

Modeling rush hour vehicular traffic using a

machine learning approach

Erik Ackzell

supervised by Alexandros Sopasakis

November 27, 2022

Abstract In this thesis, a convolutional neural network is used to model the
behaviour of individual vehicles on a stretch of the U.S. 101 highway during
rush hour. This model is then extended to model the collective behaviour of
all vehicles on the stretch of road and a 15 minute simulation is carried out.
Using an initial vehicle layout, images displaying the position of nearby vehicles
and information of vehicles entering the road, the simulation performs well for
the first five minutes, while the performance deteriorates for the subsequent 10
minutes.

Populärvetenskaplig sammanfattning p̊a svenska

Det finns olika typer av s̊a kallade artificiella neurala nätverk som används till
olika saker. En av dessa kallas för konvolutionella neurala nätverk och används
till att bearbeta bilder. Denna typ av artificiella neurala nätverk används bland
annat för klassificering av bilder och för att styra självkörande bilar.

I den här uppsatsen används ett konvolutionellt neuralt nätverk för att försöka
förutsp̊a hur en bil ska bete sig, baserat p̊a en bild uppifr̊an som visar var andra
bilar befinner sig i närheten av den aktuella bilen. Sedan försöks det förutsp̊as
hur alla bilar p̊a en del av en motorväg i USA beter sig i rusningstrafik. Även
om det g̊ar att delvis förutsp̊a beteendet hos bilarna, upptäcks det att det inte
räcker med enbart en bild uppifr̊an utan att det krävs ytterligare information.

2

For Alvar and Anna

3

Contents

1 Introduction 5
1.1 Aim and research questions . 5
1.2 Limitations . 5

2 Theory 6
2.1 Artificial neural networks . 6

2.1.1 Nodes and layers . 6
2.1.2 Weights and biases . 7
2.1.3 Activation functions . 7
2.1.4 Training . 9

2.2 Gradient descent . 10
2.3 Different types of artificial neural networks 13

2.3.1 Fully connected feedforward 13
2.3.2 Recurrent . 13
2.3.3 Convolutional . 13

3 Method 14
3.1 Original data and stochastically generated data 14
3.2 Determining hyper parameters for CNN 18

3.2.1 Using stochastically generated images 18
3.2.2 Determining hyper parameters 19

3.3 Building data set from real data 21
3.3.1 Creating images . 21
3.3.2 Creating database . 22

3.4 Train final CNN . 24
3.5 Extend CNN . 24

4 Results 25
4.1 Determining hyper parameters 25
4.2 Final CNN performance on individual vehicles 27
4.3 Model performance compared to reality 27

5 Discussion and conclusion 29
5.1 Discussion of results . 29
5.2 Possible improvements to method 30

4

1 Introduction

In this project, we model the collective behavior of vehicles on a stretch of
the U.S. 101 highway in Los Angeles. We use a convolutional artificial neural
network (CNN) to model the behavior of each individual vehicle and the model is
then extended to describe the interaction of all the vehicles on the road. Apart
from an initial state, the inputs to the model are the timestamps and lane
numbers of the vehicles entering the road, and a simulation of approximately
15 minutes is carried out.
After the introduction, in which the aim, research questions and limitations are
presented, the mathematical theory of the methods used in this project is given
in Section 2. After this the different phases of the work is described in Section
3, which takes us to Section 4 in which the results are presented. Lastly, the
results are discussed and possible improvements to the method are presented in
Section 5.

1.1 Aim and research questions

The overall aim of the thesis is to

• Create a model based on an artificial neural network (ANN) using visual
data to simulate rush hour traffic on a stretch of the U.S. 101 highway in
Los Angeles.

This is achieved with the help of the following research questions:

• What type of ANN is suitable for modeling a single vehicle’s behavior
based on visual data?

• How can such an ANN be extended to a model which describes all vehicles
on the stretch of road?

• How well does such an extended model perform when compared to reality
in terms of modeling flow and velocity of all the vehicles on the stretch of
road?

1.2 Limitations

The scope of the project has the following limitations:

• Only ANN:s which can be implemented in the Python library Keras are
considered

• Only ANN:s which use a single type of activation function for all nodes in
a network are considered

5

2 Theory

In this section, the mathematical frameworks of the methods used in this project
are described, starting with a general introduction to feedforward artificial neu-
ral networks in subsection 2.1, after which the gradient descent method and
variations of it are discussed in subsection 2.2. Lastly, different types of artifi-
cial neural networks are presented in subsection 2.3.

2.1 Artificial neural networks

Let m,n, o ∈ N, X ⊂ Rm×n, Y ⊂ Ro and

f : X → Y. (1)

Given a sample of inputs
Xs ⊂ X (2)

and a corresponding sample of outputs

f(Xs) = Ys ⊂ Y, (3)

one might want to determine an approximation of f , say fnn. One possible
candidate for such an approximation is an artificial neural network (ANN).
As the name suggests, the structure of an ANN is somewhat similar to that of
a biological neural network [Sil+17] and consists of a number of layers of nodes
(section 2.1.1) with information being passed between the nodes. Many com-
parisons between ANN:s and biological neural networks have been presented,
see e.g. [Sha16], [Sil+17] and [DS14].
In a feedforward neural network (FNN), the flow of information between the
nodes is one-directional, while other types of ANN:s, e.g. variants of recurrent
neural networks (RNN) or two-dimensional lattice networks, allow for informa-
tion to flow in more than one direction [DS14]. In an FNN, each of the nodes
in a layer processes inputs from nodes in the previous layer and then passes the
processed information to the nodes in the subsequent layer. These nodes can
process the input data in different ways, depending on the choice of activation
function (section 2.1.3) used. Each connection between two nodes has an asso-
ciated weight while each node has an associated bias (section 2.1.2). In order
to find a good candidate for fnn, a training step is carried out (section 2.1.4).

