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Abstract

The goal of this thesis is to investigate the possibility of multi-workload
optimization in Database Management Systems, and the workload detection
implied by it. Data was collected for the popular workloads TPC-C, CH-
benCHmark and Wikipedia for two different types of metrics. The first was
hardware-based metrics, consisting of values such as CPU and memory
usage, which was tested using several detection methods. It was found that
hardware-metrics excelled in separating data for the chosen workloads in
non-optimizing circumstances, and in optimized situations. The second
group of metrics were query-based metrics, consisting of the query types
that were executed by the Database Management System. This metric is
tested with the use of the DBSCAN clustering algorithm. This method
could also separate all workloads that were chosen, without a misinterpreted
workload shift. A benchmarking framework was successfully designed to
allow for multi-workload testing and data aggregation. The performance
gain when optimizing using this project did not seem to match the optimizing
performance obtained during testing within the single-workload framework.
This was found to most likely be due to performance degradation in the
storage, caused by the storage drive being almost full.

Keywords: databases, postgres, bayesian optimization, dbms, throughput, optimiza-

tion
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1 Introduction

In a world further impacted by digitalization, the demands for servers have risen
over the past decades. As a result, companies spend more money maintaining and
expanding their server infrastructure, which has an economic and environmental
impact. To minimize the impact of these, the server performance can be optimized
by modifying the server configuration. If tuned in just the right way, this means
that some optimal configuration will be found, which could potentially lead to a
large increase of user requests being handled by one server, therefore making
fewer servers necessary.

To optimize a server, you must have an objective to optimize for, such
as Throughput, Latency or CPU-usage, as well as some server configuration
parameters that can be modified and has an impact on the servers performance.

A key issue that defines server optimization is that each evaluation of the
objective is very costly. The server can be referred to what’s known as a ”black-
box function”, a function that we can give inputs and be given some output, but
without knowing the analytical form of the function. Therefore, no gradient is
available, and since each evaluation takes a significant amount of time to test,
optimization of the server which requires many evaluations takes a long time.

For this reason, it is naturally interesting to optimize the server with some
method that requires the fewest number of iterations to obtain good performance,
since evaluating an input takes quite a long time. One method that is capable
of efficient server optimization is Bayesian Optimization (BO), which attempts
to gather data in such a way to make sure that each iteration provides a mix
between gathering data and achieving high performance.

Unfortunately, since Bayesian Optimization assumes a never-changing black-
box function, it fails to optimize correctly if the hidden function inside were
to change. In server optimization, this can be represented as a workload shift,
meaning that the tasks that are sent to the server has started varying to such
a degree that a new optimal configuration is required. Therefore, it can be
beneficial to identify when the workload changes.

To combine the aspects of Bayesian Optimization with workload detection is a
challenging research project, with potentially great results from an environmental
and economical perspective. This thesis will tackle this problem described by
using single-objective BO and workload detection using database and hardware
metrics.

1.1 Research Questions

• Can workloads be adequately characterized by hardware statistics?

• Can workloads be adequately characterized by query statistics?

• How can workloads be classified automatically?

• What is the possible performance gain from continuous optimization?
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2 Background & Related Work

2.1 Background

As a problem, database optimization has been a topic of discussion since at least
the early 1990s [25]. Since then, the focus areas have partially shifted away from
lower-level query-optimizations, to higher-level automatic server configuration
optimization, which can be seen with the recent rise of papers that looks into
finding the best server configuration [1][55][30]. Before this recent uptick in
automatic optimization, most DBMS were configured by human experts in the
field. Unfortunately, as time passes, DBMS has grown more complicated and is
now at a point where hundreds of knobs can be modified, with many of them
being co-dependent on each other [1]. The complexity of the problem only
compounds when you add the fact that each specific hardware configuration
greatly impacts the optimal configuration [3]. Assuming this trend holds, it will
only become more important to have reliable tuning software. For this reason
there has been a need in the industry to automate this process.

While many methods such as reinforcement learning and random search are
capable of finding optimal configurations for multi-dimensional problems, they
suffer from the same deficiency: They require a significant number of samples to
obtain reliably good performance [3]. A solution to this issue comes in the form
of Bayesian Optimization, which will be further detailed in section 2.2.3. Put
shortly, this method generates a simulated model of the black-box function, and
then probes it for data points with a probability of achieving great performance.
This allows it to maximize the information and performance gain from each
iteration.

This method has grown very popular in recent years, being used in many
different areas, from server optimization to robotics to computer vision [7].

As mentioned previously, this method does not take a modification of the
underlying workload into account, which is one of the key aspects this project
seeks to solve. The idea is to identify workloads based on some feature vector
that is collected during a workload execution. While the idea of workload
detection in DBMS contexts is relatively new, from a more generic classification
and clustering perspective, algorithms such as k-nearest neighbour have existed
since at least the 1950s [19]. Due to the fact that this area of research has existed
for over half a century, many different algorithms and ideas of clustering have
been invented over the years, providing a wide range of tools for the DBMS
workload detection problem.

2.2 Theory

2.2.1 Terms

• transaction: A transaction contains several tasks, each of which is per-
formed on the database. An example would be the placement of a new
order. These consist of one or more queries.
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• query: A request send to a DBMS that is related to the retrieval or storing
of data. These typically consist of a command, such as SELECT, INSERT
or UPDATE.

• terminal: An operator that sends transaction requests to the database.

• warehouse: Each warehouse contains one part of the data available in the
database. When data is retrieved or written by a transaction, it interacts
with one or multiple warehouses.

• black-box function: The function that the system will optimize for. Has
some input, and provides some output but no other information is known.
Hereafter referred to as BBF.

• surrogate model: An estimation of the true model hidden inside the
BBF.

• iteration: An iteration is the act of running a workload in OLTP-Bench
one time.

• repetition: A repetition is the act of running the whole optimization
program. Essentially, this consists of a large number of iterations.

• hardware utilization: Hardware utilization is referring to hardware
related metrics, such as ”bytes read” from the disk and CPU-usage.

• data point: A single measurement value for some metric, like CPU
percentage.

• OLTP: On-Line Transaction Processing (OLTP) transactions. Typically
quite small and easy for the DBMS to execute.

• OLAP: On-Line Analytical Processing (OLAP) transactions are more an-
alytical and complex then OLTP transactions. These types of transactions
require far more processing power to execute. For this reason, far fewer of
these can be performed per second as compared to OLTP transactions.

2.2.2 Regarding Objectives

Since a BBF is defined to be optimized after an objective, the choice of objective
is important. Some possible objectives include

• Energy Efficiency

• Throughput

• Average latency

• 99th percentile latency
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Since this project uses single-objective optimization, some objective must
be chosen to evaluate database performance. For most research in database
performance, either throughput or latency is used [20]. For the purposes of
this thesis, throughput will be the optimizing objective, which is defined as the
number of transaction requests processed per second (TPS).

2.2.3 Bayesian Optimization

Bayesian Optimization (BO) is a method used for the efficient optimization of a
BBF. Put shortly, BO intelligently explores the available search space, so over
time, the best configuration can be found. This exploration is done by utilizing
what is called a surrogate model. The surrogate model is the statistical machinery,
giving information on how likely a configuration is to achieve a throughput value.
The surrogate model achieves this by using something called the prior. The prior
contains information about the results from using previously tried configurations.
The surrogate job is then to incorporate this information to create a better
estimate of the BBF. By combining the surrogate with an acquisition function
one achieves BO. The acquisition function’s job is to decide the next configuration
to be explored. See for example [21] for a further description of these subjects.

The surrogate model is highly useful in resource-intensive applications. By
using a surrogate model one can avoid calculating the real BBF. One would
search the surrogate model for the next optimal value and once found the BBF
would be evaluated using the parameterization of the found value. Using a
surrogate model has great importance when the BBF is expensive to evaluate,
i.e when the BBF is resource-intensive somehow. For example, in database
optimization, one test run can take several hours.

There are many types of surrogate models, with two such models being the
Gaussian Process [8, page. 303] and Random Forest, maybe the most renowned.
The key aspect of the surrogate model is that it should follow the Bayesian
model, i.e incorporate information as it becomes available in order to improve
the surrogate in resembling the real function.

To acquire the believed optimal points from the surrogate, a utility function
is needed. In BO, the utility function is called the acquisition function. The
acquisition function searches the surrogate model to maximise the likelihood of
finding the next optimal parameterization. This is important since just taking
the believed next optimal point can get the search stuck in a local minimum.
Thus, both exploitation and exploration are needed. Exploitation is when the
acquisition function explores the believed best point, i.e evaluates it by running
the BBF. Meanwhile, for the exploration part, the goal is to look into unexplored
areas where no evaluation has been executed on the BBF. Shahriari et. al.
identify four acquisition function categories [46].

1. Improvement-based Policies: In this category, the functions assign high
values to parameterizations that are expected to improve the target value,
which is usually set as the latest known optimum. This category includes
functions like the probability of improvement and the expected improve-
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ment (EI). These functions utilise statistics, such as the expected mean to
propose the next point to be explored. By utilizing the functions in this
category the user has some statistical foundation that the next point to be
explored is the expected best. These functions are usually exploiting too
heavily, to remedy this a heuristic is often used. The heuristic often used,
is to give the acquisition function some probability of exploration, instead
of exploitation. Once exploration is chosen, some random point is selected
for evaluation by the BBF.

2. Optimistic Policies: These acquisition functions give very optimistic esti-
mates of the values in the surrogate. For example, the acquisition function,
upper confidence bound, take the upper confidence interval of the surro-
gate for each parameterization. Utilizing such exploration tactics favours
uncertain points, which could delay the exploration of a minimum. The
benefit is that some sort of exploration is built within the method itself.

3. Information-based Policies: Here entropy functions come into play like
entropy search. These functions also exploit quite heavily.

4. Portfolios: Several acquisition functions in a portfolio. Some meta-function
selects the believed best acquisition function for the current selection of
the believed optimal parameterization.

From the above list, one understands there are many choices of acquisition
functions and these fall into different categories. There is no defined best function,
a function is usually selected according to previous trials or heuristics. Though
there are some functions which seem to perform well in many test scenarios,
such a function is, for example, EI [46].

2.2.4 Expected Improvement

Expected improvement (EI) models the expected gain from choosing parameteri-
zation x. Expected improvement comes from the improvement-based policies
acquisition functions category, and as previously described the target value wbest

is usually the currently known minimum for the BBF. This is also the case for
EI. The function I(x) refers to the actual improvement one would get using
parameterization x, see equation 1, where w represents the return value from
using such a x. Since the BBF is an unknown function one can not know what
w will be produced from using x. Therefore the improvement must be evaluated
as the expected improvement (EI), see equation 2 and [26, page, 471]. Where
the expected value of w using x is derived from the surrogate.

I(x) = max(wbest − w, 0) (1)

E[I(x)] = E[max(wbest − w, 0)] (2)
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2.2.5 Random Forest

Random Forest is a machine-learning method capable of regression as well as
classification. It consists of a large amount of decision trees, where each decision
tree traverses its leaves to classify some input. After an input has been given to
a random forest, this input is then distributed to each tree. All the individual
tree outputs are then ensembled, meaning they are combined and averaged, to
produce a final output. The benefit of using a random forest is that the model
tends to avoid overfitting due to the ”wisdom of the crowd” effect. Due to the
way Random Forests are constructed, they can use continuous, discrete and any
other type of features that may be desired. Since many knobs in DBMS:s are
discrete, Random Forest fits database optimization well.

2.3 Workload Detection

A key aspect of this project is workload detection. This consists of gathering
input data, and then matching it to some pre-existing data clusters. Primarily
the matching techniques are divided into two types of algorithms: clustering and
classification algorithms. We provide a general description of these algorithms
in the rest of the section.

It is important to note that the description below of both of these different
algorithms are only general implementations. There exists many algorithms that
break these rules in some way.

2.3.1 Clustering

Clustering refers to the idea of classifying data points by dividing them into
a number of groups, i.e clusters. This method is unsupervised, meaning that
no prior data is required to train the model, and instead the model solves this
itself. Depending on the exact algorithm the prerequisite knowledge varies,
but in general they need very little information. A very common unsupervised
algorithm, DBSCAN, only requires a single hyperparameter, the eps, to be
defined, which specifices how far apart data points can be while still being
considered in the neighbourhood of one another [17].

Another common, and very simple, clustering algorithm is k-means clustering,
which requires knowing the number of clusters to divide the data into before
doing so unsupervised. The methods works by dividing the number of data
points n into k clusters, in such a way that within any one cluster the total
euclidean distance is minimized. The downside of this method is that it relies
on clusters being of similar size and shape, as well as knowing the number of
clusters beforehand.

2.3.2 Classification

Unlike clustering, classification algorithms require some information about each
type of data, so it can then classify exactly which one a new data point belongs
to. Classification methods do not change overtime, and therefore need to be
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completely predetermined upon use. These tend to be supervised methods, and
therefore need some labels for what data they are classifying. Classification
algorithms have many different implementations of varying complexity, from
simple Euclidean distance to advanced neural networks that are trained to detect
microscopic features in the input data. The fact that these tend to be supervised
means they are unsuitable for this project, due to the possibility of workloads
shifting over time in real-world scenarios it cannot be assumed that they stay
constant over time.

2.3.3 Anomaly Detection

There are many possible candidates for workload detection in the field of anomaly
detection. To give a few examples, there are the more traditional functions
like: CUmulative SUM (CUSUM)-chart, Pearson’s Chi-squared test (χ2) and
Mutual Information (MI) [6, Chapter 1] [28]. There are also other more complex
modern functions, such as X-iForest [18] which utilizes an isolated random forest
and the X-mean as a clustering method. Other modern examples are biological
algorithms [38] and deep learning models [54]. The ones investigated in this
thesis are CUSUM-chart and MI.

CUSUM chart is an easy to implement algorithm for detecting a diverging
mean. There are many implementations of CUSUM chart and the authors of
this thesis follow Cuadra-Sánchez and Arcails’ definition as defined in chapter
1, [6]. In Arcails’ implementation, the mean and standard deviation (STD) is
usually derived from previous observed data. These values will then work as a
reference point for further anomaly detection. For example, the threshold value
is the allowed divergence from the specified reference mean, and the threshold
value itself is usually set to be some factor of the reference STD. The threshold
value itself is then used for the accumulation of the detection bounds. The
detection bounds contain the accumulated breaches of the threshold, with a
lower and an upper bound. The processes then function as the following: When
a value is received it is compared against the lower and upper bound. If the new
value is below the mean minus the threshold, then the lower bound value will
increase and conversely an upper bound value will increase when a given value
is above the mean plus threshold. These two bound values then continue to
accumulate for every divergence and decrease for every correction, see equation
3. Detection is then made when the bound values have diverged too much, which
is a hyperparameter.

lowerbound(x+ 1) = max(0, (mean− threshold)− nextvalue + lowerbound(x))

upperbound(x+ 1) = max(0, nextvalue − (mean+ threshold) + upperbound(x))

(3)

Mutual Information (MI) comes from the field of information theory and in
simple terms tries to set a value on how similar two distributions are. MI is
based on entropy, which is the uncertainty of a random variable (RV). If a RV
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has maximum entropy it is equivalent to knowing nothing about the variable, i.e
completely random, and the resulting sampling could be whatever. If the entropy
is 0 then everything is known, it is known exactly what each sample will be at
every point [49][Chapter. 1], from here on H(X ) will define the entropy of RV X.
If we then ask, how random is RV X given that one knows Y, p(X|Y ), this is
what MI tries to describe. How much information is gained from knowing RV Y
when determining X or how equal are the two distributions. If the two RVs are
independent then MI is 0, opposite a large value negative or positive indicates
high dependence. If one defines MI by entropy then one has the following formula
I(X;Y ) = H(Y )−H(Y |X).

Continuous MI is not as simple as discrete MI, usually there is no analytical
formula and an estimate must be used. One method to estimate MI between
continuous RVs is to use the k-nearest neighbour method. If one takes the
averages for each point to its k neighbours then the distances can discern
information about the distribution of the RV. If this distance stays the same for
all points it is hard to say anything about the distribution except that it is random,
if the distances are closer in certain regions this indicates a higher probability
mass in that zone, i.e this is an estimate for H(X). Similarly one could estimate
H(Y ) and now MI can be estimated as I(X;Y ) = H(Y ) − H(Y |X). This is
usually not how it is done, since this can create systemic bias, but this proves
the concept. The actual k-neighbours algorithm as discussed by Alexander et.
al. uses something more similar to binning, but this will not be touched further
upon, to read further see [28].

2.4 Tools

The project used the following four tools to handle BO, PostgreSQL [41], OLTP-
Bench [4][15], HyperMapper [33] and DBtune [7]. PostgreSQL is the DBMS,
OLTP-Bench is the benchmarking tool, HyperMapper is the optimizer and
DBtune the wrapper that combines all the tools. In the following sections these
tools will be described further.

2.4.1 PostgreSQL

PostgreSQL [41] is the database software used for this project. A database is
described by oracle as ”an organized collection of structured information, or
data, typically stored electronically in a computer system. A database is usually
controlled by a DBMS.” [11]. The DBMS used in this project is PostgreSQL,
which is a relational DBMS initially released in 1996 and implements the SQL [5]
format. Since its creation it has become one of the most popular DBMS in
the world. Currently it is the fastest growing one and in the top five DBMS
overall [12]. Since its release, PostgreSQL has become known for being highly
reliable [22], as well as being one of few open-source DBMS in a world populated
by closed-source DBMS such as MySQL, Oracle and MongoDB.

PostgreSQL has a large number of knobs that can be used to tune performance
of the database, with at least 169 knobs available to tune [55]. These knobs are
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of many different types. Some are in the form of a boolean, whilst others require
some discrete or floating point value. Further, these knobs are divided into so
called ”Non-restarting” and ”Restarting” knobs. This specifies whether or not
the database must be restarted for any change to the knob to take effect, with
the majority of knobs being non-restarting.

2.4.2 OLTP-Bench

OLTP-Bench is an open-source testbed for database performance and exists
under the Apache 2.0 license [15]. Among OLTP-Bench’s workloads are some
of the most universally utilized database tests, such as TPC-C [31]. One key
feature of OLTP-Bench is the ability to easily customize workloads through a
configuration file. In this file, the scale-factor and number of terminals can be
modified, which affects the size of the database and number of clients sending
transactions to the DBMS respectively. As well as these, OLTP-Bench also
allows you to set the distribution of the transactions in the workload, which is
set by assigning a weight to each transaction type. The weights resembles the
likelihood that the transaction will be selected and should sum to 1.

Each workload in OLTP-Bench consists of an initial warm-up of the database,
followed by an execution. The ”warm-up phase” is OLTP-Bench’s efforts to
accurately simulate a long-running DBMS, where the components are ”warmed
up”. Otherwise the performance at the beginning of a workload could differ
significantly from the remainder of the workload execution, so a warm-up is
necessary to obtain a reliable value for TPS.

As of 22-8/2021, OLTP-Bench has been deprecated and replaced with Bench-
Base [4]. BenchBase was intended to be this projects benchmarking software,
but testing found that it was unfortunately too unstable and bug-ridden to be
used. The authors of this project have therefore chosen to stick to OLTP-Bench,
as it is a well-tested and known benchmarking software.

2.4.3 HyperMapper

HyperMapper is an open-source program developed by Luigi Nardi et. al.,
and is available under the MIT License [34]. The program is describe as “ a
multi-objective black-box optimization tool based on Bayesian Optimization “,
where the black-box function (BBF) is defined by the user. Whilst the program
is based upon Bayesian Optimization, it is capable of other methods, such as
Evolutionary Optimization and Local Search [35]. The latter two options are
meant to be used in situations were the BBF isn’t particularly hard to evaluate,
something which does not apply to this project. Aside from the BBF, the user
also needs to define the values of different knobs that HyperMapper will navigate
in order to find the optimal configuration. Henceforth this will be referred to as
the search space.

An optimization in Hypermapper contains two primary steps. First, a Design
of Experiment (DoE) phase where a number of configurations in the search
space are sampled. This is done to build up the optimizer’s knowledge of the
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search space. Afterwards, the optimization phase starts where HyperMapper
uses its knowledge to update the surrogate model, which can be either a Gaussian
Process or a Random Forest. The chosen surrogate model is then examined by
the acquisition function. The acquisition function produces the configuration
with the largest Expected Improvement. This configuration is then sent to the
BBF to obtain the actual throughput. This second phase is repeatedly done
until the desired amount of iterations has been reached.

While other automatic BBF optimizers exist, HyperMapper is very flexible
and is one of very few that is capable of handling prior knowledge, a concept
that is vital for retaining information when an already optimized workload is
detected.

For Bayesian Optimization HyperMapper supports user-defined a priori
knowledge [33], something that can be used to retain information when previously
optimized workloads are detected. For the a priori, Hypermapper accepts a list
of probabilities for each parameter, and then uses a beta-distribution to truncate
these. Note that HyperMapper is considered robust regarding priors, and even
if very bad values are given, Hypermapper is capable of recovering and finding
an optimal configuration [33].

HyperMapper also supports non-continuous values, such as discrete, boolean
and ordinal parameters. This is very helpful for server configuration tuning, as
many knobs that can be tuned are not continuous.

