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Abstract

Sepsis is a life threatening condition where the body’s reaction to

an infection results in a dysregulated immune response - ultimately

causing damage to tissues and organs. The syndrome is diverse,

both in underlying biology, disease manifestation and severity, and

is therefore divided into endotypes and further into subphenotypes.

Further understanding of the biological pathways of the various

sepsis types is required in order to develop targeted diagnostic and

therapeutic tools necessary to combat the disease. In this thesis, the

plasma proteome of patients suffering from two subphenotypes of

septic acute kidney injury with varying severity were analyzed. The

proteomic data was combined with the Reactome pathway data-

base, and leveraged to generate and train a biologically informed

neural network in classifying the two subphenotypes. The network

was able to distinguish between the subphenotypes, achieving an ac-

curacy of 98.2± 0.02% when created with four hidden layers. The

informed nature of the network allows for introspection into the net-

work’s decision making - allowing us to utilize feature importance

values to interpret which proteins and biological pathways the net-

work deemed important for classification. Ultimately, this identified

several biomarkers for the subphenotypes including apolipoproteins,

histones and known inflammatory markers such as CD14 and os-

teopontin. The algorithm generating the biologically informed net-

work was generalized and is publicly available as a Python package:

https://github.com/InfectionMedicineProteomics/BINN.
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Lay summary

Utilizing machine learning to understand sepsis

Sepsis is one of the deadliest syndromes in modern time, with little

to no effective therapies available. In this project, machine learning

was utilized to gain insight into the underlying biology of sepsis -

a necessary step in finding novel and effective treatments and dia-

gnostic tools.

Sepsis is a syndrome (collection of symptoms) which is responsible

for ∼ 20% of global deaths each year. It is extremely diverse and

complex, rendering it difficult to both diagnose and treat. Recently,

researchers have classified various types of sepsis and recognized

that unique therapies are required for the different types. However,

before creating treatments and diagnostic tools, we need to under-

stand the underlying biology of the various types - which is easier

said than done.

In this project, machine learning was utilized to understand the bio-

logy of a specific type of sepsis which is characterized by damage to

the kidney (referred to as septic acute kidney injury or AKI). Ma-

chine learning is a way to make a machine find patterns in complex

data - and sepsis as a disease can be seen as a complex mixture

of biological molecules. Finding the pattern in this soup of mo-

lecules is therefore a task fit for machine learning, and could help

us understand the disease.

An algorithm named a biologically informed neural network - that

is: a machine learning algorithm (specifically a neural network)

that reflects the underlying biology of the disease (hence biologically

informed) was devised. Creating such an algorithm solves the black

box problem in machine learning, which states that it is impossible
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to understand what a machine learning algorithm is doing when it is

solving a problem. It also allows for introspection into the algorithm

and understand what parts of the biology it finds important and

interesting when analyzing specific types of sepsis.

The algorithm allowed for the finding of proteins and biological

pathways which were important in classification of septic acute in-

jury of different severity. It was generalized to be compatible with

any type of condition, disease or syndrome. Further, the algorithm

is available in a public repository, and anyone can now create a bio-

logically informed neural network with one line of code. Therefore,

it can be utilized in other experiments to not only progress in the

development of treatments and diagnostics of sepsis - but also other

diseases.
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1 Background

1.1 Sepsis

Sepsis is a life threatening condition where the body’s response to

an infection results in injury to tissues and organs, formally defined

by the Third International Consensus as: “organ dysfunction caused

by a dysregulated host response to infection” [1]. In 2017, 49.8 mil-

lion cases of sepsis resulted in 11 million deaths worldwide - rep-

resenting 19.7% of global deaths [2]. That same year, sepsis was

recognized as a global health priority by the WHO, urging member

states to action, with a priority goal of “developing national policy

and processes to improve the prevention, diagnosis, and treatment of

sepsis” [3]. International collaborations, such as the Global Sepsis

Alliance [4] and the European Sepsis Alliance [5], are funding re-

search and development in order to combat the syndrome. This

united effort has resulted in accelerated data gathering and research

in the area of sepsis diagnostics and prevention.

During sepsis, pathogen associated molecular pattern-derived or

damage-associated molecular patterns (DAMPs) initiate an excess-

ive inflammatory response after binding to receptors such as toll-like

receptors (TLRs) on immune cells, resulting in the upregulation of

both inflammatory and anti-inflammatory pathways [6]. The patho-

physiology of sepsis is the result of a complex interaction between

the various parts of these inflammatory pathways and pathological

molecules, leading to a multifaceted disruption of the regulation of

the immune system, which, in a healthy state, is finely tuned [7].

The host response to sepsis varies greatly and may result in symp-

toms ranging from mild to very severe, including coagulopathy (im-

paired blood-clotting) [8], acute respiratory distress syndrome, [9],
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acute kidney injury [10], septic shock and death.

The varied disease manifestations resulted in a weak consensus on

the definition of sepsis, which led to the differentiation of distinct

sepsis endotypes, largely defined by gene expression and distinct

biological pathways [11]. Furthermore, the endotypes can be di-

vided into subphenotypes of varying severity and manifestations

[12], [13]. Analysis of the various types of sepsis has motivated

large cohort studies, where stratification using biological and clin-

ical markers have been successful in early discrimination of some

sepsis endotypes and subphenotypes. One such study is the FIN-

NAKI study, a prospective observational study including 2901 pa-

tients where the incidence, risk factors and outcome of AKI were

monitored [14]. AKI is characterized by a reduced glomerular fil-

tration rate (GFR), leading to fluid and electrolyte-imbalances and

is accompanied by a high mortality rate (∼ 40%) [14]. Two sub-

phenotypes of AKI of varying severity have been identified in the

FINNAKI cohort by latent class analysis based on comorbidities,

clinical data and biomarkers. The more severe subphenotype was

found to be characterized by an increase in inflammatory and en-

dothelial injury markers and associated with a lower chance of renal

recovery and increased mortality [15].

Advances in areas such as transcriptomics, metabolomics and pro-

teomics have yielded insight into some of the mechanisms under-

lying sepsis and the different endotypes, although the complexity

of the syndrome leaves much to be wanted in terms of diagnostics,

treatment and further understanding of the mechanisms of disease.

Currently, there are no targeted therapies for sepsis, and further un-

derstanding of endotype-specific therapeutic targets and biological

pathways is needed to ensure the success of future clinical trials

[16]. This motivates the development and implementation of novel

methodologies which are capable of incorporating vast amounts of

information to unravel the complexity of the biological pathways

involved in the pathogenesis of sepsis. Approaches utilizing ma-
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chine learning have emerged as good candidates in similar fields of

research due to their ability to capture complex patterns in high di-

mensional data, making them suitable for the analysis of biological

systems.

