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Abstract

As databases has become a more critical part of our digital infrastructure,
the cost of maintaining a database has increased. Database management systems
such as MySQL allow users to tune parameters, or “knobs” as they are called,
to improve performance. This is a difficult optimization problem, both for hu-
mans to do manually and for computers. This is because there are hundreds of
knobs with complicated dependencies between many of them and because the
optimal configuration depends on the application. The optimal configuration
then also changes over time as the workload changes. For these reasons automat-
ing this process is of interest to many companies and database administrators.
In this project, we use an existing database optimization tool and investigate
the possibility of defining a search space for MySQL capable of producing good
configurations in reasonable time for any workload.

For this task, we used database benchmarking, which are arbitrary databases
exposed to some arbitrary workloads. Performance was measured using through-
put, or units of work per time unit. We selected three different representative
benchmarks sufficiently different from each other. We then defined a large search
space of 52 knobs that had some chance of being impactful, investigated how long
warm-up and measurement time we had to use when benchmarking, collected
1040 data points for the three benchmarks and then used four different feature
importance methods to identify the most important knobs. The 9 most impact-
ful ones were then collected into a final search space and tested on the three
benchmarks. This search space was able to find configurations with between 2x
and 4.43x higher throughput than the default configuration in just a few hours.
Additionally 12 knobs were mentioned as “honorable mentions” and we conclude
that further performance gain is possible through incorporating some of these
into the final search space.

Keywords: MySQL, Database management system, knobs, tuning, feature importance,
optimization, machine learning
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Chapter 1

Introduction

A database is an organized collection of data and needs to be managed by a database manage-
ment system (DBMS). The database management system makes it possible to read, update,
delete and insert data in a database. Database systems are an integral part of our modern
society. To manage the large quantities of data and the high number of users, a need has
grown for high-performance database systems. Performance is mainly measured in through-
put (units of work per time unit) and it can be improved in various ways such as by optimizing
the queries, the database structure and the applications interacting with the database. It can
also be increased by tuning the internal parameters of the database management system. The
focus of this master’s thesis is the DBMS MySQL which is used in wide range of areas: in
Media & Entertainment such as by BBC, in Retail such as by Axfood AB, in Government
such as by NASA, in Telecom such as by Verizon Wireless, in Healthcare & Pharma such as
by Eli Lilly, in social platforms such as by Twitter [21] and so on. At the time of writing this it
is the second most popular DBMS according to DB-Engines, just after Oracle in the number
one spot [22].

In this master’s thesis the task was to optimize the internal parameters, or knobs as they
are often called, for MySQL databases. This is difficult for both humans and computers,
mainly due to the large number of knobs and due to the time-consuming nature of measuring
the performance, which we describe further in the background section. We used three differ-
ent benchmarks from a benchmarking tool called BenchBase, which are arbitrary databases
exposed to arbitrary workloads. For the optimization tool we used HyperMapper, which is
based on Bayesian Optimization, all described in the theory and tools sections in chapter 2.
We took the approach of defining a large search space of knobs that we identified as having
some chance of being important for throughput. We then investigated how long "warm-up"
and "measurement time" we needed to use when benchmarking and then sampled the search
space for ten days using the three benchmarks. On the resulting data sets we then used four
different feature importance methods to identify the most important knobs. Nine knobs
were identified as seemingly more important than the others and an additional twelve were
identified as “honorable mentions”. The top nine knobs were collected into a final search
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1. Introduction

space that within a few hours was able to find configurations with between 2x and 4.43x
higher throughput than the baseline default configuration, and between 3% and 10% higher
than the baseline option innodb_dedicated_server that when turned on automatically sets
four of the most important knobs.

Since we found in the sampling of the original large search space configurations with 65%
higher throughput than with innodb_dedicated_server turned on for one of the benchmarks
we concluded that through further refinement of the final search space, by including some of
the "honorable mentions", it is possible to find configurations with even higher throughputs.
More testing is therefore needed before one can settle on a search space suitable for any
situation and any workload, and we write this down as future work.

10



Chapter 2

Background and Related Work

2.1 Background

2.1.1 Database configuration tuning
Databases are a vital part of many applications. They are often large and commonly serve
hundreds of users trying to access them concurrently with some combination of read- and
write-type queries. In order to improve the database’s performance, database management
systems (DBMS) allow administrators to tune parameters or “knobs” as they are called. Op-
timizing these knobs for throughput, meaning number of transactions or “units of work” per
time unit, impacts both wait times and costs. This is perhaps especially of interest when one
uses a cloud service such as AWS and compute time directly translates to money spent.

Optimizing database knobs for throughput is an impossibly difficult problem though,
and for several reasons. Not only do many DBMS’s such as MySQL and PostgreSQL include
hundreds of knobs with varying value ranges, creating an enormous search space, but there
are also dependencies between many of them such that changing one knob impacts others.
Furthermore every application is unique since the optimal configuration depends on things
such as the hardware setup and on the database itself (its structure, size and so on). The
optimal configuration also changes over time as the workload changes. There is also a limit on
how many configurations that can be evaluated in reasonable time, since one needs to observe
the throughput over some time period. This will typically limit the number of evaluations to
a maximum of a few hundred, making gradient-based optimization techniques impractical.

Traditionally this tuning is done manually by a database administrator (DBA) using a
set of guidelines and hard-earned experience. The DBA might go through a time consuming
and difficult process of trying to Figure out what the bottlenecks are and which knobs to
tune, followed by some manual trial and error. The bottlenecks for performance can be a
number of different things relating to disk input and output, efficiency of utilizing the faster
RAM memory for speed ups, threads operating concurrently, sizes of things and etc. DBAs
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2. Background and Related Work

might spend upwards of 25% of their time tuning and in total personnel is roughly 50% of the
total cost of ownership for a large scale database system[23]. For all these reasons automatic
database configuration is a growing research domain, of interest to many organisations and
DBAs.

2.1.2 Problem statement
The objective is to find an optimal configuration

x∗ ∈ arg max
x∈X

f (x) (2.1)

where X is the set of all possible MySQL configurations and f (x) is throughput based on
a specific configuration x. Instead of directly trying to solve this, we take the approach of
reducing the dimensionality of the search space X, to then optimize over this smaller search
space, keeping every knob not included at its default value. With a limited time budget the
hope is that this approach should be able to find better configurations, compared to solving
the larger search space.

2.1.3 DBtune
This master’s thesis is done in collaboration with the startup company DBtune. The company
has developed a service for automatically tuning database knobs. DBtune use the open source
Bayesian optimization tool HyperMapper [16] to optimize database knobs in real time on ex-
isting databases. We got to use the company’s existing framework and code for optimization,
as well as ask questions to members of the team. DBtune has developed a working product
for the DBMS PostgreSQL, as well as some other DBMSs. Testing is done using the database
benchmarking tool BenchBase, a newer version of OLTPBench [8].

2.2 Theory
2.2.1 Bayesian optimization
Bayesian optimization is a black-box derivative-free global optimization technique. It builds
a surrogate model for the objective function, treating every point as unknown with some
prior probability distribution, making it a so called random field. Commonly one assumes
a prior normal distribution using some mean function, often just a constant µ, and some
covariance function to account for the prior variance and for how correlated different points
should be, turning the surrogate model into specifically a Gaussian process. The variance is
decided with a multiplicative constant a0 and the covariance function also includes scaling
factors a1:d for every dimension. It is constructed to be stationary, so that only the (weighted)
distance between two points matters. One can use for instance the exponential covariance
function

C(x, x′) = C(||x − x′||) = ao exp(−||x − x′||2) (2.2)

where ||x−x′|| is the weighted distance between x and x′ according to ||x−x′||2 =
∑d

i=1 ai(xi−

x′
i
)2. This is indeed stationary.

12



2.2 Theory

Other covariance functions often include some shape parameter usually denoted ν. Col-
lecting the parameters as θ = (a0:d, ν, µ) one wants to first estimate the most likely θ given
available training data y. This means finding the maximum of p(θ|y) ∝ p(y|θ)p(θ) where
one can either put some prior on the parameters or leave it flat. By assumption p(y|θ) is
multivariate normal N(µ,Σ) where the expression for the covariance matrix (or kernel) Σ
is calculated using the covariance function. One can then solve this (d+2)-dimensional opti-
mization problem using some traditional optimization technique.

Once the model parameters are set, one can evaluate the posterior probability distribu-
tion of the output of the objective function at any point x given the known values of the
training data, a process called Gaussian process regression or Kriging. The initial data is usu-
ally sampled at random points across the search space, using for example the technique Latin
hypercube sampling. We simplify the posterior notation by defining:

f (x)
∣∣∣ f (x1:n) ≡ f (x)

∣∣∣[ f (x1), ..., f (xn)]. (2.3)

Bayesian optimization is a technique of choosing the next point to evaluate given this
posterior distributions over the field, using some so called acquisition function. Most com-
monly the expected improvement acquisition function is used, which for every point defines
the expected value of the increase of the maximum value evaluated so far if that point is
evaluated. It is defined as

EIn(x) := En
[
[ f (x)| f (x1:n) − f ∗n ]+

]
(2.4)

where f ∗n is the best point so far and the plus sign indicates only using positive values (setting
negative values to zero). Points that are far from other previously evaluated points have high
variance, and therefore possibly a lot of energy above the current maximum value. Evaluating
these types of points is called exploration. Points closer to previously evaluated points with
high values have a higher expected mean, which might give them a lot of energy above the
current maximum value, in spite of their lower variance. Evaluating these types of points is
called exploitation.

The expected improvement has a closed form expression, which can be obtained by using
integration by parts [10]. The maximum can be found using some traditional first- or second
order derivative-based optimization technique. One then evaluates the objective function at
that point, use this additional training point to update the model parameters, calculate the
next maximum expected improvement point and so on.

The Gaussian process surrogate model was recently thought to be the only surrogate
model used for Bayesian optimization according to a tutorial from 2018 [10]. However one
can imagine doing this with any regression model plus a model for the uncertainty or variance.
It is natural to do with a random forest model for regression, where a number of so-called
decision trees each independently models the value at a certain point, using different sub-
sets of the parameters. The mean and variance of the individual trees predictions at point x
can then be used to model the distribution of f (x)

∣∣∣ f (x1:n), and the expected improvement
acquisition function can be used in the same way. Random forest models have the advantage
of naturally being able to handle categorical parameters.
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2. Background and Related Work

2.2.2 Benchmarking
Benchmarking is a common tool used by DBAs to gain insight into how hardware, knob con-
figuration and application impacts the performance of a database. A benchmark loads data
into a new database to then expose it to a workload. A workload is a set of queries performed
by a number of arbitrary users. The workload can be read- or write-heavy and the queries can
be more or less complex. Metrics such as throughput and latency are observed every second.
When benchmarking one needs to decide which warm-up time (the initial time period where
the benchmark is running but no measuring is performed) and measurement time to use. We
here describe the three different benchmarks used for this project, all implemented into the
tool BenchBase.

TPC-C The TPC-C benchmark is the current industry standard for evaluating OLTP
(Online transaction processing) database systems. It models wholesale suppliers and con-
tains common transactions observed in the wholesale supplier industry such as customer
orders, customer payments, ship orders, and warehouse inventory queries [7]. The TPC-C
benchmarks are complex and write-heavy [8].

Twitter The Twitter benchmark implemented in BenchBase mimics common patterns
found in the popular social media platform Twitter such as read-heavy and skewed many-to-
many relationships. The database is based on an anonymized social graph network snapshot
from Twitter in 2009 [8].

YCSB The Yahoo Cloud Serving Benchmark, YCSB is intended to be used primarily for
benchmarking cloud databases and in particular serving systems. Serving systems provide
low-latency acesss both for reading/writing data. Typically a web page server is a serving
system since user expects a short web-page loading time. This is contrasted to relational
OLAP systems which usually have high latency (due to complex queries). The key differences
between cloud database systems and traditional database systems are the requirements for
elastic scaling (on-demand scaling), availability, and simplified application deployment and
development. Due to the relatively high hardware failure rate presented in horizontal scal-
ing, fault tolerance is considered to be important property. As a consequence, many cloud
systems sacrifice complex queries and strong ACID (atomicity, consistency, isolation, dura-
bility) transaction properties to achieve availability [6].

Many cloud databases are key-value stores which is why YCSB benchmark consists of
simple operations. Although MySQL is not a key-value store, it is still a useful benchmark to
learn how availability, consistency, and caching impact the performance [8].

