
MASTER’S THESIS 2022

Identification of relevant error
descriptions in build logs using
machine learning
Lykke Axlin, Klara Broman

ISSN 1650-2884
LU-CS-EX: 2022-52

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-52

Identification of relevant error descriptions
in build logs using machine learning

Identifiering av relevanta felbeskrivningar i
byggloggar med hjälp av maskininlärning

Lykke Axlin, Klara Broman

Identification of relevant error descriptions
in build logs using machine learning

Lykke Axlin
ly6701ax-s@student.lu.se

Klara Broman
pol15kbr@student.lu.se

September 4, 2022

Master’s thesis work carried out at Axis Communications AB.

Supervisors: Martin Höst, martin.host@cs.lth.se
Marcus Klang, marcus.klang@cs.lth.se
Gustaf Lundh, gustaf.lundh@axis.com

Ola Söder, ola.soder@axis.com

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:ly6701ax-s@student.lu.se
mailto:pol15kbr@student.lu.se
mailto:martin.host@cs.lth.se
mailto:marcus.klang@cs.lth.se
mailto:gustaf.lundh@axis.com
mailto:ola.soder@axis.com
mailto:elin_anna.topp@cs.lth.se

Abstract

Jenkins is the tool used at Axis Communications AB to facilitate the Continuous
Integration (CI) pipeline. CI is the practice of frequently integrating code into a
shared repository. To help the engineers find the lines containing relevant error
descriptions in unstructured logs from failed Jenkins builds, a plugin called the
Build Failure Analyzer (BFA) is used. The BFA utilises manually crafted regular
expressions to scan the failed build logs, and rows that match a regular expres-
sion are highlighted. As new error descriptions arise in the build pipeline, new
handcrafted regular expressions need to be added, which is a time-consuming
process. Any error description that is not added to the BFA will not be caught
and therefore the engineer will likely fail to notice it. Therefore, this Master’s
thesis aims to investigate to what extent it is possible to use historical data from
the BFA to train an AI-model to perform text classification on build logs to de-
tect relevant error descriptions that are not currently found by the BFA. Further,
we intend to examine what requirements such a model needs to fulfill in order
to be useful at the case company. To answer this question, an interview with the
case company was conducted. In the interview, it emerged that the model is sup-
posed to be used as a complement to the BFA. In the cases where the BFA does
not find any error descriptions, the engineers can use the model’s findings for a
clue of where in the build log the relevant error description could be located.

To determine to what extent it is possible to train an AI-model to detect
new error descriptions, a support vector machine (SVM) and an XGBoost model
were trained on a dataset consisting of build logs annotated with historical data
from the BFA, and evaluated on a manually annotated dataset. The SVM model
achieved an average R-precision of 0.19, an F1-score of 0.60, and an MCC of 0.20.
The XGBoost model achieved an average R-precision of 0.26, an F1-score of 0.57,
and an MCC of 0.17. The results show that it is possible to detect new relevant er-
ror descriptions, although to achieve higher performance, further improvements
to the dataset or a more advanced machine learning model is suggested.

Keywords: regular expressions, Jenkins, Build Failure Analyzer, build logs, text classifi-
cation, support vector machines

2

Acknowledgements

We would like to thank our supervisors Martin Höst and Marcus Klang from Lund University
for valuable feedback and guidance throughout the thesis. We also want to thank Gustaf
Lundh and Ola Söder, our supervisors from Axis Communications AB, who have supported
us and instructed us during this study. In addition, a thank you to Anton Friberg at Axis
Communications AB, who also provided us with valuable input on our work.

3

4

Contents

1 Introduction 9
1.1 Research questions . 10
1.2 Method . 10
1.3 Contribution . 10
1.4 Workload distribution . 11

2 Background 13
2.1 Case company . 13
2.2 CI/CD pipeline . 13
2.3 Jenkins and Build Failure Analyzer . 14
2.4 Machine learning . 15

2.4.1 Supervised and unsupervised learning 15
2.4.2 Logistic regression . 16
2.4.3 Support vector machines (SVM) 16
2.4.4 Gradient boosting . 17
2.4.5 Neural networks and deep learning 17
2.4.6 Hyperparameter tuning . 17

2.5 Preprocessing . 18
2.5.1 Term frequency-inverse document frequency (TF-IDF) 18
2.5.2 Dimensionality reduction . 19
2.5.3 N-grams . 19
2.5.4 Data resampling . 19

2.6 Metrics . 20
2.6.1 Basic metrics . 20
2.6.2 Accuracy . 20
2.6.3 Precision . 21
2.6.4 Recall . 21
2.6.5 F1-score . 21
2.6.6 Matthews correlation coefficient (MCC) 21
2.6.7 Average R-precision . 21

5

CONTENTS

3 Related work 23
3.1 Build log annotation . 23
3.2 Model selection . 23
3.3 Anomaly detection and error classification 24
3.4 Log file classification pipeline . 24

4 Method 25
4.1 Overall approach . 25
4.2 Interview . 25
4.3 Data collection . 26

4.3.1 Jenkins build logs . 26
4.3.2 Collecting data . 27

4.4 Dataset creation . 27
4.4.1 Dataset structure . 27
4.4.2 Dataset statistics . 29

4.5 Preprocessing . 30
4.5.1 Data split and stratification . 31
4.5.2 Text vectorisation . 32
4.5.3 Over- and undersampling techniques 32
4.5.4 Dimensionality reduction . 33

4.6 Models . 33
4.7 Grid search and hyperparameter tuning . 34
4.8 Evaluation . 34

4.8.1 Row evaluation method . 34
4.8.2 First error evaluation method . 34

4.9 Visualisation of predictions . 35

5 Result 37
5.1 Interview . 37
5.2 First iteration . 38

5.2.1 Pipeline verification . 38
5.2.2 Random split . 38
5.2.3 Server stratification . 39
5.2.4 Regular expression stratification 39
5.2.5 False positive example . 39
5.2.6 Hyperparameter tuning . 40

5.3 Second iteration . 41
5.3.1 Different undersampling strategies 41

5.4 Third iteration . 41
5.4.1 Baseline model . 42
5.4.2 XGBoost . 42
5.4.3 Regular expression oversampling 43
5.4.4 Manual hyperparameter tuning . 43
5.4.5 Dimensionality reduction . 44
5.4.6 Unannotated relevant error descriptions 44
5.4.7 Evaluation on manually annotated dataset 44
5.4.8 Visualisation of predictions . 47

6

CONTENTS

6 Discussion 49
6.1 First iteration . 49

6.1.1 Dataset . 49
6.1.2 Undersampling . 49
6.1.3 Metrics . 50
6.1.4 Stratification strategies . 50
6.1.5 Hyperparameter tuning . 51

6.2 Second iteration . 51
6.2.1 Undersampling . 51
6.2.2 Evaluation method . 52

6.3 Third iteration . 52
6.3.1 Evaluation on first error dataset . 52
6.3.2 Evaluation on manually annotated dataset 52
6.3.3 Visualisation of predictions . 53

6.4 Data split . 54
6.5 Practical usage at the case company . 54
6.6 Threats to validity . 54

7 Conclusion and future work 57
7.1 Conclusion . 57
7.2 Future work . 58

7.2.1 Dataset . 58
7.2.2 Preprocessing . 58
7.2.3 ML-model . 59

References 61

Appendix A Interview with Axis Communications AB 67

7

CONTENTS

8

Chapter 1

Introduction

When new code is committed at Axis Communications AB, the code is run through their
build chain, which is a Continuous Integration/Continuous Deployment (CI/CD) pipeline, au-
tomated with open source CI/CD tool Jenkins. CI is the practice of frequently integrating
code, while CD is the process of delivering and deploying code to production [24]. In the CI
pipeline, code quality tests, unit tests et cetera are executed on a Jenkins server. By utilising
CI and integrating small code changes frequently, bugs and errors are easier to find since new
code is tested in smaller batches. When a build is run in Jenkins, log text with information
about each module is produced. If a Jenkins build fails, an open source Jenkins plugin called
the Build Failure Analyzer (BFA) [5] is triggered with the intention to find the rows in the
build log most relevant to the errors that caused the build failure. The BFA uses manually
crafted regular expressions and scans the build log to match any of them. A regular expression
is a sequence of characters that is used to describe a pattern to search in a text [21, p. 35].
If any pattern matches a row, the row that contains the relevant error description is high-
lighted in the build log. However, if no regular expression matches are found in the build
log, the engineers are left with no pointers on where in the build process the error occurred,
and need to manually scroll through the build log. In order to keep the BFA updated, the
engineers need to manually craft new regular expressions for each specific error, which is a
time-consuming process.

Text classification is a task that belongs to the Natural Language Processing (NLP) field, i.e.
the practice of analysing and categorising human language by combining knowledge from
linguistics and computer science. To classify text implies to assign one or more classes to a
text of any size, from a few words to an entire book. One classic example of text classification
is spam detection, i.e. classifying e-mails as either spam or not spam. Text classification can be
used on each line of a build log in order to find whether or not the line contains a relevant
error description [21, p. 165].

This Master’s thesis aims to investigate to what extent it is possible to use historical data
from the BFA to train an AI-model to perform text classification on build logs to detect
relevant error descriptions. Further, we intend to examine what requirements such a model

9

1. Introduction

needs to fulfill in order to be useful at Axis Communications. We need to know how the
solution will be used at the case company so that it can be integrated into their CI pipeline
in the future.

1.1 Research questions
The purpose of this study is to provide answers to the following questions:

• To what extent is it possible to use historical data from the Build Failure Analyzer to
train a machine learning model that can detect new relevant error descriptions in build
logs?

• What requirements does the model need to fulfill in order to be useful at the case
company?

1.2 Method
The study was performed according to the steps illustrated in Figure 1.1. To answer the first
research question, data collection and machine learning experiments in three iterations were
carried out. Each iteration consists of a data creation step, a preprocessing step, a training
step, and finally an evaluation step. The iterations are explained in detail in Section 4.1. An
interview with a Senior Engineer at the case company was conducted in order to answer the
second research question.

Figure 1.1: Overview of the research method

1.3 Contribution
In this Master’s thesis we investigate and evaluate to what extent it is possible to use historical
data from the BFA to train a machine learning model to detect new relevant error descrip-
tions in build logs. The purpose of this is to evaluate if it is possible to use machine learning
for this task. Further, we provide the case company with statistical information about the
data, and give suggestions on how to better utilize it in the future.

Further, we investigate and give suggestions on how the model can be used in the build
chain, in order for the developers at the case company to minimize the time spent on navi-
gating the build logs.

10

1.4 Workload distribution

1.4 Workload distribution
The implementation of the experiments were done by both authors. Most parts of the report
have been written by both Lykke and Klara except for the following parts:

• Lykke: Method and results for the third iteration, created all the illustrations

• Klara: Method and results for the first and second iteration, Section 4.3 and 5.1 regard-
ing the interview

11

1. Introduction

12

Chapter 2

Background

This section covers the essential theory used in our project. It gives an overview of the CI/CD
pipeline and how it is implemented at the case company. Furthermore, the current method
of detecting errors in build logs at the company is described. Thereafter, the preprocessing
of log files is described, followed by an overview of machine learning and the models used.
Finally, the metrics used to evaluate our models are listed.

2.1 Case company
This study was carried out at Axis Communications AB. The company was founded in 1984 in
Sweden and has over 3800 employees in 50 different countries. Initially, their main product
was a print server, and in 1996 they launched the industry’s first network camera. Today,
they are a leading manufacturer of video surveillance systems [1].

