big each step should
be along the sinusoid. Meanwhile, a and δ determine the amplitude and location of
the curve. [n/s] is a floor division operator, which gives the function its step property.
The final values used for training were set to (a = 0.75, δ = 1.75, s = 500, ω = 8).
The behavior this results in is that the function multiplies v by factors varying from
1 to 2.5. A step of size π

8
radians is taken along the sinusoid every 500 frames. The

sinusoid has been visualized in Figure 22.

3.1.6 The final datasets

The size of the complete training dataset can be viewed in Table 4, and the testing
dataset in Table 5. Note that training data for (Pd) is not used for the roof-radar. The

34

Figure 22: The sinusoid used for velocity augmentation, with frame number on the x-axis.

reason is that this category was never an issue for the roof-position, which was suffi-
ciently robust to function for this category in all preliminary testing. This category
is more challenging for the reader-radar due to geometrical aspects, an intentional
part of the scenario’s design. Note also that (NPb) was not used in the training or
testing data at all. This category will be relevant during the manual tests, explained
in Section 3.7. The purpose of such a category was to test the robustness of the
model. Finally, the categories including fast movement, (NPf) and (Pf) do not have
their own datasets. They are instead learned by applying the velocity augmentation.
Actual fast walking is performed during the manual tests.

(NP) (NPs) (NPc) (P) (Ph) (Pd)
Raw frames 36589 13601 12653 25866 20628 6030
Reader filtered 30915 12305 9443 24970 18333 5376
Roof filtered 19920 8387 5904 15053 10335 not used

Table 4: The training datasets in terms of raw frames, as well after filtration for both radar
positions.

(NP) (NPs) (NPc) (P) (Ph) (Pd)
Raw frames 10203 3001 2198 8733 3381 2471
Reader filtered 8893 2657 1669 8384 3064 2148
Roof filtered 4657 1362 926 5068 1836 925

Table 5: The testing datasets in terms of raw frames, as well after filtration for both radar
positions.

3.2 Model 1: 3D CNN

For implementation of all neural networks in this thesis, the python library Keras
was used. Keras is an API that is built upon Tensorflow. Tensorflow is a machine

35

learning platform developed by Google. Keras was picked due to familiarity of the
authors and its widespread use in the machine learning community.

Figure 23: Structure of the 3D CNN, including dimensions in brackets.

The first approach involved using a rather simple 3D CNN with two convolutional lay-
ers, two max pooling layers and three dense layers. The full structure of the network,
including the dimensions of each layer can be seen in Figure 23. One of the first prob-
lems encountered was that due to the randomness of the point clouds, every frame
generated by the radar had varying amounts of points. Because of the requirement
of having a fixed input size in a neural network, passing the raw data into the neural
network was impossible. The preferred approach to solving this was to implement
a voxelization process. This was done by defining a room with a 3D grid of voxels.
The dimensions of the room was selected to roughly correspond to the boundaries
used for point filtration. Experiments with different voxel sizes were conducted and
an appropriate voxel size appeared to be (10, 10, 10) cm. All voxels are initialized
as 0. For each point in a cloud that falls inside a voxel, the value of that voxel is
incremented by 1. While this did solve the dimensionality problem, it introduced a
new problem. With a voxel size of (10, 10, 10) cm, and a room corresponding to the
boundaries used for point filtration, the total amount of voxels is 30 ·12 ·24 = 8640. A
swift study of point counts for filtered frames at the time resulted in a rough estimate
of 300 points per frame, albeit with a large variance. This resulted in sparse data,

36

meaning that a lot of the voxels were empty.

Network structure t/epoch Test Loss Test Acc. F1 (NP) F1 (P)
3D CNN w/ XYZ 13 sec 0.588 0.684 0.703 0.662

Table 6: Table showing performance on different measures of the 3D CNN. From left to
right, training time, test loss, test accuracy, F1-score on (NP) and F1-score on (P).

The 3D CNN network structure was the first point of reference for evaluating the
performance of a network in terms of training times and accuracy. The results from
testing it are presented in Table 6. The results were a success in terms of being able
to predict with higher accuracy than a guess, but the authors believed there was
much room for improvement. A decision was made to experiment with other network
structures before spending more time on tuning the architecture and configuration of
the 3D CNN network.

3.3 Model 2: PointNet

In the previous work conducted by Anton Almqvist and Anton Kuusela [1], summa-
rized in Section 1.3.2, the effectiveness of a network structure based on PointNet for a
similar application was shown. As they were working with point clouds generated by
the same radar, the likelihood of PointNet being effective for piggybacking detection
appeared high. The structure of the implementation of a PointNet based network can
be seen in Figure 24.

When experimenting with PointNet, the idea of using voxels was abandoned. Instead
all points that remain in a frame after filtering are inserted into a matrix of size (Max
number of points, Number of features). The first configuration used three features:
the X, Y, and Z coordinates. The max number of points is configurable. It was set to
512, which was slightly higher than the perceived median amount of points in a frame
after filtering. The points are sorted by RCS, in descending order. A frame is then
handled according to (34) depending on how many points it contains after filtering.
Padding means that the empty rows of the matrix, more precisely the rows from the
final row with points, to the very final row is filled with zeros. Truncating means that
the matrix is filled with the 512 points that have the highest RCS value, while any
remaining points remain unused. This new structuring of the training data resulted
in the dimensions being much smaller than when using voxelization. Because of this,
the number of trainable parameters was also reduced.

Frame considered empty, if Number of points < 125

Frame padded to 512 points, if 125 ≤ Number of points < 512

Frame truncated at 512 points, if 512 ≤ Number of points

(34)

37

A possibility that became apparent when moving away from the 3D convolutional
layer was that more than three features could be used. It was determined that the
measurements of RCS and radial velocity for each point could be of interest. The
idea behind including velocity was that it might help to separate people whose limbs
are moving out of sync, and at different speeds.

Figure 24: Structure of the PointNet based network, including dimensions in brackets. The
main differences from the PointNet structure in Figure 15 is the exclusion of the initial part
of the network pertaining to T-Net, as well as the segmentation network. Furthermore, the
size of all layers has been halved.