2.2.3 MySQL
MySQL is a popular database management system owned by Oracle. It comes in different
editions: “MySQL Standard Edition”, “MySQL Enterprise Edition”, “MySQL Cluster Carrier
Grade Edition” and “MySQL Community Edition”1. The community edition is open source
and licensed under GPL while the others are commercial 2. MySQL Enterprise Edition pro-

1https://www.mysql.com/products/
2https://www.mysql.com/products/community/
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2.2 Theory

vides the customer with additional tools and plugins for managing scalability, security relia-
bility, availability, and application development, which are unavailable with the community
edition or improvement upon. One of the more prominent additional features in the Enter-
price Edition for performance is the “MySQL Thread Pool” server plugin. With the enterprise
thread-handling model, it is possible to connect many more clients without being burdened
with thread overhead. MySQL enterprise edition achieved 60 times better scalability for the
Sysbench OLTP read/write benchmark than the community edition [20]. We will only focus
on the community edition.

The heart of MySQL is the storage engine. There are several options, but we only focus on
the default InnoDB storage engine. The engine has in-memory structures as well as on-disk
structures, see Figure 2.1.

Figure 2.1: Diagram of the structure in the InnoDB storage engine.
From the MySQL documentation [17]

The in-memory structures are the buffer pool, the change buffer, the adaptive hash index
and the log buffer [18]. The buffer pool stores parts of the database in memory for faster
access. The complete database is however stored on disk, and so the buffer pool needs to
continuously flush modified data to the disk. There are so called “page cleaner” threads that
do this, and several knobs have to do with optimizing this process, deciding things like what
data to flush and when. Ideally data that is read or written too often should be stored in
memory, which enables read-, as well as write-, queries to complete quickly and the flushing
to disk to be done later by the page cleaner threads. The data structure of the buffer pool is

15



2. Background and Related Work

that of a least recently used (LRU) list, where data is moved to the top when accessed again,
keeping it in the buffer pool longer. When first inserted into the buffer pool from disk,
the insertion point is not at the top but rather 5/8 of the way down, decided by the knob
innodb_old_blocks_pct. Data is also only moved to the top if at least one second, decided
by the knob innodb_old_blocks_time, has passed since it was first inserted. This is to make
data recently accessed more than once on separate occasions stay in longer, since this would
increase the probability that it is going to be accessed again. Furthermore an algorithm called
read ahead is implemented that tries to predict what data is soon to be accessed, preemptively
putting it into the buffer pool.

The change buffer caches changes with INSERT, UPDATE and DELETE queries to be
merged later. This does not necessarily need to happen until data is read from disk into
the buffer pool when it is accessed by the user with a read operation. Waiting and do-
ing it in blocks reduces random access disk input/output. This can be modified to only
be done for some operations and not for others with one knob innodb_change_buffering
and the maximum size of the change buffer can be decided by another knob called inn-
odb_change_buffer_max_size.

The adaptive hash index keeps pointers to data in the buffer pool for fast look up. The
log buffer holds log data to be written to disk.

The on-disk structures are all the different possible types of tablespaces where data is
stored, the doublewrite buffer, the redo log and the undo log [19]. Tables, which contain the
actual data, are by default created in so called file-per-table tablespaces. There are then one
file for each table. Tables can also instead be created in system tablespaces or manually by
the user in general tablesspaces, both containing more than one table per file. The user can
also create session temporary tables in temporary tablespaces.

Undo logs, which contain information about how to undo the latest changes, are stored
in undo tablespaces. If things are modified and also read simultaneously with a consistent
read operation by a different user, the read operation needs to check the undo logs to retrieve
the unmodified data.

When data is flushed from the buffer pool to disk, it is first stored in the doublewrite
buffer to then be written into the proper positions in tablespaces. This is for crash recovery
reasons, and does not add a lot of overhead since data can be written to the doublewrite
buffer in one go sequentially. Distributing data into the proper tables is then more time
consuming and I/O demanding.

Redo logs store information about ongoing changes and inserts in case of sudden crash.
The changes and inserts can then be performed when the database comes online again.

There are knobs deciding how many threads are allowed to operate on InnoDB simul-
taneously, and how to decide which threads are allowed inside using so called “concurrency
tickets” that every thread gets a number to use before having to move back to the end of the
queue. Here is a trade off between letting large transactions complete and smaller ones being
able to sneak in without having to wait forever.

The few knobs mentioned here are just examples. Overall the performance knobs in
MySQL and InnoDB have to do with things like disk input/output, efficiency of utilising
RAM memory, threads operating concurrently and the maximum sizes of different things.
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2.2.4 Feature importance
We are interested in trying to figure out which knobs have the greatest impact on throughput.
This is different from unsupervised dimensionality reduction techniques such as principal
component analysis, since here we are interested in the impact on an objective.

One approach is to fit a linear regression model to training data while putting a penalty
on the model weights, then while increasing the penalty, observe in which order the weights
go to zero. This approach is called Lasso. One could also use the R-squared measure of what
proportion of the variance is predictable by different knobs such as in a paper by Kannellis et
all [12] on reducing the number of knobs to tune for the DBMSs PostgreSQL and Cassandra.

One problem with simply using linear regression methods is that it does not care about
where the default point is. If the default value on one knob is good and all other values are
much worse, then it is going to look as if that knob is very important to include in the search
space. What we really want is to find out which knobs can be improved significantly from
their default value. We use four feature importance methods, one that comes out naturally
from HyperMappers random forest model, and three implemented in the tool CAVE (which
described in section 2.3.3). Note that since CAVE uses an existing data set it doesn’t know
the exact values of all the points used by the feature importance methods, and so instead it
will fit a random forest model to the data and compute the feature importance values on the
model.

Random forest
HyperMapper uses Gini importance to estimate the importance of a parameter. Gini im-
portance is an importance method for measuring the total reduction in impurity by splits
using feature X in a random forest. HyperMapper uses random forest regression (the target
variable is continuous) and variance reduction as the splitting criteria (the criteria used for
dividing the data into smaller, more homogeneous groups). The importance of a feature X of
a random forest regression with reduction variance as the splitting criteria can be expressed
as the weighted sum of each node’s contribution to a decrease in variance, weighted by the
proportion of samples reaching that node and averaged over all trees of the ensemble [14].
Mathematically, the importance of a future X for a particular node A in a regression tree
(with reduction variance as the splitting criteria) can be calculated as follow:

impA(X) =
NA

Ntotal
·

(
VA −

NAR

NA
· VAR −

NAL

NA
· VAL

)
(2.5)

where NA is the number of samples who reached node A, NAR the number of samples
who reached the right child node of A, Ntotal the total number of samples in the tree, VA the
variance of node A, VAR the variance of the right child node of A. The two variables NAL

and VAL is defined similar to NAR and VAR respectively but denote the left child node. The
expression NA

Ntotal
is the weight for node A and the expression

(
VA −

NAR
NA
· VAR −

NAL
NA
· VAL

)
is A’s contribution to a decrease in variance. By summing over all nodes in the regression
tree using Equation 2.5 we get the importance of X for the regression tree. By dividing the
sum with the number of trees in the ensemble we get the importance of X for in the random
forest regression [14]. In the later sections we will use the abbreviation RF to refer to Gini
importance.
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Ablation analysis

The feature importance method ablation analysis (sometimes abbreviated to AA) imple-
mented in CAVE [3] is based on observing the changes of the objective function in stepping
from the default configuration to the best known configuration, the so called incumbent.
Starting at the default configuration, it observes the change in the objective function (mod-
eled using a random forest model) in changing one single parameter to its incumbent value.
It does this with every parameter. Out of all these configurations, with only one change com-
pared to the default, the highest increase is observed. This increase is a percentage of the
total increase in moving from the default to the incumbent configuration, and that is the
importance value given to that knob. The algorithm then moves to this configuration, with
every parameter at its default value except one, and from there repeats the process with every
other knob, changing their value to the incumbent value and computing the biggest increase
and the importance value. It is theoretically possible to get negative importance values, and
when this happens we change it to zero and normalize the other important values to sum to
one.

Ablation analysis is of course more reliable the closer the incumbent is to the true opti-
mum. Furthermore when done on a model as in CAVE as opposed to sampling the specific
configurations needed for the analysis, reliability improves with the accuracy of the model.
The model specifically needs to be accurate around the hypercube between default and the
incumbent. More samples in this area make the method more reliable.

This is of course only one of the possible ways of changing values from the default config-
uration to arrive at the incumbent configuration, and this illustrates the difficulty in defining
a universal feature importance method. Ablation analysis should be fairly reliable if there is
a linear relationship between parameters and the objective in the area between default and
the incumbent, but wherever there are dependencies between parameters it is going to over-
and undervalue some of them. The concept of value or importance as a whole also becomes
harder to define when considering parameters one by one. With these factors in mind ab-
lation analysis should give an indication of which parameters are most important to change
from their default to their incumbent value.

Local parameter importance

Another feature importance method implemented in CAVE is called local parameter impor-
tance (LPI). It also uses the incumbent, and keeps everything constant except one parameter.
If the parameter has n discrete values, the algorithm computes the value of the objective
function for those n values and computes the variance of those values. In case of a continu-
ous parameter, the algorithm uses 500 evenly spaced values. Parameters are given importance
weights according to the variance for that parameter divided by the sum of all variances. This
is a local method, since it looks at one parameter at a time, keeping every other parameter
at the incumbent value. This useful since we care about which parameters are important
around the incumbent, an area that the optimizer hopefully is going to explore more than all
the corners of the search space.

18



2.3 Tools

fANOVA
The third method implemented in CAVE is called fANOVA. This is a global method that
investigates first order effects and pairwise second order effects. For the first order effect,
similar to local parameter importance, it investigates the variance when changing one knob.
The difference is that the algorithm computes the average across all other configurations of
the entire search space while keeping that single knob fixed, for each value of that knob. In
case of a continuous variable, it is not split into 500 evenly spaces values as in LPI, but instead
the normal definition of the variance of a continuous variable is used. The method also looks
at pairwise second order effects, investigating the variance of the averages when changing
two parameters. Just like LPI the importance is proportional to the variance and normalized
so that all importance values sum to one.

Since this is a global method it is reliable only if given a sufficiently large data set and
should be given less trust for smaller datasets. It can however give some indication of the
importance of parameters in areas of the search space that LPI does not consider, which
is useful since we are unlikely to be close to the incumbent until later in the optimization
process.

2.3 Tools
Here we describe the tools used in our project.

2.3.1 BenchBase
BenchBase is a database benchmarking tool and the successor of OLTPBench which now is
archived and no longer maintained. Benchbase target primarily relational database systems
as they are harder to predict than key-value storage systems. BenchBase is written in Java and
is open-source. BenchBase was created to fix common issues found in benchmarking tools,
such as inadequate benchmark suites, no portability, insufficient set of metrics and lack of a
straight forward mechanism for extending new benchmarks [8].

In BenchBase, the size of the database, the number of active terminals (SQL clients), the
warmup time and the measurement time are all configurable parameters. The size of the
database is determined by scalefactor. Scalefactor is defined differently depending on the
benchmark. In TPC-C scalefactor is the number of warehouses 3. In Twitter scalefactor is
the number of users divided by 500 4. In YCSB scalefactor is the number of rows in the table
USERTABLE expressed in 1000s5.

2.3.2 HyperMapper
HyperMapper is an open-source multi-objective black-box optimization tool with support
of three different optimization methods: Bayesian optimization, evolutionary optimization,
and Local Search. However, its main strength is Bayesian optimization, making it practical

3https://github.com/cmu-db/benchbase/blob/main/config/mysql/sample_tpcc_config.xml
4https://github.com/cmu-db/benchbase/blob/main/config/mysql/sample_twitter_config.xml
5https://github.com/cmu-db/benchbase/blob/main/config/mysql/sample_ycsb_config.xml
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for optimizing expensive black-box functions. HyperMapper utilizes a surrogate model of the
black-box function to train efficiently and predict accurately. Currently, the surrogate model
can either be a random forest regressor or a Gaussian process. HyperMapper is also capable of
handling functions with unknown feasibility constraints [16]. It has been successfully applied
on multiple optimization problems with huge search spaces: 3D vision, hardware design space
exploration and database management systems parameter tuning [16] [15] [9].

In HyperMapper the optimizer starts with a design of experiment (DOE) phase before
the Bayesian optimization phase. Points are sampled across the entire search space and used
to initialize the surrogate model. The number of points generated and the sampling method
used during the DOE phase are configurable parameters. Currently available sampling meth-
ods are random sampling, standard Latin hypercube, k-Latin hypercube, and grid search.
With defaults settings HyperMapper uses expected improvement as acquisition function.
HyperMapper can make use of prior knowledge about search space by injecting a list of
probabilities or distribution modeling probability of a good value for each knob separately.
HyperMapper also provides settings which allow users to observe the importance of each in-
put parameter for each optimization iteration. This option is only available if the surrogate
model is random forest [11].