This Master’s thesis was completed at a department called R&D Tools at Axis. Since the
R&D Tools department is responsible for the CI/CD pipeline, it is of great interest for them
to improve the process for finding relevant error descriptions in the Jenkins build logs.

2.2 CI/CD pipeline
Continuous Integration (CI) is the procedure in which contributions from different software
engineers are frequently integrated into a shared repository. This process is supported by a
high level of automation: building, running code formatting checks, and more importantly;
execution of unit and integration tests. By integrating as often as possible, preferably with
small code changes, the risk of merge conflicts and breaking builds is minimised. Introduced
bugs are easier to pinpoint and the problematic code can easier be lifted out of the code base,
i.e. reverted. By leveraging the fact that the code is kept in a release-ready-state, organisations
can ensure faster release rates [9].

13

2. Background

In Figure 2.1, an overview of the steps in the CI/CD pipeline is illustrated. The first step after
the code has been committed is called continuous integration. Here the code is built and run
through both unit and integration tests. The following step is called Continuous Delivery, i.e.
the practice of automatically preparing code changes for production. In the last step, called
Continuous Deployment, the code changes are automatically deployed to production [24].

Figure 2.1: Overview of the steps in the CI/CD pipeline

2.3 Jenkins and Build Failure Analyzer
Jenkins is an open source automation server that can be used to facilitate CI/CD pipelines
[12]. There are hundreds of plugins that can be used to configure Jenkins. An example of a
plugin is the Build Failure Analyzer (BFA), which is the open source tool currently used at the
case company to find relevant error descriptions in build logs [5].

If a build fails, the BFA is triggered and starts scanning the build log with the manu-
ally crafted regular expressions it has configured. If matching relevant error descriptions are
found, the corresponding lines are highlighted, as seen in Figure 2.2. This makes the debug-
ging easier for the engineer. If the file only contains error descriptions that are not configured
in the BFA, no lines are highlighted, so the engineer will have to manually go through the
unstructured logs of hundreds and sometimes even thousands of lines in search for the error
description. In order to keep the BFA efficient, regular expressions for new errors need to
be added continuously as new errors occur. Engineers need to set up the BFA by manually
adding each relevant error description they want the BFA to detect, and its corresponding
regular expression pattern.

An example of the metadata that is saved when the BFA finds relevant error descriptions
in a build log is presented in Figure 2.3. The indications-list contains all the pattern-
matchingString pairs found by the BFA, where the pattern value represents the regular
expression, and the matchingString value is its matching line in the build log. Only the
first match of each pattern is saved as a matchingString value in the indications-list,
even though a pattern might match multiple lines in a build log.

14

2.4 Machine learning

Figure 2.2: Highlighted relevant error description by the BFA in a
Jenkins build log

Figure 2.3: The JSON-object containing information about relevant
error descriptions found by the BFA

2.4 Machine learning
Machine learning is the process of using data and algorithms to teach computers the ability
to learn without being explicitly programmed to do so [13, Chapter 1]. In this section, the
machine learning models used in our study will be described.

2.4.1 Supervised and unsupervised learning
Supervised and unsupervised learning are two different ways to train machine learning models.
The main difference is that in supervised learning the model is trained on labeled dataset,
while in unsupervised learning the training data is unlabeled. The goal with supervised learn-
ing is to predict outcomes for new data. Supervised learning is often used for text classifica-
tion problems, such as identification of unwanted spam messages in e-mail or classification
of errors in log files. A support vector machine is an example of a model commonly used for
supervised learning problems [14, p. 19-21].

In unsupervised learning, the model decides what information is relevant. Unsupervised
learning is commonly used for grouping data, for example to detect anomalous behaviour
through identifying patterns that deviate from the known groups [14, p. 286].

15

2. Background

2.4.2 Logistic regression
Logistic regression is a supervised machine learning algorithm that can be used for binary
classification problems. The algorithm uses a logistic function:

f(x) =
1

1 + e−x ,where f(x) ∈ [0, 1] (2.1)

to calculate the probability of the input x belonging to either class 0 or 1.

Figure 2.4: The Logistic regression function

The logistic function has an S-shaped curve as seen in Figure 2.4, and for outputs from the
logistic function greater than 0.5 a class 0 is predicted, otherwise a class 1 is predicted [3,
p. 185].

2.4.3 Support vector machines (SVM)
The main principle of Support vector machines (SVM) is to separate data points in a multidi-
mensional space by creating a hyperplane between them, i.e. a flat boundary [14, p. 239-242].
In the simplest case of two dimensions, the hyperplane corresponds to a line that separates
classes of linearly separable data points. Starting from data annotated with class labels, the
SVM decides the position of the line by finding the maximum margin hyperplane between
points, i.e. the line that is midway between the two classes. This is equivalent to maximising
the distance between support vectors. Support vectors are the data points of each class that are
closest to the line, as shown in Figure 2.5. Calculating the maximum margin assures that the
datapoints will stay on the correct side of the hyperplane despite random noise [14, p. 241].

The SVM algorithm can be adjusted to perform both classification and prediction of
numerical values and text classification is one of the applications where it has proved to be
successful [14, p. 239-247].

16

2.4 Machine learning

Figure 2.5: Classification of data points with SVM in two dimen-
sions [14, p. 242]

2.4.4 Gradient boosting
Gradient Boosting is an ensemble learning model that combines multiple decision trees. A de-
cision tree is a tree structure algorithm where each node represents a decision and the leaf
nodes are the final class labels [14, p. 126], and an ensemble learning algorithm combines
multiple models to make a prediction [14, p. 359]. In our study the XGBoost [7] implementa-
tion of Gradient Boosting is used. XGBoost resamples the data to generate complementary
decision trees. The prediction of each tree is weighted based on its past performance so that
better performing models have more power over the final prediction [14, p. 366].

Some advantages of the XGBoost implementation are that it is fast compared to other
similar models, and scalable so that data with hundred millions of examples can be processed
on a desktop [7].

2.4.5 Neural networks and deep learning
An artificial neural network is a computational model that mimics the behaviour of neural
networks in the brain. It can be thought of as a directed graph where the nodes represent
neurons and the edges represent synapses between them [26, p. 228]. The nodes of the graph
are grouped in connected layers. In each layer the input from the previous layer is multiplied
with weights and sent to the next layer. Layers between the input and output layer of a
network are called hidden layers, and networks with multiple hidden layers are called deep
neural networks. Deep neural networks are better at modelling more complex problems than
traditional machine learning algorithms [14, p. 226-230].

2.4.6 Hyperparameter tuning
Hyperparameters are parameters that are not learnt by the estimator during training. They
are instead static and passed in as arguments to the estimator and are used to control the

17

2. Background

learning process. In contrast to hyperparameters, there are parameters that are learnt through
training, for example node weights where the value is derived during training [15].

For some machine learning problems the base models perform well, but for others, it
is necessary to find optimal values to hyperparameters to get good performance. Since it is
a time-consuming task to manually try out different sets of hyperparameters, it is usually
recommended to utilise search techniques to find the optimal set of parameters [14, p. 348].
However, hyperparameter tuning can be very computationally costly, and it is not guaranteed
that high performance will be achieved. The tuning process involves trying out all, or many,
different sets of parameters. Additionally, large and complex datasets can further affect the
tuning cost negatively [20].

2.5 Preprocessing
All the models used in this study require input in the form of numerical vectors. For example,
the SVM classifies data through separating the data points with a hyperplane, as described
in Section 2.4.3. Therefore, when using natural language processing the text in the corpora
needs to be transformed to numerical vectors before it can be used as input to the model [21,
p. 65]. In this section, we discuss the methods we used to transform and improve the data
before using it to train a model.

2.5.1 Term frequency-inverse document frequency (TF-
IDF)

An approach that is commonly used to vectorise the text is called term frequency-inverse doc-
ument frequency (TF-IDF). The idea is to give each word a weight based on how relevant it is
to a certain corpus relative to all the other documents in the corpora. In other words, words
that occur often in all of the documents are given low weights since they do not contribute to
the actual content of the document, this could for example be stopwords such as it, our and
have. On the other hand, if a certain word has a high frequency in a particular document, the
word is given a high weight since it is unique and relevant to that document [13, Chapter 6].

The TF-IDF of a document is calculated by multiplying the term frequency (tf) by the
inverse document frequency (idf). The tf is the number of occurrences of the word in a document
and the idf is a measurement of how unique the word is in the whole corpus. The formula is
given by:

tfidf(t,d,D) = tf(t,d) · idf(t,D) (2.2)

where t is the word, D is the corpus and d is a document in the corpus [28].
In Table 2.1, an example of a TF-IDF feature matrix generated from the build log lines

ERROR: Could not check out resource and ERROR: Failed trigger is presented.
The feature matrix consists of the features and their corresponding weights in the different
sentences. As seen in the table, the term ERROR occurs in both sentences but gets a different
weight due to the sentences having different number of words.

18

2.5 Preprocessing

Table 2.1: TF-IDF vector representation of two sentences from Jenk-
ins build logs

check could error failed not out resource trigger
1 0.43 0.43 0.30 0.00 0.43 0.43 0.43 0.00
2 0.00 0.00 0.45 0.63 0.00 0.00 0.00 0.63

2.5.2 Dimensionality reduction
Dimensionality reduction is a technique to downscale the dimension of the feature matrix
produced in the vectorisation step, in this study the TF-IDF vectoriser is used. This can be
useful since a large number of features can prolong the training process of a machine learning
model. Additionally, the data might contain non-relevant features that can cause a model to
overfit, i.e. miss the important pattern in the data and therefore not generalise well to new
cases [14, p.15]. When dimensionality reduction is added, only the most important features
of the feature matrix are kept [26, p. 278].

2.5.3 N-grams
When looking at the frequency of tokens in the corpus it can be useful to include the neigh-
bouring features to study the context in which the token appears in. Unigrams look at the
frequency of one single word at a time, bigrams look at the frequency of two adjacent words
and trigrams look at the frequency of triples and so on. A more general denotation is called
an n-gram where n number of words in a sequence are analysed [21, p. 135]. An example of a
sentence with unigrams, bigrams, and trigrams is presented in Table 2.2.

Table 2.2: Unigram, bigram, and trigram example

n Features
1 No, test, report, files, were, found
2 No test, test report, report files, files were, were found
3 No test report, test report files, report files were, files were found

2.5.4 Data resampling
A dataset is considered imbalanced if there is an uneven distribution between the classes
in the dataset. The problem with imbalanced data is that it can lead the model to only
predict the majority class as it tries to maximise classification accuracy [23]. For example,
let the minority class make up for one per cent of the whole dataset and let it represent
rows containing relevant error descriptions. Then the model can always predict that the row
does not contain any relevant error description, and achieve a high accuracy even though the
model is not useful for detecting relevant error descriptions [14, p. 312].

One way to handle imbalanced datasets is to undersample the majority classes. The most
naive approach is to use a technique called random undersampling which randomly deletes

19

2. Background

entries of the majority classes until the desired ratio between the classes is achieved. The
resampling is only applied on the training set and can be very effective depending on the
data, although there is a risk that important information is lost in the process [16].

2.6 Metrics
In this study, several different metrics were used to compare the performance of the models.
In this section, they are listed and described.

2.6.1 Basic metrics
In binary classification, true positive (TP) and true negative (TN) are used to denote when a
condition or characteristic has been correctly identified as positive or negative respectively.
In anomaly detection a TP could for example represent that the model correctly identified
an anomaly and a TN would then represent that the model correctly determined that the
document did not contain an anomaly, i.e. the document was ”normal”. In the same example,
a false positive (FP) represents that the model incorrectly classified the document as anoma-
lous, and a false negative (FN) that the model incorrectly classified an anomalous document
as normal [13, Chapter 1]. Combining these four variables into a matrix is called a confusion
matrix, which is illustrated in Figure 2.6 [21, p. 213].