The results using the PointNet based architecture are presented in Table 7. The very
left column of Table 7 describes the different network configurations tested. For these
tests, all network structures are identical aside from the features used. The feature
combinations used were, from top to bottom, {X, Y, Z}, {X, Y, Z, RCS}, {X, Y, Z,
RCS, Velocity}, and {X, Y, Z, RCS, Velocity} with velocity augmentation applied to
the training datasets. Significant improvements in accuracy was observed compared to
the 3D CNN. Due to the promise this architecture showed, any attempts at improving
the 3D CNN were abandoned after testing the PointNet-based architecture. But at
90% accuracy, it was determined that there was still room for improvement.

38

Network structure t/epoch Test Loss Test Acc. F1 ((NP)) F1 ((P))
PointNet w/ XYZ 25 0.227 0.900 0.900 0.899
PointNet w/ RCS 25 0.225 0.896 0.896 0.897
PointNet w/ VEL 26 0.193 0.917 0.915 0.919
PointNet w/ AUG 26 0.218 0.903 0.898 0.907

Table 7: Comparison between the PointNet based network structure with different features.

T-Net, the left part of the PointNet structure seen in Figure 15, was implemented
and put through brief trial runs. The results gathered from this was that it didn’t
improve the performance of the network, paired with a significant increase in training
time. The purpose of T-Net is to make the predictions invariant to certain rigid
transformations of the input point clouds, such as mirroring and rotations. Therefore
it was determined to be unnecessary for the testing purposes within this thesis, with
its very limited spatial constraints for input data. Instead, the faster performance of
a network structure without T-Net was prioritized.

3.4 Model 3: LSTM and PointNet

In an attempt to preserve information contained in sequences of data, temporal layers
were introduced. An LSTM network was deemed most appropriate for this problem.
The performance of Model 2 (presented in Section 3.3), which was based on PointNet
was promising, therefore an attempt of combining PointNet with an LSTM network
was made. The LSTM network was designed in a way that the input was structured
into short sequences of a fixed length. This length will be referred to as memory size
in the future. Picking a suitable memory size ended up being an important parameter
for the performance of the network.

A higher memory size usually resulted in better performance when testing the network
on the test sets. However, it was theorized that a higher memory size would reduce
responsiveness when shifting to a sequence of a different class. The training and
testing data were structured in a way that the network was first fed all (NP) data,
then all (P) data, meaning there was only one shift between the two classes in the
entire run. This made any potential issue negligible for such tests. However, for more
realistic applications such as in Section 3.6 below, where a real-time classification
software is implemented, these effects become noticeable. Different memory sizes were
tried before finding that the optimal value was somewhere between 5 and 20.

The input dimensions of this network is (Memory size, Max number of points, Number
of features). The Keras wrapper TimeDistributed was used to pass this input into
the PointNet based network. This wrapper feeds the frames in each sequence, one
by one into the PointNet based network, and inserts the outputs into a vector of size
(Memory size, 1). In this network, the PointNet based network can be seen as a

39

sub-network of a larger network. The output vector of the TimeDistributed PointNet
sub-network is then fed into an LSTM layer. Finally the outputs of the LSTM layer
is fed into two TimeDistributed Dense-layers. The output from these layer will be a
vector of size (Memory size, 1), and will contain a prediction for each frame in the
input sequence. The full structure of the network can be seen in Figure 25.

A variant of this network where the LSTM layer was replaced by a Bidirectional LSTM
layer was also tested. As can be seen in Table 8 this showed better performance, at the
cost of a slight increase in network complexity. This was deemed to be a worthwhile
trade-off. The left column of Table 8 contains the differences in network structure and
features. From top to bottom, Regular LSTM with {X, Y, Z, RCS, Velocity} with
velocity augmentation, Bidirectional LSTM with {X, Y, Z}, Bidirectional LSTM with
{X, Y, Z, RCS, Velocity} and Bidirectional LSTM with {X, Y, Z, RCS, Velocity} with
velocity augmentation. With an accuracy of 99% it was deemed that there was little
room for improvement, and the performance was satisfactory in terms of achieving
(AP1). Therefore, the Bidirectional LSTM network combined with the PointNet
based network will be the focus of the rest of the thesis.

Figure 25: Structure of the LSTM and PointNet based network, including dimensions in
brackets.

3.5 Implementation of subcategories

After reaching a level of performance of 99% accuracy when classifying (NP) and
(P), a decision was made to branch out into other scenarios rather than trying to

40

Network structure t/epoch Test Loss Test Acc. F1 ((NP)) F1 ((P))
LSTM w/ AUG 27 sec 0.148 0.953 0.950 0.956
Bi-D LSTM w/ XYZ 26 sec 0.043 0.990 0.989 0.990
Bi-D LSTM w/ VEL 27 sec 0.051 0.987 0.991 0.983
Bi-D LSTM w/ AUG 27 sec 0.053 0.987 0.986 0.988

Table 8: Comparison between the LSTM and PointNet based network structure with dif-
ferent features and different LSTM layers.

increase the accuracy further. At this point in time, the subcategories presented in
Section 3.1.2 were implemented.

As previously mentioned, the categories were introduced and implemented one at
a time. The first category considered was (Ph). Recording a small testing dataset
and running it through the latest version of the Bidirectional LSTM model showed
poor results. The model mostly classified these new frames as containing only one
person. The working hypothesis regarding this behavior was that the two people in
(Ph) were represented in the point clouds as one large blob of points. This pattern
was more similar to the single blob seen in (NP) than the two, separate blobs in (P).
Introducing (Ph) training data to the network resulted in significant improvement. A
reproduction of this was constructed by performing a brief training of two networks
for the roof-position, as seen in Table 9.

Training-categories (NP) Acc. (P) Acc. (Ph) Acc.
(NP), (P) 98.3% 98.4% 18.2%
(NP), (P), (Ph) 93.8% (-4.5%) 97.1% (-1.3%) 86.4% (+68.2%)

Table 9: The accuracy of the network on the three test sets related to (NP), (P), and (Ph)
when adding more categories to training data.

The results gathered from this reproduction is similar to what was observed during
development. The good news was that the model showed adaptability, with great
improvement in accuracy for (Ph). The bad news was that it seemed to have a negative
effect on the other two categories. The similarity between (Ph) and (NP) resulted in
reduced interclass variation, while the dissimilarity between (Ph) and (P) resulted in
increased intraclass variation. Both factors made the classification more difficult, as
the categories were no longer as well separated. This pattern was unfortunately not
unique to (Ph), and was the main challenge related to introducing new categories.
The model was able to learn to classify new scenarios after being presented with
just a couple of minutes of training data from the relevant category, but doing so
would often reduce the accuracy for (NP) and (P), which were considered the most
important categories by the authors.