2.3.3 CAVE

CAVE which stands for “Configuration Assessment, Visualization and Evaluation” is an algo-
rithm configurator tool with the added benefits of a comprehensive automated report utility
and without restriction to the type of algorithm. An algorithm configurator is a tool that
optimizes hyperparameters of a algorithm. Many algorithms are highly parameterized and
can be tuned to achieve good performance for a set of problem instances. According to the
authors of CAVE, similar tools are either restricted to specific algorithms (such as the tool
PAVE) or lack a utility for a thorough algorithm analysis (such as the tool HAL). The auto-
mated report includes feature importance methods such as ablation analysis, local parameter
importance, and fANOVA. CAVE comes bundled with its own algorithm configurator called
SMAC3. SMAC3 can utilize observed data from previous runs to predict the performance
of a configuration-instance pair [3].

We note that tuning MySQL parameters for a specific benchmark can be viewed as al-
gorithm tuning where the algorithm is MySQL, the instance problem a benchmark and the
algorithm configuration being the MySQL parameters. CAVE is not actively maintained and
uses deprecated dependencies which causes problem for the automated report generator. We
used separate code for producing plots.

CAVE takes a data set and does feature importance according to the previously described
ablation analysis, local parameter importance and fANOVA methods. Since it uses an exist-
ing data set it can’t sample the points necessary, but instead it fits a random forest model
to the data, and does the feature importance methods on the model. Its accuracy then de-
pends on the quality of the underlying model, which should be improved by more data points
around the relevant areas.

20



2.4 Related work

2.3.4 Hardware
The final benchmarks were carried out in AWS EC2 cloud service. However, before final
benchmarks, multiple checks and preparation were conducted on private and school com-
puters from LTH. The computers were specifically used for checking that the search space
is reasonable, that its knobs values do not cause MySQL to crash, and different enough to
capture its impact.

Amazon Elastic Compute Cloud (Amazon EC2) is a service where users can rent vir-
tual machines. As mentioned in the name the service provides user with elasticity, i.e. to
dynamically scale up and down depending on the workload, if one wants to. EC2 utilizes
virtualization to partition physical computers into multiple virtual server machines [1]. The
EC2 provides the user with a predefined set of instance catalogs tailored for different pur-
poses, one of which is the M series, denoting a general-purpose computer. EC2 also allows
users to choose the region where the computer will be located.

In this project, only m5d.2xLarge instance type was used. The m5d.2xLarge is a general-
purpose computer with a decent amount of RAM (32 GB) and CPU power (8 vCPUs). The
instance comes with a 300GB NVMe SSD storage physically attached to the host computer[2].

We believe that choosing a less powerful instance than m5d.2xLarge would not be real-
istic since most modern private computers have at least 8 cores. Choosing a more powerful
instance would on the other hand be too expensive.

2.4 Related work
Kanellis et al. found that by tuning just the top five knobs for the database management
systems Cassandra and PostgreSQL it was possible to get 99% of the improvement compared
to tuning 29 (PostgreSQL) or 30 (Cassandra) knobs. They handpicked the search space by
going through the documentation and prior work, and then gathered 25 000 samples over
five days using 30 AWS instances, for two separate workloads. Using this massive training set
they were able to do linear regression and even look at second-order effects of dependencies
between knobs to pick out the five most important knobs. By then sampling 4000 points
using the top five knobs and keeping every other knob constant, the best point had more than
99% of the improvement compared to default of the full search space, for both workloads.
Their results indicate that identifying the most important knobs is of high value [13].

Similar work has been done for storage systems such as for one of the more popular
Linux’s file-formats Ext4 where the search space was sampled using Latin hypercube sam-
pling. The authors used reduction in variance to determine feature importance. Their search
space had 29 544 possible configurations, and they ran every configuration three times over
a few months, creating a large training set [4].

2.4.1 OtterTune
OtterTune is an automatic database configuration tool based on machine learning tech-
niques. Conceptually it can be divided into 3 parts: workload characterization, knob identi-
fication and automatic tuning. By learning distinctive features of the target workload it can
utilize previously stored configuration to accelerate the tuning process. Since the purpose of
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this thesis is to find the most impactful knobs the workload characterization part will not be
described.

For finding knobs with high impact OtterTune use Lasso regression and in particular
Lasso path algorithm which perform automatic feature selection and ordering of features by
importance. By including polynomial features in the regression dependencies between knobs
can be captured.

In the first step in the tuning process, OtterTune searches for a similar workload by com-
paring the Euclidean distance between different workloads for each filtered metric separately.
It then proceeds with choosing the most similar defined by the lowest average of the chosen
metrics. In the second step, Gaussian process regression is used to recommend new config-
urations that it believes will improve the target metric. OtterTune does not use all knobs
in a tuning session since it would be too large search space. Instead, it starts with the most
important ones and over time increases the number of knobs used [23].

In one of their experiments, for the benchmark TPC-C, OtterTune concluded the 10
most impactful knobs for MySQL are:

• innodb_buffer_pool_size

• innodb_thread_sleep_delay

• innodb_flush_method

• innodb_log_file_size

• innodb_thread_concurrency

• innodb_max_dirty_pages_pct_lwm

• innodb_read_ahead_threshold

• innodb_adaptive_max_sleep_delay

• innodb_buffer_pool_instances

• thread_cache_size

They used the AWS EC2 service with Ubuntu OS and MySQL version 5.6. The bench-
marking tool OLTpbench were installed in a separate server: OLTpbench in a m3.xlarge in-
stance and MySQL in a m4.large instance. The OtterTune’s tuning manager was deployed on
a local server with 128 GB RAM and 20 cores. They used an 18GB database size [23].
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Chapter 3

Methodology

3.1 Converting HyperMapper results to CAVE
format

The process of converting HyperMapper CSV files to SMAC3 so-called runhistory files is
quite simple. SMAC3 accepts a multitude of different runhistory file formats. One of which
happens to be CSV file format with a quite similar structure to HyperMapper’s CSV file.

A runhistory file contains information about algorithm runs. It contains the input, the
output (expressed as cost), along with some extra information for each run: the status of the
run (TIMEOUT, CRASHED, ABORT, MEMOUT, CAPPED, etc.), the total CPU time for
the run and the input seed (for the random generator inside the algorithm) [5]. CPU time is
time spent on processing the algorithm, not including sleep time and time for IO operations
1. Since MySQL does not use seed value, the seed value was set to one. The CPU time was
also set to a constant value since this metric is not tracked. For all runs, the status field was
set to SUCCESS. Unsuccessful runs were encoded as having a cost value positive 1. Since a
successful run cost is between [−∞, 0], +1 is always the largest cost. An unsuccessful run can
alternatively be coded with the value CRASHED.

Analysis methods like LPI and AA require one additional file called trajectory which
keeps track of the current best configuration throughout the runhistory. In trajectory file
only incumbent runs are included, so if a run performs worse than the current best it is not
included in the trajectory file [5]. For example, if the cost is -1 for run x1,-2 for run x2,−5 for
run x3,−3 for run x4,−7 for run x5,−1 for run x6 and −10 for run x7 then the trajectory file
would contain x1,x2,x3,x5 and x7 in the order as presented. The trajectory file also requires
total elapsed time (the total time from start to finish for a run). This is also set to a constant
value. The trajectory file is created from the runhistory file with the help of a script provided

1https://www.gnu.org/software/libc/manual/html_node/Processor-And-CPU-Time.html#
Processor-And-CPU-Time
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by our colleague. The script can be found in appendix D.1.

3.2 Design space
3.2.1 Knobs and value ranges
The knobs to use and values to include for the training set were decided after a process of
reading MySQL documentation and other sources. We first studied the structure of MySQL
and the storage engine InnoDB, while summarizing the function of many (or most) knobs.
Then we categorized every knob as green (probably matters for performance), yellow (might
matter for performance), orange (probably does not matter but possibly or is niche), and red
(does not matter).

We then refined our categories, especially by looking through the orange knobs again,
and decided to use all 52 green and yellow knobs for our training set. We then went through
those again, deciding on value ranges that would be wide enough to cover the possible optimal
values, but not unnecessarily wide. During this phase we tested different values for some
knobs to check if the ranges seemed reasonable. Once the 52 knob search space was finished
we tested it on 200 random points on our private computer to ensure we would not crash
the system too often and none of the points concluded in a crash.

3.2.2 Benchmarks
Initially, TPC-C, Wikipedia, and CHBenchmark were selected as final benchmark candi-
dates. However, due to unexpected bugs in BenchBase, TPC-C, YSCB and Twitter were ul-
timately chosen. The primary reason for choosing these is for their differences in write-read
distribution. Twitter is read heavy, TPC-C write heavy and YCSB balanced [8]. CHBench-
mark would have contained a combination of complex queries as well as simpler ones, but
the balanced read/write ratio of YCSB also makes it an important benchmark to test along
with the write- and read-heavy TPC-C and Twitter.

3.2.3 Scalefactor and number of terminals
Setting scalefactor is straightforward. The database size should be at least double the RAM
size. The reason for this is to make it impossible for MySQL to cache more than half of the
database into RAM since real-world databases are usually at least several times larger than
the RAM. We ended up selecting the following scalefactors 650, 14000, 50000 for Twitter,
TPC-C, and YSCB respectively. All three scalefactors translates to a 64GB database.

Setting the number of terminals for the benchmarks required additional work. Some
random configurations were sampled and only the best and worst configuration in terms of
throughput was kept. We then sampled new points using the best configuration but with dif-
ferent number of terminals. We thereafter sampled new points using the worst configuration
and using the same settings for number of terminals as those used with best configuration.
The setting that produced the largest difference in throughput between the best and worst
configuration was selected. There is a reason why we proceeded in this way. If the system is
not stressed hard enough then there is no point in optimizing. A bad configuration is equally
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good as an optimized configuration in terms of performance. The same could be said if the
system is overstressed. All configurations will perform poorly even, optimized configura-
tions. The system needs to be stressed hard enough but not too hard so there is room for
optimization and thus making the impact of knobs clearer for feature selection methods. We
ended up selecting the following number of terminals: 600, 200, 400 for Twitter, TPC-C and
YSCB respectively.

3.2.4 Warmup and measurement time

When benchmarking one needs to decide how long warm-up and how long measurement
time to use. A warm-up period is needed because it takes a while for the throughput values
to stabilize. Using a long warm-up such as 15 minutes and a long measurement time such
as 30 minutes should give a very stable and precise approximation of the throughput for the
given workload using that particular configuration. But 45 minutes would be a long time
for every iteration, so we want to investigate how much shorter warm-up and measurement
time we can use and still get good approximations of the throughput. Ideally, we want to
rank different configurations correctly relative to each other, but using a shorter warm-up
and measurement time. We don’t want the shorter warm-up and measurement time to over-
value some configurations and undervalue others. We therefore came up with the strategy of
letting ten random configurations run for 45 minutes with zero warm-up to then afterward
investigate the average throughputs of different warm-ups and measurement time values. A
window with starting point x and width y corresponds to warming up for x seconds and then
measuring for y seconds.

We observed the average throughputs for each configuration over the window starting at
900 seconds (15 minutes) to 2700 seconds (45 minutes), to get an approximation of the true
average throughput. We then investigated if we could use some earlier time window at start-
ing point x and width y, corresponding to a warm-up period of x seconds and a time window
of y seconds and still preserve the order and distances between the ten configurations.

3.3 Data collection

To be able to do feature importance 52 · 10 points were sampled in the design of experiment
phase using Latin hypercube and 52 · 10 in optimization phase for each benchmark. All
52 knobs were included in the search space. The purpose of the test is to find the most
important parameters. The reason for not doing only Latin hypercube sampling for search
space coverage is that the optimizer will (hopefully) zoom in on the higher throughput points,
creating more samples around those areas. This approach is tailored to the specific feature
importance methods implemented in CAVE that investigate what is happening around the
default point and the incumbent (ablation analysis and local parameter importance). We
want CAVE to be able to build a more precise underlying model around those areas.
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3.3.1 Necessary changes for MySQL and AWS in-
stance

Small changes were made to MySQL setting for benchmarks to work properly. The knob
max_connections was set to 650. The value was changed to specifically 650 since 600 terminals
are created in Twitter benchmark and we need some extra to avoid deadlocks.

We decided to disable binary logging during the data loading for two reasons. The pri-
mary reason is that binlog files created before a benchmark run, do not impact the result of
the benchmark. Binlog files are binary log files that contain records of all statements that
modify and potentially could modify the data (eg. an UPDATE with no matched rows). Bin-
log file is only used during a replication and data recovery which in our case will not happen.
Keep in mind that binloging was only disabled during data loading but not during the ac-
tual benchmark since binlog could potentially impact IO performance. The second reason is
binlog files take quite a large amount of space and as a consequence, longer time restoring.
Also, some YSCB benchmark runs ended up crashing due to being out of space.