1.2 Machine learning

Machine learning is a set of methods whereby data is leveraged

to tune the predictive performance of a model on certain tasks

and is commonly seen as a subset of artificial intelligence. The

term “learning” is regularly mistakenly associated with the human-

like characteristic of acquiring general and transferable knowledge,

suggesting that the field of machine learning is set out to create

human-like machines with human-like intelligence. This is not the

case, as machine learning is simply a set of algorithms that optim-

ize performance by tuning parameters and does so by minimizing

loss defined by some loss function. The core goal of a machine

learning model is to, based on some set of data drawn from an

unknown probability distribution, build a model of the space of oc-

currences that is accurate enough to be able to predict the outcome

of new occurrences. The model’s ability to correctly identify new

data points is central, and corresponds to a suitable complexity of

the hypothesis proposed based on the given data. Often, the high

dimensionality of the space and the comparatively smaller number

of samples makes the problem of generating a suitable hypothesis

difficult (often referred to as the curse of dimensionality). The pro-

cess of generating a hypothesis from a given set of data points is

often referred to as training the model [17].

A data point is represented as a vector of features, the nature

of which highly influences the performance of the model. Poorly

chosen or expressed features may result in a poor representation of

the data, and a large part of the workflow when working with ma-

chine learning models is dedicated to feature selection and feature
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engineering to counter this [18]. Common practices in feature engin-

eering include normalization, encoding, scaling and dimensionality

reduction. A feature vector can be viewed as a point in feature

space, which represents all possible combinations of features.

Machine learning methods are typically divided into three categor-

ies based on the nature of the model’s inputs and outputs: super-

vised learning, unsupervised learning and reinforcement learning.

This work mainly utilizes methods of supervised learning, where

the training input consists of both example inputs and desired out-

puts (also referred to as label), and the goal of the model is to

generate a rule which maps the input to the appropriate output. In

unsupervised learning there are no labels, and only the features of a

data point are known. A common method of unsupervised learning

is data clustering where unlabeled data points are labeled based on

some metric (often euclidean distance) and method (such as Ward

minimum variance method [19]).

Although current machine learning methods show no signs of ac-

quiring anything like human intelligence, novel techniques and ad-

vances in model architecture do seem to blur the boundaries between

human-like intelligence and elementary predictive performances [20].

One may therefore divide machine learning techniques into classical

machine learning algorithms, and those characterized by the use of

modern techniques such as neural networks (often denoted as deep

learning).

1.2.1 Classical methods

Classical machine learning algorithms were introduced in the 1950’s

and are mostly based on statistics and probabilistic reasoning [21].

There are several classical ML methods which achieve high accuracy

while being simple, making them attractive for numerous applica-

tions.
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Support vector machines

A support vector machine (SVM) is a robust non-probabilistic bin-

ary classifier, which separates the classes by dividing the feature-

space with a hyperplane. New occurrences are mapped onto the

space and classified based on the spatial situation relative to the

hyperplane. The goal is to find the hyperplane which maximizes

the distance between the hyperplane and the points of both classes

[22]. There are various kernels which may be used for non-linear

classifications, the most used one being the radial basis function

(RBF) [23].1

A hyperplane, H, can be written as:

H : wTxwTxwTx− b = 0

where www is the normal vector to the hyperplane.

If we have two classes with labels (1,−1), which are linearly sep-

arable, we can select two parallel hyperplanes which separate these

classes so that the distance between these hyperplanes is maxim-

ized. The two hyperplanes can be written as:

wTxwTxwTx− b = 1

and

wTxwTxwTx− b = −1

The distance between the planes are 2/||www||, so maximizing this dis-

tance can be achieved by minimizing www, while keeping data-points

on the correct side of the margin. This results in the optimiation

problem of minimizing ||www|| subject to yi(w
TxiwTxiwTxi − b) ≥ 1.

1The Iris flower dataset https://en.wikipedia.org/wiki/Iris_flower_
data_set was used for all classical ML visualizations.
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To separate classes that are not completely linearly separable (which

is often the case), we define the hinge loss function:

max(0, 1− yi(w
TxwTxwTxi − b))

This function is zero if a point xi lies on the correct side of the

margin, and proportional to the distance if on the wrong size of the

margin. Large errors are therefore penalized greatly. We now get a

new optimization problem, where the goal is to minimize:

λ||www||2 + (
1

n

n∑
i=1

max(0, 1− yi(w
TxwTxwTxi − b)))

where λ is a trade-off parameter between the margin-size and cor-

rect classifications.

Tree based algorithms

Tree-based algorithms use decision trees where features are repres-

ented as nodes in a tree-like structure. The connections (branches)

between the nodes are based on different sets of feature values. De-

cisions are represented as leaves, i.e., terminal nodes. When making

a classification, the tree is traversed according to which set each fea-

ture belongs to. Eventually, a leaf is reached, and a classification is

made. Generating a tree entails creating a tree-architecture where

data is separated based on feature cut-offs which are deemed to

stratify the data optimally. To decide which order to place nodes,

and which feature and cut-off to subset the data on, entropy (dis-

order) is used to calculate the information gain.

Entropy, E, of a state, S, is defined as:
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Figure 1.1: Fitting an SVM to data consisting of three classes (red,
blue, white) with different kernels results in different
divisions of the feature-space. The linear kernel is limited
to linear divisions of the space, whereas the radial basis
function (RBF) kernel can divide the space to better fit
the data.

E(S) =
n∑

i=1

−pilog2pi

where pi is the probability of an event of state S. We can calculate

the entropy of multiple features:

E(S,X) =
∑
c∈X

P (c)E(c)

where X is the selected feature. Thereafter, the information gain,

I, can be calculated as a decrease in entropy after splitting the data
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on the given feature value:

I(S,X) = E(S)− E(S,X)

There are several modern and widely used implementations of tree-

based learning algorithms such as random forests [24] and they all

differ slightly. Furthermore, tree-based models are often used in

boosting - where “weak learners” (algorithms that only do slightly

better than random) are used in ensembles to generate a good pre-

diction model. Gradient boosters utilize gradient descent to gen-

erate weak learners that complement each other well. XGBoost

[25] and LightGBM [26] are examples of efficient gradient boosted

machines utilizing tree-based models.

k-nearest neighbours

The k-nearest neighbors (k-NN) algorithm is a theoretically simple

algorithm, whereby points are classified in the feature space based

on their proximity to other labeled data points. Training constitutes

mapping data to the feature space, and classification is conducted

by counting which label is most frequent amongst the k nearest

neighboring data points [27].