2.4.4 DBtune

DBtune is a project built around OLTP-Bench and HyperMapper. DBtune
creates a BBF that updates the server configuration before running an iteration of
OLTP-Bench. The resulting throughput is then fed to HyperMapper, which uses
this updated information to provide the next recommended server configuration.
DBtune also provide a number of options, such as the number of optimization
iterations to run, what optimization model to use, which knobs to optimize and
much more.

DBtune also solves an important aspect of using OLTP-Bench for database
optimization. As OLTP-Bench wasn’t designed for continuous server optimization
or for multiple consecutive iterations. One issue that occurs is due to the fact
that OLTP-bench continually writes data to storage, leading to an increase in the
database size. As the database grows, it also loses performance in many metrics,
including throughout. Over time, this decrease in performance means that
optimizing a database based on throughput becomes difficult and unreliable as
the optimizer is unable to tell that a configuration encountered in a later iteration
with lower throughput may actually be far superior than one encountered early
on in the repetition when the database size was smaller. To deal with this, rsync
is used within the DBtune BBF in conjunction with OLTP-Bench in such a way
that after each iteration the database is reset into its original state. By doing
this, performance is maintained over multiple iterations of DBtune. It could
be argued that restoring the database to maintain performance is unrealistic,
but so is the massive amount of extra storage OLTP-Bench would require over
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multiple iterations, as well as the significant performance drop. Since this project
is limited to using OLTP-Bench, rsync must be used.

2.4.5 rsync

Rsync is an well-known utility program provided by default in the Ubuntu
distro [10] Rsync is used to generate a backup of some source folder into a
destination folder. Whenever desired, rsync is then capable of comparing the
two directories and replacing files that differ in the source directory with the
equivalent file in the destination. For this project, rsync is used to create a
back-up folder of the database. This directory is then used by DBtune to restore
the database after each iteration. The reasoning for why this is done can be
found in section 2.4.2.

Whilst any program with a similar functionality could be used to reset the
database, this one was picked due to being a standard inclusion in most Linux
distributions.

2.4.6 Data Collection Tools

There are many different collection tools for PostgreSQL, too numerous to explain
in detail. A few of these were explored but remain unused. A list of many tools
including the explored ones can be found here [2]. Some of the items from
the list are pgmetrics [40], pgSCV [29] and pgwatch2 [27]. These tools extract
similar information, with the difference between them being how the end user is
presented the information and how the tool is set up. pgmetrics uses a command
line interface to set up output files, connections to the database and so on. The
designated output file can be text, json or csv. pgSCV uses configuration files
instead of directly using the command line like in pgmetrics. The information
is returned directly to the calling process and displayed in the Prometheus
format. pgwatch2 lets the user use a graphical interface to look at data. After
setting up the configuration files the user directly interacts with this graphical
interface in the web browser to collect and download information into csv files.
The type of information these tools gather is very similar. Most information is
collected by querying PostgreSQL’s own collection tools or log files which can
be activated by modifying PostgreSQL configuration files. Other information,
such as hardware utilization, can optionally be collected at a system-wide level.
Collecting metrics provided by the database will naturally affect the overall
performance of the DBMS, but it seems like not too much. For example, the
statistics collector [48], “the statistics collection shouldn’t take more than a
few percent of CPU time” [23], according to a quote on Oriely. It is hard to
find a definitive answer since PostgreSQL does not provide any. Since these
three explored tools remain unused in the project, no further time will be spent
investigating the performance impact of these.

What most of these tools have in common is that they rely on the data
collection module pg stat statements, which is one of the most widely used
modules in PostgreSQL. This module tracks all queries that are executed by
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the database and records a wide variety of information regarding these, such
as the number of times a query is executed, the average latency and much,
much more. This module is the one that is relied upon to collect data about
queries in this project. Whilst the activation of this module will result in some
performance impact, it is generally agreed upon to be negligible, using an extra
1% of CPU-time [39].

Another tool is psutil [45]. psutil is a python module which provides statistics
from over 50 different metrics related to hardware utilization, including CPU,
virtual memory, swap memory, disk, network and more and is the go-to tool
for hardware statistics gathering in the Python world. This tool can produce
both system-wide and process isolated utilization statistics. It’s noteworthy to
mention that psutil seems to mainly take its data from the registers provided
by the OS, which contain the information that is then forwarded to the user.
A downside of using psutil is the lower abstraction level. The end-user must
handle process identification numbers and the collection of actual metrics by
themselves. Furthermore, the psutil module is not platform-independent and
many collection methods depend on the underlying operating system used.

2.4.7 Amazon Web Services

Amazon Web Services (AWS) is a system created by Amazon that provides cloud
computing services. For this thesis, the Amazon Elastic Compute Cloud (EC2),
provides access to many different types of servers, depending on the users’
demands. Each server allocated to a user is referred to as an ”instance”. These
instances can be configured in a multitude of ways, such as changing the Operating
System, type of storage, amount of memory and CPU model. The user can
launch as many of these instances as they want. Each instance can be accessed
through Amazon’s EC2 Instance Connect, or via ssh, the latter of which is used
for this project. EC2 provide two main storage alternatives in the form of Elastic
Block Storage (EBS) or dedicated storage. The EBS is virtualized, which means
it’s not stored locally on the allocated server instance, and instead is stored on
one or more devices. The other type of storage is dedicated storage, where the
data is stored on one single, non-virtual device directly connected to the server
itself.

2.5 Related Work

Whereas there have been multiple previous projects that implement automatic
database tuning, doing it from a continuous perspective is something that seems
entirely new. The Ottertune paper [1] does something that is somewhat related
to continuous tuning, but isn’t quite the same. In the paper, they utilize previous
tuning information to make future optimization efforts more efficient. While this
does mean that data is collected and stored to improve optimization, the area
of improvement is spread over future optimization sessions on new hardware,
rather than benefiting an already optimized server.
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Whilst this project has opted to investigate hardware-utilization and query-
based statistics to distinguish workloads, the Ottertune paper has opted for
a different approach. The data that is collected is instead based on internal
DBMS run-time metrics, whilst this project uses query-statistics and hardware-
utilization.

In terms of DBMS workload detection, there was a paper written previously
that investigate the detection of TPC-C against CH-benchmark workloads [56].
This paper utilized the C5 algorithm, which is based upon the supervised decision
tree based model. This resulted in fantastic performance, achieving over 99%
correctly classified data points, using DBMS metrics as their feature vector. This
C5 algorithm was not used in this project due to the supervised nature of it.

The area of automatic DBMS optimization contains papers with a range
of different solutions. The previously mentioned Ottertune [1] utilizes simple
regression of a Gaussian Process model. The performance that was obtained for
PostgreSQL was far beyond that of default server configuration, and beat systems
optimized by experts by ∼ 12%. Following papers use more complex methods of
optimization, such as neural networks based on reinforcement learning [30] [55].
These obtain performance that greatly beat Ottertune, at the cost of requiring
an offline training phase as well as significant previous data collection.

There has been one previous paper regarding DBMS optimization that utilizes
BO [3]. This paper does not optimize any SQL or relational database, and instead
is based around RocksDB. Regardless, the paper found that their method resulted
in significantly higher performance, with BO allowing the method to converge
to the optimum at a much faster pace than other state-of-the-art methods.

While all these previously mentioned papers are also related to automatic
tuning of server configurations, they all rely on a simple start-to-finish optimiza-
tion session. It is just a matter of how this optimization is done, what DBMS
is used and how prior information is included that change among them. The
thing that makes this project unique is the idea of continuous tuning, where the
tuning session never completely ends but instead remains in the background,
ready to start optimizing again if a workload shift is detected.
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3 Methodology

3.1 Setup

3.1.1 Hardware

Testing was to be done on the AWS cloud. To have realistic testing, the AWS
m5d group was chosen, since these have dedicated storage on the local machine,
instead of relying on the virtual EBS. The dedicated storage is needed for
repeatability, i.e comparability. To see the exact specifications used during
testing, please see section 4.1.

3.1.2 DBtune Implementation

As DBtune is quite limited in terms of workload switching, modifications had
to be made to support this. This included changes within DBtune as well as
Hypermapper.

As for DBtune, the system had to be changed to allow for loading multiple
databases into storage, and the capability to switch which workload configuration
to execute next.

For the workload switching, it was designed so the user can set which
workloads will be included, and the system will then divide the total count of
permitted iterations evenly between the workloads. For example, if the user sets
60 iterations with 3 workloads, then each workload would be executed for 20
iterations. When the allocated amount of iterations is reached for a workload,
DBtune will then change what workload configuration OLTP-Bench will run.
By doing this, DBtune simulates a live database system where data is collected
over a 10 minute period for each iteration, followed by a detection cycle that
determines whether or not this data should be classified as a workload shift. The
10 minute measurement cycle coincides with findings from Cuadra-Sánchez and
Aracil [6, chapter 2] where they found that aggregating data into 10-15 minutes
intervals produced the best detection results when doing anomaly detection on
network data.

As for the Hypermapper modifications, significant reworks had to be done to
the code to allow for a workload detector that executes in between iterations,
and the capability for the workload detector to reset optimization when a shift
is detected. Aside from this, functionality remained the same.

Out of the previously discussed optimization strategies within Hypermapper,
Bayesian Optimization (BO) was chosen by the authors to solve the database
optimization problem, due to the efficient nature of this optimization-scheme.
More specifically, the model to be used is a single-tasked BO with a prior for the
optimum [7] using random forest as a surrogate model and EI as the acquisition
function.

The server optimization is done by HyperMapper. HyperMapper relies on
a predefined search-space, meaning that the initial server configuration as well
as the values to be investigated needs to be known. This also means that what
server configuration knobs that are to be tuned need to be known. In table 1 a
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list shows the name, how many different values that existed for the optimizer to
select, the smallest and largest values for each knob that was used.

Knob name # of values Smallest value Largest value
shared buffers 20 640 8192
work mem 25 4096 51200

random page cost 18 0.1 8
effective io concurrency 5 1 400

max wal size 7 4 64
max parallel workers per gather 5 1 16

max parallel workers 2 4 8
max worker processes 2 4 10
checkpoint timeout 2 5 10

checkpoint completion target 1 0.9

Table 1: Table showing a summary of the search space

Previous literature, such as the paper by Osama Eldawebi [16], found that
these are some of the most important knobs for optimization performance in
PostgreSQL. The authors of this project has also had the fortune of having these
recommended by experts working at DBtune [13].

For each of these knobs, a search-space needed to be defined. Therefore, a
number of points were selected for each of these 10 knobs. A complete list of
the search space can be found in the appendix under section 6.1.

There were some knobs that had to be predetermined to allow for proper
optimization. What these are, and why they need to be set is expanded upon in
the last paragraph of section 3.1.3.

A visualization of one repetition can be seen in figure 1
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Figure 1: Flowchart depicting the DBtune process for one repetition

A final note, even though Hypermapper is capable of optimizing for a wide
range of parameters, all the knobs used in this project use discrete integer values.
This was not intended, and is by complete chance that the knobs deemed to be
the most important all use this type of value.

3.1.3 Workloads

OLTP-Bench has a wide range of workloads. The three used for this project are
TPC-C, Wikipedia and CH-benCHmark. Information about other workloads
can be found at the GitHub page for the OLTP-Bench project [4].

As previously discussed in section 3.1.2 the running time of one iteration is
10 minutes. The running time is configured through OLTP-Bench’s warm-up
and execution time, and is set to a 150 second warmup period, followed by an
execution period of 450 seconds.
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• TPC-C: A multi-faceted workload which simulates a large retailer. TPC-C
uses more complex transactions than what is regularly seen in workloads
for DBMS, providing a difficult workload [43]. Since its release in 1992,
TPC-C has gone through multiple versions and become widespread in
DBMS benchmarking. TPC-C is a write-heavy workload, this means that
the queries TPC-C generate writes a large amount of data to storage.
To simulate contention the TPC-C workload uses three components: the
warehouse, the district and the customer. Many customers live in one
district, and many districts are served by one warehouse. By using this
structure many customers simultaneously try to access one point, creating
contention [51].

The weights chosen for the TPC-C workload is following the minimum
weight percentage mix from the Transaction Processing Performance Coun-
cil (TPC), which is the non-profit corporation responsible for establishing
TPC-C. The weights can be found on page 70 in their latest official re-
quirements document for the TPC-C workload [51, page. 70] and are also
listed below. Compared to the original TPC documentation, the weights
of New Order has been set to 45 %, whereas TPC does not established a
recommended percentage:

– New Order: A customers submits a new order to a warehouse, 45%.

– Payment: Updates customer balance and sale statistics, 43%.

– OrderStatus: Status of customers latest order, 4%.

– Delivery: Processes 10 non delivered orders, 4%.

– StockLevel: Items in stock below threshold, 4%.

The scale factor represents the number of warehouses in the TPC-C work-
load. For this project, it is set to 750, which generates a 77 GB large
database. The amount of terminals is set to 450.

• Wikipedia: This workload is based on real transactions from Wikipedia.
The authors of the OLTP-Bench paper state that this workload is ”in-
valuable to test novel indexing, caching and partitioning strategies” [15].
Unlike TPC-C, this workload has very few writes overall and instead is
very read-heavy, roughly 92% of transactions being read-only.

The weights of Wikipedia are chosen directly from the observed percentage
mix of transactions from the trace data from the Wikipedia database as
reported by OLTP-Bench. The transaction types are not documented
by OLTP-Bench, but the names of the transactions seem to be quite
self-explanatory. The names and weights are the following:

– AddWatchList: 0.07 %

– RemoveWatchList: 0.07 %

– UpdatePage: 7.6725 %
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– GetPageAuthenticated: 91.2656 %

– GetPageAnonymous: 0.9219 %

For Wikipedia, the scale factor represents the amount of Wikipedia pages
multiplied by 1000. The scale factor was set to 380 resulting in a 82 GB
large database. The amount of terminals was set to 280.

Unfortunately, there are some problems with the Wikipedia workload,
either due to poor implementation in OLTP-Bench or it being too stressful
for the system. The workload maxes out Java’s default maximum heap
size of 8GB, crashing the system. The solution to this problem was to
increase the maximum and initial heap sizes to 16GB and 2GB respectively,
which is done by modifying Java’s runtime configuration files. Another
issue is that the workload’s transactions will sometimes deadlock, to which
no solution has been found. However, since deadlocks results in reduced
throughput, the optimizer will avoid such configurations.

• CH-benCHmark: A complex, hybrid workload that bridges the gap
between OLTP-based workloads and OLAP based workloads [9]. CH-
benCHmark uses a combination of TPC-C and an OLAP based workload
called TPC-H [52]. This provides a workload that is a mixture of fast OLTP
based transactions and complex analytical OLAP based transactions. This
combination results in mixture of read and writes.

The weighting scheme of CH-benCHmark is divided into its two components:
TPC-C and TPC-H. For the TPC-C part, the same weighting scheme is
used as in the TPC-C workload. As for the TPC-H part, it is slightly more
complicated. From the latest TPC-H requirements document [52], TPC-H
uses “streams of query[transaction] sequences” instead of weights. Streams
do not seem to be implemented in OLTP-Bench, and therefore can not be
used. Instead the used weighting scheme is close to the original sample
configuration from OLTP-Bench, but not exactly the same. The reason is
that the transaction 15 is broken in OLTP-Bench [32], there are in total 22
transactions. Therefore, the four percentage chance of transaction 15 have
been redistributed. To see the exact weight distribution see table 29 in
appendix. For more information on TPC-H and to investigate what each
query does, see the TPC-H requirements document [52, page. 29].

The scale factor was set to 600, generating a 61 GB large database. As
in TPC-C, the scale factor represents the number of warehouses. For the
terminals CH-benCHmark is defined in a different way. The terminals are
divided into two sets, one for TPC-C and one set for TPC-H. TPC-C is
set to 80 terminals, whilst TPC-H is set to 200 terminals.

Just like Wikipedia, CH-benCHmark has some issues. When running
the CH-benCHmark workload, it can result in a crash on rare occasions.
The solution to the problem was a simple try-except-clause installed into
DBtune. The try-except-clause will catch when such a crash happens, and
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just re-run the BBF function without notifying Hypermapper. When a
run finally succeeds, the throughput value is reported back as usual.

The scale factor and amount of terminals were set to tax the hardware.
Each configuration file was carefully crafted to assure that the system would
be throttled in some aspect. For example, the TPC-C workload’s throttle will
usually be IO based, since this is a very write-heavy workload. For the Wikipedia
workload, due to the read-heavy nature, it will more likely be performance-bound
by the CPU instead. Similarly, due to consisting of many writes, as well as
process-demanding queries, CH-benCHmark can be bound by either IO or CPU.
Another important aspect to consider is that the database should not be able to
be stored in memory alone, since this could give very misleading performance.
To achieve this, the scale factor was set so the database was at least twice the
size of the memory, forcing the database to be stored mostly on cold storage,
much like a real server situation.

As previously discussed in section 3.1.2 the project is using some predeter-
mined knobs. One of these knobs is ”max connections” which determines the
maximum amount of concurrent connections to the PostgreSQL database. Such
a knob must be predetermined, since the workload will not be able to execute
properly if this value is set too low, and performance will be hampered if set too
high. For example, when running Wikipedia, too small a value will lead to either
deadlocks, or complaints of a lack of connection slots. To avoid these issues,
the connections were set to 800, 850 and 800 for TPC-C, Wikipedia and CH-
benCHmark respectively. Another knob is the ”dynamic shared memory type”
which is set to ”mmap” during execution of CH-benCHmark. ”mmap” tells
PostgreSQL to simulate shared memory by using memory-mapped files within
the database, which must be used by CH-benCHmark to avoid database errors.

3.2 Data Collection

3.2.1 Query Collection

As the databases are created at the start of a DBtune repetition, the
pg stat statements (pss) extension is installed. Then after the databases have
been filled with data, the pss reset() command is executed to clear irrelevant
data that was collected during the loading phase.

As the system starts running each optimization iteration of OLTP-Bench, pss
will collect data during the workload execution. When the iteration is finished,
the query types are collected. Each of these consists of text that represents
the full query sent to the database. From the query type, the leading query
statement is collected, such as SELECT, UPDATE, INSERT, and is combined
with the total number of times the statement was executed during the iteration.
This data is collected via a simple query to the database, and saved for future use.
After this step, and before the next iteration is started, pss reset() is executed
yet again to ensure that data is reset between iterations.

Page 19



page: 20-44 Methodology 3.2 Data Collection

3.2.2 Hardware Collection

Hardware-utilization data was collected in two parts: (1) A set of workload
runs, where the database would not be optimized. (2) A set of workload runs,
where optimization would be running while data was collected. This was done to
compare the hardware-utilization metrics for non-optimized and optimized data.
This is an important section since the collection process is the foundation of the
analysis of hardware metrics and workload detection in the later results sections.
This section will start with a general explanation of the collection process and
then end up with an explanation of how (1) and (2) were collected.

The data was divided into the several categories depending on which system
a metric mainly affected:

• CPU: Contains metrics like CPU utilization in per cent, the number of
active programs, ...

• Virtual Memory: Contains metrics related to random accesses mem-
ory (RAM). Information like the amount of RAM available immediately,
RAM used, ...

• Swap Memory: Contains metrics like used swap memory, percentage of
available memory, ... . Gnome a famous Linux open-source interface
describes swap memory in the following way. “Swap memory or swap space
is the on-disk component of the virtual memory system. It is pre-configured
as a swap partition or a swap file when Linux is first installed, but can
also be added later.” [42].

• Disk: Contains metrics like the number of reads, time spent reading on
disk, ...

• Net: Contains metrics like the number of bytes sent, bytes received, ...

Each category contain many more metrics, see appendix section 6.3, table 30.
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Figure 2: Shows basic properties of the data collection on hardware-utilization.

In figure 2 one can see the basic properties of the hardware statistics collection
process. The figure does not show every single step of the process, but it shows
how the parts hang together. The recommendation to the reader is to visit the
image before and after reading the section.

The collections program was developed as an extension of DBtune. To then
run both DBtune as normal and the measurement program at the same time, the
measurement program was given its own thread, by utilizing python’s threading
module [50].

To acquire the relevant hardware data, the previous mentioned tool psutil was
used. This is not straightforward though, as most data is collected by querying
the OS registers. This is a problem due to how most of the metrics are generated
by the OS. Most metrics are generated via accumulation, such as the number
of reads from the disk, which returns the number of reads since boot to when
the register was queried. The solution to this is to simply restore many of the
hardware utilization metrics. How this is done will be elaborated on later in the
section.

Other tasks such as having a consistent calling rate to psutil were also difficult
since each collection cycle is slightly different in time. The collection cycle is the
act of gathering the data points related to the hardware metrics, by utilizing
psutil, i.e this is when psutil’s functions are called to return the metric values.
The collection cycle should always be started after some predefined time has
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passed, this predefined time is always the same. For example, if the predefined
time is set to 5 seconds, then the collection cycle should start at 5, 10, 15, ...
seconds. The total period, including the waiting time for the collection to start
and the collection time itself, is called a measurement cycle. The measurement
cycle assures that the collection cycle is started at the correct time point. To
maintain the measurement cycle, the collections thread would sleep, so that
the sleep would always end when the predefined time had passed. This was
achieved by simply subtracting the predefined period, with the time that already
had passed since the last sleep, see equation 4. The code can be viewed in the
appendix at page 113. The used predefined time can be found in the results
section at 4.1.4.

sleep time = max(predefined time− (current time− last time), 0) (4)

For the plotting data, some sort of alignment must be used to compare the
workloads in time. To achieve this, a counter was started in the beginning of
every iteration, and a timestamp based on this counter was appended to every
measurement cycle. Every cycle would then have a time stamp that corresponds
to the amount of time the current iteration had been executing.