For all the computers 16GB of swap memory was created on the SSD device. The reason
is to avoid complete system failure due to running out of available RAM. We estimated that
MySQL RAM usage will roughly peak at 29 GB based on the knobs buffer_pool_size and
temptable_max_ram. However how the remaining knobs and how BenchBase affects the
RAM is unclear, hence why swap memory was added.

3.3.2 HyperMapper configuration
For all tests, standard Latin hypercube sampling was used as the DOE sampling method,
random forest as the surrogate model, and Bayesian optimization as the optimization method.
All other parameters in HyperMapper, use their own default value.

3.3.3 Database restoration process
It was noted that running multiple benchmark runs in succession, without restoring the
database to its original state between benchmark runs, would result in a noticeable perfor-
mance downgrade as it continues. That’s why a backup of the database was created before
any benchmark runs. Restoration was achieved initially by a tool called rsync (which is au-
tomatically installed in Ubuntu) but later replaced with a simple delete, copy, and paste as it
was observed to be faster.

3.3.4 Black-box function
The optimization objective of this experiment is throughput. Since HyperMapper only ex-
cepts a minimization problem −1 · throughput is returned from the black-box function.
Since database crash is inevitable especially when knob search space is large, it was decided
the throughput value 1 should be used for signalling a database crash. The throughput 1 rep-
resents the worst option because all successful benchmark runs will return a value between
(−∞, 0]. Before performing the actual benchmark the black-box function would write the
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new configuration to a file that is parsed by MySQL, clear memory cache and restart MySQL.
Memory cache is cleared by the command:

sudo sh -c "echo 3 > /proc/sys/vm/drop_caches\"

Linux often caches frequently accessed data on disk into memory to reduce IO which
causes benchmark runs to be more nondeterministic.

3.4 Feature importance and identifying the
most important knobs

In order to identify the most important knobs to use as a “final” search space for testing, we
looked through plots with the four feature importance methods for the three benchmarks.
We put more trust in LPI and especially AA, on all three benchmarks, because of their local
nature and our relatively small data set. If one knob showed importance according to more
than one method, and for more than one benchmark, we could be more sure that it in fact
had an impact. Higher importance values were also (obviously) preferred. We also tried to
check where the best and worst points were using parallel coordinates plots, to get a slightly
better sense of what was going on and to reduce the risk of choosing knobs where the default
value was good and other values were worse.

3.5 Testing the final search space
To test our final search space of 9 knobs we ran an entire Bayesian optimization run with
9 + 1 initial Latin hypercube samples and 9 · 10 optimization iterations. We did this three
times for each benchmark. We compared with the default configuration and with the default
configuration with innodb_dedicated_server on, which automatically sets four of the most
important knobs according to some rules (see the values along with the results in section
4.4). We compared also against the best point sampled from the 52 knob search space and
also observed the speed of convergence.

Before doing this test we could have again investigated how long warm-up and mea-
surement time that would have been appropriate, since when tuning fewer knobs through-
put potentially could stabilize faster. However, instead of doing that we picked the longest
warm-up and measurement time that we had decided on for one of the benchmarks for the
data collection experiment (5 + 5 minutes), since time was now not as much of a constraint
and since the warm-up and measurement time investigation itself takes around ten hours of
benchmarking.
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Chapter 4

Results

4.1 Experimental settings

tool version
MySQL 8.0.29
Benchbase commit 23498ac8a1f9fbc8325a1fc5a89ac45756f0b759, Date: May 20 2022
Python 3.10.4
HyperMapper 2.2.10
Java Java-17-openjdk-amd64
CAVE commit: afcbecd0b9cb97276625c16a89cb6df141e6f6f2, Date: Mar 26 2021

Table 4.1: Software versions

The benchmarks were performed on MySQL version 8.0.29, installed from the APT
(Ubuntu’s package management system) package repository, on BenchBase defined by the
commit in Table 4.1 with HyperMapper version 2.2.10. Python version 3.10.4 was used for
HyperMapper and Benchbase compiled by openjdk 17. The AA, fANOVA and LPI was per-
formed in CAVE version defined by the commit in Table 4.1. It was also slightly modified
regarding where files are outputted by our colleague.

benchmark scalefactor number of terminals warmup time measurement time
TPC-C 650 200 240 120
Twitter 14000 600 240 120
YCSB 50000 400 300 300

Table 4.2: Benchbase setting for the test mentioned in section 3.3.
Time is expressed in seconds. What scalefactor correspond to for
each benchmark refer to section 2.2.2.
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4.2 Warm-up and measurement time

In the test mentioned in section 3.3 (result is presented in section 4.3) and subsequent tests
mentioned in section 3.5 (results are presented in section 4.4), the scalefactor, the number of
terminals is according to the Table 4.2. The measurement and warm-up for TPC-C and
Twitter is changed to 5 minutes (to match with YCSB) for the tests in section 3.5. How the
measurement time and warm-up time were decided are described in the section 4.2. How
scalefactor and number of terminals was decided are described in the section 3.2.3. The search
space used in the experiments can be viewed in the Table B.2 in the appendix. How the knobs
and their value ranges were selected is described in the section 3.2.1.

COMPUTER m5d2xlarge
CPU Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz
RAM DDR4 1x32GB
Root storage device EBS Gernal purposse SSD 2 (gp2) (size varies for instance to instance)
Storage device 2 Amazon EC2 NVMe Instance Storage (300 GB)
Region Stockholm (eu north-1)
OS Ubuntu 22.04 LTS

Table 4.3: Specification of the AWS machines used for performing
the benchmarks.

All benchmarks were performed on m5d2xlarge machines. Additional information can
be found in Table 4.3. We chose to store the database on the physically attached SSD storage
(storage device 2) and BenchBase results on the root storage device. Depending on the type of
benchmark extra EBS was allocated to accommodate all files produced from the benchmark.
For all AWS instances, 16 GB of swap memory was created and stored on NVMe SSD. The
reason why can be found in section 3.3.1 “ Necessary changes for MySQL and AWS instance”.
All communication to EC2 instances was performed via SSH. All benchmarks was run as a
background process with the command Screen.

4.2 Warm-up and measurement time
Figures 4.1 to 4.9 consist of our warm-up and time investigation for all three benchmarks in
our particular use case. From looking at the plots we are able to determine how short warm-
up and time we can use when benchmarking, and still rank different configurations correctly
relative to each other.

4.2.1 TPC-C
Figure 4.1 shows the throughput second by second of ten different configurations, randomly
selected, using the TPC-C benchmark. We see that that behaviour is more erratic for the
first few hundred seconds and then stabilizes. Figure 4.2 shows the average throughput of
the ten configurations over different measurement windows. For example, where “time” is
1800 and "warm-up" is 900, the values are the average throughputs between second 900 and
2700 for the ten configurations. This point we consider to be the “correct” measurement of
throughputs given the configuration. We want to pick a warm-up and measurement time
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shorter than that but that still ranks the ten configurations correctly relative to each other.
For low warm-up and measurement times we see that configurations rank quite differently,
and are very sensitive to small changes. We want to choose a point somewhere in between,
and have to decide on the shortest total time with a level of noise we can tolerate.

Figure 4.1: Plots of throughput during 2700 seconds or 45 minutes
for the TPC-C benchmark, for 10 random points in our 52 knob
search space. The points can found in Table B.3 in appendix.

Figure 4.2: Plots of throughput for different values of warm-up and
(measurement) time for the TPC-C benchmark, here with fixed
times in each plot and warm-up changing along the x-axis.
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In Figure 4.3 we have instead fixed the warm-ups and are changing time along the x-
axis. We see that light blue is ranked too highly, and orange too low, until approximately
240 second warm-up and 240 second time. We decide this is to slow and to accept some
configurations being slightly under- or overvalued. We decide to go with 180 second warm-
up and 120 second time, since several of the configurations seem to need a three minute
warm-up to stabilize and since from looking at the warmup = 180 plot there is not much gain
from measuring for longer than 120 seconds, unless it would be several minutes longer. The
most important part seems to be to remove the transient effects in the beginning, and all
configurations except light blue and orange seem to have come close their final throughput
values around this point. With a three minute warm-up and two minute time plus around
four minutes in between every iteration we can collect around 1000 samples in a week.

Figure 4.3: Plots of throughput for different values of warm-up and
(measurement) time for the TPC-C benchmark, here with fixed
warm-ups in each plot and time changing along the x-axis. The
points can found in Table B.3 in appendix.

4.2.2 Twitter

In Figures 4.4 to 4.6 we see the same plots for Twitter. The behaviour of the configurations
are wildly different, but they stabilize pretty well after a few minutes. We conclude that the
same 180 second warm-up and 120 second time is similar enough to the 900+1800 point.
Before this several of the configurations would be overvalued.
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Figure 4.4: Plots of throughput during 2700 seconds or 45 minutes
for the Twitter benchmark, for 10 random points in our 52 knob
search space. The points can found in Table B.3 in appendix.

Figure 4.5: Plots of throughput for different values of warm-up and
(measurement) time for the Twitter benchmark, here with fixed
times in each plot and warm-up changing along the x-axis.
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4.2 Warm-up and measurement time

Figure 4.6: Plots of throughput for different values of warm-up and
(measurement) time for the Twitter benchmark, here with fixed
warm-ups in each plot and time changing along the x-axis.

4.2.3 YCSB

From looking at Figure 4.7 to Figure 4.9 we see that YCSB seem to require longer warm-up
and time than the previous two benchmarks. The initial transient effects seem to be going
on longer. At the 180 second warm-up and 120 second time point configurations assume
the wrong order, with for example gray coming in at number seven instead of ten, blue not
clearly beating purple, and pink being number ten instead of eight. We decided that we need
a longer warm-up and measurement time, and that beyond a 300 second warm-up and 300
second measurement time there is not much to gain unless we measure for much longer. So
we decided to set both warm-up and measurement to 300 seconds for this benchmark. The
trade off was that we had to wait longer for the results to come in.
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Figure 4.7: Plots of throughput during 2700 seconds or 45 min-
utes for the YCSB benchmark, for 10 random points in our 52 knob
search space.

Figure 4.8: Plots of throughput for different values of warm-up and
(measurement) time for the YCSB benchmark, here with fixed times
in each plot and warm-up changing along the x-axis.
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Figure 4.9: Plots of throughput for different values of warmup
and (measurement) time for the YCSB benchmark, here with fixed
warm-ups in each plot and time changing along the x-axis.

4.3 Feature importance

Here we present the figures relating to our feature importance investigation, and outline
the reasoning behind choosing the knobs we did. Our analysis of individual knobs is in
the next subsection. In Figure 4.10 we see the importance weights according to the four
methods for the TPC-C benchmark. We have zoomed in to better see the other weights
beyond innodb_buffer_pool_size, which has a sum of around 1.5 as seen in Figure A.2 in
the appendix. In Figure 4.11 we show only the fANOVA weights, with the top weights of
combinations of two knobs included.

In Figure 4.12 we see a parallel coordinates plot with all of the knobs we decided to in-
vestigate further. This meant leaving innodb_buffer_pool_size and innodb_flush_method out
since they where so clearly impactful for all three benchmarks. Every line in the plot is one
knob value, and to the far right is the throughput, split up into different categories for vi-
sualisation purposes. Darker green mean higher throughput, the default is highlighted and
red means worse than default. This plot gives some indication of which knob values that
produced the best and the worst throughputs. Keep in mind that only half of the points are
randomly spread out across the search space, on a Latin hypercube, and that the other half of
the points is the optimizer choosing points based on expected improvement. So a large part
of the fact that some knob values contributed to high throughputs more often than others is
mainly because of the optimizer decided to investigate those areas of the search space more.
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Figure 4.10: Knob importance weight for TPC-C according to RF,
LPI, AA, fANOVA. This figure is identical to figure A.2 but zoomed
in.
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Figure 4.11: fANOVA with first and seconder interactions between
knobs for TPC-C benchmark.
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Figure 4.12: Parallell coordinates plots of knobs we decided to in-
vestigate further for the TPC-C benchmark, giving some indication
of which combinations of values resulted in which throughput.

Figures 4.13 to 4.15 show the same set of plots as for TPC-C above, but now for Twitter.
The parallel coordinates plot includes different knobs. They are the knobs that we decided
to investigate further with respect to their impact on performance on Twitter. We analyse
the promising knobs one by one in the next section.
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Figure 4.13: Knob importance weight for Twitter according to RF,
LPI, AA, fANOVA. This figure is identical to figure A.3 but zoomed
in.
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Figure 4.14: fANOVA with first and seconder interactions between
knobs for Twitter benchmark.
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Figure 4.15: Parallell coordinates plots of knobs we decided to in-
vestigate further for the Twitter benchmark, giving some indication
of which combinations of values resulted in which throughput.