Figure 2.6: Confusion matrix for two classes

2.6.2 Accuracy
Accuracy is a statistical metric used to determine the proportion of predictions the model
correctly classified:

Accuracy =
TP + TN

TP + TN + FP + FN
,where accuracy ∈ [0, 1] (2.3)

20

2.6 Metrics

2.6.3 Precision
Precision measures the proportion of the detected items that were relevant:

Precision =
TP

TP + FP
,where precision ∈ [0, 1] (2.4)

2.6.4 Recall
Recall measures the proportion of relevant items that were detected:

Recall =
TP

TP + FN
,where recall ∈ [0, 1] (2.5)

2.6.5 F1-score
The F1-score is the harmonic mean of precision and recall of a model and is often used to
compare different models to each other and is calculated as:

F1-score = 2 ·
precision · recall
precision + recall

,where F1-score ∈ [0, 1] (2.6)

2.6.6 Matthews correlation coefficient (MCC)
Another way to compare performance of different models is to use the Matthews Correlation
Coefficient (MCC) calculated by the following formula:

MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,where MCC ∈ [−1, 1] (2.7)

The closer to 1 the MCC score is, the more correct are the predictions. A value around 0
is as good as random predictions, and values close to -1 mean almost complete difference
between predictions and observations. The main difference between F1-score and MCC is
that MCC summarises all parts of the confusion matrix while F1-score leaves out the true
negatives. This makes MCC more informative than F1-score and more suitable when used
for evaluating binary classification on imbalanced data [8].

2.6.7 Average R-precision
The average R-precision is calculated by the following formula:

ARP =
1
n

∑
n

RPn (2.8)

where n is the number of topics, and RP is the R-precision value for a particular topic [2,
p. 195]. In our case, a topic corresponds to a log file. To calculate RP, the rows of each log
file are ranked by the probability that the model will predict the row as a relevant error
description. An example of this is given in Table 2.3 below.

21

2. Background

Table 2.3: Example of calculation of average R-precision in a log file

n Row number Probability Relevant
1 46 0.89 x
2 198 0.76 x
3 43 0.75
4 590 0.50 x
5 4 0.43
6 1000 0.23 x
7 456 0.10 x
8 90 0.08 x

In the example, eight rows from a log file are ranked. R represents the number of relevant
error descriptions, in this case R = 6, since the file contains six relevant error descriptions.
Four of them were ranked among the six most probable to be found by the model. This results
in an R-precision of 4

6 ≈ 0.67 for this log file. This metric differs from normal precision,
described in Section 2.6.3, since the R-precision only represents the precision of predictions
with probabilities above a certain threshold.

22

Chapter 3

Related work

Automatic analysis of logs using machine learning is a well-known research problem that has
been addressed in various insightful studies that propose different solutions to this problem.
In this section, we give a brief summary of the studies that have inspired our work. The logs
analysed in the different studies are both logs from different continuous integration tools,
and other types of logs, such as system logs.

3.1 Build log annotation
Brandt et al. [4] provide a collection of 800 manually annotated logs from Travis CI, which
is another tool used for CI, from 80 GitHub repositories including 29 main development
languages. In the dataset described in the paper, each build is represented by a chunk, i.e. the
lines from the build log that contain the information about why the build failed. Addition-
ally, each chunk is assigned a structural category that represents how the chunk is formatted
in the build log.

3.2 Model selection
Studiawan et al. [27] proposed a sentiment analysis technique to detect anomalies in log files.
Sentiment analysis is a form of text classification used to measure the attitude expressed in
a text, for example it can be used to determine if a customer review is positive, negative or
neutral. According to the study, deep machine learning models have shown improved results
compared to classical machine learning algorithms when used for log anomaly detection. A
comparison between different models was carried out, where the authors’ model achieved
the best performance with an F1-score of 0.99 and an accuracy of 0.99. Among the other
evaluated models, the supervised ones generally showed higher performances compared to
the unsupervised ones.

23

3. Related work

3.3 Anomaly detection and error classifica-
tion

In the Master’s thesis by Mandagondi [19] anomaly detection in log files from Java Common
Auto Tester (JCAT) using machine learning was studied. Three ML algorithms were evaluated:
Local outlier factor, Random forest and K-means clustering. Local outlier factor is an algorithm
that finds anomalous data points by measuring how similar a data point is to its neighbours.
K-means clustering combined with data preprocessed with TF-IDF resulted in the best per-
forming model with an F1-score of 0.91. K-means clustering is an unsupervised ML technique
that can recognise groups of similar data points in a dataset. The Random forest algorithm
combines several Decision trees and outputs the class that was selected by most trees.

In another Master’s thesis, Lindqvist [18] used machine learning to classify build failures
in Jenkins logs as either infrastructure error or user error. The study concluded that the human
factor is still needed to create regular expressions that can classify the error descriptions,
but that machine learning can be used as a powerful tool to make predictions of unknown
failures. However, one could try to only use failed build steps to prevent misleading the
models with successful build steps. The author also found that some of the training data
contained errors that had been wrongly classified by the regular expressions. TF-IDF was
used for preprocessing and three ML algorithms were evaluated in the study: support vector
machine, random forest and gradient boosting classifier. The best performing one was the
gradient boosting classifier with an F1-score of 0.79.

We combined the methods of these two Master’s theses to locate the rows containing
relevant error descriptions in the log file. Like Mandagondi [19] we implemented anomaly
detection in log files but we were also interested what part of the log that contained an
error and not just if there was an anomaly. While Lindqvist [18] classifies the category an
error belongs to, we used text classification to determine whether a build log line contains a
relevant error description or not.

3.4 Log file classification pipeline
Catovic et al. [6] described their implementation of log file classification used in large-
scale industry projects called Linnaeus. The implementation consists of a highly configurable
pipeline that can be used for both anomaly detection and multilabel classification of eventual
errors in various types of logs. Linnaeus automatically chooses a suitable classification model
from a number of classical ML algorithms such as: Gaussian naive Bayes, SVM, Logistic re-
gression and Random forest. This paper served as a practical example on how a model could
be integrated into a continuous integration pipeline in an industry setting.

24

Chapter 4

Method

In this section, the approach to answering the research questions is described. Further, the
interview and the methodology of each step of the machine learning pipeline is described, as
well as the tools needed to perform the respective tasks.

4.1 Overall approach
This study was conducted according to the research method presented in Figure 1.1. Ini-
tially, a background study of related work was performed and the research questions were
formulated.

The method used to answer the first research question was an action research method,
which is a research methodology where problem solving is performed through thoroughly
documented activities [11]. In our study, the action research consisted of a data collection step
along with three iterations of a machine learning pipeline, as illustrated in Figure 4.1. The
purpose of an iterative approach was to start off simple and then methodically make changes
to the pipeline as we gain knowledge, and evaluate how the changes impact the performance.
Each iteration of experiments was conducted with a machine learning pipeline consisting of
a data creation step, a preprocessing step, a training step, and an evaluation step. Between the
iterations, changes to the dataset creation step or the evaluation step or both were introduced.

To answer the second question, an interview with the case company was conducted. The
interview process is described in Section 4.2.

4.2 Interview
In order to find out more about how the BFA is used at the case company and what re-
quirements they have on an AI-based system that can detect relevant error descriptions, an
interview was conducted. An interviewee was selected among the group of engineers working

25

4. Method

Figure 4.1: Overview of modifications between the three iterations

with the maintenance of the Jenkins servers. The engineer selected is titled Senior Engineer
specialised in developer experience and has many years of experience in CI. A semi-structured
interview was carried out, where two interviewers took turns in asking the questions listed
in Appendix A. The interview was recorded, transcribed and summarised in Section 5.1.

4.3 Data collection
In order to create the datasets used in the iterations, Jenkins build logs as well as metadata
from the BFA had to be collected. In this section, the build logs and how they were collected
are described.

4.3.1 Jenkins build logs
The logs generated during Jenkins builds contain information about the build, such as com-
pilation results and reports from unit and integration tests. At the case company, there are
around ten servers running Jenkins builds. Build logs from five of the servers, named server
1-5 here, were included in this study.

The appearance and structure of the logs vary depending on what type of build is ex-
ecuted. On server number 1 and 5, users can set up their own builds. Builds of the case
company’s own operating system run there, as well as other builds of software written in
both Java, C, and Python. Server number 2 is a large build server that mostly runs builds of
the case company’s own operating system. The builds that run on server number 3 run both
unit, integration, and build tests. All builds are set up with the same configuration, and the
server is owned by the Tools department. Server number 4 is used for building and signing,
and just like on server number 3, the configuration is coherent between builds.

26

4.4 Dataset creation

4.3.2 Collecting data
The build logs are stored on the Jenkins servers, and metadata about the builds, such as
timestamp, status, and url, is stored on an Elastic server. Elastic is a search and analytics
engine used at the case company [10]. In the Save logs step in Figure 4.2, the Elastic server is
queried for metadata about all failed Jenkins builds within a specified date range. For each
failed build, the log text is downloaded from the Jenkins server the build was run at. Two files
are saved, one containing the console text and one containing metadata from Elastic saved
in a JSON-object. For logs where the BFA has found errors, the metadata file contains a list
of matching error entries, with the corresponding regular expression and matching string of
each error found in the log text.

Figure 4.2: Illustration of the steps to collect data and create the
dataset

4.4 Dataset creation
The creation of the dataset was carried out by annotating each log line of the failed Jenkins
build logs using metadata from the BFA. Two different approaches of annotating the data
were used and evaluated. In this section the Jenkins build logs, the data collection process,
and the two annotation techniques are described.

4.4.1 Dataset structure
In the Create dataset step in Figure 4.2, each build log line was combined with the corre-
sponding metadata object from Elastic to create the dataset. During this study, two different
datasets were created and used to train and evaluate the models. In the last iteration, a manu-
ally annotated dataset, described in Section 4.4.1, was created to evaluate whether the models
could predict new relevant error descriptions. All datasets follow the same structure with the

27

4. Method

columns shown in Figure 4.3 and 4.4. Each row number refers to the row number in the build
log. The is_faulty column indicates whether the corresponding line contains a relevant
error description or not. Lines annotated with 1 contain relevant error descriptions, while
lines annotated with 0 do not. For lines containing relevant error descriptions, the matching
regular expression patterns are saved in the regex column. The server column indicates
which server the corresponding build was run on, and the file_id represents the file name
of the file where the build log text was saved.

The dataset described by Brandt et al. [4] consisted of manually annotated chunks from
build logs, as described in Section 3.1. In our study, we created two automatically annotated
datasets and one manually annotated evaluation dataset that was used in the third iteration.
The reason that we did not annotate the training logs manually in our study is that we wanted
to investigate whether historical data from the BFA would be sufficient to train a model to
find relevant error descriptions. Since the BFA saves matching lines, it was more convenient
to split the log files into single lines, although it is possible that chunks would have provided
more context and therefore resulted in a better model.