41

3.5.1 Introducing Multiple Networks

A system that makes predictions can include more than one network. To combat
the issue of the reduced accuracy when implementing more categories, an attempt
was made to use a model containing multiple networks. Initially, a model was built
using two networks: one for separating (NP) and (P), the other for separating (NP)
and (Ph). Each was trained only using the data from the relevant categories. This
proved very effective, and the concept was further researched by implementing more
categories.

Since the network trained for separating (NP) and (Ph) is specialized towards identi-
fying frames that were incorrectly classified as ’Not piggybacking’ by the first network,
it will be referred to as the False Not Piggybacking-, or FNP network. The training
data for (Pd) was also added to the FNP training data (for the reader-radar). This
resulted in a that network was very accurate at separating the included categories:
(NP), (Ph), and (Pd). The same was true for its counterpart, the False Piggy-, or FP
network. This network was very accurate when separating (P), (NPs), and (NPc).
The network trained on (NP) and (P) will be referred to as the P/NP network. The
networks were, of course, not very accurate on categories not included in the training
data.

The problem was that these networks would only be presented with the intended
subcategories in the case where the P/NP network classified incorrectly. Basically,
the model relied on the P/NP network being correct for the categories (NP) and (P),
while being incorrect on the subcategories. This is problematic, as the P/NP network
will sometimes get the subcategories right. As seen in Table 9, a network trained on
(P) and (NP) can be correct 18.2% of the time for (Ph). Three potential solutions
were identified by the authors:

• Solution 1: Increase the probability of the P/NP network being wrong on the
subcategories by including them in the training set, but with inverted labels.
For example, the category (Ph) would be included in the training data for the
P/NP network, but it would be ”incorrectly” labeled as ’Not piggybacking’.

• Solution 2: Include the training data from every subcategory in both the FNP
and FP networks. This would increase the chance of the model being right,
even if the P/NP network wasn’t incorrect as intended.

• Solution 3: Return to a model using only a single network, trained on every
category.

The first solution was discarded due to it being perceived as unconventional and
convoluted. The second and third solutions were considered. An automated test was
performed to evaluate the solutions, the results of which can be found in Table 10.
The results for FP and FNP are acceptable across the board. Note that results for
(NP) from the FP network, as well as results for (P) from the FNP network can be

42

disregarded. This is because the P/NP network is expected to be correct on those
categories 99% of the time. The network trained on all categories performs very poorly
for (NP), but otherwise well. Based on these results, Solution 2 was selected.

Network FP FNP All categories
Excl. data (NP) (P) None
Category Test Acc. Test Loss Test Acc. Test Loss Test Acc. Test Loss
(NP) 0.643 1.428 0.994 0.038 0.362 0.829
(P) 0.984 0.048 0.684 1.249 0.965 0.186
(Pd) 0.94 0.289 0.779 0.932 0.929 0.169
(Ph) 1 0.015 0.978 0.096 0.992 0.136
(NPs) 1 0.015 1 0.015 0.986 0.105
(NPc) 1 0.018 1 0.016 1 0.185

Table 10: Table showcasing the loss of performance when introducing data from different
categories. The columns are three different networks trained on [(P), (Ph), (NPs), (NPc)],
[(NP), (Ph), (NPs), (NPc)] and [(NP), (P), (Ph), (NPs), (NPc)]. Note that (Pd) training
data is not included due to this test being performed on the roof-position.

Figure 26: These are the training-sets included in the P/NP network.

As such, the final model ended up consisting of a total of three networks. The main
network, P/NP, is still focused on separating (NP) and (P), trained only on the
datasets from those two categories, which can be seen in Figure 26. The other two
networks are trained on each of the included subcategories, sans one of the main
categories. The FNP network is trained on all training datasets except that of (P),
which can be seen in Figure 27. Conversely, the FP network is trained on every
dataset except that of (NP), which can be seen in Figure 28.

The model considers the networks according to the flowchart presented in Figure 29.
If the P/NP network indicates ’Piggybacking’, i.e. y > 0.5, the output of the False P
network is considered when making a classification. Conversely, if the P/NP network

43

Figure 27: These are the training-sets included in the FNP network.

Figure 28: These are the training-sets included in the FP network.

indicates ’Not piggybacking’, i.e. y < 0.5, the False NP network will be considered.
The thresholds for the specialized network are set differently than the P/NP threshold
of 0.5. The reasoning was that, since the P/NP network already made a decision,
the specialized network should have to be extra certain to overturn it. This setup of
three networks working together will be referred to as the triple-network model.

3.6 Implementing a real-time classification model

To enable comparison between the models built in this thesis and the existing camera
solution it was necessary to perform real-time tests. The camera solution software
was available only as a finished product, operating in real-time on the feed of an
Axis-camera. The determined approach for the test design was to perform tests on a
full sequence of one or two people entering the testing zone, and passing through it
completely.

Since all training data has been recorded in long sequences of walking back and forth
within the boundaries, multiple issues had to be addressed:

44

Figure 29: Flowchart depicting the decision making process of the triple-network model.

• In a realistic scenario, a majority of frames will contain no people.

• The beginning and end of a sequence must be determined.

• In a sequence of two people passing, there will be frames near the beginning and
end of the sequence where only one of the two remain within the boundaries.

The initial approach was to diverge from binary classification and instead experiment
with having three output nodes i.e. d = 3. These output nodes would be denoted
O0, O1, O2, where the index refers to the amount of people predicted in the frame.
While experimentation on this architecture was not extensive, the results were quite
clear. From previously having around 99% test accuracy on (NP) and (P), the model
now averaged around 90%. While this was not deemed to be an insurmountable issue,
another method showed more promise. The final solution ended up being an extension
of the previously used data processing feature which filtered the frames with too few

45

points. Specifically, if a frame does not meet the requirements for the minimum
amount points, it will be thrown away. If ten frames are tossed in a row it will be
considered the end of the sequence, at which point the LSTM-memory is cleared to
avoid any residual effects on the next scenario. A new sequence will then begin as
soon as a frame with enough points is recorded.

Figure 30: The output of one sequence of ’Piggybacking’ from the real-time classification
system, with frame number on the x-axis and the value of the output neuron on the y-axis.