The same three plot are shown in Figures 4.13 to 4.15, now for YCSB. The parallel coor-
dinates plot again contains different knobs.
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Figure 4.16: Knob importance weight for YSCB according to RF,
LPI, AA, fANOVA. This figure is identical to figure A.1 but zoomed
in.
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Figure 4.17: fANOVA with first and seconder interactions between
knobs for YCSB benchmark.
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Figure 4.18: Parallell coordinates plots of knobs we decided to in-
vestigate further for the YCSB benchmark, giving some indication
of which combinations of values resulted in which throughput.

4.3.1 The most important knobs

We here go through the knobs that show some clear indication of being important for one or
more benchmarks, with one or more feature importance methods. We consider a knob with
good importance features values on all four feature importance methods more important
than a knob with higher cumulative sum but concentrated on only one feature importance
method. In total we look deeper into 16 knobs, and also mention five others that possibly
could have had an impact but that would not make it into our final search space, all of which
presented in the Table 4.4.
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Part of final search space Honourable mentions The remaining of the 16 knobs
preload_buffer_size thread_stack innodb_read_ahead_threshold
innodb_sync_spin_loops thread_cache_size innodb_old_blocks_pct
innodb_spin_wait_delay innodb_random_read_ahead innodb_lru_scan_depth
innodb_log_files_in_group innodb_old_blocks_time innodb_compression_failure_threshold_pct
innodb_log_file_size innodb_commit_concurrency innodb_buffer_pool_instances
innodb_io_capacity innodb_adaptive_hash_index_parts
innodb_flush_method innodb_adaptive_hash_index
innodb_change_buffering
innodb_buffer_pool_size

Table 4.4: The left column represents the parameters that are part of
the 16 knobs that we considered interesting candidates and later also
included in the final search space. The middle column represents the
5 knobs that had lower impact overall but still promising. The right
column represents the remaining 16 knobs that ended up filtered
out due to not enough impact.

• The knob preload_buffer_size is not exceptionally high anywhere but it has some mod-
erate contribution from several feature importance methods in all the benchmarks. In
Figure 4.15 we notice that the optimizer seemed to prefer slightly higher values than
the low default value, but overall we don’t notice much structure in our parallel coor-
dinates plots.

• The knob innodb_sync_spin_loops seems to be the third most important knob for
YCSB, with three of the feature importance methods indicating that it is of some im-
portance. For TPC-C three of the methods produce above zero values, although the
sum is not as high. In the parallell coordinates plot for TPC-C 4.12 we see that higher
values than default seems to be preferred, and judging from Figure 4.18 we see that
lower values are preferred for YCSB. This knob has to do with the number of times
threads waits for a mutex lock to be freed before the thread is suspended. We believe
the difference between TPC-C and YCSB may depend on the complexity of the queries,
where TPC-C has more complex queries that should get more time to complete. There
is limited information about this knob on the internet and the relationship between
it and the other knobs that has to do with mutex locks and threads going to sleep is
unclear, but we believe that after this number of times the thread has waited for a mu-
tex lock the query is aborted, and the user needs to try again. And so in practice the
user may wants to set a higher value on this knob than what is optimal for throughput
to make sure that more queries go through. That said, at some points queries need to
give up, and so optimizing this knob for throughput might not be so bad. Either way
we conclude that this knob probably has some impact on throughput.

• The knob innodb_spin_wait_delay has a sum of the four methods above 0.02 for all
benchmarks, with contributions from three of the four methods. It contributes more
to TPC-C and YCSB than Twitter as in the case of innodb_sync_spin_loops. All three
benchmarks seem to prefer smaller values on this knob than the default value six. We
conclude that this knob probably has some small impact on throughput.

• The knob innodb_read_ahead_threshold is given a lot of importance by the LPI method
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in TPC-C, and less than 1% by fANOVA, but not much anywhere else. In Figure 4.12
we notice good and bad points all over. The values 0, 16, 20 and the default 56 all
contain top 20 points. Here 0 actually mean that read ahead is turned off, which is
more similar to higher values such as 64 than low ones. Higher values means that read
ahead is only triggered when most of a page has already been read, which means that
it is triggered less often. In any case we don’t notice enough evidence that optimizing
this knob impacts throughput in any significant way.

• In Figure A.2 we notice that innodb_old_blocks_pct is considered to be very important
for TPC-C by LPI and AA. It importance weight for LPI and AA is approximately 16
% and 10 %. From Figure 4.12 we can observe the default value is quite good, it contains
some of the top 20 points. Other good values are 60 % and 30 %. Many of top 20 point
prefer a specific combination of innodb_old_blocks_pct and innodb_buffer_instances:
innodb_buffer_instances values 6.2 combined with innodb_old_blocks_pct values 37.30
respectively. The top 20 points seem to be in the 30 to 60 range. Default might be good
enough, and whats important is to stay away from the two extremes. Since we did not
notice any importance in twitter and YCSB either, we choose to not include this knob
in the final search space.

• The knob innodb_lru_scan_depth is mostly important for TPC-C, a bit for YCSB ac-
cording to the AA method and not at all for Twitter. In Figure 4.12 we notice that most
of the top points for TPC-C uses the default value or slightly lower, and in Figure 4.18
we notice that the top points are spread out everywhere, including the default value.
Beyond that we can’t conclude much from those plots. We stick to the default value
and don’t include in the final search space.

• We notice that innodb_log_files_in_group might have some importance for all three
benchmarks, mainly Twitter and YCSB. Especially the AA method in Twitter and
YCSB might have detected something. In Figure 4.15 we notice quite clearly that most
of the better points in Twitter use one of the values 4 or 15, both larger than the default
2. Also in Figure 4.18 we believe that values other than the default might lead to higher
throughputs, although less clearly than Twitter.

• The knob innodb_log_file_size has some importance according to LPI for TPC-C and
some according to AA for Twitter. To get a better picture what is going on we inves-
tigate the parallel coordinates plots. We notice that for TPC-C there might be some
preference for values such as 200, higher than the default 48 and for Twitter for the
values 75 and 150. If there is space this knob could be included in the final search.

• For the knob innodb_io_capacity we notice some small signs of importance according
to RF in TPC-C and Twitter, complemented by AA, suggesting that something small
might be going on. In the parallel coordinates plots we notice that most of the very best
points use some value higher than the default 200 for both TPC-C (800 and 1200) and
Twitter (400 and 1000). Why it has been given such low importance overall is bit of a
mystery. This knob is responsible for the IOPS rate on background tasks and we believe
tuning this knob could be important. Possibly tuning it doesn’t start to matter before
the really high throughputs, making it invisible to the feature importance methods.
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AA could have catched it though. If there is space this knob might be included in the
final search space.

• The knob innodb_flush_method is clearly important for all benchmarks and it is in-
cluded without question.

• The knob innodb_compression_failure_threshold_pct is given a lot of importance ac-
cording to RF for Twitter, possibly supported by less than 1% from the other methods.
For YCSB, LPI gives it about 2% of the importance. In Figure 4.15 we notice that for
Twitter the optimizer has choosen to explore more around the smaller values 0-4 than
the default 5 and higher values, and it is also among those small numbers that the
best points where found. It might just be that other knobs contributed to these higher
throughputs, making the Bayesian optimization algorithm stick around in this area for
no particular reason. For YCSB the best points where found at 5 and 15. We just stick
to the default and don’t include it in the final search space.

• For innodb_change_buffering the situation is similar to the above knob, with weight
being given by RF, but now it is for all three benchmarks, and for YCSB it is supported
by some importance from the LPI method. Looking at the parallel coordinates plots
we notice that more good points seem to use values other than the default value “all”
in all the benchmarks. We include it in the final search space.

• The knob innodb_buffer_pool_size has high numbers in several feature importance
methods for all three benchmarks and is therefore without hesitation included in the
final search space.

• The knob innodb_buffer_pool_instances is given significant importance by AA and
LPI for TPC-C, insignificant amount by all importance methods for Twitter and just
around 2% by RF for YCSB. From the parallel coordinates plot for TPC-C, Figure
4.12, we don’t get a lot of information since good and bad points are spread out across
all values. Overall the sum of the feature importance methods on TPC-C is not high
enough and we also don’t notice anything in the other benchmarks.

• The knob innodb_adaptive_hash_index_parts seems important for Twitter since it is
more than 15% of LPI, supported by significant chunks from RF and fANOVA. On
YCSB it is given almost 10% of the weight from RF. In Figure 4.15 the best points are
using the values 2 and 128 for Twitter. This large difference is slightly strange, un-
less there are dependencies with other knobs that would explain why 2 and 128 both
sometimes are optimal. For YCSB, Figure 4.18 both good and points seem to evenly
spread out. Further investigation found that innodb_adaptive_hash_index was mostly
chosen to be turned off by the optimizer (ie. by setting innodb_adaptive_hash_index to
false), which definitely makes this knob have zero impact when that is true. We there-
fore guess that the significant importance given by LPI is mostly due to randomness.
If adaptive hash indexing was mostly turned on then we would have more strongly
believed that this knob was important.

• The knob innodb_adaptive_hash_index is given a lot of importance by the AA method
in TPC-C and only some by RF and fANOVA for Twitter and some from RF for YCSB.
The optimizer keeps trying out both OFF and ON for TPC-C, and both seem to have
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both good and bad values. We can’t determine that this is an import enough knob to
include it.

Other honorable mentions would be thread_stack, thread_cache_size, innodb_random_read_ahead,
innodb_old_blocks_time and innodb_commit_concurrency but these did not quite have high
enough importance values to make it into our final search space.

We conclude that preload_buffer_size,innodb_sync_spin_loops, innodb_spin_wait_delay,inn-
odb_log_files_in_group, innodb_log_file_size, innodb_io_capacity, innodb_flush_method, inn-
odb_change_buffering and innodb_buffer_pool_size seem to be the most likely top 9 impor-
tant knobs and are therefore included in our final search space for testing.

These knobs are followed by innodb_read_ahead_threshold, innodb_old_blocks_pct, inn-
odb_lru_scan_depth, innodb_compression_failure_threshold_pct, innodb_buffer_pool_instances,
innodb_adaptive_hash_index_parts and innodb_adaptive_hash_index which all very well could
have a great impact that we just did not notice enough of in our experiments. The knobs
thread_stack, thread_cache_size, innodb_random_read_ahead, innodb_old_blocks_time and
innodb_commit_concurrency could also be impactful, but with lower probability.

4.4 The final search space

Here we present the results of optimizing over our final search space, containing the 9 most
important knobs. The value ranges are the same as when we did the feature importance,
and so might be wider than one would want them in a real world setting. We ran each
optimization three times for all three benchmarks, with 10 design of experiment iterations
and 90 optimization iterations. We also look at parallel categories plots again and discuss
whether or not the nine seems to actually have been important in the final search space.

45



4. Results

4.4.1 TPC-C

Figure 4.19: Throughput over best configuration found over
time for all 3 repetitions with default configuration and inn-
odb_dedicated_server=ON. Benchmark : TPC-C.

Figure 4.19 shows the convergence for TPC-C, as well as the default and also default with
innodb_dedicated_server turned on as baseline reference points. We see that after around 60
iterations all three repetitions seems to have converged. From Table 4.5 we see that optimal
throughput in the final search space are close to best point found in the larger 52 knob search
space. The optimal throughput from the final search space is between 98 and 99 % of the
optimal throughput in the larger search space, while innodb_dedicated_server=ON is around
93 %.

Table 4.5 shows the knob values and throughputs of the best point for the three repeti-
tions. We see that only innodb_flush_method, innodb_change_buffering and innodb_buffer_pool_size
are the same across all three runs. Figure 4.20 shows a parallel categories plot using all 300
points from the three optimization repetitions. The throughputs are to the far right, where
darker green means higher throughput. The default configuration is highlighted in red.

We can see that for some knobs the best configurations use values significantly differ-
ent from default, indicating that the knob was important to include in the search space.
For others the best configurations are spread out across all the possible values, meaning that
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the value put on the knob doesn’t seem to matter very much. For innodb_flush_method, inn-
odb_change_buffering and innodb_buffer_pool_size there seems to be a clearly prefered value,
and beyond that it seems that values higher than default for preload_buffer_size is preferred.
The optimal points for this point as seen in the table are all using one of three highest values,
much larger than default. Both innodb_log_files_in_group and innodb_log_file_size seem to
create higher throughputs when set to something significantly different from their defaults.
The three knobs innodb_spin_wait_delay, innodb_sync_spin_loops and innodb_io_capacity
however seem less important since good configurations uses values spread out across many
values, both high and low. It could be that some combinations of innodb_spin_wait_delay and
innodb_sync_spin_loops are better than others, maybe high innodb_spin_wait_delay com-
bined with low innodb_sync_spin_loops or low innodb_spin_wait_delay combined with medium
innodb_sync_spin_loops.