Let d be some distance metric (e.g., Euclidian) and k a defined

positive integer. The algorithm of classifying a data-point, x, with

k-NN can then summarized as follows:

1. D ← d(x, xi) for i = 1, ..., n

2. Sort D in increasing order.

3. D ← D(1, ..., k)

4. Let Ki define the number of data-points belonging to class i

among D.
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Figure 1.2: A trained decision tree where leaf nodes are colored
according to the classification of that node. Each node
subsets the samples based on features of the dataset.
Traversing the tree (starting at the top) classifies a given
data-point.

5. Assign x to class max(Ki)

1.2.2 Neural networks

The fundamental concept behind neural networks was identified

by Donald Hebb in 1949, who proposed that neuronal connections

strengthen with use: “Cells that fire together, wire together” [28].
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Figure 1.3: The decision boundaries of a k-NN algorithm. Three
classes (red, white, blue) are placed onto the
feature-space. The decision boundaries specify what a
new data-point would be classified as if placed in the
feature space at a given position.

The first computational Hebbian network was created in 1954, res-

ulting in the advent of machine learning with neural networks [29].

A typical neural network is characterized by connected nodes (arti-

ficial neurons) arranged in layers, where real values are transmitted

as signals. The connective edge (synapse) between nodes applies

a weight (multiplicative factor) and a bias (additive factor) to the

signal, thus applying a linear transformation to the input. These

parameters are altered when training the neural network. Nodes

then apply some function (activation function) to compute its out-

put. Performing sequential transformations to the input through

several layers results in an output, which may e.g., be a classifica-

tion decision.
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y = f(
∑
i

xiwi + b)

where y - output, f - activation function, x - feature vector, w -

weight and b - bias.

Training the neural network means tuning the weights and biases of

the network so that a given input results in the wanted output when

passed through the network. The process of tuning the parameters

is done through back-propagation [30]. In back-propagation, the

gradient of the loss function with respect to each weight is calcu-

lated. The gradients can then be used to optimize the network as

we would like to tune the weights in the opposite direction of the

gradient, since this represents the steepest downward direction of

the loss landscape, in which we seek to find the minimum. The

algorithm used to tune the weights using the gradients is referred

to as the optimizer.

The typical architecture of a neural network consists of an input

layer, several hidden (intermediary) layers, followed by an output

layer with dense connections (every node in a given layer is con-

nected to every node in the subsequent layer). However, many

variations of this architecture exist and may include skip connec-

tions (as in a ResNet) [31], or convolutional layers as in most neural

networks designed for image analysis-related tasks [32]. The com-

binatorial nature of several densely connected hidden layers leads

to a large number of trainable parameters as exemplified in the

language model GPT-3 which contains 175 billion parameters [33],

or in BLOOM containing 176 billion trainable parameters. The

large number of parameters make the networks timely and resource-

intensive to train.

Neural networks have outperformed most of the classical ML tech-

niques and are in use in many applications, prominently in visual

classification tasks such as autonomous driving. However, they suf-
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fer from a lacking interpretability which hinders their use in areas

such as health care due to a lack of trust from both patients and

officials. The set of parameters in a trained model aren’t under-

standable by humans and often fail to reflect real phenomena, and

large neural networks are therefore often denoted as black boxes.

Furthermore, several neural networks have faced criticism due to

their focus on unimportant features and their feebleness when faced

with obstructed or noisy data, making them unsuitable for several

real-world applications [34].

1.3 Explainable artificial intelligence and

Shapley values

In an attempt to illuminate these “black box” models, a new sub-

field focusing on the interpretability of artificial intelligence has

come forth - explainable AI (XAI). XAI includes methods that en-

able the interpretation of models so that they may be more read-

ily implemented in real-world scenarios. The understanding of a

model’s reasoning when generating an output may also help gain

insight into solutions of the problem which it is set out to solve

by e.g., highlighting key features or decisions made when making a

classification [35].

Knowing which features are deemed “important” for a model’s

decision-making is necessary when interpreting it. From a game

theoretic perspective, one may consider the feature importance as

the marginal contribution of the feature (player), after considering

each combination of features (coalitions) when making a correct

classification (desired outcome). It can be shown that the set of

marginal contributions with certain desirable properties is unique.

This set of solutions is called the Shapley values and is named

after Lloyd Shapley, who won the Nobel Prize in economics for the

concept in 2012. Shapley values are expensive to calculate, since
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one has to average the contribution of every player across all differ-

ent coalitions of players, resulting in 2n combinations. In practice,

the values are estimated using a subset of all possible coalitions.

Variants of Shapley values have been introduced and applied to ML

models, one being Shapley Additive Explanations (SHAP) [36]. In

SHAP we want to simplify our model f using a simplified explana-

tion model g. We simplify our feature vector x to x′, and introduce

a mapping function hx(x
′) = x. SHAP uses the linear explanation

model:

g(z′) = ϕ0 +
M∑
i=1

ϕiz
′
i

where z is a coalition vector ∈ {0, 1}M and ϕi the feature import-

ance for feature xi. Three properties (local accuracy, missingness

and consistency) are given to define ϕ:

1 :1 :1 : f(x) = g(x′) = ϕ0 +
M∑
i=1

ϕix
′
i

2 :2 :2 : x′
i = 0⇒ ϕi = 0

3 :3 :3 : f ′
x(z

′)− f ′
x(z

′i) ≥ fx(z
′)− fx(z

′i)⇒ ϕi(f
′, x) ≥ ϕi(f, x)

Then, ϕ is uniquely defined and are the same as the Shapley val-

ues. Although other feature attribution methods exist, such as

LIME [37] and DeepLIFT [38], SHAP provides a unified framework

applicable to various ML models with greater correspondence to

human intuition than contemporary methods.
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1.4 Mass spectrometry protemoics

The ability to study the proteomic content of samples is realized

by the mass spectrometer (MS) [39]. MS is an instrument that

measures the mass to charge ratio (m/z) of molecules in a sample.

The ratio, alongside spectral libraries, and alternatively some prior

knowledge about the content of the sample, is used to infer the con-

stituents of the molecules and thereby identify them. There are sev-

eral workflows for identifying the content of biological samples de-

pending on the nature of the sample and the experiment. However,

all bottom-up proteomic workflows begin with digestion - where

the proteins in a biological sample are digested by sequence-specific

or unspecific proteases (commonly trypsin). The resulting pep-

tides are separated through liquid chromatography and then ionized

(various ionization techniques exist such as electrospray ionization

(ESI) and matrix assisted laser desorption ionization (MALDI). The

ionized peptides are then separated by their m/z using an electric

or magnetic field. In order to identify these peptides, another MS

is performed in tandem (MS/MS), where peptides are fragmented

and their resulting fragments ions m/z are analyzed. The second

fragmentation and separation enable the distinction between pep-

tides of similar m/z. The resulting spectra is then analyzed by

some software, and the peptide content quantified by integrating

the precursor-ions signal peaks [39].