Entire log annotation method
In the first iteration, an annotation method we call the entire log annotation method was used.
The name refers to that all rows in each build log are included in the dataset. The method
makes use of the metadata, shown in Figure 2.3, which contains a list of indications,
i.e. error descriptions that the BFA has found in the corresponding log file. Each indication
contains the regular expression pattern and the matchingString field representing the line
in the log file where the match of the pattern was found. With this annotation method, all
indications from the BFA were used to annotate the log lines. In the Create dataset step in
Figure 4.2, each log line was compared to the matchingString fields of the metadata. If
the log line corresponded to one of the matching strings, it was annotated with 1 in the
is_faulty column, otherwise it was annotated with 0. In Figure 4.3, an example from the
dataset created with this annotation method is presented.

Only the first matching line for each regular expression is saved in the BFA’s indications-
list, and thus only the first matching line for each regular expression was annotated with a
1. However, it is possible that there are more lines in the log files that match the regular
expressions, but that are not saved in the indications list. With this annotation method,
those lines are annotated with a 0, even though they contain relevant error descriptions. To
avoid including relevant error descriptions annotated with 0, another annotation method
was tried in the second and third iteration.

Figure 4.3: Example rows from dataset created with the entire log
annotation method

28

4.4 Dataset creation

First error annotation method
In the second and third iteration, an annotation method we call the first error annotation
method was used. When creating the dataset with the first error annotation method, only
the first relevant error description found by the BFA in each file was included. Each line
was compared against the pattern fields from the BFA until a match was found. All lines
following the first match were omitted. An example from the dataset annotated with the
first error annotation method is presented in Figure 4.4.

This method resulted in a smaller dataset than the entire log annotation method, but
with less risk of including wrongly annotated lines in the dataset.

Figure 4.4: Example rows from dataset created with the first error
annotation method

Manual annotation method
A manually annotated dataset was needed in the final evaluation step in the third iteration of
experiments. The reason for this was that it is not possible to determine whether a model can
detect new relevant error descriptions that have not been found by the BFA, with a dataset
annotated with historical data from the BFA. The dataset was created from 100 failed build
logs where the BFA had not found any relevant error descriptions. The dataset was manually
annotated by two senior engineers at the case company with domain knowledge of Jenkins.
The entire logs were included in the dataset and all lines with relevant error descriptions
were annotated with 1.

4.4.2 Dataset statistics
In total, 48 724 build logs from 61 days were collected in the data collection step, as described
in Section 4.3.2. Among those build logs, there were 35 311 logs from failed builds where the
BFA had found at least one relevant error description. In other words, the BFA was helpful
in approximately 73% of the cases. The smaller datasets produced from 15 days of builds,
consisted of data from 1 757 logs. In total, the size of all logs collected from 61 days is 42GB,
and the size of the build logs collected from the 15 first days is 2GB. The average log file size
of the build logs collected is 937kB.

In Table 4.1, the distribution of files containing at least one error found by the BFA
between the different Jenkins servers can be found. As seen in the table, the majority of the
errors come from either the first or second server.
The distribution of 0:s and 1:s in the respective datasets can be observed in Table 4.2. Both
a large dataset with data from all 61 days, and a smaller with data from 15 days were created

29

4. Method

Table 4.1: The number of build logs from each server

Server 1 2 3 4 5
Number of logs 16 810 16 344 1 247 875 35

with the entire log annotation method. Only 15 days of data was used for the dataset created
with the first error annotation method, because as seen in Section 5.2.2, it was not feasible
to train the model on the dataset from 61 days.

Table 4.2: Distribution of 0:s and 1:s in the differently annotated
datasets

Entire log annotation First error annotation
Days 1 0 1 0

15 7 723 18 880 731 1 734 17 617 095
61 187 770 460 197 174 - -

In Figure 4.5, the number of matching relevant error descriptions for the different regular
expressions in the dataset annotated with the entire log method is visualised. As seen in
the figure, there are a few regular expressions that make up for almost all the relevant error
descriptions found by the BFA. For example, we can see that only two regular expressions
have more than 1000 matches in the data, while 24 regular expressions only have less than
100 matches in the corpus. Likewise, in Figure 4.6, the regular expression distribution for the
dataset annotated with the first error method is illustrated. As seen in the figure, there are
fewer matches of regular expressions in this dataset, but the distribution between the regular
expressions is more or less kept.
The manually annotated dataset that was created for the final evaluation consisted of logs
from 100 builds where the BFA had not found any relevant error descriptions. The distribu-
tion between 1:s and 0:s in that dataset is presented in Table 4.3.

Table 4.3: Distribution of 0:s and 1:s in the manually annotated
dataset

0 1 Total
Number of rows 60 447 646 61 093

4.5 Preprocessing
In this section, the data split methods as well as the tools used in the preprocessing step are
described.

30

4.5 Preprocessing

Figure 4.5: Distribution of the different regular expressions in the
15 days dataset annotated with the entire log method

4.5.1 Data split and stratification
Before training and evaluating the models, we split the data into one training and one test set.
This ensures that the model is tested on data it has not been trained on. In our experiments,
three different data splitting techniques were used: random split, stratification based on
server, and stratification based on regular expression.

To determine whether the model could detect error descriptions it had already been
trained on, experiments with randomly split datasets were carried out in all three iterations.
The distribution between the training and test set was 80/20.

In the first iteration of experiments, we tried using a stratified split based on data source,
i.e. the Jenkins server that the log file was downloaded from. The initial thought behind
this split was that the data from different Jenkins servers would look different. The test set
consisted only of log files downloaded from server 1, and the training set consisted of log
files from the rest of the servers. However, many of the regular expressions were still present
in both the training and test set. Additionally, since 16 810 build logs were collected from
server 1, and 18 501 build logs were collected from the rest of the servers, as shown in Table
4.1, the distribution of logs between the train and test sets was almost 50/50.

Two different approaches were used in order to evaluate if the model could find errors it
had not previously been trained on. In the first iteration, a stratified split based on regular
expressions was carried out. To achieve this, a random 20% of the regular expressions were
picked. When creating the dataset, all rows annotated with 1:s with regular expressions that
matched any of those 20%, were put in the test set and the remaining were put in the training

31

4. Method

Figure 4.6: Distribution of the different regular expressions in the
15 days dataset annotated with the first error method

set. The rows annotated with 0:s were also split across the training and test sets with a 80/20
distribution. In the third iteration, a manually annotated dataset was used for evaluation.

4.5.2 Text vectorisation
The TfidfVectorizer from the scikit-learn library [22] was used in all three iterations to
vectorise the text, as described in Section 2.5.1. In the two first iterations, it was used with
default parameters, and in the last iteration, different values of the following parameters were
tested:

• min_df - A value of 0.1 filters out all the terms that do not exist in at least 10% of the
documents in the corpus.

• max_df - A value of 0.9 filters out all the terms that exist in more than 90% of the
documents in the corpus.

• ngram_range - Controls what n-grams to use. For example, with the input value (1,2)
both unigrams and bigrams are used.

4.5.3 Over- and undersampling techniques
Since the distribution of regular expressions in the data was uneven, as seen in Figure 4.5 and
4.6, a RandomOverSampler from the imbalanced-learn library [16] was used to copy the less

32

4.6 Models

frequently occurring regular expressions in order to achieve a more even distribution. The
mean frequency of the regular expressions was calculated and all regular expressions with less
occurences than the mean were resampled to the mean. Oversampling was tested in both the
first and the third iteration.

To avoid the problems that can arise with an imbalanced dataset, as described in Section
2.5.4, undersampling of the rows annotated with 0:s was performed using a RandomUnderSampler.
The RandomUnderSampler randomly removes rows until the distribution of classes corre-
sponds to the sampling_strategy. Several different sampling strategy values were tested
in all three iterations. A sampling strategy of 0.5 means a ratio of 1:2 between 1:s and 0:s, and
1 means a ratio of 1:1.

4.5.4 Dimensionality reduction
In order to perform dimensionality reduction, i.e. reduce the dimensions from the matrix
generated by the TF-IDF vectoriser, as described in Section 2.5.2, we used a TruncatedSVD
from scikit-learn [22] in the third iteration of experiments. The TruncatedSVD has a param-
eter called n_features which determines the dimension of the output matrix.

4.6 Models
Supervised machine learning models performed better than unsupervised models among the
classical models evaluated in the study by Studiawan et al. [27] One of the supervised models
evaluated in the study was the SVM, which is commonly used for text classification problems
[14, p. 240]. Therefore, we chose to start off with an SVM model.

Initially, our intention was to perform experiments on a deep learning model and com-
pare with the results from the SVM. Due to time constraints, we did not experiment with
any deep learning models. Instead, an XGBoost model was trained and compared with the
SVM in the third iteration since in the study by Lindqvist [18], the gradient boosting model
achieved better results than the SVM.

The SVM implementation, called SVC, from the scikit-learn library [22] was used in all
three iterations. In the first iteration, hyperparameter tuning of the following parameters
was carried out:

• C - Regulates the trade-off between classifying all training examples in a dataset cor-
rectly and more generalisation, i.e. a smoother decision boundary between the classes.
A lower value results in more examples classified correctly, but with an uneven deci-
sion boundary and smaller margin. With a higher value, the decision boundary will be
smooth with a larger margin, but more examples will be wrongly classified [14, p. 245].

• gamma - Controls how much each single training example impacts the model. Too large
a value will make the model more prone to overfitting.

In the third iteration, two more models were added and compared to the SVM. A default
LogisticRegression implementation from scikit-learn was used as a baseline model. Fur-
ther, the XGBoost implementation XGBClassifier, from the xgboost [7] library, was used
with default parameters.

33

4. Method

4.7 Grid search and hyperparameter tuning
In order to perform hyperparameter tuning, i.e. find the best hyperparameters for the es-
timator, as described in Section 2.4.6, GridSearchCV and HalvingGridSearchCV from
scikit-learn [22] were used in the first iteration. The GridSearchCV uses the whole training
set and tries all the different combinations of the parameters specified, and returns the opti-
mal combination. In contrast, the HalvingGridSearchCV repeatedly applies small amounts
of data and keeps training on the best parameters until the optimal is found. This improves
the speed significantly compared to the GridSearchCV.

4.8 Evaluation
The models were evaluated using two different evaluation methods that we call the row evalu-
ation method and the first error evaluation method. In the first two iterations, the row evaluation
method was used, and in the third iteration both the first error evaluation method and the
row evaluation method were used. In this section, both methods are explained.

4.8.1 Row evaluation method
With the row evaluation method, the models were evaluated based on how accurate they
classified each row as either containing or not containing a relevant error description. In the
first iteration, MCC and accuracy were used to compare the models. In the second iteration,
MCC as well as F1-score, precision, recall, and accuracy were used to compare performance.
The reason for adding more metrics was to get more detailed insight into the model’s perfor-
mance. Finally, in the third iteration, the row evaluation method was used on the manually
annotated dataset, and the models were compared based on average R-precision, F1-score,
and MCC. Average R-precision was added in order to evaluate how good the models were at
finding the correct relevant error descriptions.

4.8.2 First error evaluation method
In the third iteration of experiments, the models were evaluated based on how accurate they
could predict which row in each file that contained a relevant error description, in order to be
able to compare their performance with the BFA’s. The evaluation was carried out on a test
set created from the first error dataset, which only contained one line with a relevant error
description per file. For each file in the test set, a prediction was recorded that represented
whether the model could predict a relevant error description on the correct line in the file
or not. If the model only predicted one error description per file, and it was the correct line,
a 1 was recorded. Otherwise, a 0 was registered for the entire file. To calculate the accuracy,
the recordings were then compared to a list of 1:s, that represented the number of errors in
each file.