2.1.1 Nodes and layers

An FNN consists of two or more layers containing nodes. The layers are ordered
and are made up of

(i) one input layer,

(ii) n hidden layers, n ∈ N, and

(iii) one output layer.

6

Let X,Y be as in (1). The input layer takes an element x ∈ X that is sequen-
tially transformed in the hidden layers and the output layer returns an element
y ∈ Y . As input to each node, a linear combination of the outputs from the
previous layer of nodes is used.

2.1.2 Weights and biases

The coefficients of the terms in the linear combinations used as input to each

node in the hidden and output layers are called the weights w
(s)
qr and biases b

(s)
r

of the ANN.
Let y

(j)
i be the output of node number i in layer j and assume that layer j has

exactly Nj nodes. Then the input to node k in layer j + 1 is given by

x
(j+1)
k =

Nj∑
i=1

w
(j)
ik y

(j)
i + b

(j)
k (4)

2.1.3 Activation functions

In order for the ANN to be able to approximate non-linear functions, the linear
combination (4) is transformed using a non-linear function σ called an activation

function such that the output of node k in layer j + 1 is given by σ(x
(j+1)
k). In

order to mimic the behavior of biological neural networks, with neurons either
firing or not [Sha16], a naive first choice of an activation function is

σ̂ : R → {a, b} ⊂ R.

σ̂(x) =

{
a x < c
b x ≥ c

,
(5)

for some c ∈ R. However, choosing such an activation function has drawbacks
that will be discussed in Section 2.2. One issue with such a function is that
its derivative is always zero. Thus, other functions which have similarities to
σ̂ but whose derivatives are not constantly zero are often used. A selection of
such functions is shown in Figure 1. If the activation functions would all be
linear, the FNN would be a sequence of linear transformations of the input,
which would collapse to a linear function. The activation function used in the
output layer should have a codomain corresponding to the possible outputs of
the function that is approximated. However, the activation functions to use in
the hidden layers can be chosen regardless of the outputs. There are a large
number of possible activation functions available in the Python Keras library
[22] (see section 3) and what choice of activation functions that are going to re-
sult in the best performing ANN is data dependent [DSC21]. Below, a selection
of activation functions is described.

7

Figure 1: Some commonly used activation functions.

Exponential linear unit (ELU) [CUH15] is defined by

fα(x) =

{
x x > 0
α(ex − 1) x ≤ 0

(6)

Im(fα) = (−α,∞)

Scaled exponential linear unit (SELU) [Kla+17] is defined by

fλ,α(x) = λ

{
x x > 0
α(ex − 1) x ≤ 0

(7)

Im(fλ,α) = (−λα,∞)

Rectified linear unit (ReLU) [GBB11] is defined by

f(x) = max(x, 0) = x+ (8)

Im(f) = (0,∞)

8

Softplus activation function [GBB11] is given by

f(x) = ln(ex + 1), (9)

Im(f) = (0,∞)

where ln is the natural logarithm.

Sigmoid activation function is given by

f(x) =
1

e−x + 1
(10)

Im(f) = (0, 1)

2.1.4 Training

In order to determine a good candidate for fnn, a training step is performed.
In this step, an appropriate cost function is chosen, which is then minimized
by some optimization method. Given a specific layout of the ANN in terms of
number of layers, number of nodes in each layer and what activation functions
to use, the parameters that make the ANN unique are the chosen weights and
biases. The training is an iterative optimization process, in which the goal is to
determine the weights and biases minimizing some cost function. These training
iterations are called epochs.

Cost functions Let f,X, Y,Xs and Ys be as in (1)-(3). Assume that and we
want to determine the weights and biases of an ANN with n > 3 layers and that
layer i has ni nodes, yielding the space

W ⊂ RM , M =

n∑
i=2

ni(ni−1 + 1) (11)

of weights and biases. Let w ∈ W and denote this ANN by fw. We can then
define a cost function

J : RM → R+, (12)

measuring the difference between Ys = f(Xs) and Ŷs = fw(Xs).
Let N be the number of elements in Xs and xi, i = 1, 2, . . . N the elements of
Xs.
Common choices of cost functions are the mean squared error

JMSE(w) =
∥Ys − Ŷs∥22

N
, (13)

and the mean absolute error

JMAE(w) =
∥Ys − Ŷs∥1

N
. (14)

9

Over fitting A potential risk when minimizing the cost function is that the
found weights and biasesw causes the ANN to very accurately map the elements
inXs to the corresponding elements in Ys but fail to do so for elements inX−Xs

[Sil+17]. We call this phenomenon over fitting. There are a number of ways
to handle combat over fitting. One is to introduce dropout [Sch16]. During
each iteration of the training, a random selection of nodes is then deactivated,
effectively training a large set of different ANN:s and then combining them all.
Another way is to introduce early stopping [Sil+17]. This is done by randomly
dividing the available data in two parts, a training data set and a hold out data
set. The training data set is used to train the network and after each epoch,
the current version of the network is used on the hold out data set. When cost
function starts to increase for the hold out data set from one epoch to the next,
the training is stopped. This has the effect of preventing the network from
adapting to the noise in the training data and generalise better to new unseen
data.