MS/MS-workflows are commonly grouped into: data-dependent ac-

quisition (DDA), data-independent acquisition (DIA) and selected

reaction monitoring (SRM) where DDA can be used for discovery

proteomics methods, and SRM is a targeted method. DIA falls in

between the two methods, and is often used for targeted methods

but may also be used in discovery proteomics. In targeted methods,

there is a search for a set of predetermined molecules in the sample,

and the goal is to quantify these [40]. In discovery proteomics, the

search is unbiased, and the goal is to discover and quantify all pro-
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teins that are present in the sample. Although DDA and DIA are

both used in unbiased discovery proteomics, they differ in several

aspects. In DDA, certain selected intense peptides from the first

MS survey scan are analyzed by MS/MS, whereas in DIA, the mass

range is divided into mass windows, in which all precursors in a

given mass window are subjected to MS/MS. Multiple windows are

sequentially employed until the complete mass spectra is analyzed.

The cycle time and window-size need to be tuned to achieve good

quantification[41]. Since many peptides are fragmented together

in an m/z-window, the resulting MS/MS spectra in DIA analyses

are complex, and require computationally expensive deconvolution.

Therefore, a targeted DIA approach is utilized alongside a spectral

library generated by DDA. This allows for the superior quantifica-

tion and peptide discovery DIA entails while reducing the complex-

ity of the deconvolution [42].

1.5 Machine learning and sepsis

ML has been applied in means of finding novel tools for early dia-

gnostics and treatments of sepsis [43]. Most of the methods for early

sepsis predictions utilize electronic medical records (EMR), which

largely consist of unstructured data such as clinical notes or images,

but also include data such as vitals, patient data and investigative

metrics (e.g., white blood cell count) [44]. Some of these models,

such as SERA [44], outperform physicians in predicting sepsis risk

and may act as support to clinical decision making. However, there

is still an aversion towards their implementation in a hospital set-

ting due to both a lack of trust and clinical studies needed to assess

patient relevant outcomes [45]. Although the proteomic profile of

sepsis has been analyzed [46], [47], [48], proteomics data remains

underutilized in classifying and stratifying sepsis, and the proteomic

profile of sepsis endotypes and subphenotypes is poorly understood.
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1.6 Reactome

DIA and DDA MS/MS results in vast proteomic datasets, contain-

ing tens of thousands of peptides mapping to several thousand pro-

teins. Interpreting the data is often difficult, but facilitated by data-

bases and tools such as UniProt [49], Ensembl [50] and Reactome

[51]. The Reactome pathway database is central to this project, and

contains molecular details of biological processes, where proteins are

linked to molecular function and their physiological context. Each

subsequent level in a pathway can be seen as a further abstrac-

tion of the previous, finally resulting in high-level categories such

as “Disease”, “Apoptosis”, “Signaling” and “Metabolism”.

1.7 Biologically informed neural network

The idea of using the Reactome pathway database to generate a

biologically informed neural network (BINN) was realized by Van

Allen et al. [52]. They introduced a method to linearize the hu-

man Reactome graph, where-after it could be converted to a neural

network. Their BINN utilized gene-related data to stratify prostate

cancer, after which the trained network was interpreted. Since each

node and connection is annotated the network is easily explainable,

and they were able to find, and verify in vivo, novel molecular al-

terations which were important in predicting advanced disease.
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2 Introduction

Sepsis is a diverse and complex syndrome associated with detri-

mental outcomes. There is a great need for targeted therapeut-

ics and methods of early diagnosis, which are unavailable today.

It has become apparent that the path towards effective diagnostic

tools and targeted therapeutics of sepsis require: 1. a distinction

and deeper understanding of the various endotypes and subphen-

otypes, and 2. an approach that incorporates the vast amount of

information necessary to capture and untangle the complexity of

the different types [16]. The ability to capture a large portion of

the proteomic environment in tissues using a mass spectrometer al-

lows for the analysis of large quantities of biological data. However,

many contemporary methods utilizing proteomic data select few in-

dividual proteins based on their level of differential expression, and

subject them to further studies. This low-throughput approach

fails to incorporate all the available data, and therefore may miss

important factors, the additive effect of which are bound to have

implications on their study. Furthermore, this type of experiment

fails to capture the overarching structure which constitutes biolo-

gical pathways and processes, which are key in understanding a

given condition.

The goal of this thesis was to implement a data-driven approach to

investigate how the complete proteomic profiles of two subpheno-

types of septic AKI differ - and whether their profiles convey inform-

ation about the underlying biology of the two conditions. Prior to

computational analysis, a proteomic dataset was generated by ana-

lyzing the blood plasma of patients suffering from septic AKI with

DIA mass spectrometry, and stratified to the two subphenotypes

[15]. The informatic analysis is divided into three main methodolo-
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gies: firstly, a rudimentary analysis of the dataset and the differen-

tially expressed precursors and proteins was performed. Thereafter,

general machine learning methods were utilized to stratify the sub-

phenotypes, showcasing that it indeed is viable to use proteomic

data for subphenotype stratification in a machine learning setting.

The main emphasis of this thesis lies in the creation and interpret-

ation of a biologically informed neural network. We present an al-

gorithm that allows for the generation of a sparse network given an

input dataset (in this case the proteomes) and a directed graph (in

this case the Reactome pathway database [51]), in which the connec-

tions are defined by the given graph. This generates a completely

annotated network, which allows for introspection. Furthermore,

SHAP values were used to interpret the network by estimating the

feature importance among its nodes and layers. Thereby, insight

was gained into which biological phenomena are reflected in the

proteomic data and are important for the classification. This work-

flow utilizes a data-driven deep learning approach to gain insight

into the underlying biology of the given condition. The algorithm

was generalized and is applicable to any type of disease, syndrome

or condition, and is packaged and available in a public repository:

https://github.com/InfectionMedicineProteomics/BINN.
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3 Methods

The ultimate goal of this project is to utilize a data-driven machine

learning approach to stratify two subphenotypes of septic AKI from

proteomic data. To do so, the general characteristics of the data

was analyzed and the dataset subject to classification using classical

ML methods. Thereafter, a generalized algorithm of creating a bio-

logically informed neural network was created, and used to create a

sparse, informed neural network. The network was then introspec-

ted and interpreted, after which insights gained were used to cluster

the dataset. The methodology is therefore presented according to

the following structure.