34

4.9 Visualisation of predictions

4.9 Visualisation of predictions
In the third iteration of experiments, we generated visualisations of predictions from the
SVM and XGBoost models in order to get an insight in how much each feature contributed
to the prediction. The visualisations were generated by the tool Lime [25], that can be used
for both text and image classification with classical machine learning models as well as neural
networks. As input, it takes a prediction function and a log line, and the output shows how
much each feature of the line contributed to the prediction.

35

4. Method

36

Chapter 5

Result

This section starts with a summary of the interview with the case company. Thereafter, the
results from the experiments of each iteration are presented.

5.1 Interview
According to the Senior Software Engineer at Axis our model will not outperform the BFA
on its handcrafted regular expressions since they provide exact matches that are well tested.
What is valuable for the case company is if the model can find any error that the BFA cannot
find. Since the errors in the log files will change with the development of the build system,
new errors will show up in the log files regularly. If the AI-model could help the engineers to
navigate to any relevant error description in any case where the BFA cannot find anything
today, it would save time and be helpful for them.

In order for the AI-model to be useful at the case company, it is important that the
information from it is presented to the user in an intuitive way. According to the engineer it
can be done through a Jenkins plugin. Then the user will be able to compare the information
from the two plugins and decide in each case which one to rely on. In the cases where the BFA
does not provide any help, it will be valuable for the user to get a hint from the AI-model of
where the first error could be, and then there will be consequential errors following it. The
engineer added that it is important that the analysis is done fast since the rows are generated
in real time. If the data analysis part is written so that it is connected to Jenkins it will have
direct access to the log files and can analyse them as they are generated.

Regarding future maintenance of the model, the engineer suggested either to train the
model continuously, or to provide a service that can be activated manually to train the model
when needed. In what way to train the model is however a question that needs to be inves-
tigated further and possibly discussed with engineers with more experience in AI. He also
emphasised that regardless of exactly how the AI-model is trained, updating the model is
important since changes in the build system are introduced regularly. It also happens that

37

5. Result

new programming languages are introduced in the code, which leads to new types of errors
appearing in the log files. In order to find out what would be the best way to train the model,
data about the training needs to be collected. For example, it is important to find out how
long time it takes to train it.

In summary, it can be stated that the most important requirements on the model are that:
the model finds error descriptions the BFA is currently not able to find, it is fast enough to
make predictions in real time during the build process, and it is easy for the engineers to
maintain.

5.2 First iteration
In this section, results from the first iteration of experiments are presented. First, we ex-
plain how we selected the model and verified the pipeline. Thereafter, results from three
experiments with different data split techniques, on the dataset annotated with the entire
log method, are shown. The iteration is concluded with results from an experiment with
hyperparameter tuning.

5.2.1 Pipeline verification
An initial pipeline with a TF-IDF vectoriser and an SVM model was assembled. To verify
the pipeline, it was tested on a simple text classification dataset [17] with emails annotated as
either spam or ham. This dataset was selected because it is a similar text classification problem
to ours. The SVM achieved an accuracy of 0.98 and an MCC of 0.93.

5.2.2 Random split
Two experiments were carried out with randomly split data. The model used was the SVM
and the number of 0:s were undersampled so they were as many as the 1:s. As seen in Table
5.1, the model was trained on both a dataset consisting of failed build logs from 15 and 61
days, and performed better on the larger dataset. However, due to the dataset being very
large, as seen in Table 4.2, the total time for both the training and evaluation of the model
was four days. Therefore, it was not feasible to conduct more experiments with that amount
of data so all subsequent experiments were carried out with data from 15 days.

Table 5.1: Results obtained with the SVM trained on different
dataset sizes

Model Days N-gram
Undersampling

factor
Accuracy MCC

SVM 15 (1,1) 1 0.99 0.59
SVM 61 (1,1) 1 0.99 0.71

38

5.2 First iteration

5.2.3 Server stratification
One experiment was conducted using data stratified based on server. As described in Section
4.5.1, the thought behind splitting the data based on data source was that the data from
different servers might look different. In this experiment, an undersampling factor of 0.5 was
used, so more data was kept during training and rows containing relevant error descriptions
made up a third of the data. The reason for changing the undersampling factor was that the
amount of training data in this experiment decreased due to that there was almost a 50/50
ratio between the training and test sets. In this experiment, the model performed worse than
when trained on randomly split data, with an accuracy of 0.99, and an MCC of 0.36. Further,
the same regular expressions were still present in both the training and test datasets and
therefore we decided to try another stratification strategy.

5.2.4 Regular expression stratification
The next experiments were carried out with a dataset stratified on regular expressions. As
explained in Section 4.5.1, the stratification was done by randomly choosing 20% of the reg-
ular expressions present in the BFA for the test set in order to determine whether the model
could predict new relevant error descriptions it had not been trained on. The models were
trained with an undersampling factor of 1, i.e. an equal distribution of 1:s and 0:s. Initially,
models trained on this data did not receive satisfying results. To try to improve the results,
we decided to tackle the imbalanced regular expression distribution with regular expression
oversampling. This modification improved the results significantly as seen in Table 5.2.

Table 5.2: Results with the SVM with and without regular expres-
sion oversampling

Model Regular expression oversampling Accuracy MCC
SVM no 0.99 0.21
SVM yes 0.99 0.48

5.2.5 False positive example
An example of a false positive prediction by the SVM model trained with regular expression
oversampling, with results presented in Table 5.2, is a frequently occurring line about mem-
ory leaks saying: definitely lost 0 bytes in 0 blocks. However, the regular ex-
pression the model was trained on is: .*definitely lost: [1-9][0-9]* bytes .*.
According to the regular expression, the line is only considered a relevant error description
if the line states that anything above 0 bytes is lost. Unfortunately, this difference is not
captured by the model, which predicts relevant error descriptions on lines stating that no
memory has been lost.

39

5. Result

5.2.6 Hyperparameter tuning
Grid search was performed on both the TF-IDF vectoriser and the SVM classifier in order
to find the best hyperparameters. The best parameters found with HalvingGridSearchCV
are presented in Table 5.3.

Table 5.3: The optimal set of parameters for TF-IDF and SVM found
with Grid search

Model Parameter Values Best value

TF-IDF
min_df 1, 0.1, 0.01, 0.05, 0.001 1
max_df 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 0.7

ngram_range (1,1), (2,2), (3,3), (1,2), (1,3), (2,3) (1,3)

SVM
C 0.1, 1, 10, 100, 200 100

gamma 1, 0.1, 0.01, 0.001 0.01

A model with the best values from hyperparameter tuning as input arguments was trained on
data from 15 days undersampled with a factor of 1, and stratified on regular expressions. The
model received an MCC score of 0.15, which is lower than the model trained with default
parameters. Therefore, no more experiments with hyperparameter tuning were carried out.

40

5.3 Second iteration

5.3 Second iteration
After completing the experiments in the first iteration, it was discovered that the procedure
for annotating the dataset was not optimal. The problem was that the BFA only matches one
line per regular expression, e.g. a build log can contain many lines that match the same regu-
lar expression but only the first one is saved by the BFA. The lines following the first match
are the so called consequential errors mentioned in the interview in Section 5.1. Since the
annotation only uses the BFA’s matched lines, only the first match for every regular expres-
sion was annotated with 1 in the dataset and the other lines that matched the same regular
expression were annotated with 0. In order to avoid including those lines in the dataset, a
new annotation method, the first error method, was created. The new approach was to omit
all log lines after the first error is found, as described in Section 4.4.1. All remaining exper-
iments in this study were conducted with models trained on the dataset annotated with the
first error method.

5.3.1 Different undersampling strategies
The impact of different undersampling factors on the SVM was investigated on data from
15 days. As seen in Table 5.4, the lower the undersampling the better the model performed.
Unfortunately it was not feasible to train the SVM without undersampling, since the dataset
is approximately 17 million rows, as seen in Table 4.2, so the experiments were terminated
earlier than desired. In the third iteration of experiments, an undersampling factor of 0.01
was used since it was not feasible to run many different models with an undersampling factor
of lower than 0.01, since that made total time of training and evaluation increase from a
couple of hours to around one day.

Table 5.4: Results with the SVM with different undersampling fac-
tors

Model
Undersampling

factor
Accuracy Precision Recall F1-score MCC

SVM 1 1.0 0.07 0.99 0.13 0.26
SVM 0.1 1.0 0.34 0.99 0.51 0.58
SVM 0.01 1.0 0.65 0.98 0.78 0.80
SVM 0.001 1.0 0.99 0.97 0.98 0.99

5.4 Third iteration
After completing the experiments in the second iteration, it was discovered that the evalu-
ation method used was not suitable to evaluate the performance on the first error dataset.
Therefore, two new evaluation methods were introduced in the third iteration.

The first evaluation method, described in Section 4.8.2, is a modified version of the pre-
viously used row evaluation method. It had to be adapted to the new dataset since the dataset

41

5. Result

now only includes the first relevant error description that the BFA has found in each file. The
new evaluation method, the first error evaluation method, was used for the experiments that
served as an evaluation of how good our model was at predicting relevant error descriptions
it had been trained on. For the second evaluation in the third iteration, a manually annotated
dataset was created, as described in Section 4.4.1. The evaluation on the manually annotated
dataset was performed in order to find out if the model could predict new relevant error
descriptions. Since the manually annotated dataset consisted of entire log files with multiple
error descriptions in each file, row evaluation with F1-score and MCC was used. Further,
average R-precision was calculated in order to evaluate how good the model was at finding
the correct relevant error descriptions.

5.4.1 Baseline model
The experiments in the first and second iteration were conducted with only the SVM. To
ensure that the SVM was a good model to use on our dataset, we included Logistic regression
as a baseline model in the third iteration. The model was trained without undersampling,
and achieved an accuracy of 0.87 as seen in Table 5.5.

Further, the default SVM model was trained and evaluated on data undersampled with a
factor of 0.01.

Table 5.5: Comparison of Logistic regression and SVM

Model Undersampling factor Accuracy
Logistic regression - 0.87

SVM 0.01 0.90

5.4.2 XGBoost
Three experiments with the XGBoost model were conducted in order to compare it to the
SVM model. As the models trained on data undersampled with a factor of 0.01 did not
predict any relevant error descriptions, we decided to increase the undersampling factor until
the model started to predict relevant error descriptions. In the third experiment, the model
started to predict some relevant error descriptions, and achieved an accuracy of 0.03. Since
this result was not satisfactory, we moved on to try to improve the SVM model instead.

Table 5.6: Results from XGBoost trained with different undersam-
pling factors

Model Undersampling factor Accuracy
XGBoost 0.01 0
XGBoost 0.1 0
XGBoost 1 0.03

42

5.4 Third iteration

5.4.3 Regular expression oversampling
A default version of the SVM was trained on data from 15 days with an undersampling factor
of 0.01 and regular expression oversampling. The model achieved an accuracy of 0.18. Since
this result was significantly lower than the default SVM without oversampling, no more ex-
periments with oversampling were done.

5.4.4 Manual hyperparameter tuning
Hyperparameter tuning was carried out in the first iteration of experiments, but did not
result in a better model, as seen in Section 5.2.6. In the third iteration, different values for
the hyperparameters of TF-IDF: ngram_range, max_df, and min_df, described in Section
4.5.2, were tested manually.

Results from experiments with three different max_df values are presented in Table 5.7.
The best performing models were the SVM models with max_df values of 0.5 and 0.75.

Table 5.7: Results with SVM with different max_df values

Model max_df Accuracy
SVM 1 0.90
SVM 0.25 0.91
SVM 0.5 0.93
SVM 0.75 0.93

In Table 5.8, results obtained with different values of min_df are presented. The best per-
forming models were the SVM models with min_df values of 1 and 10. Both models achieved
an accuracy of 0.90, which shows that changing min_df from the default value of 1 to 10 does
not improve our model.