2.2 Gradient descent

Let f : Rn → R be a smooth function. The gradient descent or delta rule
method is an iterative method used to minimize such a function. It makes use
of that the gradient of f , evaluated at a point w(0) ∈ Rn, points in the direction
of the steepest ascent of f . Thus, setting

w(1) = w(0) − α∇f(w(0)) (15)

for some appropriate choice of the learning rate α ∈ R+, we achieve

f(w(1)) < f(w(0)). (16)

If f is convex and α is appropriately updated, we will eventually find a w(N)

such that
f(w(N)) < f(w) ∀w ∈ Rn, (17)

for some N ∈ N. Gradient descent is a method which is often used to minimize
the cost functions associated with the training of ANN:s. One of the reasons
to not use higher order methods, e.g. the second order Newton’s method, is
that the number of variables associated with the these cost functions can be
extremely large, making second derivative calculations very costly.
There is a multitude of variations of the gradient descent method, which are
being used in the context of ANN:s. The variations can each be put into one of
two categories, which propose different methods of

(i) handling the large number of training examples and

(ii) performing the updates of the weights and biases,

respectively.

10

Ways to handle the large number of training examples These methods
reduces computation time by selecting only parts of the training examples to
be evaluated during each epoch [Rud16]. As a reference point, we first describe
the batch gradient descent method, in which all training examples are used in
each epoch.

Batch gradient descent In the batch gradient descent method, the out-
put of the ANN is calculated for all training examples, and all of the errors are
then combined in the cost function. When the number of training examples are
in the millions or billions, this could be quite time consuming.

Stochastic gradient descent (SGD) In this method, instead of includ-
ing the output of the ANN of all the training examples before calculating the
cost function and subsequently updating the weights and biases, this is instead
done after each single training example.

Mini-batch gradient descent A combination of batch gradient descent
and SGD is the mini-batch gradient descent, in which the set of training exam-
ples is divided into smaller batches, for which the cost function and its gradient
is calculated and the weights and biases are updated.

Ways to perform the update step In the standard gradient descent method,
the learning rate as can be seen in equation (15), is set beforehand and is not
updated throughout the execution of the algorithm. This is something that
some of the following methods address [Rud16].

Momentum In the momentum method, ∇f in equation (15) is replaced
by a different vector d(0). In the first iteration of the algorithm, d(0) = ∇f(w(0)).
However, in the following iterations the update looks as follows

d(i) = βd(i−1) + α∇f(w(i)) (18a)

w(i+1) = w(i) − d(i), (18b)

where β ∈ R. In other words, we include a multiple of the update vector
from the previous iteration when performing the current update. A geometric
motivation behind this is to speed up the performance of the algorithm in case
the current value w(i) is mapped to the side of a valley of the graph of the cost
function, while the valley itself would slope less towards its bottom. In such
a case, convergence could become slow, as each update could produce a value
on the opposite side of the valley, only slightly progressing towards the actual
bottom of the valley, since the main component of the gradient would point
towards the other side.

11

Nesterov accelerated gradient (NAG) In NAG, the idea is to refine
update rule in equation (18) by taking the first term βd(i−1) in equation (18a)
into consideration before calculating the gradient. Instead of evaluating the
gradient at w(i), we evaluate it at w(i) − βd(i−1). That is, we replace equation
(18) by the following update rule

d(i) = βd(i−1) + α∇f(w(i) − βd(i−1)) (19a)

w(i+1) = w(i) − d(i). (19b)

The motivation behind this is that w(i) − βd(i−1) is a better approximation of
w(i+1), and so evaluating the gradient at this point better corresponds to the
behavior of the function at the next time step.

Adagrad Adagrad is a method which, instead of using a single, fixed learn-
ing rate, uses individual learning rates for different parameters and adapts these
over time. Given some initial general learning rate α, we use the update rule

w
(i+1)
k = w

(i)
k − α√∑i

j=0

(
d

dwk
f(w(j))

)2

+ ϵ

· d

dwk
f(w(i)). (20)

In other words, the learning rate is altered through division of the sum of the
squares of the derivative w.r.t. the corresponding parameter for all previous
time steps. The term ϵ is included to avoid division by zero.
Equation (20) implies that for a specific parameter wk, the relative relation

d

dwk
f(w(j)) large for previous time steps ⇒ smaller learning rate (21)

holds.

Adadelta Adadelta is a refinement of Adagrad. Here, the sum over all the
squared derivatives in the denominator in equation (20) is replaced in order to
allow the more recent derivatives to have a higher significance and to avoid the
possibility of a very large denominator. The sum is replaced by a combination
of the squared latest derivative and an average of the previous derivatives. We
define the denominator D as

D =

√√√√λ

i

i−1∑
j=0

(
d

dwk
f(w(j))

)2

+ (1− λ)

(
d

dwk
f(w(i))

)2

+ ϵ, (22)

which yields the expression

w
(i+1)
k = w

(i)
k − α

D
· d

dwk
f(w(i)). (23)

12

Lastly, we replace the learning rate α in (23) with a combination of the squared
latest weight update di−1 and previous weight updates, resulting in the nomi-
nator N

N =

√√√√ λ

i− 1

i−2∑
j=0

d2j + (1− λ)d2i−1 + ϵ (24)

RMSprop RMSprop is another refinement of Adagrad very similar to
Adadelta. It is defined by equations (22) and (23) with λ = 0.9.