Further, some of the metrics are process-based and some are system-wide. For
example, the CPU utilization in percent is a system-wide metric. Another metric,
”aws”, which represents the actual used memory by the process, is instead a
process-isolated metric. In PostgreSQL each connection is given its own process
identification (ID) and ran as its own process, these ID remain over the lifetime
of the connection. Moreover, there are a few more PostgreSQL processes that are
non-connections but still active processes, for example, the postmaster. These
and the connection processes are found by using psutil’s function “process iter”,
which iterates through all active processes on the host system. Then by filtering
for PostgreSQL , the wanted processes are found.

As mentioned previously, some metrics will need to be periodically restored,
with how often depending on the metric itself. Restorations can be divided
into several categories, with the main ones being restoration every iteration
and restoration between each measurement cycle. Restoration can be as simple
as saving value x before the measurement cycle, where x is some hardware
utilization metric. Then when it is time to acquire the data point, value y will
be saved and the resulting data point printed to storage would be z = x − y.
In summary, this measures how a metric was affected within one measurement
cycle. For example, how many reads happened in five seconds. This is the
per measurement cycle restoration, called ”cycle”. All the metrics related to
statistics about disk fall into this category. This basic restoration principle is
also the same for the PostgreSQL isolated metrics, the key difference is that
each process must be restored individually. Even though connection processes
remain the same over the lifetime of the connection, this is not the case for all
PostgreSQL processes, which will be referred to as ”dying processes”. Further
complicating things, once the dying processes die, the process ID can be reused
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by any newly spawned process in Linux. Therefore one can not simply sum
all processes and use the last sum of the metrics as the x and the new sum as
y. Instead, each process’ ID with its last collected metrics is stored and then
used as the restoration. If a process ID is previously unseen then the metric is
simply discarded, something which never occurred in testing. For the other main
category, iteration-based restoration, there is only one set of metrics belonging
to this type of restoration, the measurement category swap memory. In this
case, the computer’s swap memory is flushed in between the iterations. This is
done to try to reset each measurement to the same starting state. In the same
vein, the caches are also restored between the iterations by utilizing the Linux
command “sudo sh -c \"echo 3 > /proc/sys/vm/drop\_caches\"” [47]. A
small list describes the restoration operations further:

• never : Restoration is never done.

• iteration : Restoration is done per iteration.

• cycle : Restoration is done for every measurement cycle.

• flushed : Restoration is done every iteration by flushing swap memory.

One problem with using process-based metrics is the instability of the total
amount of running processes at a given time point. For example, at one time
point, there may be 58 PostgreSQL processes and at another time point 57.
This is a problem in Ubuntu, since parents seem to accumulate their children’s
metrics once they die. This means that if the system measures process A and
process B and B is a child of A, then when B dies A will accumulate for example
all B’s disk writes into A’s disk writes. This becomes a problem when using
restoration, due to how it will suddenly seem like A wrote a huge amount of
data in between the five-second collection period. For this reason, all parent
processes are banned. From testing, this amounts to two PostgreSQL processes.
Exactly which these two processes are was not investigated, but most likely one
of them is the back-end process generator which creates all connection processes.
The other is unknown. Doing this parent pruning removed the instability and
the process count became stable throughout the collections process.

Previously it has been described that many metrics are treated differently in
terms of restoration, some are system-dependent and some are system-wide or
PostgreSQL isolated, there are two main tables sharing this information. The
most comprehensive table is located in the appendix section 6.3, and table 30,
a small selection is described here in table 2. The appendix table also shows
the corresponding function used to collect the data, otherwise, the tables share
the same information. The information in the tables are which psutil function
call was used or a description of the metric collected, how often the metric is
restored, and if the values of the function are system-dependent (SD) which is
represented as true (T) and false (F) and lastly if collected just for PostgreSQL
represented by a (P) in the metric name.
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Table 2: The table shows some of the metrics collected for hardware utilization
statistics under the collections module psutil [45], the full table can be found
in appendix at table 30. In more detail the table shows; a small description of
the metric, when it is restored and if system dependent (SD). If the metric is a
PostgreSQL isolated metric then a (P) is shown in the function name. Headers
with only a name is the collection category. The units are milliseconds (ms) if
time is involved and bytes (b) if storage or memory.

function collects restored SD (T/F)
- CPU -

idle time idling (ms) cycle F
- Virtual Memory -

slab kernel cache (b) never T
vms (P) virtual memory, total used (b) never F
data (P) non text memory (b) never T

Another problem of the measurement program was performance issues. For
example, using the collection function ”memory info full” instead of ”mem-
ory info” for PostgreSQL dependent metrics would increase the collection time
a 100-fold, likely overshooting the measurement cycle by a large margin. Un-
fortunately the extra metrics included in ”memory info full”, psutil claims to
be the most important to accurately measure process memory usage. Another
non-program-related performance issue was the flushing of the swap memory. If
the flushing operation occurs while the workload is running, it can take so long
that the measuring thread does nothing else but wait for this operation to finish.
Thus a special semaphore blocks DBtune in the setup phase of an iteration
until finished, the setup phase being the flushing and other setup operations
as restoration. Other performance aspects were also taken into account, for
example, the measurement thread would be given the highest CPU and IO pri-
ority [44], [24]. Code was also built with performance in mind. For example, the
measurement thread runs three ”setup cycles”, and these setup cycles correspond
to five seconds each, i.e 15 seconds. Then after the last cycle, all PostgreSQL
processes will be collected and stored in a list for later use, exploiting the fact
that a PostgreSQL connection process remains the same over the lifetime of the
connection, the removal of parent processes is also done during this setup phase.

The collection of the non-optimized hardware data(1) was done simply by
running each workload in a cycle. The measurement program measuring on the
non-optimized database would run OLTP-Bench for a whole iteration then the
workload would be shifted to the next workload. For the last workload, the cycle
would start over and the first workload would run again. During a workload’s
running time the measurement thread would collect its data and store it locally.
To avoid measuring the measuring program’s writes, data was only written once
the whole iteration had finished and the measuring temporarily stopped. For
each repetition, the AWS instance would be rebooted.

Collection of data in optimized circumstances(2) worked very similarly, the
only difference being that the cycle was removed and optimization turned on.
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DBtune would be allowed to optimize the database whilst the measurement
program was running, which meant that the database configuration file would
change on a per iteration basis, updating the database configuration, and possibly
altering the hardware statistics. Another change is that instead of switching
workloads for every iteration one workload would run the whole course of the
repetition. This change was made to allow the optimization program to properly
optimize for the given workload. After one repetition was done the AWS instance
would be rebooted, and then the next workload would run or the same repeated.

3.3 Data Processing

3.3.1 Query Statistics Processing

After the query data has been saved from the collection phase, the data is
read into memory. The data is normalized so that each type of query is now
represented by the percentage of that query statement in its iteration, rather
than being the total count of that query statement in the iteration. As to not
lose information, the total query count for the iteration was appended to the
iteration data.

For each workload type, the average number of queries and average percentile
of each query is aggregated, together with their respective standard deviation.

When testing the workload detector, each iteration data will be forwarded to
the workload detector, where the query count will undergo further processing as
will be described in section 3.5.3.

3.3.2 Hardware Statistics Processing

The hardware utilization data was aggregated in many different ways to produce
plots and statistics. To achieve this a processing tool was created, the tool can be
found at GitHub [53]. In the rest of this section, a two workload example will be
used throughout, since there are always only two workloads in one comparison.
The comparisons are expanded exhaustively, i.e TPC-C versus Wikipedia, TPC-C
versus CH-benCHmark and TPC-C versus Wikipedia to cover every comparison
scenario.
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Figure 3: Showcasing the file structure of the data collection processes for each
workload.

The file structure will work as a mental overview of how the data was
selected for aggregation. The file structuring had the following structure: (1)
At the top, the workload folder. (2) Within each workload folder the per
repetition sub-folders. (3) Within the per repetition sub-folder, per iteration
sub-folders. (4) Lastly within the per iteration sub-folders, the files storing
the hardware utilization data. See figure 3. Each hardware utilization file
represents one hardware utilization category, which is CPU, Virtual Memory, ...
see the specification in section 3.2.2. These hardware utilization files are then
concatenated into one file.

The concatenated hardware utilization file was represented as a matrix, the
”main matrix”, containing n columns and t rows. The columns representing the
metrics and the rows representing the data points collected within the same
measurement cycle. If one takes the Virtual Memory category as an example,
there are 12 metrics: buffers, cached, ..., see table 30. In this example, one would
have 12 columns in the main matrix from the category Virtual Memory, one for
each metric. If one would select the same row over all these 12 columns, one
would have 12 different metrics that were collected within the same measurement
cycle. If t represents the number of rows, then t is equal to the number of
measurement points. If n represents the number of columns, then n is equal to
the sum of the number of metrics within all the hardware utilization categories.
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First, the general aggregation process will be described. Afterwards what
the data was used for, and how the data is useful.

The data between non-optimized and optimized data is aggregated a little
bit different. Instead of one-to-one comparisons between the iterations, only
every fifth iteration is taken out from the optimized hardware utilization data,
accounting for the different iteration lengths. See the result section for the
specification 4.1.4.

The warm-up and termination data were discarded. Warm-up data is data
collected during the ”warm-up phase”. Termination data is just an end-of-
experiment phase where the system is shut down.

The data was aggregated in the following ways by the processing tool:

Figure 4: Shows how the Euclidean Workload data was generated.

• Euclidean Workload: The mean and STD of the Euclidean distance (ED)
between workload 1 and workload 2. The ED would be calculated between
the corresponding iteration metrics under some repetition. For example,
workload 1 iteration x column z would calculate its ED against workload
2 iteration x column z, using all rows, see equation 5. Then the same
procedure but for the next column z+1. The process would then continue
for iteration y against y and so on. Now a value of the ED between the
workloads for every column in every iteration exists. The same calculation
would then be done for every repetition. One would now have several
values of the ED in every column in every iteration, one value for each
repetition. For example, before calculating the ED the two compared
iteration files would look like [[x1....xt], ..., [n1...nt]], after ED only one file
looking like [x, ..., n], after adding the repetitions only one file like this
[[x1...xj], ..., [n1...nj]]. From this last file, i.e the repetition data, mean
and STD would be derived for each column, i.e [[x1...xj], ..., [n1...nj]] →
[[x mean, x std], ..., [n mean, n std]]. So in the end, one would have the
same amount of iterations as one began with, but the data reduced to one
repetition and one of the two workloads, see figure 4.
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WX1z = The column vector z of all data points from iteration X

in workload W1

WX2z = The column vector z of all data points from iteration X

in workload W2

C =WX1z −WX2z

Euclidean Distance =

(∑
a∈C

a2

)1/2

(5)

Figure 5: Shows how the timeline data was generated.

• Timeline: Mean and STD for each data point on a timeline. By combining
the repetitions of each workload, the data points would be vectorized to
contain the number of values, as there are repetitions of the workload.
For example, for three repetitions of the same workload, a column in the
respective repetition would from the beginning look like [x1, ..., xt], [y1,
..., yt] and [z1, ..., zt], after the vectorization they would share the same

Page 28



page: 29-44 Methodology 3.3 Data Processing

vector, looking like [[x1, y1, z1], ..., [xt, yt, zt]]. From these vectorized
data points the mean and STD could be calculated. After the means and
STD were generated, all iterations would be concatenated into one big
line, the time values accumulated separately for each workload, see figure
5. In summary, timeline houses two workloads, the mean and STD data
for every measurement cycle.

For the statistics processing divisions by zero could occur. All such divisions
by zero are handled by just keeping the nominator.

Another issue was length differences. When comparing different workloads
they could differ in the amount of collected data points, the solution was to drop
the tail of the longer one so they became equal.

• Euclidean Workload: Several metrics are generated from the Euclidean
Workload data: ”outer STD”, ”growth” and ”growth variance”.

– ”outer STD”: helps in identifying the metric’s stability in the
iteration-based viewpoint, an unstable metric increases the risk of false
classifications. ”outer STD” is the normalized mean-STD taken over
all iterations for a metric. Each iteration in the Euclidean Workload
data contains the STD and the mean for every metric column. By
selecting STD and the same column in all iterations one has a list of
standard deviations, then taking the mean of these standard deviations
one gets the mean-STD. Similarly by taking the mean of all means one
gets the mean-mean. To normalize the mean-STD it is divided by the
mean-mean, the normalized value is called ”outer STD”. Equation
6 shows the procedure for one metric, where m is the amount of
iterations. The whole procedure is then to be repeated for every
metric, i.e every column in the iterations. The ”outer STD” shows in
percentage how much the average STD makes up the average distance
between the two workloads for a metric. ”outer STD” is categorized
as: very high >= 0.5, high < 0.5,medium < 0.3, low < 0.1.

ewd = Euclidean Workload data ∈ Rm×2×n

metricidx ∈ {1, 2, ..., n}

mean-mean =

(∑
iterationx∈ewd iterationx(1,metricidx)

)
m

mean-STD =

(∑
iterationx∈ewd iterationx(2,metricidx)

)
m

”outer STD” =
mean-STD

mean-mean

(6)

– ”growth”: displays if the optimized data is diverging from the non-
optimized data. The information is important since a diverging metric
increases the risk of self-detection. When comparing data between a
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non-optimized and an optimized workload scenario, the ”growth” can
be calculated by the Euclidean Workload data. ”growth” is calculated
by linear regression. The linear regression line is fitted between all
points from iteration 1 to last, by utilizing NumPy’s function lstsq [36].
Then the growth coefficient is the leaning of this line, the growth
coefficient is then multiplied by the number of iterations, but since the
metrics are of varying magnitude normalization is needed. ”growth”
is then normalized by dividing the multiplied growth coefficient by
the first Euclidean iteration value, growth =

growthcof×m
mean1

. This is
the process for one metric, the procedure for the rest is the same.
Equation 7 shows the process for one metric, the ”:” indicate that
every value is selected in that dimension. ”growth” is categorized
by negative and positive growth as: +very high >= 2,+high >=
1,+medium >= 0.5,+low >= 0,−low >= −0.5,−medium >=
−1,−high >= −2,−very high < −2.

ewd = Euclidean Workload data ∈ Rm×2×n

metricidx ∈ {1, 2, ..., n}

ones =


0 1
1 1
...

...
m 1


meanvalues = ewd(:, 1,metricidx)

growth coefficient, = lstsq(ones,meanvalues)(1)

”growth” =
growth coefficient×m

meanvalues(1)

(7)

– ”growth variance”: shows how trustworthy the ”growth” value is.
If high ”growth variance” then it seems that there is no stable trend in
any direction and the growth may be represented by just high variation
or outliers. To calculate the ”growth variance” the residual of the
linear regression is used. The residual was then divided by the number
of iterations, calculating the average distance from the regression line.
The average distance was then divided by the unnormalized growth,
generating a divergence percentage on average from the line. Equation
8 shows the process for one metric . ”growth variance” is categorized
as: very high >= 0.5, high < 0.5,medium < 0.3, low < 0.1.

Page 30



page: 31-44 Methodology 3.3 Data Processing

ewd = Euclidean Workload data ∈ Rm×2×n

metricidx ∈ {1, 2, ..., n}

ones =


0 1
1 1
...

...
m 1


meanvalues = ewd(:, 1,metricidx)

(growth coefficient, ), residualsquared = lstsq(ones,meanvalues)(1 ∧ 2)

residual =
√

residualsquared

average dist from line =
residual

m

”growth variance” =
average dist from line

growth coefficient×m
(8)

• Timeline: From the timeline data, several more metrics are derived:
”STD”, ”distance”, ”inner STD” and ”intermingling”.

– ”STD”: tells how much a metric varies. Though workload selection
was done to generalize the results, there is no evidence that the
selected workloads cover every case or even the general. Therefore it
is interesting to know how stable a metric is, on its own, since when the
”STD” is low the likelihood increases that the metric will generalize
well. ”STD” is calculated by simply taking the mean over the STD
values of the time-points for each workload and metric. Equation
9 displays this process for one metric and one workload. ”STD” is
categorized by: low < 0.1,medium < 0.3, high < 0.5, very high >=
0.5.

v = m× t

tdSTD = Timeline data STD ∈ R2×v×n

workloadidx ∈ {1, 2}
metricidx ∈ {1, 2, ..., n}
STD = tdSTD(workloadidx, :,metricidx)

”STD” =

∑v
p=1 STD(p)

v

(9)

– ”distance”: shows how separate two workloads are for a given
metric. A high value means that there is a large separation between
the workloads under the metric, making the metric more likely to
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be able to be used in detection methods to separate the workloads
accurately. To calculate ”distance”, the time-point mean values were
extracted for both workloads, and averaged. The highest mean value
of these two workloads was then divided by the smallest mean value,
creating ”distance”. ”distance” is a value always bigger or equal to
one. Equation 10 shows the process for one metric. ”distance” is
categorized as: low < 1.5,medium < 1.8, high >= 1.8.

v = m× t

tdmean = Timeline data mean ∈ R2×v×n

metricidx ∈ {1, 2, ..., n}
tdmeans1 = tdmean(1, :,metricidx)

tdmeans2 = tdmean(2, :,metricidx)

mean1 =

∑v
p=1 tdmeans1(p)

v

mean2 =

∑v
p=1 tdmeans2(p)

v

”distance” =

{ mean1

mean2
if mean1 > mean2

mean2

mean1
otherwise

(10)

– ”inner STD”: just like ”outer STD” shows how trustworthy the
”distance” value is but from the point-based perspective. A high
”inner STD” indicates an increased chance of self-detection for point-
based detection methods. ”inner STD” is calculated by taking the
distance between workload 1 and 2 for each time-point and deriving
the STD. The STD is then divided by the mean distance between the
same points. ”inner STD” now shows how the distance varies as a
percentage of the mean distance. Equation 11 shows the process for
one metric. ”variance inner” is categorized by low < 0.1,medium <
0.3, high < 0.5, very high >= 0.5.

v = m× t

tdmean = Timeline data mean ∈ R2×v×n

metricidx ∈ {1, 2, ..., n}
tdmeans1 = tdmean(1, :,metricidx)

tdmeans2 = tdmean(2, :,metricidx)

diff = tdmeans1 − tdmeans2

”innerSTD” =
STD(diff)

mean(diff)

(11)

– ”intermingling”: shows how much two workloads overlap for a
given metric by calculating intersecting points. High intermingling

Page 32



page: 33-44 Methodology 3.3 Data Processing

increases the chance of false classifications in point-based detection
methods. Intersection points are defined in this thesis as; the points
that belong to one workload but which are within the other workloads
zone of STD. To expand on the definition; each point in the Timeline
data comes with an STD value. If one takes a point from workload
1 and a point from workload 2, at the corresponding time-interval,
if the STD then overlaps between these two points, it is defined as
one intersection point. The number of found intersection points is
then divided by the number of total points creating ”intermingling”.
Equation 12 shows the process for one metric. ”intermingling” is
categorized as: non = 0, low <= 0.01,medium <= 0.05, high <=
0.1, very high > 0.1.

v = m× t

tdmean = Timeline data mean ∈ R2×v×n

tdSTD = Timeline data STD ∈ R2×v×n

metricidx ∈ {1, 2, ..., n}
tdmeans1 = tdmean(1, :,metricidx)

tdmeans2 = tdmean(2, :,metricidx)

tdSTD1 = tdSTD(1, :,metricidx)

tdSTD2 = tdSTD(2, :,metricidx)

intersections =

v∑
p=1


m1 = tdmeans1(p) m2 = tdmeans2(p)
s1 = tdSTD1(p) s2 = tdSTD2(p)

1 if m1 < m2 ∧m1 + s1 > m2− s2
1 if m1 > m2 ∧m1− s1 < m2 + s2
0 otherwise

”intermingling” =
intersections

|tdmean1|
(12)

• ”bias”: tries to quantify if the metrics are affected by being in the first
iteration. This is more of a verification value than a performance metric.
If the bias is high for the starting iterations then it is hard to compare
that data to later iterations. ”bias” was generated by collecting the mean
from every iteration and then combining all other repetitions of the same
workload type and then once again deriving the mean. For example, m
iterations, each with t data points would be made into m iterations with
1 data point by the mean value. Then, for example, j repetitions would
be combined to create m iterations with j data points each. Then once
again mean taken, creating m iterations with 1 data point each. The
bias could then be calculated by comparing the mean value of iteration
first against every other iteration. In practice, it would work like this.
The distance between iteration first and all other iterations would be
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calculated on a point-by-point basis, then the mean taken, generating the
mean distance from iteration first. Then this mean distance would be
divided by iteration first’s variance, telling in percentage how much bigger
the mean distance is compared to iteration first’s variance. The intuition
behind this is that if the variance of iteration first is much larger than
the mean distance, then it is not any bias at all. ”bias” is categorized as:
high >= 1,medium >= 0.5, low < 0.5.