Table 5.8: Results with SVM with different min_df values

Model min_df Accuracy
SVM 1 0.90
SVM 10 0.90
SVM 50 0.88
SVM 100 0.84

Different ngram_ranges were evaluated, and the results are presented in Table 5.9. Adding
either just bigrams or both bi- and trigrams improved the model compared to the default
one which only uses unigrams.

43

5. Result

Table 5.9: Results with SVM with different ngram_ranges

Model
N-gram
range

Accuracy

SVM (1,1) 0.90
SVM (1,2) 0.92
SVM (1,3) 0.92

5.4.5 Dimensionality reduction
The original number of features in the 15 days dataset with an undersampling factor of 0.01
was 30856, and truncations to different number of features were examined, as seen in Table
5.10. The results show that adding dimensionality reduction did not improve the model.

Table 5.10: Results with the SVM with different number of features
with a TruncatedSVD

Model Features Accuracy
SVM 64 0.34
SVM 128 0.45
SVM 256 0.67
SVM 512 0.76

5.4.6 Unannotated relevant error descriptions
The first error dataset was created in order to avoid unannotated relevant error descriptions
in the dataset. However, we discovered that the first error dataset also includes unanno-
tated error descriptions. For example, in one build log, the line: ERROR: Task X failed
with exit code ’1’ is not annotated as a relevant error description. However, the line:
Summary: There was 1 ERROR message shown, returning a non-zero exit code,
which occurs further down in the same log file, is annotated as a relevant error description.
It is clear that the second line occurs as a consequence of the first. Nonetheless, no regular
expression corresponding to the first line is present in the BFA, and therefore it is not an-
notated even though it contains a relevant error description. Thus, a manually annotated
dataset, described in Section 4.4.1, was created for the final evaluation step.

5.4.7 Evaluation on manually annotated dataset
Results from the default versions of the SVM and XGBoost evaluated on the manual dataset
are presented in Table 5.11. The SVM and XGBoost were trained on their best performing
undersampling factor, 0.001 and 1 respectively, from previous experiments as seen in Table
5.4 and Table 5.6.

44

5.4 Third iteration

Table 5.11: Results from the SVM and XGBoost models on the man-
ually annotated dataset

Model
Undersampling

factor
Average R-precision F1-score MCC

SVM 0.001 0.25 0.50 0
XGBoost 1 0.26 0.57 0.17

Since the SVM model did not predict any relevant error descriptions correctly in the manu-
ally annotated dataset, we decided to experiment with different undersampling factors again.
Out of the tested undersampling factors, the optimal value for SVM on the manually anno-
tated dataset proved to be 1, as seen in Table 5.12.

Table 5.12: Results from default SVM on manually annotated
dataset with different undersampling factors

Model
Undersampling

factor
Average R-precision F1-score MCC

SVM 1 0.19 0.60 0.20
SVM 0.1 0.14 0.50 0
SVM 0.01 0.21 0.50 0
SVM 0.001 0.25 0.50 0

We know that the model can predict relevant error descriptions it has already seen with an
F1-score of 0.93, but performed significantly worse on new error descriptions and therefore
we decided to try to generalise the models by adding a TruncatedSVD. In Table 5.14 and Table
5.13, results from different experiments with the XGBoost and SVM with different number
of features are presented. Both models were trained with an undersampling factor of 1.

Table 5.13: SVM with different number of features

Model Features Average R-precision F1-score MCC
SVM 64 0.14 0.59 0.18
SVM 128 0.16 0.58 0.16
SVM 256 0.16 0.58 0.17
SVM 512 0.17 0.56 0.13

Neither the SVM nor the XGBoost model performed better when TruncatedSVD was added.
The best performing XGBoost model was the one presented in Table 5.11, with an average
R-precision of 0.26, an F1-score of 0.57, and an MCC of 0.17. The model trained on data
undersampled with a factor of 1 was the SVM model that overall achieved the best scores
with an average R-precision of 0.19, an F1-score 0.60 and an MCC of 0.20, as seen in Table
5.12. Generally, both models scored low values of both average R-precision, MCC, and F1-
score.

45

5. Result

Table 5.14: XGBoost with different number of features

Model Features Average R-precision F1-score MCC
XGBoost 64 0.25 0.49 0.10
XGBoost 128 0.29 0.50 0.08
XGBoost 256 0.29 0.48 0.08
XGBoost 512 0.22 0.50 0.06

The confusion matrices for the respective best models are presented in Table 5.16 and Table
5.15. The SVM model predicted 129 relevant error descriptions out of 646, and incorrectly
predicted 427 rows as 1:s, as seen in Table 5.15.

Table 5.15: Confusion matrix for the SVM model

Predicted class
0 1 Total

Actual class
0 60 050 427 60 447
1 517 129 646

Total 60 567 556

Table 5.16 shows that the XGBoost model predicted 192 correct relevant error descriptions
out of 646, and incorrectly predicted 1508 rows as relevant error descriptions.

Table 5.16: Confusion matrix for the XGBoost model

Predicted class
0 1 Total

Actual class
0 58 969 1 508 60 447
1 454 192 646

Total 59 423 1 700

46

5.4 Third iteration

5.4.8 Visualisation of predictions
In this section, two examples of visualisations of predictions created with the Lime tool are
presented. The first example, in Figure 5.1, was created with the best performing XGBoost
model and the second example, in Figure 5.2, was created with the best performing SVM
model. Both visualisations consist of three parts: to the left the probability that the model
will predict either class 0 or class 1 is shown, to the right the six most relevant features from
the row and their respective weights are listed, and down below the row, together with its
most relevant features highlighted is displayed. In contrast to the SVM implementation, the
XGBoost implementation only makes it possible to extract probabilities for features that
contribute to a prediction of class 1, thus, for that model only tokens contributing to the
class 1 prediction can be visualised.

In Figure 5.1 below, the example of a prediction from the best performing XGBoost model
is shown. In this example, the probability that the model predicts a relevant error description
is 0.99. However, it is not annotated as a relevant error description by the engineers since
it is a warning. The feature that contributed most to the prediction of class 1 is the word
failed. The weights of the features can be interpreted by subtracting them from the prediction
probabilities. For example, if we remove the word failed from the text visualised in Figure 5.1,
we expect the classifier to predict class 1 with a probability of 0.99 - 0.97 = 0.02 instead.

Figure 5.1: Visualisation of an incorrect prediction

The example of the prediction by the best performing SVM model is shown in Figure 5.2. In
the example, the probability that the model predicts a relevant error description is 0.97. The
example is a line that does not contain any corresponding regular expression in the BFA. The
features that contributed most to the prediction are the words failed and error. However, we
can also see that the words for and to contributed to the prediction. Lastly, we can see that
the number 99 contributed to the prediction probabilities.

47

5. Result

Figure 5.2: Visualisation of a correct prediction

48

Chapter 6

Discussion

6.1 First iteration
In this section, the results from the first iteration of experiments are discussed. The problem
with the annotation of the dataset are explained as well as the undersampling factors and
metrics used. Further, the three stratification strategies and their purpose are described and
evaluated.

6.1.1 Dataset
All experiments in the first iteration were conducted using the entire log dataset, described
in Section 4.4.1, which contained all rows from build logs from 15 days. There was, however,
an issue with that dataset. Since the BFA only registers the first matching line of each regular
expression pattern, there are many lines in the log files that contain relevant error descrip-
tions, but are annotated with 0:s when annotating the log files solely with data from the
BFA. This implies that when training on the entire log dataset, the model is trained on lines
with similar text and different is_faulty annotations. In order to avoid including ambigu-
ous lines in the data, a different method for creating the dataset, the first error annotation
method, was used in the second and third iteration.

6.1.2 Undersampling
Two different values of the sampling_strategy parameter were used: 1 and 0.5. A value of
1 means that undersampling is performed until there is an even distribution between the two
classes. The intention of this sampling strategy was to achieve an even distribution in order
to avoid getting a biased model. However, as seen in Table 4.2, to achieve an even distribution
19 million rows are undersampled to approximately 7700 rows with 1:s and the equal amount

49

6. Discussion

of rows with 0:s. This implies that a lot of data is lost. Therefore, different undersampling
strategies were evaluated in the second iteration.

6.1.3 Metrics
Accuracy and MCC were the only metrics calculated in the first iteration of experiments. As
seen in Table 5.1 and 5.2, all models tested received an accuracy of 0.99. Since the dataset used
for evaluation consisted of almost only 0:s, even a model that only predicts 0:s would have
achieved a high accuracy. However, we were more interested in knowing if the model could
predict 1:s and therefore accuracy could not be considered a suitable measurement, since a
high accuracy can be achieved by a model that only predicts 0:s. MCC is better for measuring
performance on imbalanced datasets, since it gives equal importance to classifications of both
classes. Even though undersampling was used to balance the training set, the evaluation set
was kept imbalanced, and therefore MCC can be considered a suitable metric for evaluation.
Since we only recorded two metrics, we did not get detailed insight in the behaviour of the
model. Therefore, precision, recall, and F1-score were added in the second iteration.

6.1.4 Stratification strategies
Since the model was supposed to complement and not replace the BFA at the case company,
in this iteration we focused on measuring the models’ ability to predict relevant error de-
scriptions it had not already been trained on. This was done through experimenting with
different stratification strategies.

Initially, the dataset was split randomly without stratification and the results in Table 5.1
show that the model was able to predict relevant error descriptions. However, since the split
was done randomly, some regular expressions could have been present in both the training
set and the test set. Therefore, we could not determine whether the model could predict any
relevant error descriptions it had not already been trained on.

The experiments performed with data stratified based on server resulted in an MCC score
much lower than the previous experiments, 0.36 compared to 0.59, as presented in Section
5.2.3. Splitting the data based on the server resulted in almost a 50/50 ratio between the
training and test sets, due to the distribution of data between servers, shown in Table 4.1.
Therefore, the training set was smaller than in the experiments done with a random split.
To compensate for the smaller training set, the undersampling factor was lowered to 0.5.
However, since the undersampling factor only affects the number of 0:s in the dataset, a
50/50 distribution still resulted in a lower number of 1:s. This could have been the cause of
the low MCC score. Further, with this stratification strategy we could still not confirm that
the model could predict on regular expressions that it had not been trained on, since there
were regular expressions present in both the training data and regular expressions present in
the test data.

The initial experiment with regular expression stratification resulted in an MCC score of
0.21, as shown in Table 5.2. When adding regular expression oversampling, the MCC score
increased significantly from 0.21 to 0.48. However, the method used to stratify the data based
on regular expressions was flawed and therefore the results cannot be considered valid. When
choosing which regular expression to put in the training and test data respectively, we started
from a list of all regular expressions present in the BFA. Since that list consisted of many

50

6.2 Second iteration

more regular expressions than those actually present in the data, one cannot assume that the
regular expressions picked for the test set were actually present in the data. Therefore, it
is not guaranteed that stratification was actually performed. Further, choosing 20% of the
regular expressions randomly is probably not an optimal approach since the distribution
between regular expressions in the data is uneven. A better approach could have been to use
cross-validation, i.e. to run several iterations with different selections of regular expressions.

Before evaluating whether the model can predict relevant error descriptions it has not
been trained on, it is important to assure that it can predict relevant error descriptions it has
been trained on. Therefore, the experiments in the second and third iteration were conducted
using random split, until the best model was found. After that, a manually annotated dataset
was used to determine whether the model could predict relevant error descriptions it had
not been trained on.