The third issue was that a sequence of piggybacking will, even with a perfect network,
contain several frames classified as not piggybacking. This can phenomenon be seen
in Figure 30. The predictions at, or close to, zero occur in the beginning and end
of a sequence. This is because the person in front will appear within the boundaries
first. They will remain alone for a brief instance of time, before the second person
also enters the boundaries. This will cause the activation to shoot up to one, as seen
in the figure around frame 10. Conversely, the second person will remain alone within
the boundaries for a similar amount of time after the first person exits the boundaries.
This happens in the figure around frame 25.

If the selected approach for making a classification for an entire sequence is to calculate
the mean of the activations, the final output is given by yfinal : Rm × RM → R,
according to

yfinal(xi,θ) =
1

n

n∑
i=1

y(xi,θ). (35)

Here, the function y : Rm × RM → R represents the output of a network for one
input vector, similar to (10) with d = 1, while n is the number of frames within the
sequence.

46

If (35) is calculated for the sequence pictured in Figure 30 the mean activation would
be 0.44, below the typical cutoff at 0.50. While the threshold for what is to be
classified as ’Piggybacking’ could be tweaked to a number which would result in
correct classifications most of the time, it was conjectured that a more robust approach
would be to calculate the mean activation for each set of n successive predictions, and
selecting the set with the highest value. The kernel size n = 5 was determined based
on the amount of ones observed in a typical activation sequence for the roof radar,
since its sequences are typically shorter. Using this method, the final prediction is
calculated as

yfinal(xi,θ) = max(
5∑

i=1

y(xi,θ)

5
,

6∑
i=2

y(xi,θ)

5
, ...,

n∑
i=n−5

y(xi,θ)

5
). (36)

When applying this method to the sequence pictured in Figure 27, yfinal(xi,θ) =
1.

The methods described in this section was used when building a real-time classifica-
tion model which contained the triple-network model. When running this model, the
three networks in the triple-network model perform a prediction on each sequence in
parallel. The outputs of each network is calculated according to (36). These out-
puts are then used to make a classification, according to the flowchart in Figure 29.
The real-time classification model involves multiple components, all of which can be
viewed in Figure 31.

Figure 31: Depiction of the real-time classification model and its components.

47

3.7 Manual Test Design and Execution

To enable parallel testing for the radars and the camera solution, manual tests had
to be implemented. These were done using the real-time classification model, and
as such involved full sequences of with or without piggybacking. A flowchart of the
testing process is presented in Figure 32.

Figure 32: Flowchart depicting the process when doing manual tests.

Due to the time consuming and tedious nature of this testing process, the amount
of samples recorded had to be somewhat limited. The amount of samples for each
category is presented in Table 11.

Category (NP) (NPs) (NPc) (NPb) (NPf) (P) (Ph) (Pd) (Pf)
Samples 400 100 100 100 100 400 100 100 100

Table 11: Sample sizes for each category of manual testing.

The models used for manual testing contained the triple-network Bidirectional LSTM
models, for both radar positions. This selection was made based on the results of
the automated tests, as such no significant preliminary testing was performed using
other designs within the real-time system. Some preliminary testing was performed to
determine the amount of features to be included. As seen in Table 8, the performance
for (NP) and (P) was similar regardless of the number of features. There was,
however, a noticeable difference in performance for (Pf) and (NPf), which ended up

48

being the decisive factor. This resulted in Bidirectional LSTM with all five features
and velocity augmentation being selected for the manual testing. The parameters
used when training the final networks are found in Table 12.

Reader Roof
Epochs 500 500
Memory size 5 10
No. Features 5 5
Base learn rate 0.001 0.001
Learning decay 0.1 0.1
Batch size 32 16

Table 12: Hyperparameter configuration for the networks used in manual testing.

The memory size was selected based on performance in automated tests. The base
learning rate was set to η0 = 0.001, decaying as the amount of epochs t increases
according to

ηt = η0 · e−λt. (37)

The decay rate λ was set to 0.1. Both learningrate hyperparameters are selections
which showed good results in preliminary testing. Finally, the batch sizes were set
given constraints in GPU memory, 32 and 16 respectively. The difference is due to
the memory sizes, a larger memory for the LSTM requires more GPU memory. The
training data used are the sets described in Table 4.

49

4 Results

4.1 Manual tests

Table 13 shows the accuracy for every category for the reader placement, the roof
placement and the camera solution. It also shows how many manual tests have been
made for each category.

Figure 33: Bar-chart showcasing the results on (NP) and (NP)s subcategories.

On top of the 1500 tests presented in Table 13 as well as in Figure 33 and Figure
34, 120 extra tests for category (P) were done. In these different people than the
authors appeared. All three solutions managed an accuracy of 100% across the 120
tests.

As shown by the results in Table 13, Figure 33 and Figure 34, radar is indeed a viable
solution for detecting piggybacking. When looking at the two most common, and
most important categories (NP) and (P) the radars perform better or on the same
level as the camera.

For (NP) the radars are slightly better with 99.5% accuracy for the reader placement
and 100% accuracy for the roof placement. This is in comparison with the 98.25%
accuracy of the camera solution. The performance of the camera solution is influenced
by the sensitivity setting described in Section 2.3. The default value for sensitivity
was used since this appeared to slightly more often see one person more than it should,
compared to how often it saw one less person than it should. This was considered
a good trade off since the authors think that missing an instance of piggybacking

50

Figure 34: Bar-chart showcasing the results on (P) and (P)s subcategories.

is worse than flagging for it when it is not happening. The results of using the
default sensitivity setting is that the camera solution should generally be better at
the ’Piggybacking’ categories than at the ’Not piggybacking’ categories.

On (P) all three solutions perform very well. Both the reader placement and the
camera solution predicted correctly in 400/400 attempts leading to an accuracy of
100%. The roof placement was wrong once in 400 attempts and had an accuracy of
99.75%. An interesting note is that the camera solution often saw three or even four
people exiting the room. This is likely due to the sensitivity setting used, described in
Section 2.3. In 18% of the attempts, the camera solution saw more than two people
walking. This have however been disregarded for the sake of our testing, and counted
as correct predictions.