1. Firstly, the dataset is presented (section 3.1).

2. Thereafter, the data is processed and its general characterist-

ics investigated (section 3.2).

3. Thirdly, the data is subjected to classification with classical

ML methods (section 3.3).

4. The BINN is then generated, evaluated and interpreted (sec-

tion 3.4).

5. Lastly, clustering was performed on the dataset utilizing in-

sights gained from the BINN (section 3.5).
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3.1 Dataset and acquisition

The dataset used in this thesis is derived from the FINNAKI study

[14] where patients with sepsis were screened for acute kidney injury

(AKI). Two subphenotypes (henceforth referred to as subphenotype

1 and 2) of AKI with different clinical outcomes have been iden-

tified in the dataset, which were used as classification labels [15].

The two subphenotypes differ in severity, where subphenotype 2 is

more severe - resulting in lower probability of renal recovery and

an increase in mortality. The final dataset is a combination of two

datasets: a longitudinal dataset, where plasma samples were taken

from 23 patients at 5 different timepoints, and a subtypes dataset

where the subtypes were determined for 141 plasma samples. In

total there are 263 unique samples. Out of those, 197 could be

stratified to one of the two subphenotypes (subphenotype 1: 74,

subphenotype 2: 123) and 66 were unclassified (figure 3.1A). The

two datasets were separately processed with the same OpenSWATH

[42] workflow. The longitudinal dataset contained less peptides (fig-

ure 3.1B) and proteins than the subtype dataset (subtypes: 1090

proteins, longitudinal: 604 proteins. The final dataset was a result

of the intersection between the two datasets and contains 563 unique

proteins (figure 3.1C). The discarded proteins generally contained

few peptides and a higher Q-value (false discovery rate-adjusted

p-value) than included proteins (figure 3.1D).

3.2 Data processing and general char-

acteristics

Prior to merging the datasets, the data is filtered and normalized

separately. The peptide lists were filtered on Q-value to keep pep-

tides with Q-value ≤ 0.01. Data was normalized using the sample

mean, and by using a retention time-mean sliding window filter.

Thereafter, the data can be merged to a single peptide list. When
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Figure 3.1: A) Pie-chart of number of subtypes. The final dataset is
the intersection of two datasets: longitudinal and
subtypes. There are 197 labeled samples, out of which 74
are of subphenotype 1 and 123 of subphenotype 2. B)
Venn-diagram of number of the precursor overlap in the
two datasets. 75% of the precursors in the longitudinal
dataset is included by the subtypes dataset. C)
Venn-diagram of the protein-overlap in the two datasets.
93% of the proteins in the longitudinal dataset is
included in the subtypes dataset. D) Kernel density
estimation (Gaussian kernel) of the protein Q-value and
the number of peptider per protein. The 568 proteins
which are discarded from the dataset generally have few
peptides and a higher Q-value than the included proteins.
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merging, the retention time was kept from the subtypes dataset.

Protein abundances were quantified using the MaxLFQ-method, in

which pair-wise peptide and protein ratios are used to determine

the protein quantity in each sample [53]. This results in a protein

matrix, containing the protein abundance for each protein in each

sample. The matrix is scaled by removing the mean and scaling to

unit variance:

z =
x− µ

s

The transformed protein abundances were used as features for the

coming machine learning applications.

The general characteristics of the dataset were analyzed in various

ways. Firstly, differential expressions on precursor and protein level

were evaluated using linear regression. In differential expression

with linear regression, lines are fitted to the data points and the

differences between the parameters of the resulting linear functions

between groups are statistically evaluated. Methods from the in-

house DPKS-package 1 were used for quantization, normalization

and differential expression.

When summarized absolute measurements were evaluated, such as

the number of peptides per protein in each group, values were cor-

rected by the imbalance in number of samples per group.

3.3 Classical machine learning

Four classifiers: SVM (RBF-kernel), k -NN, RF, XGBoost, Light-

GBM, were trained using k -fold cross validation (k = 5). In k -fold

cross validation, the data is divided into k subsets. During each

fold, subset n is used for validation and all other k-1 subsets used

for training. After each fold, n is incremented until all the folds

have been used for validation. This technique utilizes the complete

1https://github.com/InfectionMedicineProteomics/DPKS
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dataset, and allows for the use of statistical measures for inter-

model comparisons, as k models may be trained and evaluated.

The accuracy, sensitivity, and specificity of the various methods

were evaluated using the area under the receiver operator charac-

teristic (ROC) curve (AUC) and true positive/true negative rates.

3.4 Biologically informed neural network

(BINN)

The following subsections describes how the BINN is generated (sec-

tion 3.4.1), evaluated (section 3.4.2) and interpreted (section 3.4.3).

3.4.1 Generating the BINN

The BINN architecture is automatically generated from the union of

all the proteins present in the proteomic dataset and the Reactome

pathway database. An example of a path in the Reactome pathway

database can be seen in figure 3.2.

The BINN is generated using the following algorithm:

1. Subset the Reactome pathways database (directed graph) us-

ing the union of proteins by recursively adding the parental

pathway, starting at the protein level, until the highest level

of nodes is reached.

2. Generate a network from the subsetted pathways and add an

output node connected to the highest level of nodes. The

number of output nodes correspond to the number of classes

the network is set to predict, in our case 2 for the subpheno-

types.

3. Starting at the output node, traverse the network backwards
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Figure 3.2: Example of a path in the Reactome pathway database. A
protein (Procathepsin L) is mapped to biological
pathways/processes with increasing level of abstraction.
Each node can be seen as a sub-process of the following
node.
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for N layers If reaching a terminal node before N layers have

been reached - add a copy of the previous node. This implies

that the path depth ≤ N + 1.

4. Remove nodes which have not been traversed.

5. Finally, connect proteins to the final corresponding terminal

nodes.

The resulting architecture can be translated to a neural network by

pruning the connections of each layer using a weight mask corres-

ponding to the connectivity matrices of the respective layer. The

output for a node is therefore:

y = f((MW )Tx+ b)

where M is the masking matrix and W the weight matrix. The

neural network was implemented in PyTorch - a common machine

learning framework in Python. The network is sparse, containing

trainable parameters in the thousands, as compared to 105 to 106

- which would be the case for densely connected networks with

similar structure. A summation of the workflow can be seen in

figure 3.3. Out of 563 proteins in the original dataset, after filtering

and subsetting on the proteins present in the Reactome database,

446 proteins were left and used as input features. At the time

of writing, the downloaded Reactome pathway database contained

2603 edges, of which 1856 (71.3%) were included in the network

subsetted on the proteomic dataset.