Several plots were produced: Euclidean Distance plots, timeline plots and 3D
plots. The plotting information is useful to realise what the generated statistics
are representing in the actual data.

• Euclidean Workload: This plot directly uses the data generated in
Euclidean Workload. The plot shows the per iteration Euclidean distance
between two workloads, per metric. From viewing the plot one can see
how the workloads vary against each other on an iteration-basis in the
Euclidean distance. This information for example can help to discern which
metrics separate the workloads well from an iteration perspective.

• Timeline: The data would directly be used in the plot. The plot shows
workloads 1 and 2 in one continuous time-plot per metric. In the plot,
one can see how a metric is affected over time and iterations. Also one
can view, for example: bias, intermingling, variance, separation and so on.
This plot also, and the only one to do so, have added the warm-up data.

• Partitioned: Is data generated only for plotting. The matrix containing
every hardware utilization category was split, separating the hardware
utilization categories into 5 matrices. Each containing gi columns, these
were then subdivided down to contain only three columns and then the
three columns were plotted together in 3D scatter plots. The subdivision
worked in the following way for an array where gi = 5; [1, 2, 3, 4 ,5] → [1,
2, 3], [2, 3, 4], [3, 4, 5]. This procedure would be performed on each row, a
total of t times. The procedure allows the plotting of some codependencies,
even though it misses most. If one looks at the given example of the
subdivision, one can see that 1 and 2 are never plotted with 5, so one can
imagine by looking at the example that the longer the array becomes the
more metrics will not be compared. In these 3D plots light to dark colour
means newer to later.

• Partitioned Mean: Similar to the Timeline plot but just the mean
from each data point. In summary a 3D scatter-plot of workloads 1
and 2 generated by taking the mean of the repetitions. Useful to find
codependencies.

• Partitioned Raw: Just a 3D scatter-plot of the three first repetitions
on the ”Partitioned” data, gives insight into the variance of ”Partitioned
Mean”.
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3.4 Multi-Workload Testing

To see if the modified version of DBtune works for multiple workloads and to
show the benefit of a multi-workload system, a test had to be devised that could
run all workloads, and then be compared to some baseline value.

It was decided that all three workload databases would be loaded into storage
initially, and then the workloads would be executed sequentially, one after the
other. To demonstrate that the system itself works, an oracle was used in
place of a workload detector. This oracle will perfectly predict workload shifts.
Hardware and query data was still collected, and later used to examine how well
detector based upon queries and hardware-utilization would have performed in
this multi-workload system.

Each workload was divided into the following three phases:

• Design of Experiment - Gather random data points for BO

• Optimization - BO tries to find the best server configuration

• Post-optimization - After a number of iterations, the best server configura-
tion is maintained until the next workload shift

Each phase will consist of a number of iterations. The exact values can be
found later in section 4.1.2.

To compare the performance of this multi-workload optimization, a baseline
was obtained by running a naive optimization session that completely ignores any
workload shift. In essence, this will be the same as the multi-workload system,
except it has a non-functional detector that cannot identify workload shifts. This
means that the baseline will optimize for the first workload, switch over to the
optimal configuration found after the Optimization phase and then maintain
this for the duration of the repetition, i.e the duration of the experiment.

3.5 Workload Detection

Put simply, workload detection is just a matter of data classification. For this
type of problem, many possible solutions exist, depending on what problem needs
to be solved. What all the methods have in common is that some feature-vector
needs to be constructed that can be used to classify the data. When accounting
for database performance, there are many different methods that could be taken
into account when doing workload detection.

One alternative was to utilize hardware utilization measures, such as CPU,
RAM, and disk usage, measured during the execution of OLTP-Bench. However,
these measures have some potential issues. The optimization goal of the project
is throughput, which is likely linked to the usage of these metrics. Put simply,
as the search for the optimal PostgreSQL configuration progresses during the
optimization phase, the hardware utilization may change as the throughput
changes. Therefore these metrics could change over time during the optimization
of the database, even for the same workload.
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The other option that was investigated was the usage of the database trans-
action statements themselves, as described in section 3.2.1.

As the queries themselves won’t be affected by the optimization of the
database, discovering a way to detect trends in queries would provide a reliable
way to separate workloads over time.

As described by previous work [1], queries do not seem to fully characterize
the workload. Two systems may have databases structured in very different ways,
while still having workloads containing similar query data. This means that that
over multiple optimization sessions, these queries fail to provide information
regarding optimal configurations. This is not a hindrance to this project however,
as optimization is only done for one DBMS instance at a time. As the database
and hardware stay the same, it means that the workload could be characterized
well enough that different workloads can be separated by only using query-based
statistics.

3.5.1 Detection methods

The following section will describe the implementation of the methods tested for
workload detection. Most of these methods are unused in the actual detection
process and are mainly implemented to compare the performance between them.

The workload detection on hardware metrics is handled by a main method,
the main method handles the presentation of the data to the detection methods,
see the pseudocode 2. The detection is then done in the main method by utilizing
a reference to one of the detection methods, each, of which follows the interface
Detector, see interface 1.

The implementation of this main method is easiest described by its functions.
The main detection handling function, do detection, receives a feature matrix.
The feature matrix contains all the collected data from an iteration, the data as
discussed in 3.2.2, but with warm-up and termination data removed as discussed
in 3.3.2. The function do detection then divides the feature matrix into feature
vectors, each vector containing collected values of a hardware utilization metric.
These vectors are then sent to the detect function together with needed reference
values. The reference values are either the STD and mean of previous feature
vectors or just the previous feature vector itself. After then receiving the detect
function’s return value, the algorithm will store if detection was reported.

Furthermore, each detection method has hyperparameters. These are best
described in the individual detection methods themself, but they are given
through the main method via the function local setup.
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Function detect(type: feature matrix, shape: N × 1 ;; type:
reference values, shape: N × 1 OR 2× 1):

Return(type: Boolean)

Function extract reference values(type: feature matrix, shape:
N ×M):

Return(type: reference values, shape: N ×M OR 2×M)

Function local setup(type: hyperparameters, shape: 1× 1 OR 2× 1):
Return(type: null)

interface, Detector. 1: Displays the interface called Detector, which all
the hardware detection methods follow. The interface specification uses some
definitions that need to be explained. (1) shape: is the shape of the expected
parameter. (2) type: is a short explanation of the expected value. All code is
implemented in python, meaning no static types exist, therefore sometimes a
function has several types, or shapes. This is defined by adding OR to the
description. ”;;” delimits the parameters, for example, if a function receives
3 parameters, then one would have; (param1 ;; param2 ;; param3).
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Function setup(type: Detector, name: detector ;; type:
hyperparameters, shape: 1× 1 OR 2× 1, name: hyperparameters):

detector.local setup(hyperparameters) ;
first iteration ← True ;
reference values ← None ;

Function do detection(type: sampled metrics, shape: N ×M , name:
feature matrix):

detection found? ← False ;
if first iteration then

first iteration ← False ;
reference values ←
detector.extract reference values(feature matrix) ;

Return(no workload detected)
else

for index, feature vector ← feature matrix do
/* A feature vector is an extracted column from the

feature matrix, the index corresponds directly

to the index of the extracted column. For

example, first column 1 is extracted then 2, 3,

..., the corresponding indexes for each

extraction will be 1, 2, 3 ... */

reference value ← reference values[index] ;
detected? ← detector.detect(feature vector, reference value) ;
if detected? == True then

detection found? ← True ;
end

end
if detection found? == True then

reference values ←
detector.extract reference values(feature matrix) ;

end
Return(detection found?)

end
pesudocode 2: Displays the pseudocode of the main method running the
detection methods. The pseudocode uses some definitions that need to be
explained. (1) name: is the given name to a parameter in the local function.
(2) shape: is the shape of the expected parameter. (3) type: is a short
explanation of the expected value. All code is implemented in python, meaning
no static types exist, therefore sometimes a function has several types, or
shapes. This is defined by adding OR to the description. ”;;” delimits the
parameters, i.e if one function receives 3 parameters then one would have;
(param1 ;; param2 ;; param3).

One wants to assert that the used complicated methods are necessary. One
way to do this is to use a simple and naive method. The naive method should
then be used as a baseline and compared against the non-naive methods. Since
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workload detection logically can be divided into distances between the workloads,
the Euclidean distance was chosen as a naive and simple function.

The implementation of the Euclidean Distance method is described by the
pseudocode at 3, which implements the previously discussed interface Detector.
The method starts in the local setup, where the distance hyperparameter is
given, dictating the maximum allowed distance between two workloads, for them
to not be specified as a workload shift. The Euclidean implementation returns
the entire feature matrix as its reference values, the columns being the feature
vectors. When the main method then requests a detection, the feature vectors
are compared against the reference vectors. The comparison is done by unifying
both vectors, then calculating the infinite norm to normalize the vectors, and
then finally calculating the Euclidean distance. The distance is then compared
against the given hyperparameter, if bigger, a workload shift has been detected.
Euclidean Distance is an iteration-based detection method.

Function local setup(type: int, name: threshold):

Function extract reference values(type: doubles, shape: N ×M ,
name: feature matrix):

Return(feature matrix)
Function detect(type: doubles, shape: N × 1, name: v1 ;; type:
doubles, shape: N × 1, name: v2):

/* The reference value, v2, is the vectors from the

reference feature matrix */

v1 n, v2 n ← Normalize(v1, v2) : Returns (v1,v2)
|v1∪v2|inf ;

distance ← Calculate Euclidean(v1 n, v2 n) ;
if distance > threshold then

Return(workload shift detected)
else

Return(no shift detected)
end
pesudocode 3: Pseudocode of the Euclidean implementation

In the implementation of CUSUM-chart the authors mainly follow the im-
plementation as mentioned in section 2.3.3, the pseudocode can be viewed at 4.
As previously described, the standard implementation of CUSUM-chart leaves
the interpretation of what is a detected anomaly open. The definition of when
the lower bound or upper bound has breached the threshold is left out. In this
project a simple factor of the STD was used as the threshold. A breach of
this threshold would mean that an anomaly had been detected. When such a
breach had happened, lower and upper bound would once again be restored to
0. To increase the stability, an additional hyperparameter was added, called
”outlier threshold”. The additional hyperparameter is the needed percentage
of anomalies for a hardware metric to be classified as a workload shift. This
percentage is derived from the feature vector length as percent = nbr anomalies

length .
For the reference values, they were simply the mean and STD from each column
in the feature matrix. CUSUM-Chart is a point-based detection method.
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Function local setup(type: double, name: distance threshold ;; type:
double, name: outlier threshold):

Function extract reference values(type: doubles, shape: N ×M ,
name: feature matrix):

Return : get mean STD from each column(feature matrix)
Function detect(type: doubles, shape: N × 1, name: v ;; type: doubles,
shape: 2× 1, name: mean std):

mean, STD ← mean std ;
detections ← 0 ;
for element← v do

lower, upper = accumulate lower upper(lower, upper, element,
mean, STD) /* increments the bounds according to

the algorithm description. */

if (lower ∨ upper) > distance threshold then
detections ← detections + 1 ;
lower, upper ← 0 ;

end

end
if detections > outlier threshold then

Return(workload shift detected)
else

Return(no shift detected)
end

pesudocode 4: Pseudocode of the CUSUM-chart implementation

The MI implementation mainly uses Scikit-learn’s implementation [14], see
the pseudocode implementation 5. The implementation logic can largely be
described by section 2.3.3 but uses the more advanced binning method described
in paper [28]. MI’s hyperparameter works in reverse compared to the other
methods’ hyperparameters. A low value on the hyperparameter means that only
workloads with great distance between them will be classified as a workload shift,
and a high value the opposite. MI’s hyperparameter will henceforth be called
”difference”. MI is a iteration-based detection method.
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Function local setup(type: double, name: difference threshold):

Function Extract reference values(type: doubles, shape: N ×M ,
name: feature matrix):

Return(feature matrix)
Function Detection(type: doubles, shape: N × 1, name: v1 ;; type:
doubles, shape: N × 1, name: v2):

/* The reference value, v2, is the vectors from the

reference feature matrix */

;
distance = MI(v1, v2) ;
if distance > difference threshold then

Return(workload shift detected)
else

Return(no shift detected)
end

pesudocode 5: Pseudocode of the mutual information implementation

See table 3 to see a summary of which types the detection methods belong
to.

Table 3: Shows which detection methods are iteration- or point-based.

detection method point-based iteration-based
Euclidean Distance X
CUSUM-Chart X

MI X

3.5.2 Performance Measurement

To evaluate the detection methods some performance score is needed. This
section describes how the tests were carried out and how the scores were given.
The evaluation was done through testing sets. These sets are the collected data
as described in section 3.2. The testing sets were then given to the simulation
program, which would present the data to the detection methods in the same
way as would be expected at runtime.

The hardware utilization simulator would present and load the previously
collected data files. The data files, which are the .csv files containing the hardware
metrics. The .csv files would be presented on an iteration basis, exactly as in the
runtime environment. Though, as can be seen from section 3.5.1 some data needs
to be preloaded, to act as the reference values. The detection program would
then read these presented .csv files and use one of the detection algorithms. The
result of the detection algorithm would then be reported back to the simulation
program, which would tally if this was a reported workload shift or not and which
hardware metrics were responsible for the detection. The simulation program
could then tally the detection percentage for a given hardware metric, enabling
feature pruning/feature detection.

The hardware simulator would run negative and positive detector tests
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separately. A negative test is when the detector is given a data file containing
the same workload as the current one loaded, i.e this data file should not be
classified as a workload shift. A positive test on the other hand is the inverse
and should be classified as a workload shift. For example for the negative test,
if workload TPC-C iteration 1 would be loaded first, then iteration 2 would be
presented, then iteration 1 again loaded and then 3 presented and so on. After
all the other collected iterations have been presented to iteration 1, i.e 2-last
presented, then TPC-C iteration 2 will be loaded, and iteration 3 presented and
so on. Then the same would happen for all workloads, and for each repetition
the whole apparatus started over again. Equation 13 shows the total amount
of negative test iterations this would generate. The positive tests would be
generated similarly. For example, TPC-C iteration 1 would be loaded then
Wikipedia iteration 1 presented then TPC-C iteration 1 loaded and Wikipedia
iteration 2 presented and so on for Wikipedia 1-last and then CH-benCHmark
1-last and then iteration 2 TPC-C loaded and the cycle repeated and for all
workloads, and started over for each repetition. Equation 14 shows the total
amount positive test this would generate, note that this equation is only valid for
number workloads = 3. A detected shift on the negative test is called a ”false
positive”, and a detected shift on the positive test is called a ”true positive”.

number repetitions× number workloads×

(
number iterations−1∑

i=1

(i)

)
(13)

number repetitions× number workloads× number iterations2 (14)

For the selection of hyperparameters on hardware detection, a search script
was used. The search script would select hyperparameters to try from Gaussian
distributions. The Gaussian distributions themselves were created from the
NumPy function ”normal” [37]. This function needs the centre and the STD
to be defined for the wanted Gaussian distribution. The Gaussian distributions
would then be sampled at the beginning of a test, and given to the search
script to score the hyperparameters. The test itself would consist of running
all the negative and positive tests. The number of false positives and true
positives would then be returned to the script after the tests had finished. These
numbers were then multiplied with weights, which are defined in the results
section 4.1.4. After the multiplication, the scores would be summed and the
used hyperparameters stored together with their score. Then several of these
”iterations” would be run, each time with a new set of hyperparameters, and at
the end, the best score and hyperparameters were reported.

Once again the metrics would be classified based on their performance. Each
metric would get a rating depending on how it performed, this rating is derived
from the percentage of detections. For the negative tests, the categories range
from bad to good, and are specified as: bad ¿= 0.2, -high ¿= 0.1, -mid ¿= 0.05,
-low ¿ 0, good = 0. For the postive tests the ratings were specified as: good = 1,
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+high ¿= 0.95, +mid ¿= 0.9, +low ¿= 0.8, -low ¿= 0.5, -mid ¿= 0.3, -high ¿=
0.1, bad ¿= 0.

3.5.3 Implementation for queries

9 different query statements were identified as occurring within OLTP-Bench.
Out of these, the following 5 were found to be very rare:

• SET

• BEGIN

• ROLLBACK

• SHOW

• COMMIT

The remaining four consisted of the vast majority of queries (¿99%), and
were therefore chosen for the feature vector. These are:

• INSERT

• DELETE

• UPDATE

• SELECT

Whilst the rare query statements could have been used for the feature vector,
they seemed to unreliable as features. if 1 in 10 000 000 queries are consist of the
statement SHOW, and the following iteration doubles this, it’s not particularly
interesting. However, with certain algorithms a doubling of a feature could result
in workload shifts being detected. Whilst the chance of this occurring for the
clustering algorithm chosen in this project was small, it was still considering a
risk and therefore the rare query statements were discarded from the feature
vector.

The actual workload detection was done via the DBSCAN clustering algo-
rithm. This algorithm will always utilize all the data it has access too, and then
divide it into a number of clusters that is deemed reasonable. When the model
has been fitted to the data, the current and the previous iteration is predicted.
If these two sequential iterations belong to different clusters, that means that
the algorithm has detected a workload shift.

When the detector finds that a workload shift has been encountered, the
detector forwards this information to the optimizer function, which then can
reset optimization parameters and rerun the DoE phase.

During testing, it was found that this method did not adequately separate
our workloads. Since the implementation of TPC-C and CH-Benchmark are
similar, they have almost identical statistics for query percentages, since CH-
Bench is essentially a TPC-C workload, combined with a few more complicated
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transactions. Since these more complex transactions result in a a slowdown in
terms of TPS, a natural divider between these was to use the total number of
transactions in an iteration as a feature. This causes some issues however, as this
feature varies from hundreds of thousands to millions of queries. When this is
placed alongside the other features, which are in the form of statistics between 0
and 1, the DBSCAN algorithm could not adequately differentiate the workloads.
There was therefore a need to normalize the number of queries into a smaller
range. Since each iterations data needs to be normalized as it is collected, it is
not possible to simply look at the maximum and minimum number of queries
for all iterations. A new normalization method was then introduced, which
normalizes the data over time by the following function, where ni is the number
of queries at iteration i, resulting in the normalized query measurement qi.

qi =
ni

1
i

∑
j

nj

The value of qi then is a measurement of how much the query count for the
current iteration differ from the average query count of all previous iterations.
To avoid problems of consistency in the detection algorithm, all query data from
previous iterations is retroactively updated so qi is up to date with the most
recent average query count value.
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4 Results

4.1 Experimental Settings

The same set of software was used for all experiments, seen below in table 4

Table 4: Software used for data collection. *Hypermapper was modified to allow
for a workload detector. To see specifics, see section 3.1.2

name version
psutil 5.9.0

OLTP-Bench Final
PostgreSQL 14.2

rsync 3.2.3
HyperMapper 2.2.9*

4.1.1 Optimal Configurations

The data regarding the optimal configurations for each of three workloads
was executed over 2 repetitions, with each repetitions containing 60 iterations.
Combined over all 3 workloads, this means 360 data points were collected. Since
the basis of these tests was to examine the optimal configuration of each workload,
there was no workload-detection data collected for the workloads.

The data was collected on an AWS instance with the following specifications:

Table 5: AWS instance used for testing

Region Sweden, Stockholm (eu-north-1)
Instance Type m5d.2xlarge, 64 bit

CPU Intel Xeon, Platinum 8175M, 2.5GHz
RAM DDR4, 32GB

Hard-drive NVMe SSD 300 GB
OS Ubuntu 20.04

4.1.2 Multi-Workload Optimization

The AWS instance that was used is the same as for the optimal configurations,
which is detailed in table 5.

Each workload was run with the following three steps sequentially

• Design of Experiment - 10 iteration

• Optimization - 20 iterations

• Post-optimization - 5 iterations

This results in 35 iterations per workload, for 105 iterations total.
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4.1.3 Queries

Data was collected separately for the queries to investigate the viability of these
as a detection mechanism. To avoid unforeseen consequences with gathering
both hardware-utilization and query data, hardware-utilization was disabled for
collecting this data.

All data presented in section 4.3.1 was collected using an AWS server with
the following specifications:

Table 6: AWS instance used for testing

Region Sweden, Stockholm (eu-north-1)
Instance Type m5d.xlarge, 64 bit

CPU Intel Xeon, Platinum 8175M, 2.5GHz
RAM DDR4, 16GB

Hard-drive NVMe SSD 150 GB
OS Ubuntu 20.04

These specifications is very similar to the one described in table 5, with the
difference being that this one had half the RAM and storage space. Due to a
lack of budget, this machine was used as it was less expensive to use.

For each workload, one full repetition of 50 iterations were executed, resulting
in 150 data points total.

4.1.4 Hardware Statistics

This section defines all the parameters used for hardware utilization collection
and hardware utilization detection. The parameters for the hardware collection
part: the measurement cycle, the number of non-optimized and the number of
optimized iterations. For the detection part: Number of positive and negative
tests and which weights were used.

• The measurement cycle was set to five seconds, i.e the collections program
would call and collect metrics from psutil every fifth second.