2.3 Different types of artificial neural networks

There are different classes of ANN:s for different use cases. In this section, three
such classes are described.

2.3.1 Fully connected feedforward

In the fully connected feedforward network, the information flows in one direction
only and all nodes in one layer is connected to all nodes in the previous and
following layer [DS14].

2.3.2 Recurrent

In the fully connected feedforward network, input data from one epoch is not
retained in subsequent epochs. In order to be able to extract more information
from time series data, the recurrent network was introduced [Ben91].

2.3.3 Convolutional

The convolutional artificial neural network (CNN) is a feedforward network,
but has at least one convolutional layer which uses the convolution operator.
This type of network is used to process image input as tensors. In order to
perform the convolution operation, we define a number of kernels [ON15]. Let
T ∈ Ro×p×q be an input tensor and k ∈ Rm×n such a kernel. We define the
convolution operator, here denoted by ⊙, such that each element in the resulting
tensor S = k ⊙ T ∈ R(o−m+1)×(p−n+1)×q is given by

Sa,b,c =

m∑
i=1

n∑
j=1

ki,jT(i+a−1),(j+b−1),c c = 1, 2, . . . , q (25)

An activation function σ is then applied to each of the elements of S in order to
introduce non-linearity as described in Section 2.1.3. Each kernel results in one
output channel and after one or more convolutional layers, a pooling layer or a
flatten layer is used to reduce the order of the output for use in subsequent layers.
Denote this flatten operator by F and let Q ∈ Rα×β×γ be an output tensor from
one channel of the last convolutional layer of the network. Then F (Q) contains
the same information as Q but restructured such that F (Q) ∈ Rα·β·γ .

13

3 Method

In this section the process of the project is described. In section 3.1, the original
data used is described, in 3.2 we describe how the hyper parameters used for
the final CNN were determined, in 3.4 we describe how the final CNN is trained
and lastly how the CNN is then extended to predict the behavior of all vehicles
on the road section in question.

As the computations needed in the project are impossible to carry out by hand,
programs written in the Python language are used. In the project, the collection
of implementations of numerical methods used for ANN:s called Keras is used.

3.1 Original data and stochastically generated data

The original real-world data used consists of measurements of vehicles on a 2100
ft stretch of US highway 101 made by Cambridge Systematics Inc. for the US
Federal Highway Administration on June 15, 2005 between 07.50 and 08.05.
Data was recorded with a frequency of 10Hz. See Table 1 for a description of
the data set and Figure 2 for an image of the road section in question.

Figure 2: The road section at which measurements were taken.

14

Column Description Details
Vehicle
ID

Vehicle identifica-
tion number

Each vehicle is identified by a unique
integer.

Frame ID Frame identifica-
tion number

Each time point is identified by
a unique integer representing the
number of deciseconds from the time
when the data collection began.

Total
frames

Total number of
frames for the
vehicle

The total number of time points at
which a measurement of the partic-
ular vehicle is recorded.

Global
time

Current time Current time measured in millisec-
onds since Jan 1st, 1970.

Local X Local lateral coor-
dinate

Number of feet from the left-most
edge of the road section.

Local Y Local longitudinal
coordinate

Number of feet from the entry level
of the road section.

Global X Global lateral coor-
dinate

Lateral coordinate according to CA
State Plane III.

Global Y Global longitudinal
coordinate

Longitudinal coordinate according
to CA State Plane III.

Vehicle
length

Length of vehicle Length of vehicle measured in feet

Vehicle
width

Width of vehicle Width of vehicle measured in feet.

Vehicle
class

Type of vehicle 1 - motorcycle, 2 - auto, 3 - truck.

Vehicle
velocity

Current velocity of
vehicle

Current velocity of vehicle measured
in feet per second.

Vehicle
accelera-
tion

Current accelera-
tion of vehicle

Current acceleration of vehicle mea-
sured in feet per second square.

Lane
identifi-
cation

Current lane of ve-
hicle

1 - farthest left, 5 - farthest right, 6 -
auxiliary lane between on-ramp and
off-ramp, 7 on-ramp, 8 off-ramp.

Preceding
vehicle

Vehicle ID of pre-
ceding vehicle

0 - no preceding vehicle.

Following
vehicle

Vehicle ID of fol-
lowing vehicle

0 - no following vehicle.

Spacing Space headway Distance in feet between the front-
center of vehicle to the front-center
of the preceding vehicle.

Headway Time headway Time in seconds to travel at present
speed from the front-center of the
vehicle to the front-center of the pre-
ceding vehicle.

Table 1: Description of original data set

15

The data contains information about the complete trajectories of 2169 vehi-
cles, with an average length of 14.77 ft.