From default rep 1 rep 2 rep 3 innodb_dedicated_server=ON original
preload_buffer_size 32768 536870912 134217728 33554432 - 536870912
innodb_sync_spin_loops 30 400 5 10 - 200
innodb_spin_wait_delay 6 1 8 8 - 1
innodb_log_files_in_group 2 50 12 50 18 30
innodb_log_file_size 48M 300M 200M 300M 1024M 200M
innodb_io_capacity 200 1100 400 600 - 800
innodb_flush_method fsync O_DIRECT O_DIRECT O_DIRECT O_DIRECT_NO_FSYNC O_DIRECT_NO_FSYNC
innodb_change_buffering all purges purges purges - purges
innodb_buffer_pool_size 128M 24576M 24576M 24576M 24576M 20480M
Throughput 322 1439 1422 1420 1349 1447

Table 4.5: Benchmark: TPC-C. The table contains the optimal con-
figuration from each repetition of the final search space test, optimal
configuration from the original search space test, the default con-
figuration and configuration from when innodb_dedicated_server
is enabled. The remaining of the 52 knobs are set to de-
fault values except for the original optimal configuration which
can be viewed in Table B.1 in appendix. A hyphen in inn-
odb_dedicated_server=ON column indicate that the knob is not af-
fected by innodb_dedicated_server and have the same value as the
default column. K = 10241, M = 10242, G = 10243.

47



4. Results

Figure 4.20: Parallel categories plot of all 300 different configura-
tions and their resulting throughputs from the three optimization
runs on TPC-C. The default configuration is highlighted in red.
The knobs innodb_buffer_pool_size and innodb_log_file_size are ex-
pressed in the unit of M = 10242.

4.4.2 Twitter

In Figure 4.21 we see that HyperMapper optimizations converge before the 20:th iteration.
This seems to be because only some knobs matter and beyond that there is not much opti-
mization to be done in our search space.
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Figure 4.21: Throughput over best configuration found over
time for all 3 repetitions with default configuration and inn-
odb_dedicated_server=ON. Benchmark : Twitter.

In Table 4.6 we see that the best configuration found in the original 52 knob-search space
has a considerably higher throughput than the optimum found in the final search space. This
is probably because there are knobs with high impact on Twitter that based on our exper-
iments did not quite make it into the final search space. Further testing would need to be
done to see if any of the “honorable mentions” could increase the throughput up to above
10,000. This could be for example the knob innodb_compression_failure_threshold_pct that
had high importance according to the random forest feature importance method for twitter
but was left out because it wasn’t supported enough by the other methods and benchmarks.
The optimal values are here between 66 and 67% of the best point found in the larger search
space, while innodb_dedicated_server=ON got around 60%.

From Figure 4.22 we can see that for the best points innodb_buffer_pool_size and inn-
odb_flush_methods are set to 20480 MB and O_DIRECT. We see also that there are many
points with almost the same high value, and that the optimizer couldn’t find anything better
beyond that. For all the remaining seven knobs any value seems to be able to contribute to
these highest throughputs, and so they probably don’t matter much. We see that high inn-
odb_sync_spin_loops combined with high innodb_spin_wait_delay never leads to above 7000
throughput, but other than that many combinations seem to be reasonable.
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From default rep 1 rep 2 rep 3 innodb_dedicated_server=ON original
preload_buffer_size 32768 134217728 131072 524288 - 131072
innodb_sync_spin_loops 30 80 30 50 - 400
innodb_spin_wait_delay 6 10 15 9 - 3
innodb_log_files_in_group 2 20 15 2 18 15
innodb_log_file_size 48M 48M 75M 150M 1024M 150M
innodb_io_capacity 200 400 900 100 - 400
innodb_flush_method fsync O_DIRECT O_DIRECT O_DIRECT O_DIRECT_NO_FSYNC O_DIRECT
innodb_change_buffering all inserts deletes changes - none
innodb_buffer_pool_size 128M 20480M 20480M 20480M 24576M 24576M
Throughput 2710 7077 7078 7081 6409 10620

Table 4.6: Benchmark: Twitter. The table contains the optimal con-
figuration from each repetition of the final search space test, optimal
configuration from the original search space test, the default con-
figuration and configuration from when innodb_dedicated_server
is enabled. The remaining of the 52 knobs are set to de-
fault values except for the original optimal configuration which
can be viewed in table B.1 in appendix. A hyphen in inn-
odb_dedicated_server=ON column indicate that the knob is not af-
fected by innodb_dedicated_server and have the same value as the
default column. K = 10241, M = 10242, G = 10243.
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Figure 4.22: Parallel categories plot of all 300 different configura-
tions and their resulting throughputs from the three optimization
runs on Twitter. One default configuration is highlighted in red.
The knobs innodb_buffer_pool_size and innodb_log_file_size are ex-
pressed in the unit of M = 10242.

4.4.3 YCSB

In Figure 4.23 we see that all three repetitions has converged by iteration 50 in the YCSB
optimization.
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Figure 4.23: Throughput over best configuration found over
time for all 3 repetitions with default configuration and inn-
odb_dedicated_server=ON. Benchmark : YCSB.

Based on Table 4.7 we note that that the optimal points are higher than the best point
from the original search space. This indicates that we have picked out at least some impor-
tant knobs. From Figure 4.24 we see that innodb_flush_method and innodb_buffer_pool_size
clearly are important. Some combinations of innodb_sync_spin_delay and innodb_spin_wait_delay
seem to be better than others and for innodb_log_files_in_group, innodb_log_file_size and
innodb_io_capacity values higher than default seem to be better. For innodb_change_buffering
possibly “deletes” and “purges” are slightly better than default.
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Iteration default rep 1 rep 2 rep 3 innodb_dedicated_server=ON original
preload_buffer_size 32768 536870912 32768 536870912 - 33554432
innodb_sync_spin_loops 30 200 10 10 - 5
innodb_spin_wait_delay 6 1 7 3 - 6
innodb_log_files_in_group 2 40 50 12 18 20
innodb_log_file_size 48M 75M 75M 300 1024M 100M
innodb_io_capacity 200 700 500 1100 - 300
innodb_flush_method fsync O_DIRECT O_DIRECT_NO_FSYNC O_DIRECT_NO_FSYNC O_DIRECT_NO_FSYNC O_DIRECT
innodb_change_buffering all purges deletes deletes - none
innodb_buffer_pool_size 128M 20480M 20480M 20480M 24576M 24576M
Throughput 11692 23386 23413 23269 22600 21775

Table 4.7: Benchmark: YCSB. The table contains the optimal config-
uration from each repetition of the final search space test, optimal
configuration from the original search space test, the default con-
figuration and configuration from when innodb_dedicated_server
is enabled. The remaining of the 52 knobs are set to de-
fault values except for the original optimal configuration which
can be viewed in table B.1 in appendix. A hyphen in inn-
odb_dedicated_server=ON column indicate that the knob is not af-
fected by innodb_dedicated_server and have the same value as the
default column. K = 10241, M = 10242, G = 10243.

Figure 4.24: Parallel categories plot of all 300 different configura-
tions and their resulting throughputs from the three optimization
runs on Twitter. One default configuration is highlighted in red.
The knobs innodb_buffer_pool_size and innodb_log_file_size are ex-
pressed in the unit of M = 10242.
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4.5 Discussion

In this section we describe the results of our warm-up and measurement time investigation,
the feature importance and the tests on the final search space. For the warm-up and measure-
ment time we went with 240 + 120 seconds for TPC-C and Twitter, and 300 + 300 seconds
for YCSB. These times are specific to the workloads we used, and with a different benchmark
or in a real world setting a different choice might be more suitable.

We then presented the feature importance results on the three benchmarks. We identified
nine knobs that stood out in terms of having higher feature importance numbers than others
and according to more feature importance methods and on more than one of the benchmarks.
Beyond the top nine we identified twelve honorable mentions who also have a reasonable
chance of being important. Our data set was due to time constraints not large enough for the
number of parameters, which is why we wanted to see some indication of importance from
more than one method on one benchmark.

After identifying the top nine knobs we tested those in a final search space, letting the
optimizer run for a total of 100 iterations. The best throughputs found on the three bench-
marks are presented in Table 4.8, compared to the default configuration, default with inn-
odb_dedicated_server turned on and also the best point found from the data set with the
original large search space with 52 knobs as baseline references. We also present the speed-
ups as a factor of the three baselines. We see that the optimizer was able to find config-
urations between 3 and 10% better than the default with innodb_dedicated_server turned
on. The improvement compared to default was between 2x and 4.43x, but it seems that
most of the improvement comes from the four knobs that innodb_dedicated_server sets au-
tomatically. For the Twitter benchmark however we see that in the large search configu-
rations generating a throughput of at least 10,620 are possible, more than 65% better than
innodb_dedicated_server. This indicates that we missed some important knobs in our final
search space, and that through further refinement it should be possible to achieve better
results compared to innodb_dedicated_server, at least on some workloads.

From our feature importance investigation there was always going to be things we were
not able to see. We used just three workloads on one hardware configurations, and with
changes to those different knobs were going to appear more important or less important.
Not many knobs relating to thread concurrency made it into our final search space or as
honorable mentions, and it might be that with a much higher number of connections, or
users some of those might have been more important.

There is also the possibility that we missed one or two knobs that should have been in-
cluded in the search space. Some niche knobs were intentionally left out, for example ones
relating to full-text tables and full-text search were not included at all in the search space,
but those might of course be important on some workloads. It is likely that we did not design
the value ranges optimally. They are somewhat wide and sparse, especially the ones whose
values we increase exponentially with a factor of two. This was to not completely miss the
best values, but it might be that with a narrower and more dense range of reasonable values
some knob that require precision would have shown greater importance because better values
were found.
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TPC-C Twitter YCSB
Throughput
default 322 2710 11692
innodb_dedicated_server=ON 1349 6409 22600
large search space 1447 10620 21775
final search space 1427 ± 9 7078 ± 2 23356 ± 63
Speedup
default 4.43 ± 0.03 2.61 ± 0.00 2.00 ± 0.01
innodb_dedicated_server=ON 1.06 ± 0.01 1.10 ± 0.00 1.03 ± 0.00
large search space 0.99 ± 0.01 0.67 ± 0.00 1.07 ± 0.00

Table 4.8: The Throughput section presents the throughputs for the
default configuration, default with innodb_dedicated_server=ON,
the best configuration from the large search space test and from the
final search space runs. The Speedup section presents the speedups
gained from the final search space with respect to default, inn-
odb_dedicated_server=ON and the large search space. The speedup
section and the throughputs from the 3 final search space runs are
expressed with one standard deviation.

It was discovered afterward that BenchBase have a high CPU utilization. For TPC-C,
YCSB and Twitter respectively we observed that roughly 200, 250, 100 % (where 100 %
equals full utilization of one core) was utilized by Benchbase itself according to the output
of the command top. Having BenchBase and MySQL run from the same machine could
potentially have affected the results in various ways.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion
In conclusion, after testing our final search space it still seems as if the nine knobs included in
the final search space are among the most important ones. The knobs were preload_buffer_size,
innodb_sync_spin_loops, innodb_spin_wait_delay, innodb_log_files_in_group, innodb_log_file_size,
innodb_io_capacity, innodb_flush_method, innodb_change_buffering and innodb_buffer_pool_size.
The possible performance gain in less than 100 iterations when optimizing these knobs is be-
tween 99.0 and 346.7% better than default, and between 3.0 and 10.5% better than default
configuration with innodb_dedicated_server turned on.

However, in order to squeeze out more performance some changes can be made before
settling on a search space suitable for an unknown workload. This should especially im-
prove throughput for the Twitter benchmark where we know from the data collected for
the feature importance that higher throughputs are possible. Four of the knobs, namely
preload_buffer_size, innodb_flush_method, innodb_change_buffering and innodb_buffer_pool_size
could probably be set to predetermined values and four or more additional knobs out of
our “honorable mentions” could have be included. The seven honorable mentions that we
looked deeper into, and that very well could have a great impact that we just did not see
as much of in our experiments, were innodb_read_ahead_threshold, innodb_old_blocks_pct,
innodb_lru_scan_depth, innodb_compression_failure_threshold_pct, innodb_buffer_pool_instances,
innodb_adaptive_hash_index_parts and innodb_adaptive_hash_index. Of these
innodb_compression_failure_threshold_pct and innodb_adaptive_hash_index_parts had the
highest feature importance values for Twitter and should therefore probably be included in
an adjusted search space.