The hypothesis for (Pd) was that the reader placement would struggle, but the roof
placement and the camera solution would perform similarly to their performance on
(P). This category was designed to be challenging for the reader placement as from
the readers point of view, the goal is to completely cover the person walking behind.
This was the hardest data to generate since the exact movement was hard to repro-
duce. Some test scenarios are likely to have been easier for the reader if for example,
the shoulder of the person walking behind was showing for a period of time. The hy-
pothesis ended up being accurate as the reader placement showed significantly worse
performance than the roof placement and the camera solution. The reader placement
had an accuracy of 78%, the roof placement had an accuracy of 100% and the camera

51

Category Reader % Roof % Camera % Samples
(NP) 99.5 100 98.25 400
(NPs) 100 100 96 100
(NPc) 100 100 28 100
(NPb) 95 87 95 100
(NPf) 100 100 100 100
(P) 100 99.75 100 400
(Ph) 67 93 16 100
(Pd) 78 100 98 100
(Pf) 100 62 100 100
avg % 93.28 93.53 81.25

Table 13: Table comparing the results of the three-network models and the camera solution
on all categories.

solution had an accuracy of 98%. An interesting note regarding the reader placements
performance is that it had an 86% accuracy when one of the authors walked in front
and a 70% accuracy when the other author walked in front. This was not expected
since the reader placement performed better with the taller author walking in front.
A possible cause is the aforementioned variety in test execution.

(Ph) was expected to be the toughest category across the board, which ended up
being true. In this category the people walking were hugging while walking. This
meant that their upper bodies were touching, leaving minimal separation between
the persons. Out of 100 samples the reader placement predicted 67% correctly, the
roof placement predicted 93% correctly and the camera solution only predicted 16%
correctly. The difference in performance between the reader placement and the roof
placement is most likely down to the roof placement seeing more separation from
its point of view. A big factor in this category might be the persons’ heads, since
they are still well separated. Perhaps the roof placement is better at picking up
this separation. The drop-off in performance of the camera solution in comparison
to the radars is significant. More often than not, the camera only saw one person
exiting.

(NPs) is not a common scenario in a realistic access control perspective, the category
was introduced due to the challenge it proved for earlier iterations of the network.
After training the specialized networks on (NPs) data they both performed well
however. Both radar placements ended up having an accuracy of 100% and the
camera solution had an accuracy of 96%.

The networks showed great performance for (NPb) in early stages of development,
therefore no (NPb) data was included in the training sets. This performance dropped
significantly after adding all classes except (NP)/(P) to the False P and False NP

52

models. A decision was made to continue without adding new training data, and use
this category as a test of robustness. The reader placement achieved an accuracy
of 95%, the roof placement achieved an accuracy of 87% and the camera solution
achieved an accuracy of 95%. Both authors performed 50 tests each. These tests
were performed on different days. Because of this, the content of the backpack was
different, which resulted in slight differences in size of the backpack. This was likely
reflected in the point clouds, which could be expected to be slightly larger when
the backpack was fuller. This difference is believed to have made a large impact on
the results. On the 50 attempts with a slightly fuller backpack the accuracy was
92%, 74% and 90% for the reader placement, the roof placement and the camera
solution. On the 50 attempts with a less full backpack the accuracy was 98%, 100%
and 100% for the different solutions. A takeaway from this category is that just
because something worked well in a model trained with fewer categories, it does not
mean that it works as well in a model trained on more categories. If data from
a (NPb) training set was included, the results would most likely be better in this
category. Regardless, the accuracy for this category is a positive indication for the
robustness of the model.

Both radar placements had an accuracy of 100% on (NPc), while the camera solution
only had an accuracy of 28%. The camera solution even detected three persons on a
few occasions. The camera solution would achieve better results, if a lower sensitivity
setting was used. This would however impact all other categories, and most likely
lead to worse results for the camera solution overall.

(NPf) is basically the same as (NP), with the difference that the person walks at
about double the speed. All three solutions managed an accuracy of 100% across 100
samples on this category.

The results on (Pf), which is similar to (P) but with double speed, gave useful insights
about memory size for the roof placement. Both the reader placement and the camera
solution achieved an accuracy of 100% while the roof placement only achieved 62%.
This is most likely due to a combination of the limited field of view of the roof
placement, and the larger memory size of 10 frames. When walking faster, the part
of a sequence when both persons are within the roof radar’s boundaries is not long
enough to reliably fill the buffer for the LSTM layer with frames containing both
persons. This leads to a way lower accuracy than the two other solutions, in what
should be a relatively easy category. Another way to impact this category could be a
decrease of the kernel size for the real-time classification model.

53

5 Discussion

5.1 Comparison between network-structures

Network structure Aug. Test Loss Test Acc. F1 ((NP)) F1 ((P))
3D CNN w/ XYZ 0.588 0.684 0.703 0.662
PointNet w/ XYZ 0.227 0.900 0.900 0.899
PointNet w/ RCS 0.225 0.896 0.896 0.897
PointNet w/ VEL 0.193 0.917 0.915 0.919
PointNet w/ VEL X 0.218 0.903 0.898 0.907
LSTM w/ VEL X 0.148 0.953 0.950 0.956
Bidirectional w/ XYZ 0.043 0.990 0.989 0.990
Bidirectional w/ VEL 0.051 0.987 0.991 0.983
Bidirectional w/ VEL X 0.053 0.987 0.986 0.988

Table 14: Compiled table of the results from evaluating network structures in Chapter 3.
Table includes the important network structures with different combinations of features.
Whatever follows w/ are the features used for that specific network. XYZ means that only
X, Y, Z was used, RCS means that X, Y, Z, RCS was used and VEL means that X, Y, Z,
RCS, Velocity was used.

The results in Table 14 are from the automated tests comparing the important net-
work structures with different combinations of features. All of these networks are of
the P/NP kind, therefore all of these tests were done on only (NP) and (P). A trend
can be seen, that velocity augmentation generally lowers the performance slightly on
these categories. The performance drop is very small however. Because the drop in
performance on (NP) and (P) is so small, the final networks ended up using velocity
augmentation anyway. The reason being that it increased performance significantly
on (NPf) and (Pf) during preliminary real-time tests, that are not presented. The
performance increase on (NPf) and (Pf) can only be observed in the manual tests,
since generating automated test-data for those categories was deemed very difficult
to physically perform.

It is clear that the structure of the network makes more difference than the inclusion
of RCS and velocity. A large jump in performance can be seen when moving from a
3D CNN to a PointNet based architecture. Yet another large jump can be seen when
LSTM is introduced. A final jump in performance can be seen when moving from
a standard LSTM layer to a bidirectional LSTM layer. This is interesting since the
model is operating in the time domain, and looking at sequences from future to past
doesn’t make a lot of sense. The performance increase with the bidirectional variant
is however quite significant when compared to the standard LSTM.