Apart from the real-world data the project uses stochastically generated data
consisting of a data set and corresponding images based on the real-world data.
See Table 3 for a description of the data set. Some measurements describing the
data set can be seen in Table 2 and a histogram showing the distribution of the
steering column can be seen in Figure 3. The images consist of triples, one triple
for each vehicle and time point. Each image in each triple is five by five pixels,
where each pixel represents a cell in the vicinity of the vehicle at that particular
time point. Each pixel is either black or white, where black represents a cell
containing a vehicle and white represents an empty cell. Each triple consists of a
center, left and a right image, where the center image represents the five-by-five
cells ahead of the vehicle, the left image contains the five-by-five cells ahead of
the vehicle to the left of the vehicle and the right image the five-by-five cells
ahead of the vehicle to the right of the vehicle. See Figure 4 for an up-scaled
example of such a triple.

Measurement Value Comment
Number of rows 14901
Occurring values of lane
change

0,±1

Number of lane changes 3 Very few lane changes oc-
curs, making these diffi-
cult to predict.

Minimum movement 0.000 cell
lengths

Occurs when traffic has
come to a complete halt

Maximum movement 0.214 cell
lengths

Average movement 0.119 cell
lengths

Median movement 0.122 cell
lengths

Table 2: Measurements describing the stochastically generated data set.

16

Figure 3: Histogram describing the distribution of the distances moved during
each time step by vehicles in the stochastically generated data set.

Column Description Details
Steering Distance traveled Distance travelled by vehicle un-

til next time point, measured in
number of cells.

Lane Lane change Lane change until next time
point. 0 - no change, 1 - change
to the right, -1 - change to the
left.

Table 3: Description of stochastically generated data set

17

Figure 4: Enlarged examples of left, center and right images. The pixel rep-
resenting the vehicle to which the images correspond is shown in grey and the
borders of the lanes are shown in red. The images used as input to the CNN
are black and white only, with black representing a cell containing a vehicle and
white representing a cell without a vehicle. In this example triple, the vehicle
is in the third lane and the left black band in the left image and the right black
band in the right image represent cells outside of the road.

To make use of the spatial ordering of the input, a convolutional neural net-
work (CNN) is used. Firstly, the hyper parameters of the CNN are determined
by training on the set of stochastically generated images. After this, images
corresponding to the original data set are produced, on which the CNN with
the previously determined hyper parameters is trained.

3.2 Determining hyper parameters for CNN

The parameters that make up the structure of the CNN are called hyper pa-
rameters. These are not optimized during the training phase of the CNN, but
rather decided upon prior to this phase. In this sense they are different from
the weights and biases of the CNN. In order to determine the set of hyper pa-
rameters to use for the final CNN, many different sets of hyper parameters were
used to create CNN:s. As this is unfeasible to achieve on a personal computer
due to the large computational power needed, a computer hosted by Center for
Scientific and Technical computing at Lund University was used. The computer
is made up of more than 50 compute nodes paid for by Lund University re-
search groups. Each of these nodes has two Intel Xeon E5-2650 v3 processors
consisting of 20 cores each and each node has 64 GB of DDR4 RAM.

3.2.1 Using stochastically generated images

In order to determine the possibility of creating a CNN able to predict the
movement of individual vehicles, a readily available synthetic data set and cor-
responding images derives from the original data set is used. This is done in
order to not create images from the real data set unnecessarily.

18

3.2.2 Determining hyper parameters

In order to determine the hyper parameters, multiple sets of hyper parameters
were used in training CNN:s this was achieved by using shell scripts consisting
of nested loops. Each such loop would iterate over different values for a specific
hyper parameter, see pseudo code in Listing 1. See the list of hyper parameters
and the values considered in Table 4. Different number of hidden layers and
nodes were also considered. The general layout consisted of a set of four convo-
lutional layers, followed by a set of 3-5 dense layers, see Figure 5 for a graphical
representation. Different sets of convolutional layers were considered, see Table
5 for details. Different sets of dense layers were also considered, see Table 6 for
details. All of the CNN:s considered were trained for 50 epochs and the CNN
from the last epoch was selected.

Figure 5: Graphical representation of the general layout of the CNN used.

Listing 1: Pseudo code to train multiple CNN:s

for batchSize in b_1 , b_2 , ...

for learningRate in l_1 , l_2 , ...

...

trainCNN with bSize = batchSize ,

lRate = learningRate ,

...

done

done

19

Hyper parameter Values tested
Proportion of data used
for testing

0.2, 0.5

Proportion of nodes 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5
batch size 100, 128, 256, 64
learning rate 0.000001, 0.00001, 0.0001, 0.001, 0.01,

0.1
conv type 1, 16, 2, 4, 5, 6, 61, 62, 63, 64, 7, 8, 9
dense type 1, 2, 3, 4, 5, 6, 7, 71, 72, 73, 74, 8, 9
activation elu, hard sigmoid, linear, relu, selu, sig-

moid, softmax, softplus, softsign, tanh
optimizer adadelta, adam, RMSprop

Table 4: Hyper parameters and the values considered when determining training
a CNN based on the stochastically generated images.