Each hidden layer is followed by the hyperbolic tangent activation

function:

tanh(x) =
e2x − 1

e2x + 1

The connections between hidden layers are intersected by a dropout

layer, which randomly nullifies 20% of connections between layers.
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Figure 3.3: The BINN is generated by subsetting and linearizing the
Reactome pathway database. The sparse graph is
translated to a PyTorch framework. The sparsity of the
connections reduces the number of trainable parameters
in the network 100-fold to 1000-fold. Increasing the
number of layers in the network naturally increases the
number of trainable parameters, although the number of
parameters is still very low compared to contemporary
deep neural networks.
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Using dropout is a common regularization technique implemented

to reduce over-fitting [54]. Batch normalization was also applied

after each hidden layer, to reduce the risk of vanishing or exploding

gradients [55]. When training, the network seeks to reduce the

cross-entropy loss function using an Adam optimizer. The cross

entropy function is defined as:

Loss = −
n∑

i=1

tilog(pi)

where ti is the truth label and pi the probability for the i:th class.

The loss function is weighted to account for the class imbalances in

the dataset. Learning rate is initialized at 10−4, and reduced tenfold

when reaching a plateau in the loss landscape. Weight decay (L2-

regularization) is applied as another means of reducing the risk of

over-fitting. Parameters were initialized in accordance with Xavier

uniform initialization for fast conversion [56]. A summation of the

BINN architecture can be seen in figure 3.4.

It should be of note that the Reactome pathway graph has to be

manipulated to generate the layered structure necessary for a se-

quential neural network. Therefore, as outlined in the algorithm

above, nodes may have to be removed or inserted to fit the desired

structure. The possible scenarios regarding path length and desired

pathway length are outline in figure 3.5.

3.4.2 Evaluating the BINN

All performance evaluations were conducted with k -fold cross val-

idation (k = 5). Models with different numbers of hidden layers

(3 ≤ hidden layers ≤ 6) were generated using the aforementioned

algorithm and evaluated. To investigate how dependent the model

is on data, models were trained on data-subsets of varying sizes. All

models were trained for 100 epochs. Where the number of layers is

not explicitly stated, 4 layers were used to generate the model. This

27



Figure 3.4: A visualization of the BINN architecture. Parameters are
initialized with Xavier uniform initialization. Layers are
connected sparsely as per defined by the Reactome
database. Batch normalization and dropout layers follow
each hidden layer. A hyperbolic tangent function is used
as activation function. The number of hidden layers (N)
is user defined. An ADAM optimizer with
L2-regularization is used to minimize the cross entropy
loss function in training.
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Figure 3.5: The possible scenarios of which path length versus
desired network length, two of which require some
manipulation of the database graph. Here, p denotes a
protein, and the numbers in each node corresponds to the
length from the terminal (most abstract) node. A) The
path length is exactly the desired length. In such a
scenario, no graph-manipulation is made. B) The desired
length is shorter than the length in the database. In such
a scenario, N nodes are kept and the final p-node is
attached to node(N). C) In the final scenario, the desired
length is longer than the path length in the database. If
so, a copy - in this case 3′, is made of node 3, and the
protein is attached to the copy.
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was chosen to minimize the number of copies introduced during the

generation of the BINN (72 copies for 4 hidden layers as compared

to 367 copies for 5, see supplementary 6.1).

3.4.3 Interpreting the BINN

SHAP values were used to explain the contribution of each node

in the network. The values were estimated using Deep SHAP - a

combination of DeepLift and SHAP values as implemented in the

SHAP python package. Deep SHAP utilizes a subset of the dataset

to establish the expected outcome of the model, and then evaluates

the outcome of an instance by comparing it to the expected out-

come. Therefore, it is important that the class distribution of the

background and evaluation data is held equal. 70% of the data was

used as background and the remaining 30% to generate SHAP val-

ues. Since evaluation of the feature importance is done separately

from evaluation of metrics related to accuracy, the interpreted net-

work was trained on the entire dataset. The marginal contribution

of a single node to each class was calculated by computing the mean

of the absolute importance for each evaluation instance:

s =

∑N
i |Si|
N

where s - normalized SHAP value, Si - SHAP value for instance i

and N - number of evaluations.

Contribution was normalized between layers, to remove inter-layer

discrepancies (assuming that each layer contributes equally to the

prediction).
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3.5 Clustering

To verify that the most important features identified by Deep SHAP

are indeed significant features for classification, hierarchical clus-

tering was employed on the ten proteins deemed most important.

Agglomerative clustering was conducted using the euclidean dis-

tance and the Ward minimum variance method. The reduced fea-

ture vectors were also projected to two dimensions using a Uniform

Manifold Projection and Approximation (UMAP) for visualization

of erroneous classification.

3.6 Implementation

All code was implemented in Python 3.9.13. The MS-data was

processed using an in-house package (DPKS)2. Sci-kit learn and

PyTorch were used for used the implementation of classical machine

learning methods and neural networks respectively.

2https://github.com/InfectionMedicineProteomics/DPKS
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4 Results

4.1 Dataset

The general characteristics of the dataset were analyzed and differ-

ential expression performed between the two subphenotypes. This

demonstrated that the dataset is homogeneous, showing little to

no significant difference in precursor intensity distribution (figure

4.1A), protein abundance distribution (figure 4.1B), or peptides per

protein distribution (figure 4.1C), indicating that no bias was in-

troduced during sample preparation or was present in the sample

prior to preparation.

However, several precursors and proteins are differentially expressed

(figure 4.1D), inferring that the content of the samples differ. In

total, there are 554 unique proteins in the dataset, out of which 77

proteins were considered differentially expressed (subphenotype 1:

32, subphenotype 2: 45). Differential expression was defined by:

− log10(p− value) ≥ 1.3

and

max(P2/P1, P1/P2) ≥ 2

where Pi is the protein or precursor abundance.