Beyond these seven, the five knobs thread_stack, thread_cache_size, innodb_random_read_ahead,
_old_blocks_time and innodb_commit_concurrency could potentially also be impactful, but
with lower probability. Of these we would try including innodb_random_read_ahead because
of its relevance to the Twitter benchmark.
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5.2 Future work
Since we know that even better performance is possible, more work is needed to refine the
final search space. As previously described this would include setting some knobs to their
obvious best values and including other knobs in the search space. It would also include
narrowing down the value ranges to include the relevant areas only. Since there is also the
possibility of setting a prior distribution for the knobs, this could be done to guide the op-
timization into the likely good areas in order to shorten the number of iterations needed for
convergence.

In order to become more certain of the universal applicability of the search space one
could also gather data and do feature importance using other computers and hardware con-
figurations. For example there are “storage optimized” instances for AWS, which as opposed
to the “general purpose” instance m5d.2xlarge that we used is optimized specifically for high
sequential read and write access to local storage. Those could be relevant for database appli-
cations, and could possibly produce different feature importance results. There is of course
also the possibility of testing workloads other than the three used in this project.

In our experiments the workload was always the same, but in real world scenario the
workload is likely going to change over time. When the workload remains relatively stable
for several hours there is time to optimize, but optimization is difficult if the workload shifts
to much and the throughput and general behaviour of the system changes. For this reason
some sort of workload categorisation or identification is a topic for the future. Additionally,
in this thesis we did not investigate to what degree different workloads require different
configurations to run optimally. Whenever the workload changes drastically it might be
worth it to go through the optimization process again, and save the optimal points for when
the same workload is present again in the future.

Another idea is to tailor the search space to the specific workload. If it is known that
some knobs are only relevant in certain situations, one could then leave those out of the
search space and leave them at their default value when the workload does not call for them.

Another idea is to investigate the possibility of changing the warm-up and measurement
time as the optimization goes on. All alternatives are possible here. For one it might be easier
to differentiate between configurations early on in the optimization, and so when guiding
the optimizer into the right areas (exploration) to explore further (exploitation) one could
maybe get away with shorter times. On the other hand, when the optimizer is in the right
area and is fine-tuning knobs (exploitation) the behaviour of different configurations might
be so similar that it is instead easier to differentiate between slightly worse and slightly better
ones. Or it might take longer to differentiate between them because of measurement noise
being more significant in relation to the differences in throughput. It is unclear if one should
start or end with longer warm-up and measurement times. Through further investigation
into this it might be possible to reduce the total optimization time.

When investigating which warm-up and measurement time is suitable, it might be of
interest to put a number on the similarity between different warm-up and measurement
times, instead of doing it visually as in this project. As previously mentioned one alternative
is to put all distances in a vector and compare to the “true” distance vector, for example using
Euclidean distance or cosine similarity. Cosine similarity would have the advantage of being
a value between -1 and 1, and one could pick a value such as 0.9 that would be considered
good enough.
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Appendix A

Importance plots
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Figure A.1: Knob importance weight for YCSB according to RF, LPI,
AA, fANOVA. A zoomed in plot can be found in A.1
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Figure A.2: Knob importance weight for TPC-C according to RF,
LPI, AA, fANOVA. A zoomed in plot can be found in 4.10.
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Figure A.3: Knob importance weight for Twitter according to
RF,LPI ,AA , fANOVA. A zoomed in plot can be found in 4.13.
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Knob value tables
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benchmark TPC-C Twitter YCSB
innodb_buffer_pool_size 20480 24576 24576
innodb_buffer_pool_instances 2 10 6
innodb_buffer_pool_chunk_size 64 512 256
innodb_old_blocks_time 1000 100 1000
innodb_random_read_ahead OFF OFF OFF
innodb_old_blocks_pct 30 5 40
innodb_read_ahead_threshold 24 40 64
innodb_page_cleaners 8 6 4
innodb_max_dirty_pages_pct 85 70 65
innodb_max_dirty_pages_pct_lwm 0 20 20
innodb_lru_scan_depth 1024 128 2048
innodb_flushing_avg_loops 200 10 500
innodb_io_capacity 800 400 300
innodb_io_capacity_max 1200 2800 4400
innodb_flush_method O_DIRECT_NO_FSYNC O_DIRECT O_DIRECT
innodb_use_fdatasync OFF OFF OFF
innodb_change_buffer_max_size 15 15 5
innodb_change_buffering purges none none
innodb_adaptive_hash_index ON OFF ON
innodb_adaptive_hash_index_parts 2 2 32
innodb_log_buffer_size 512 512 16
innodb_rollback_segments 128 64 32
innodb_purge_rseg_truncate_frequency 64 8 128
innodb_extend_and_initialize ON OFF ON
innodb_doublewrite_batch_size 1 1 2
innodb_log_file_size 200 150 100
innodb_log_files_in_group 30 15 20
innodb_log_write_ahead_size 512 1024 16384
innodb_thread_concurrency 513 169 482
innodb_adaptive_max_sleep_delay 300000 20000 40000
innodb_concurrency_tickets 28100 8900 15800
innodb_read_io_threads 8 4 4
innodb_write_io_threads 8 64 64
innodb_spin_wait_delay 1 3 6
innodb_spin_wait_pause_multiplier 10 70 50
innodb_sync_array_size 1 64 64
innodb_sync_spin_loops 200 400 5
innodb_commit_concurrency 700 50 300
innodb_compression_failure_threshold_pct 3 2 15
innodb_compression_level 1 6 3
innodb_compression_pad_pct_max 65 65 65
innodb_log_spin_cpu_abs_lwm 320 400 80
innodb_log_spin_cpu_pct_hwm 40 30 70
innodb_log_wait_for_flush_spin_hwm 1600 409600 409600
innodb_purge_batch_size 400 800 700
innodb_purge_threads 16 24 4
thread_cache_size 20 4 50
binlog_cache_size 2097152 8388608 134217728
preload_buffer_size 32768 131072 33554432
thread_stack 2097152 8388608 4194304
tablespace_definition_cache 8192 2048 256
temptable_max_ram 4096 3072 2048
Throughput 1447.252185 10620.104755 21774.879133

Table B.1: The optimal configuration from original knob search
space.
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B. Knob value tables

parameter parameter_default parameter_type values unit F/H
innodb_buffer_pool_size 128 ordinal [128, 512, 2048, 4092, 8192, 12288, 16384, 20480, 24576] M F
innodb_buffer_pool_instances 8 ordinal [1, 2, 4, 6, 8, 10, 14, 18, 24] H
innodb_buffer_pool_chunk_size 128 ordinal [32, 64, 128, 256, 512] M
innodb_old_blocks_time 1000 ordinal [0, 10, 32, 100, 316, 1000, 3160, 10000, 31600, 100000] H
innodb_random_read_ahead OFF categorical [’ON’, ’OFF’] H
innodb_old_blocks_pct 37 ordinal [5, 10, 20, 30, 37, 40, 50, 60, 70, 80, 90, 95] H
innodb_read_ahead_threshold 56 ordinal [0, 8, 16, 24, 32, 40, 48, 56, 64] H
innodb_page_cleaners 4 ordinal [1, 2, 4, 6, 8, 10, 14]
innodb_max_dirty_pages_pct 90 ordinal [50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
innodb_max_dirty_pages_pct_lwm 10 ordinal [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
innodb_lru_scan_depth 1024 ordinal [128, 256, 512, 1024, 2048, 4096, 8192, 16384] H
innodb_flushing_avg_loops 30 ordinal [5, 10, 20, 30, 40, 50, 60, 80, 100, 200, 500]
innodb_io_capacity 200 ordinal [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200] F
innodb_io_capacity_max 2000 ordinal [1200, 2000, 2800, 3600, 4400]
innodb_flush_method fsync categorical [’fsync’, ’O_DSYNC’, ’O_DIRECT’, ’O_DIRECT_NO_FSYNC’] F
innodb_use_fdatasync OFF categorical [’ON’, ’OFF’]
innodb_change_buffer_max_size 25 ordinal [5, 15, 25, 35, 45]
innodb_change_buffering all categorical [’none’, ’inserts’, ’deletes’, ’changes’, ’purges’, ’all’] F
innodb_adaptive_hash_index ON categorical [’ON’, ’OFF’] H
innodb_adaptive_hash_index_parts 8 ordinal [2, 8, 32, 128, 512] H
innodb_log_buffer_size 16 ordinal [16, 32, 64, 128, 256, 512] M
innodb_rollback_segments 128 ordinal [8, 16, 32, 64, 128]
innodb_purge_rseg_truncate_frequency 128 ordinal [8, 16, 32, 64, 128]
innodb_extend_and_initialize ON categorical [’ON’, ’OFF’]
innodb_doublewrite_batch_size 0 ordinal [0, 1, 2, 4, 8, 16, 32, 64, 128]
innodb_log_file_size 48 ordinal [48, 75, 100, 150, 200, 300, 400] M F
innodb_log_files_in_group 2 ordinal [2, 4, 6, 9, 12, 15, 20, 30, 40, 50] F
innodb_log_write_ahead_size 8192 ordinal [512, 1024, 2048, 4096, 8192, 16384]
innodb_thread_concurrency 600 integer [1, 600]
innodb_adaptive_max_sleep_delay 150000 ordinal [5000, 10000, 20000, 40000, 80000, 150000, 300000]
innodb_concurrency_tickets 5000 ordinal [500, 890, 1580, 2810, 5000, 8900, 15800, 28100, 50000]
innodb_read_io_threads 4 ordinal [4, 8, 16, 32, 64]
innodb_write_io_threads 4 ordinal [4, 8, 16, 32, 64]
innodb_spin_wait_delay 6 ordinal [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] F
innodb_spin_wait_pause_multiplier 50 ordinal [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
innodb_sync_array_size 1 ordinal [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
innodb_sync_spin_loops 30 ordinal [5, 10, 20, 30, 40, 50, 60, 80, 100, 200, 400] F
innodb_commit_concurrency 1000 ordinal [50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] H
innodb_compression_failure_threshold_pct 5 ordinal [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25] H
innodb_compression_level 6 ordinal [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
innodb_compression_pad_pct_max 50 ordinal [30, 35, 40, 45, 50, 55, 60, 65, 70]
innodb_log_spin_cpu_abs_lwm 160 ordinal [0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400]
innodb_log_spin_cpu_pct_hwm 50 ordinal [30, 40, 50, 60, 70, 80, 90, 100]
innodb_log_wait_for_flush_spin_hwm 400 ordinal [100, 400, 1600, 6400, 25600, 102400, 409600]
innodb_purge_batch_size 300 ordinal [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
innodb_purge_threads 4 ordinal [4, 8, 16, 24, 32]
thread_cache_size 9 ordinal [1, 2, 4, 6, 8, 9, 10, 12, 15, 20, 30, 50] H
binlog_cache_size 32768 ordinal [32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912]
preload_buffer_size 32768 ordinal [32768, 131072, 524288, 2097152, 8388608, 33554432, 134217728, 536870912] F
thread_stack 1048576 ordinal [262144, 524288, 1048576, 2097152, 4194304, 8388608] H
tablespace_definition_cache 256 ordinal [256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288]
temptable_max_ram 1024 ordinal [512, 1024, 2048, 3072, 4096] M