Type Number of nodes per layer
1 24 - 36 - 48 - 64
2 128 - 256 - 512 - 1024
3 256 - 512 - 1024 - 1600
4 49 - 72 - 96 - 128
5 30 - 42 - 54 - 70
6 40 - 52 - 64 - 80
6.1 40 - 60 - 64 - 80
6.2 40 - 52 - 70 - 80
6.3 40 - 52 - 64 - 90
6.4 40 - 52 - 64 - 85
7 64 - 76 - 88 - 104
8 80 - 94 - 110 - 130

Table 5: Layout of different sets of convolutional part of network.

20

Type Number of
layers

Number of nodes per layer

1 3 50 - 10 - 2
2 4 100 - 20 - 4 - 2
3 5 128 - 32 - 8 - 2
4 3 24 - 12 - 2
5 3 35 - 20 - 2
6 3 50 - 20 - 2
7 3 60 - 20 - 2
7.1 3 60 - 30 - 2
7.2 3 60 - 15 - 2
7.3 3 62 - 20 - 2
7.4 3 60 - 25 - 2
8 3 70 - 30 - 2
9 3 80 - 30 - 2

Table 6: Layout of different sets of dense part of network.

3.3 Building data set from real data

In the text file containing the real data, the parameters that are of interest
of predicting, namely distance traveled until next time point and possible lane
change until next time point, are not present and thus need to be calculated.
Furthermore, there are no images available and so these need to be generated.

3.3.1 Creating images

Firstly, images corresponding to every vehicle at every time point are created.
This is done by following the following steps for each vehicle for each time point
that the vehicle is on the road:

(i) Retrieve the position of the vehicle at the next time point,

(ii) Calculate the directional vector of the vehicle,

(iii) Calculate the angle between the directional vector of the vehicle and the
unit vector (0, 1),

(iv) Retrieve a list of nearby vehicles by including all vehicles within a radius
of 5× avgV ehicleLength,

(v) Rotate the positions of the nearby vehicles, using the angle calculated in
step iii, around the current vehicle’s position to lay the positions of the
vehicles out corresponding to the images that we want to create,

(vi) Iterate over the nearby vehicles translated positions to create a 5x5 boolean
matrix, corresponding to the 5x5 cells ahead of the current vehicle, with
true values corresponding to cells occupied by a vehicle,

21

(vii) Create images from the boolean matrix.

3.3.2 Creating database

A data set in an SQLite database is created, containing the columns described
in Table 7 and measurements describing the data set in Table 8.

Column Description Details
Vehicle ID Vehicle identifica-

tion number
Each vehicle is identified by a
unique integer.

Global time Current time Current time measured in mil-
liseconds since Jan 1st, 1970.

Global X Global lateral coor-
dinate

Lateral coordinate according to
CA State Plane III.

Global Y Global longitudinal
coordinate

Longitudinal coordinate accord-
ing to CA State Plane III.

Lane change Lane change Lane change until next time
point. 0 - no change, 1 - change
to the right, -1 - change to the
left.

Movement Movement until
next time point

Movement until next time point
measured in average vehicle
lengths.

Table 7: Description of data set generated from real data

22

Measurement Value Comment
Number of rows 1178429
Occurring values of lane
change

0,±1,±2,±3 There are some errors in
the original data, where
vehicles are registered
switching between lane
5 and auxiliary lanes 7
and 8. This explains the
±2,±3.

Number of lane changes 1319 Very few lane changes oc-
curs, making these diffi-
cult to predict.

Minimum movement 0.000 aver-
age vehicle
lengths

Occurs when traffic has
come to a complete halt

Maximum movement 1.456 aver-
age vehicle
lengths

Average movement 0.255 aver-
age vehicle
lengths

Median movement 0.268 aver-
age vehicle
lengths

Table 8: Measurements describing the data set generated from the original data.

23

Figure 6: Histogram describing the distribution of the distances moved during
each time step by vehicles in the data set generated from the original data.

3.4 Train final CNN

Using the database and images generated from the real data, the final CNN is
trained with the best set of hyper parameters determined as described in section
3.2.

3.5 Extend CNN

Once a CNN has been created to predict the behaviour of individual vehicles
with only images as input, this needs to be extended to simulate the behaviour
of all vehicles on the road. This is done by using an initial layout of vehicles on
the section of road and then move all vehicles one by one by using the CNN.
The vehicles on the road section at each time point are stored in a list of lists,
each list corresponding to one of the 6 non-auxiliary lanes. The processing at
each time point of the simulation is described below:

(i) Add vehicles to the list corresponding to each of the lanes by retrieving
the vehicles from the database that enter the road section at the current
time point,

(ii) Create images for each vehicle currently on the road section,

(iii) Use the CNN to predict the movement of each vehicle,

(iv) Update the list of lists to reflect the new position of all of the vehicles,

24

(v) Remove vehicles if their new positions are beyond the end of the road
section

4 Results

4.1 Determining hyper parameters

Out of all of the different sets of hyper parameters considered for the CNN:s
trained on the stochastically generated images, the best 40 performing ones,
based on the validation error, are listed in Table 9. As seen in the table,
the hyper parameters which resulted in the lowest mean squared error (MSE),
0.001271, used a hold out data set consisting of 20% of the original data set,
a drop out probability of 20%, four convolutional layers consisting of 40, 52,
64 and 80 nodes, three dense layers consisting of 60, 30 and 2 nodes, scaled
exponential linear unit as the activation function, a batch size of 64, RMSprop
as optimizer a learning rate of 0.0001.