The number of precursors per sample (subphenotype 1: 3417 ± 243,

subphenotype 2: 3509 ± 326, figure 4.2B) and proteins per sample

(subphenotype 1: 330 ± 31, subphenotype 2: 360 ± 38, figure 4.2F)

do not differ between subphenotypes.
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A C

B D

Subphenotype 1 Subphenotype 2

Figure 4.1: A) The precursor intensity follows similar distributions
for both subphenotypes - although slightly shifted to
more abundant precursors for subphenotype 2. B) After
normalization and quantification, the protein abundances
are similar for both groups. C) Proteins were ranked
based on the mean number of precursors mapping to
them. Individual proteins contain a similar number of
precursors in both groups (corrected by the number of
samples per group). D) Points were ranked according to
their log2(Foldchange), and colored depending on their
situation relative to 0. Subphenotype 2 contains more
abundant proteins than subphenotype 1 (defined by the
fold change of each protein).
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Subphenotype 1 Subphenotype 2

Figure 4.2: Number of precursors and peptides in the samples, and
volcano plots where differentially expressed proteins are
colored according to subphenotype. A) Subphenotype 1
and 2 contain a similar number of proteins per group
(upper panel), although subphenotype 2 contains more
differentially expressed proteins than subphenotype 1
(lower panels). B) Similarly, the two the samples of the
two subphenotypes do not differ in number of precursors
(upper panel), although, subphenotype 2 contains more
differentially expressed precursors than subphenotype 1
(lower panels).
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This indicate that although the nature of the samples from the

subphenotypes (overarching structure) do not differ, the content

of the samples do. The following machine learning methods are

therefore not likely to train on noise which is induced by bias, but

will instead discriminate between the subphenotypes based on the

qualitative differences in proteomic content.

4.2 Classical machine learning

Four classifiers: SVM (RBF-kernel), k -NN, RF, XGBoost, Light-

GBM, were evaluated using k-fold cross validation (k = 5), using

the scaled quantified protein abundance as features. The result-

ing confusion matrices and ROC-curves can be seen in figure 4.3.

The SVM performed best (AUC: 0.96 ± 0.02), followed by XG-

Boost (AUC: 0.91 ± 0.04) (figure 4.3B). All models achieved a true

positive and true negative rate of ≥ 70% (figure 4.3A).

4.3 BINN

A BINN was constructed with 4 layers and evaluated using k-fold

cross validation (k = 5). The confusion matrix, ROC-curve and val-

idation loss/accuracy during training can be seen in 4.4. Training

was conducted over 100 epochs. Generally, validation loss plat-

eaued after 50 epochs, and ≥ 90% accuracy was reached after 30

epochs. It is equally effective in predicting both classes, achieving

a true positive and true negative rate of over 90%, and an AUC of

0.96 ± 0.03 (figure 4.4A) - thereby outperforming the classical ML

algorithms. The number of hidden layers in the BINN had little to

no effect on model accuracy (figure 4.4B). The BINN also proved

efficient when trained on a low number of datapoints - achieving

≥ 80% accuracy when trained on 20% of the data (figure 9B).
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B

Figure 4.3: A) The confusion matrices show the rates as percentages
of true and false classifications. Rates in the descending
diagonal are the rates of predictions which correspond to
the true class. The SVM achieved the highest true
positive and true negative rate of all the models. B) An
ROC-curve for all models. Approaching the upper left
corner implies a perfect model. The SVM performed the
best, with an AUC-score of 0.96± 0.02. All models except
LightGBM received a mean AUC-score of 0.88 and above.36
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Figure 4.4: A) The BINN receives an AUC of 0.96 ± 0.03, a true
positive rate of 94 ± 4% and a true negative rate of 98 ±
3%. B) Validation loss was decreased, and accuracy
increased by incorporating more data, although the model
achieved high accuracy (∼ 90%) even when excluding
80% of the data. C) The number of layers included in the
model had little effect on loss and accuracy. 37



4.4 Interpreting the network

The BINN achieved a high accuracy, inferring that some aspects

of the proteomic content of the samples which are reflected in the

trained network are telling of the discrepancies between the sub-

phenotypes. SHAP values were therefore used to interpret the net-

work to unveil the biological entities important for classification.

The absolute feature importance for each node and each class is

calculated and the total importance normalized across layers. The

connectivity of the network is known (as it is per our design), and

it is therefore possible to visualize how feature importance propag-

ates through the network using a Sankey diagram (figure 4.5). The

flow in the Sankey diagram is defined by the SHAP values and the

network connectivity. The most important nodes in each layers are

shown.

The ten proteins deemed most important were: apolipoprotein A1

(APOA1), apolipoprotein B (APOB), apolipoprotein A4 (APOA4),

cluster of differentiation 14 (CD14), cathepsin Z (CATZ), actin beta

(ACTB), histone H2A type 1-b (H2A1B), osteopontin (OSTP), col-

lagen type 1 alpha 1 (C1A1) and histone H2 type 1–a (H2B1A).

In the final layer (highest level), the top-ranking processes were:

metabolism of proteins, immune system, disease, and metabolism.

Amongst the intermediary layers, the innate immune system, neut-

rophil degranulation, and retinoid transport and transport stand

out as important pathways.

4.5 Clustering

The top ten proteins defined by SHAP are visualized in a correla-

tion plot in figure 4.6A. To validate the findings by SHAP, reduced

feature vectors consisting only of the ten proteins deemed most

important by SHAP value were used to cluster the dataset. Hier-

archical clustering resulted in two distinct groups. Group member-
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ship corresponded to subphenotypes in 191/197 (97%) cases (figure

4.6B). Clustering using the top 100 most important proteins res-

ulted in 134/197 (68%) correct classifications. Uniform Manifold

Projection and Approximation (UMAP) is a dimensionality reduc-

tion technique and was used to project the feature vectors to two

dimensions for visualization [56] (figure 4.6C).

40



A

B C

Subphenotype 1 Subphenotype 2

Figure 4.6: A) Pairwise correlation plots of the abundance of the 5
most important proteins. B) Resulting dendrogram after
hierarchical clustering was performed using the Ward
minimum variance method of the top 10 most important
proteins. The data is clearly divided into two major
groups, where 191/197 samples were correctly divided by
subphenotype. C) UMAP projection of the reduced
dataset using the top 10 most important proteins. The
data points are colored based on predicted subphenotype
(upper) and true subphenotype from the hierarchical
clustering (lower).
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5 Discussion

Although the proteomic profile of sepsis has been investigated, this

is - to our knowledge - the first time proteomic data has been used

to predict sepsis subphenotypes. In this study, plasma samples from

patients suffering from septic AKI of two different subphenotypes

were analyzed with DIA-MS to generate a proteomic dataset. Clas-

sical machine learning methods were able to classify the samples

well, as the SVM received an AUC score of ≤ 0.9 and other models

a score of ≤ 0.8. There are several techniques that one could lever-

age to increase prediction accuracy of classical ML models, such

as implementing ensemble voting [57]. However, the ability to ac-

curately predict sepsis from proteomic data has limited real-world

applications, as currently large-scale proteomic data rarely is avail-

able in clinical settings. Furthermore, methods utilizing clinical

data alongside readily available biomarkers have yielded high ac-

curacy and are more realizable than those utilizing proteomic data.