54

5.2 Limitations

Differences from realistic access-control scenarios Due to practical reasons,
neither the recorded training and test data, nor the real-time testing scenarios involve
interacting with a card reader and/or number pad which are common occurrences in
an access control environment. Doing so would significantly alter the sequences.
While classifying such scenarios would likely be possible with the current hardware
based in the findings in this thesis, it would involve more complex recording of training
data.

Additionally, it would likely have a greater impact on the reader-position than the
roof-position. If the radar is positioned near the card reader, its view can be signifi-
cantly obscured depending on how the person interacts with the card reader. If the
person wears their card as a badge around the neck, they might stand completely
in front of the reader to scan their card. This could potentially block the radar’s
view entirely, thus making the roof position strongly preferable to ensure continuous
monitoring.

Comparison with the camera solution It is important to keep in mind that
the results in this thesis should not be considered a comparison between radar and
camera in terms of hardware capabilities. Such a comparison would be very unfair,
as the radar models have been specifically trained to handle most of the scenarios.
The purpose of (RQ2) was to make a comparison with this specific combination of
camera hardware and software, and the results should be viewed as such.

5.3 Computation time

While computation time was not considered in attempts to answer the research ques-
tions, the authors would like to briefly touch on the subject with (AP2) in mind.
Computational time can be an important metric for practical applications. Generally
every increase in computational speed is positive, but in this thesis the accuracy was
the focus. The reason is that the computation time never became a bottleneck during
the project. With a triple-network model run within the real-time model, a prediction
is made every time a new point cloud is generated by the radar. This happens every
100 ms. The hardware used to run the real time classification system was a desktop
computer with an Intel i7 9700K CPU. On this computer, each network of the triple-
network model needed 12 ms to make a prediction. This resulted in each classification
taking on average 12 · 3 = 36 ms. Even though 36 ms is within a good margin from
the 100 ms between readings from the radar, this raised some warning flags regarding
the time it takes to make a prediction. In a realistic access-control application, one
might want to run this software on much slower hardware. The prediction time could
then become a problem.

Two methods of lowering the prediction time were very briefly experimented with.

55

The first method was going back to a model using a single network, as seen in Table 10.
In this network, data from all categories ((NP), (P), (Pd), (Ph), (NPs), (NPc)) was
included. This resulted in the accuracy dropping significantly on the main categories,
and another structure was selected for continued experiments. Even so, the authors
believe that such a solution could show promise if more time was spent on recording
training data and tuning the network. The second method was to lower the complexity
of the networks. More precisely, the number of neurons in the layers of the PointNet-
based part of the networks was halved. No notable drop in performance was observed
in preliminary testing of such networks. It did however impact the training time and
the time to predict significantly. The training time was cut from 27 s/epoch to 13
s/epoch, and the time to predict was cut from 12 ms to 6 ms for each network.

5.4 Decision thresholds

When moving from a model containing one network to several networks, the over-
rulement thresholds < 0.25 for the False Piggy network and > 0.75 for the False Not
Piggy network were used. These thresholds were chosen with the motivation that for
a more specialized network to overturn the decision of the P/NP network, it has to
be very certain. Not a lot of time was spent on trying different thresholds. When
performing the manual tests, the FP and FNP networks very rarely overturned a
correct decision made by the P/NP network. The manual tests did however show
that the activation of the specialized networks often came close to their thresholds,
without quite reaching them when they were supposed to overturn the decision of the
P/NP network. For example False Piggy would quite often have activations around
0.3 when it needed < 0.25 to overturn the decision of P/NP. The fact that the special-
ized networks are less certain than the P/NP network can be due to several reasons.
One potential reason for this could be that the training data for these networks the
categories is more difficult to separate. Another reason could be the fact that the
datasets for the subcategories used for training these networks are smaller than the
training sets for (P) and (NP).

5.5 Future Work

5.5.1 Experimentation with decision thresholds

As seen in Section 5.4, there was likely some room for improvement with the decision
thresholds. In retrospect, the authors feel that more research regarding the optimal
thresholds should have been done. With more generous thresholds of 0.5 for both
specialized networks, or < 0.4 for the False Piggy network and > 0.6 for the False
Not Piggy network, the results would certainly be different. More often than with
< 0.25 and > 0.75, the specialized networks would overturn correct decisions, but
they would be better at overturning incorrect decisions. A change in the thresholds
for the specialized models could potentially yield better results in terms of accuracy of

56

the model. More experiments would however be needed to confirm this theory.

5.5.2 Different environments and movement patterns

In this thesis all generation of data was done in the same room. When briefly testing
the model in another room it performed worse but still acceptably when using the
same boundaries as was defined in Section 3.1.4, when walking in a similar fashion
as in the training data. The model did however perform significantly worse when the
boundaries were altered to allow moving in different patterns, for example from the
very left of the room, to the very right. One approach that was considered but never
implemented in this project was using clustering. The hypothesis is that if clustering
is used, the classifier could be better adapted to a wider range of environments and
movement patterns. Instead of looking at the entire point cloud, the clustering would
attempt to find smaller point clouds representing the people walking. After the
clustering algorithm has been applied, a network could look at the amount of clusters
found, the size of the clusters, the distance between the clusters, the velocity and
direction the clusters are moving in, and so on to try and detect piggybacking.

5.5.3 Variety of scenarios

Another interesting point for future research would be to further explore the relation-
ship between the amount of categories and the overall accuracy. If the indications of
more scenarios in the training data resulting in generally lower accuracy holds true,
it might be of interest to train a network with specific categories for each implemen-
tation. Such an endeavor would be aided by the relatively short training times for
the PointNet based architecture.

Additionally, while a small variety of scenarios were included in the tests performed
on the model, achieving sufficient reliability for a general use case would likely involve
training for many more scenarios. The set of scenarios may also vary depending on
the environment of a prospective use case. Creating a tailored model could be an
interesting solution if the potential relationship described in the previous paragraph
is proven. For example, there might be environments where some sort of cart is
frequently used for transporting goods and must be included in training data. Those
datasets need not be included in an environment such as a typical office building, and
could then be excluded for improved performance.

5.5.4 Parameters for the real-time classification

The design of (36) for calculating the final classification score of a sequence was
chosen somewhat arbitrarily, and could be partially blamed for the reduced accuracy
in (Pf). Based on a handful of observations made during testing, reducing the kernel
size used for calculating the highest mean activation would’ve resulted in more correct
classifications. Such a change would of course also affect the other categories, making

57

the system more biased towards piggybacking across the board. Even if (Pf) is
considered not to be of interest, it is possible that the tweaking of this parameter
could offer significant improvement for relatively little effort.