• The experiment for non-optimized data used 40 iterations for each workload.
These iterations comes from 4 repetitions each containing 10 iterations.

• For optimized data, each workload was executed for 100 iterations, divided
into 2 repetitions each containing 50 iterations.

For more information where this data comes from see section 3.2.2.
The experimental setup on workload detection used the discussed scheme in

section 3.5.2. i.e, positive and negative tests and weights to discern hyperparam-
eter scores. Go back to the referenced section to see exactly how the positive
and negative test numbers were generated.
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• For the non-optimized data in total 540 negative tests, and 1200 positive
tests were executed.

• The optimized data used the same system for testing as the non-optimized
data, but one should remember that a repetition of optimized data contains
50 iterations. In total this would generate 4900 negative tests and 15000
positive tests.

• For the detection of hyperparameters, the random search scheme was
used. The random search would run for 100 iterations and then the best
hyperparameters were extracted according to score. For the weights, a
false positive gave -10 and a true positive +1.

The same AWS instance as in section Optimal Configurations 4.1.1 was used
.

4.2 Analysis

4.2.1 Optimal configurations

The experiment detailed in section 4.1.1 was executed, resulting in two complete
repetitions for each of the three workloads. This resulted in the optimal configu-
rations found in table 7, 9 and 11 for Wikipedia, TPC-C and CH-benCHmark
respectively.

From these repetitions, the difference in performance between the initial
DBtune configuration and the best configuration is compared. These can be
found in tables 8, 10 and 12, again, for Wikipedia, TPC-C and CH-benCHmark
respectively.

Table 7: Optimal configuration obtained for 2 repetitions of the Wikipedia
workload

Knob name Run-1 Run-2
shared buffers (MB) 4096 6656
work mem (MB) 13 27
random page cost 2 1.5
effective io concurrency 200 200
max wal size(GB) 24 24
max parallel workers per gather 16 4
max parallel workers 8 8
max worker processes 4 4
checkpoint timeout (min) 5 5
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Table 8: Throughput per second for Wikipedia with the initial vs the best
configuration for both repetitions

Run-1 Run-2
Initial config (TPS) 279 302
Best config (TPS) 361 378

When looking at table 7, it can be seen how quite a few knobs vary between
the two repetitions, especially work mem and shared buffers. Most likely, this
is due to either the knobs being unimportant for Wikipedia throughput, or
that the repetitions didn’t contain enough iterations, and therefore the optimal
configuration wasn’t acquired. Even so, there is more similarity than differences in
the configurations which implies some level of consistency between the repetitions.

Wikipedia had a 29% and 25% boost in performance thanks to the optimiza-
tion, which shows just how valuable it can be to optimize the server configuration,
since this is essentially equivalent to 25% reduction in server costs.

Table 9: Optimal configuration obtained for 2 repetitions of the TPC-C workload

Knob name Run-1 Run-2
shared buffers (MB) 7680 8192
work mem (MB) 40 5
random page cost 2.5 4
effective io concurrency 100 200
max wal size(GB) 64 64
max parallel workers per gather 8 1
max parallel workers 4 4
max worker processes 4 4
checkpoint timeout (min) 10 10

Table 10: Throughput per second for TPC-C with the initial vs the best
configuration for both repetitions

Run-1 Run-2
Initial config (TPS) 1434 1481
Best config (TPS) 2045 2296

The story for TPC-C in table 9 is quite similar to the one discussed previ-
ously, table 7. Just like Wikipedia, max wal size is staying consistent between
repetitions, even though the knobs has 7 different values that can be chosen
between. Here, shared buffers is staying much closer to each other. The knob
work mem behaves very similarly in both Wikipedia and TPC-C, and is wildly
shifting between repetitions.

Table 10 shows that TPC-C experienced massive improvement, with a 40%
and 55% boost in performance. Yet again, this shows the potential optimization
methods like BO has for the future of the server space.
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Table 11: Optimal configuration obtained for 2 repetitions of the CH workload

Knob name Run-1 Run-2
shared buffers (MB) 7168 7168
work mem (MB) 6 50
random page cost 0.1 0.1
effective io concurrency 300 1
max wal size(GB) 32 16
max parallel workers per gather 1 4
max parallel workers 8 4
max worker processes 4 4
checkpoint timeout (min) 10 10

Table 12: Throughput per second for CH-benCHmark with the initial vs the
best configuration for both repetitions

Run-1 Run-2
Initial config (TPS) 587 475
Best config (TPS) 634 583

Yet again, the work mem knob varies massively between repetitions, as is
seen in 11. Interestingly enough, shared buffers and random page cost stay the
same, which seem so imply that perhaps shared buffers is more important for
write-heavy workload like TPC-C, and less important for read-heavy loads such
as Wikipedia.

Table 12 shows that there was some performance gain for CH, but not nearly
to the same degree as for TPC-C. Here, the gain was between 8 - 22 %. The
large difference in performance between these two seems to suggest that the
number of iterations used was not adequate for getting close to the optimal
configuration.

Table 13: Table that shows the number of knobs that varied between the optimal
configurations found.

wiki-1 wiki-2 tpcc-1 tpcc-2 ch-1 ch-2
wiki-1 0 5 8 7 8 9
wiki-2 0 8 7 8 8
tpcc-1 0 5 8 7
tpcc-2 0 7 7
ch-1 0 5
ch-2 0

When running DBtune for the three different workloads separately, it resulted
in significantly different optimal server configurations, as can be seen in tables 7,
9, 11. Whilst differing optimal configuration were obtained between repetitions
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of the same workload, there is a greater difference between different workloads,
which is shown in table 13. Which knobs changed between repetitions also
seemed to depend on what workload was being executed, which suggests that
different knobs vary in importance depending on the workload.

The most stable knob that had different optimal values for different workloads
was max wal size, which only shifted for CH-benCHmark.

Some knobs, such as max worker processes didn’t change at all for any
workload, which seems to imply that either the knob always has the same optimal
value regardless of workload, or that the search-space was poorly designed.

4.2.2 Multi-Workload Optimization

Figure 6: Plot that shows the Baseline, which was fully optimized for TPC-C,
versus the multi-optimizer system that optimized for TPCC, then Wikipedia
separately when a shift was detected. The post-optimization phase can be seen to
start at iteration 30. The workload shift to Wikipedia happens at iteration 35.

The results for the comparison between the multi-workload optimization to a
naive baseline can be seen in figure 6. Unfortunately, the performance between
the two systems can not be directly compared, due to the fact that the baseline
had more space available on the storage drive, which results in a performance
gain compared to the multi-workload system. The reasons for this difference in
storage space is detailed in section 4.4.3. Due to this performance gain, the exact
value of the throughput as well as some other metrics cannot be used as a point
of comparison. Despite this, some conclusions regarding the overall behaviour of
the systems can be drawn from this plot.

Initially, the general behaviour for both systems is very similar for TPC-C,
with the multi-workload system achieving a slightly higher performance. When
the workload then shifts to Wikipedia, both systems experience a large drop in
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throughput.
Neither seems to be able to optimize Wikipedia very efficiently, but the

behaviour between the two systems can be seen to diverge. The naive system
seems to experience a drop in performance towards the end of Wikipedia, an
issue that is not experienced by the multi-workload system. When the post-
optimization phase starts in the Wikipedia section, the performance for the
multi-workload system gradually increases to reflect the change to the optimal
configuration.

Why the naive-system seems to experience a drop towards the end of
Wikipedia, even though the system isn’t optimizing at that point is unknown.

4.2.3 Hardware Statistics

For brevity, most plots related to hardware utilization are not shown at all,
and are instead presented in table format. Some of the metrics are also always
zero, or otherwise uninteresting, and not included in the regular tables in the
appendix. These metrics have their own table in the appendix, section 6.5, table
37.

The section is structured as follows: (1) First comparisons between the
workloads, how the categorization data is related to the plots, and then the
metrics are categorized into good and bad. (2) Results are shown from analysing
3D plots to see codependencies. (3) Statistics are shown that are independent
for each workload.

Starting with the distance comparison between the workloads. The catego-
rizations try to quantify the information that can be visually observed within
the plots. Such metrics between the workloads are: (1) The ”distance”, which is
the point-by-point mean distance between the two workloads. (2) The ”inner
STD”, which is the point-by-point distance STD. (3) ”Outer STD”, which is
the STD between repetitions when the data points have been aggregated into
one data point from Euclidean Workload. (4) ”intermingling”, which is how
much the workloads intersect. To see a more detailed description of these four
categories see section 3.3.2.
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Figure 7: Shows TPC-C and Wikipedia for the PostgreSQL isolated metric
”voluntary” on a point basis. The green line shows where an iteration starts and
from the green to the purple is the warm up zone of OLTP-Bench. The x-axis
is showing the time-stamp when the point was collected. Note that the x-axis is
concatenated time data as described in section 3.3.2 under category Timeline.

Figure 8: Shows The Euclidean distance between TPC-C and Wikipedia for the
PostgreSQL isolated metric ”voluntary” on an iteration basis. Note that this data
is generated from the category Euclidean Workload, see section 3.3.2.

Page 52



page: 53-73 Results 4.2 Analysis

Table 14: Showing 6 metrics which shows the most promising separation between
TPC-C and Wikipedia. The categorizations have previously been described in
section 3.3.2

metric distance inner STD outer STD intermingling
- CPU -

voluntary (P) low very high low very high
involuntary (P) high medium low non

- Virtual Memory -
slab high low low non
vms (P) medium low low non

- Disk -
read count (P) high medium low non

- Net -
bytes recv medium high medium high

In figure 7 one can see a timeline plot generated from the category Timeline,
see section 3.3.2. The plot shows TPC-C versus Wikipedia for the CPU metric
”voluntary”. As the documentation page of psutil describes it, voluntary is “The
number voluntary [...] context switches performed by this process (cumulative).”,
for more such information see the psutil documentation [45] and to see all
metrics used see table 30 in section 6.3. The plot shows that there is a frequent
intermingling between both workloads, a small distance and a high variation in
the point-to-point distance between the workloads, i.e a high ”inner variation”.
The same information can be derived from table 14, which shows the previously
stated distance categories on the metrics, ”intermingling”, ”inner STD”, ...
Figure 8 once again shows TPC-C versus Wikipedia but plotted on an iteration
basis, with the plot coming from the Euclidean Workload category, see section
3.3.2. Here one can see that the euclidean distance on average move from
[≈ 450000,≈ 500000], the confidence on separation should now be high. For the
STD, it seems to make up around 20% of this distance between the workloads,
which is categorized as ”outer STD” in the tables.
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Figure 9: ”CPU-percentage” system wide Wikipedia versus CH-benCHmark .
The green line shows where an iteration starts and from the green to the purple is
the warm up zone of OLTP-Bench. The x-axis is showing the time-stamp when
the point was collected. Note that the x-axis is aggregated time data as described
in section 3.2.2.

From the previous paragraph, one can understand that there is a difference,
between taking the data on an iteration basis compared to taking the data
on a point basis. Metrics that are classified in the tables with: ”distance” =
high, ”inner STD” ¡ high and ”intermingling” = low are usually very separated.
For example, see figure 9 which plots Wikipedia versus CH-benCHmark and is
categorized as: ”distance” =medium, ”inner STD” =medium and ”intermingling”
= non. From the figure, one can see that it has a constant and a large divide
between both workloads. However, ”intermingling” and ”inner STD” are not the
only categories which separated metrics well. Another set of good metrics are
metrics categorized as: ”distance” ¿= medium and ”outer STD” = low. Such
metrics can usually be separated well if one just aggregates the data to become
one point per iteration. This can be seen by comparing the iteration based figure
8 to the point based figure 7. In this figure metric ”voluntary” is categorized as:
”distance” = low and ”outer STD” = low.
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Figure 10: Shows the PostgreSQL metric ”vms (P)” for TPC-C versus CH-
benCHmark . The green line shows where an iteration starts and from the green
to the purple is the warm up zone of OLTP-Bench. The x-axis is showing the
time-stamp when the point was collected. Note that the x-axis is aggregated time
data as described in section 3.2.2.

One also needs to keep in mind that even if the mean distance between two
workloads is low they can still be separated as long as the STD is also low. Such
metrics with: ”distance” ¡ high, ”inner STD” = low and ”intermingling” = non
are also great metrics for separation. For example, see figure 10. This figure
plots the total memory consumption of the aggregated PostgreSQL processes for
TPC-C versus CH-benCHmark. As one can see from the figure, the distance is
quite close ≈ 0.2, which is around 20% of the lower lines mean value, but with
zero STD from what can be observed, meaning a low ”inner STD”.

Table 15: Showing 6 metrics which shows the most promising separation between
TPC-C and CH-benCHmark. The categorizations have previously been described
in section 3.3.2

metric distance inner STD outer STD intermingling
- CPU -

cpu percent high low low non
user (P) high low low non

- Virtual Memory -
slab low medium medium non
vms (P) low low low non
data (P) high low low non

- Disk -
read chars (P) high medium low non
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Table 16: Showing 6 metrics which shows the most promising separation be-
tween Wikipedia and CH-benCHmark. The categorizations have previously been
described in section 3.3.2

metric distance inner STD outer STD intermingling
- CPU -

cpu percent medium medium low non
user (P) medium medium low non

- Virtual Memory -
cached high low low non
slab high low medium non
vms (P) low low low non
data (P) high low low non

To move on to the rest of the tables, there are two more tables like table 14,
showing the other workload comparisons. All these tables show six important
metrics for the separation of the two presented workloads in a table. The other
two tables are TPC-C versus CH-benCHmark 15 and Wikipedia versus CH-
benCHmark 16, which show the categorizations of the metrics as previously
discussed. From the TPC-C versus Wikipedia table, one can see that slab seems
to be a good metric, with high ”distance” and low ”inner” and ”outer STD”
and no ”intermingling”. To find all metrics, regardless of quality, see appendix
6.5 and the tables 31, 32 and 33 for TPC-C versus Wikipedia, TPC-C versus
CH-benCHmark and Wikipedia versus CH-benCHmark.
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Figure 11: Shows Wikipedia and CH-benCHmark for the system-wide metric
”shared” on a point basis. The green line shows where an iteration starts and
from the green to the purple is the warm up zone of OLTP-Bench. The x-axis
is showing the time-stamp when the point was collected. Note that the x-axis is
aggregated time data as described in section 3.2.2.

Figure 12: Shows The Euclidean distance between Wikipedia and CH-
benCHmark for the system-wide metric ”shared” on an iteration basis. Note
that this data is generated from the category Euclidean Workload, see section
3.3.2.
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For now, only metrics with good separation have been shown, but how does
a bad metric look, with high STD in ”inner” and ”outer”, low ”distance” and
very high ”intermingling”? Figure 11 shows Wikipedia versus CH-benCHmark
for the metric ”shared”. One can see that the ”intermingling” is frequent and
the ”inner STD” high. The ”outer STD” is also high and one can see this from
figure 12, where the STD has a span of around 0.6 distance units, which makes
up most of the mean distance.

To collect all the table data into one short simple table, summarizing the
data, a table was crafted showing how many good and bad metrics there are,
and to which category they belong:

1. The number of metrics which separate the workloads well when it comes to
both point and iteration-based data. Point-based data is data that is not
aggregated into a single iteration, i.e each iteration contains many data
points. Iteration-based data is the opposite where each iteration contains
only one data point, by euclidean distance.

2. The division of system-wide and PostgreSQL based metrics. A label shows
which category is tallied, either post receptively system for PostgreSQL
and the system-wide metrics.

3. The last row shows how many metrics are agreed upon to be well separated
for all workload comparisons.

The inclusion criteria for a metric to be defined to have a ”well” separation
can be found at table 17 and the summarizing table itself at 18. From the latter
table, one can see that even though the PostgreSQL isolated metrics roughly
makes up only 36% of the metrics they represent half of the good point-based
metrics, this is especially prevalent in the all row where PostgreSQL isolated
metrics make up 75% of the good metrics. One can also see from this table
that on average, there exist ≈ 15 metrics which separate the workloads well
for the point-based metrics. For the iteration-based, there exist on average 29
metrics that separate the workloads well. There are nearly double as many
”good” iteration-based metrics as point-based metrics. The PostgreSQL isolated
metrics again make up a large portion of the iteration-based metrics, 50%, and
again especially for the all row. One can also see from the table that when
Wikipedia is included the amount of good metrics is drastically reduced.

Table 17: Shows the inclusion criteria for point- and iteration-based data. The
X means that the column is irrelevant to the selection criteria.

distance inner STD outer STD intermingling
point-based inclusion

(low, medium, high) (low,
medium)

X <= low

iteration-based inclusion
(low, medium, high) X low X
high X medium X
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Table 18: Tallies how many metrics separate the workloads well for each separate
workload comparison, and also shows how many metrics separate all workloads
well. The table tallies the point-based and iteration-based data. The data is
divided by the PostgreSQL isolated metrics (post) and the system-wide (system)
metrics. The selection criterion to include point- respectively iteration-based data
can be found in table 17.

workloads all
point

post
point

system
point

all
itera-
tion

post
itera-
tion

system
itera-
tion

In total 53 metrics, 19 PostgreSQL
TPC-C, Wiki 14 9 5 26 12 14
TPC-C, CH 19 8 11 32 17 15
Wiki, CH 13 5 8 29 12 17
all 4 3 1 18 11 7

Figure 13: 3D mean plot of idle, irq and softirq. Red is CH-benCHmark and
blue TPC-C workload.

his paragraph signals the end of the distance comparisons and shows the start
of the codependency analysis. An important metric is codependencies, if one
wants to improve the collection system as much as possible, it is unnecessary to
collect perfectly correlated metrics. One note though, the codependencies were
purely discovered visually, by analysing the 3D plots. What type of 3D plots
were generated can be seen in section 3.3.2. Once again the plotting information
is quantified by categorisation, but this time generated visually. The range
is from -high to +high where ±high means near-perfect negative or positive
correlation. ±Medium and ±Low means medium respectively low correlation. In
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table 19 such codependencies are shown. The correlating metrics are displayed
in the metrics column, and then in the rest of the columns, it is shown how
much each workload correlates with the corresponding metrics. For example, in
the table, one can see that ”idle” and ”softirq” has a high negative correlation
for the TPC-C workload, which also can be viewed in figure 13. In the figure,
one can see that as ”idle” increases ”softirq” nearly linearly decrease for TPC-C,
meanwhile, for CH-benCHmark which is reported to not correlate, most of the
time ”softirq” moves in a straight line upwards whilst ”idle” remains stagnant.

Table 19: The table shows codependencies, between the metrics for all workloads.
The first column shows which metrics correlate, and the rest shows how much the
metrics correlate in each workload. CH = CH-benCHmark.

metrics TPC-C Wikipedia CH
- CPU -

5min, 15min +high
idle, softirq -high -low non

soft interrupts, voluntary non +high non
soft interrupts, involuntary +high non non

- Virtual Memory -
buffers, shared +medium +low non
buffers, cached +medium non non
cached, shared +medium non non
slab, shared +low +medium non
rss, vms +low +low +medium

- Disk -
bytes recv, packets recv +high +high +high
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Table 20: Shows some selected individual statistics from all the workloads,
which represents some key strokes of the rest of the metrics within the same
workload. The table shows the categorization of: (1) The mean distance between
non-optimized data and optimized data. (2) The mean-STD of non-optimized
data. (3) If the non-optimization is biased towards the starting iteration of the
workload. (4) If the distance between the non-optimized and the optimized data
trend in any direction. (5) The variance of the trend. What each category, like
high and low represents, and how the categories were generated is described in
section 3.3.2.

metric distance STD bias growth growth
variance

- TPC-C -
1min high medium high +very

high
low

slab low low low +high low
vms (P) high low low +high low

- Wikipedia -
slab low low low -low low
vms (P) high low low -low low

- CH -
shared high low low +medium medium
vms (P) high low medium +medium medium

Finally, the individual performance results for each workload. For example,
an important ingredient in finding a good metric is how it compares to optimized
and non-optimized data. For these type of measurements, there are one table
showing a few metrics for each workload, table 20, the full description of this table
can be found in appendix 6.5 in three tables, 34 for TPC-C, 35 for Wikipedia and
36 for CH-benCHmark. These tables shows the categorization of: (1) ”distance”,
the mean distance between optimized and non-optimized data, generated exactly
the same as for the non-optimized data but on different data. (2) ”STD”, the
mean-STD of non-optimized data. (3) ”bias”, if the non-optimized data is biased
towards the starting iteration of the workload. (4) ”growth”, if the distance
between the non-optimized and the optimized data trend in any direction. (5)
”growth variance”, the variance of the growth. What the categorization means,
and how the categorizations were generated are described in section 3.3.2.
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Figure 14: The Euclidean distance between TPC-C optimized and non-optimized
data for the metric ”1min” on an iteration basis. Note that this data is generated
from the category Euclidean Workload, see section 3.3.2.

Figure 15: TPC-C versus Wikipedia for the metric ”1min” on a point basis. The
green line shows where an iteration starts and from the green to the purple is the
warm up zone of OLTP-Bench. The x-axis is showing the time-stamp when the
point was collected. Note that the x-axis is concatenated time data as described
in section 3.3.2 under category Timeline.