Machine learning methods trained on proteomic data may, how-

ever, help us understand the important features of the proteomic

data and thereby the nature of the disease itself, which is highly

desirable. Additionally, they may contribute to the discovery of

novel biomarkers and hypotheses which are of clinical relevance, as

exemplified by Van Allen et al. [52]. Therefore, we constructed a

BINN - a sparse, biologically informed neural network and used it

to elucidate biologically important pathways when classifying the

two subphenotypes of AKI.

The informed nature of the BINN has several advantages over densely

connected neural networks. Firstly, the design can be seen as a

means of intelligently pruning, resulting in a stark reduction in

trainable parameters, allowing for a reduction in training time,
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datapoints, and demands on computing power, whilst maintaining

a high prediction accuracy [58]. Secondly, since nodes and connec-

tions are annotated, it allows us to interpret the network to gain

insight into its reasoning and thereby understand which biological

pathways the network deemed important for classification. The

BINN performed better than classical machine learning methods in

stratifying the two subphenotypes, implying that some aspects of

the true underlying biology is reflected in the network, the nature

of which can be unveiled by interpreting it. This stays true for

varying number of layers and when excluding a large portion of the

dataset in training.

Shapley values allow us to utilize the informed architecture of the

network to interpret it. On the protein level, apolipoproteins, his-

tones and other inflammatory markers with known implications in

sepsis were deemed important. Apolipoproteins play a role in lipid

metabolism and have been connected to several diseases including

sepsis [59]. Circulating histones are important during the progres-

sion of sepsis and have been identified both as possible biomarkers

and therapeutic targets as they amplify the dysregulated immune

response [60]. Other inflammatory markers with known relation to

sepsis include CD14, cathepsin Z (CATZ) [61], osteopontin (OSTP)

[62] and calreticulin (CALR) [63]. However, proteins with undocu-

mented relations to sepsis were also highlighted in the BINN, such

as actin beta (ACTB) and collagen type 1 alpha 1 (CO1A1), sug-

gesting that these should be subject to further studies in connec-

tion with septic AKI. Reassuringly, the most important higher level

biological pathways and processes include pathways linked to im-

munity, metabolism and disease, which is to be expected considering

the nature of the dataset.

The quantities of the proteins identified by SHAP did differ slightly

between samples, but interestingly, not to to the extent one might

suspect. This demonstrates that the features most important for

classification are not the most differentially expressed proteins. There-
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fore, the method complements many contemporary methods based

on differential expression.

The BINN is completely dependent on the underlying Reactome

pathway database, the proteomic dataset and the overlap between

the two. Incompleteness in either part will affect the validity of con-

clusions drawn from the network. Fortunately, the proteomic data-

set was largely covered by the pathway database, and the resulting

network covered a large portion of the complete Reactome data-

base. The reactome database sets an upper limit to the size of the

network which I estimate is ∼ 8500 trainable parameters (without

inducing too many copies). The complete BINN-algorithm isn’t

database specific, but can be generalized to any pathway database,

such as Metascape [64].

The few data-points alongside the comparatively large number of

features typify the curse of dimensionality described in section 1.2.

To maximally utilize the available data-points, k-fold cross valida-

tion was implemented to evaluate all models, and no test-set was

used for evaluation. This does not lessen the validity of any conclu-

sions drawn in this project, although a final validation on a test set

would be preferable given a large enough dataset. To reduce the risk

of over-fitting, measures such as dropout, batch normalization and

L2-regularization were implemented. None of the typical sign of a

failure to generalize was exhibited in the BINNs, suggesting that

the implemented measures were effective in averting over-fitting.

This work was an extension of the work by Van Allen et al. where

the idea of a BINN consisting of biological pathways was first intro-

duced [52]. Further development of the BINN is certainly possible.

In this thesis, protein abundances were the sole input feature, how-

ever, one could imagine the incorporation of features such as protein

modifications as well. Although this would increase the demands

on the data-generation and pre-processing, such features could add

to the information gained from interpreting the network. So far,
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the BINN has only been used for binary classification, however, the

algorithm is compatible with multinomial classification tasks. Fur-

ther studies including various sepsis endotypes and subphenotypes

to train the same network would be of great interest. Naturally,

the algorithm is not bound to any type of proteomic dataset, but

can be applied to other conditions, diseases or syndromes, allowing

for the investigation of a myriad of new research questions.

5.1 Implementation

The algorithm generating a sparse neural network from an edge file

and an input is available as a package at:

https://github.com/InfectionMedicineProteomics/BINN
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5.2 Sustainable development

Disease and ill-health is not sustainable - nor are toxic and inef-

fective treatments, as is emphasized in the third Sustainable Devel-

opment Goal (SGD). An older, more fragile and larger population

increases the global demand for sustainable and effective diagnostic

strategies and treatments, which don’t cause harm to the environ-

ment or the population. Although great strides have been taken

in medical research and it’s implementation in clinics, a growing

resistance towards treatments such as antibiotics and our apparent

ineptness in averting a viral pandemic highlights that much is yet

to be accomplished before we’ve reached a satisfactory state of our

health-care. Furthermore, the benefits of modern health-care are

often only available to a minority of the global population, giving

rise to a health-inequality which has to be combated before such a

claim of success can be made.

The foundation of good health-care ultimately lies in the under-

standing of diseases and conditions - both on a molecular and on

a grander scale. The goal of this project was to contribute to the

contemporary understanding of one of the deadliest diseases in the

world - sepsis, and consequentially, to contribute to the develop-

ment of novel remedies and diagnostic tools. Although much is yet

to be sought in regards to the understanding of the pathogenesis

and complex dynamic which is sepsis, I believe methods such as this

- which incorporates vast amounts of data to unravel the underlying

biological processes involved, are key to furthering development.

It has become necessary to consider the environmental impact when

utilizing deep learning approaches, as models closing in on trillions

of parameters are energy-intensive to train, which has resulted in

a questioning their sustainability. Smaller models can therefore be

seen as more sustainable, and it is uplifting to see that a model

with a few thousand parameters as our BINN can be intelligently

designed to provide insight into complex syndromes.
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Lastly, openness in the scientific community leads to a sustainable

research environment. The act of sharing methods, code and data-

sets facilitates further studies, which is effort was made to make

the methods presented in this project publicly available through a

Python package.
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6 Supplementary

6.1 Number of induced copies

As described above, specifying a desired network depth greater than

the path-length in the given database will result in generating copies

of nodes. The number of copies induced over number of desired

layers can be seen in figure 6.1.
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Figure 6.1: Number of induced copies grows exponentially over the
number of hidden layers in the network.
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