Table B.2: The original knob search space. The columns parame-
ter_type, values, parameter_default corresponds to the properties used
for defining a input parameter in HyperMapper. If the unit entry is
used then the parameter’s values is multiplied with that unit. Blanks
unit entry means no units is used. The last field indicate if a knob
is part of the final knobs (F) or honorable mentions (H) described
in section 4.3.1 “The most important knobs”. Possible units are K =
10241, M = 10242, G = 10243.
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knob/point 0 1 2 3 4 5 6 7 8 9
innodb_buffer_pool_size 24576 24576 24576 24576 24576 24576 24576 24576 24576 24576
innodb_buffer_pool_instances 14 2 6 4 2 6 24 8 24 8
innodb_buffer_pool_chunk_size 32 64 256 32 512 32 256 512 64 128
innodb_old_blocks_time 100 100 31600 31600 1000 31600 100000 100000 100000 1000
innodb_random_read_ahead OFF ON ON ON OFF ON ON OFF ON OFF
innodb_old_blocks_pct 30 90 90 30 90 70 90 30 60 37
innodb_read_ahead_threshold 24 32 32 0 24 64 56 0 56 56
innodb_page_cleaners 4 14 14 2 6 10 14 8 4 4
innodb_max_dirty_pages_pct 70 85 75 65 55 65 95 70 85 90
innodb_max_dirty_pages_pct_lwm 40 5 20 30 40 0 25 5 10 10
innodb_lru_scan_depth 4096 2048 1024 512 16384 16384 8192 2048 16384 1024
innodb_flushing_avg_loops 40 40 80 5 10 100 40 20 5 30
innodb_io_capacity 1100 100 900 700 200 400 500 1200 900 200
innodb_io_capacity_max 2000 2800 2800 2000 1200 2000 1200 1200 2800 2000
innodb_flush_method O_DSYNC O_DIRECT O_DSYNC fsync O_DSYNC O_DIRECT_NO_FSYNC fsync fsync fsync fsync
innodb_use_fdatasync ON ON OFF OFF ON OFF OFF OFF OFF OFF
innodb_change_buffer_max_size 25 45 45 5 25 15 35 25 45 25
innodb_change_buffering deletes all changes inserts inserts changes inserts changes purges all
innodb_adaptive_hash_index OFF ON OFF OFF ON ON ON ON OFF ON
innodb_adaptive_hash_index_parts 8 32 32 128 8 8 8 32 2 8
innodb_log_buffer_size 512 256 512 32 64 64 128 512 256 16
innodb_rollback_segments 128 8 128 32 8 64 32 16 32 128
innodb_purge_rseg_truncate_frequency 16 8 64 64 128 32 16 64 32 128
innodb_extend_and_initialize OFF OFF OFF ON OFF OFF ON ON ON ON
innodb_doublewrite_batch_size 8 2 8 16 2 2 0 2 1 0
innodb_log_file_size 150 100 100 75 200 200 150 200 150 48
innodb_log_files_in_group 9 50 50 12 9 15 6 12 4 2
innodb_log_write_ahead_size 16384 1024 16384 512 2048 512 1024 2048 8192 8192
innodb_thread_concurrency 127 62 572 184 530 494 412 573 57 600
innodb_adaptive_max_sleep_delay 80000 300000 40000 300000 20000 80000 80000 150000 150000 150000
innodb_concurrency_tickets 28100 15800 28100 2810 890 2810 15800 890 28100 5000
innodb_read_io_threads 4 16 8 64 32 4 4 16 4 4
innodb_write_io_threads 4 64 64 64 64 32 32 16 32 4
innodb_spin_wait_delay 5 3 15 13 5 1 7 8 15 6
innodb_spin_wait_pause_multiplier 20 30 30 100 1 20 30 10 70 50
innodb_sync_array_size 1 1 4 4 512 64 128 16 128 1
innodb_sync_spin_loops 200 50 10 50 60 20 200 100 10 30
innodb_commit_concurrency 200 700 300 200 800 800 200 200 100 1000
innodb_compression_failure_threshold_pct 1 7 3 4 5 25 8 1 1 5
innodb_compression_level 8 6 7 0 2 1 9 6 4 6
innodb_compression_pad_pct_max 30 55 40 30 65 35 70 60 65 50
innodb_log_spin_cpu_abs_lwm 210 90 210 30 270 30 60 60 180 120
innodb_log_spin_cpu_pct_hwm 50 30 100 60 40 40 70 60 100 50
innodb_log_wait_for_flush_spin_hwm 409600 102400 1600 400 1600 102400 1600 409600 6400 400
innodb_purge_batch_size 1000 900 600 400 200 1000 1000 100 200 300
innodb_purge_threads 32 24 8 16 8 16 16 8 16 4
thread_cache_size 4 4 12 1 10 20 4 15 30 9
binlog_cache_size 2097152 2097152 2097152 134217728 134217728 8388608 524288 32768 134217728 32768
preload_buffer_size 524288 2097152 2097152 2097152 32768 2097152 134217728 131072 134217728 32768
thread_stack 262144 2097152 4194304 4194304 262144 2097152 1048576 8388608 4194304 1048576
tablespace_definition_cache 512 524288 256 4096 512 4096 65536 1024 256 256
temptable_max_ram 4096 3072 512 1024 4096 3072 2048 1024 512 1024
TPC-C
throughput 1312.36 1298.56 1303.04 1197.86 1125.93 1301.11 1216.95 1298.10 1205.54 694.30
Twitter
throughput 5335.97 5945.00 5941.73 3607.23 4470.90 7278.07 5518.72 3400.97 4951.89 4945.64
YCSB
throughput 19610.53 20579.03 17609.30 16946.67 17410.11 21523.39 19692.18 19742.13 20145.50 18709.85

Table B.3: The 10 random points used in section 4.2 “Warm-up and
measurement time”.
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Appendix C

Data

The data for the tests can be found here. Only 1040 first samples in the large knob search
space tests and only 100 first samples in final search space test were used. The rest were
discarded. The date for importance plot can be found here.
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Appendix D

Code

1 """
2 Script that formats the results and scenario of a HyperMapper optimization procedure to files

supported by CAVE.
3 We create a configspace.json file and a folder with some .csv files.
4 """
5 # 1
6 # CAVE keyword : (−>) HM keyword
7 # cost : [objective name]
8 # time : runtime to evaluate a configuration − in our case not really applicable so use a constant
9 # param1: param1.. .

10
11 import os
12 import pandas as pd
13 import json
14 import pathlib
15 from pathlib import Path
16 from shutil import copyfile
17 from textwrap import dedent
18 import argparse
19
20 parser = argparse.ArgumentParser()
21 parser.add_argument("−hmf","−−hypermapper−folder",required=True,dest=’

hypermapper_folder’,type=str,help="folder that contain hypermapper csv files")
22 parser.add_argument("−ss","−−search−space" ,required=True,type=str,dest="

search_space_file",help="the json search space file used in hypermapper")
23 parser.add_argument("−o","−−output_folder",required=True,type=str,dest="output_folder"

,help="the folder which hm_to_cave will output to")
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D. Code

24 parser.add_argument("−sf","−−scenario−file",default=None, nargs="?", type=str,dest="
scenario_txt_file",help="a standard scenario.txt file. See hm_to_cave_example")

25 args = parser.parse_args()
26
27 output_folder = args.output_folder
28 hypermapper_folder = args.hypermapper_folder
29 search_space_file = args.search_space_file
30 scenario_txt_file = args.scenario_txt_file
31
32
33
34
35
36
37 for _, file in enumerate([x for x in os.listdir(hypermapper_folder) if x.endswith(".csv")]):
38
39 hm_df = pd.read_csv(os.path.join(hypermapper_folder, file))
40 hm_df = hm_df.drop(columns=["Timestamp"])
41 hm_df = hm_df.rename(columns={"Throughput": "cost"})
42 cave_df = pd.DataFrame(data=hm_df)
43 trajectory_df = cave_df.copy()
44 cave_df["time"] = [0.1] * len(hm_df)
45 cave_df["status"] = ["SUCCESS"] * len(hm_df)
46 cave_df["seed"] = [1] * len(hm_df)
47
48
49
50
51 # Create trajectory file
52 trajectory_df["cpu_time"] = [0.1] * len(hm_df)
53 trajectory_df["wallclock_time"] = [0.1] * len(hm_df)
54 trajectory_df["evaluations"] = [0] * len(hm_df)
55 cost_array = trajectory_df["cost"].tolist()
56 prev_best = cost_array[0]
57 prev_best_index = 0
58 drop_indices = []
59
60
61
62 for ind, cost in enumerate(cost_array):
63 if cost < prev_best:
64 trajectory_df.at[ind,"evaluations"] = ind
65 prev_best = cost
66 prev_best_index = ind
67 else:
68 if ind > 0:

70



69 drop_indices.append(ind)
70 trajectory_df = trajectory_df.drop(drop_indices)
71
72 filename, extension = os.path.splitext(file)
73 instance_path = os.path.join(output_folder,filename)
74
75 pathlib.Path(instance_path).mkdir(parents=True, exist_ok=True)
76
77
78 cave_df.to_csv( os.path.join(instance_path, "runhistory.csv"), index=False)
79 trajectory_df.to_csv(os.path.join(instance_path ,"trajectory.csv"), index=False)
80 # copy over scneario file
81
82 if scenario_txt_file is None:
83 file = open(os.path.join(instance_path, "scenario.txt"),"w")
84 file.write(dedent(
85 """
86 paramfile = ./configspace.json
87 run_obj = quality
88 """))
89 else:
90 copyfile( scenario_txt_file, os.path.join(instance_path, "scenario.txt"))
91
92
93 # 2. Format configuration space
94 # {hyperparameters: [ {param1}, {param2} ]}
95
96
97
98 # create configspace
99 configspace = {"hyperparameters": []}

100 with open(search_space_file) as f:
101
102 data = json.load(f) # dict
103 for param in data.items():
104 entry = {}
105 entry["name"] = param[0]
106 #print(param)
107 if param[1]["parameter_type"] in ("integer", "real"):
108 if param[1]["parameter_type"] == "integer":
109 entry["type"] = "uniform_int"
110 else:
111 entry["type"] = "uniform_float"
112 entry["log"] = False
113 values = param[1]["values"]
114 entry["lower"] = values[0]
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115 entry["upper"] = values[1]
116 entry["default"] = param[1]["parameter_default"]
117 else: # categorical or ordinal −> categorical in CAVE
118 entry["type"] = "categorical"
119
120 if param[1]["parameter_default"] in ("false", "true"):
121 entry["choices"] = ["False", "True"]
122 entry["default"] = (
123 "False" if param[1]["parameter_default"] == "false" else "True"
124 )
125 else:
126 entry["choices"] = [str(x) for x in param[1]["values"]]
127 entry["default"] = str(param[1]["parameter_default"])
128 entry["probabilities"] = None
129
130 configspace["hyperparameters"].append(entry)
131
132 configspace["conditions"] = []
133 configspace["forbiddens"] = []
134
135
136
137 with open( os.path.join(output_folder, "configspace.json"), "w") as f:
138 json.dump(configspace, f, indent=2, ensure_ascii=False)

Listing D.1: The code for converting HyperMapper results to
format acceptable by CAVE, provided by our colleague (and slightly
modified by us), described in 3.1 “Converting HyperMapper results
to CAVE format”.
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Snabba upp världens databaser

POPULÄRVETENSKAPLIG SAMMANFATTNING Asmail Abdulkarim, Filip Johansson

Oräkneliga timmar spenderade på att justera databasparametrar, miljarder kWh elek-
tricitet som slösas bort, väntetider oändligt långa. Lösningen på alla problem är
automatisk justering av databassystemet med hjälp av maskininlärning!

Många molnleverantörer erbjuder services där
kunden kan lagra sin databas på en av deras dat-
acenter, för en månadsavgift där ju fler maskiner
som används desto dyrare blir avgiften. Genom
optimera databasen så den blir dubbelt så snabb,
kan en tung service som tidigare krävde två mask-
iner utföras med bara en maskin och därmed halva
kostnaden.

Men att optimera databasens hastighet är ett
svårt problem även för experter på grund av flera
faktorer. De främsta faktorn är att de finns hun-
dratals parametrar och varje utvärdering av pre-
standan kräver en benchmarkkörning som tar min-
uter att utföra. Dessa faktorer bland många fler
gör det svårt att optimera manuellt. Därför har
många forskat för att automatisera processen. Det
första steget i automatisering är att hitta vilka pa-
rameter som har stor betydelse för hastigheten och
därefter försöker optimera dessa parameter. Det
är vad vi har gjort för världens näst mest populära
databashanteringssystem MySQL.

Vi gick igenom strukturen och funktionen av
MySQL och alla parametrar som kan ställas in
av administratören för att ändra hur systemet
fungerar. Av de flera hundra parametrarna iden-
tifierade vi som ett första steg 52 st. som hade
en viss chans att påverka prestandan. Vi sam-
lade sedan in en datamängd med 1040 datapunk-
ter, vilket innebär en viss konfiguration av de
52 parametrarna och den resulterande genom-

strömningen. Vi gjorde detta för tre olika "bench-
marks", som är artificiella databaser med artifi-
ciella arbetsbelastningar av läs- och skrivanrop.
Vid benchmarking tar det lite tid för genom-
strömningen att stabilisera sig, så man måste
kasta bort de första minuterna av mätning, och
man behöver även mäta över en tillräckligt lång
tidsperiod för att få en stabil mätning. Vi under-
sökte därför först hur kort uppvärmningstid och
mättid vi kunde komma undan med och ändå ran-
gordna olika konfigurationer korrekt i förhållande
till varandra.

På våra tre datamängder använde vi fyra
olika feature importance metoder som uppskat-
tar parametrarnas relativa importans. Genom
att aggregera dessa resultat lyckades vi identi-
fiera nio parametrar som verkade vara viktigast
för genomströmningen. Vi har också identifierat
tolv nämnvärda parameterar som också har en
stor chans att påverka. Genom att testa detta
sök utrymme med nio parametrar kunde vår op-
timerare hitta kombinationer av inställningar som
uppnår mellan 99% och 346% högre genomströmn-
ing än standardinställningen, beroende på ar-
betsbelastningsstrukturen, på bara några timmar.
Vi observerar också att ytterligare ökningar är
möjliga för lästunga arbetsbelastningar genom att
lägga till några av de nämnvärda till optimerin-
gen, och att detta sannolikt skulle resultera i ett
sökutrymme som passar alla arbetsbelastningar.
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