From table 20 one can see that TPC-C has a high ”growth” which is symp-
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tomatic for the whole workload. The ”bias” is low for TPC-C and Wikipedia for
all metrics except ”1-”, ”5-” and ”15min”. CH-benCHmark is different and has
a medium ”bias” in metrics ”vms (P)”, ”buffers”, ”num fds (P)” and high in
”data (P)”. For the ”growth” parameter, TPC-C has a high to medium leaning
on most metrics, CH-benCHmark a medium to low and Wikipedia low only.
Figure 14 shows TPC-C plotted for metric ”1min” when taking the Euclidean
distance between itself on optimized and non-optimized data. The metric ”1min”
has a very high positive ”growth” with low ”growth variance”. One can see from
the plot that ”1min” starts low with low STD and then quickly climbs without
much STD between the repetitions generating a very high ”growth” with low
”growth variance”. There is no specific plot generated to visualize the ”bias” but
it can for example be seen by a timeline plot, see figure 15. Here one can see
that the first iterations are much higher than the rest for the ”1min” metric of
TPC-C.

4.3 Workload Detection

4.3.1 Query-based Statistics

Figure 16: Plot of percentage of queries for each of the three workloads. Note
the small lines in the middle which signify the confidence interval.
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Figure 17: Plot of total number of queries for each of the three workloads.
Confidence interval included.
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Figure 18: Scatter plot of all data points used, plotted for number of queries and
percentage of SELECTS. Note that the number of queries has not been normalized
according to section 3.5.3

From figure 16, it can be seen that Wikipedia can be quite clearly separated
from TPC-C and CH-benCHmark. Wikipedia has almost twice the percentage
of UPDATE, and practically no INSERT queries when compared to the other
two workloads. The standard deviation is also so low that Wikipedia can be
reliably distinguished.

What the figure also shows, is just how similar TPC-C and CH-benCHmark
are compared to each other. In every query-based statistics that was collected,
they are practically identical.

As figure 17 suggests, the number of queries seems to separate CH-benCHmark
from Wikipedia and TPC-C. By plotting the data points collected for percentage
of SELECT and number of queries, the three workloads are well separated, which
can be seen in figure 18

4.3.2 Hardware Statistics

In this section the found results from using the detection algorithms in 3.5.1 will
be presented. The section starts of with showing the results on non-optimized
data and then on optimized data. The scores are generated from the search
script see section 3.5.2 and the weights and amount of tests is defined in section
4.1.4.
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The results on non-optimized data is shown in two parts, one part without
pruning and one with. The first shown result is generated by just taking the
found hyperparameters from the search script, without any feature pruning.
Then after, some metrics will be pruned by analysis of the results, and then the
score tallied again.

The scores for the different detection methods were 1200, 780 and 0 for
Euclidean, CUSUM-chart and MI respectively. The following hyperparameters
were used: (1) 5.018 for the Euclidean distance hyperparameter. (2) 6.83 and
0.95 for distance and the percentage of allowed outliers for CUSUM-chart. (3)
The difference hyperparameter was set as 0 for MI.

Table 21: Shows the metrics categorization for non-general metrics for CUSUM-
chart workload detection on the negative test for non-optimized data, see a more
detailed description of the categories in section 3.5.2. The general metrics table
can be found in appendix 6.6 and tabel 38. In the test, the hyperparameters, i.e
the distance and the allowed outliers were set to 6.83 and 0.95. The columns in the
table show how the metrics performed for each workload when doing self-detection.

metric tpcc wikipedia CH-benCHmark

- CPU -
num fds (P) good -low -low

- Virtual Memory -
shared -low -high good
data (P) good good -mid
vms (P) good good -low

Every metric for all detection methods had zero false positives, see the general
table of the detection results in appendix 6.6 table 38. The exception to this
is CUSUM-chart, which had 47 false positives. Mostly these false positives are
related to Wikipedia and the metric ”shared”, ”shared” which is categorized as
a bad metric in the hardware analysis for all workload comparisons involving
Wikipedia. To see the categorizations of the other metrics on CUSUM-chart see
table 21.
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Table 22: Shows some selected good metrics for the categorization of Euclidean
and CUSUM-chart workload detection on the positive test for non-optimized
data, see a more detailed description of the categories in section 3.5.2. For the
hyperparameters, the Euclidean distance hyperparameter was set to 5.018. For
CUSUM-chart’s hyperparameters, they were set to 6.83 and 0.95 for the distance
respectively the percentage of allowed outliers. The columns in the table show
how the metrics performed for each workload versus another workload during the
detection.

metric tpcc vs
wikipedia

tpcc vs CH-
benCHmark

wikipedia vs
CH-

benCHmark
*** Euclidean ***

- CPU -
idle +high +high bad

- Virtual Memory -
data (P) bad +high +high
cached +high bad +high

- Disk -
read chars (P) bad +high bad

*** CUSUM-chart ***
- Virtual Memory -

data (P) -low +high +high
cached +high bad +high
rss (P) +high +high -high
shared (P) +high +high bad
text (P) +high +high bad
vms (P) +high +high +high

The results are much more varied for the positive test. The Euclidean and
CUSUM-chart did not produce a single false negative. For MI the opposite was
true, every single iteration was misclassified and in total 1 200 false negatives
were produced. A general table can be seen in appendix 6.6, table 39, which
shows all metrics agreed upon as being bad by the detection methods. For
the individual Euclidean and CUSUM-chart tables see table 22, which shows a
selection of good metrics for both detection methods, the MI table is omitted
since every single metric is just bad. For the full tables for Euclidean and
CUSUM-chart see appendix 6.6 and tables 40 respectively 41. From all these
tables one can see that many metrics have a +high detection rate when detecting
different workloads, and one should remember that these metrics also have zero
false positives.

For the pruning part, the Euclidean can remain untouched, CUSUM-chart
only needed to remove metrics defined in table 21 to achieve a full score, 1
200, but for MI things were a bit different. MI seems to be sensitive to bad
metrics, bad metrics will be classified over and over again as a workload shift for
both the positive and negative tests. Therefore 0 likely was given as the best

Page 67



page: 68-73 Results 4.3 Workload Detection

hyperparameter, making all metrics bad for the positive test but generating zero
false positives for the negative test. By running MI for any other hyperparameter
value, one can easily discover which metrics are bad. To try this the difference
hyperparameter was set to 0.5. The resulting bad metrics from the negative
test are shown in appendix 6.6 in table, 42. By this simple pruning of the bad
metrics, the score is improved to 105, which is a low score, the hyperparameter
was set to 0.6283. The problem seems to be that the bad metrics for the negative
test overlap with the good metrics for the positive test, and therefore MI can
not increase its score further.

Table 23: Shows the pruned metrics for the Euclidean and CUSUM-chart during
testing on optimized data.

purged metrics
*** Euclidean ***

- CPU -
”idle”, ”num fds (P)”, ”1min”, ”5min”, ”steal”

- Virtual Memory -
”shared”, ”vms (P)”, ”buffers”, ”rss (P)”, ”shared (P)”

- Disk -
”read chars (P)”, ”read count (P)”, ”write count (P)”, ”write time”

*** CUSUM-chart ***
- CPU -

”num fds (P)”, ”1min”, ”5min”, ”15min”,
- Virtual Memory -

”shared”, ”data (P)”, ”vms (P)”, ”cached”, ”slab”, ”buffers”, ”rss (P)”,
”shared (P)”

- Disk -
”read chars (P)”, ”read count (P)”, ”write count (P)”, ”read bytes (P)”,

”write chars (P)”
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Table 24: Shows a selection of the non-pruned metrics categorization for Euclidean
and CUSUM-chart workload detection on the positive test for the optimized data,
see a more detailed description of the categories in section 3.5.2. In the test, the
hyperparameters were: 5.018 for the Euclidean distance and for CUSUM-chart the
distance and the allowed outliers were set to 6.83 and 0.95. The columns in the
table show how the metrics performed for each workload versus another workload
during the detection.

metric tpcc vs
wikipedia

tpcc vs CH-
benCHmark

wikipedia vs
CH-

benCHmark
*** Euclidean ***

- CPU -
involuntary (P) -mid bad +high
system (P) +low bad +high

- Virtual Memory -
data (P) bad +high +high

- Disk -
read bytes (P) +high bad +mid

*** CUSUM-Chart ***
- CPU -

busy time +high bad -mid
user (P) bad bad -high

- Virtual Memory -
text (P) +high +high bad

- Disk -
read time -low bad +high

On optimized data both Euclidean and CUSUM-chart achieved good scores
after considerable feature pruning, but MI did not compete. The enacting of the
feature pruning viewable in table 23, on CUSUM-chart, considerably increased
the score. Before pruning, the score was around 11 000, after, CUSUM-chart
achieved a score of 15 000 on the optimized data, which is the maximum. i.e
no false positives or false negatives. The score decreased a bit though, on the
non-optimized data after the pruning. The score became 1 094, on non-optimized
data. The hyperparameters were not reinvestigated after the pruning though,
due to lack of time. Some categorizations can be viewed in table 24 and all
in appendix 6.6 at table 43. The Euclidean had a more drastic improvement
after the pruning. Before the pruning, the score was negative, -1 000 on the
optimized data. After the pruning, the score reached 14 985, nearly perfect. On
the non-optimized data, the Euclidean kept its full score of 1 200. Also for the
Euclidean, the hyperparameters were not reinvestigated. The pruned metrics
can be viewed in table 23 and some categorizations at 24 and all in appendix
6.6 at table 44. For MI the same results as previous were achieved, a score of 0.

From the previous paragraph one can see that if you would use CUSUM-chart
during optimization and Euclidean once the optimization is done, one would
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have a perfect detection algorithm for the tried data.

4.4 Discussion

4.4.1 Regarding credibility of results

For the reader to be able to trust the results, the tests must be realistic. Un-
fortunately, it cannot be concluded that the tests used in this project are so.
Whilst the authors have done their best to select industry-standard workloads to
test multi-workload optimization, the fact of the matter is that it still does not
quite align with reality. The test setup consists of three databases chosen from
OLTP-bench, which are then compared against each other. Due to limitations,
there has not been any validation to see if this setup is a good simulation of
a real-world scenario. One can imagine that one database suddenly swapped
for another is unrealistic though. In the database it means that all tables and
queries are switched out in a fraction. One could argue that the 10-minute
iteration period could represent any time, and when the system measures then
a great deviation between the workloads has already happened. The problem
with this is that a complete change in everything in the database likely does
not represent a slow or fast workload change, if it would, then the workload
shift should have been detected a lot earlier. For these purposes, much of the
project should be considered a proof-of-concept, rather than a realistic analysis
of workloads in real-world scenarios.

4.4.2 Optimal Configurations

As table 13 shows, CH has a different optimal configuration than TPC-C, but
when looking at figure 16, the two workloads seem to be doing the exact same
thing. The implication of this is that these two are truly two different workloads,
and that query-percentages does not fully characterize the workloads. This
proves that expansion of the feature vector is necessary, and motivates the
addition of the number of queries as a feature.

One thing that should be touched upon is how vital it is that table 13
demonstrates that each workload has a different optimal configuration. If the
optimal configurations had been the same it would mean that the current
workload is essentially irrelevant for the optimizer, since it would still converge
to the same optimal point regardless of the workload. For this reason, it was
crucial that the workloads converged to different points, as if they hadn’t there
would have been no purpose of multi-workload optimization.

4.4.3 Multi-workload Optimization

As mentioned previously, the two plots cannot be compared quite apples-to-apples
for multiple reasons.

One reason is how the load was placed upon the system. While collecting
the data for the multi-workload system, after the workload switched over from
Wikipedia to CH-benCHmark, it started behaving strangely, with many iterations

Page 70



page: 71-73 Results 4.4 Discussion

failing and performance becoming irregular. For the sake of transparency, a plot
that includes this data can be found in the appendix under figure 19. A bug
was also found that seemed to cause a sort of storage-leak that loaded more and
more data into storage over time, until the drive was entirely full. This caused
the CH-benCHmark to eventually crash, which is why the aforementioned figure
has less iterations under CH-benCHmark. Unfortunately, due to a lack of time
and monetary budget, the multi-workload system could not be started again
with the bug fixed.

Due to the instability CH-benCHmark seemed to cause, when data was to
be collected for the baseline, it was decided that CH-benCHmark would be
ignored and instead only TPC-C and Wikipedia would be used in the naive
test. Unfortunately, it turns out that SSD performance, which is the type of
storage used for the AWS instances chosen, is highly dependant on the amount
of data loaded into it. The more data loaded, the slower it will be. Therefore,
the decision to only load Wikipedia and TPC-C into storage results in Wikipedia
achieving a much higher throughput on the naive system as compared to the
multi-workload system, and makes overall analysis unreliable. This is why there
cannot be a head-to-head throughput analysis. As a consequence of this, it
means that the possible performance gain of using multi-workload optimization
cannot be truly calculated. From looking at table 8, some conclusions could be
drawn however. Here, an average throughput of 370 was reached. By looking
at figure 6, it can be calculated that the naive baseline achieved an average
throughput of 332. Whilst this isn’t a perfect comparison, it still shows that
by properly optimizing for Wikipedia can result in at least an 11% increase in
performance, over having an optimal configuration from a different workload.

4.4.4 Query-based Statistics

When looking at figure 16, the similarity between TPC-C and CH-benCHmark
may seem somewhat chocking, considering how different workloads they really
are. The reason for this is almost certainly that CH-benCHmark is a combination
of a TPC-C workload, as well as a trickier OLAP-workload. Since OLAP consists
of far fewer, but more difficult transactions, it means that in terms of query
percentages, the OLAP part barely makes a dent in the statistics, which means
that CH-benCHmark cannot be distinguished from TPC-C using only these
statistics. This was the motivation for why the number of queries needed to be
considered, since it makes sense that more complex queries would result in less
throughput overall, which is also what can be seen in figure 17.

One thing that must be discussed is the increased variability and magnitude
of the number of queries compared to the other feature vectors. Since this feature
has a very different variance and base value, it can cause problems for many
different clustering algorithms. The clustering algorithm used for query-based
detection in this project, DBSCAN, is as previously described reliant on the
hyperparameter eps. This hyperparameter controls how far apart points can be,
while still being considered to be in the neighbourhood of one another. Since
the number of queries varies much more than the percentage of queries, that
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means it has a more dominant role in classifying workload shifts. The result of
this is that the hyperparameter needs to be set very carefully, or the system will
be only reliant on the query count. By looking at 18, it can then be seen that
TPC-C and Wikipedia would not be able to be adequately separated from each
other if you were to only rely on this feature. For this project, eps set to 0.15
was found to be sensitive enough to divide workloads, without classifying false
workload shifts.

Initially the idea was to run the query-detection system on the data collected
for the multi-workload system, which is discussed in section 4.2.2. Unfortunately,
the bug that was described in section 4.4.3 also corrupted the query data that
was collected. It is for this reason there is no analysis regarding the complete
multi-workload system queries.

4.4.5 Hardware Statistics

The separation of workloads on non-optimized data were very promising. Many
metrics could separate the workloads well, and a few were agreed upon to separate
all workloads well. Both point-based and iteration-based data performed well.
Especially the iteration-based data. Promising detection methods which have
no problem with such aggregations easy detection. Methods like CUSUM-
chart would have a hard time with such aggregations, though. Even if one
re-implemented CUSUM-chart with aggregations in mind, it would take many
iterations before being useful for detection. This is because CUSUM-chart relies
on the deviation from the mean.

Another promising result from hardware utilization is that many good metrics
come from the PostgreSQL isolated metrics. This is a good result, looking back
into earlier sections, one can see that OLTP-Bench occupy a lot of resources
for some workloads. For example, when running Wikipedia a large chunk of
the system’s RAM is occupied. If this was not the case, if PostgreSQL isolated
metrics would not separate the workloads well. Then it would be hard to
know if the collected data showed an actual difference between the workloads
or in how OLTP-Bench runs them. Now both PostgreSQL isolated metrics and
system-wide metrics agree that the workloads can be separated, even better
an unproportionate amount of the metrics agreeing that the workloads can be
separated are from the PostgreSQL isolated metrics.

From the multi-workload Optimization section 4.2.2, and the discussion 4.4.3,
one can see that the SSD is severely hampered when being close to being full.
This, unfortunately, invalidates the category ”distance”, when comparing the
optimized and non-optimized data. This invalidation occurs, since the optimized
data would only have one of the three workloads loaded at a time, meanwhile
the non-optimized data would have all loaded while running the workloads.
Making it unknown if the distance is an effect of the actual distance between the
optimized and non-optimized data, or just an artefact of how the benchmarking
was done. The authors would suggest that it at least seems to depend on the
workload, if one looks at the Wikipedia data, there is no growth at all between
the iterations when comparing between optimized and non-optimized data. It
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is just a constant distance, which is very odd, since if the configuration files
would greatly affect the hardware utilization metrics, then some growth trend or
high growth variance should be generated, but this is not the case. From the
multi-workload optimization, it seems that this workload is hard to optimize.
TPC-C seem to be the workload most affected by the optimization, one can
also see the largest growth for TPC-C. Still, even in TPC-C many metrics show
a low ”growth” and ”growth variation”, indicating that some metrics might
work well in optimized and non-optimized scenarios of TPC-C. Regardless, one
would not need to run workload detection during optimization, since the DBMS
controls this phase, the user knows when it starts and ends. Therefore workload
detection could be started after optimization, though creating the risk of missing
a workload shift during the optimization.

For codependencies, nothing special was discovered. TPC-C seems to have
more codependencies than any other workload, maybe making it easier to
optimize than the others. Also as previously discussed and which one should
note, the codependencies are only investigated between a few selected metrics,
see section 3.3.2 for more information.

For the detection algorithms, Euclidean and CUSUM-chart performed very
well on non-optimized data reaching a maximum score of 1 200. Many metrics
showed a detection rate of 95% for several workload comparisons and with zero
false positives for the same metrics. One interesting fact is that the supposed
naive function, Euclidean, needed no feature pruning at all, which was needed for
CUSUM-chart. Likely since the Euclidean can fully exploit the iteration-based
metrics, which CUSUM-chart can not. For MI things did not look as bright.
Even after feature pruning, MI could only reach a score of 105. The problem is
that MI thinks that workloads of the same type are completely unrelated for
many metrics. From the above discussion, one could easily suggest that just
keeping with the Euclidean for all non-optimized workload detections is the best.
Since this method is the simplest and seems to perform the best.

For the optimized data, the Euclidean and CUSUM-chart produced promising
results. Both methods achieved a near-perfect score on their own, and if combined
a perfect score would be achieved on both optimized and non-optimized data. It
was surprising that CUSUM-chart succeeded. From previous discussions, it has
been said that the SSD being full or not, severely affects database performance,
and as discussed, earlier in this section, it also seems to greatly affect hardware
metrics as well. Therefore a method like CUSUM-chart, which tries to detect
deviations from the mean should fail if a constant artificial divide is set up
between the workloads. But this error in the tests seems not to be great enough
to destroy the natural separation of the workloads.
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5 Conclusions & Future Work

5.1 Conclusions

When optimizing for workloads individually, it was found that TPC-C benefited
greatly from optimization, with a boost in performance around 50%, followed
by Wikipedia which achieved a 25% gain, and lastly CH-benCHmark, which
experienced a gain of 8-22% .

The program that was created for multi-workload optimization is functional,
and is capable of utilizing detection algorithms to restart optimization. The
increase in performance for workloads in this system didn’t match the gain
experienced during single-workload optimization, most likely due to bugs and
unforeseen consequences of taxing SSD storage.

In terms of workload detection, multiple systems were devised that all seemed
to solve the issue. It was found that for query-based statistics remained very
stable throughout optimization. The statistics differed significantly between
workload, either via direct percentages of query types, or via the normalized
number of queries in an iteration. The queries could therefore be used for
workload detection, regardless of if the program is in the DoE, optimization, or
post-optimization phase.

For the hardware metrics, the result was similar. When used in non-optimizing
scenarios, it was trivial to separate the different workloads for most methods, all
succeeded except MI. Dozens of features were identified that were statistically
different between each of the three workloads. For optimizing scenarios, also a
perfect detection was achieved, even with some testing setbacks. Another finding
by analyzing the optimized data was that one could see, for example, that the
workload Wikipedia seems unaffected by the optimization, in terms of hardware
metrics.

5.2 Future Work

As this projects has dealt with a new area of research, there are many different
fields that could be looked into. One key idea that would vastly simplify future
work would be the creation of benchmarking software specifically designed
for continuous database optimization and workload shifting. If this could be
designed in such a way that complicated queries and gradual workload transitions
were implemented, then this would give much more confidence in continuous
optimization methods and their applicability in real-world scenarios, as well as
result in more stable software that would accelerate testing in the field.

Another area of research is workload characterization and detection. Whilst
hardware and query data certainly are capable of distinguishing workloads for
this project, there may be more robust ways that are more capable of dealing
with gradually shifting workloads. To know the most reliable ways to distinguish
between any types of workloads clearly is a massive boon for the field of DBMS
optimization. Further research within workload characterization could lead to
even more exciting discoveries, such as transfer-learning, where data obtained
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from previous optimization of workloads could somehow help inform what the
most likely new optimal configuration is.