Further testing could be performed by keeping full records of the sequences of activa-
tions for a set of real-time tests. These sequences could then be run through a program
which performs the final prediction using various kernel sizes when calculating the
highest mean activation, to observe which configuration performed best overall. These
sequences are printed to the terminal in the existing software, but complete records
were unfortunately not kept while performing the manual tests.

58

6 Conclusion

With the results discussed previously the first two research questions, (RQ1) and
(RQ2) can be answered confidently. Radar is a viable solution for detecting pig-
gybacking and the radar solutions perform better overall than the existing camera
solution. Answering (RQ3), whether the roof placement or the reader placement is
better is less straightforward. On average they perform almost equally with an aver-
age accuracy across the 9 classes of around 93%. It is, however, most likely easier to
increase this accuracy for the roof position. Its average across the classes is lowered
drastically by its score on (Pf) which could be solved by lowering the memory size or
altering the height or angle of the radar module.

Category Reader % Roof % Camera % Samples
(NP) 99.5 100 98.25 400
(NPc) 100 100 28 100
(P) 100 99.75 100 400
(Ph) 67 93 16 100
(Pd) 78 100 98 100
avg % 88.9 98.55 68.05

Table 15: Table comparing the results of the three-network models and the camera solution
on five chosen categories.

One can also argue about which categories are more important than others. Without
doubt, (NP) and (P) are the most important since they will make up the majority of
real world situations. (Pd) and (Ph) could be considered the second most important
categories, since these could be ways that mischievous people try to trick the system.
(NPc) could also be considered an important category, since this is something that
happens often in an office environment, especially when including tangential scenarios
such as a person carrying a desktop computer or similar objects. The results when
only considering these 5 categories can be seen in Table 15, they paint a different story.
Across the five categories, the reader placement achieves an average accuracy of 88.9,
the roof placement achieves an average accuracy of 98.55 and the camera solution
achieves an average accuracy of 68.05. Considering only these five categories make
the roof placement look like the ideal placement. If considering other properties of
the placements than their technical prowess, arguments can be made that the reader
placement is better. For example if it is possible to incorporate the radar module
into a card reader, that eliminates the need for an additional device above the door.
This has several advantages such as easier installation and maintenance, less wiring
required and possibly being cheaper to produce. Since (AP1) defines a purpose of
this project as attempting to develop a neural network that is as effective as possible
at detecting piggybacking, the economical and practical arguments are disregarded,
and the roof placement is considered to be better.

59

References

[1] Anton Almqvist and Anton Kuusela, “Pose classification of people using high
resolution radar indoor,” M.S. thesis, Lunds Tekniska Högskola, 2022.

[2] E.J. Barlow, “Doppler radar,” Proceedings of the IRE, vol. 37, no. 4, pp. 340–
355, 1949. doi: 10.1109/JRPROC.1949.231638.

[3] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-
iong Xiao, Li Yi, and Fisher Yu, Shapenet: An information-rich 3d model repos-
itory, 2015. doi: 10.48550/ARXIV.1512.03012. [Online]. Available: https:
//arxiv.org/abs/1512.03012.

[4] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014. arXiv: 1406.1078. [Online]. Available: http://arxiv.org/abs/1406.
1078.

[5] E. M. Dogo, O. J. Afolabi, N. I. Nwulu, B. Twala, and C. O. Aigbavboa,
“A comparative analysis of gradient descent-based optimization algorithms on
convolutional neural networks,” in 2018 International Conference on Computa-
tional Techniques, Electronics and Mechanical Systems (CTEMS), 2018, pp. 92–
99. doi: 10.1109/CTEMS.2018.8769211.

[6] Fengli Gao and Huicai Zhong, “Study on the large batch size training of neural
networks based on the second order gradient,” CoRR, vol. abs/2012.08795, 2020.
arXiv: 2012.08795. [Online]. Available: https://arxiv.org/abs/2012.08795.

[7] Hossein Gholamalinezhad and Hossein Khosravi, Pooling methods in deep neu-
ral networks, a review, 2020. doi: 10.48550/ARXIV.2009.07485. [Online].
Available: https://arxiv.org/abs/2009.07485.

[8] Alex Graves and Jürgen Schmidhuber, “Framewise phoneme classification with
bidirectional lstm and other neural network architectures,” Neural Networks,
vol. 18, no. 5, pp. 602–610, 2005, IJCNN 2005, issn: 0893-6080. doi: https:
//doi.org/10.1016/j.neunet.2005.06.042. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0893608005001206.

[9] Kevin Gurney, An introduction to neural networks. UCL Press, 1997.
[10] Douglas M. Hawkins, “The problem of overfitting,” Journal of Chemical Infor-

mation and Computer Sciences, vol. 44, no. 1, pp. 1–12, 2004, PMID: 14741005.
doi: 10.1021/ci0342472. eprint: https://doi.org/10.1021/ci0342472.
[Online]. Available: https://doi.org/10.1021/ci0342472.

[11] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.
1735.

[12] Cesar Iovescu and Sandeep Rao, “The fundamentals of millimeter wave radar
sensors,” 2021.

https://doi.org/10.1109/JRPROC.1949.231638
https://doi.org/10.48550/ARXIV.1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://doi.org/10.1109/CTEMS.2018.8769211
https://arxiv.org/abs/2012.08795
https://arxiv.org/abs/2012.08795
https://doi.org/10.48550/ARXIV.2009.07485
https://arxiv.org/abs/2009.07485
https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://doi.org/10.1021/ci0342472
https://doi.org/10.1021/ci0342472
https://doi.org/10.1021/ci0342472
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

[13] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimiza-
tion, 2014. doi: 10.48550/ARXIV.1412.6980. [Online]. Available: https:
//arxiv.org/abs/1412.6980.

[14] Davi Lazzarotto and Touradj Ebrahimi, Sampling color and geometry point
clouds from shapenet dataset, 2022. doi: 10.48550/ARXIV.2201.06935. [On-
line]. Available: https://arxiv.org/abs/2201.06935.

[15] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. “The mnist database
of handwritten digits.” (), [Online]. Available: http://yann.lecun.com/exdb/
mnist/ (visited on 10/17/2022).