6.1.5 Hyperparameter tuning
In the first iteration we tried to tune the hyperparameters of TF-IDF and SVM using Halv-
ingGridSearch. However, the tuned model performed significantly worse than the model
with default parameters. Undersampling with a factor of 1 combined with regular expres-
sion oversampling made the proportion of 1:s and 0:s in the training dataset balanced, while
the test dataset remained imbalanced. Since only the training dataset was used to tune the
hyperparameters, a possible reason for the bad performance could be that the model was
optimised for a dataset with a 50/50 ratio between 1:s and 0:s and evaluated on an imbal-
anced dataset. Because of this, we had to try different configurations of the hyperparameters
manually instead.

6.2 Second iteration
For the experiments in the second iteration, a new dataset was created with the first error
annotation method, as described in Section 4.4.1. An SVM model was trained with different
undersampling strategies to evaluate the impact of changing the ratio of 1:s and 0:s in the
dataset. In this section, the results from those experiments will be discussed.

6.2.1 Undersampling
In Table 5.4, results from experiments with four different undersampling factors are pre-
sented. The lowest undersampling factor that we tested was 0.001, which also received the
best performance with an MCC of 0.99 and an F1-score of 0.98. The more undersampling,
the more prone the model become to predicting relevant error descriptions. Therefore, the
undersampling factor affected the precision metric, which decreased from 0.99 to 0.07 when
the undersampling factor increased from 0.001 to 1. As seen in Table 4.2, the evaluation
dataset is imbalanced with only 0.001% 1:s. One possible explanation could be that when the
model was trained on data with a larger proportion of 1:s than in the evaluation dataset, it
became more inclined towards predicting 1:s.

51

6. Discussion

6.2.2 Evaluation method
As seen in Table 5.4, the best model trained in this iteration achieved higher MCC score than
the best model from the previous iteration, 0.99 compared to 0.59 in the first iteration. The
reason for this increase could be that the wrongly annotated lines were omitted in the first er-
ror dataset. However, since the models were still evaluated using the row evaluation method,
the results only show how good the models were at predicting if a single line contained a
relevant error description or not.

In order to compare our model to the BFA, we needed to change evaluation method.
Since the BFA finds the first line of each matching regex in each log, we implemented a new
evaluation method that evaluated how good the model was at finding the first relevant error
description on the correct row in each file, as described in Section 4.8.2.

6.3 Third iteration
In the third iteration of experiments, the models were trained on the first error dataset, and
evaluated in two different ways. First, the models were evaluated with the first error evalua-
tion method in order to compare our model to the BFA. Then, the models were evaluated on
a manually annotated dataset to find out whether they could predict relevant error descrip-
tions they had not been trained on.

6.3.1 Evaluation on first error dataset
The purpose of the experiments on the first error dataset was to determine if the model could
learn the relevant error descriptions that it had been trained on. In the previous iterations,
we immediately tried to create a model that would complement the BFA. However, it is
not realistic to assume that the model can complement the BFA and predict unseen error
descriptions before it can predict error descriptions it has been trained on.

The highest accuracy achieved by the SVM model on the first error dataset was 0.93. In
the second iteration, the results showed that more undersampling made the model perform
worse. Additionally, in the third iteration the regular expression oversampling proved to
significantly worsen the performance. Both of these modifications result in a training set
where either the distribution of 1:s and 0:s or the distribution of regular expressions differ
from the evaluation set. This could indicate that the model only learns the exact relevant
error descriptions and the distribution.

Even though the model proved to be able to predict relevant error descriptions, the ex-
periments on the first error dataset cannot be used to determine if the model can predict
relevant error descriptions it has not been trained on. Therefore, experiments on a manually
annotated dataset had to be done.

6.3.2 Evaluation on manually annotated dataset
The results show that the model can predict relevant error descriptions that are not present
in the BFA. However, the performance on the manually annotated dataset was significantly
lower than on the first error dataset. The difference in performance indicates that the model

52

6.3 Third iteration

is overfitted to the training data. When looking at the confusion matrices in Table 5.15 and
Table 5.16, one can see that both models predict more relevant error descriptions than what
are present in the evaluation set. This could be due to that the models are trained on data
with an even distribution of 1:s and 0:s, but evaluated on imbalanced data with a ratio of
1:100 between 1:s and 0:s. Lowering the undersampling factor had proved to be successful
previously, but with the manually annotated dataset, lower undersampling factors resulted in
models not predicting any row as a relevant error description. Although the SVM predicted
less false positives than the XGBoost, the number of false positives is still higher than the
number of true positives. Thus, it is more likely that a class 1 prediction is incorrect than
correct, which leaves a lot of responsibility to the engineer who in that case must decide for
themselves whether it was a correct prediction.

6.3.3 Visualisation of predictions
In the first prediction visualised in Figure 5.1, the main feature that contributed to the model
predicting the row as a relevant error description was the word failed. This is reasonable
since one can assume that a row that contains the word failed most likely contains informa-
tion about an error. However, the model misses the crucial feature warning, which makes
us not want to mark the row as a relevant error description. The dataset the model was
trained on contains seven different regular expressions with the word failed, whereof one
also contains the word warning, namely the regular expression: WARNING: Setscene task
.*(meta.*)(, |:)(do_.*)\\) failed with exit code ’1’ - real task will
be run instead. It is therefore reasonable that the model predicts rows with the word
failed as relevant error descriptions, even though they contain the word warning. However, in
the manually annotated dataset this warning was not marked as a relevant error description.
The fact that some warnings are considered relevant error descriptions and others not makes
it very difficult for a general model to predict relevant error descriptions correctly.

In the second example in Figure 5.2, the four features that contributed the most to the
prediction of class 1 were failed, error, for, and to. It is reasonable that the features failed
and error contribute to a prediction of class 1. However, for and to are words that do not
contribute to the meaning of the text and therefore they should have been filtered out as
stopwords. We used a value of 0.5 for max_df to filter out words, which means that we want
to filter out features that occur in more than 50% of the rows, but as we can see, a good idea
would have been to combine max_df with an English stopword list. The reason for not using
an English stopword list is that the build logs do not really contain natural language. Further,
the number 99 contributed to the prediction. This could have been prevented by filtering
out numbers from the log lines.

53

6. Discussion

6.4 Data split
In the experiments where random split was used, the data was split with an 80/20 ratio be-
tween training and test data. Since the dataset for 15 days consisted of around 19 million
rows, as shown in Table 4.2, the split resulted in a test set of almost 4 million rows. The mag-
nitude of the test set made the evaluation time-consuming, so another ratio between the test
set and training could have been more suitable for this dataset. That would not only speed
up the evaluation time but also give the model more data to train on.

6.5 Practical usage at the case company
In the interview it emerged that the model is intended to serve as a complement to the BFA.
It is valuable for the engineers if the model can find any relevant error description in a file
where the BFA did not. The new error descriptions, that are found by the AI-model, can
then be used to help the engineers create new regular expressions that can be added to the
BFA. As the BFA is updated with more regular expressions, more relevant error descriptions
will be caught. The model can then be retrained with a new dataset and eventually in the
future it might even be able to completely replace the BFA.

6.6 Threats to validity
The largest threats to the validity of the results appear in the dataset annotation step. For
example, it was not possible to verify that all files had been annotated correctly, since the
dataset consisted of approximately 19 million rows from 1 757 logs, as seen in Table 4.2. We
tried to tackle this issue through manually verifying the annotation on a smaller dataset,
but since there are many different regular expressions we can still not be certain that the
dataset is correct in a larger scale. For example, when implementing the method for creating
the first error dataset, it was noted that for one regular expression, the encoding of the files
caused a mismatch between the matchingString, and the log line it was supposed to match.
Even though this particular problem was fixed by matching on pattern instead, there might
have been more errors in the dataset that were not discovered due to how difficult it was to
verify the annotations. Further, the regular expressions used by the BFA are handcrafted, and
cannot be guaranteed to be 100% correct and include all error descriptions they are thought to
include. We used a manually annotated dataset in the final evaluation step since we wanted to
minimise the number of incorrectly annotated lines. However, it is possible that it would have
been better to use manually annotated data for training as well. With manually annotated
data, the problems with the automatic annotation methods are avoided, but there is still a
risk of wrongly annotated lines caused by human errors.

The build logs used to train the models were from builds run during 15 days. Due to
time limitations we did not look into whether the builds that ran during those days were
representative of builds that are commonly run at the case company’s servers. It would have
been interesting to look at what different types of builds are represented in the data and with
that information possibly create a dataset with a larger variation of builds in order to create
a more generalised model.

54

6.6 Threats to validity

Since the training of the models is a stochastic process, there might be a slight variation of
the performance of the models from different iterations. Therefore, it could have been more
suitable to train each model a couple of times and then take an average of the performance
to get a more reliable measurement.

The interview was conducted with a single engineer from the case company. It is possible
that the engineer’s opinions on the requirements of the model are not representative of all
Jenkins users at the case company.

55

6. Discussion

56

Chapter 7

Conclusion and future work

In this section, we answer the research questions and give suggestions on future work.

7.1 Conclusion

The results show that it is possible to detect new relevant error descriptions with an AI-
model that has been trained on a dataset annotated solely with historical data from the BFA.
However, the results for both the XGBoost and the SVM model evaluated on the manually
annotated dataset were unsatisfactory. The XGBoost achieved an average R-precision of 0.26,
an F1-score of 0.57, and an MCC of 0.17. SVM achieved an R-precision of 0.19, an F1-score of
0.60, and an MCC of 0.20. Since the SVM model performed much better when evaluated on
data with relevant error descriptions it had already been trained on, achieving an accuracy of
0.93, it is possible that the model is overfitted. The evaluation on the manually annotated test
set showed that the SVM model predicted approximately three times as many false positives
as true positives, and XGBoost predicted almost eight times as many false positives as true
positives. Consequently, using the model as a complement to the BFA would still require the
engineers to manually determine which of rows that the AI-model predicted that actually
contain relevant error descriptions.

The most important requirement on the model to be useful at the case company is that it
can function as a complement to the BFA. In other words, if the BFA does not find any rele-
vant error descriptions in a failed build log from Jenkins, any correct prediction by the model
is useful for the engineer. However, our best model is probably more confusing than helpful
for the engineer since it predicts far too many irrelevant rows as relevant error description.

57

7. Conclusion and future work

7.2 Future work
In this section, possible improvements in different parts of the pipeline are suggested. First,
improvements of the build logs and the dataset are described. Thereafter, improvements in
the preprocessing and training step are proposed.

7.2.1 Dataset
Considering that the models trained on the first error dataset did not achieve high perfor-
mance on the manually annotated dataset, it could be worth trying to train models on a
differently annotated dataset. The BFA only saves the first line matching each regular ex-
pression in each build log, so to prevent that lines matching the same regular expression are
annotated differently, each regular expression could be used to annotate all lines in the log
that match it as a relevant error description.

Another way to improve the dataset could be to modify what is written to the build
log files. In Section 5.2.5 it is noticed that the model is not able to distinguish between
different numbers. For example, the line definitely lost 64 bytes in 8 blocks is
annotated as a relevant error description in the training set, but the model predicts the line
definitely lost 0 bytes in 0 blocks as class 1 as well, although only the first line
indicates a memory leak. A possible solution could be to add ERROR: Memory leak in the
beginning of a line when there is a memory leak. That way, the model is more likely to
classify the line as a relevant error description since we have seen in the visualisations that
the model recognises that a line containing the word error most likely should be classified as
class 1.