Further research can also be done regarding the applicability of the mutual
information between optimization sessions on different servers. It could be
possible that two servers with differing hardware may still have the same optimal
configuration. If this could be identified, then it could make optimization sessions
much faster, since eventually all different workloads and their estimated optimal
configuration would be known, making optimization of an entirely new server
trivial.

One aspect which is not touched upon in this thesis is optimization as a
whole. For example, what would performance-wise be the most optimal detection
cycle, detection every fifth minute, tenth and so, which resources to use, query,
database statistics, hardware utilization? Should one utilize a less resource-
intensive setting, checking key metrics, and once these go out of a bound,
activate the whole measurement system? For such decisions, the detection
performance must be compared with the impact on database performance from
utilizing these detection programs. Another aspect, not researched is hardware
measurement time cycles and excluded metrics. How often should one collect
data points? Should excluded resource-intensive metrics be included, and the
measurement cycle increased? As one can imagine the possibilities are endless.
Other aspects could also be taken into account, for example in some cases
even though a new workload has been found, does one want to start over the
optimization process? When is the optimization necessary. For example, if a new
workload is detected, but system utilization is very low, maybe an optimization is
not needed. Maybe in such cases, some other system could decide if de-allocation
could be done. All such research would provide insight-fullness into how to do
an optimal optimization.

Even though queries were utilized, PostgreSQL provides many more such
database metrics, and third-party tools provide even more. For example, many
metrics generated by the database itself are missing, like shared blks written. In
future research such metrics should be included, with their performance impact,
this would help determine which metrics are the most important.
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6 Appendix

6.1 Knobs search space

6.1.1 Knobs with priors

Table 25: Table of knobs in search space with values and the prior probabilities.
Where (x) refers to the unit x being used.

shared buffers (MB) work mem (kB) random page cost
Value Prior Value Prior Value Prior
640 1.3% 4096 6.08% 0.1 7.94%
768 1.4% 5120 6.14% 0.5 8.24%
896 1.4 % 6144 6.19% 1 8.38%
1024 2.9% 6990 6.19% 1.1 8.38%
1280 3% 7168 6.14% 1.5 8.24%
1536 3.1% 8192 6.04% 2 7.95%
1792 3.2% 9216 5.89% 2.5 7.54 %
2048 6.8% 10240 5.7% 3 7.02%
2560 7.1% 11264 5.47% 3.5 6.42%
3072 7.3% 12288 5.21% 4 5.77%
3584 7.4% 13312 4.92% 4.5 5.1%
4096 7.4% 14336 4.6% 5 4.42%
4608 7.3% 15360 4.27% 5.5 3.77%
5120 7.1% 17408 3.593% 6 3.16 %
5632 6.8% 19456 3.59% 6.5 2.6 %
6144 6.4% 21504 3.25% 7 2.1 %
6656 5.8% 23552 2.92% 7.5 1.67 %
7168 5.3% 25600 2.6% 8 1.3%
7680 4.8% 27648 2.3%
8192 4.2% 29696 2.01%

30720 1.75%
35840 1.51%
40960 1.29%
46080 1.09%
51200 0.92%
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Table 26: Values and priors for the effective io concurrency knob

effective io concurrency
Value Prior
1 10%
100 20%
200 30%
300 20%
400 20%

6.1.2 Knobs without priors

Table 27: Values used in BO for knobs. Where (x) refers to the unit x being
used.

max wal size (GB) max parallel workers per gather max parallel workers
4 1 4
8 2 8
16 4
20 8
24 16
32
64

Table 28: Values used in BO for knobs. Where (x) refers to the unit x being
used.

max worker processes checkpoint timeout (min) checkpoint completion target
4 5 0.9
10 10
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6.2 CH-benCHmark

Table 29: Table that shows the difference between the original CH-configuration
and the new CH-configuration which is used for this project.

Query number Original CH New CH
1 5 5
2 5 5
3 5 5
4 4 5
5 5 5
6 4 5
7 5 5
8 4 4
9 5 5
10 4 5
11 5 5
12 4 4
13 5 5
14 4 4
15 5 0
16 4 5
17 5 5
18 4 5
19 5 5
20 4 4
21 5 5
22 4 4

6.3 Hardware metrics
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Table 30: The table shows all the metrics collected for hardware utilization
statistics under the collections module psutil[45]. In more detail the table shows:
which function was used to collect the data, what it collects, when it is restored
and if system dependent (SD). If the metric is a PostgreSQL isolated metric then
a (P) is shown in the function name. Headers with only a name is the collection
category. – Headers – surrounded by ”–” is showing that an expansion of all
return parameters will be represented below. The function which is expanded is
placed directly bellow the – Header –. The shorthand func. means function. The
units are usually these three; milliseconds (ms) if time is involved, bytes (b) if
storage or memory and lastly a count if its a numbering of something. The metric
units that diverge from this will be reported individually in the table.

function collects restored SD (T/F)
CPU

cpu percent CPU utilization percentage cycle F
num fds (P) opened process file descriptors never T

– CPU getloadavg func. contains –
getloadavg processes in a runnable state (1, 5, 15) min F

1min processes in an runnable state 1/60 hz F
5min processes in an runnable state 1/300 hz F
15min processes in an runnable state 1/900 hz F

– CPU freq func. contains –
cpu freq CPU frequency in Mhz cycle T
current CPU frequency in Mhz cycle T

– CPU times func. contains –
cpu times CPU processing times (ms) cycle T

idle time idling (ms) cycle F
steal OS time, virtual environment (ms) cycle T
guest time, virtual CPU for guest (ms) cycle T

guest nice same as guest but niced (ms) cycle T
nice process time, niced (ms) cycle T
irq hardware interrupt (ms) cycle T

softirq software interrupt (ms) cycle T
– CPU stats func. contains –

cpu stats CPU context switches cycle T
interrupts interrupts since boot cycle F

soft interrupts software interrupts cycle T
– CPU times (P) func. contains –

cpu times (P) CPU processing times (ms) cycle T
user (P) time in user mode (ms) cycle F

system (P) time in kernel mode (ms) cycle F
iowait (P) waiting for I/O (ms) cycle T

– CTX Switches (P) func. contains –
num ctx switches (P) context switches (ctx) cycle F

voluntary (P) number of voluntary ctx cycle F
continuing on next page
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function collects restored SD (T/F)
involuntary (P) number of involuntary ctx cycle F

virtual memory
– virtual memory func. contains –

virtual memory memory related never T
buffers cache file system and metadata (b) never T
cached cache for unknown things (b) never T
shared mutli-access memory (b) never T
slab kernel cache (b) never T

– virtual memory (P) func. contains –
memory info memory related (P) never T

rss (P) non-swapped physical memory (b) never F
vms (P) virtual memory, total used (b) never F

shared (P) shareable memory (b) never T
text (P) memory for code (b) never T
data (P) non text memory (b) never T
lib (P) memory in shared libraries (b) never T

dirty (P) number of dirty pages never T
memory percent (P) in rss, total/used never T

swap memory
– swap memory func. contains –

swap memory swap memory related flushed T
used used swap memory (b) iteration F
free free swap memory (b) iteration F

percent percentage of available memory iteration F
sin swapped in from disk (b) cycle T
sout swapped out from disk (b) cycle T

disk
– disk func contains –

disk io counters disk data cycle T

read time time reading from disk (ms) cycle T
write time time writing to disk (ms) cycle T
busy time time doing I/O:s (ms) cycle T

read merged count number of merged reads cycle T
write merged count number of merged writes cycle T

– disk (P) func contains –
io counters (P) disk data cycle T
read count number of reads (b) cycle T
write count number of writes (b) cycle T
read bytes number of bytes read cycle T
write bytes number of bytes written cycle T
read chars number of bytes passed, read cycle T
write chars number of bytes passed, write cycle T

network

continuing on next page
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function collects restored SD (T/F)
– network func. contains –

net io counters network data cycle F
bytes recv received (b) cycle F
packets recv packets received cycle F

errin errors while receiving cycle F
errout errors while sending cycle F
dropin incoming packets dropped cycle F

finished

6.4 Multi-workload Optimization

Figure 19: Data for the multi-workload system that includes the unreliable
CH-benCHmark

6.5 Hardware analysis

Table 31: Shows TPC-C versus Wikipedia. The table shows: (1) The mean
distance between the workloads. (2) The point by point distance STD. (3) The
iteration based STD. (4) How much the workloads intermingle i.e intersects. What
each category, like high and low, represents and how they were generated is
described in section 3.3.2.

metric distance inner STD outer STD intermingling

- CPU -
cpu percent low high low very high
1min low very high medium very high

continuing on next page
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metric distance inner STD outer STD intermingling
5min low very high medium very high
15min low very high medium very high
current low very high low very high
idle high medium low non
softirq low very high low very high
steal low very high low very high
user (P) medium medium low high
system (P) low very high low very high
iowait (P) high medium low low
interrupts high medium low very high
soft interupts low very high low very high
voluntary (P) low very high low very high
involuntary (P) high medium low non
num fds (P) low low low non

- Virtual Memory -
buffers medium medium medium non
cached high low low non
shared low very high very high very high
slab high low low non
rss (P) medium low low non
vms (P) medium low low non
shared (P) medium low low non
text (P) medium low low non
data (P) low high medium high

- Disk -
read time high medium low medium
write time high high medium very high
read merged count low very high high very high
write merged count high very high low very high
busy time high medium low non
read count (P) high medium low non
write count (P) low very high medium very high
read bytes (P) high medium low medium
write bytes (P) medium medium high high
read chars (P) high medium low non
write chars (P) medium medium medium very high

- Net -
bytes recv medium high medium very high
packets recv low very high medium very high

finished
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Table 32: Shows TPC-C versus CH-benCHmark. The table shows: (1) The
mean distance between the workloads. (2) The point by point distance STD. (3)
The iteration based STD. (4) How much the workloads intermingle i.e intersects.
What each category, like high and low, represents and how they were generated is
described in section 3.3.2.

metric distance inner STD outer STD intermingling

- CPU -
cpu percent high low low non
1min high medium low low
5min high medium low non
15min high medium low non
current low very high low very high
idle high low low non
softirq high medium low low
steal low very high low very high
user (P) high low low non
system (P) low high low very high
iowait (P) low very high low very high
interrupts low very high low very high
soft interupts high medium low non
voluntary (P) medium high low high
involuntary (P) high medium low medium
num fds (P) low very high medium very high

- Virtual Memory -
buffers medium medium medium medium
cached low high medium very high
shared low medium low non
slab low medium medium non
rss (P) low medium low non
vms (P) low low low non
shared (P) medium low low non
text (P) medium 0 low non
data (P) high low low non

- Disk -
read time medium very high medium very high
write time medium very high low very high
read merged count high very high high very high
write merged count high very high medium very high
busy time low very high medium very high
read count (P) high medium low non
write count (P) low very high low very high
read bytes (P) high very high low very high
write bytes (P) low very high low very high

continuing on next page
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metric distance inner STD outer STD intermingling
read chars (P) high medium low non
write chars (P) low very high low very high

- Net -
bytes recv high medium low non
packets recv high medium low non

finished

Table 33: Shows Wikipedia versus CH-benCHmark. The table shows: (1) The
mean distance between the workloads. (2) The point by point distance STD. (3)
The iteration based STD. (4) How much the workloads intermingle i.e intersects.
What each category, like high and low, represents and how they were generated is
described in section 3.3.2.

metric distance inner STD outer STD intermingling

- CPU -
cpu percent medium medium low non
1min high medium low non
load 5min high medium low non
15min high medium low non
current low very high medium high
idle high very high medium high
softirq medium very high medium high
steal low very high low high
user (P) medium medium low non
system (P) low high low high
iowait (P) high very high medium high
interrupts high high low high
soft interupts high high low high
voluntary (P) low very high low high
involuntary (P) high medium low high
num fds (P) low high medium high

- Virtual Memory -
buffers high medium medium non
cached high low low non
shared low very high very high high
slab high low medium non
rss (P) low very high low non
vms (P) low low low non
shared (P) low very high low high
text (P) low very high very high high
data (P) high low low non

- Disk -

continuing on next page
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metric distance inner STD outer STD intermingling
read time high very high medium high
write time medium very high low high
read merged count high very high high high
write merged count high very high medium high
busy time high medium low high
read count (P) high medium low high
write count (P) low very high medium high
read bytes (P) high very high low high
write bytes (P) low very high high high
read chars (P) high medium low high
write chars (P) low very high medium high

- Net -
bytes recv high medium low high
packets recv high high medium high

finished

Table 34: Shows individual TPC-C statistics. The table shows: (1) The mean
distance between TPC-C’s non-optimized data and optimized data. (2) The
categorized mean-STD of TPC’s non-optimized data. (3) If the non-optimization
is biased towards the starting iteration of the workload. (4) If the distance between
the non-optimized and the optimized data trend in any direction. (5) The variance
of the trend. What each category, like high and low represents, and how the
categories were generated is described in section 3.3.2.

metric distance STD bias growth growth
variance

- CPU -
cpu percent medium low low +medium low
1min high medium high +very

high
low

5min high low high +very
high

low

15min high low high +very
high

low

current low low low -low low
idle high low low +medium low
softirq high low low +medium low
steal low very high low -low low
user (P) high low low +medium low
system (P) low low low +low medium
iowait (P) low medium low +low high
interrupts low medium low -low low

continuing on next page
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metric distance STD bias growth growth
variance

soft interupts high low low +medium low
voluntary (P) high low low +medium low
involuntary (P) low low low +low medium
num fds (P) low low low +low low

- Virtual Memory -
buffers high low low +medium low
cached low low low +high low
shared high low low +high low
slab low low low +high low
rss (P) high low low -low low
vms (P) high low low +high low
shared (P) high low low -low low
text (P) low low low -low low
data (P) low low low +low medium

- Disk -
read time high medium low -low low
write time high medium low +medium low
read merged count high very high low +very

high
medium

write merged count high high low -low low
busy time low low low +high medium
read count (P) high low low +low medium
write count (P) medium low low +low medium
read bytes (P) high low low +low medium
write bytes (P) low low low +medium low
read chars (P) high low low +low medium
write chars (P) medium low low +medium low

- Net -
bytes recv high low low +medium low
packets recv high low low +medium low

finished
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Table 35: Shows individual Wikipedia statistics. The table shows: (1) The
mean distance between Wikipedia’s non-optimized data and optimized data. (2)
The categorized mean-STD of Wikipedia’s non-optimized data. (3) If the non-
optimization is biased towards the starting iteration of the workload. (4) If
the distance between the non-optimized and the optimized data trend in any
direction. (5) The variance of the trend. What each category, like high and low
represents, and how the categories were generated is described in section 3.3.2.

metric distance STD bias growth growth
variance

- CPU -
1min high high low +low very high
5min high high medium +low very high
15min high medium high +low medium
idle high very high low -low low
softirq medium medium low -low low
steal high very high low +low very high
user (P) low low low +low very high
system (P) high low low -low low
iowait (P) high very high low -low low
interrupts high high low -low low
soft interupts low medium low +low very high
voluntary (P) low medium low +low very high
involuntary (P) high medium low -low low
num fds (P) low low high -low low
cpu frequency low low low +low medium
cpu percent medium low low -low low

- Virtual Memory -
buffers high medium low -low low
cached medium medium low -low low
shared high low low -low low
slab low low low -low low
rss (P) high low low -low low
vms (P) high low low -low low
shared (P) high low low -low low
text (P) low low low -low low
data (P) low low low -low low

- Disk -
read time medium very high low -low low
write time high very high low -low low
read merged count low very high low -low low
write merged count high very high low -low low
busy time low high low -low low
read count (P) high low low -low low

continuing on next page
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metric distance STD bias growth growth
variance

write count (P) high medium low -low low
read bytes (P) high very high low -low low
write bytes (P) high high low -low low
read chars (P) high low low -low low
write chars (P) high medium low -low low

- Net -
bytes recv low medium low -low low
packets recv low medium low -low low

finished

Table 36: Shows individual CH-benCHmark statistics. The table shows: (1)
The mean distance between CH-benCHmark’s non-optimized data and optimized
data. (2) The categorized mean-STD of CH-benCHmark’s non-optimized data. (3)
If the non-optimization is biased towards the starting iteration of the workload. (4)
If the distance between the non-optimized and the optimized data trend in any
direction. (5) The variance of the trend. What each category, like high and low
represents, and how the categories were generated is described in section 3.3.2.

metric distance STD bias growth growth
variance

- CPU -
1min low low low -low low
5min low low low -low low
15min low low low +medium high
idle low medium low +medium low
softirq low medium low +low medium
steal low very high low +low medium
user (P) low low low -low low
system (P) low low low -low low
iowait (P) high high low -low low
interrupts low medium low +low high
soft interupts low low low +low low
voluntary (P) low low low +medium medium
involuntary (P) low low low +low medium
num fds (P) low low medium -low low
cpu frequency low low low +low medium
cpu percent low low low -low low

- Virtual Memory -
buffers low medium medium +low medium
cached low low low +high medium
shared high low low +medium medium

continuing on next page
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metric distance STD bias growth growth
variance

slab low low low +medium medium
rss (P) high low low +low medium
vms (P) high low medium +medium medium
shared (P) high low low +low medium
text (P) low low low -low low
data (P) low low high -low low

- Disk -
read time medium medium low -low low
write time high medium low +low medium
read merged count high very high low +low very high
write merged count low very high low +low very high
busy time low low low +medium medium
read count (P) low low low -low low
write count (P) high low low +low medium
read bytes (P) low medium low -low low
write bytes (P) medium low low +low medium
read chars (P) low low low -low low
write chars (P) high low low +low medium

- Net -
bytes recv low low low +low low
packets recv low low low +low low

finished
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Table 37: This table include the metrics not represented in any other tables
except the collections table 30. The table displays the metric name and information
why its not included in any other table.

metric info
- CPU -

nice one single spike in TPC-C and Wiki
guest always zero

guest nice always zero
irq always zero

- Virtual Memory -
lib (P) always zero

dirty (P) always zero
memory percent (P) includes the exact same info as rss (P)

- Swap Memory -
used always zero
free always zero

percent always zero
sin always zero
sout always zero

- Disk -
errin always zero
errout always zero
dropin always zero

6.6 Hardware Detection

Table 38: Shows a general table of the metrics categorization for Euclidean,
CUSUM-chart and MI workload detection on the negative test for non-optimized
data, see a more detailed description of the categories in section 3.5.2. In the
test, the hyperparametrs were set as: (1) 5.018 for the Euclidean distance hyper-
parameter. (2) 6.83 and 0.95 for distance and the percentage of allowed outliers
for CUSUM-chart. (3) for MI the difference hyperparameter was set as 0. The
columns in the table show how the metrics performed for each workload when
doing self-detection.

metric tpcc wikipedia CH-benCHmark
- CPU -

current good good good
cpu percent good good good

involuntary (P) good good good
voluntary (P) good good good

idle good good good
interrupts good good good

continuing on next page
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metric tpcc wikipedia CH-benCHmark
iowait (P) good good good

irq good good good
soft interupts good good good

softirq good good good
steal good good good

- Virtual Memory -
buffers good good good

busy time good good good
cached good good good
rss (P) good good good
shared good good good
slab good good good

system (P) good good good
text (P) good good good
user (P) good good good

- Disk -
read bytes (P) good good good
read chars (P) good good good
read count (P) good good good

read merged count good good good
read time good good good

write bytes (P) good good good
write chars (P) good good good
write count (P) good good good

write merged count good good good
write time good good good

- Net -
bytes recv good good good
packets recv good good good

finished
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Table 39: Shows a general table of the metrics categorization for Euclidean,
CUSUM-chart and MI workload detection on the positive test for non-optimized
data, see a more detailed description of the categories in section 3.5.2. In the
test, the hyperparametrs were set as: (1) 5.018 for the Euclidean distance hyper-
parameter. (2) 6.83 and 0.95 for distance and the percentage of allowed outliers
for CUSUM-chart. (3) for MI the difference hyperparameter was set as 0. The
columns in the table show how the metrics performed for each workload when
doing self-detection.

metric tpcc vs
wikipedia

tpcc vs CH-
benCHmark

wikipedia vs
CH-

benCHmark
- CPU -

softirq bad bad bad
soft interupts bad bad bad
steal bad bad bad
current bad bad bad
voluntary (P) bad bad bad

- Virtual Memory -
system (P) bad bad bad

- Disk -
write bytes (P) bad bad bad
write chars (P) bad bad bad
write count (P) bad bad bad
write merged count bad bad bad
write time bad bad bad

- Net -
packets recv bad bad bad
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Table 40: Shows the metrics categorization for Euclidean workload detection on
the positive test for non-optimized data, see a more detailed description of the
categories in section 3.5.2. In the test, the Euclidean distance hyperparameter
was set to 5.018. The columns in the table show how the metrics performed for
each workload versus another workload during the detection.

metric tpcc vs
wikipedia

tpcc vs CH-
benCHmark

wikipedia vs
CH-

benCHmark
- CPU -

cpu percent bad bad bad
involuntary (P) +low bad bad
idle +high +high bad
interrupts -high bad bad
iowait (P) -mid bad bad
1min bad -high -low
5min bad -mid -low
15min bad bad -high
num fds (P) bad bad bad