[16] Dominic Masters and Carlo Luschi, Revisiting small batch training for deep
neural networks, 2018. doi: 10.48550/ARXIV.1804.07612. [Online]. Available:
https://arxiv.org/abs/1804.07612.

[17] Farid Ghareh Mohammadi, Cheng Chen, Farzan Shenavarmasouleh, M. Hadi
Amini, Beshoy Morkos, and Hamid R. Arabnia, 3d-model shapenet core classifi-
cation using meta-semantic learning, 2022. doi: 10.48550/ARXIV.2205.15869.
[Online]. Available: https://arxiv.org/abs/2205.15869.

[18] Seokhyun Moon, Wonho Zhung, Soojung Yang, Jaechang Lim, and Woo Youn
Kim, “Pignet: A physics-informed deep learning model toward generalized drug
target interaction predictions,” Chem. Sci., vol. 13, pp. 3661–3673, 13 2022.
doi: 10.1039/D1SC06946B. [Online]. Available: http://dx.doi.org/10.
1039/D1SC06946B.

[19] Michael A. Nielsen, Neural Networks and Deep Learning. Determination Press,
2015.

[20] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On the difficulty of
training recurrent neural networks,” in Proceedings of the 30th International
Conference on Machine Learning, Sanjoy Dasgupta and David McAllester, Eds.,
ser. Proceedings of Machine Learning Research, vol. 28, Atlanta, Georgia, USA:
PMLR, 17–19 Jun 2013, pp. 1310–1318.

[21] Charles R. Qi, “Cvpr17 machine learning 1 - pointnet: Deep learning on point
sets for 3d classification and segmentation,” 2017. [Online]. Available: https:
//www.youtube.com/watch?v=Cge-hot0Oc0 (visited on 10/17/2022).

[22] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas, Pointnet: Deep
learning on point sets for 3d classification and segmentation, 2016. doi: 10.
48550/ARXIV.1612.00593. [Online]. Available: https://arxiv.org/abs/
1612.00593.

[23] L. Rabiner and B. Juang, “An introduction to hidden markov models,” IEEE
ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986. doi: 10.1109/MASSP.1986.
1165342.

[24] Pavlo Radiuk, “Impact of training set batch size on the performance of con-
volutional neural networks for diverse datasets,” Information Technology and
Management Science, vol. 20, pp. 20–24, Dec. 2017. doi: 10.1515/itms-2017-
0003.

https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.2201.06935
https://arxiv.org/abs/2201.06935
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.48550/ARXIV.1804.07612
https://arxiv.org/abs/1804.07612
https://doi.org/10.48550/ARXIV.2205.15869
https://arxiv.org/abs/2205.15869
https://doi.org/10.1039/D1SC06946B
http://dx.doi.org/10.1039/D1SC06946B
http://dx.doi.org/10.1039/D1SC06946B
https://www.youtube.com/watch?v=Cge-hot0Oc0
https://www.youtube.com/watch?v=Cge-hot0Oc0
https://doi.org/10.48550/ARXIV.1612.00593
https://doi.org/10.48550/ARXIV.1612.00593
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1109/MASSP.1986.1165342
https://doi.org/10.1515/itms-2017-0003
https://doi.org/10.1515/itms-2017-0003

[25] Sebastian Ruder, An overview of gradient descent optimization algorithms, 2016.
doi: 10.48550/ARXIV.1609.04747. [Online]. Available: https://arxiv.org/
abs/1609.04747.

[26] Grant Sanderson. “Playlist: Neural networks.” (), [Online]. Available: https:
//www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-

3pi (visited on 10/17/2022).
[27] Shai Shalev-Shwartz and Shai Ben-David, Understanding Machine Learning:

From Theory to Algorithms. Cambridge University Press, 2014.
[28] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz, “Beyond accuracy,

f-score and roc: A family of discriminant measures for performance evaluation,”
vol. Vol. 4304, Jan. 2006, pp. 1015–1021, isbn: 978-3-540-49787-5. doi: 10.
1007/11941439_114.

[29] Xue Ying, “An Overview of Overfitting and its Solutions,” in Journal of Physics
Conference Series, ser. Journal of Physics Conference Series, vol. 1168, Feb.
2019, 022022, p. 022 022. doi: 10.1088/1742-6596/1168/2/022022.

[30] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang, “A Review of
Recurrent Neural Networks: LSTM Cells and Network Architectures,” Neu-
ral Computation, vol. 31, no. 7, pp. 1235–1270, Jul. 2019, issn: 0899-7667. doi:
10.1162/neco_a_01199. eprint: https://direct.mit.edu/neco/article-
pdf/31/7/1235/1053200/neco_a_01199.pdf. [Online]. Available: https:
//doi.org/10.1162/neco%5C_a%5C_01199.

https://doi.org/10.48550/ARXIV.1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://doi.org/10.1007/11941439_114
https://doi.org/10.1007/11941439_114
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1162/neco_a_01199
https://direct.mit.edu/neco/article-pdf/31/7/1235/1053200/neco_a_01199.pdf
https://direct.mit.edu/neco/article-pdf/31/7/1235/1053200/neco_a_01199.pdf
https://doi.org/10.1162/neco%5C_a%5C_01199
https://doi.org/10.1162/neco%5C_a%5C_01199

Master’s Theses in Mathematical Sciences 2022:E67
ISSN 1404-6342

LUTFMA-3489-2022

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Background
	Piggybacking
	Radar versus Camera

	Purpose
	Prior Research
	Classification on high resolution 3D models
	Pose classification of people
	Classification on point clouds

	Statement of contribution

	Theory
	Radar
	FMCW Radar

	Artificial Neural Networks
	Activation of Neurons
	Optimization
	Convolutional Neural Networks
	PointNet
	Recurrent Neural Networks (RNN) and LSTM
	Overfitting
	F-score

	Camera based Piggybacking detection

	Method
	Generation and preprocessing of data
	Hardware setup
	Categorization of data
	Data recording
	Point filtering
	Velocity augmentation
	The final datasets

	Model 1: 3D CNN
	Model 2: PointNet
	Model 3: LSTM and PointNet
	Implementation of subcategories
	Introducing Multiple Networks

	Implementing a real-time classification model
	Manual Test Design and Execution

	Results
	Manual tests

	Discussion
	Comparison between network-structures
	Limitations
	Computation time
	Decision thresholds
	Future Work
	Experimentation with decision thresholds
	Different environments and movement patterns
	Variety of scenarios
	Parameters for the real-time classification

	Conclusion