25

test size keep prob conv type dense type val loss
0.2 0.2 6 7 0.001271
0.2 0.2 6 8 0.001276
0.2 0.2 7 5 0.001276
0.2 0.2 5 7 0.001281
0.2 0.2 4 9 0.001296
0.2 0.2 7 6 0.001304
0.2 0.2 7 1 0.001305
0.2 0.2 1 8 0.001307
0.2 0.2 8 1 0.00131
0.2 0.2 6.3 7.1 0.00132
0.2 0.2 6 1 0.001321
0.2 0.2 7 7 0.001322
0.2 0.2 4 6 0.001323
0.2 0.2 1 9 0.001323
0.2 0.2 1 1 0.001329
0.2 0.2 8 7 0.001338
0.2 0.3 8 9 0.00134
0.2 0.2 6 7 0.001342
0.5 0.2 1 9 0.001344
0.2 0.2 7 8 0.001348
0.2 0.2 6 4 0.001349
0.2 0.2 6.3 7.3 0.001351
0.2 0.2 4 7 0.001353
0.2 0.2 8 9 0.001354
0.2 0.2 6.3 7.4 0.001357
0.2 0.2 1 6 0.001357
0.2 0.2 6.2 7.1 0.001362
0.2 0.2 1 2 0.001364
0.2 0.2 6.4 7.1 0.001366
0.2 0.2 8 6 0.001368
0.2 0.2 7 4 0.00137
0.2 0.2 5 6 0.001374
0.2 0.2 4 4 0.001377
0.2 0.2 5 4 0.001387
0.2 0.2 6.4 7.4 0.001392
0.2 0.2 8 8 0.001393
0.2 0.2 4 5 0.001393
0.2 0.25 8 9 0.001396
0.2 0.2 6.2 7.2 0.0014
0.2 0.35 8 9 0.001408

Table 9: The 40 sets of hyper parameters for the CNN trained on the stochas-
tically generated images resulting in the lowest validation errors. All of these
sets of hyper parameters uses the scaled exponential linear unit as activation
function, a batch size of 64, RMSprop as optimizer, a learning rate of 0.0001
and MSE as loss function.

26

4.2 Final CNN performance on individual vehicles

Using the hyper parameters set determined in the previous section, the CNN
trained on the real data achieved an MSE of 0.0025897 on the hold out data
set.

4.3 Model performance compared to reality

We simulate the behaviour of all vehicles on the section of road and compare
their behaviour to reality, measured at the midsection for time periods t ∈
{7 : 50− 7 : 55, 7 : 55− 8 : 00, 8 : 00− 8 : 05}. The measures that are compared
are flow (vehicles per hour), time mean speed (TMS) and space mean speed,
where TMS and SMS are defined by

TMS(t) =

∑
i v(t)i
n(t)

(26)

and

SMS(t) =

∑
i d(t)i∑
i tt(t)i

(27)

where v(t)i is the velocity of vehicle i during time period t measured at mid-
section, n(t) is the number of vehicles passing the section of road during time
period t, d(t)i is the distance traveled by vehicle i on the section of road during
time period t and tt(t)i is the time traveled by vehicle i during time period t.
The result can be seen in figures 7, 8 and 9.

Figure 7: Comparison of flow between simulation and reality.

27

Figure 8: Comparison of TMS between simulation and reality.

Figure 9: Comparison of SMS between simulation and reality.

28

5 Discussion and conclusion

5.1 Discussion of results

As described in Section 4.1, it was possible to determine a set of hyper
parameters for the CNN trained on the stochastically generated data that re-
sulted in an MSE of 0.001271 on the hold out data set (Table 9). While the
MSE depends on both movement and lane change, we focus on how this relates
to the movement as the lane changes are so unusual. When compared to the
median movement of 0.122 cell lengths (Table 2), we realise that the perfor-
mance is quite poor as the predicted value on average differs 0.035651 from the
real value. If we assume that we predict the lane change perfectly and that the
real movement of a vehicle is the median movement, this corresponds to a 29%
error. Regardless of this, a CNN was trained using the same hyper parameters
but with images and data generated from the real data set.

This achieved an MSE of 0.0025897 on the hold out data set and when
compared to the median movement 0.268 average vehicle lengths in the real
data (Table 8) we see that this performs relatively better using the same rea-
soning as in the previous paragraph, but still results in an average error of 19%.

It is likely that it would be possible to determine hyper parameters which would
result in a better performing CNN. However, it is even more likely that a CNN
could predict the movement of vehicles even better if time sensitivity would
be included in the model in some way. This could be done in different ways,
possibly by using a different type of CNN, such as a convolutional LSTM or
by changing the colors of the cells in the images based on the velocity of the
vehicles represented by each such cell.

It can be seen that the flow predicted by the model is similar to the real flow
(Figure 7). This is to be expected, as the input to the model apart from the
initial layout of vehicles on the stretch of road is time of vehicles entering the
stretch of road.

For the first five minutes of the simulation the TMS (Figure 8) and SMS (Fig-
ure 9) are somewhat acceptable. However, there are big discrepancies between
the simulated and actual values for both these measurements for the follow-
ing two time periods. While the actual values of both decreases as the traffic
flow reduces, the simulated values increases. This is likely the result of errors
propagating. If the movement of the vehicles are predicted to be larger in the
simulation than in reality, this would result in a less dense layout of vehicles on
the stretch of road, in turn resulting in even larger predicted movements of the
vehicles.