- Virtual Memory -
data (P) bad +high +high
buffers bad bad -high
busy time +low bad -low
rss (P) bad bad bad
shared bad bad bad
shared (P) bad bad bad
slab -mid bad bad
user (P) bad bad bad
text (P) bad bad bad
vms (P) bad bad bad
cached +high bad +high

- Disk -
read bytes (P) -mid bad bad
read chars (P) bad +high bad
read count (P) bad +high bad
read merged count bad bad bad
read time bad bad bad

- Net -
bytes recv bad bad -high
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Table 41: Shows the metrics categorization for CUSUM-chart workload detection
on the positive test for non-optimized data, see a more detailed description of the
categories in section 3.5.2. In the test, the hyperparameters, i.e the distance and
the allowed outliers were set to 6.83 and 0.95. The columns in the table show
how the metrics performed for each workload versus another workload during the
detection.

metric tpcc vs
wikipedia

tpcc vs CH-
benCHmark

wikipedia vs
CH-

benCHmark
- CPU -

cpu percent bad -high bad
involuntary (P) bad bad bad
idle bad bad bad
interrupts bad bad bad
iowait (P) bad bad bad
num fds (P) +high -low -low

- Virtual Memory -
data (P) -low +high +high
buffers bad bad -high
busy time +high bad bad
cached +high bad +high
rss (P) +high +high -high
shared +high bad -mid
shared (P) +high +high bad
slab +low bad -low
text (P) +high +high bad
user (P) bad +low bad
vms (P) +high +high +high

- Disk -
read bytes (P) bad bad -low
read chars (P) -low +high bad
read count (P) -low +high bad
read merged count bad bad bad
read time bad bad -low

- Net -
bytes recv bad bad bad
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Table 42: Shows the pruned bad metrics, and their categorization when using
MI for workload detection on the negative test when setting the hyperparameter
”difference” to 0.5. See a more detailed description of the categories in section
3.5.2. The columns in the table show how the metrics performed for each workload
when doing self-detection.

metric tpcc wikipedia CH-
benCHmark

- CPU -
current bad bad bad

cpu percent bad bad bad
involuntary (P) bad bad bad
voluntary (P) bad bad bad
soft interupts bad bad bad

softirq bad bad bad
steal bad bad bad
idle bad bad bad

interrupts bad bad bad
iowait (P) bad bad bad

1min bad bad bad
5min -high good good
15min -low good good

num fds (P) bad good good
- Virtual Memory -

buffers good good -low
busy time bad bad bad
cached bad good -high
slab bad good good

system (P) bad bad bad
text (P) bad bad bad
user (P) bad bad bad

- Disk -
read bytes (P) bad bad good
read chars (P) bad bad bad
read count (P) bad bad bad

read merged count bad bad bad
read time bad bad -high

write bytes (P) bad bad bad
write chars (P) bad bad bad
write count (P) bad bad -high

write merged count bad bad bad
write time bad bad bad

- Net -
bytes recv bad bad bad
packets recv bad bad bad
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Table 43: Shows the non-pruned metrics categorization for Euclidean workload
detection on the positive test for optimized data, see a more detailed description
of the categories in section 3.5.2. In the test, the hyperparameters, i.e the distance
was set to 5.018. The columns in the table show how the metrics performed for
each workload versus another workload during the detection.

metric tpcc vs
wikipedia

tpcc vs CH-
benCHmark

wikipedia vs
CH-

benCHmark
- CPU -

cpu percent -high bad -mid
current bad bad bad
steal bad bad bad
involuntary (P) bad bad +low
voluntary (P) bad bad bad
idle bad bad -mid
interrupts bad bad -low
iowait (P) bad bad -low
busy time +high bad -mid
user (P) bad bad -high
soft interupts -mid -low bad
softirq -mid -low bad
system (P) -low bad -mid

- Virtual Memory -
text (P) +high +high bad

- Disk -
read merged count bad bad bad
read time -low bad +high
write bytes (P) -high bad -high
write merged count bad -low -low
write time bad bad bad

- Net -
packets recv -low -low bad
bytes recv bad -low bad
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Table 44: Shows the non-pruned metrics categorization for CUSUM-chart work-
load detection on the positive test for optimized data, see a more detailed descrip-
tion of the categories in section 3.5.2. In the test, the hyperparameters, i.e the
distance and the allowed outliers were set to 6.83 and 0.95. The columns in the
table show how the metrics performed for each workload versus another workload
during the detection.

metric tpcc vs
wikipedia

tpcc vs CH-
benCHmark

wikipedia vs
CH-

benCHmark
- CPU -

cpu percent bad bad -mid
current bad bad bad
15min bad bad bad
involuntary (P) -mid bad +high
iowait (P) +low -high bad
voluntary (P) -high bad bad
soft interupts -low +low bad
softirq +low -low bad
system (P) +low bad +high
interrupts -mid bad -high

- Virtual Memory -
data (P) bad +high +high
busy time -mid bad -mid
cached -mid bad -high
slab bad bad bad
text (P) bad bad bad
user (P) bad bad bad

- Disk -
read bytes (P) +high bad +mid
read merged count bad bad bad
read time +mid bad +low
write bytes (P) +low bad -mid
write chars (P) -low bad -high
write merged count bad bad bad

- Net -
bytes recv bad +low bad
packets recv -low +low bad

6.7 Code Listings

import os

import copy

import time
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import psutil

import numpy as NP

from FileHandling import system_file_handler as file_handler

from FileHandling.CSVHandling import CSV_handler

class Measurer:

SAVE_SUFFIXES = [

"cpu_data.csv", "memory_data.csv", "swap_memory.csv",

"disk_data.csv",↪→

"net_data.csv"

]

CPU_HEADER = [

"load_1min", "load_5min", "load_15min", "nice", "idle",

"irq",↪→

"softirq", "steal", "guest", "guest_nice", "user(post)",

"system(post)",↪→

"iowait(post)", "interrupts", "soft_interupts",

"ctx_switches_vol(post)", "ctx_switches_invol(post)",

"num_fds(post)",↪→

"cpu_frequency", "cpu_percent", "time(s)"

]

MEMORY_HEADER = [

"buffers", "cached", "shared", "slab", "rss(post)",

"vms(post)",↪→

"shared(post)", "text(post)", "lib(post)", "data(post)",

"dirty(post)",↪→

"mem_percent(post)", "time(s)"

]

SWAP_HEADER = [

"swap_used", "swap_free", "swap_percent", "sin", "sout",

"time(s)"↪→

]

DISK_HEADER = [

"read_time", "write_time", "read_merged_count",

"write_merged_count",↪→

"busy_time", "read_count(post)", "write_count(post)",

"read_bytes(post)", "write_bytes(post)",

"read_chars(post)",↪→

"write_chars(post)", "time(s)"

]

NET_HEADER = [

"bytes_sent", "bytes_recv", "packets_sent",

"packets_recv", "errin",↪→

"errout", "dropin", "dropout", "time(s)"
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]

HEADERS = [CPU_HEADER, MEMORY_HEADER, SWAP_HEADER,

DISK_HEADER, NET_HEADER]↪→

POSTSQL_RESTORE_METRICS = [

"num_ctx_switches", "cpu_times", "io_counters"

]

POSTSQL_METRICS = [

"num_ctx_switches", "memory_info", "num_fds",

"cpu_percent",↪→

"cpu_times", "io_counters", "memory_percent"

]

def __init__(

self, config_handler, utils, semaphore_measure,

semaphore_storage,↪→

run_storage, stop_event, blocking_event,

workload_switch_event,↪→

discard_event

):

self.semaphore_measure = semaphore_measure

self.semaphore_storage = semaphore_storage

self.run_storage = run_storage

self.stop_event = stop_event

self.blocking_event = blocking_event

self.workload_switch_event = workload_switch_event

self.discard_event = discard_event

self.nbr_cpus = psutil.cpu_count()

measure_info = config_handler.measure_info()

self.nbr_benchmarks = measure_info["nbr_benchmarks"]

self.workload_names =

measure_info["oltpbench_benchmarks"]↪→

self.save_folder = measure_info["save_folder"]

self.sleep_time = measure_info["sleep_time"]

self.utils = utils

self.workload_idx = -1

self.iterations_per_workload = [0] * self.nbr_benchmarks

try:

os.mkdir(self.save_folder, mode = 777)

except FileExistsError:
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print(

"\n Save folder already exists: {}, continueing...

\n"↪→

.format(self.save_folder)

)

def take_measurment(self):

iteration_data = None

while True:

if self.should_stop(iteration_data): break

with self.semaphore_storage:

start_next_iteration, next_workload_idx =

self.run_storage↪→

self.run_storage[0 : 2] = [False, -1]

if start_next_iteration:

if iteration_data:

self.write_to_files(iteration_data)

iteration_data = [[], [], [], [], []]

self.workload_idx = next_workload_idx

self.iterations_per_workload[self.workload_idx]

+= 1↪→

time_taken_per_iteration = [0] *

self.nbr_benchmarks↪→

###Order: do not want clear operations counted

towards cpu↪→

self.clear_swap_n_cache()

self.workload_switch_event.set()

self.setup_postgreSQL_measurement()

start_time_next_measurement = time.perf_counter()

iteration_dependent_metrics =

self.initial_metrics()↪→

measurement_dependent_metrics =

self.collect_metric_start_points()↪→

sleept_time = time.perf_counter() -

start_time_next_measurement↪→
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sleep_left = max(self.sleep_time - sleept_time, 0)

time.sleep(sleep_left)

temp = time.perf_counter()

loop_time = temp - start_time_next_measurement

start_time_next_measurement = temp

next_measurement = self.collect_metrics(

measurement_dependent_metrics,

iteration_dependent_metrics↪→

)

measurement_dependent_metrics =

self.collect_metric_start_points()↪→

if self.handle_stop(iteration_data): break

if self.not_blocked():

time_taken_per_iteration[self.workload_idx] +=

loop_time↪→

measurment_duration =

time_taken_per_iteration[self.workload_idx]↪→

timestamped_data = self.append_timestamp(

next_measurement, measurment_duration

)

for idx, data_item in enumerate(iteration_data):

data_item.append(timestamped_data[idx])

self.semaphore_measure.release()

### Give possibility for other thread to grab

semaphore↪→

time.sleep(0.5)

self.semaphore_measure.release()

def clear_swap_n_cache(self):

self.utils.clear_cache()

self.utils.clear_swap()

def initial_metrics(self):

swap_memory_all = list(psutil.swap_memory())

swap_iteration_dependent = swap_memory_all[1 : -2]

return {"swap_iteration" : swap_iteration_dependent}
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def setup_postgreSQL_measurement(self):

self.postgre_processes = []

setup_points = 3

found_post_processes = {}

processing_time = 0

for idx in range(0, setup_points):

sleep_left = max(0, self.sleep_time -

processing_time)↪→

time.sleep(sleep_left)

start_time = time.perf_counter()

if idx >= setup_points - 1:

for process in psutil.process_iter():

try:

if process.name() == "postgres":

hash_id = hash(process)

if hash_id in found_post_processes:

found_post_processes[hash_id][0]

+= 1↪→

else:

found_post_processes[hash_id] =

[1, process]↪→

except psutil.Error as e:

print(f"An unexpected error occured:

{e}")↪→

try:

del found_post_processes[hash_id]

except KeyError as ke:

print(

"tried to remove key which was

dead"↪→

+ ", but not in dict"

, ke

)

processing_time = time.perf_counter() - start_time

for hash_id, value_list in found_post_processes.items():

if value_list[0] == 1:

process = value_list[1]

try:
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children = process.children(recursive=True)

is_not_parent = True

for child in children:

try:

if hash(child) in

found_post_processes:↪→

is_not_parent = False

break;

except psutil.Error as e:

print(f"An unexpected error occured:

{e}")↪→

except psutil.Error as e:

print(f"An unexpected error occured: {e}")

is_not_parent = False

if is_not_parent:

self.postgre_processes.append(process)

def collect_metric_start_points_postgresql(self):

self.previous_metrics_post = []

current_idx = 0

for process in copy.copy(self.postgre_processes):

try:

self.previous_metrics_post.append(

process

.as_dict(attrs =

self.POSTSQL_RESTORE_METRICS)↪→

)

current_idx += 1

except (psutil.NoSuchProcess, psutil.ZombieProcess)

as e:↪→

self.postgre_processes.pop(current_idx)

print(

f"The psutil process with pid {e.pid} was not

reachable"↪→

+ " removing it"

)

except psutil.Error as e:

print(f"An unexpected error occured: {e}")
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def collect_metric_start_points(self):

self.collect_metric_start_points_postgresql()

cpu_times = list(psutil.cpu_times()[1 : ])

cpu_times.pop(1)

cpu_times.pop(2)

cpu_stats = list(psutil.cpu_stats()[1 : 3])

swap_memory_all = psutil.swap_memory()

swap_reset = [swap_memory_all.sin, swap_memory_all.sout]

disk_data = psutil.disk_io_counters()[4 :]

net_data = psutil.net_io_counters()

###Trash value, used for initing psutil cpu measurment

psutil.cpu_percent()

return {

"cpu_times" : cpu_times, "cpu_stats" : cpu_stats,

"swap_reset" : swap_reset, "disk_data" : disk_data,

"net_data" : net_data

}

def dict_subtracter(self, source, target):

#print("subbing")

return self.dict_handler(source, target, NP.subtract)

def dict_adder(self, source, target):

#print("adding")

return self.dict_handler(source, target, NP.add)

def dict_handler(self, source, target, func):

new_dict = {}

for key in source:

if key in target:

new_dict[key] = func(source[key], target[key])

else:

new_dict[key] = source[key]

return new_dict

def collect_metrics_postgres(self):

first = True
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for idx, process in enumerate(self.postgre_processes):

try:

metrics = process.as_dict(attrs =

self.POSTSQL_METRICS)↪→

prev_metrics = self.previous_metrics_post[idx]

subtracted_dict = self.dict_subtracter(

metrics, prev_metrics

)

if first:

first = False

collected_metrics = subtracted_dict

else:

collected_metrics = (

self.dict_adder(

collected_metrics, subtracted_dict

)

)

except (psutil.NoSuchProcess, psutil.ZombieProcess)

as e:↪→

print(

f"The psutil process with pid {e.pid} was not

reachable"↪→

)

except psutil.Error as e:

print(f"An unexpected error occured: {e}")

return collected_metrics

def collect_metrics(self, last_measurement,

initial_measurement):↪→

postgres_metrics = self.collect_metrics_postgres()

cpu_load_avg_np = (NP.array(psutil.getloadavg()) /

self.nbr_cpus) * 100↪→

cpu_times_current = list(psutil.cpu_times()[1 : ])

cpu_times_current.pop(1)

cpu_times_current.pop(2)

cpu_times = NP.subtract(

cpu_times_current, last_measurement["cpu_times"]

).tolist()

post_cpu_times = postgres_metrics["cpu_times"]
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cpu_times.extend(post_cpu_times)

cpu_stats = NP.subtract(

psutil.cpu_stats()[1 : 3],

last_measurement["cpu_stats"]↪→

).tolist()

cpu_stats.extend(postgres_metrics["num_ctx_switches"])

cpu_stats.append(postgres_metrics["num_fds"])

cpu_freq = psutil.cpu_freq().current

cpu_percentage = postgres_metrics["cpu_percent"]

cpu_data = list(cpu_load_avg_np)

cpu_data.extend(cpu_times)

cpu_data.extend(cpu_stats)

cpu_data.append(cpu_freq)

cpu_data.append(cpu_percentage)

memory_data = list(psutil.virtual_memory()[7 : ])

memory_data.extend(postgres_metrics["memory_info"])

memory_data.append(postgres_metrics["memory_percent"])

swap_memory_all = list(psutil.swap_memory())

swap_iteration_dependent = NP.subtract(

swap_memory_all[1 : -2],

initial_measurement["swap_iteration"]↪→

)

swap_reset = NP.subtract(swap_memory_all[-2 : ],

last_measurement["swap_reset"])↪→

swap_memory = list(swap_iteration_dependent)

swap_memory.extend(swap_reset)

disk_data = NP.subtract(

psutil.disk_io_counters()[4 :],

last_measurement["disk_data"]↪→

).tolist()

disk_data.extend(postgres_metrics["io_counters"])

net_data = NP.subtract(

psutil.net_io_counters(),

last_measurement["net_data"]↪→

).tolist()
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computer_data = [cpu_data, memory_data, swap_memory,

disk_data, net_data]↪→

return computer_data

def not_blocked(self):

return not self.blocking_event.is_set()

def should_stop(self, iteration_data):

if not self.semaphore_measure.acquire(blocking = False):

while(not self.semaphore_measure.acquire(timeout =

self.sleep_time)):↪→

if self.handle_stop(iteration_data):

return True

if self.handle_stop(iteration_data):

return True

else:

return False

def handle_stop(self, iteration_data):

if self.stop_event.is_set():

self.write_to_files(iteration_data)

return True

else:

return False

def generate_save_paths(self, workload_idx, iteration_idx):

workload_string = self.workload_names[workload_idx]

iteration_string = "iteration_" + str(iteration_idx)

path_objects_dir = [self.save_folder, workload_string,

iteration_string]↪→

dir_path = "/".join(path_objects_dir)

save_paths = []

for save_suffix in self.SAVE_SUFFIXES:

next_save_path = dir_path + "/" + save_suffix

save_paths.append(next_save_path)

return dir_path, save_paths

def genereate_CSV_files(self, save_paths):

for idx, save_path in enumerate(save_paths):
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next_header = self.HEADERS[idx]

CSV_handler.create_file(save_path, next_header)

def append_timestamp(self, measure_data,

measurment_duration):↪→

data_with_time = []

for data_item in measure_data:

data_item = list(data_item)

data_item.append(measurment_duration)

data_with_time.append(data_item)

return data_with_time

def write_to_files(self, measure_data):

if self.discard_event.is_set():

self.discard_event.clear()

self.iterations_per_workload[self.workload_idx] -= 1

return

save_dir, save_paths = self.generate_save_paths(

self.workload_idx,

self.iterations_per_workload[self.workload_idx]↪→

)

file_handler.make_dir(save_dir)

self.genereate_CSV_files(save_paths)

for idx, data_item in enumerate(measure_data):

next_save_path = save_paths[idx]

CSV_handler.append(next_save_path, data_item)

Listing 1: The hardware utilization statistics collections module

6.8 Author Contribution

Table 45: The table shows author contributions. X means that the author was
participatory, H means that a supporting role was taken, O means that no help
was done and C means implementation of code but no text writing.

section Jonas Viktor
Thesis Formatting H X

continuing on next page
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section Jonas Viktor
Correction reading X H

Appendix X X
Abstract X H
Preface X X

Introduction
start X O

Research Questions X X
Background & Related Work
Background X O

Terms X X
Regarding Objectives X O
Bayesian Optimization O X
Expected Improvement O X

Random Forest X O
Workload Detection X O

Clustering X O
Classification X O

Anomaly Detection O X
Tools X X

PostgreSQL X X
OLTP-Bench X X
HyperMapper X X

DBtune X X
rsync X O

Data Collection Tools X X
Amazon Web Services H X

Related Work X O
Methodology

Hardware X X
DBtune Implementation X X

Benchmarks X X
Query Collection X O

Hardware Collection O X
Query Statistics Processing X O

Hardware Statistics Processing O X
Multi-Workload Testing X H
Workload Detection X O
Detection Methods O X

Performance Measurement O X
Implementation for queries X O

Results
Experimental Settings X X
Optimal Configurations X O

Multi-Workload Optimization X C
continuing on next page
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section Jonas Viktor
Hardware Statistics O X

Query-Based Statistics X O
Discussion

Regarding credibility of results H X
Optimal Configurations X O

Multi-workload Optimization X O
Query-based Statistics X O
Hardware Statistics O X

Conclusions & Future Work
Conclusions X O
Future Work X X

finished
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Making servers faster

To reduce costs and energy-demands for database-servers, it’s important
to ensure each individual server performs as well as possible. This thesis
examines automatic server optimization in regards to the database’s current
workload.

With a world becoming more and more digital, we also become more dependant on
databases, their hosting systems known as Database Management Systems(DBMS), and
the physical hardware of the servers themselves. These servers require plenty of energy for
execution and cooling, large warehouses for storage of these and all the metals required
to build them. For these reasons, it is in the publics interest that servers become as fast
as possible so that all these demands are lessened. By analyzing the DBMS current work-
load it is possible to adjust the server configuration in such a way that the performance
greatly increases. But what if the current workload was to shift into another workload?
In that case, it is possible that the current server configuration isn’t perfect. Therefore,
if it is possible to find out when the workload shifts in this manner, this optimization can
be restarted to ensure the fastest possible server. In our thesis, it is this optimization
and associated workload-shift classification that has been the focus. We design a system
capable of identifying and optimizing for multiple workload. As for workload classifica-
tion, two different methods are investigated. The first is through data associated with
hardware-metrics, such as processor-usage. For the second method, data is gathered via
a connection directly to the DBMS and investigating what tasks, known as queries, the
server is executing. The results found that the multi-workload system designed was a
success, and could successfully restart optimization when new workloads are detected. It
was found that queries could perfectly disintguish between the workloads chosen. The
same was found to be true for hardware-metrics.
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