A problem with only annotating the training dataset with the historical data from the
BFA is that there might be lines containing relevant error descriptions not present in the
BFA that are annotated with 0. If the model is then evaluated on the same new relevant
error descriptions, it has learnt that they are not relevant error descriptions. A manually
annotated training set would prevent that the model gets wrongly trained. Although manual
annotation is time consuming, it would most likely result in a better model.

Additionally, a column representing what type of error the relevant error description
belongs to, such as infrastructure error or user error could be added to the dataset. That way,
a machine learning model could be trained to not only detect but also classify the relevant
error descriptions. Classification would be useful for the engineers since it gives them further
insight in what caused the error.

7.2.2 Preprocessing
Since the SVM model performed much better when evaluated on relevant error descriptions
it had already been trained on, compared to the manually annotated dataset, it was concluded
that the model might have been overfitted to the data. To prevent overfitting, it could be a
good idea to introduce more variation in the dataset. For example, duplicate lines could be
removed and the most frequently occurring regular expressions could be undersampled.

The visualisation of the predictions showed that there are irrelevant words that con-
tribute to the predictions. To filter out such words, a domain specific stopword list could be

58

7.2 Future work

created and used in combination with max_df and English stopwords.

7.2.3 ML-model
We intended to try a deep learning model, but it was not possible to include in this study
due to time limitations. As previously mentioned, another study by Studiawan et. al [27] has
shown better results using deep learning models on a similar task. Therefore, it would be
interesting to see if a deep learning model would perform better on our dataset as well.

59

7. Conclusion and future work

60

References

[1] Axis Communications AB. About Axis. Available from: https://www.axis.com/
about-axis, 2022. Accessed: 2022-05-03.

[2] Steven M. Beitzel, Eric C. Jensen, and Ophir Frieder. Average R-Precision. In Ling Liu
and M. Tamer Özsu, editors, Encyclopedia of Database Systems. Springer US, Boston, MA,
2009.

[3] Hoss Belyadi and Alireza Haghighat. Machine Learning Guide for Oil and Gas Using Python,
page 186. Gulf Professional Publishing, 2021.

[4] Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller. Logchunks:
A data set for build log analysis. In Proceedings of the 17th International Conference on
Mining Software Repositories, MSR ’20, pages 583–587, 2020.

[5] Build Failure Analyzer contributors. Build Failure Analyzer. Available from: https:
//plugins.jenkins.io/build-failure-analyzer/, 2022. Accessed: 2022-04-
26.

[6] Armin Catovic, Carolyn Cartwright, Yasmin Tesfaldet Gebreyesus, and Simone Ferlin.
Linnaeus: A highly reusable and adaptable ML based log classification pipeline. In
Proceedings of the 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for
AI (WAIN), pages 11–18, 2021.

[7] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Pro-
ceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, KDD
’16, pages 785–794, New York, NY, USA, 2016. Association for Computing Machinery.

[8] David Chicco, Niklas Tötsch, and Giuseppe Jurman. The Matthews correlation coef-
ficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and
markedness in two-class confusion matrix evaluation. BioData Mining, 14(1):13, 2021.

[9] Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. Challenges when
adopting continuous integration: A case study. In Proceedings of the International Confer-

61

https://www.axis.com/about-axis
https://www.axis.com/about-axis
https://plugins.jenkins.io/build-failure-analyzer/
https://plugins.jenkins.io/build-failure-analyzer/

REFERENCES

ence on Product-Focused Software Process Improvement (PROFES 2014), volume 8892, pages
17 – 32, 2014.

[10] Elasticsearch B.V. Elastic. Available from: https://www.elastic.co/, 2022. Ac-
cessed: 2022-04-25.

[11] Martin Höst, Björn Regnell, and Per Runesson. Att genomföra ett examensarbete. Stu-
dentlitteratur, 2006.

[12] Jenkins contributors. Jenkins. Available from: https://www.jenkins.io/, 2022.
Accessed: 2022-02-08.

[13] Rahul Kumar. Machine Learning Quick Reference. Packt Publishing Limited, 2019.

[14] Brett Lanz. Machine Learning with R, Second Edition. Packt Publishing Limited, 2015.

[15] Scikit learn developers. Tuning the hyper-parameters of an estimator. Available from:
https://scikit-learn.org/stable/modules/grid_search.html, 2007-2022.
Accessed: 2022-04-12.

[16] Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A
Python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal
of Machine Learning Research, 18(17):1–5, 2017.

[17] Mat Leonard. Spam dataset. Available from: https://www.kaggle.com/datasets/
matleonard/nlp-course?select=spam.csv, 2022. Accessed: 2022-04-08.

[18] Didrik Lindqvist. Detection of infrastructure anomalies in build logs using machine
learning. Master’s thesis, Umeå University, umu-164730, 2019.

[19] Lakshmi Geethanjali Mandagondi. Anomaly detection in log files using machine learn-
ing techniques. Master’s thesis, Blekinge Institute of Technology, 2021. 21179.

[20] Rafael G. Mantovani, André L.D. Rossi, Edesio Alcobaça, Joaquin Vanschoren, and An-
dré C.P.L.F. de Carvalho. A meta-learning recommender system for hyperparameter
tuning: Predicting when tuning improves SVM classifiers. Information Sciences, 501:193–
221, 2019.

[21] Pierre Nugues. Language Processing with Perl and Prolog. Springer, 2014.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[23] Ronaldo Prati, Gustavo Batista, and Maria-Carolina Monard. Data mining with imbal-
anced class distributions: Concepts and methods. pages 359–376, 01 2009.

[24] Max Rehkopf. What is continuous integration? Available from: https://www.
atlassian.com/continuous-delivery/continuous-integration. Accessed:
2022-01-21.

62

https://www.elastic.co/
https://www.jenkins.io/
https://scikit-learn.org/stable/modules/grid_search.html
https://www.kaggle.com/datasets/matleonard/nlp-course?select=spam.csv
https://www.kaggle.com/datasets/matleonard/nlp-course?select=spam.csv
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration

REFERENCES

[25] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?:
Explaining the predictions of any classifier. CoRR, abs/1602.04938, 2016.

[26] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning. Cambridge
University Press, 2014.

[27] Hudan Studiawan, Ferdous Sohel, and Christian Payne. Anomaly detection in operating
system logs with deep learning-based sentiment analysis. IEEE Transactions on Dependable
and Secure Computing, 18(5):2136–2148, 2021.

[28] Wikipedia contributors. TF-IDF — Wikipedia, the free encyclopedia. Available from:
https://en.wikipedia.org/wiki/Tf%E2%80%93idf, 2022. Accessed: 2022-02-
04.

63

https://en.wikipedia.org/wiki/Tf%E2%80%93idf

REFERENCES

64

Appendices

65

Appendix A

Interview with Axis Communications AB

1. How accurate does the model need to be, does it have to outperform the BFA in order
to be useful for Axis? How much room for errors are there?

2. What is required for the model to be added to your pipeline? Does it need to be a
Jenkins plugin?

3. How do we minimise the maintenance of the model in the future? How do you make
sure it is trained, who does it and how often is it done?

67

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-08-25

EXAMENSARBETE Identification of relevant error descriptions in build logs using machine learning
STUDENTER Lykke Axlin, Klara Broman
HANDLEDARE Martin Höst (LTH), Marcus Klang (LTH), Gustaf Lundh (Axis), Ola Söder (Axis)
EXAMINATOR Elin Anna Topp (LTH)

Utilizing artificial intelligence to help
troubleshoot failed software builds

POPULÄRVETENSKAPLIG SAMMANFATTNING Lykke Axlin, Klara Broman

When software builds fail, software engineers often need to manually go through large
unstructured log files to troubleshoot the failure cause. In our thesis, we investigate
the possibility of using machine learning to automatically identify the relevant error
descriptions in the log files.

Have you ever wondered how certain emails end up
in your spam folder? The technique used to de-
termine whether an email is spam or not is called
text classification. In this study, we used text clas-
sification of rows in log files to help engineers find
relevant error descriptions.

Many companies use the open source automa-
tion server Jenkins to facilitate continuous inte-
gration of new code in large code bases. When
a build is run on Jenkins, a build log is created
which contains information about the build, e.g.
whether a test succeeded or not. The log files can
sometimes become very large, and going through
log files in order to troubleshoot why a build failed
is a tedious task for an engineer. At Axis Commu-
nications, an open source plugin called the Build
Failure Analyzer (BFA) is used to assist the engi-
neers with this task. The BFA scans failed build
logs for certain patterns in order to identify rele-
vant error descriptions. These patterns are hand-
crafted by the engineers and new patterns need
to be added continuously as new types of errors
appear in the builds.

In our Master’s thesis we investigated the pos-
sibility of using a machine learning model to au-
tomatically identify relevant error descriptions in
the Jenkins build logs. The overall approach was

to train a model on a dataset annotated with the
findings from the BFA, and then evaluate if the
model could detect error descriptions the BFA had
not been able to detect. In the cases when the
BFA does not find any relevant error descriptions
in the build log, it would be very helpful if the
AI-model could point the engineer in the right di-
rection.

Figure 1: Prediction by a trained model on three
build log lines

The results show that it is possible to train an AI-
model to predict new relevant error descriptions in
failed log files. However, the model predicts many
more lines as relevant error descriptions than what
are present in the file. This means that the en-
gineer still needs to look through many log lines
manually to find the relevant error descriptions.
Therefore, further improvements to the model, as
well as the dataset, are needed in order for the
model to be useful in the industry.

	Introduction
	Research questions
	Method
	Contribution
	Workload distribution

	Background
	Case company
	CI/CD pipeline
	Jenkins and Build Failure Analyzer
	Machine learning
	Supervised and unsupervised learning
	Logistic regression
	Support vector machines (SVM)
	Gradient boosting
	Neural networks and deep learning
	Hyperparameter tuning

	Preprocessing
	Term frequency-inverse document frequency (TF-IDF)
	Dimensionality reduction
	N-grams
	Data resampling

	Metrics
	Basic metrics
	Accuracy
	Precision
	Recall
	F1-score
	Matthews correlation coefficient (MCC)
	Average R-precision

	Related work
	Build log annotation
	Model selection
	Anomaly detection and error classification
	Log file classification pipeline

	Method
	Overall approach
	Interview
	Data collection
	Jenkins build logs
	Collecting data

	Dataset creation
	Dataset structure
	Dataset statistics

	Preprocessing
	Data split and stratification
	Text vectorisation
	Over- and undersampling techniques
	Dimensionality reduction

	Models
	Grid search and hyperparameter tuning
	Evaluation
	Row evaluation method
	First error evaluation method

	Visualisation of predictions

	Result
	Interview
	First iteration
	Pipeline verification
	Random split
	Server stratification
	Regular expression stratification
	False positive example
	Hyperparameter tuning

	Second iteration
	Different undersampling strategies

	Third iteration
	Baseline model
	XGBoost
	Regular expression oversampling
	Manual hyperparameter tuning
	Dimensionality reduction
	Unannotated relevant error descriptions
	Evaluation on manually annotated dataset
	Visualisation of predictions

	Discussion
	First iteration
	Dataset
	Undersampling
	Metrics
	Stratification strategies
	Hyperparameter tuning

	Second iteration
	Undersampling
	Evaluation method

	Third iteration
	Evaluation on first error dataset
	Evaluation on manually annotated dataset
	Visualisation of predictions

	Data split
	Practical usage at the case company
	Threats to validity

	Conclusion and future work
	Conclusion
	Future work
	Dataset
	Preprocessing
	ML-model

	References
	Appendix Interview with Axis Communications AB