29

5.2 Possible improvements to method

Utilize an existing framework to determine hyper parameters for
CNN. There are different methods available to automatically determine hyper
parameters, such as Bayesian model selection [RW05]. This approach to finding
suitable hyper parameters is likely to be more successful than the somewhat
random approach taken in this project.

Include the time sensitivity of the data as input to the CNN. The
method used does not take the temporal aspect of the data into consideration, as
the objective was to only use images as input to ANN. However, it is likely that
a model which use this information as input would be more accurate. It would
have been possible to use the information in the original data set to color the
pixels in the images differently, depending on the velocity of the corresponding
cars and still use a traditional CNN, or a convolutional LSTM network could
be utilized.

Use separate CNN:s to predict the movement of a vehicle and the
probability of a lane change, respectively. The CNN:s used in the project
were trained to predict both the movement as well as lane change of a vehicle
until next time point. This has two drawbacks.

(i) If the movement of a vehicle be denoted by x and the lane change of a
vehicle be denoted by i. Then x ∈ R+ and i ∈ {−1, 0, 1}. However, as the
scaled exponential linear unit activation function used in the output layer,
the output vector v ∈ {(u1, u2) ∈ R2|u1, u2 ≥ −1}. It would be reasonable
to use an activation function designed for classifications problems for the
lane change output, which could be achieved by the use of two separate
ANN:s.

(ii) In approximately 99.9% of the cases, no lane change occurs. Thus, always
predicting no lane change will have practically no negative impact on the
cost function. This suggest that some under-sampling technique should
be used when training this separate network in order to more accurately
predict lane changes.

Dynamically calculate constants. There are a number of constants which
occur in multiple programs. These were originally calculated from the database
created from the original data, and then copied to the programs in which they
were used. This did not cause any errors, but this type of copying and pasting
of information is of course error prone.

Use a remote GIT repository for version control. As the project in-
cluded many iterations of many programs it would have been beneficial to use
GIT for version control. Since the project spanned over some time, the files
used were moved about to different folders on different computers and different

30

cloud hosting services. Less time would have been spent on gathering all these
files if a remote GIT repository would have been used.

31

References

[Ben91] Yoshua Bengio. “Artificial Neural Networks and Their Application to
Sequence Recognition”. UMI Order No. GAXNN-72116 (Canadian
dissertation). PhD thesis. CAN, 1991.

[RW05] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press, 2005. doi: 10.
7551/mitpress/3206.001.0001. url: https://doi.org/10.
7551/mitpress/3206.001.0001.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse
Rectifier Neural Networks”. In: Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics. Ed. by
Geoffrey Gordon, David Dunson, and Miroslav Dud́ık. Vol. 15. Pro-
ceedings of Machine Learning Research. Fort Lauderdale, FL, USA:
PMLR, Nov. 2011, pp. 315–323. url: https://proceedings.mlr.
press/v15/glorot11a.html.

[DS14] Ke-Lin Du and M. N. S. Swamy. Neural Networks and Statistical
Learning. Springer London, 2014. doi: 10.1007/978-1-4471-5571-
3. url: https://doi.org/10.1007/978-1-4471-5571-3.

[CUH15] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and Accurate Deep Network Learning by Exponential Linear Units
(ELUs). 2015. doi: 10.48550/ARXIV.1511.07289. url: https:
//arxiv.org/abs/1511.07289.

[ON15] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional
Neural Networks. 2015. doi: 10.48550/ARXIV.1511.08458. url:
https://arxiv.org/abs/1511.08458.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization al-
gorithms. 2016. doi: 10.48550/ARXIV.1609.04747. url: https:
//arxiv.org/abs/1609.04747.

[Sch16] Benjamin J. E. Schroeter. “Artificial Neural Networks in Precipi-
tation Nowcasting: An Australian Case Study”. In: Artificial Neural
Network Modelling. Springer International Publishing, 2016, pp. 325–
339. doi: 10.1007/978-3-319-28495-8_14. url: https://doi.
org/10.1007/978-3-319-28495-8_14.

[Sha16] Subana Shanmuganathan. “Artificial Neural Network Modelling: An
Introduction”. In: Artificial Neural Network Modelling. Springer In-
ternational Publishing, 2016, pp. 1–14. doi: 10.1007/978-3-319-
28495-8_1. url: https://doi.org/10.1007/978-3-319-28495-
8_1.

[Kla+17] Günter Klambauer et al. “Self-Normalizing Neural Networks”. In:
(2017). doi: 10.48550/ARXIV.1706.02515. url: https://arxiv.
org/abs/1706.02515.

32

[Sil+17] Ivan Nunes da Silva et al. Artificial Neural Networks. Springer In-
ternational Publishing, 2017. doi: 10.1007/978-3-319-43162-8.
url: https://doi.org/10.1007/978-3-319-43162-8.

[DSC21] Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaud-
huri. Activation Functions in Deep Learning: A Comprehensive Sur-
vey and Benchmark. 2021. doi: 10.48550/ARXIV.2109.14545. url:
https://arxiv.org/abs/2109.14545.

[22] Keras Python library. https://keras.io/. Accessed: 2022-11-27.
2022. url: https://keras.io/.

33

